JPS5935423A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5935423A
JPS5935423A JP57146562A JP14656282A JPS5935423A JP S5935423 A JPS5935423 A JP S5935423A JP 57146562 A JP57146562 A JP 57146562A JP 14656282 A JP14656282 A JP 14656282A JP S5935423 A JPS5935423 A JP S5935423A
Authority
JP
Japan
Prior art keywords
semiconductor device
gas
manufacturing
semiconductor
molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57146562A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP57146562A priority Critical patent/JPS5935423A/en
Publication of JPS5935423A publication Critical patent/JPS5935423A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a device having a P-i-N junction by a method wherein a molecular sieve or zeolite with an effective diameter in a predetermined range is utilized to adsorb and remove oxide gas or carbide gas with a molecular diameter not larger than 4.5Angstrom , thereby providing an i-layer. CONSTITUTION:A molecular sieve or zeolite represented by a molecular formula of Nan(AlO2)(SiO2)27-30 H2O or (K4Zn4) (AlO2)(SiO2).27-30 H2O and having an effective diameter of 2.9-4.65Angstrom is used while being cooled down to a range from the room temperature to -100 deg.C to adsorb impurities of oxide gas (H2O, O2, CO2, etc.) up to a level not larger than 0.03ppm or impurities of gas (CH4, C2H2...) represented by CmHn (m>=2) up to a level not larger than 0.5ppm. Thus, a hydride or halide (with an effective molecular diameter not less than 4.8Angstrom ) of Si or Ge is refined. Reaction gas thus refined can be used to form an intrinsic or substantially intrinsic semiconductor layer by a plasma vapor method. The resultant P-i-N junction can provide a high intrinsic conversion efficiency.

Description

【発明の詳細な説明】 本発明は、基板または基板上の第1の電極と、該電極上
K PIN接合を少なくとも1つ有する非単結晶半導体
層を、P型半導体層、工型半導体層およびN型半導体層
を積層することにより設けた光電変換装置において、特
に光照射によシ光起電力を発生する活性半導体層である
真性または実質的に真性(PiたはN型用不純物が4 1×10〜5X10 cmの濃度に人為的またはバック
グラウンドレベルで混入した)半導体に対し、特に絶縁
性の助長または再結合中心の発生をもたらす酸素または
炭素を極低濃度にすることを目的としている。
Detailed Description of the Invention The present invention provides a substrate or a first electrode on the substrate, and a non-single crystal semiconductor layer having at least one K PIN junction on the electrode. In a photoelectric conversion device provided by laminating N-type semiconductor layers, an active semiconductor layer that generates a photovoltaic force upon irradiation with light is an intrinsic or substantially intrinsic (Pi or N-type impurity is 4 1 The purpose is to provide an extremely low concentration of oxygen or carbon, which particularly promotes insulation or generates recombination centers, in the semiconductor (artificially or at background levels).

本発明は、かかる目的のため、半導体用の反応性気体例
えば珪化物気体であるシラン、ポリシラン、フッ化珪素
、またゲルマニューム化物気一体であるゲルマン等がそ
の有効分子羨径が4.8λ以上を有することを利用した
ものである。
For this purpose, the present invention provides that reactive gases for semiconductors, such as silicide gases such as silane, polysilane, and silicon fluoride, and germanium compound gases such as germane, have an effective molecular diameter of 4.8λ or more. It is something that takes advantage of what we have.

即ち、有効穴径が2.9−4.65Hのモレキュラーシ
ープまたはゼψライトを利用して、4゜5Å以下の有効
分子丑径(以下分子径という)を有する不純物である酸
化物気体例えば水(H2O) 、炭酸ガス(co、ts
酸素(■、また炭化物気体例えばメタン(C〜、エタン
(0,IQ 、プロパン(C’J樽、CへOH,O,H
That is, using a molecular sheet or zeolite with an effective pore diameter of 2.9-4.65H, an oxide gas, such as water, which is an impurity having an effective molecular diameter of 4.5 Å or less (hereinafter referred to as molecular diameter) is extracted. (H2O), carbon dioxide gas (co, ts
Oxygen (■, also carbide gases such as methane (C~, ethane (0, IQ), propane (C'J barrel, C to OH, O, H
.

等を吸着、除去することを目的としている。The purpose is to adsorb and remove such substances.

さらにこの吸着力を助長するため、この化学吸着をする
吸着材を室温〜−100°Q好ましくは−20−−’7
00 K冷却し、さらにその吸着能力を50倍以上高め
ることを目的としている。
Furthermore, in order to promote this adsorption power, the adsorbent that performs this chemical adsorption is
The objective is to cool the material to 0.00 K and further increase its adsorption capacity by more than 50 times.

かくして従来P工N接合を有する非単結晶半導体特にア
モルファス半導体がA M 1(100mW/c♂〕の
条件下にて6−8%の変換効率しか出なかったものを、
11〜14.都にまで真性変換効率を高めることができ
た。
Thus, conventional non-single-crystal semiconductors, especially amorphous semiconductors with P-N junctions, have a conversion efficiency of only 6-8% under the condition of A M 1 (100 mW/c♂).
11-14. We were able to increase the intrinsic conversion efficiency to the capital.

特にこの活性半導体層である1層において、その酸素濃
度を従来の2A−4X:L O’−痛′より5XIOa
m以下好ましくは1×10〜lXl0 am Kまで低
め、さ4×1♂〜1×10″c♂にまで下げることによ
シ、半導体例えばシリコン半導体中の再結合中心の密度
をlXl0 CmよシlXl0 cm以下好ましくは5
×1♂〜lX10”cm’Kまで下打るのに成功したこ
とを特徴としている。
In particular, in this active semiconductor layer, the oxygen concentration was increased from 5XIOa to the conventional 2A-4X:L O'-A'.
The density of recombination centers in a semiconductor, for example, a silicon semiconductor, can be reduced to lXl0 Cm by lowering the density to 4x1♂ to 1x10''c♂, preferably 1 x 10 to 1 lXl0 cm or less preferably 5
It is characterized by success in hitting down to ×1♂~lX10”cm'K.

従来、酸素は半導体例えばシリコン半導体中にて局部的
に5i−0−8iを構成し、絶縁性をのみ示すものとし
ていた。しかしシリコン中に酸素が数ケル十数ケ集合し
てクラスタを作ると、それは電子、ホールの再結合中心
を作シ、光照射によって発生した少数キャリアのキラー
として作用してしまうことは、水素またはハロゲン元素
が添加されたプラズマ気相法によシ得られた非単結晶半
導体においてもきわめて顕著であることが判明した。ま
た、酸素の不対結合手はN型のドナーセンタとしても作
用してしまい、非単結晶半導体をアモルファスより格子
歪を有する構造敏感性をもった半非晶質(半結晶質つと
するとN型化してしまうことがわかった。
Conventionally, oxygen has locally formed a 5i-0-8i structure in a semiconductor, such as a silicon semiconductor, and has only exhibited insulation properties. However, when several tens of molecules of oxygen gather in silicon to form a cluster, it creates a recombination center for electrons and holes, and acts as a killer of minority carriers generated by light irradiation. It has been found that this effect is also extremely noticeable in non-single crystal semiconductors obtained by plasma vapor phase method to which halogen elements are added. In addition, the dangling bonds of oxygen also act as N-type donor centers, making a non-single-crystal semiconductor semi-amorphous (semi-crystalline, N-type I found out that it turned into

このため、かかるドナーセンターになる酸素をす贋的に
除去し、構造的^鍾・)汗有する真性(フェルミレベル
がバンド巾のlνt゛flq)の半導体を作ることは工
業的応用を考える時きわめて重要であった。
Therefore, when considering industrial applications, it is extremely important to completely remove the oxygen that becomes the donor center and create an intrinsic (Fermi level is lνt゛flq) semiconductor with structural properties. It was important.

さらに炭素についても、エタン等C1nHn (i 2
)においては、半導体中にそのまま混入し、再結合中心
を多く発生させてしまい、キャリア特にホールのライフ
タイムの減少をもたらしてしまった。
Furthermore, regarding carbon, ethane etc. C1nHn (i 2
), it mixes directly into the semiconductor and generates many recombination centers, resulting in a decrease in the lifetime of carriers, especially holes.

本発明は、かかる不純物を除去し、シリコン−半導体中
は珪素と再結合中心中和用に必要な水素または酸素を主
成分とし、さらにフェルミレベルを5フトさせるための
■価iたけ7価の不純物を00〜3X10′7cm’)
添加したことを特徴としている。
The present invention removes such impurities, makes the silicon-semiconductor mainly contain hydrogen or oxygen necessary for neutralizing silicon and recombination centers, and furthermore, the silicon-semiconductor contains hydrogen or oxygen necessary for neutralizing silicon and recombination centers, and furthermore, to increase the Fermi level by 5 feet, impurities 00~3X10'7cm')
It is characterized by the addition of

従来シランは有効分子径を51弱(4,8−54有し、
またゲルマンは約61を有している。(ポリシラン等は
さらに大きな有効分子径を有する)しかし、例えば最も
有効分子径の小さいシラン(モノシラン)において、そ
の反応性気体中に含有される不純物を調べると、表1の
如くである。
Conventional silane has an effective molecular diameter of just under 51 (4,8-54,
Also, Germanic has about 61. (Polysilane and the like have an even larger effective molecular diameter.) However, when examining the impurities contained in the reactive gas of, for example, silane (monosilane), which has the smallest effective molecular diameter, Table 1 shows the results.

表   1 エピタキシアル用  エレクトロニクス用純度(%) 
    99.99    99.9水素(ppm) 
   300      3oo。
Table 1 Purity for epitaxial and electronics (%)
99.99 99.9 Hydrogen (ppm)
300 3oo.

窒素       550 酸素       0.11 アルゴン    1050 ヘリューム    10       50メタン  
    550 エタン       o、 1      0.5エチ
レン     0.1      0.5プロパン  
   O,:L       0.5プロピレン   
 O,10,5 塩素化物    1050 水         35 これらを調べて、特にこのエピタキシアル成長をさせる
場合、気相−固相反応の際、酸化物および窒化物は偏析
効果によシ、上記表1の約1/30に小さくなる。この
ため比抵抗1ooン以上の実質的真性の半導体を得るこ
とができる。
Nitrogen 550 Oxygen 0.11 Argon 1050 Helium 10 50 Methane
550 ethane o, 1 0.5 ethylene 0.1 0.5 propane
O, :L 0.5 propylene
O, 10,5 Chloride 1050 Water 35 We investigated these and found that, especially when performing this epitaxial growth, oxides and nitrides are affected by segregation effects during the gas phase-solid phase reaction. It becomes 1/30 smaller. Therefore, a substantially intrinsic semiconductor having a resistivity of 1 ooon or more can be obtained.

しかし、100−400’Oで行なわれるグロー放電を
用いたプラズマ気相法においては、かかる物理精製であ
る不純物の偏析効果を期待することはできない。
However, in the plasma vapor phase method using glow discharge carried out at 100-400'O, the effect of segregation of impurities resulting from such physical purification cannot be expected.

このため、表1のチ、ザ不純物はその!、ま半導体中に
混入し響特に酸素については、すべてシランと反応し、
反応生成物を作る。シラン自体については、プラズマ反
応によシ活性化(イオン化)が1−5チであシ、そのた
め実質的このため、反応性気体をプラズマ気相法用に用
いる時、その反応装置において精製することがきわめて
重要であることが実験的に判明した0かくして、本発明
においては、AMlにて変換効率をxo%以上保証する
ために、その1層中に酸素は5X’LOCm以下とし、
さらにクラスタ状に大した炭素においても、4XIOc
m以下であることがきわめて重要である。かかる半導体
の高純度化を本発明は目的としている。
For this reason, the impurities in Table 1 are those! In particular, oxygen mixed into semiconductors reacts with silane,
Create reaction products. As for silane itself, activation (ionization) is only 1 to 5 times due to plasma reaction, and therefore, when a reactive gas is used for plasma vapor phase method, it must be purified in the reactor. Therefore, in the present invention, in order to guarantee the conversion efficiency of xo% or more in AML, the oxygen content in one layer is set to be 5X'LOCm or less,
Furthermore, even in large carbon clusters, 4XIOc
It is extremely important that it be less than m. The present invention aims to improve the purity of such semiconductors.

以下に図面に従って示す。It is shown below according to the drawings.

第1図は本発明の半導体装置の作製に用いられた製造装
置の概要を示す。
FIG. 1 shows an outline of the manufacturing equipment used for manufacturing the semiconductor device of the present invention.

図面において、反応炉(1)K対し、外部加熱炉Q91
基板(ロ)、一対をなす電極(3)、(3)、高周波発
振器(2)(例えば13.56MHzまたは100KH
z)、さらに反応性気体の活性化、分解を行なうため、
IGH2以上の周波数のマイクロ波例えば2.45GH
zの発振器αの、アテニュエイターα樟を有しているセ
ラミックスα場で保護された放出ml亙で0.001〜
1otorr IIC保持された反応炉(1)へマイク
ロ波を放出させた。反応炉全体は電波障害のないように
シールド(イ)がなされ、反応性気体によシ基板(イ)
上に半導体膜を形成させるに際し、電気エネルギの電界
は、被形成面に平行に設けられている。また、反応性気
体は被形成面に平行に層流を有するように配置されてい
る0 人させた。また、珪素膜を形成させようとする場合、珪
化物気体であるシランを(4)よシ導入した。また、P
型用不純物である水素によυ500−、5000PPM
 K希釈されたジボランを(5)よシ、また同様に水素
によシ希釈されたフオスヒンを(6)よシ導入した。
In the drawing, external heating furnace Q91 is used for reaction furnace (1) K.
A substrate (b), a pair of electrodes (3), (3), a high frequency oscillator (2) (for example, 13.56 MHz or 100 KH
z), to further activate and decompose reactive gases,
Microwave with a frequency higher than IGH2, e.g. 2.45GH
The emission of the oscillator α of z, protected by a ceramic α field with an attenuator α, from 0.001 to ml
Microwaves were emitted into the reactor (1) maintained at 1 torr IIC. The entire reactor is shielded (a) to prevent radio wave interference, and the substrate (a) is shielded from reactive gases.
When forming a semiconductor film thereon, an electric field of electric energy is provided parallel to the surface on which the semiconductor film is formed. In addition, the reactive gas was arranged so as to have a laminar flow parallel to the surface on which it was formed. Further, when a silicon film was to be formed, silane, which is a silicide gas, was introduced in step (4). Also, P
Due to hydrogen, which is an impurity for the mold, υ500-, 5000PPM
Diborane diluted with K was introduced into the solution (5), and phosphin, which was similarly diluted with hydrogen, was introduced into the solution (6).

これら反応性気体は、ガス精製器αちαユ、吻α0、C
W声を介して反応炉に所定の流量導入させた0これらの
ガス精製器は、反応ガスの入口側に有効穴径2.7〜4
.65λの3失または4A、または4.5A例えば4A
の有効穴径3.5P−J4.3^のモレキュラーシープ
またはゼ斎ライトを用いた。このモレキュ2−シーブス
またはゼψライトはNa(Alす(Sin、) 2’7
〜30H,Oを4Aは示し、また4、5AはCKg Z
%)(AIO,) (Sin、)’ 2’7−30H,
Oの分子式τ示されるものを用いた。さらにこの後に、
脱酸素用のガスクリーン(商品名Go−RX)ともKI
EI化精工製を用いた0 さらにこれらの精製器の化学吸着性を向上させるため、
−70”O−室温、例えば−30″OK電七恒温層(8
)(9) (10) Kよシ冷却した。水素希釈された
フオスヒンについては、その有効分子径が約4.3Aを
有するため、3Aまたは4Aを用いた。また、シランま
たはジボランに対しては、3A、4八4.5Aのいずれ
もが適用可能であった。
These reactive gases are
These gas purifiers have an effective hole diameter of 2.7 to 4 on the inlet side of the reaction gas.
.. 3 loss of 65λ or 4A, or 4.5A e.g. 4A
Molecular sheep or Zesailite with an effective hole diameter of 3.5P-J4.3^ was used. This molecule 2-thieves or zeolite is Na(AlSin,) 2'7
~30H,O is indicated by 4A, and 4,5A is CKg Z
%) (AIO,) (Sin,)'2'7-30H,
The molecular formula of O shown in τ was used. Furthermore, after this,
Gas Clean (product name Go-RX) for oxygen removal also known as KI
In order to further improve the chemisorption properties of these purifiers,
-70"O - room temperature, e.g. -30" OK
) (9) (10) Cooled to K. For hydrogen-diluted phoschin, 3A or 4A was used because its effective molecular diameter is about 4.3A. Moreover, both 3A and 484.5A were applicable to silane or diborane.

特にシランに対しては、その中にあってN化しやすい不
純物である酸素以外に、フォスヒンがその表面をO,0
IPPAまで下e+、5Aを用いることが特に有効であ
った。
In particular, for silane, in addition to oxygen, which is an impurity that easily converts into N, phosphin forms a surface that is O, 0,
It was particularly effective to use 5A down to IPPA.

排気、tJ!:二一ドルバルプ(ハ)、ストップパルプ
(ハ)、真空ポンプ翰をへて排気(ハ)させた。反応炉
内の圧力はニードルパルプ(ハ)により0.001〜1
0torr代表的には0.05−0.1torr K制
御した。
Exhaust, tJ! : 21 dollar valve (c), stop pulp (c), and vacuum pump holder were used to exhaust air (c). The pressure inside the reactor is 0.001 to 1 depending on the needle pulp (c).
K was controlled at 0 torr, typically 0.05-0.1 torr.

第2図は第1図の結果によって得られた特性である。即
ち、基板温度z5d’c反応炉内の圧力0、1Jorr
とした時、基板例えばガラス上に非単結晶半導体層を1
μの厚さに形成した場合の光照射(A M ’l)制度
2嚇り名tである。
FIG. 2 shows the characteristics obtained from the results shown in FIG. That is, the substrate temperature z5d'c and the pressure inside the reactor are 0 and 1 Jorr.
When one non-single crystal semiconductor layer is placed on a substrate such as glass,
The light irradiation (A M'l) system when formed to a thickness of μ is 2.

図面において、シランに対しかかる精製を行なわない場
合、前記した如くのボンベ内での不純物がそのまま半導
体層内に入シ、特に酸素または炭素はシリコンを非晶質
化する効果があるにのため、光伝導度に)、暗伝導度(
3o)を得た。
In the drawings, if silane is not purified, impurities in the cylinder as described above will enter the semiconductor layer as is, and oxygen or carbon in particular has the effect of making silicon amorphous. photoconductivity), dark conductivity (
3o) was obtained.

即ち、図面において2 o−30Wの高周波出力におい
て、光伝導度は10に)am)を有するが、同時に半 この時半導体が一部14性を有すHr品質化する。この
ためこの半導体中の不純物である酸素がドナーセンター
となり、N型化してしまう。
That is, in the drawings, at a high frequency output of 2 o-30 W, the optical conductivity is 10) am), but at the same time, the semiconductor partially becomes Hr quality with 14 properties. Therefore, oxygen, which is an impurity in this semiconductor, becomes a donor center and becomes N-type.

結果として、真性半導体として用いんとする場合は、逆
の不純物であるホウ素を1≦40 ”crn−’の濃度
に添加するか、または1〜5wの低い高周波出力/−I
 It Ji−fLは゛ならない。しかしこれらはいず
れにおいても、光電気伝導度を10−txo CfLc
→のオーダーにまで下げてしまう。
As a result, if it is to be used as an intrinsic semiconductor, boron, which is the opposite impurity, must be added to a concentration of 1≦40 "crn-', or a low high-frequency output of 1 to 5 W/-I
It Ji-fL is not true. However, in all of these, the photoelectric conductivity is 10-txo CfLc
It will be lowered to the order of →.

かかる従来の方法ではなく、本発明はシラン中の不純物
を精製後(第1図α1)(141)で十分除去ノ するとともに、ボンベにシランを充填するに際しても、
十分なる精製をして充填したものである0 かくすることによシ、第2図において光照射伝導度(ロ
)、暗伝導度(ハ)を得ることができた。
Instead of such conventional methods, the present invention sufficiently removes impurities in silane after purification (α1 in Figure 1) (141), and also when filling a cylinder with silane.
By doing so, we were able to obtain the light irradiation conductivity (b) and dark conductivity (c) in Figure 2.

この図面よシ明らかな如く、光伝導度がプラズマ放電出
力がト10Wにおいて10’(ncm)’と太きく、加
えて暗伝導度か10〜10(stcn)と小さい。
As is clear from this drawing, the photoconductivity is as large as 10' (ncm) at a plasma discharge output of 10 W, and the dark conductivity is as low as 10 to 10 (stcn).

即ち、真性半導体としての活性化エネルギは十分大きく
、フエルミレベルモ/L/1・Ey :’;、’、 e
v ヲ有せしめることができた。
That is, the activation energy as an intrinsic semiconductor is sufficiently large, and Fermi Rebelmo/L/1・Ey :';,', e
v I was able to have it.

さらにこの特性を調べてみ1ところ、X社19ケイ(に
おいて弱い結晶化が5−10Wで得られる被膜通におい
て鬼みられ、これらはアモルファス構造と結晶化構造の
中間構造のセミアモルファス(半非晶質)半導体といえ
るものであった。
Further investigation of this property revealed that weak crystallization was observed in the coatings obtained at 5-10W in 19K of X company, and these were semi-amorphous (semi-amorphous) with an intermediate structure between an amorphous structure and a crystallized structure. It could be said to be a crystalline semiconductor.

即ち、真性半導体をプラズマ気相法により 100〜3
00チ例えば250’Cで得ようとすると、その時この
シラン中の不純物が単なるOVDまたはエピタキシアル
成長に比べて30−100倍もの濃度に入シやすい。そ
のため、衰t@tqVの不純物の混入を可能なかぎシ少
なくした超高純度シランを用いることはきわめて重要で
ある。かくして2−10Wの低いプラズマ出力において
も、暗伝導度が小さく、かつ光伝導度は単結晶の1o(
xcn)と同一レベルの10〜10’(JLcn)の値
を得ることができた。
That is, an intrinsic semiconductor is produced by a plasma vapor phase method of 100 to 3
For example, when attempting to obtain a silane film at 250'C, impurities in the silane tend to enter at a concentration 30 to 100 times higher than in simple OVD or epitaxial growth. Therefore, it is extremely important to use ultra-high purity silane in which the contamination of impurities with decay t@tqV is reduced as much as possible. Thus, even at a low plasma power of 2-10W, the dark conductivity is small and the photoconductivity is 1o(
It was possible to obtain a value of 10 to 10' (JLcn) at the same level as (xcn).

特にかかる低い高周波出力で得られることは本発明の如
くP工N接合を漸次pi、工層、N層と積層するに際し
、その境界領域を面として明確にたたき、混合層を作っ
てしまうことを防ぐことができ、きわめて重要である0 さらに第2図において、2.45GHzのマイクロ波を
加えると、反応性気体のイオン化率を高めるため、その
特性は同様であったが、被膜の成長速度が約ト嘲ホ増し
、大きくすることができた。例えばシランを30cc/
分、O,1torrで導入し、高周波プラズマのみでは
1−vh7’秒と低かったが、この場合はI Ch=1
5A/II>と高速成長させることができた。
In particular, what can be obtained with such a low high frequency output is that when the P-N junction is gradually laminated with the Pi layer, the N layer, and the N layer as in the present invention, it is possible to clearly strike the boundary area as a surface and create a mixed layer. Furthermore, in Figure 2, adding 2.45 GHz microwave increases the ionization rate of the reactive gas, so although the characteristics were the same, the growth rate of the film increased. I was able to increase the size and make it bigger. For example, 30cc/silane
minutes, O, 1 torr, and high frequency plasma alone was as low as 1-vh7' seconds, but in this case I Ch = 1
5A/II>, high-speed growth was possible.

第3図は本発明のシランの精製に関し、ガス精製器の有
効性を確認する実験をしたものである0 図面において、横軸は酸素または炭素の被膜中の濃度を
示し、これはFT工R(フーリエ変換シラン系d酸素精
製器α→、ゼ÷ライト(11)を酸素化を行なった時の
酸素濃度をパラメータとした際の特性であシ、また曲線
06)は酸素濃度lXl0”cm’[おける炭素濃度を
パラメータとして得た特性である。いずれにしても炭素
、酸素の18’ am  3X101′cm’混入した
場合、伝導度は10〜11)’ (cc、 L、かなく
、責酸素の混入が伝導度の低下をもたらす要因であるこ
とがわかる。
Figure 3 shows an experiment conducted to confirm the effectiveness of the gas purifier for the purification of silane according to the present invention. (Fourier transform silane-based d oxygen purifier α→, ze÷Lite (11) is the characteristic when the oxygen concentration is used as a parameter for oxygenation, and curve 06) is the oxygen concentration lXl0"cm' [This is a characteristic obtained using the carbon concentration as a parameter. In any case, when 18' am 3 x 101'cm' of carbon and oxygen are mixed, the conductivity is 10 to 11)' (cc, L, It can be seen that the contamination is a factor that causes a decrease in conductivity.

さらに図面については、曲線(il)(42)は酸素、
、 −>        ) 濃度3XIOcm、炭素濃度4XIOamを含有したも
のであって、それぞれ炭素濃度、酸素濃度をパラメータ
として示している。即ち特に酸素を/&   −)  
                rν づ5XIOc
m以下(4す、炭素を4XIOcm以下0りとすること
によシ、光電気伝導度は1oCQcd宿することができ
る。基板の温度を250’Oよp 200’Q、 ’1
50’oと下げると約1/3ずっその伝導度は低くなっ
た。
Further regarding the drawing, curve (il) (42) is oxygen,
, ->) Contains a concentration of 3XIOcm and a carbon concentration of 4XIOam, with the carbon concentration and oxygen concentration shown as parameters, respectively. i.e. especially oxygen /& -)
rν zu5XIOc
The photoelectric conductivity can be maintained at 1oCQcd by reducing the carbon content to less than 4XIOcm.
When the temperature was lowered to 50'o, the conductivity decreased by about 1/3.

これらの酸素、炭素濃度とするには、シラン中に酸素を
0.03PPM以下にすることがきわめて重要であシ、
特に精製を上記室温ではなく、o′c〜30″Cとする
と、酸素不純物濃度はo、 OIPPM。
In order to achieve these oxygen and carbon concentrations, it is extremely important to keep the oxygen in the silane to 0.03 PPM or less.
In particular, if the purification is performed at o'c~30''C instead of the above room temperature, the oxygen impurity concentration will be o, OIPPM.

0、003PPMにまで下げることができる。また、O
mHnはO,IPPM、 O,OIPPM Kまで下げ
ることができた。さらK −’100’o Kすると 
? )分析器にて全く測定不可能である。また形成され
た半導もちろん以上の如き高純度とするには、第1図に
示された反応系においても、その全体のリーク量ハ1×
10−′acc//sec以下、好マシくハ1×16′
L第4図は第1図の製造装置を用いて形成したも′ので
、図面(A)はガラス基板0抄上に透明導電膜(33)
、さらKP型型化化珪素S i x O14(0< x
(1)(例えばx=0.8)またはP型珪素半導体(3
荀にょをした後、精製したシランにより真性半導体層を
0.5μの厚さK(31)として形成した。さらに再び
真空引をしてN型半導体層(31)をシランにフオスヒ
ンを1%の濃度に混入して200大の厚さに形成した。
It can be reduced to 0,003 PPM. Also, O
mHn was able to be lowered to O, IPPM, O, OIPPM K. Then K −'100'o K
? ) It is completely impossible to measure with an analyzer. Furthermore, in order to obtain the high purity of the semiconductor formed as described above, the total leakage amount must be increased to 1× even in the reaction system shown in FIG.
10-'acc//sec or less, better ha1x16'
4 is formed using the manufacturing apparatus shown in FIG. 1, so drawing (A) shows the transparent conductive film (33) on the glass substrate
, and further KP-type silicon S i x O14 (0< x
(1) (e.g. x=0.8) or P-type silicon semiconductor (3
After cleaning, an intrinsic semiconductor layer was formed with purified silane to a thickness of 0.5 μm K(31). Further, vacuum was applied again, and an N-type semiconductor layer (31) was formed by mixing silane with phosphin at a concentration of 1% to a thickness of 200 mm.

この後、(bのアルミニューム(36)ヲ真空蒸着して
設けたものである。
After this, the aluminum (36) in (b) was vacuum-deposited.

高側逃出力は5W、基板温度200’Cとした。すると
変換効率を10.3%を得ることができた。
The escape power on the high side was 5 W, and the substrate temperature was 200'C. As a result, a conversion efficiency of 10.3% could be obtained.

このガラス基板の特性をさらに改良するため第4図(B
)構造のP工N接合型光電変換装置を作製した。
In order to further improve the characteristics of this glass substrate, Fig. 4 (B
) A P-type N junction photoelectric conversion device was fabricated.

図面ニおいて、ステンレス基板(3ツ上KP型半導体層
(34)工型半導体層(33)N型の繊維構造を有さら
に透明導電膜03)を工TO(酸化インジューム(酸化
スズ0−10%))を真空蒸着し、アルミニュームの補
助電極(36)を設けた。
In the drawing, a stainless steel substrate (3-layer KP-type semiconductor layer (34), N-type semiconductor layer (33), transparent conductive film 03) is coated with TO (indium oxide (tin oxide)). 10%)) was vacuum evaporated and an auxiliary electrode (36) of aluminum was provided.

以上の第4図(B)の構造において、真性半導体層に混
入した酸素濃度をパラメータとしたその光電変換装置の
変換効率特性を第5図に示す。
FIG. 5 shows the conversion efficiency characteristics of the photoelectric conversion device using the oxygen concentration mixed in the intrinsic semiconductor layer as a parameter in the structure shown in FIG. 4(B).

酸素濃度が4X10”am″1.IM下特K lXl0
”am’以下になると1その変換効率は AMI Kて1cm’の面積にて12%をこえることが
できた。また1の曲線ψかも0.7をこえ、また特に短
絡電流も最高20mA/cmLを得ることができるよう
になった。開放電圧は0.86−Jo、93■テあった
。やはシ酸素濃度が小さくなシ、シリコンをよシシリコ
ンらしく作ることにょシ大きな特性向上がみられた。
Oxygen concentration is 4X10"am"1. IM lower special K lXl0
When it becomes less than ``am'', the conversion efficiency of 1 was able to exceed 12% in an area of 1 cm with AMI K.The curve ψ of 1 also exceeded 0.7, and the short circuit current in particular exceeded 20 mA/cmL at the maximum. The open-circuit voltage was 0.86-jo, 93-te.Then, the oxygen concentration was small, and by making silicon more like silicon, a significant improvement in properties was observed. Ta.

第4図(B)の実施例において、N型半導体層を繊維構
造を有する多結晶半導体とし、それを200−250’
Oの低温で作ることに関しては、本発明人の出願になる
特許願タクーotりtol(Or何7.j、29ヱイり
に示されている。
In the embodiment shown in FIG. 4(B), the N-type semiconductor layer is a polycrystalline semiconductor having a fiber structure, and the layer is 200-250'
Regarding the production of O at low temperatures, it is shown in the patent application filed by the present inventor (Or No. 7.j, 29th Edition).

以上の説明において、P工N接合を1つ有する光電変換
装置を示したが、これを重ねてPINP工11J・・・
・P工N接合と少なくとも2接合あらしめることも本発
明の応用として重要であシ、またこれらを基板上に集積
化してもよい。
In the above explanation, a photoelectric conversion device having one P-N junction was shown, but if this is stacked, the PINP-N junction...
- It is also important for applications of the present invention to have at least two junctions, including a P-N junction, and these may be integrated on a substrate.

また、これまでの説明においては珪化物気体としてシラ
/特にモノシランを示した。しかし3・’−5シ等のポ
リシランに対しても、本発明はその有効粒径が大きいこ
とによシそれらを適用することが可能であり、また、6
14に関しては同様にその分子径が5′Aと大きいため
有効である。またゲルマニュームに関しては、ゲルマン
CG8H,)を用い非単結晶半導体として5ixGe、
−イ(o <x < 1)またはGeのみをP工N接合
が有する工型半導体層に用いることも可能である。
Furthermore, in the explanations so far, silica/especially monosilane has been shown as the silicide gas. However, the present invention can also be applied to polysilanes such as 3 and '-5 because of their large effective particle size, and
14 is similarly effective because its molecular diameter is as large as 5'A. Regarding germanium, 5ixGe,
It is also possible to use only Ge (o < x < 1) or Ge alone in the semiconductor layer included in the P-N junction.

以上の説明においては、P工N接合を1つ有する光電変
換装置を主として説明した。しかし牛導体層がN工また
はP工接合を少なくとも1つ有する即ちN(ソースl1
t1rLsシ )工(チャネル形成領域) N (Is
”b(しまたはソース)、P工P接合を有する絶縁ゲイ
ト型電界効果半導体装置、またはN工Pよりp工N工P
接合を有するトランジスタに対しても本発明はきわめて
有効である。
In the above description, a photoelectric conversion device having one P-N junction was mainly explained. However, the conductor layer has at least one N-type or P-type junction, i.e., N(source l1
t1rLs (channel formation region) N (Is
``b (or source), an insulated gate field effect semiconductor device having a P-type junction, or a p-type field-effect semiconductor device having a p-type
The present invention is also extremely effective for transistors having junctions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置作製用のプラズ気特性を示
す。 第3図は本発明のガス精製方法によって得られた電気特
性の変化を示す。 第4図は本発明の光電変換装置を示す。 第5図は第4図(B) Kよって得られた光電変換装置
の儲15性を示す。 106 10  1σ’   10”   1σ710”  1
σ9喰口關林導層 (。l) 事3図
FIG. 1 shows plasma characteristics for manufacturing a semiconductor device according to the present invention. FIG. 3 shows changes in electrical properties obtained by the gas purification method of the present invention. FIG. 4 shows a photoelectric conversion device of the present invention. FIG. 5 shows the profitability of the photoelectric conversion device obtained from FIG. 4(B). 106 10 1σ' 10” 1σ710” 1
σ9 Gourmet Guanlin Leading Formation (.l) Figure 3

Claims (1)

【特許請求の範囲】 1、基板上に設けられたP工、N工接合を少なくとも1
つ有する半導体装置の作製方法において、前記工型半導
体層を構成する真性または実質的に真性の早導体層は、
少なくとも酸化物気体の不純物濃度が0.03PPM以
下の濃度にまたはOmHn (m22)で示される炭化
物気体の不純物濃度が0.5PPM以下の濃度に保持精
製された珪素またはゲルマニュームの水素化物またはハ
ロゲン化物ヲ用いたプラズマ気相法により形成されたこ
とを特徴とする半導体装置作製方法。 2、特許請求の範囲第1項において、珪素またはゲルマ
ニュームの水素化物またはハロゲン化物よシなる反応性
気体は、有効穴径75: 2.9−4.65Aを有する
モレキュラーシープまたはゼtライトによシ精製せしめ
たことを特徴とする半導体装置作製方法0 3、%許請求の範囲第2項において、モレキュラーシー
プまたはゼ¥ライトは NEL、、(410,) (Sin、) 2’7〜30
H,Oまたは(K、Zn、)(A10.) (Sin、
) 2’7〜30HLOKて示される分子式を有するこ
とを特徴とする半導体装置作製方法。 4、特許請求の範囲第2項において、モレキュラーツー
ブまたはイψ2イ)I、i:室、−□。。 ″’OK冷却されたことを特徴とする半導体装置作製方
法。 高純度の半導体製造用気体を用いて、P工N接合を少な
くとも1つ有する光電変換装置およびその作製方法に関
する。
[Claims] 1. At least one P-type and N-type junction provided on the substrate
In the method for manufacturing a semiconductor device, the intrinsic or substantially intrinsic fast conductor layer constituting the engineered semiconductor layer is
At least the impurity concentration of oxide gas is kept at a concentration of 0.03 PPM or less, or the impurity concentration of carbide gas represented by OmHn (m22) is kept at a concentration of 0.5 PPM or less. 1. A method for manufacturing a semiconductor device, characterized in that the semiconductor device is formed by a plasma vapor phase method. 2. In claim 1, the reactive gas such as a hydride or halide of silicon or germanium is produced by a molecular sheep or zetlite having an effective hole diameter of 75: 2.9-4.65A. A method for manufacturing a semiconductor device characterized in that the molecular sheep or zeolite is NEL, (410,) (Sin,) 2'7 to 30
H, O or (K, Zn,) (A10.) (Sin,
) A method for manufacturing a semiconductor device, characterized in that the semiconductor device has a molecular formula represented by 2'7 to 30HLOK. 4. In claim 2, molecular tube or i ψ2 b) I, i: chamber, -□. . A method for manufacturing a semiconductor device characterized by OK cooling. The present invention relates to a photoelectric conversion device having at least one P-N junction and a method for manufacturing the same, using a high-purity semiconductor manufacturing gas.
JP57146562A 1982-08-24 1982-08-24 Manufacture of semiconductor device Pending JPS5935423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57146562A JPS5935423A (en) 1982-08-24 1982-08-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57146562A JPS5935423A (en) 1982-08-24 1982-08-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5935423A true JPS5935423A (en) 1984-02-27

Family

ID=15410478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57146562A Pending JPS5935423A (en) 1982-08-24 1982-08-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5935423A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224281A (en) * 1984-04-20 1985-11-08 Semiconductor Energy Lab Co Ltd Semiconductor device
US4758527A (en) * 1982-08-24 1988-07-19 Semiconductor Energy Laboratory Co., Ltd. Method of making semiconductor photo-electrically-sensitive device
JPH06333950A (en) * 1994-01-27 1994-12-02 Semiconductor Energy Lab Co Ltd Manufacture of insulated gate field effect semiconductor device
JPH0799208A (en) * 1994-06-10 1995-04-11 Semiconductor Energy Lab Co Ltd Manufacture of insulation gate type field effect semiconductor device for liquid crystal display panel
JPH07176758A (en) * 1984-05-18 1995-07-14 Semiconductor Energy Lab Co Ltd Insulated gate type field effect semiconductor device
JPH07176746A (en) * 1994-11-25 1995-07-14 Semiconductor Energy Lab Co Ltd Insulated-gate type field-effect semiconductor device
JPH07176759A (en) * 1994-11-25 1995-07-14 Semiconductor Energy Lab Co Ltd Manufacture of insulated gate type field effect semiconductor device
JPH07183523A (en) * 1994-11-25 1995-07-21 Semiconductor Energy Lab Co Ltd Manufacture of insulated gate field effect semiconductor device
JPH0851221A (en) * 1995-09-01 1996-02-20 Semiconductor Energy Lab Co Ltd Insulated gate field-effect semiconductor device for liquid crystal display panel, and its manufacture
US5543636A (en) * 1984-05-18 1996-08-06 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect transistor
JPH09181326A (en) * 1984-05-18 1997-07-11 Semiconductor Energy Lab Co Ltd Insulated gate field-effect semiconductor device
JPH09181327A (en) * 1996-11-29 1997-07-11 Semiconductor Energy Lab Co Ltd Insulated gate field-effect semiconductor device
JPH09186344A (en) * 1996-11-29 1997-07-15 Semiconductor Energy Lab Co Ltd Method for manufacturing insulating gate type semiconductor device
US5849601A (en) * 1990-12-25 1998-12-15 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US5859445A (en) * 1990-11-20 1999-01-12 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device including thin film transistors having spoiling impurities added thereto
US6028264A (en) * 1982-08-24 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor having low concentration of carbon
US6043105A (en) * 1985-05-07 2000-03-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor sensitive devices
US6180991B1 (en) 1982-12-23 2001-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor having low concentration of phosphorous
USRE37441E1 (en) 1982-08-24 2001-11-13 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US6337731B1 (en) 1992-04-28 2002-01-08 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US6346716B1 (en) 1982-12-23 2002-02-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material having particular oxygen concentration and semiconductor device comprising the same
US6448577B1 (en) 1990-10-15 2002-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with grain boundaries
US6664566B1 (en) 1982-08-24 2003-12-16 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method of making the same
US6693681B1 (en) 1992-04-28 2004-02-17 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
USRE38727E1 (en) 1982-08-24 2005-04-19 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method of making the same
US7038238B1 (en) 1985-05-07 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a non-single crystalline semiconductor layer

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758527A (en) * 1982-08-24 1988-07-19 Semiconductor Energy Laboratory Co., Ltd. Method of making semiconductor photo-electrically-sensitive device
US6028264A (en) * 1982-08-24 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor having low concentration of carbon
USRE38727E1 (en) 1982-08-24 2005-04-19 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method of making the same
USRE37441E1 (en) 1982-08-24 2001-11-13 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US6664566B1 (en) 1982-08-24 2003-12-16 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method of making the same
US6346716B1 (en) 1982-12-23 2002-02-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material having particular oxygen concentration and semiconductor device comprising the same
US6180991B1 (en) 1982-12-23 2001-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor having low concentration of phosphorous
US6503771B1 (en) 1983-08-22 2003-01-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor photoelectrically sensitive device
JPS60224281A (en) * 1984-04-20 1985-11-08 Semiconductor Energy Lab Co Ltd Semiconductor device
US5543636A (en) * 1984-05-18 1996-08-06 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect transistor
JPH09181326A (en) * 1984-05-18 1997-07-11 Semiconductor Energy Lab Co Ltd Insulated gate field-effect semiconductor device
US6660574B1 (en) 1984-05-18 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Method of forming a semiconductor device including recombination center neutralizer
US6734499B1 (en) * 1984-05-18 2004-05-11 Semiconductor Energy Laboratory Co., Ltd. Operation method of semiconductor devices
JPH07176758A (en) * 1984-05-18 1995-07-14 Semiconductor Energy Lab Co Ltd Insulated gate type field effect semiconductor device
US6043105A (en) * 1985-05-07 2000-03-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor sensitive devices
US7038238B1 (en) 1985-05-07 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a non-single crystalline semiconductor layer
US6448577B1 (en) 1990-10-15 2002-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with grain boundaries
US5859445A (en) * 1990-11-20 1999-01-12 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device including thin film transistors having spoiling impurities added thereto
US6011277A (en) * 1990-11-20 2000-01-04 Semiconductor Energy Laboratory Co., Ltd. Gate insulated field effect transistors and method of manufacturing the same
US5849601A (en) * 1990-12-25 1998-12-15 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US6693681B1 (en) 1992-04-28 2004-02-17 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US6337731B1 (en) 1992-04-28 2002-01-08 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US7554616B1 (en) 1992-04-28 2009-06-30 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
JPH06333950A (en) * 1994-01-27 1994-12-02 Semiconductor Energy Lab Co Ltd Manufacture of insulated gate field effect semiconductor device
JPH0799208A (en) * 1994-06-10 1995-04-11 Semiconductor Energy Lab Co Ltd Manufacture of insulation gate type field effect semiconductor device for liquid crystal display panel
JPH07176746A (en) * 1994-11-25 1995-07-14 Semiconductor Energy Lab Co Ltd Insulated-gate type field-effect semiconductor device
JPH07176759A (en) * 1994-11-25 1995-07-14 Semiconductor Energy Lab Co Ltd Manufacture of insulated gate type field effect semiconductor device
JPH07183523A (en) * 1994-11-25 1995-07-21 Semiconductor Energy Lab Co Ltd Manufacture of insulated gate field effect semiconductor device
JPH0851221A (en) * 1995-09-01 1996-02-20 Semiconductor Energy Lab Co Ltd Insulated gate field-effect semiconductor device for liquid crystal display panel, and its manufacture
JPH09181327A (en) * 1996-11-29 1997-07-11 Semiconductor Energy Lab Co Ltd Insulated gate field-effect semiconductor device
JPH09186344A (en) * 1996-11-29 1997-07-15 Semiconductor Energy Lab Co Ltd Method for manufacturing insulating gate type semiconductor device

Similar Documents

Publication Publication Date Title
JPS5935423A (en) Manufacture of semiconductor device
US20120171852A1 (en) Remote hydrogen plasma source of silicon containing film deposition
CN109545657B (en) Method for improving gallium oxide film grown on silicon carbide substrate
JPH06105691B2 (en) Method for producing carbon-doped amorphous silicon thin film
JP2616929B2 (en) Method for manufacturing microcrystalline silicon carbide semiconductor film
US6043105A (en) Method for manufacturing semiconductor sensitive devices
JPS6043819A (en) Method for vapor-phase reaction
JP2014502424A (en) Semiconductor layer conversion method
Kondo et al. An approach to device grade amorphous and microcrystalline silicon thin films fabricated at higher deposition rates
Jana et al. Role of hydrogen in controlling the growth of μc-Si: H films from argon diluted SiH 4 plasma
JPS5935488A (en) Semiconductor device
JPS5972182A (en) Semiconductor device
Xu et al. High-quality hydrogenated amorphous silicon-germanium alloys for narrow bandgap thin film solar cells
JPS5972128A (en) Manufacture of semiconductor device
Kakiuchi et al. High-rate deposition of intrinsic amorphous silicon layers for solar cells using very high frequency plasma at atmospheric pressure
Cicala et al. Plasma deposition and characterization of photoluminescent fluorinated nanocrystalline silicon films
JP2733471B2 (en) Semiconductor device
JPH07169985A (en) Semiconductor device
Dasgupta et al. Substrate temperature: A critical parameter for the growth of microcrystalline silicon-carbon alloy thin films at low power
JP2010165908A (en) Amorphous carbon and method of manufacturing the same
JP3259908B2 (en) Method for manufacturing semiconductor device
JP3513572B2 (en) Semiconductor device
JP3052131B2 (en) Semiconductor device
Jia et al. High-rate synthesis of microcrystalline silicon films using high-density SiH4/H2 microwave plasma
JP3072106B2 (en) Semiconductor device