KR0174029B1 - Insulated gate semiconductor device and process for fabricating the same - Google Patents

Insulated gate semiconductor device and process for fabricating the same Download PDF

Info

Publication number
KR0174029B1
KR0174029B1 KR1019940019865A KR19940019865A KR0174029B1 KR 0174029 B1 KR0174029 B1 KR 0174029B1 KR 1019940019865 A KR1019940019865 A KR 1019940019865A KR 19940019865 A KR19940019865 A KR 19940019865A KR 0174029 B1 KR0174029 B1 KR 0174029B1
Authority
KR
South Korea
Prior art keywords
semiconductor
film
type
region
light
Prior art date
Application number
KR1019940019865A
Other languages
Korean (ko)
Other versions
KR950007162A (en
Inventor
야스히코 다케무라
Original Assignee
야마자끼 순페이
가부시키가이샤 한도오따이 에네루기 겐큐쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 야마자끼 순페이, 가부시키가이샤 한도오따이 에네루기 겐큐쇼 filed Critical 야마자끼 순페이
Publication of KR950007162A publication Critical patent/KR950007162A/en
Application granted granted Critical
Publication of KR0174029B1 publication Critical patent/KR0174029B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78669Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

개선된 특성을 갖지만 단순한 공정에 의해 얻어지는 역스태거형 박막 트랜지스터는 소스, 드레인 및 채널형성영역을 이온주입, 이온도핑, 또는 플라즈마이온의 도핑에 의해 선택적으로 도핑하고 나서 자외선, 가시광, 또는 근적외선을 단시간동안 조사함에 의한 급속 열어닐링을 실행함으로써 제조된다. 소스, 드레인 및 채널형성영역은 실제로 단일면내에 형성된다.Inverse staggered thin film transistors having improved properties but obtained by a simple process are selectively doped with source, drain, and channel forming regions by ion implantation, ion doping, or doping of plasma ions, and then short-term UV, visible, or near infrared rays. It is prepared by carrying out rapid open annealing by irradiation. The source, drain and channel forming regions are actually formed in a single plane.

Description

절연게이트형 반도체장치 및 그의 제작방법Insulated gate semiconductor device and manufacturing method thereof

제1(a)도∼제1(d)도는 본 발명에 따른 TFT 제작방법을 나타내는 단면도.1 (a) to 1 (d) are sectional views showing the TFT fabrication method according to the present invention.

제2(a)도∼제2(d)도는 종래기술에 따른 TFT 제작방법을 나타내는 단면도.2 (a) to 2 (d) are cross-sectional views showing a TFT manufacturing method according to the prior art.

제3도는 실시예 1에 따른 TFT 제작방법의 공정순서를 나타내는 도표.3 is a chart showing the process sequence of the TFT fabrication method according to Example 1. FIG.

제4도는 실시예 2에 따른 TFT 제작방법의 공정순서를 나타내는 도표.4 is a chart showing a process sequence of a TFT fabrication method according to Example 2. FIG.

제5도는 종래기술에 따른 TFT 제작방법의 공정순서를 나타내는 도표.5 is a chart showing a process sequence of a TFT fabrication method according to the prior art.

제6도는 다른 종래기술에 따른 TFT 제작방법의 공정순서를 나타내는 도표.6 is a table showing a process sequence of another TFT fabrication method according to the prior art.

제7(a)도 및 제7(b)도는 실시예 1에서의 온도설정례를 나타내는 그래프.7 (a) and 7 (b) are graphs showing an example of temperature setting in Example 1. FIG.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

101 : 기판 102 : 게이트 전극101 substrate 102 gate electrode

103 : 산화막 104 : 게이트 절연막103: oxide film 104: gate insulating film

105 : 반도체영역 106 : 질화규소막105: semiconductor region 106: silicon nitride film

107 : 포토레지스트 108 : 불순물영역107 photoresist 108 impurity region

109 : 채널형성영역 110 : 금속배선·전극109: channel forming region 110: metal wiring and electrode

111 : 화소전극111: pixel electrode

본 발명은 MIS(Metal-Insulator-Semiconductor: 금속-절연체-반도체)형 반도체장치, 특히, MIS 트랜지스터 및 그의 제작방법에 관한 것이다. 특히, 본 발명은 절연기판상에 형성된 박막 형상의 MIS형 반도체장치, 특히, 박막트랜지스터(TFT)에 관한 것이다. 특히, 본 발명은 채널형성영역이 게이트 전극의 상측에 위치하는 이른바 역스태거형 구조를 가지는 MIS형 반도체장치에 관한 것이다. 본 발명은 절연기판상에 형성된 반도체 집적회로, 예를 들어, 액정표시장치에 사용되는 액티브 매트릭스형 회로나 이미지 센서의 구동회로 등에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-insulator-semiconductor (MIS) type semiconductor device, in particular a MIS transistor and a method of manufacturing the same. In particular, the present invention relates to a thin-film MIS type semiconductor device formed on an insulating substrate, in particular, a thin film transistor (TFT). In particular, the present invention relates to a MIS type semiconductor device having a so-called reverse staggered structure in which a channel formation region is located above the gate electrode. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit formed on an insulating substrate, for example, an active matrix circuit used in a liquid crystal display device, a driving circuit of an image sensor, or the like.

최근, 절연기판상에 형성된 박막 형상의 MIS형 반도체장치를 포함하는 장치가 실제 사용되고 있다. 예를 들어, 액티스 매트릭스형 액정표시정치에서 그러한 장치를 볼 수 있다. 현재 시판되고 있는 액티브 매트릭스형 회로는 TFT를 이용한 것과, MIM 등의 다이오드를 이용한 것이 있다. 특히, 전자(前者)의 액티브 매트릭스형 회로는 고품위의 화상이 얻어지기 때문에 보다 활발히 제작되고 있다.Recently, a device including a thin film MIS type semiconductor device formed on an insulating substrate has been actually used. Such devices can be seen, for example, in Actis matrix type liquid crystal display politics. There are two types of active matrix circuits currently on the market using TFTs and diodes such as MIM. In particular, the former active matrix type circuit is actively produced because high quality images are obtained.

TFT를 이용한 액티브 매트릭스형 회로로서는, 다결정 규소 등의 다결정 반도체를 이용한 TFT와, 비정질 규소와 같은 비정질 반도체를 이용한 TFT(이후, 비정질 규소 TFT라 칭한다)이 알려져 있다. 그러나, 전자의 TFT는 제작공정상의 문제 때문에 대면적의 표시장치에는 적용될 수 없어, 대면적 표시장치에는, 350℃ 이하의 공정온도에서 제작될 수 있는 후자의 것이 주로 사용된다.As an active matrix circuit using TFTs, there are known TFTs using polycrystalline semiconductors such as polycrystalline silicon and TFTs using amorphous semiconductors such as amorphous silicon (hereinafter referred to as amorphous silicon TFTs). However, the former TFT cannot be applied to a large-area display device because of problems in the manufacturing process, and the latter, which can be manufactured at a process temperature of 350 ° C. or less, is mainly used for the large-area display device.

제2(a)도∼제2(d)도에는, 종래의 역스태거형 비정질 규소 TFT의 제작 공정이 나타내어져 있다. 기판(201)으로서는, 코닝 7059 유리와 같은 내열성의 무(無)알카리 유리가 이용된다. 비정질 규소 TFT의 최고 공정온도는 350℃ 정도이기 때문에, 이 온도에 잘 견딜 수 있는 재료가 사용되어야 한다. 특히, TFT를 액정 표시 패널에서 사용하는 경우에는, 열처리에 의해 기판이 변형되는 일이 없도록 충분히 높은 내열성과 높은 유리전이온도를 가지는 재로가 사용되어야 한다. 이 점에서 코닝 7059 유리는 유리전이온도가 600℃보다 약간 낮기 때문에 기판재료로서 적합하다.The manufacturing process of the conventional reverse staggered amorphous silicon TFT is shown by FIG. 2 (a)-2 (d). As the substrate 201, a heat-resistant alkali free glass such as Corning 7059 glass is used. Since the maximum process temperature of the amorphous silicon TFT is about 350 ° C, a material that can withstand this temperature should be used. In particular, when the TFT is used in a liquid crystal display panel, a furnace having a sufficiently high heat resistance and a high glass transition temperature should be used so that the substrate is not deformed by heat treatment. In this respect, Corning 7059 glass is suitable as a substrate material because its glass transition temperature is slightly lower than 600 ° C.

또한, TFT의 동작을 안정되게 하기 위해서는, 나트륨과 같은 가동(可動)이온이 기판 중에 포함되어 있는 것은 바람직하지 않다. 코닝 7059 유리는 알칼리 이온의 농도가 충분히 낮기 때문에 문제가 없으나, 기판 중에 나트륨 이온과 같은 알칼리 이온이 다량 함유되어 있는 경우에는, 기판 중의 가동이온이 TFT로 침입하지 않도록 기판상에 질화규소, 산화알루미늄 등의 패시베이션막을 형성할 필요가 있다.In addition, in order to stabilize the operation of the TFT, it is not preferable that movable ions such as sodium are contained in the substrate. Corning 7059 glass does not have a problem because the concentration of alkali ions is sufficiently low. However, when a large amount of alkali ions such as sodium ions are contained in the substrate, silicon nitride, aluminum oxide, or the like is prevented from entering into the TFT. It is necessary to form a passivation film.

먼저, 알루미늄 또는 탄탈과 같은 도전성 재료로 기판상에 피막을 형성한 후, 마스크 ①을 사용하여 패터닝하는 것에 의해 게이트 전극(202)을 형성한다. 특히 게이트 전극·배선과 상부 배선과의 단락을 방지하기 위해서는, 이 게이트 전극의 표면에 산화막(203)을 형성하여 두면 좋다. 산화막의 형성방법으로서는, 양극산화법이 주로 사용된다. 그 경우, 산화막은 전해용액중에서 게이트 전극(202)에 정(正)의 전압을 인가하여 게이트 전극의 표면을 산화시킴으로써 형성된다.First, a film is formed on a substrate with a conductive material such as aluminum or tantalum, and then the gate electrode 202 is formed by patterning using a mask ①. In particular, in order to prevent a short circuit between the gate electrode and the wiring and the upper wiring, an oxide film 203 may be formed on the surface of the gate electrode. As the formation method of the oxide film, anodization is mainly used. In that case, the oxide film is formed by applying a positive voltage to the gate electrode 202 in the electrolytic solution to oxidize the surface of the gate electrode.

그후, 게이트 절연막(204)이 형성된다. 이 게이트 절연막으로서는, 일반적으로 질화규소가 사용되지만, 그것에 한정되지 않고, 산화규소이어도 좋고, 또는 질소와 산소가 임의의 비율로 포함된 규화물이어도 좋다. 또한, 게이트 절연막은 단층막이어도 좋고, 다층막이어도 좋다. 게이트 절연막으로서 질화규소가 사용되는 경우에는, 예를 들어, 플라즈마 CVD법이 이용될 수 있다. 플라즈마 CVD법을 사용한 경우에는, 공정온도가 350℃ 정도로 되고, 이것은 본 공정의 최고온도가 된다. 이렇게 하여 얻어진 구조를 제2(a)도에 나타내었다.Thereafter, a gate insulating film 204 is formed. Although silicon nitride is generally used as this gate insulating film, it is not limited to this, A silicon oxide may be sufficient, or the silicide containing nitrogen and oxygen in arbitrary ratios may be sufficient as it. The gate insulating film may be a single layer film or a multilayer film. When silicon nitride is used as the gate insulating film, for example, a plasma CVD method can be used. In the case of using the plasma CVD method, the process temperature is about 350 ° C, which is the maximum temperature of the present process. The structure thus obtained is shown in Fig. 2 (a).

그후, 비정질 규소막을 형성한다. 비정질 규소막이 플라즈마 CVD법에 의해 성막되는 경우에는, 기판을 250∼300℃의 온도로 가열한다. 이 막의 두께는 가능한 한 얇은 것이 바람직하고, 통상은, 10∼100nm, 바람직하게는, 10∼30nm의 두께로 된다. 그리고, 마스크 ②를 사용하여 비정질 규소막을 패터닝하여, 비정질 규소영역(205)을 형성한다. 이 비정질 규소영역(205)은 후의 공정에서 TFT의 채널형성영역을 제공한다. 여기까지의 상태를 제2(b)도에 나타내었다.Thereafter, an amorphous silicon film is formed. When the amorphous silicon film is formed by the plasma CVD method, the substrate is heated to a temperature of 250 to 300 ° C. The thickness of the film is preferably as thin as possible, and usually 10 to 100 nm, preferably 10 to 30 nm. Then, the amorphous silicon film is patterned using the mask ② to form the amorphous silicon region 205. This amorphous silicon region 205 provides a channel forming region of the TFT in a later step. The state thus far is shown in FIG. 2 (b).

다음에, 전체 표면상에 질화규소막을 형성하고, 마스크 ③을 사용하여 질화규소막을 패터닝하여 에칭 스톱퍼(206)를 제공한다. 이 에칭 스톱퍼는 후의 공정에서 잘못하여 채널형성영역의 비정질 규소영역(205)을 에칭하는 것을 방지하기 위해 제공되는데, 왜냐하면, 비정질 규소영역(205)이 상기한 바와 같이 10∼100nm의 두께로 얇기 때문이다. 또한, 에칭 스톱퍼 아래의 비정질 규소영역은 채널형성영역으로서 기능하기 때문에, 에칭 스톱퍼는 가능한 한 게이트 전극에 겹치도록 설계된다. 그러나, 통상의 마스크 맞춤에서는 어느 정도의 어긋남이 발생하기 때문에, 에칭 스톱퍼는 게이트 전극에 충분히 겹치도록(즉, 게이트 전극보다도 작게 되도록) 패터닝 된다.Next, a silicon nitride film is formed on the entire surface, and the silicon nitride film is patterned using a mask 3 to provide an etching stopper 206. This etching stopper is provided to prevent the etching of the amorphous silicon region 205 of the channel forming region by mistake in a later process, since the amorphous silicon region 205 is thin to a thickness of 10 to 100 nm as described above. to be. In addition, since the amorphous silicon region under the etch stopper functions as a channel forming region, the etch stopper is designed to overlap the gate electrode as much as possible. However, since some deviation occurs in normal mask fitting, the etching stopper is patterned so as to overlap the gate electrode sufficiently (that is, smaller than the gate electrode).

그후, N형 또는 P형 도전형의 규소피막을 형성한다. 통상의 비정질 규소 TFT는 N채널형으로 된다. 이 규소피막은 비정질 규소에서는 도전율이 불충분하게 낮기 때문에, 미결정(微結晶) 상태의 규소막이 대신 사용된다. N형 도전형의 미결정 규소막은 플라즈마 CVD법에 의해 350℃ 이하의 온도에서 제작될 수 있다. 그러나, 여전히, 저항이 충분히 낮지 않기 때문에, N형의 미결정 규소막은 200nm 이상의 두께로 형성할 필요가 있다. P형의 미결정 규소막은 저항이 현저하게 크기 때문에 그대로는 사용될 수 없고, 따라서, P채널형 TFT를 비정질 규소로 제작하는 것이 곤란하다.Thereafter, a silicon film of N type or P type conductivity is formed. Normal amorphous silicon TFTs are of N-channel type. Since the silicon film has an insufficiently low conductivity in amorphous silicon, a silicon film in a microcrystalline state is used instead. The N-type conductive microcrystalline silicon film can be produced at a temperature of 350 ° C. or lower by the plasma CVD method. However, since the resistance is not sufficiently low, the N-type microcrystalline silicon film needs to be formed to a thickness of 200 nm or more. The P-type microcrystalline silicon film cannot be used as it is because the resistance is remarkably large, and therefore, it is difficult to fabricate the P-channel TFT from amorphous silicon.

그후, 이렇게 하여 형성된 규소막을 마스크 ④를 사용하여 패터닝하여, N형의 미결정 규소영역(207)을 형성한다. 여기까지의 상태를 제2(c)도에 나타내었다.Thereafter, the silicon film thus formed is patterned using a mask ④ to form an N-type microcrystalline silicon region 207. The state thus far is shown in FIG. 2 (c).

그러나, 제2(c)도의 구조는, N형의 미결정 규소막이 에칭 스톱퍼상에 접합하여 있기 때문에, TFT로서 기능할 수 없다. 따라서, 이 접합을 분단시킬 필요가 있다. 그래서, 마스크 ⑤를 사용하여 이것을 분단시켜, 홈(208)을 형성한다. 만일 에칭 스톱퍼가 비정질 규소막상에 제공되어 있지 않으면, 잘못하여 하지(下地)의 비정질 규소영역(205)까지도 에칭해 버릴 염려가 있는데, 그 이유는 미결정 규소영역(207)의 두께가 그 아래의 비정질 규소영역보다 수 배 내지 수 십배 또는 그 이상 두껍기 때문이다.However, the structure of FIG. 2 (c) cannot function as a TFT because the N-type microcrystalline silicon film is bonded onto the etching stopper. Therefore, it is necessary to divide this joint. Thus, the mask ⑤ is divided to form a groove 208. If the etch stopper is not provided on the amorphous silicon film, there is a risk of accidentally etching the underlying amorphous silicon region 205, because the thickness of the microcrystalline silicon region 207 is below that. This is because it is several times to several ten times or more thicker than the silicon region.

그후, 공지의 방법에 의해, 마스크 ⑥ 및 ⑦을 사용하여 배선(209) 및 화소전극(210)을 형성하였다. 이 상태를 제2(d)도에 나타내었다.Then, the wiring 209 and the pixel electrode 210 were formed using the mask (6) and (7) by a well-known method. This state is shown in FIG. 2 (d).

그러나, 이상의 방법에서는, 7매에 이르는 다수의 마스크가 사용되기 때문에, 생산수율이 저하될 수 있다. 그래서, 이하에 나타내는 바와 같이 마스크의 수를 감소시키는 방법도 제안되었다. 먼저, 기판상에 제 1 마스크를 사용하여 게이트 전극부를 패터닝하고, 그후, 절연막을 형성한 다음, 비정질 규소막꽈 질화규소막(후에 에칭 스톱퍼가 된다)을 연속적으로 형성한다. 그리고, 뒷면으로부터 노광(露光)함으로써, 게이트 전극부를 마스크로 하여 질화규소막만을 선택적으로 에칭하여 에칭 스톱퍼를 자기정합적으로 형성한다. 그리고, 그 위에 미결정 규소막을 형성한 후, 채널 상방의 홈(제2도의 영역(208)에 대응)을 포함하는 TFT 영역을 형성한다. 그 다음, 제 3 및 제 4 마스크를 사용하여 배선 및 전극을 형성한다. 최종적으로는, 제2(d)도에 나타낸 것과 동등한 구조가 얻어진다. 이렇게 하여, 자기정합공정을 충분히 이용함으로써 적은 수의 마스크, 즉, 3매의 마스크를 사용하여 완전한 구조가 얻어질 수 있다.However, in the above method, since a large number of masks of up to seven sheets are used, the production yield may decrease. Thus, a method of reducing the number of masks has also been proposed, as shown below. First, the gate electrode portion is patterned on the substrate using a first mask, then an insulating film is formed, and then an amorphous silicon film or a silicon nitride film (hereinafter referred to as an etching stopper) is continuously formed. Then, by exposing from the backside, only the silicon nitride film is selectively etched using the gate electrode portion as a mask to form an etching stopper self-aligning. Then, after the microcrystalline silicon film is formed thereon, a TFT region including grooves (corresponding to region 208 in FIG. 2) above the channel is formed. Then, the wirings and the electrodes are formed using the third and fourth masks. Finally, a structure equivalent to that shown in FIG. 2 (d) is obtained. In this way, by fully utilizing the self-aligning process, a complete structure can be obtained using a small number of masks, that is, three masks.

이렇게 하여 형성된 TFT는, 도면에서 보여지는 바와 같이, 매우 심한 요철을 가진다. 이것은 주로, 게이트 전극부(게이트 전극의 산화막(203)을 포함한다)와, 에칭 스톱퍼 및 미결정 규소영역에 기인하는 것이다. 더 구체적으로는, 예를 들어, 게이트 전극부의 두께를 300nm, 에칭 스톱퍼의 두께를 200nm, 미결정 규소영역(207)의 두께를 300nm로 하면, 기판상에는 800nm만큼 높은 요철이 생기는 것으로 된다.The TFT thus formed has a very severe unevenness as shown in the figure. This is mainly due to the gate electrode portion (including the oxide film 203 of the gate electrode), the etching stopper and the microcrystalline silicon region. More specifically, for example, when the thickness of the gate electrode portion is 300 nm, the thickness of the etching stopper is 200 nm, and the thickness of the microcrystalline silicon region 207 is 300 nm, unevenness as high as 800 nm is generated on the substrate.

예를 들어, 액정 표시패널의 액티브 매트릭스형 회로로서 TFT를 사용하는 경우에는, 셀(cell)의 두께는 일반적으로 5∼6μm이고, 0.1μm 이하의 정밀도내에서 그 두께가 제어된다. 그러한 조건에서, 1μm 높이에 이르는 요철은 셀 두께의 균일성을 크게 손상시킨다.For example, in the case of using a TFT as an active matrix circuit of a liquid crystal display panel, the thickness of a cell is generally 5 to 6 µm, and its thickness is controlled within an accuracy of 0.1 µm or less. Under such conditions, unevenness up to 1 μm in height greatly compromises the uniformity of the cell thickness.

두께 균일성에 영향을 끼치는 요인은 쉽게 제거될 수 없다. 예를 들어, 미결정 규소막을 얇게 형성하면, 소스 및 드레인의 저항이 역으로 높게 되어, 장치의 특성이 저하한다.Factors affecting thickness uniformity cannot be easily removed. For example, when the microcrystalline silicon film is formed thin, the resistances of the source and the drain become inversely high, resulting in deterioration of the characteristics of the device.

한편, 에칭 스톱퍼가 얇으면, 미결정 규소영역을 에칭하는 공정 중에 잘못하여 그 아래의 비정질 규소영역까지 에칭해 버릴 가능성이 있고, 그러한 경우, 생산수율이 저하한다.On the other hand, when the etching stopper is thin, there is a possibility that the microcrystalline silicon region is erroneously etched to the amorphous silicon region below it in the process of etching, and in such a case, the production yield decreases.

본 발명은 상기한 종래의 문제점을 감안하여 된 것으로, 본 발명의 목적들 중 하나는 반도체장치 제작공정을 간략화하는데 있다. 예를 들어, 마스크의 수를 종래의 방법보다도 감소시킴으로써 생산수율을 향상시킨다. 또는, 성막공정의 수를 감소시킴으로써 처리량(스루풋)을 향상시켜, 비용을 절감시키는 것을 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made in view of the above-described conventional problems, and one of the objects of the present invention is to simplify a semiconductor device manufacturing process. For example, the production yield is improved by reducing the number of masks compared with the conventional method. Or it aims at improving a throughput (throughput) by reducing the number of film-forming processes, and reducing cost.

본 발명의 다른 목적은, 보다 평탄화 된 표면을 가지는 TFT와 같은 반도체장치를 제공하는데 있다. 평탄한 표면을 가지는 TFT는 그것을 액정 표시패널에 사용하는데 있어서의 문제를 해결할 뿐만 아니라, 다른 응용에 있어서의 중요한 기술적 문제를 해결한다. 평탄화 된 구조를 가지는 TFT는 종래의 TFT에서는 응용이 곤란하였던 새로운 응용분야에도 적용될 수 있다.Another object of the present invention is to provide a semiconductor device such as a TFT having a more flattened surface. A TFT having a flat surface not only solves the problem of using it in a liquid crystal display panel, but also solves an important technical problem in other applications. TFTs having a flattened structure can be applied to new applications, which are difficult to apply in conventional TFTs.

본 발명의 또 다른 목적은 TFT의 특성을 향상시키는데 있다. 제2도에 나타내어진 TFT에서는, 소스/드레인영역의 시트(sheet) 저항이 높아, TFT의 특성에 악영향을 끼친다. 더구나, 소스/드레인영역과 채널형성영역은 상이한 재료로 형성되어 있기 때문에, 그들 영역 사이의 접합 상태가 매우 불량하다. 또한, 채널형성영역을 성막한 후에 연속적으로 소스/드레인영역을 형성하는 것이 불가능하다. 그래서, 이상적으로는, 반도체 집적회로의 MOS 트랜지스터에서와 같이 동일 면내의 단일 막에 의해 소스/드레인영역과 채널형성영역을 형성하여 이들 영역 사이의 접합을 개선하는 것이 특성개선에 필요하다.Another object of the present invention is to improve the characteristics of the TFT. In the TFT shown in FIG. 2, the sheet resistance of the source / drain regions is high, which adversely affects the characteristics of the TFT. Moreover, since the source / drain regions and the channel forming regions are formed of different materials, the bonding state between these regions is very poor. In addition, it is impossible to form the source / drain regions continuously after forming the channel forming region. Therefore, ideally, it is necessary to improve the junction between these regions by forming the source / drain regions and the channel forming regions by a single film in the same plane as in the MOS transistor of the semiconductor integrated circuit.

상기한 문제점들을 해결하기 위해 본 발명은, 에칭 스톱퍼를 사용하지 않고 TFT를 제작하는 새로운 방법 및 그 방법에 의해 제작된 TFT를 제공한다. 즉, 미결정 영역(소스/드레인)의 저항을 충분히 저하시키고, 그의 두께를 얇게 한다. 더욱이, 본 발명에서는, 종래와 같이 채널형성영역이 되는 비정질 규소영역(막)의 형성단계와, 소스/드레인영역이 되는 미결정 규소영역(막)의 형성단계와 같은 2단계의 공정 대신에, 단일의 규소막을 형성한 다음, 이 규소막의 어떤 부분에는 소스/드레인영역을 그리고 다른 부분에는 채널형성영역을 따로따로 형성한다.In order to solve the above problems, the present invention provides a novel method for manufacturing a TFT without using an etching stopper and a TFT manufactured by the method. That is, the resistance of the microcrystalline region (source / drain) is sufficiently lowered and the thickness thereof is made thinner. Further, in the present invention, instead of the conventional two-step process of forming an amorphous silicon region (film) serving as a channel forming region and forming a microcrystalline silicon region (film) serving as a source / drain region, a single process is employed. After the silicon film is formed, a source / drain region is formed in one portion of the silicon film and a channel forming region is formed separately in the other portion.

처리량의 향상을 위해서는, 성막공정을 적게 하는 것이 가장 중요한 과제이다. 성막공정은 성막에 시간을 요할 뿐만 아니라, 성막실내의 세정에도 같은 정도의 시간을 요하여, 극히 청정한 환경이 요구되는 현대의 반도체공정에 있어서는, 성막실을 세정하는 사이에 성막을 행하는 것이 현재의 실정이다. 따라서, 두꺼운 막을 형성하기보다는 얇은 피막을 형성하는 것과, 다층의 피막을 형성하기보다는 단층의 피막을 형성하는 것이 처리량을 향상시키는데 필요함을 알 수 있다. 그 의미에서, 성막공정을 삭감하는 것이 바람직하다.In order to improve the throughput, it is most important to reduce the deposition process. The film forming process not only takes time for film forming but also takes about the same time for cleaning in the film forming chamber, and in a modern semiconductor process requiring an extremely clean environment, the film forming process is performed while the film forming chamber is cleaned. It is true. Therefore, it can be seen that forming a thin film rather than forming a thick film and forming a single layer film rather than forming a multilayer film are necessary to improve the throughput. In that sense, it is preferable to reduce the film forming step.

본 발명의 일 실시형태에 따른 TFT는, 게이트 전극을 덮도록 게이트 절연막이 형성되고, 그 위에 반도체막이 형성되어 있고, 그 반도체막 중 게이트 전극 위의 부분은 채널형성영역으로 기능하도록 실질적으로 진성의 비정질 반도체로 만들어지고, 그 반도체막의 다른 부분은 N형 또는 P형이고, 채널형성영역의 비정질 반도체보다 질서성이 높은 소스/드레인영역으로 기능하는 역스태거형 TFT이다. N형 또는 P형 반도체는 라만 산란 스펙트럼의 피크에 의해 관찰할 때 질서성을 나타내는 결정성 반도체이다. 또한, 채널형성영역으로서 기능하는 부분은 비정질, 세미아모르퍼스, 미결정, 다결정이거나, 또는 그들의 중간상태를 취할 수 있다. 오프 전류를 억제하고자 하는 경우에는, 비정질 반도체를 사용하는 것이 바람직하다. 한편, 소스/드레인으로서 기능하는 영역은 충분히 낮은 저항을 가지는 결정성 규소로 만들어진다. 또한, 이 영역은 결정성으로 되어 있고, 레이저광 또는 레이저광과 동등한 4∼0.5μm 파장의 강광(强光), 즉, 자외광, 가시광, 또는 근적외광을 그 영역에 단시간 조사(照射)하는 것에 의해 그의 결정구조가 개선된다. 이 영역은 도입된 불순물에 따라 자외광, 가시광 또는 근적외광의 조사에 의해 P형 또는 N형이 된다.In the TFT according to the embodiment of the present invention, a gate insulating film is formed to cover the gate electrode, and a semiconductor film is formed thereon, and a portion of the semiconductor film on the gate electrode is substantially intrinsic to function as a channel forming region. The other part of the semiconductor film, which is made of an amorphous semiconductor, is an inverted staggered TFT that functions as a source / drain region having an N type or a P type and higher order than the amorphous semiconductor in the channel forming region. An N-type or P-type semiconductor is a crystalline semiconductor exhibiting order when observed by the peak of the Raman scattering spectrum. In addition, the portion serving as the channel forming region may be amorphous, semi-amorphous, microcrystalline, polycrystalline, or may take their intermediate state. In the case where the off current is to be suppressed, it is preferable to use an amorphous semiconductor. On the other hand, the region serving as the source / drain is made of crystalline silicon having a sufficiently low resistance. In addition, this region is crystalline, and irradiates the region for a short time with intense light having a wavelength of 4 to 0.5 µm, that is, ultraviolet light, visible light, or near infrared light, which is equivalent to laser light or laser light. This improves its crystal structure. This region becomes P-type or N-type by irradiation of ultraviolet light, visible light or near infrared light, depending on the impurity introduced.

상기한 구성은 단일의 반도체막에 의해 실현될 수 있어, 상기한 공정은 대량생산에 적당한 것을 알 수 있다. 또한, 본 발명에서는, 종래의 공정과 달리 두꺼운 미결정 규소막이 형성되지 않기 때문에, TFT의 표면 요철이 감소될 수 있다. 물론, 본 발명은, 불순물영역, 예를 들어, 채널형성영역과 소스/드레인영역을 단일의 반도체층에 형성하는 것을 항상 요하지 않고, 이 불순물영역은, 비용과 특성을 고려하고, 소자의 특성을 더욱 향상시키기기 위해 2개 이상의 반도체층을 포함하는 다층구조를 취할 수도 있음은 당연하다. 그러나, 그 경우도, 소스/드레인영역과 채널형성영역은 실질적으로 동일 층내에 존재하는 것이 필요하다.The above structure can be realized by a single semiconductor film, and it can be seen that the above process is suitable for mass production. Further, in the present invention, since the thick microcrystalline silicon film is not formed unlike the conventional process, the surface irregularities of the TFT can be reduced. Of course, the present invention does not always require the formation of an impurity region, for example, a channel formation region and a source / drain region in a single semiconductor layer. It is natural that a multi-layer structure including two or more semiconductor layers may be taken to further improve. However, also in that case, the source / drain region and the channel forming region need to be substantially in the same layer.

본 발명의 다른 실시형태에 따른 TFT는 채널형성영역의 상부에 에칭 스톱퍼를 가지고 있지 않은 것을 특징으로 한다. 에칭 스톱퍼가 존재하는 것은 TFT의 표면 요철의 중요한 요인이다.A TFT according to another embodiment of the present invention is characterized by not having an etching stopper on the upper portion of the channel formation region. The presence of the etch stopper is an important factor of the surface irregularities of the TFTs.

본 발명에 따른 TFT는 제1(a)도∼제1(d)도에 개략적으로 나타낸 공정에 의헤 제작될 수 있으나, 이것에만 한정되는 것은 아니고, 필요한 변경이 가해질 수 있다. 제1(a)도에 나타낸 바와 같이, 내열성의 무알칼리 유리(예를 들어, 코닝 7059 유리)로 될 절연기판(101)상에 게이트 전극(102)이 마스크 ①을 사용하여 패터닝되어 형성된다. 필요한 경우, 게이트 전극의 표면에 산화막(103)을 형성하여, 절연성을 높일 수도 있다. 그후, 전페 표면상에 게이트 절연막(104)을 형성하여, 제1(a)도에 나타낸 바와 같은 구조를 얻는다.The TFT according to the present invention can be manufactured by a process schematically shown in FIGS. 1 (a) to 1 (d), but is not limited thereto, and necessary modifications can be made. As shown in FIG. 1 (a), a gate electrode 102 is patterned and formed using a mask ① on an insulating substrate 101 to be heat-resistant alkali-free glass (for example, Corning 7059 glass). If necessary, the oxide film 103 may be formed on the surface of the gate electrode to increase the insulation. Thereafter, a gate insulating film 104 is formed on the entire surface of the wafer to obtain a structure as shown in FIG. 1 (a).

다음에, 비정질, 세미아모르퍼스, 미결정, 다결정, 또는 그들의 중간상태의 규소 박막을 형성하고, 마스크 ②를 사용하여 패터닝을 행하여, 반도체영역(105)을 형성한다. 실제로는, 성막온도와 오프전류(리크 전류)를 고려하여 비정질 규소막을 형성하는 경우가 많지만, 그렇게 하여 얻어진 비정질 규소막에 레이저 어닐 등의 저온결정화 공정을 추가로 행하여, 다결정 또는 세미아모르퍼스 규소막을 형성할 수도 있다. 다결정 또는 세미아모르퍼스 규소를 사용한 경우에는, 전계이동도가 커지지만, 오프 전류도 커지기 때문에, 액정 표시패널의 액티브 매트릭스형 회로에는 적당하지 않다.Next, a silicon thin film of amorphous, semi-amorphous, microcrystalline, polycrystalline, or intermediate state thereof is formed, and patterning is performed using a mask (2) to form the semiconductor region 105. In practice, an amorphous silicon film is often formed in consideration of the film formation temperature and the off current (leak current). However, a low-temperature crystallization process such as laser annealing is further performed on the thus-obtained amorphous silicon film to form a polycrystalline or semi-amorphous silicon film. It may be formed. When polycrystalline or semi-amorphous silicon is used, the electric field mobility increases, but the off current also increases, which is not suitable for the active matrix circuit of the liquid crystal display panel.

이어서, 자외광, 가시광, 또는 근적외광에 대하여 마스크재(材)가 되는 피막, 예를 들어, 규소가 많은 질화규소막을 바람직하게는 50nm 이상의 두께로 형성하고, 이것을 마스크 ③을 사용하여 패터닝한다. 이때, 질화규소막상에 포토레지스트를 잔존시켜도 좋다. 즉, 제1(c)도에서, 106이 질화규소이고, 107이 포토레지스터이다. 후의 이온 주입공정을 상정(想定)하여, 포토레지스트의 두께는 100nm 이상, 바람직하게는 500nm 이상으로 한다.Subsequently, a film which becomes a mask material, for example, a silicon nitride film having a lot of silicon, is formed to a thickness of 50 nm or more with respect to ultraviolet light, visible light, or near infrared light, and this is patterned using a mask (3). At this time, the photoresist may remain on the silicon nitride film. That is, in FIG. 1 (c), 106 is silicon nitride and 107 is a photoresist. Assuming the following ion implantation step, the thickness of the photoresist is 100 nm or more, preferably 500 nm or more.

이 상태에서, 이온 주입 또는 이온 도핑, 또는 플라즈마화한 이온의 도핑 등의 방법에 의해 반도체영역(105)에 불순물을 선택적으로 주입한다. 그리하여, 불순물영역(108)이 형성된다. 그러나, 이 불순물 주입에 의해 반도체막의 결정성이 매우 크게 손상되어, 반도체로서는 기능하지 않게 된다. 그래서, 자외광, 가시광, 근적외광, 또는 레이저광을 상방으로부터 그 손상된 막에 단시간 조사함으로써 결정화(즉, 램프 어닐, 급속 열어닐(RTA))을 행한다. 이 공정에 의해, 반도체의 질서성이 회복되어, 불순물 도입 전의 상태보다도 질서성이 양호한 상태가 얻어진다. 이 램프 어닐 공정에서는, 사용되는 광의 조사시간, 피조사물의 온도 및 분위기를 적당히 제어함으로써, 극히 단결정 상태에 가까운 다결정 상태로부터 세미아모르퍼스 상태까지 다양한 상태의 규소를 형성할 수 있다. 램프 어닐 공정에 의해 얻어진 규소의 결정성이, 라만 산란 분광법에 의해 결정 규소에 특유한 산란 피크를 조사함으로써 확인될 수 있다.In this state, impurities are selectively implanted into the semiconductor region 105 by a method such as ion implantation, ion doping, or plasma doping. Thus, the impurity region 108 is formed. However, due to the impurity implantation, the crystallinity of the semiconductor film is greatly impaired and it does not function as a semiconductor. Thus, crystallization (i.e., lamp annealing, rapid opening) (RTA) is performed by irradiating ultraviolet light, visible light, near infrared light, or laser light from the upper part to the damaged film for a short time. By this step, the ordering of the semiconductor is restored, and a state with better ordering than the state before the impurity introduction is obtained. In this lamp annealing step, by controlling the irradiation time of the light used, the temperature of the irradiated object and the atmosphere appropriately, silicon in various states can be formed from a polycrystalline state close to an extremely single crystal state to a semi-amorphous state. The crystallinity of the silicon obtained by the lamp annealing process can be confirmed by examining the scattering peaks peculiar to the crystalline silicon by Raman scattering spectroscopy.

구체적으로, 자외광 영역으로부터 가시광까지 그리고 추가로는 근적외광 영역까지에 이르는 광, 바람직하게는, 예를 들어, 4∼0.5μm의 파장을 가지는 광(예를 들어, 1.3μm의 파장에 피크를 가지는 적외광)을 10∼1000초 정도의 비교적 짧은 시간 조사함으로써, 규소막의 결정성이 개선될 수 있다. 그러한 광은 N형 또는 P형 반도체에 조사될 수 있다. 이 공정에서 사용되는 광의 파장은 규소막에 흡수되지만, 유리기판에서는 실질적으로 흡수되지 않는 것이 바람직하다. 또는, 규소막의 결정성을 개선하기 위해 레이저광이 규소막에 조사될 수도 있다.Specifically, light from the ultraviolet region to the visible region and further to the near infrared region, preferably light having a wavelength of 4 to 0.5 μm (e.g., at a wavelength of 1.3 μm) Branch infrared light) to a relatively short time of about 10 to 1000 seconds, the crystallinity of the silicon film can be improved. Such light can be irradiated to an N-type or P-type semiconductor. The wavelength of the light used in this process is absorbed by the silicon film, but is preferably substantially not absorbed by the glass substrate. Alternatively, laser light may be irradiated onto the silicon film to improve the crystallinity of the silicon film.

가시광 영역의 파장을 가지는 광, 특히 0.5μm 미만의 단파장을 가지는 광은 진성 또는 실질적으로 진성인 비정질 규소에 의해 쉽게 흡수될 수 있으나, 보다 장파장의 광에서는 진성 또는 실질적으로 진성인 비정질 규소의 흡수율이 저하한다. 한편, 0.5∼4μm 파장을 가지는 광은 불순물이 도핑된 비정질 규소막에 의해 효과적으로 흡수되지만, 유리기판에는 거의 흡수되지 않는다. 따라서 0.5∼4μm 파장의 광을 사용하면, TFT의 불순물 도핑 영역만을 효과적으로 가열할 수 있다. 또한, 램프 어닐에 있어서는, 광을 상방이나 기판측 중 어느 한쪽으로부터 조사하여도 좋고, 양측으로부터 조사하여도 좋다는 것은 말할 필요도 없다.Light having a wavelength in the visible range, particularly light having a short wavelength of less than 0.5 μm, can be easily absorbed by intrinsic or substantially intrinsic amorphous silicon, but in longer wavelengths of light the absorption rate of intrinsic or substantially intrinsic amorphous silicon is Lowers. On the other hand, light having a wavelength of 0.5 to 4 μm is effectively absorbed by the amorphous silicon film doped with impurities, but hardly absorbed by the glass substrate. Therefore, when light of 0.5 to 4 탆 wavelength is used, only the impurity doped region of the TFT can be effectively heated. In addition, in lamp annealing, it is needless to say that light may be irradiated from either the upper side or the board | substrate side, and may be irradiated from both sides.

이러한 열처리에 있어서는, 규소막과 기판 사이의 열팽창율의 차이 또는 기판/규소막의 계면과 규수목 표면 사이의 온도 차이 등에 기인하여 규소막이 기판으로부터 종종 박리(剝離)된다. 특히, 이러한 박리는, 막의 면적이 기판의 전체 표면에 걸쳐 큰 경우에 현저하다. 그러나, 본 발명에 있어서는, 막이 충분히 작은 면적의 다수의 부분들로 분단되어 있기 때문에, 막의 박리 등을 방지할 수 있다. 또한, 기판의 전체 표면이 규소막을 통해 가열되는 일이 없기 때문에, 기판이 열적으로 수축하는 것이 충분히 억제될 수 있다. 또한, 열처리에 있어서, 램프 어닐에 의한 기판 등에 대한 열적 영향을 최소로 억제하기 위해서는, 램프 어닐 시간을 가능한 한 짧게 하는 것이 바람직하다.In such heat treatment, the silicon film is often peeled from the substrate due to a difference in thermal expansion rate between the silicon film and the substrate or a temperature difference between the interface of the substrate / silicon film and the surface of the siliceous tree. In particular, such peeling is remarkable when the area of the film is large over the entire surface of the substrate. However, in the present invention, since the membrane is divided into a plurality of portions having a sufficiently small area, it is possible to prevent peeling of the membrane or the like. In addition, since the entire surface of the substrate is not heated through the silicon film, thermal shrinkage of the substrate can be sufficiently suppressed. In addition, in heat processing, in order to minimize the thermal effect on the board | substrate etc. by lamp annealing, it is preferable to make lamp annealing time as short as possible.

게이트 전극은 램프 어닐 공정에 견디는 재료로 만들어져야 한다. 따라서, 탄탈 및 티탄과 같은 고융점의 금속이 바람직하다. 또한, 알루미늄은, 고온에서 쉽게 변형되지만, 충분한 두께의 양극산화막으로 피복되어 있는 경우에는 단시간의 어닐에는 견딘다.The gate electrode should be made of a material that withstands the lamp annealing process. Therefore, high melting point metals such as tantalum and titanium are preferred. In addition, aluminum is easily deformed at a high temperature, but when it is coated with an anodized film of sufficient thickness, it withstands short annealing.

본 발명자의 식견에 의하면, 램프 어닐 공정에 있어서는, 시료를 250∼500℃ 정도로 가열하면 불순물의 활성화가 시료 내부에까지 진행하여, 불순물 농도도 충분히 크게 할 수 있었다. 채널형성영역의 규소를 비정질 상태로 유지하는데는 너무 높은 온도가 바람직하지 않고, 또한, 유리기판에도 제약이 가해지므로, 시료를 250∼350℃ 정도의 온도에 유지하는 것이 바람직하다.According to the findings of the present inventors, in the lamp annealing step, when the sample is heated to about 250 to 500 ° C., the activation of impurities proceeds to the inside of the sample, and the impurity concentration can be sufficiently increased. Too high a temperature is not preferable for keeping the silicon in the channel formation region in an amorphous state, and a constraint is imposed on the glass substrate. Therefore, it is preferable to keep the sample at a temperature of about 250 to 350 ° C.

이와 같이 도핑을 행한 후, 질화규소막(106)과 포토레지스트(017)을 제거한다. 질화규소막(106)은 그대로 잔존시킬 수도 있다. 그후, 공지의 방법으로 마스크 ④ 및 마스크 ⑤를 사용하여 금속배선·전극(110)과 ITO 화소전극(111)을 형성한다. 이상의 공정에 필요한 마스크의 수는 합계하여 5매이지만, 종래와 같이 게이트 전극의 뒷면으로부터의 노광기술을 이용한 자기정합법을 사용함으로써 4매로 감소될 수 있다. 구체적으로는, 게이트 전극과 반도체영역의 형성에 각각 1매의 마스크가 필요하고, 화소전극과 배선·전극을 형성하는데 2매의 마스크가 필요하다. 질화규소막(106)은 게이트 전극을 마스크로 하여 배면 노광을 행함으로써 패터닝될 수 있다.After doping in this manner, the silicon nitride film 106 and the photoresist 017 are removed. The silicon nitride film 106 can be left as it is. Thereafter, the metal wiring / electrode 110 and the ITO pixel electrode 111 are formed using the mask ④ and the mask ⑤ by a known method. The total number of masks required for the above process is five in total, but can be reduced to four by using the self-aligning method using the exposure technique from the back side of the gate electrode as in the prior art. Specifically, one mask is required to form the gate electrode and the semiconductor region, and two masks are required to form the pixel electrode and the wiring electrode. The silicon nitride film 106 can be patterned by performing back exposure using the gate electrode as a mask.

제1(d)도로부터 명백한 바와 같이, 본 발명에 따른 TFT는 종래의 TFT에 비하여 표면 요철이 적다. 이것은, 전체 TFT의 요철의 주된 요인이 게이트 전극부의 요철뿐이기 때문이다. 반도체영역(105)의 두께는 매우 얇고, 종래의 TFT에서와 같이 10∼100nm이기 때문에, 요철에는 큰 기여를 하지 않는다.As is apparent from FIG. 1 (d), the TFT according to the present invention has less surface irregularities than the conventional TFT. This is because the main reason for the unevenness of the entire TFT is only the unevenness of the gate electrode portion. Since the thickness of the semiconductor region 105 is very thin and is 10 to 100 nm as in the conventional TFT, it does not contribute significantly to the unevenness.

상기한 바와 같이, 본 발명은, 반도체영역, 즉, 소스/드레인영역이 충분한 높은 불순물 농도와 좋은 결정성을 가지기 때문에, 그 영역이 매우 얇게 제공될 수 있다는 것을 특징으로 한다. 이것은, 본 발명에에서는 램프 어닐 공정이 이용되기 때문에 달성된다. 또한, 종래기술의 공정에서 필수불가결한 에칭 스톱퍼가 본 발명의 공정에서는 생략될 수 있다. 또한, 본 발명에서 따른 공정에서 사용되는 마스크제가 TFT 완성 후에 남겨질 필요가 없기 때문에, 본 발명의 TFT에서는 요철이 현저하게 감소될 수 있다.As described above, the present invention is characterized in that the semiconductor region, that is, the source / drain region, has a sufficiently high impurity concentration and good crystallinity, so that the region can be provided very thinly. This is achieved because a lamp annealing step is used in the present invention. In addition, the etch stopper, which is indispensable in the prior art processes, may be omitted in the inventive process. Further, since the masking agent used in the process according to the present invention does not need to be left after the completion of the TFT, the unevenness can be significantly reduced in the TFT of the present invention.

종래의 TFT와는 달리, 본 발명에서는, 채널형성영역과 소스/드레인영역이 동일 막에 의해 구성되어 있기 때문에, 이들 영역 사이의 접합이 양호하여, 전계이동도, 서브드레시홀드(sub-dhreshold) 특성치, 리크 전류와 같은 TFT 특성이 향상된다. 소스 및 드레인에 도입된 불순물은 자외광, 가시광 또는 근적외과을 조사함으로써 활성화될 수 있다.Unlike the conventional TFTs, in the present invention, since the channel forming region and the source / drain regions are formed of the same film, the bonding between these regions is good, and thus the electric field mobility and sub-dhreshold characteristic values are obtained. TFT characteristics such as leakage current are improved. Impurities introduced into the source and drain can be activated by irradiating ultraviolet light, visible light or near infrared surgery.

이하에, 실시예에 의거하여 본 발명을 더욱 상세하게 설명한다.EMBODIMENT OF THE INVENTION Below, this invention is demonstrated in detail based on an Example.

[실시예 1]Example 1

제3도의 공정도에 나타낸 공정에 따라 TFT를 제작하였다. 제1(a)도∼제1(d)도는, 본 발명의 일 실시형태에 따른 TFT 제작방법에 있어서 금속배선·전극(110)의 형성공정까지의 제작공정을 개략단면도로 나타낸다. ITO 화소전극(11)을 형성하는 공정은 제3도에 포함되지 않았다. 게이트 전극은 탄탈이고, 그 게이트 전극의 표면에는, 공정 5에서 두께 200nm 정도의 양극산화막을 형성하여 절연성을 향상시켰다. 그 양극산화막은 게이트 전극을 구성하는 재료의 산화물로 되어있다. 불순물 도핑수단으로서는, 이온 도핑법이 사용되었다. 26개 공정으로 이루어진 전체 공정에서 사용된 마스크의 수는 합계 4매이었다.TFT was manufactured according to the process shown in the flowchart of FIG. 1 (a) to 1 (d) show schematic cross-sectional views of the fabrication process up to the formation process of the metal wiring / electrode 110 in the TFT fabrication method according to the embodiment of the present invention. The process of forming the ITO pixel electrode 11 is not included in FIG. The gate electrode was tantalum, and in step 5, an anodization film having a thickness of about 200 nm was formed on the surface of the gate electrode to improve insulation. The anodic oxide film is made of an oxide of a material constituting the gate electrode. As the impurity doping means, an ion doping method was used. The total number of masks used in the entire process of 26 processes was 4 in total.

제3도∼제6도에서, 스퍼터, PCVD,RIE는 각각, 스퍼터링 성막법, 플라즈마 CVD법, 반응성 이온 에칭법을 의미한다. 막 두께와 재료로서 사용된 가스 등의 조건을 콜론(:) 기회 뒤에 나타내었다.3 to 6, sputtering, PCVD, and RIE denote sputtering film formation, plasma CVD, and reactive ion etching, respectively. Conditions such as the film thickness and the gas used as the material are shown after the colon opportunity.

본 실시예에 대응하는 종래기술의 제작공정이 제2(a)도∼제2(d)도에 단면도로 그리고 제5도에 공정도로 나타내어져 있다. 이 공정에서 사용된 마스크의 수는 합계 6매이고, 전체 공정은 29개 공정으로 이루어진다. 따라서, 본 발명에 따른 공정이 종래기술의 공정에 비하여 단축된다는 것을 알 수 있다.The manufacturing process of the prior art corresponding to this embodiment is shown in sectional views in FIGS. 2 (a) to 2 (d) and in process chart in FIG. The number of masks used in this process is 6 sheets in total, and the whole process consists of 29 processes. Thus, it can be seen that the process according to the invention is shortened compared to the process of the prior art.

이하, 제1(a)도∼제1(d)도의 단면도와 제3도의 공정도에 따라 본 실시예를 상세히 설명한다. 기판으로서는 코닝 7059 유리를 사용하였다. 그 기판(101)을 세정하고(공정 1), 그 위에 스퍼터링법에 의해 탄탈막을 200nm의 두께로 형성하였다(공정 2). 그후 탄탈막을 마스크 ①을 사용하여 패터닝하고(공정 3), 5% 질산과 인산의 혼합산으로 에칭하여(공정 4), 탄탈 게이트전극(102)을 형성하였다. 그 다음, 게이트 전극에 전류를 인가하여 양극산화를 행하고, 최대로 120V까지 전압을 올려, 양극산화막(103)을 200nm의 두께로 형성하였다(공정 5). 양극산화공정의 상세한 것에 관해서는, 일본국 특허출원 평3-237100호 및 평3-238713호에 기술되어 있기 때문에, 여기서는 상세히 설명하지 않는다.Hereinafter, this embodiment is explained in detail according to the sectional drawing of FIG. 1 (a)-FIG. 1 (d), and the process diagram of FIG. Corning 7059 glass was used as the substrate. The substrate 101 was washed (step 1), and a tantalum film was formed thereon by a sputtering method to a thickness of 200 nm (step 2). After that, the tantalum film was patterned using a mask ① (step 3) and etched with a mixed acid of 5% nitric acid and phosphoric acid (step 4) to form a tantalum gate electrode 102. Then, anodization was performed by applying a current to the gate electrode, and the voltage was raised up to 120V, whereby anodization film 103 was formed to a thickness of 200 nm (step 5). Details of the anodic oxidation process are described in Japanese Patent Application Nos. Hei 3-237100 and Hei 3-238713, and will not be described in detail here.

그후, 레지스트를 제거(박리)하고(공정 6), 게이트 절연막으로서 두께 200nm의 질화규소막(104)을 플라즈마 CVD법에 의해 형성하였다(공정 7). 이때의 기판온도는 300℃로 하였다. 그리고, 기판을 세정한 후(공정 8), 플라즈마 CVD법에 의해 두께 30nm의 비정질 규소막을 성막하였다(공정 9). 이때의 기판온도는 300℃로 하였다.Thereafter, the resist was removed (peeled) (step 6), and a silicon nitride film 104 having a thickness of 200 nm was formed by plasma CVD as a gate insulating film (step 7). The substrate temperature at this time was 300 degreeC. After the substrate was cleaned (step 8), an amorphous silicon film having a thickness of 30 nm was formed by plasma CVD (step 9). The substrate temperature at this time was 300 degreeC.

그리고, 마스크 ②를 사용하여 비정질 규소막을 패터닝하고(공정 10), 그 비정질 규소막을 CF4를 반응가스로 하는 반응성 이온 에칭법에 의해 에칭하여(공정 11), 반도체영역(105)을 형성하였다. 잔존한 레지스트를 제거하고(공정 12), 기판을 세정하였다(공정 13).Then, the amorphous silicon film was patterned by using the mask (2) (step 10), and the amorphous silicon film was etched by the reactive ion etching method using CF 4 as the reaction gas (step 11) to form a semiconductor region 105. The remaining resist was removed (step 12), and the substrate was washed (step 13).

그후, 두께 200nm의 질화규소막을 플라즈마 CVD법에 의해 형성하였다(공정 14). 이때의 기판온도는 300℃로 하였다. 그 다음, 마스크 ③에 의해 질화규소막을 패터닝하고(공정 15), 그 질화규소막을 버퍼 불산(弗酸)(버퍼 플루오르화 수소산)으로 에칭하여(공정 16), 질화규소 마스크(106)을 형성하였다. 그 질화규소 마스크상에는 대략 500nm 두께의 레지스트(107)가 잔존하였다.Thereafter, a silicon nitride film having a thickness of 200 nm was formed by plasma CVD (step 14). The substrate temperature at this time was 300 degreeC. Then, the silicon nitride film was patterned by the mask ③ (step 15), and the silicon nitride film was etched with a buffer hydrofluoric acid (buffered hydrofluoric acid) (step 16) to form a silicon nitride mask 106. The resist 107 of approximately 500 nm thickness remained on the silicon nitride mask.

이어서, 이온 도핑법에 의해 10 keV의 가속에너지로 인 이온을 3×1015cm-2의 도즈량으로 도입하여(공정 17), 불순물영역(108)을 형성하였다. 그후, 기판을 제정하고(공정 18), 잔존한 레지스트를 제거하였다(공정 19).Subsequently, phosphorus ions were introduced at a dose of 3 x 10 15 cm -2 at an acceleration energy of 10 keV by the ion doping method (step 17) to form an impurity region 108. Thereafter, the substrate was prepared (step 18), and the remaining resist was removed (step 19).

그후, 할로겐 텅스텐 램프를 이용하여 램프 어닐을 행하고(공정 20), 질화규소 마스크(106)를 버퍼 불산으로 에칭하여 제거하였다(공정21). 램프 어닐공정(공정 20)에서, 자외광, 가시광, 또는 근적외광의 강도는 모니터의 단결정 규소 웨이퍼상의 온도가 800∼1300℃, 대표적으로는, 900∼1200℃ 범위내에 있도록 조정한다. 더 구체적으로는, 규소 웨이퍼내에 매립된 열전쌍의 온도를 모니터하고, 그렇게 하여 얻어진 신호를 적외선의 광원으로 피드백하였다. 이때의 온도 상승 및 하강을 제7(a)도 또는 제7(b)도에 나타낸 그림에 따라 행하였다. 승온시의 가열속도는 50∼200℃/초의 범위에서 일정하였다. 온도 하강은 자연냉각으로 행하고, 따라서, 냉각속도는 20∼100℃/초이었다.Thereafter, lamp annealing was performed using a halogen tungsten lamp (step 20), and the silicon nitride mask 106 was etched and removed with a buffer hydrofluoric acid (step 21). In the lamp annealing step (step 20), the intensity of ultraviolet light, visible light, or near infrared light is adjusted so that the temperature on the single crystal silicon wafer of the monitor is in the range of 800 to 1300 ° C, typically 900 to 1200 ° C. More specifically, the temperature of the thermocouple embedded in the silicon wafer was monitored and the signal thus obtained was fed back to the infrared light source. The temperature rise and fall at this time were performed according to the figure shown in FIG. 7 (a) or 7 (b). The heating rate at the time of temperature rising was constant in the range of 50-200 degreeC / sec. The temperature drop was performed by natural cooling, and thus the cooling rate was 20 to 100 ° C / sec.

제7(a)도는 가열단계 a, 유지단계 b 및 냉각단계 c를 포함하는 일반적인 온도 사이클을 나타낸다. 그러나, 이 경우에는, 시료가 실온으로부터 약 1000℃의 고온까지, 그 다음, 고온상태로부터 실온까지 급격히 가열 및 냉각되기 때문에, 가열 및 냉각단계가 규소막 및 기판에 끼치는 영향이 커서, 규소막의 박리 가능성도 높다.7 (a) shows a general temperature cycle comprising a heating step a, a holding step b and a cooling step c. In this case, however, since the sample is rapidly heated and cooled from room temperature to a high temperature of about 1000 ° C., and then from a high temperature state to room temperature, the effect of the heating and cooling steps on the silicon film and the substrate is large, and the silicon film is peeled off. It's very likely.

이 문제를 해결하기 위해서는, 제7(b)도에 나타내어진 바와 같이, 유지단계 e 전 또는 후에 예비가열단계 d 또는 후가열단계 f를 두어, 기판이나 막에 큰 영향을 주지 않는 200∼250℃의 온도에 기판을 유지시키는 것이 바람직하다. 또한, 이 램프 어닐은 H2분위기중에서 행해졌다. H2분위기에 0.1∼10%의 염화수소, 다른 할로겐화 수소, 또는, 불소, 염소 또는 취소의 화합물을 혼입하여도 좋다. 그후, 기판을 세정하였다(공정 22).In order to solve this problem, as shown in Fig. 7 (b), a preheating step d or a postheating step f before or after the holding step e is carried out so that the substrate or the film does not significantly affect the temperature of 200 to 250 ° C. It is preferable to keep the substrate at a temperature of. In addition, the lamp annealing is carried out in a H 2 atmosphere. Of 0.1 to 10% in H 2 atmosphere, the hydrogen chloride, other hydrogen halide, or fluorine, may be incorporated into a compound of chlorine or canceled. Thereafter, the substrate was washed (step 22).

그후, 스퍼터링법에 의해 알루미늄막을 400nm의 두께로 형성하고(공정 23), 마스크 ④를 사용하여 알루미늄 배선을 패터닝하였다(공정 24). 그 다음, 혼합산에 의해 알루미늄막을 에칭하여(공정 25), 알루미늄 배선(100)을 형성하였다. 그리고, 잔존한 레지스터를 제거하였다(공정 26). 최후로, 1기압의 수소분위기에서 350℃, 30분의 어닐을 행하였다.Thereafter, an aluminum film was formed to a thickness of 400 nm by the sputtering method (step 23), and the aluminum wiring was patterned using the mask (4) (step 24). Next, the aluminum film was etched by the mixed acid (step 25) to form the aluminum wiring 100. Then, the remaining register was removed (step 26). Finally, annealing was performed at 350 ° C. for 30 minutes in a hydrogen atmosphere of 1 atm.

특히 본 실시예에서는, 자외광, 가시광 또는 근적외광을 이용한 램프 어닐 공정에서 형성된 댕글링 결합(dangling bond)을, 그후의 공정에서, 수소분위기에서 250∼400℃로 가열하는 것에 의해 중화시키는 것이 중요하다. 이상의 공정에 의해, N 채널형 TFT가 완성되었다.In particular, in this embodiment, it is important to neutralize dangling bonds formed in a lamp annealing process using ultraviolet light, visible light or near infrared light by heating to 250 to 400 ° C. in a hydrogen atmosphere in a subsequent step. Do. Through the above steps, an N-channel TFT was completed.

[실시예 2]Example 2

제4도의 공정도에 나타낸 제작공정에 따라 TFT가 제작되었다. 본 실시예의 제작공정은, 본 실시예에서는 뒷면으로부터의 노광기술이 이용된 것을 제외하고는 제1(a)도∼제1(d)도에 나타낸 것과 본질적으로 동일하다. 실시예 1의 경우와 마찬가지로, 제4도는 금속배선·전극(110) 형성공정까지를 나타낸다. 게이트전극은 알루미늄이고, 이 게이트 전극의 표면에는, 공정5에서 약 200nm 두께의 양극산화막을 형성하여, 절연성을 향상시켰다. 질화규소 마스크의 형성에는 뒷면으로부터의 노광기술을 이용하였고, 불순물 도입에는 이온 도핑법을 이용하였다. 본 공정에서 사용된 마스크의 수는 뒷면노광기술을 이용함으로써 3매로 삭감되었다. 전체 공정은 26개 공정으로 이루어져 있다.TFTs were fabricated in accordance with the fabrication process shown in FIG. The fabrication process of this embodiment is essentially the same as that shown in FIGS. 1 (a) to 1 (d), except that the exposure technique from the back side is used in this embodiment. As in the case of Example 1, FIG. 4 shows up to the metal wiring and electrode 110 formation process. The gate electrode is aluminum, and on the surface of the gate electrode, an anodization film having a thickness of about 200 nm was formed in step 5 to improve insulation. The exposure technique from the back side was used for the formation of the silicon nitride mask, and the ion doping method was used for the introduction of impurities. The number of masks used in this process was reduced to three by using the back exposure technique. The whole process consists of 26 processes.

본 실시예에 대응하는 종래기술의 공정이 제 6도에 나타내어져 있는데, 여기서는, 사용된 마스크의 수는 3매이고, 전체 공정은 23개 공정으로 이루어져 있다. 제4도에 나타낸 본 실시예에 따른 공정에서는 전체 공정수가 증가되지만, 처리량(스루풋)을 제한하는 성막공정의 수는 5개 공정으로, 제6도에 나타낸 종래기술의 6개 공정보다도 적어, 실제로는, 생산성이 향상된다.The prior art process corresponding to this embodiment is shown in FIG. 6, where the number of masks used is three, and the whole process consists of 23 processes. In the process according to the present embodiment shown in FIG. 4, the total number of steps is increased, but the number of film forming steps for limiting the throughput (throughput) is five, which is less than the six steps of the prior art shown in FIG. The productivity is improved.

이하, 제4도 및 제1(a)도∼제1(d)도에 의거하여 본 실시예를 상세히 설명한다. 기판으로서는 코닝 7059 유리를 사용하였다. 이 기판(101)을 세정하고(공정 1), 그 위에 스퍼터링법에 의해 알루미늄막을 400nm의 두께로 형성하였다(공정 2). 그후, 그 알루미늄막을 마스크 ①을 사용하여 패터닝하고(공정 3), 5%의 질산과 인산의 혼합산으로 에칭하여(공정 4), 게이트 전극(102)을 형성하였다. 그 다음, 그 게이트 전극에 전류를 인가하여 양극산화를 행하고, 최대로 120V까지 전압을 올려, 양극산화막(103)을 200nm의 두께로 형성하였다(공정 5).Hereinafter, the present embodiment will be described in detail with reference to FIGS. 4 and 1 (a) to 1 (d). Corning 7059 glass was used as the substrate. The substrate 101 was cleaned (step 1), and an aluminum film was formed thereon by a sputtering method to a thickness of 400 nm (step 2). Thereafter, the aluminum film was patterned using a mask ① (step 3), and then etched with a mixed acid of 5% nitric acid and phosphoric acid (step 4) to form a gate electrode 102. Then, anodization was performed by applying a current to the gate electrode, and the voltage was raised up to 120V to form anodic oxide film 103 having a thickness of 200 nm (step 5).

그후, 레지스트를 제거하고(공정 6), 게이트 절연막으로서 질화규소막(104)을 플라즈마 CVD법에 의해 200nm의 두께로 형성하였다(공정 7). 이때의 기판온도는 300℃로 하였다. 그리고, 기판을 세정(공정 8)한 후, 플라즈마 CVD법에 의해 두께 30nm의 비정질 규소막을 형성하였다(공정 9). 이때의 기판온도는 300℃로 하였다.Thereafter, the resist was removed (step 6), and the silicon nitride film 104 was formed to a thickness of 200 nm by the plasma CVD method (step 7) as a gate insulating film. The substrate temperature at this time was 300 degreeC. After the substrate was cleaned (step 8), an amorphous silicon film having a thickness of 30 nm was formed by plasma CVD (step 9). The substrate temperature at this time was 300 degreeC.

그 다음, 마스크 ②를 사용하여 비정질 규소 반도체영역을 패터닝하고(공정 10), 그 비정질 규소막을 CF4가스를 반응가스로 하는 반응성 이온 에칭법에 의해 에칭하여(공정 11), 반도체영역(105)을 형성하였다. 잔존한 레지스트를 제거하고(공정 12), 기판을 세정하였다(공정 13).Then, the amorphous silicon semiconductor region is patterned using a mask (2) (step 10), and the amorphous silicon film is etched by a reactive ion etching method using CF 4 gas as a reaction gas (step 11), thereby forming the semiconductor region 105. Formed. The remaining resist was removed (step 12), and the substrate was washed (step 13).

그후, 두께 200nm의 질화규소막을 플라즈마 CVD법에 의해 형성하였다(공정 14). 이때의 기판 온도는 300℃로 하였다. 그 다음, 레지스트를 도포한 상태에서 기판의 뒷면으로부터 노광하고, 게이트 전극을 마스크로 하여 자기정합적으로 질화규소 마스크를 패터닝하고(공정 15), 질화규소막을 버퍼 불산으로 에칭하여(공정 16), 질화규소 마스크(106)를 형성하였다. 질화규소 마스크상에는 약 500nm 두께의 레지스트(107)가 잔존하였다.Thereafter, a silicon nitride film having a thickness of 200 nm was formed by plasma CVD (step 14). The substrate temperature at this time was 300 degreeC. Then, the substrate is exposed from the back side of the substrate in the state where the resist is applied, the silicon nitride mask is patterned in a self-aligned manner with the gate electrode as a mask (step 15), and the silicon nitride film is etched with a buffer hydrofluoric acid (step 16), thereby producing a silicon nitride mask. (106) was formed. The resist 107 of about 500 nm thickness remained on the silicon nitride mask.

이어서, 이온 도핑법에 의해 10 keV의 가속에너지로 인 이온을 2×1015cm-2의 도즈량으로 도입하여(공정 17), 불순물영역(108)을 형성하였다. 그후, 기판을 세정하고(공정 18), 잔존한 레지스트를 제거하였다(공정 19).Subsequently, phosphorus ions were introduced at a dose of 2 x 10 15 cm -2 at an acceleration energy of 10 keV by the ion doping method (step 17) to form an impurity region 108. Thereafter, the substrate was washed (step 18), and the remaining resist was removed (step 19).

그후, 할로겐 텅스텐 램프에 의해 어닐을 행하고(공정 20), 질화규소 마스크(106)를 버퍼 불산으로 에칭하여 제거하였다(공정21). 램프 어닐의 조건은 실시예 1과 같게 하였다. 그후, 기판을 세정하였다(공정 22).Thereafter, annealing was performed with a halogen tungsten lamp (step 20), and the silicon nitride mask 106 was etched and removed with a buffer hydrofluoric acid (step 21). The conditions of the lamp annealing were the same as in Example 1. Thereafter, the substrate was washed (step 22).

그후, 알루미늄막을 스퍼터링법에 의해 400nm의 두께로 형성하고(공정 23), 마스크 ④를 사용하여 알루미늄 배선을 패터닝하고(공정 24), 알루미늄막을 혼합산으로 추가로 에칭하여(공정 25), 알루미늄 배선·전극(110)을 형성하였다. 그리고, 잔존한 레지스트를 제거하였다(공정 26). 최후로, 1기압의 수소분위기에서 350℃, 30분의 어닐을 행하였다. 이상의 공정에 의해, N 채널형 TFT가 제작되었다.Thereafter, an aluminum film is formed to a thickness of 400 nm by sputtering (step 23), the aluminum wiring is patterned using a mask (4) (step 24), and the aluminum film is further etched with a mixed acid (step 25), and the aluminum wiring The electrode 110 was formed. Then, the remaining resist was removed (step 26). Finally, annealing was performed at 350 ° C. for 30 minutes in a hydrogen atmosphere of 1 atm. Through the above process, an N channel type TFT was produced.

상기한 바와 같이, 본 발명은 공정의 간략화에 특징이 있을 뿐만 아니라, 소스/드레인영역의 시트저항이 작기 때문에, 스레시홀드 전압이 낮고 고속동작이 가능한 고품질의 TFT를 제공할 수 있다. 따라서, 본 발명은 산업상 유익한 발명이다.As described above, the present invention is not only characterized by the simplification of the process, but also because the sheet resistance of the source / drain regions is small, it is possible to provide a high quality TFT having a low threshold voltage and capable of high speed operation. Accordingly, the present invention is an industrially advantageous invention.

Claims (19)

절연기판상에 제공된 역스태거형의 MIS형 반도체장치의 절연게이트형 반도체장치로서, 실질적으로 진성인 비정질 반도체로 된 채널형성영역과; 상기 비정길 반도체보다 질서성이 높은 N형 또는 P형 반도체로 된 소스 및 드레인영역을 포함하고, 여기서, 상기 N형 또는 P형 반도체에는 자외광, 가시광 또는 근적외광이 조사된 것을 특징으로 하는 절연게이트형 반도체장치.An insulated gate semiconductor device of an inverted staggered MIS semiconductor device provided on an insulated substrate, comprising: a channel forming region of substantially intrinsic amorphous semiconductor; And source and drain regions made of an N-type or P-type semiconductor having higher order than the amorphous semiconductor, wherein the N-type or P-type semiconductor is irradiated with ultraviolet light, visible light or near infrared light. Gate type semiconductor device. 제 1항에 있어서, 게이트 전극을 구성하는 재료의 산화물로 이루어진 절연물로 피복된 게이트 전극을 추가로 포함하는 것을 특징으로 하는 절연게이트형 반도체장치.The insulated gate semiconductor device according to claim 1, further comprising a gate electrode coated with an insulator made of an oxide of a material constituting the gate electrode. 제 2항에 있어서, 상기 게이트 전극이 탄탈을 포함하는 것을 특징으로 하는 절연게이트형 반도체장치.The insulated gate semiconductor device of claim 2, wherein the gate electrode comprises tantalum. 제 1항에 있어서, 상기 채널형성영역과 상기 소스 및 드레인영역이 단일의 반도체막에 제공된 것을 특징으로 하는 절연게이트형 반도체.The insulating gate type semiconductor according to claim 1, wherein the channel forming region and the source and drain regions are provided in a single semiconductor film. 제 1항에 있어서, 상기 채널형성영역과 상기 소스 및 드레인영역이 2개 이상의 반도체층으로 제공된 것을 특징으로 하는 절연게이트형 반도체장치.The insulated gate semiconductor device according to claim 1, wherein the channel forming region and the source and drain regions are provided as two or more semiconductor layers. 제 2항에 있어서, 상기 게이트 전극을 구성하는 재료의 산화물로 이루어진 상기 절연물이 양극산화물인 것을 특징으로 하는 절연게이트형 반도체장치.The insulated gate semiconductor device according to claim 2, wherein said insulator made of an oxide of a material constituting said gate electrode is an anode oxide. 기판상에 게이트 전극을 형성하는 공정; 상기 게이트 전극상에 게이트 절연막을 형성하는 공정; 상기 게이트 절연막상에 비정질 또는 다결정 반도체막을 형성하는 공정, 상기 반도체막상에 마스크재를 제공하는 공정; 상기 마스크재를 마스크로 하여 상기 반도체막내에 불순물을 도입하는 공정; 및 상기 반도체막에 자외광, 가시광 또는 근적외광을 조사함으로써 상기 반도체막에 질서성을 부여하는 공정을 포함하는 것을 특징으로 하는 절연게이트형 반도체장치 제작방법.Forming a gate electrode on the substrate; Forming a gate insulating film on the gate electrode; Forming an amorphous or polycrystalline semiconductor film on the gate insulating film, and providing a mask material on the semiconductor film; Introducing an impurity into the semiconductor film using the mask material as a mask; And imparting order to the semiconductor film by irradiating ultraviolet light, visible light, or near infrared light to the semiconductor film. 제 7항에 있어서, 소스영역, 드레인영역 및 채널형성영역이 상기 반도체막내에 형성되는 것을 특징으로 하는 절연게이트형 반도체장치 제작방법.8. The method of claim 7, wherein a source region, a drain region, and a channel forming region are formed in the semiconductor film. 제 7항에 있어서, 상기 자외광, 상기 가시광 또는 상기 근적외광이 상기 반도체막에 의해 흡수되는 것을 특징으로 하는 절연게이트형 반도체장치 제작방법.8. The method of claim 7, wherein the ultraviolet light, the visible light or the near infrared light is absorbed by the semiconductor film. 제 7항에 있어서, 상기 자외광, 상기 가시광 또는 상기 근적외광의 조사에 0.5∼4μm의 파장이 이용되는 것을 특징으로 하는 절연게이트형 반도체장치 제작방법8. A method according to claim 7, wherein a wavelength of 0.5 to 4 m is used for irradiation of the ultraviolet light, the visible light or the near infrared light. 제 7항에 있어서, 상기 광조사시에 상기 기판이 250∼500℃의 온도로 가열되는 것을 특징으로 하는 절연게이트형 반도체장치 제작방법.8. The method of manufacturing an insulated gate semiconductor device according to claim 7, wherein said substrate is heated to a temperature of 250 to 500 캜 during said light irradiation. 기판상에 게이트 전극을 형성하는 공정; 상기 게이트 전극상에 게이트 절연막을 형성하는 공정; 상기 게이트 절연막상에 비정질 또는 다결정 반도체막을 형성하는 공정; 상기 반도체막상에 마스크재를 제공하는 공정; 상기 마스크재를 마스크로 하여 상기 반도체막 내에 불순물을 도입하는 공정; 및 상기 반도체막의 적어도 일부에 자외광, 가시광 또는 근적외광을 조사함으로써 상기 반도체막의 적어도 일부를 상기 도입된 불순물에 따라 P형 또는 N형의 도전형으로 변성시키는 공정을 포함하는 것을 특징으로 하는 절연게이트형 반도체 제작방법.Forming a gate electrode on the substrate; Forming a gate insulating film on the gate electrode; Forming an amorphous or polycrystalline semiconductor film on the gate insulating film; Providing a mask material on the semiconductor film; Introducing an impurity into the semiconductor film using the mask material as a mask; And irradiating at least a portion of the semiconductor film with ultraviolet light, visible light, or near infrared light to modify at least a portion of the semiconductor film into a P-type or N-type conductive type according to the introduced impurities. Type semiconductor manufacturing method. 제 12항에 있어서, 소스영역, 드레인영역 및 채널형성영역이 상기 반도체막 내에 형성되는 것을 특징으로 하는 절연게이트형 반도체장치 제작방법.13. The method of claim 12, wherein a source region, a drain region, and a channel forming region are formed in the semiconductor film. 제 12항에 있어서, 상기 자외광, 상기 가시광 또는 상기 근적외광이 상기 반도체막에 의해 흡수되는 것을 특징으로 하는 절연게이트형 반도체장치 제작방법.13. The method according to claim 12, wherein the ultraviolet light, the visible light or the near infrared light is absorbed by the semiconductor film. 제 12항에 있어서, 상기 자외광, 상기 가시광 또는 상기 근적외광의 조사에 0.5∼4μm의 파장이 이용되는 것을 특징으로 하는 절연게이트형 반도체장치 제작방법.13. A method according to claim 12, wherein a wavelength of 0.5 to 4 m is used for irradiation of the ultraviolet light, the visible light or the near infrared light. 제 12항에 있어서, 상기 광조사시에 상기 기판이 250∼500℃의 온도로 가열되는 것을 특징으로 하는 절연게이트형 반도체장치 제작방법.The method of claim 12, wherein the substrate is heated to a temperature of 250 to 500 ° C. during the light irradiation. 기판상에 게이트 전극을 형성하는 공정; 상기 게이트 전극상에 게이트 절연층을 형성하는 공정, 상기 게이트 절연층을 사이에 두고 상기 게이트 전극위에 반도체막을 형성하는 공정; 상기 반도체막의 일부에 불순물을 도입함으로써 상기 반도체막에 소스 및 드레인영역을 형성하는 공정; 및 상기 도입된 불순물을 활성화시키기 위해 자외광, 가시광 또는 근적외관을 조사하는 공정을 포함하는 것을 특징으로 하는 반도체장치 제작방법.Forming a gate electrode on the substrate; Forming a gate insulating layer on the gate electrode, and forming a semiconductor film on the gate electrode with the gate insulating layer interposed therebetween; Forming source and drain regions in the semiconductor film by introducing impurities into a portion of the semiconductor film; And irradiating ultraviolet light, visible light, or near-infrared to activate the introduced impurity. 절연기판상에 제공된 역스태거형의 MIS형 반도체장치의 절연게이트형 절연게이트형 반도체장치로서, 실질적으로 진성인 비정질 반도체로 된 채널형성영역과, 상기 비정질 반도체보다 질서성이 높은 N형 반도체로 된 소스 및 드레인영역을 포함하고, 여기서, 상기 채널형성영역과 상기 소스 및 드레인 영역이 단일의 반도체막에 제공되고, 상기 N형 또는 P형 반도체에 자외광, 가시광 또는 근적외광이 조사된 것을 특징으로 하는 절연게이트형 반도체 장치.An insulated gate insulated gate type semiconductor device of an inverted staggered MIS type semiconductor device provided on an insulated substrate, comprising: a channel forming region of substantially intrinsic amorphous semiconductor, and an N-type semiconductor having higher order than that of the amorphous semiconductor. A source and drain region, wherein the channel formation region and the source and drain region are provided in a single semiconductor film, and ultraviolet light, visible light, or near infrared light is irradiated to the N-type or P-type semiconductor. An insulated gate semiconductor device. 절연기판상에 제공된 역스태거형의 MIS형 반도체장치의 절연게이트형 반도체장치로서, 실질적으로 진성인 비정질 반도체로 된 채널형성영역과; 상기 비정질 반도체보다 질서성이 높은 N형 또는 P형 반도체로 된 소스 및 드레인영역을 포함하고, 여기서, 4∼0.5μm의 파장을 가지는 광이 상기 N형 또는 P형 반도체에 조사된 것을 특징으로 하는 절연게이트형 반도체장치.An insulated gate semiconductor device of an inverted staggered MIS semiconductor device provided on an insulated substrate, comprising: a channel forming region of substantially intrinsic amorphous semiconductor; A source and drain region made of an N-type or P-type semiconductor having higher order than that of the amorphous semiconductor, wherein light having a wavelength of 4 to 0.5 μm is irradiated to the N-type or P-type semiconductor. Insulated gate semiconductor device.
KR1019940019865A 1993-08-12 1994-08-12 Insulated gate semiconductor device and process for fabricating the same KR0174029B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP93-220594 1993-08-12
JP22059493A JP3173926B2 (en) 1993-08-12 1993-08-12 Method of manufacturing thin-film insulated gate semiconductor device and semiconductor device thereof

Publications (2)

Publication Number Publication Date
KR950007162A KR950007162A (en) 1995-03-21
KR0174029B1 true KR0174029B1 (en) 1999-02-01

Family

ID=16753428

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940019865A KR0174029B1 (en) 1993-08-12 1994-08-12 Insulated gate semiconductor device and process for fabricating the same

Country Status (3)

Country Link
US (3) US5530265A (en)
JP (1) JP3173926B2 (en)
KR (1) KR0174029B1 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69125886T2 (en) 1990-05-29 1997-11-20 Semiconductor Energy Lab Thin film transistors
JP3255942B2 (en) * 1991-06-19 2002-02-12 株式会社半導体エネルギー研究所 Method for manufacturing inverted staggered thin film transistor
US6709907B1 (en) * 1992-02-25 2004-03-23 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor
JP3173854B2 (en) 1992-03-25 2001-06-04 株式会社半導体エネルギー研究所 Method for manufacturing thin-film insulated gate semiconductor device and semiconductor device manufactured
JP3173926B2 (en) * 1993-08-12 2001-06-04 株式会社半導体エネルギー研究所 Method of manufacturing thin-film insulated gate semiconductor device and semiconductor device thereof
US6331717B1 (en) 1993-08-12 2001-12-18 Semiconductor Energy Laboratory Co. Ltd. Insulated gate semiconductor device and process for fabricating the same
JP2900229B2 (en) * 1994-12-27 1999-06-02 株式会社半導体エネルギー研究所 Semiconductor device, manufacturing method thereof, and electro-optical device
US5834327A (en) 1995-03-18 1998-11-10 Semiconductor Energy Laboratory Co., Ltd. Method for producing display device
US6077752A (en) * 1995-11-20 2000-06-20 Telefonaktiebolaget Lm Ericsson Method in the manufacturing of a semiconductor device
JP3907726B2 (en) 1995-12-09 2007-04-18 株式会社半導体エネルギー研究所 Method for manufacturing microcrystalline silicon film, method for manufacturing semiconductor device, and method for manufacturing photoelectric conversion device
US5602047A (en) * 1996-06-13 1997-02-11 Industrial Technology Research Institute Process for polysilicon thin film transistors using backside irradiation and plasma doping
JP3276573B2 (en) * 1996-12-26 2002-04-22 三菱電機株式会社 Liquid crystal display device and method of manufacturing thin film transistor used therein
US6306763B1 (en) * 1997-07-18 2001-10-23 Advanced Micro Devices, Inc. Enhanced salicidation technique
JPH11103070A (en) * 1997-08-01 1999-04-13 Sony Corp Thin film transistor
US5998229A (en) * 1998-01-30 1999-12-07 Samsung Electronics Co., Ltd. Methods of manufacturing thin film transistors and liquid crystal displays by plasma treatment of undoped amorphous silicon
US6156613A (en) * 1998-03-02 2000-12-05 Texas Instruments - Acer Incorporated Method to form MOSFET with an elevated source/drain
US7022556B1 (en) * 1998-11-11 2006-04-04 Semiconductor Energy Laboratory Co., Ltd. Exposure device, exposure method and method of manufacturing semiconductor device
JP4514862B2 (en) * 1999-11-30 2010-07-28 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
GB0017471D0 (en) * 2000-07-18 2000-08-30 Koninkl Philips Electronics Nv Thin film transistors and their manufacture
US6599818B2 (en) 2000-10-10 2003-07-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device manufacturing method, heat treatment apparatus, and heat treatment method
JP2002176000A (en) * 2000-12-05 2002-06-21 Semiconductor Energy Lab Co Ltd Heat treatment apparatus and manufacturing method of semiconductor device
US7534977B2 (en) * 2000-12-28 2009-05-19 Semiconductor Energy Laboratory Co., Ltd. Heat treatment apparatus and method of manufacturing a semiconductor device
US6664153B2 (en) 2002-02-08 2003-12-16 Chartered Semiconductor Manufacturing Ltd. Method to fabricate a single gate with dual work-functions
JP3949027B2 (en) * 2002-08-06 2007-07-25 富士通株式会社 Analog switch circuit
KR100539623B1 (en) * 2003-06-25 2005-12-28 엘지.필립스 엘시디 주식회사 A Method for manufacturing of Bottom Gate type p-Si Thin Film Transistor Device
JP2005079110A (en) * 2003-08-29 2005-03-24 Toshiba Corp Semiconductor device and manufacturing method thereof
US8536492B2 (en) * 2003-10-27 2013-09-17 Applied Materials, Inc. Processing multilayer semiconductors with multiple heat sources
US7127367B2 (en) 2003-10-27 2006-10-24 Applied Materials, Inc. Tailored temperature uniformity
US7604903B1 (en) * 2004-01-30 2009-10-20 Advanced Micro Devices, Inc. Mask having sidewall absorbers to enable the printing of finer features in nanoprint lithography (1XMASK)
US7098091B2 (en) * 2004-02-20 2006-08-29 Au Optronics Corporation Method for fabricating thin film transistors
US7622338B2 (en) * 2004-08-31 2009-11-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
EP3614442A3 (en) * 2005-09-29 2020-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufactoring method thereof
KR101117948B1 (en) * 2005-11-15 2012-02-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method of Manufacturing a Liquid Crystal Display Device
JP2008103653A (en) * 2006-09-22 2008-05-01 Tohoku Univ Semiconductor device and semiconductor device manufacturing method
JP5329038B2 (en) * 2006-12-21 2013-10-30 宇部日東化成株式会社 Semiconductor device and manufacturing method of semiconductor device
US8222574B2 (en) * 2007-01-15 2012-07-17 Applied Materials, Inc. Temperature measurement and control of wafer support in thermal processing chamber
JP5380037B2 (en) 2007-10-23 2014-01-08 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
WO2009129391A2 (en) * 2008-04-17 2009-10-22 Applied Materials, Inc. Low temperature thin film transistor process, device property, and device stability improvement
TWI333275B (en) * 2008-05-09 2010-11-11 Au Optronics Corp Method for fabricating light sensor
TWI387109B (en) * 2008-06-10 2013-02-21 Taiwan Tft Lcd Ass Method for fabricating thin film transistor
US8111978B2 (en) * 2008-07-11 2012-02-07 Applied Materials, Inc. Rapid thermal processing chamber with shower head
KR101263726B1 (en) 2008-11-07 2013-05-13 엘지디스플레이 주식회사 Array substrate including thin film transistor of polycrystalline silicon and method of fabricating the same
TWI613489B (en) 2008-12-03 2018-02-01 半導體能源研究所股份有限公司 Liquid crystal display device
JP5615540B2 (en) * 2008-12-19 2014-10-29 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR102342672B1 (en) 2009-03-12 2021-12-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI556323B (en) * 2009-03-13 2016-11-01 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the semiconductor device
TWI605590B (en) 2011-09-29 2017-11-11 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
FR3002768B1 (en) * 2013-03-01 2015-02-20 Saint Gobain PROCESS FOR THERMALLY TREATING A COATING
JP6086031B2 (en) * 2013-05-29 2017-03-01 信越半導体株式会社 Manufacturing method of bonded wafer

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640275A (en) * 1979-09-12 1981-04-16 Hitachi Ltd Preparation of semiconductor device
US4266986A (en) 1979-11-29 1981-05-12 Bell Telephone Laboratories, Incorporated Passivation of defects in laser annealed semiconductors
JPS56100412A (en) 1979-12-17 1981-08-12 Sony Corp Manufacture of semiconductor device
JPS5785262A (en) 1980-11-17 1982-05-27 Toshiba Corp Manufacture of metal oxide semiconductor type semiconductor device
JPS582073A (en) 1981-06-29 1983-01-07 Sony Corp Field effect transistor
JPS5814524A (en) 1981-07-17 1983-01-27 Fujitsu Ltd Manufacturing semiconductor device
JPS5821863A (en) 1981-07-31 1983-02-08 Seiko Epson Corp Active matrix substrate
JPS58147069A (en) * 1982-02-25 1983-09-01 Sharp Corp Thin film transistor
GB2118774B (en) 1982-02-25 1985-11-27 Sharp Kk Insulated gate thin film transistor
JPS58168278A (en) 1982-03-30 1983-10-04 Toshiba Corp Manufacture of thin film transistor
US5365079A (en) 1982-04-30 1994-11-15 Seiko Epson Corporation Thin film transistor and display device including same
US5650637A (en) 1982-04-30 1997-07-22 Seiko Epson Corporation Active matrix assembly
US5677547A (en) 1982-04-30 1997-10-14 Seiko Epson Corporation Thin film transistor and display device including same
JPS58190063A (en) 1982-04-30 1983-11-05 Seiko Epson Corp Thin film transistor for transmission type liquid crystal display panel
JPS5975670A (en) 1982-10-25 1984-04-28 Seiko Epson Corp Manufacture of thin film semiconductor device
US4619034A (en) 1983-05-02 1986-10-28 Ncr Corporation Method of making laser recrystallized silicon-on-insulator nonvolatile memory device
JPS59211221A (en) 1983-05-17 1984-11-30 Nippon Denso Co Ltd Heat treatment of ion implanted semiconductor
CA1186070A (en) 1983-06-17 1985-04-23 Iain D. Calder Laser activated polysilicon connections for redundancy
JPH0669094B2 (en) 1983-12-23 1994-08-31 ソニー株式会社 Field effect transistor
CA1197628A (en) 1984-01-05 1985-12-03 Thomas W. Macelwee Fabrication of stacked mos devices
US4698486A (en) * 1984-02-28 1987-10-06 Tamarack Scientific Co., Inc. Method of heating semiconductor wafers in order to achieve annealing, silicide formation, reflow of glass passivation layers, etc.
US4769338A (en) 1984-05-14 1988-09-06 Energy Conversion Devices, Inc. Thin film field effect transistor and method of making same
JPS60245173A (en) * 1984-05-18 1985-12-04 Semiconductor Energy Lab Co Ltd Insulated gate type semiconductor device
JPS60245174A (en) 1984-05-18 1985-12-04 Semiconductor Energy Lab Co Ltd Manufacture of insulated gate type semiconductor device
JPH07118443B2 (en) 1984-05-18 1995-12-18 ソニー株式会社 Manufacturing method of semiconductor device
JPS60245172A (en) 1984-05-18 1985-12-04 Semiconductor Energy Lab Co Ltd Insulated gate type semiconductor device
US4727044A (en) 1984-05-18 1988-02-23 Semiconductor Energy Laboratory Co., Ltd. Method of making a thin film transistor with laser recrystallized source and drain
JPS6132419A (en) 1984-07-24 1986-02-15 Mitsubishi Electric Corp Method for annealing by infrared rays
JPS61116820A (en) * 1984-11-13 1986-06-04 Fujitsu Ltd Annealing method for semiconductor
JPS61135110A (en) 1984-12-05 1986-06-23 Fujitsu Ltd Manufacture of semiconductor device
JPS61263273A (en) * 1985-05-17 1986-11-21 Hitachi Ltd Manufacture of thin film semiconductor device
JPH0691032B2 (en) 1985-06-27 1994-11-14 ソニー株式会社 Method for manufacturing semiconductor device
JPS6230379A (en) 1985-07-31 1987-02-09 Seiko Epson Corp Thin film transistor
DE3689735T2 (en) 1985-08-02 1994-06-30 Semiconductor Energy Lab Method and device for manufacturing semiconductor devices.
US4597160A (en) * 1985-08-09 1986-07-01 Rca Corporation Method of fabricating a polysilicon transistor with a high carrier mobility
JPS61198625A (en) 1985-09-06 1986-09-03 Sony Corp Manufacture of semiconductor device
JPS62104171A (en) 1985-10-31 1987-05-14 Fujitsu Ltd Manufacture of thin film transistor
JPH0746729B2 (en) 1985-12-26 1995-05-17 キヤノン株式会社 Method of manufacturing thin film transistor
JPS62171160A (en) 1986-01-22 1987-07-28 Sharp Corp Thin film transistor
JPS62205664A (en) 1986-03-06 1987-09-10 Matsushita Electric Ind Co Ltd Manufacture of thin film transistor
JPS63164A (en) 1986-06-19 1988-01-05 Matsushita Electric Ind Co Ltd Thin-film transistor
JPS6310573A (en) * 1986-07-02 1988-01-18 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPS6380570A (en) 1986-09-24 1988-04-11 Nec Corp Manufacture of thin film transistor
JPH0680685B2 (en) 1986-12-29 1994-10-12 日本電気株式会社 Thin film transistor and manufacturing method thereof
JPS63169767A (en) 1987-01-07 1988-07-13 Fujitsu Ltd Manufacture of thin film transistor
JPS63227015A (en) 1987-03-17 1988-09-21 Matsushita Electric Ind Co Ltd Lamp heater
JPS63237577A (en) * 1987-03-26 1988-10-04 Nec Corp Manufacture of misfet
US4743567A (en) 1987-08-11 1988-05-10 North American Philips Corp. Method of forming thin, defect-free, monocrystalline layers of semiconductor materials on insulators
JPH07120806B2 (en) 1988-03-16 1995-12-20 松下電器産業株式会社 Method of manufacturing thin film field effect transistor
US4998152A (en) 1988-03-22 1991-03-05 International Business Machines Corporation Thin film transistor
JP2628072B2 (en) 1988-07-22 1997-07-09 株式会社日立製作所 Liquid crystal display device and manufacturing method thereof
JP2600827B2 (en) 1988-07-23 1997-04-16 セイコーエプソン株式会社 Method for manufacturing thin film transistor
JPH0272750A (en) 1988-09-08 1990-03-13 Mitsunari Iwamoto Telephone set with cord twist preventing device
JP2734587B2 (en) 1988-12-28 1998-03-30 ソニー株式会社 Method for manufacturing thin film transistor
JPH02222545A (en) * 1989-02-23 1990-09-05 Semiconductor Energy Lab Co Ltd Manufacture of thin film transistor
JP2832991B2 (en) 1989-04-14 1998-12-09 ソニー株式会社 Multilayer wiring forming method and continuous processing apparatus
JPH02310932A (en) 1989-05-25 1990-12-26 Nec Corp Manufacture of inverted stagger-type thin-film transistor
JP2558351B2 (en) 1989-06-29 1996-11-27 沖電気工業株式会社 Active matrix display panel
JPH0334434A (en) 1989-06-30 1991-02-14 Hitachi Ltd Thin film semiconductor device and manufacture thereof
JPH0377329A (en) * 1989-08-19 1991-04-02 Fujitsu Ltd Manufacture of semiconductor device
JPH0391932A (en) 1989-09-04 1991-04-17 Canon Inc Manufacture of semiconductor device
US5278093A (en) * 1989-09-23 1994-01-11 Canon Kabushiki Kaisha Method for forming semiconductor thin film
JPH03126921A (en) 1989-10-12 1991-05-30 Sony Corp Liquid crystal display device
JP2857900B2 (en) 1989-12-28 1999-02-17 カシオ計算機株式会社 Method for manufacturing thin film transistor
JP2629995B2 (en) 1989-12-29 1997-07-16 日本電気株式会社 Thin film transistor
JPH03265143A (en) 1990-03-15 1991-11-26 Matsushita Electron Corp Manufacture of thin film transistor
EP0451789B1 (en) * 1990-04-10 1996-01-10 Canon Kabushiki Kaisha Method of forming semiconductor thin film
US5198379A (en) 1990-04-27 1993-03-30 Sharp Kabushiki Kaisha Method of making a MOS thin film transistor with self-aligned asymmetrical structure
EP0456199B1 (en) 1990-05-11 1997-08-27 Asahi Glass Company Ltd. Process for preparing a polycrystalline semiconductor thin film transistor
JP2700277B2 (en) 1990-06-01 1998-01-19 株式会社半導体エネルギー研究所 Method for manufacturing thin film transistor
JP2796175B2 (en) 1990-06-05 1998-09-10 松下電器産業株式会社 Method for manufacturing thin film transistor
JPH0442579A (en) 1990-06-08 1992-02-13 Seiko Epson Corp Manufacture of thin film transistor
JP3029288B2 (en) * 1990-11-20 2000-04-04 株式会社半導体エネルギー研究所 Liquid crystal display
US5162239A (en) 1990-12-27 1992-11-10 Xerox Corporation Laser crystallized cladding layers for improved amorphous silicon light-emitting diodes and radiation sensors
JPH04269837A (en) 1991-02-26 1992-09-25 Sharp Corp Manufacture of thin-film transistor
US5474941A (en) 1990-12-28 1995-12-12 Sharp Kabushiki Kaisha Method for producing an active matrix substrate
DE69125260T2 (en) 1990-12-28 1997-10-02 Sharp Kk A method of manufacturing a thin film transistor and an active matrix substrate for liquid crystal display devices
US5420048A (en) 1991-01-09 1995-05-30 Canon Kabushiki Kaisha Manufacturing method for SOI-type thin film transistor
JP2973037B2 (en) 1991-01-23 1999-11-08 富士通株式会社 Method for manufacturing thin film transistor
KR960000952B1 (en) * 1991-03-05 1996-01-15 후지쓰 가부시끼가이샤 Process for producing semiconductor device
JPH05182923A (en) * 1991-05-28 1993-07-23 Semiconductor Energy Lab Co Ltd Laser annealing method
JPH04360580A (en) 1991-06-07 1992-12-14 Casio Comput Co Ltd Field-effect transistor and manufacture thereof
JP3466633B2 (en) * 1991-06-12 2003-11-17 ソニー株式会社 Annealing method for polycrystalline semiconductor layer
GB9114018D0 (en) 1991-06-28 1991-08-14 Philips Electronic Associated Thin-film transistor manufacture
JP2722890B2 (en) * 1991-10-01 1998-03-09 日本電気株式会社 Thin film transistor and method of manufacturing the same
JPH05102484A (en) 1991-10-09 1993-04-23 Seiko Epson Corp Film transistor and its manufacturing method
JP3173854B2 (en) * 1992-03-25 2001-06-04 株式会社半導体エネルギー研究所 Method for manufacturing thin-film insulated gate semiconductor device and semiconductor device manufactured
JPH063164A (en) 1992-06-18 1994-01-11 Ricoh Co Ltd Rotational position detector
EP0619601A2 (en) * 1993-04-05 1994-10-12 General Electric Company Self-aligned thin-film transistor constructed using lift-off technique
JPH06295915A (en) 1993-04-09 1994-10-21 F T L:Kk Manufacturing device for semiconductor device and manufacture of semiconductor device
TW357415B (en) * 1993-07-27 1999-05-01 Semiconductor Engrgy Lab Semiconductor device and process for fabricating the same
US6331717B1 (en) 1993-08-12 2001-12-18 Semiconductor Energy Laboratory Co. Ltd. Insulated gate semiconductor device and process for fabricating the same
JP3173926B2 (en) 1993-08-12 2001-06-04 株式会社半導体エネルギー研究所 Method of manufacturing thin-film insulated gate semiconductor device and semiconductor device thereof
US5869379A (en) * 1997-12-08 1999-02-09 Advanced Micro Devices, Inc. Method of forming air gap spacer for high performance MOSFETS'

Also Published As

Publication number Publication date
US5530265A (en) 1996-06-25
US6500703B1 (en) 2002-12-31
JPH0799317A (en) 1995-04-11
US7381598B2 (en) 2008-06-03
US20030124782A1 (en) 2003-07-03
KR950007162A (en) 1995-03-21
JP3173926B2 (en) 2001-06-04

Similar Documents

Publication Publication Date Title
KR0174029B1 (en) Insulated gate semiconductor device and process for fabricating the same
JP3173854B2 (en) Method for manufacturing thin-film insulated gate semiconductor device and semiconductor device manufactured
JPH06296023A (en) Thin-film semiconductor device and manufacture thereof
JPH09148582A (en) Semiconductor device, its manufacture and liquid crystal driving device using it
JP3224215B2 (en) Method for manufacturing thin-film insulated gate semiconductor device
JPH09260680A (en) Semiconductor device and manufacture thereof
US6331717B1 (en) Insulated gate semiconductor device and process for fabricating the same
JP4001838B2 (en) Method for manufacturing insulated gate type semiconductor device
JP4056790B2 (en) Method for manufacturing semiconductor device
JP3359906B2 (en) Method for manufacturing semiconductor device
JP3225236B2 (en) Insulated gate type semiconductor device
JP4112600B2 (en) Method for manufacturing liquid crystal display device
JP3359907B2 (en) Method for manufacturing semiconductor device
JP3444478B2 (en) Method for manufacturing semiconductor device
JP3378522B2 (en) Method for manufacturing semiconductor device
JP3676289B2 (en) Reverse stagger type thin film transistor and liquid crystal display device using the same
JPH11289095A (en) Insulated gate semiconductor device
JP3084252B2 (en) Method for manufacturing inverted staggered insulated gate semiconductor device
JP2000058860A (en) Mis semiconductor device
JP3602430B2 (en) Method for manufacturing semiconductor device
JP3602344B2 (en) Thin film transistor and method for manufacturing the same
JP3225231B2 (en) Method for manufacturing semiconductor integrated circuit
JP3245146B2 (en) Liquid crystal display device and fabricating method thereof
JP3273592B2 (en) Method for manufacturing inverted staggered insulated gate semiconductor device
JP2000036606A (en) Thin film insulated gate semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110919

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20120928

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee