JPS5975670A - Manufacture of thin film semiconductor device - Google Patents

Manufacture of thin film semiconductor device

Info

Publication number
JPS5975670A
JPS5975670A JP18695882A JP18695882A JPS5975670A JP S5975670 A JPS5975670 A JP S5975670A JP 18695882 A JP18695882 A JP 18695882A JP 18695882 A JP18695882 A JP 18695882A JP S5975670 A JPS5975670 A JP S5975670A
Authority
JP
Japan
Prior art keywords
thin film
film
gate electrode
semiconductor device
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18695882A
Other languages
Japanese (ja)
Inventor
Juri Kato
樹理 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP18695882A priority Critical patent/JPS5975670A/en
Publication of JPS5975670A publication Critical patent/JPS5975670A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain the thin film semiconductor device of low cost and having excellent electric characteristics by a method wherein a high temperature heat treatment is selectively performed on the thin film active element part by employing an incoherent radiation light of the insulated substrate transmitting wavelength region. CONSTITUTION:After a high melting point light transmission thin film 9, such as SiO2 and the like, has been formed on the insulated substrate 1 such as Pyrex and the like using a CVD method, a semiconductor thin film 2 is formed, and then a gate film 3 is provided. Then, after a pony Si film gate electrode 4 has been formed by performing a CVD method, a source and drain region 6 is formed by performing a large current ion implantation. After performance of said ion implantation, a short time high temperature heat treatment is performed using an arc discharge flash lamp or a tangsten resistance halogen lamp, the ion-implanted region is activated and the SiO2 film located below the gate electrode is highly densed. As the radiation light of insulated substrate transmission wavelength region is used as a heat source, temperature rises to a high degree in the semiconductor thin film 6 where an ion was implanted, the gate electrode 4 and the gate film 3 region surrounded by the gate electrode and the semiconductor thin film, thereby enabling to obtain a highly dense gate film and a highly active source and drain 6.

Description

【発明の詳細な説明】 本発明は、薄膜半導体装置の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a thin film semiconductor device.

従来の薄膜半導体製造方法における熱処理は、長時間、
基板及び素子全体の温度が上昇する熱処理方法であり、
低温プロセス及び高温プロセスがある。低温プロセスに
おいて、透明絶縁基板として低コストのソーダ・ガラス
又はパイレックスを使用できる反面、薄膜半導体装置製
造時における熱処理が基板全体の温度を上昇させるため
、熱処理温度の上限が基板の歪点(ソーダ・ガラス48
0°C,パイレックス580°C)で決まり、低温熱処
理のため薄膜半導体装置のソース・ドレイン高濃度不純
物層の活性化が低く、ゲート酸化膜質が緻密でないため
、薄膜トランジスタの電気特性が、高温プロセスによる
薄膜トランジスタの電気特性に比べて劣るという欠点が
あった。
Heat treatment in conventional thin film semiconductor manufacturing methods takes a long time,
It is a heat treatment method in which the temperature of the entire substrate and element increases,
There are low temperature processes and high temperature processes. In low-temperature processes, low-cost soda glass or Pyrex can be used as the transparent insulating substrate, but the heat treatment during thin-film semiconductor device manufacturing increases the temperature of the entire substrate, so the upper limit of the heat treatment temperature is the strain point of the substrate (soda glass). glass 48
0°C, Pyrex 580°C), and due to the low-temperature heat treatment, the activation of the high concentration impurity layer of the source and drain of the thin film semiconductor device is low, and the gate oxide film quality is not dense, so the electrical characteristics of the thin film transistor are The drawback was that the electrical characteristics were inferior to those of thin film transistors.

一方、高温プロセスにおいて、透明絶縁基板として歪点
の高い石英基板を用いなければならない。石英基板はソ
ーダ・ガラスやパイレックスに比べて非常に高コストな
ため、従来の高温プロセスでは、薄膜トランジスタの電
気特性は良好なものの、薄膜半導体装置のコストが高く
なるというような欠点があった。
On the other hand, in high-temperature processes, a quartz substrate with a high strain point must be used as the transparent insulating substrate. Quartz substrates are much more expensive than soda glass or Pyrex, so conventional high-temperature processes have the drawback of increasing the cost of thin-film semiconductor devices, although the electrical properties of thin-film transistors are good.

本発明は、絶縁基板透過波長領域のインコヒーレント放
射光により選択的に薄膜能動素子部のみを高温に熱処理
することを特徴とし、その目的は低コストで良質な電気
特性を持っ薄膜半導体素子部℃供することにある。
The present invention is characterized by selectively heat-treating only the thin film active element portion to a high temperature using incoherent radiation light in the wavelength region transmitted through an insulating substrate. It is about providing.

以下実施例を用いて詳細に説明する。This will be explained in detail below using examples.

第1図〜第4図は、本発明に依る薄膜半導体装置の製造
方体である。第1図はソーダ・ガラス又はパイレックス
の絶縁基板1上に光OVD又はOVDにて8102など
の高融点透明薄膜9を形成後、半導体薄j模2を形成す
る。第2図において光OVD法又はOVD法によりゲー
ト膜6を形成する。次に第5図においてOVD法により
polyS1膜ゲート電極4を形成した後、大電流イオ
ン注入によりソース、ドレイン領域6を形成する。
1 to 4 show a manufacturing cube of a thin film semiconductor device according to the present invention. In FIG. 1, a high melting point transparent thin film 9 such as 8102 is formed on an insulating substrate 1 made of soda glass or Pyrex by optical OVD or OVD, and then a semiconductor thin film 2 is formed. In FIG. 2, a gate film 6 is formed by a photo-OVD method or an OVD method. Next, in FIG. 5, after a polyS1 film gate electrode 4 is formed by the OVD method, source and drain regions 6 are formed by high current ion implantation.

イオン注入後、アーク放電フラッシュ・ランプ(放射光
波長0.3〜1.0μ惜)又はタングステン抵抗ハロゲ
ンランプ(放射光波長0.3〜3.077 m )で、
短時間高温熱処理を行ない、イオン注入領域の活性化及
びゲート電極下の5102膜質を緻密にする。熱源とし
て絶縁基板透過波長領域の放射光を用いるため高温度に
湿度上昇する領域は、イオン注入された半導体薄膜6.
ゲート電極4及びゲート電極と半導体簿膜に囲まれたゲ
ート膜3領域である。従って緻密なゲート膜及び高い活
性のソース・ドレインを提供する。絶縁基板1は放射光
を吸収せず温度上昇が少ない。従って、基板1中に含ま
れるNaなどのアルカリ金属が薄膜2に拡散しない。ま
た高融点絶縁膜9は、半導体薄膜2の温度上昇に伴ない
熱伝導により絶縁膜9の半導体簿膜2との境界部分のみ
温度上昇する。第4図は、絶縁層7を形成後コンタクト
ホールを形成し透明導電性膜8をパターニングして完成
した本発明による薄膜半導体装置の断面図である。なお
、放射光による選択薄膜半導体素子部熱処理は、絶縁層
7.透明導電性伝導膜8に各々5in2 。
After ion implantation, using an arc discharge flash lamp (radiant wavelength 0.3 to 1.0 μm) or a tungsten resistance halogen lamp (radiant wavelength 0.3 to 3.077 m),
High-temperature heat treatment is performed for a short time to activate the ion implantation region and make the 5102 film quality under the gate electrode dense. Since synchrotron radiation in the insulating substrate transmission wavelength range is used as a heat source, the area where the temperature and humidity rise is high and the semiconductor thin film 6.
This is a region of the gate electrode 4 and the gate film 3 surrounded by the gate electrode and the semiconductor film. Therefore, a dense gate film and a highly active source/drain are provided. The insulating substrate 1 does not absorb radiated light and has little temperature rise. Therefore, alkali metals such as Na contained in the substrate 1 do not diffuse into the thin film 2. Further, the temperature of the high melting point insulating film 9 increases only at the boundary portion of the insulating film 9 with the semiconductor thin film 2 due to heat conduction as the temperature of the semiconductor thin film 2 increases. FIG. 4 is a cross-sectional view of a thin film semiconductor device according to the present invention completed by forming an insulating layer 7, forming contact holes, and patterning a transparent conductive film 8. Note that the selective thin film semiconductor element portion heat treatment using synchrotron radiation is performed on the insulating layer 7. Each transparent conductive film 8 has an area of 5 in2.

工1′0を用いた場合は、絶縁層7形成後及び工TO膜
8形成後も可能である。この場合にも、基板1、絶縁層
7 、 工TO膜8の温度は上昇しない。
If the process 1'0 is used, it is also possible to perform the process after forming the insulating layer 7 and after forming the process TO film 8. Also in this case, the temperatures of the substrate 1, insulating layer 7, and TO film 8 do not rise.

以上説明したように、本発明による熱処理では、透明絶
縁基板1の温度を上昇させることなく、薄膜半導体素子
部のみの高温熱処理を可能にする。従って、絶縁基板1
には低コストのソーダガラス又はパイレックスを使用で
き、しかも薄膜能動素子部は高温熱処理により良質の電
気特性を示す。本発明は、高性能・低コストの薄膜半導
体の製造方法を提供する。
As explained above, in the heat treatment according to the present invention, high temperature heat treatment of only the thin film semiconductor element portion can be performed without increasing the temperature of the transparent insulating substrate 1. Therefore, the insulating substrate 1
Low-cost soda glass or Pyrex can be used for this purpose, and the thin film active element portion exhibits good electrical properties through high-temperature heat treatment. The present invention provides a method for manufacturing a high-performance, low-cost thin film semiconductor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は、本発明による薄膜半導体装置のル;
1造方法を示す。 1・・・・・・絶縁基板 2・・・・・・半導体薄膜 3・・・・・・ゲート膜 4・・・・・・ゲート電極 5・・・・・・高濃度イオン注入 6・・・・・・ソース・ドレイン領域 7・・・・・・絶縁層 8・・・・・・透明性伝導膜 9・・・・・・高融点絶縁膜 以  上 出願人 株式会社諏訪精工舎 代理人 弁理士 最上  務
1 to 4 show a diagram of a thin film semiconductor device according to the present invention;
1 method is shown. 1...Insulating substrate 2...Semiconductor thin film 3...Gate film 4...Gate electrode 5...High concentration ion implantation 6... ... Source/drain region 7 ... Insulating layer 8 ... Transparent conductive film 9 ... High melting point insulating film and above Applicant Suwa Seikosha Co., Ltd. Agent Patent Attorney Tsutomu Mogami

Claims (1)

【特許請求の範囲】 1、 透明性絶縁基板上に薄膜半導体装置を製造する時
、絶縁基板透過波長領域のインコヒーレント・放射光に
より選択的に薄膜能動素子部のみを高熱処理することを
特徴とする薄膜半導体装置の製造方法。 2、 透明性絶縁基板上には高い融点を持つ透明性絶縁
膜が形成され、高融点絶縁膜上の薄膜能動素子部は、絶
縁基板透過波長領域のインコヒーレント放射光により熱
処理されることを特徴とする特許請求範囲第1項記載の
薄膜半導体装置の製造方法。 & 透明性絶縁基板上の薄膜半導体装置において、絶縁
物透過波長領域のインコヒーレント放射光により、半導
体薄膜及びゲート電極を高温に熱処理し、半導体薄膜と
ゲート電極からの黙伝尋により、ゲート電極下のゲート
絶縁膜が熱処理されることを特徴とする特許請求範囲第
1項記載の薄膜半導体装置の製造方法。
[Claims] 1. When manufacturing a thin film semiconductor device on a transparent insulating substrate, only the thin film active element portion is selectively subjected to high heat treatment using incoherent synchrotron radiation in the wavelength range that transmits the insulating substrate. A method for manufacturing a thin film semiconductor device. 2. A transparent insulating film with a high melting point is formed on the transparent insulating substrate, and the thin film active element portion on the high melting point insulating film is heat-treated with incoherent synchrotron radiation in the wavelength range that is transmitted through the insulating substrate. A method for manufacturing a thin film semiconductor device according to claim 1. & In a thin film semiconductor device on a transparent insulating substrate, the semiconductor thin film and the gate electrode are heat-treated to a high temperature using incoherent synchrotron radiation in the insulator-transmitting wavelength region, and the tacit communication between the semiconductor thin film and the gate electrode causes 2. The method of manufacturing a thin film semiconductor device according to claim 1, wherein the gate insulating film is subjected to heat treatment.
JP18695882A 1982-10-25 1982-10-25 Manufacture of thin film semiconductor device Pending JPS5975670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18695882A JPS5975670A (en) 1982-10-25 1982-10-25 Manufacture of thin film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18695882A JPS5975670A (en) 1982-10-25 1982-10-25 Manufacture of thin film semiconductor device

Publications (1)

Publication Number Publication Date
JPS5975670A true JPS5975670A (en) 1984-04-28

Family

ID=16197696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18695882A Pending JPS5975670A (en) 1982-10-25 1982-10-25 Manufacture of thin film semiconductor device

Country Status (1)

Country Link
JP (1) JPS5975670A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235571A (en) * 1985-08-08 1987-02-16 Sony Corp Manufacture of semiconductor device
JPH0215669A (en) * 1988-07-01 1990-01-19 Ricoh Co Ltd Semiconductor device
JPH02194626A (en) * 1989-01-24 1990-08-01 Sony Corp Manufacture of thin film transistor
JPH06333950A (en) * 1994-01-27 1994-12-02 Semiconductor Energy Lab Co Ltd Manufacture of insulated gate field effect semiconductor device
JPH0799208A (en) * 1994-06-10 1995-04-11 Semiconductor Energy Lab Co Ltd Manufacture of insulation gate type field effect semiconductor device for liquid crystal display panel
JPH07176746A (en) * 1994-11-25 1995-07-14 Semiconductor Energy Lab Co Ltd Insulated-gate type field-effect semiconductor device
JPH07176758A (en) * 1984-05-18 1995-07-14 Semiconductor Energy Lab Co Ltd Insulated gate type field effect semiconductor device
JPH07176759A (en) * 1994-11-25 1995-07-14 Semiconductor Energy Lab Co Ltd Manufacture of insulated gate type field effect semiconductor device
JPH07183523A (en) * 1994-11-25 1995-07-21 Semiconductor Energy Lab Co Ltd Manufacture of insulated gate field effect semiconductor device
JPH0851221A (en) * 1995-09-01 1996-02-20 Semiconductor Energy Lab Co Ltd Insulated gate field-effect semiconductor device for liquid crystal display panel, and its manufacture
JPH09181327A (en) * 1996-11-29 1997-07-11 Semiconductor Energy Lab Co Ltd Insulated gate field-effect semiconductor device
JPH09181326A (en) * 1984-05-18 1997-07-11 Semiconductor Energy Lab Co Ltd Insulated gate field-effect semiconductor device
JPH09186344A (en) * 1996-11-29 1997-07-15 Semiconductor Energy Lab Co Ltd Method for manufacturing insulating gate type semiconductor device
US6210997B1 (en) 1993-07-27 2001-04-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6331717B1 (en) 1993-08-12 2001-12-18 Semiconductor Energy Laboratory Co. Ltd. Insulated gate semiconductor device and process for fabricating the same
JP2002025906A (en) * 2000-07-06 2002-01-25 Fujitsu Ltd Semiconductor device and manufacturing method thereof
US6500703B1 (en) 1993-08-12 2002-12-31 Semicondcutor Energy Laboratory Co., Ltd. Insulated gate semiconductor device and process for fabricating the same
US6997985B1 (en) 1993-02-15 2006-02-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor, semiconductor device, and method for fabricating the same
JP2014033212A (en) * 2013-09-13 2014-02-20 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568652A (en) * 1978-11-17 1980-05-23 Chiyou Lsi Gijutsu Kenkyu Kumiai Manufacturing method of semiconductor film
JPS55154767A (en) * 1979-05-23 1980-12-02 Toshiba Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568652A (en) * 1978-11-17 1980-05-23 Chiyou Lsi Gijutsu Kenkyu Kumiai Manufacturing method of semiconductor film
JPS55154767A (en) * 1979-05-23 1980-12-02 Toshiba Corp Manufacture of semiconductor device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09181326A (en) * 1984-05-18 1997-07-11 Semiconductor Energy Lab Co Ltd Insulated gate field-effect semiconductor device
JPH07176758A (en) * 1984-05-18 1995-07-14 Semiconductor Energy Lab Co Ltd Insulated gate type field effect semiconductor device
JPS6235571A (en) * 1985-08-08 1987-02-16 Sony Corp Manufacture of semiconductor device
JPH0215669A (en) * 1988-07-01 1990-01-19 Ricoh Co Ltd Semiconductor device
JPH02194626A (en) * 1989-01-24 1990-08-01 Sony Corp Manufacture of thin film transistor
US6997985B1 (en) 1993-02-15 2006-02-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor, semiconductor device, and method for fabricating the same
US6465284B2 (en) 1993-07-27 2002-10-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6210997B1 (en) 1993-07-27 2001-04-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6331717B1 (en) 1993-08-12 2001-12-18 Semiconductor Energy Laboratory Co. Ltd. Insulated gate semiconductor device and process for fabricating the same
US6437366B1 (en) 1993-08-12 2002-08-20 Semiconductor Energy Laboratory Co., Ltd. Insulated gate semiconductor device and process for fabricating the same
US6500703B1 (en) 1993-08-12 2002-12-31 Semicondcutor Energy Laboratory Co., Ltd. Insulated gate semiconductor device and process for fabricating the same
US7381598B2 (en) 1993-08-12 2008-06-03 Semiconductor Energy Laboratory Co., Ltd. Insulated gate semiconductor device and process for fabricating the same
JPH06333950A (en) * 1994-01-27 1994-12-02 Semiconductor Energy Lab Co Ltd Manufacture of insulated gate field effect semiconductor device
JPH0799208A (en) * 1994-06-10 1995-04-11 Semiconductor Energy Lab Co Ltd Manufacture of insulation gate type field effect semiconductor device for liquid crystal display panel
JPH07183523A (en) * 1994-11-25 1995-07-21 Semiconductor Energy Lab Co Ltd Manufacture of insulated gate field effect semiconductor device
JPH07176759A (en) * 1994-11-25 1995-07-14 Semiconductor Energy Lab Co Ltd Manufacture of insulated gate type field effect semiconductor device
JPH07176746A (en) * 1994-11-25 1995-07-14 Semiconductor Energy Lab Co Ltd Insulated-gate type field-effect semiconductor device
JPH0851221A (en) * 1995-09-01 1996-02-20 Semiconductor Energy Lab Co Ltd Insulated gate field-effect semiconductor device for liquid crystal display panel, and its manufacture
JPH09181327A (en) * 1996-11-29 1997-07-11 Semiconductor Energy Lab Co Ltd Insulated gate field-effect semiconductor device
JPH09186344A (en) * 1996-11-29 1997-07-15 Semiconductor Energy Lab Co Ltd Method for manufacturing insulating gate type semiconductor device
JP2002025906A (en) * 2000-07-06 2002-01-25 Fujitsu Ltd Semiconductor device and manufacturing method thereof
JP2014033212A (en) * 2013-09-13 2014-02-20 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JPS5975670A (en) Manufacture of thin film semiconductor device
JPH11233790A (en) Manufacture of thin film transistor
JPS622531A (en) Manufacture of semiconductor device
JP4312741B2 (en) Thin film transistor substrate for liquid crystal display device and manufacturing method thereof
US3627589A (en) Method of stabilizing semiconductor devices
JPS61263273A (en) Manufacture of thin film semiconductor device
JPS6276772A (en) Manufacture of field effect transistor
JPS6016462A (en) Manufacture of semiconductor device
JPS59132674A (en) Manufacture of semiconductor device
JPS62104021A (en) Formation of silicon semiconductor layer
JP2002313718A (en) Thin film transistor manufacturing method
JPH0797565B2 (en) Method for manufacturing semiconductor device
JPH0467336B2 (en)
JPS63265424A (en) Selective heating method of transparent substrate
JP2771812B2 (en) Method for manufacturing semiconductor device
JP2575106B2 (en) Method for manufacturing semiconductor device
JPH0462174B2 (en)
JPS61289620A (en) Heat treatment for semiconductor thin film
JPH02162764A (en) Manufacture of semiconductor device
JP2663523B2 (en) Method of forming semiconductor oxide thin film
JPH02275622A (en) Annealing method
JPH0450740B2 (en)
KR100306804B1 (en) Method of forming polysilicon-thin film transistor in liquid crystal display device
JP2601209B2 (en) Method for manufacturing semiconductor device
JPH02162770A (en) Manufacture of semiconductor device