JPH07176758A - Insulated gate type field effect semiconductor device - Google Patents

Insulated gate type field effect semiconductor device

Info

Publication number
JPH07176758A
JPH07176758A JP31431294A JP31431294A JPH07176758A JP H07176758 A JPH07176758 A JP H07176758A JP 31431294 A JP31431294 A JP 31431294A JP 31431294 A JP31431294 A JP 31431294A JP H07176758 A JPH07176758 A JP H07176758A
Authority
JP
Japan
Prior art keywords
region
field effect
semiconductor device
insulated gate
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31431294A
Other languages
Japanese (ja)
Other versions
JP2996887B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP6314312A priority Critical patent/JP2996887B2/en
Publication of JPH07176758A publication Critical patent/JPH07176758A/en
Priority to JP08333062A priority patent/JP3125981B2/en
Application granted granted Critical
Publication of JP2996887B2 publication Critical patent/JP2996887B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a good switching characteristic in a high-frequency by providing an I-type non-single crystalline semiconductor layer having an extreme ly less amount of oxygen, carbon and nitrogen on the surface of the insulated substrate and promoting crystallization only of a doped region in this layer. CONSTITUTION:A source region 7 and a drain region 8 are formed by doping an I-type non-single crystal semiconductor layer 2 of less than 5X10<18>cm<-3> of hydrogen, carbon and nitrogen formed on a substrate 1 having an insulated surface together with promoting crystallization of the doped region. A channel formation region is formed on the I-type non-single crystal semiconductor layer 2 to which hydrogen or a halogen element and aforesaid impurities are added and gate electrode 4 is provided through a gate insulating film 3. The source region 7 and the drain region 8 are desirable to be a polycrystalline semiconductor whereto hydrogen or a halogen element is added to the density of one atom % or more. This constitution allows it to obtain a good switching characteristic in a high frequency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路、液晶
表示パネル等に用いられる絶縁ゲート型電界効果半導体
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulated gate field effect semiconductor device used in semiconductor integrated circuits, liquid crystal display panels and the like.

【0002】[0002]

【従来の技術】特開昭58−2073号公報に記載され
た電界効果型トランジスタは、ソース領域およびドレイ
ン領域を選択的にアニールすることにより多結晶領域と
し、チャネル形成領域を非晶質領域としている。すなわ
ち、同公報に示されている電界効果型トランジスタは、
非晶質領域の一部を選択的にアニールによって多結晶領
域としている。
2. Description of the Related Art In a field effect transistor described in Japanese Patent Laid-Open No. 58-2073, a source region and a drain region are selectively annealed to form a polycrystalline region and a channel forming region is formed into an amorphous region. There is. That is, the field effect transistor shown in the publication is
Part of the amorphous region is selectively annealed to form a polycrystalline region.

【0003】[0003]

【発明が解決しようとする課題】上記のように、従来の
絶縁ゲート型電界効果半導体装置におけるチャネル形成
領域は、酸素、炭素、および窒素のいずれもが1ないし
3×1020cm-3程度含む非単結晶半導体層からなって
いた。酸素、炭素、および窒素のいずれもがこのような
高い濃度で含まれている場合、絶縁ゲート型電界効果半
導体装置は、スイッチングする際の「ON」、「OF
F」特性が悪かった。たとえば、上記のように酸素、炭
素、および窒素のいずれもがこのような高い濃度で含ま
れている非単結晶半導体を用いた絶縁ゲート型電界効果
半導体装置において、良好な「ON」、「OFF」特性
を示す周波数特性は、1KHz程度であった。
As described above, the channel forming region in the conventional insulated gate field effect semiconductor device contains oxygen, carbon and nitrogen in an amount of 1 to 3 × 10 20 cm -3. It was composed of a non-single crystal semiconductor layer. When all of oxygen, carbon, and nitrogen are contained in such a high concentration, the insulated gate field effect semiconductor device has “ON” and “OF” when switching.
The "F" characteristic was bad. For example, in an insulated gate field effect semiconductor device using a non-single-crystal semiconductor containing oxygen, carbon, and nitrogen at such high concentrations as described above, good "ON" and "OFF" The frequency characteristic showing the characteristic was about 1 KHz.

【0004】また、従来の絶縁ゲート型電界効果半導体
装置は、ソース領域およびドレイン領域を選択的にアニ
ールしているため、非単結晶半導体層に結晶化されてい
ない部分が必ず残る。上記のように絶縁ゲート型電界効
果半導体装置に結晶化されていない領域が残っている場
合、絶縁ゲート型電界効果半導体装置として動作する際
に、この非晶質部分にも電流が一部流れる。非晶質部分
は、結晶化された部分と比較して高い抵抗を示すため、
電流が流れ難く、一旦流入すると蓄えられて流れ出るの
が遅い。すなわち、従来例における絶縁ゲート型電界効
果半導体装置は、電流の流れるライフタイムが長く、ヒ
ステリシス特性がでる。
Further, in the conventional insulated gate field effect semiconductor device, since the source region and the drain region are selectively annealed, an uncrystallized portion always remains in the non-single crystal semiconductor layer. When an uncrystallized region remains in the insulated gate field effect semiconductor device as described above, a part of the current also flows in this amorphous portion when operating as an insulated gate field effect semiconductor device. Since the amorphous portion has a higher resistance than the crystallized portion,
It is difficult for current to flow, and once it flows in, it accumulates and then slowly flows out. That is, the insulated gate field effect semiconductor device in the conventional example has a long lifetime in which a current flows and has a hysteresis characteristic.

【0005】以上のような問題を解決するために、本発
明は、スイッチング特性が良く、高い周波数で使用でき
る絶縁ゲート型電界効果半導体装置を提供することを目
的とする。
In order to solve the above problems, it is an object of the present invention to provide an insulated gate field effect semiconductor device which has good switching characteristics and can be used at high frequencies.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に、本発明の絶縁ゲート型電界効果半導体装置は、絶縁
表面を有する基板(1) 上に形成され、酸素、炭素、また
は窒素が5×1018cm-3以下のI型非単結晶半導体層
(2) と、当該I型非単結晶半導体層(2) にP型またはN
型の不純物を添加すると共に、この不純物が添加された
領域の結晶化を助長することによって形成されたソース
領域およびドレイン領域(7) 、(8) と、上記ソース領域
とドレイン領域(7) 、(8) との間で、水素またはハロゲ
ン元素、および前記不純物が添加されたI型非単結晶半
導体層(2) に形成されたチャネル形成領域と、当該チャ
ネル形成領域上にゲート絶縁膜(3) を介して形成された
ゲート電極(4) とを備えたことを特徴とする。また、前
記ソース領域およびドレイン領域からなる一対の不純物
領域(7) 、(8) は、水素またはハロゲン元素が1原子%
以上の濃度に添加された多結晶半導体よりなることを特
徴とする。
In order to achieve the above object, an insulated gate field effect semiconductor device of the present invention is formed on a substrate (1) having an insulating surface and contains oxygen, carbon or nitrogen. × 10 18 cm -3 or less of type I non-single-crystal semiconductor layer
(2) and the P type or N type in the I type non-single crystal semiconductor layer (2).
Source region and drain region (7), (8) formed by promoting the crystallization of the region to which the impurity is added, and the source region and drain region (7), (8) between the channel formation region formed in the I-type non-single-crystal semiconductor layer (2) to which hydrogen or a halogen element and the impurity are added, and a gate insulating film (3 And a gate electrode (4) formed via In addition, the pair of impurity regions (7) and (8) composed of the source region and the drain region contain 1 atom% of hydrogen or a halogen element.
It is characterized by being composed of a polycrystalline semiconductor added to the above concentration.

【0007】本発明の絶縁ゲート型電界効果半導体装置
は、絶縁表面を有する基板(1) 上に選択的に絶縁ゲート
型電界効果半導体装置を形成するチャネル形成領域と、
ソース領域およびドレイン領域(7) 、(8) とのみよりな
る非単結晶半導体層(2) と、絶縁表面を有する基板(1)
上に形成され、酸素、炭素、または窒素が5×1018
-3以下のチャネル形成領域と、前記非単結晶半導体層
(2) にP型またはN型用の不純物を添加すると共に、結
晶化を助長することによって形成されたソース領域およ
びドレイン領域(7) 、(8) と、上記チャネル形成領域上
にゲート絶縁膜(3) を介して形成されたゲート電極(4)
とを備えたことを特徴とする。
The insulated gate field effect semiconductor device of the present invention comprises a channel forming region for selectively forming an insulated gate field effect semiconductor device on a substrate (1) having an insulating surface,
Non-single crystal semiconductor layer (2) consisting only of source and drain regions (7) and (8), and substrate (1) having an insulating surface
Formed on top of 5 × 10 18 c of oxygen, carbon, or nitrogen
m −3 or less channel formation region, and the non-single-crystal semiconductor layer
Source and drain regions (7) and (8) formed by adding P-type or N-type impurities to (2) and promoting crystallization, and a gate insulating film on the channel forming region. Gate electrode formed via (3) (4)
It is characterized by having and.

【0008】[0008]

【作 用】本発明の絶縁ゲート型電界効果半導体装置
は、酸素、炭素、および窒素のいずれもが5×1018
-3以下、すなわち上記元素をできる限り少なくしたI
型非単結晶半導体層にP型またはN型不純物を添加する
と共に、この不純物が添加された領域のみの結晶化を助
長してソース領域およびドレイン領域を形成した点、ま
た、チャネル形成領域には、水素またはハロゲン元素が
添加されている点に特徴がある。このような構成とした
絶縁ゲート型電界効果半導体装置は、従来例における非
単結晶半導体、たとえば酸素、炭素、および窒素のいず
れもが1ないし3×1020cm-3であるI型非単結晶半
導体が1KHzの周波数に追従できる程度のスイッチン
グ特性であったのに対して、1MHzの周波数において
も良好なスイッチング特性を得た。
[Operation] The insulated gate field effect semiconductor device of the present invention contains 5 × 10 18 c of oxygen, carbon and nitrogen.
m -3 or less, that is, I in which the above elements are reduced as much as possible
A P-type or N-type impurity is added to the non-single-crystal semiconductor layer, and a source region and a drain region are formed by promoting crystallization of only the region to which the impurity is added. The feature is that hydrogen, or a halogen element is added. The insulated gate field effect semiconductor device having such a structure is a non-single crystal semiconductor in the conventional example, for example, an I-type non-single crystal in which each of oxygen, carbon and nitrogen is 1 to 3 × 10 20 cm −3. While the semiconductor had such a switching characteristic that it could follow the frequency of 1 KHz, a good switching characteristic was obtained even at the frequency of 1 MHz.

【0009】また、絶縁ゲート型電界効果半導体装置
は、I型非単結晶半導体層における酸素、炭素、および
窒素のいずれもが5×1018cm-3以下と、極めて少な
くし、チャネル形成領域を除く全ての非単結晶半導体層
が光照射によって結晶化を助長したソース領域およびド
レイン領域から形成されているため、さらに高い周波数
におけるスイッチング特性を良好にした。特に、ソース
領域およびドレイン領域を選択的にアニールしていない
ため、チャネル形成領域以外における全てのI型非単結
晶半導体層に結晶化を助長させることができる。すなわ
ち、本発明における絶縁ゲート型電界効果半導体装置
は、ソース領域およびドレイン領域に抵抗の高い非晶質
部分が残されていない。また、ソース領域およびドレイ
ン領域には、電流の流れ難い非晶質部分がないため、電
流が流れ易く、スイッチングの際にダラダラ流れない。
したがって、本発明の絶縁ゲート型電界効果半導体装置
は、電流の流れるライフタイムが短く、ヒステリシス特
性が出ない。すなわち、本発明の絶縁ゲート型電界効果
半導体装置は、オフ電流が少なく、かつ「ON」、「O
FF」を高速応答で行なうことができた。
In the insulated gate field effect semiconductor device, oxygen, carbon, and nitrogen in the I-type non-single-crystal semiconductor layer are all extremely reduced to 5 × 10 18 cm −3 or less, and the channel formation region is reduced. Since all the non-single-crystal semiconductor layers except the one were formed from the source region and the drain region which promoted crystallization by light irradiation, the switching characteristics at higher frequencies were improved. In particular, since the source region and the drain region are not selectively annealed, crystallization can be promoted in all the I-type non-single-crystal semiconductor layers other than the channel formation region. That is, in the insulated gate field effect semiconductor device according to the present invention, no amorphous portion having high resistance is left in the source region and the drain region. In addition, since the source region and the drain region do not have an amorphous portion in which a current does not easily flow, a current easily flows, and the current does not dangle during switching.
Therefore, the insulated gate field effect semiconductor device of the present invention has a short lifetime in which a current flows and does not exhibit hysteresis characteristics. That is, the insulated gate field effect semiconductor device of the present invention has a small off current and is "ON" or "O".
It was possible to perform "FF" with a high-speed response.

【0010】[0010]

【実 施 例】図1(A)ないし(C)は本発明の一実
施例である絶縁ゲート型電界効果半導体装置の縦断面図
を示す。図1において、基板(1) は、たとえば石英ガラ
スからなり、図1(A) に示すごとく、その厚さを1.1 m
mとし、大きさを10cm×10cmとした。この基板(1)
の上面には、シラン(SiH4)のプラズマCVD(高周波数13.5
6MHz、基板温度210 ℃)により、水素が1原子%以上の
濃度に添加されたアモルファス構造を含む非単結晶半導
体(2) が0.2 μmの厚さに形成された。さらに、この非
単結晶半導体(2) の上面には、光CVD 法により、たとえ
ば窒化珪素膜からなるゲート絶縁膜(3) が積層された。
すなわち、ゲート絶縁膜(3) は、ジシラン(Si2H6 )と
アンモニア(NH3 )、またはヒドラジン(N2 4
との反応( 2537Åの波長を含む低圧水銀灯、基板温度25
0 ℃) により、Si3N4 を水銀増感法を用いることなしに
1000Åの厚さに作製された。
Embodiments FIGS. 1A to 1C are vertical sectional views of an insulated gate field effect semiconductor device according to an embodiment of the present invention. In FIG. 1, the substrate (1) is made of quartz glass, for example, and has a thickness of 1.1 m as shown in FIG. 1 (A).
m and the size was 10 cm × 10 cm. This board (1)
Silane (SiH 4 ) plasma CVD (high frequency 13.5
At 6 MHz and a substrate temperature of 210 ° C., a non-single-crystal semiconductor (2) containing an amorphous structure to which hydrogen was added at a concentration of 1 atomic% or more was formed to a thickness of 0.2 μm. Further, a gate insulating film (3) made of, for example, a silicon nitride film was laminated on the upper surface of the non-single crystal semiconductor (2) by a photo CVD method.
That is, the gate insulating film (3) is composed of disilane (Si 2 H 6 ) and ammonia (NH 3 ), or hydrazine (N 2 H 4 ).
Reaction with (low-pressure mercury lamp including wavelength of 2537Å, substrate temperature 25
(0 ℃), Si 3 N 4 without using mercury sensitization
It was made to a thickness of 1000Å.

【0011】この後、絶縁ゲート型電界効果半導体装置
を形成する領域(5) を除いた部分は、プラズマエッチン
グ法により除去された。プラズマエッチング反応は、CF
4 +O2( 5% )の反応性気体を導入すると共に、図示さ
れていない平行平板電極に周波数13.56MHzを印加して、
室温で行われた。ゲート絶縁膜(3) 上には、N + の導電
型の微結晶または多結晶半導体が0.3 μmの厚さに積層
された。このN + の半導体膜は、レジスト膜(6) を用い
てフォトエッチング法で非所望な部分が除去された。そ
の後、このレジスト膜(6) とN+半導体のゲート電極(4)
とからなるゲート部をマスクとして、ソ−ス、ドレイン
となる領域には、イオン注入法により、1×1020cm-3
の濃度に図1(B) に示すごとくリンが添加され、一対の
不純物領域(7) 、(8) となった。
Thereafter, the portion except the region (5) forming the insulated gate field effect semiconductor device was removed by the plasma etching method. The plasma etching reaction is CF
Introducing a reactive gas of 4 + O 2 (5%) and applying a frequency of 13.56 MHz to a parallel plate electrode (not shown),
Done at room temperature. On the gate insulating film (3), N + conductive type microcrystalline or polycrystalline semiconductor was laminated to a thickness of 0.3 μm. An undesired part of the N + semiconductor film was removed by photoetching using the resist film (6). After that, this resist film (6) and the gate electrode (4) of N + semiconductor
By using the gate part consisting of and as a mask, the region which becomes the source and the drain is 1 × 10 20 cm −3 by the ion implantation method.
As shown in FIG. 1 (B), phosphorus was added to the concentration of 1 to form a pair of impurity regions (7) and (8).

【0012】さらに、基板(1) は、その全体に対し、ゲ
ート電極(4) のレジスト膜(6) が除去された後、強光(1
0)の光アニ−ルが行われた。すなわち、超高圧水銀灯
(出力5KW 、波長250 ないし600 nm、光径15mm、長
さ180 mm) に対し裏面側は、放物面の反射鏡を用い前
方に石英のシリンドリカルレンズ(焦点距離150 cm、
集光部幅2mm、長さ180 mm) により、線状に照射部
を構成した。この照射部に対し基板(1) の照射面は、5
cm/ 分ないし50cm/ 分の速度で走査( スキャン) さ
れ、基板10cm×10cmの全面に強光(10)が照射される
ようにした。かくすると、ゲート電極(4) は、ゲート電
極(4) 側にリンが多量に添加されているため、十分光を
吸収し多結晶化した。
Furthermore, after the resist film (6) of the gate electrode (4) is removed, the substrate (1) is exposed to strong light (1
The optical annealing of 0) was performed. That is, for the ultra-high pressure mercury lamp (output 5KW, wavelength 250 to 600 nm, light diameter 15 mm, length 180 mm), the back side uses a parabolic reflector and uses a quartz cylindrical lens (focal length 150 cm,
The light-collecting part has a width of 2 mm and a length of 180 mm) to form a linear irradiation part. The irradiation surface of the substrate (1) is 5
The whole surface of the substrate 10 cm × 10 cm was irradiated with intense light (10) by scanning at a speed of cm / min to 50 cm / min. As a result, the gate electrode (4) was sufficiently polycrystallized by absorbing light because a large amount of phosphorus was added to the gate electrode (4) side.

【0013】また、不純物領域(7) 、(8) は、一度溶融
し再結晶化することにより走査する方向、すなわち、X
方向に溶融、再結晶をシフト(移動)させた。その結
果、単に全面を均一に加熱または光照射するのみに比
べ、成長機構が加わるため結晶粒径を大きくすることが
できた。この強光アニ−ルにより多結晶化した領域は、
不純物領域(7) 、(8) の下側の全領域にまで及ぶ必要が
ない。図1において、破線(11)、(11')で示したごと
く、その上層部のみが少なくとも結晶化し、不純物領域
(7) 、(8) を活性にすることが重要である。
Further, the impurity regions (7) and (8) are melted and recrystallized once, so that the scanning direction, that is, X
The melting and recrystallization were shifted (moved) in the direction. As a result, the crystal grain size could be increased because a growth mechanism was added as compared with the case where the entire surface was uniformly heated or irradiated with light. The region polycrystallized by this strong light anneal is
It is not necessary to reach the entire area below the impurity regions (7) and (8). As shown by broken lines (11) and (11 ') in FIG. 1, only the upper layer is crystallized and the impurity region
It is important to activate (7) and (8).

【0014】さらに、そのソース領域およびドレイン領
域の端部(15)、(15') は、ゲート電極の端部(16)、(1
6') に対し、チャネル領域側に入り込むように設けられ
ている。そして、N型不純物領域 (7)、(8)、I型非単
結晶半導体領域(2) 、接合界面(17)、(17') からなるチ
ャネル形成領域は、I型半導体領域における非単結晶半
導体、および不純物領域から入り込んだ結晶化半導体か
ら構成されるハイブリッド構造となっている。このI型
半導体領域内の結晶化半導体の程度は、光アニ−ルの走
査スピ−ド、強度(照度)によって決められる。
Further, the ends (15) and (15 ') of the source region and the drain region are connected to the ends (16) and (1
6 ') is provided so as to enter the channel region side. Then, the channel forming region including the N-type impurity regions (7) and (8), the I-type non-single crystal semiconductor region (2), the junction interfaces (17) and (17 ') is a non-single crystal region in the I-type semiconductor region. It has a hybrid structure composed of a semiconductor and a crystallized semiconductor that enters from an impurity region. The degree of crystallized semiconductor in the I-type semiconductor region is determined by the scanning speed and intensity (illuminance) of the optical anneal.

【0015】図1(B)の工程の後、ポリイミド樹脂
は、全面に2μmの厚さにコ−トされる。そして、ポリ
イミド樹脂には、電極穴(13)、(13') が形成された後、
アルミニュ−ムのオ−ムコンタクトおよびそのリ−ド(1
4)、(14') が形成される。この2層目のリード(14)、(1
4') は、形成する際に、ゲート電極(4) と連結してもよ
い。この光アニ−ルの結果は、シ−ト抵抗が光照射前の
4×10-3( オームcm) -1から1×10+2( オームcm)
-1になり、光アニール前と比べ電気伝導度特性が向上し
た。
After the step of FIG. 1B, the polyimide resin is coated on the entire surface to a thickness of 2 μm. Then, in the polyimide resin, after the electrode holes (13) and (13 ') are formed,
Aluminum om contact and its lead (1
4) and (14 ') are formed. This second layer lead (14), (1
4 ′) may be connected to the gate electrode (4) when formed. The result of this optical annealing is that the sheet resistance is 4 × 10 -3 (ohm cm) -1 to 1 × 10 +2 (ohm cm) before light irradiation.
It became -1 , and the electric conductivity characteristics were improved compared to before the photo-annealing.

【0016】図2は本発明の実施例によるドレイン電流
─ゲート電圧の特性を示す図である。チャネル形成領域
の長さが3μm、および10μmの場合、チャネル幅が1
mmの条件下において、それぞれ図2における符号(2
1)、(22)によって示されるごとく、Vth=+2V 、V DD
10V にて1×10-5A 、2×10-5A の電流を得た。なお、
オフ電流は、(VGG=0V) 10-10 ないし10-11 (A) であ
り、単結晶半導体の10-6(A) に比べ10-4分の1も小さか
った。本実施例は、下側から漸次被膜を形成し加工する
という製造工程を採用したため、大面積大規模集積化を
行なうことが可能になった。そのため、大面積例えば30
cm×30cmのパネル内に500個×500個の絶縁ゲ
ート型電界効果半導体装置の作製すらも可能とすること
ができ、液晶表示素子の制御用絶縁ゲート型電界効果半
導体装置として応用することができた。
FIG. 2 is a graph showing characteristics of drain current-gate voltage according to an embodiment of the present invention. When the length of the channel formation region is 3 μm and 10 μm, the channel width is 1
Under the condition of mm, the sign (2
1), (22), V th = + 2V, V DD =
A current of 1 × 10 -5 A and 2 × 10 -5 A was obtained at 10V. In addition,
The off-state current was (V GG = 0V) 10 −10 to 10 −11 (A), which was 10 −4 times smaller than that of the single crystal semiconductor, 10 −6 (A). This embodiment employs a manufacturing process in which a coating film is gradually formed and processed from the lower side, so that large area and large scale integration can be performed. Therefore, a large area such as 30
It is possible to fabricate 500 × 500 insulated gate field effect semiconductor devices in a panel of 30 cm × 30 cm, and it can be applied as an insulated gate field effect semiconductor device for controlling liquid crystal display elements. It was

【0017】光アニ−ルプロセスによる400 ℃以下の低
温処理であるため、多結晶化または単結晶化した半導体
がその内部の水素またはハロゲン元素を放出させること
を防ぐことができた。また、光アニ−ルは、基板全面に
対して同時に行なうのではなく、一端より他端に走査さ
せた。このため、筒状の超高圧水銀灯から照射された光
は、放物ミラ−および石英レンズにより線状に集光され
た。そして、この線状に集光された光は、これと直交し
た方向に基板を走査することにより非単結晶半導体表面
を光アニ−ルすることができた。
Since the low temperature treatment is performed at 400 ° C. or lower by the photo anneal process, it is possible to prevent the polycrystallized or single crystallized semiconductor from releasing hydrogen or halogen element therein. Further, the optical annealing was performed not from the entire surface of the substrate at the same time, but from one end to the other end. Therefore, the light emitted from the cylindrical ultra-high pressure mercury lamp was linearly condensed by the parabolic mirror and the quartz lens. The linearly condensed light was able to optically anneal the surface of the non-single-crystal semiconductor by scanning the substrate in a direction orthogonal to this.

【0018】この光アニ−ルは、紫外線で行なうため、
非単結晶半導体の表面より内部方向への結晶化を助長さ
せた。このため、十分に多結晶化または単結晶化された
表面近傍の不純物領域は、チャネル形成領域におけるゲ
ート絶縁膜のごく近傍に流れる電流制御を支障なく行な
うことが可能となった。光照射アニ−ル工程に際し、チ
ャネル形成領域に添加された水素またはハロゲン元素
は、まったく影響を受けず、非単結晶半導体の状態を保
持できるため、オフ電流を単結晶半導体の1/103 ないし
1/105 にすることができる。ソ−ス領域およびドレイン
領域は、ゲート電極を作った後、光アニ−ルで作製する
ため、ゲート絶縁物界面に汚物が付着せずに、特性を安
定させる。
Since this optical annealing is performed by ultraviolet rays,
Crystallization was promoted from the surface of the non-single crystal semiconductor toward the inside. Therefore, the sufficiently polycrystallized or single-crystallized impurity region near the surface can control the current flowing in the channel formation region in the immediate vicinity of the gate insulating film without any trouble. Light irradiation annealing - Upon le step, hydrogen or a halogen element added to the channel formation region is not affected at all, since it is possible to hold the non-single-crystal semiconductor state, the off-current to 1/10 3 to the single crystal semiconductor
It can be 1/10 5 . Since the source region and the drain region are formed by optical annealing after forming the gate electrode, the characteristics are stabilized without depositing dirt on the interface of the gate insulator.

【0019】さらに、従来より公知の方法に比べ、基板
材料として石英ガラスのみならず任意の基板であるソ−
ダガラス、耐熱性有機フィルムをも用いることができ
る。異種材料界面であるチャネル形成領域を構成する非
単結晶半導体─ゲート絶縁物─ゲート電極の形成は、同
一反応炉内でのプロセスにより、大気に触れさせること
なく作り得るため、界面凖位の発生が少ないという特長
を有する。
Further, as compared with the conventionally known method, not only quartz glass is used as a substrate material, but also a so-called arbitrary substrate is used.
Douglas and heat resistant organic films can also be used. The formation of non-single-crystal semiconductors-gate insulators-gate electrodes that make up the channel formation region, which is the interface of different materials, can be done without exposing them to the atmosphere by the process in the same reaction furnace. It has the feature that

【0020】なお、本実施例において、チャネル形成領
域の非単結晶半導体の酸素、炭素および窒素のいずれも
が5×1018cm-3以下の不純物濃度であることが重要で
ある。すなわち、これらが従来公知の絶縁ゲート型電界
効果半導体装置においては、チャネル層に1ないし3 ×
1020cm-3の濃度に混合している。この従来例における
非単結晶半導体を用いるPチャネル型絶縁ゲート型電界
効果半導体装置は、本実施例における絶縁ゲート型電界
効果トランジスタ装置の有する特性の1/3以下の電流
しか流れない。そして、上記従来例における非単結晶半
導体を用いた絶縁ゲート型電界効果半導体装置のヒステ
リシス特性は、IDD─VGG特性にドレイン電界を2×10
6V/ cm以上加える場合に観察されてしまった。また、
本実施例のように、非単結晶半導体中の酸素を5×1018
cm-3以下とすると、3×106V/ cmの電圧においても
ヒステリシスの存在が観察されなかった。
In this embodiment, it is important that the non-single crystal semiconductor in the channel formation region has an impurity concentration of 5 × 10 18 cm -3 or less for all of oxygen, carbon and nitrogen. That is, in the conventionally known insulated gate field effect semiconductor device, the channel layer has 1 to 3 ×.
It is mixed at a concentration of 10 20 cm -3 . The P channel type insulated gate field effect semiconductor device using the non-single crystal semiconductor in the conventional example flows only a current which is ⅓ or less of the characteristic of the insulated gate field effect transistor device in this example. The hysteresis characteristic of the insulated gate field effect semiconductor device using the non-single crystal semiconductor in the above-mentioned conventional example has the drain electric field of 2 × 10 5 in addition to the I DD ─V GG characteristic.
It was observed when 6 V / cm or more was applied. Also,
As in this embodiment, the oxygen in the non-single crystal semiconductor is adjusted to 5 × 10 18.
When it was set to be cm −3 or less, no hysteresis was observed even at a voltage of 3 × 10 6 V / cm.

【0021】[0021]

【発明の効果】本発明によれば、絶縁基板表面上に酸
素、炭素、および窒素のいずれもが5×1018cm-3
下という極めて少ないI型非単結晶半導体層を設けてい
るため、また、I型非単結晶半導体層に、P型またはN
型の不純物を添加した領域のみの結晶化を助長している
ため、ゲート電圧−ドレイン電流特性にヒステリシスが
なく、高い周波数における良好なスイッチング特性を得
た。本発明によれば、さらにチャネル形成領域以外のI
型非単結晶半導体層を全て結晶化を助長させるため、絶
縁ゲート型電界効果半導体装置のスイッチング特性は、
高い周波数においてもさらに良くなった。
According to the present invention, since an extremely small amount of oxygen, carbon, and nitrogen of 5 × 10 18 cm −3 or less is provided on the surface of the insulating substrate, the I-type non-single-crystal semiconductor layer is provided. In addition, the I-type non-single-crystal semiconductor layer may have a P-type or N-type
Since the crystallization is promoted only in the region to which the impurity of the type is added, the gate voltage-drain current characteristic has no hysteresis and good switching characteristics at a high frequency are obtained. According to the present invention, I
In order to promote crystallization of all the non-single-crystal semiconductor layer, the switching characteristics of the insulated gate field effect semiconductor device are
Even better at higher frequencies.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)ないし(C)は本発明の一実施例である
絶縁ゲート型電界効果半導体装置の縦断面図を示す。
1A to 1C are vertical sectional views of an insulated gate field effect semiconductor device according to an embodiment of the present invention.

【図2】本発明の実施例によるドレイン電流─ゲート電
圧の特性を示す図である。
FIG. 2 is a diagram showing a drain current-gate voltage characteristic according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・基板 2・・・非単結晶半導体層 3・・・ゲート絶縁膜 4・・・ゲート電極 5・・・絶縁ゲート型電界効果半導体装置を形成する領
域 6・・・レジスト膜 7、8・・・不純物領域 10・・・強光 11、11′・・・破線 13、13′・・・穴 14、14′・・・リード 15、15′・・・ソース領域およびドレイン領域の端
部 16、16′・・・ゲート電極の端部 17、17′・・・接合界面
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Non-single-crystal semiconductor layer 3 ... Gate insulating film 4 ... Gate electrode 5 ... Area | region which forms an insulated gate field effect semiconductor device 6 ... Resist film 7, 8 ... Impurity region 10 ... Strong light 11, 11 '... Broken line 13, 13' ... Hole 14, 14 '... Lead 15, 15' ... End of source region and drain region Part 16, 16 '... Edge of gate electrode 17, 17' ... Bonding interface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁表面を有する基板上に形成され、酸
素、炭素、または窒素が5×1018cm-3以下のI型非
単結晶半導体層と、 当該I型非単結晶半導体層にP型またはN型の不純物を
添加すると共に、この不純物が添加された領域の結晶化
を助長することによって形成されたソース領域およびド
レイン領域と、 上記ソース領域とドレイン領域との間で、水素またはハ
ロゲン元素、および前記不純物が添加されたI型非単結
晶半導体層に形成されたチャネル形成領域と、 当該チャネル形成領域上にゲート絶縁膜を介して形成さ
れたゲート電極と、 を備えたことを特徴とする絶縁ゲート型電界効果半導体
装置。
1. An I-type non-single-crystal semiconductor layer, which is formed on a substrate having an insulating surface and contains oxygen, carbon, or nitrogen of 5 × 10 18 cm −3 or less, and an I-type non-single-crystal semiconductor layer having P -Type or N-type impurities are added, and hydrogen or halogen is provided between the source region and the drain region and the source region and the drain region formed by promoting crystallization of the region added with the impurities. A channel forming region formed in the I-type non-single-crystal semiconductor layer to which the element and the impurity are added; and a gate electrode formed on the channel forming region via a gate insulating film. Insulated gate type field effect semiconductor device.
【請求項2】 特許請求の範囲第1項において、ソース
領域およびドレイン領域からなる一対の不純物領域は、
水素またはハロゲン元素が1原子%以上の濃度に添加さ
れた多結晶半導体よりなることを特徴とする絶縁ゲート
型電界効果半導体装置。
2. The pair of impurity regions formed of a source region and a drain region according to claim 1,
An insulated gate field effect semiconductor device comprising a polycrystalline semiconductor to which hydrogen or a halogen element is added at a concentration of 1 atomic% or more.
【請求項3】 絶縁表面を有する基板上に選択的に絶縁
ゲート型電界効果半導体装置を形成するチャネル形成領
域と、ソース領域およびドレイン領域とのみよりなる非
単結晶半導体層と、 絶縁表面を有する基板上に形成され、酸素、炭素、また
は窒素が5×1018cm-3以下のチャネル形成領域と、 前記非単結晶半導体層にP型またはN型用の不純物を添
加すると共に、結晶化を助長することによって形成され
たソース領域およびドレイン領域と、 上記チャネル形成領域上にゲート絶縁膜を介して形成さ
れたゲート電極と、 を備えたことを特徴とする絶縁ゲート型電界効果半導体
装置。
3. A channel formation region for selectively forming an insulated gate field effect semiconductor device on a substrate having an insulating surface, a non-single-crystal semiconductor layer consisting only of a source region and a drain region, and an insulating surface. A channel formation region formed on a substrate, in which oxygen, carbon, or nitrogen is 5 × 10 18 cm −3 or less, and P-type or N-type impurities are added to the non-single-crystal semiconductor layer, and crystallization is performed. An insulated gate field effect semiconductor device, comprising: a source region and a drain region formed by promoting the formation of a gate electrode; and a gate electrode formed on the channel formation region via a gate insulating film.
JP6314312A 1984-05-18 1994-11-25 Insulated gate field effect semiconductor device Expired - Lifetime JP2996887B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6314312A JP2996887B2 (en) 1984-05-18 1994-11-25 Insulated gate field effect semiconductor device
JP08333062A JP3125981B2 (en) 1984-05-18 1996-11-29 Insulated gate field effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6314312A JP2996887B2 (en) 1984-05-18 1994-11-25 Insulated gate field effect semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10025084A Division JPS60245172A (en) 1984-05-18 1984-05-18 Insulated gate type semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP08333062A Division JP3125981B2 (en) 1984-05-18 1996-11-29 Insulated gate field effect semiconductor device

Publications (2)

Publication Number Publication Date
JPH07176758A true JPH07176758A (en) 1995-07-14
JP2996887B2 JP2996887B2 (en) 2000-01-11

Family

ID=18051838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6314312A Expired - Lifetime JP2996887B2 (en) 1984-05-18 1994-11-25 Insulated gate field effect semiconductor device

Country Status (1)

Country Link
JP (1) JP2996887B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5771110A (en) * 1995-07-03 1998-06-23 Sanyo Electric Co., Ltd. Thin film transistor device, display device and method of fabricating the same
US20110102697A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550663A (en) * 1978-10-07 1980-04-12 Shunpei Yamazaki Semiconductor device and method of fabricating the same
JPS5691276A (en) * 1979-12-25 1981-07-24 Citizen Watch Co Ltd Display panel
JPS582073A (en) * 1981-06-29 1983-01-07 Sony Corp Field effect transistor
JPS5935423A (en) * 1982-08-24 1984-02-27 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS5975670A (en) * 1982-10-25 1984-04-28 Seiko Epson Corp Manufacture of thin film semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550663A (en) * 1978-10-07 1980-04-12 Shunpei Yamazaki Semiconductor device and method of fabricating the same
JPS5691276A (en) * 1979-12-25 1981-07-24 Citizen Watch Co Ltd Display panel
JPS582073A (en) * 1981-06-29 1983-01-07 Sony Corp Field effect transistor
JPS5935423A (en) * 1982-08-24 1984-02-27 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS5975670A (en) * 1982-10-25 1984-04-28 Seiko Epson Corp Manufacture of thin film semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5771110A (en) * 1995-07-03 1998-06-23 Sanyo Electric Co., Ltd. Thin film transistor device, display device and method of fabricating the same
US20110102697A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8988623B2 (en) * 2009-10-30 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9488890B2 (en) 2009-10-30 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11668988B2 (en) 2009-10-30 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JP2996887B2 (en) 2000-01-11

Similar Documents

Publication Publication Date Title
JPS60245174A (en) Manufacture of insulated gate type semiconductor device
JPS60245173A (en) Insulated gate type semiconductor device
JPS60245172A (en) Insulated gate type semiconductor device
JPH07176758A (en) Insulated gate type field effect semiconductor device
JP2996854B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JP3125982B2 (en) Insulated gate field effect semiconductor device
JP2648788B2 (en) Insulated gate field effect semiconductor device
JP2789168B2 (en) Method for manufacturing insulated gate field effect semiconductor device for liquid crystal display panel
JP3125989B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JP2789171B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JP3127441B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JP3125981B2 (en) Insulated gate field effect semiconductor device
JP2789170B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JP3125983B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JP2648783B2 (en) Insulated gate field effect semiconductor device for liquid crystal display panel
JP2648785B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JP2996888B2 (en) Insulated gate field effect semiconductor device
JP2996902B2 (en) Insulated gate field effect semiconductor device for liquid crystal display panel and method of manufacturing the same
JP3383262B2 (en) Driving method of insulated gate field effect semiconductor device
JP3401533B2 (en) LCD panel
JP2648784B2 (en) Insulated gate field effect semiconductor device for liquid crystal display panel
JP2001094119A (en) Insulated-gate field effect semiconductor device
JP2000315801A (en) Insulated gate field effect semiconductor device
JP2000077673A (en) Manufacture of liquid crystal panel
JP2000340803A (en) Manufacture for insulated gate field-effect semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term