JPH02275622A - Annealing method - Google Patents

Annealing method

Info

Publication number
JPH02275622A
JPH02275622A JP9705789A JP9705789A JPH02275622A JP H02275622 A JPH02275622 A JP H02275622A JP 9705789 A JP9705789 A JP 9705789A JP 9705789 A JP9705789 A JP 9705789A JP H02275622 A JPH02275622 A JP H02275622A
Authority
JP
Japan
Prior art keywords
glass substrate
thin film
silicon thin
light
absorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9705789A
Other languages
Japanese (ja)
Inventor
Takashi Noguchi
隆 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9705789A priority Critical patent/JPH02275622A/en
Publication of JPH02275622A publication Critical patent/JPH02275622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enable a silicon thin film to be annealed effectively by eliminating wavelength constituents absorbed by a glass substrate out of light of a short wave arc lamp and by irradiating including large amount of wavelength constituents absorbed by the silicon thin film. CONSTITUTION:A filter 15 which is approximately equal to light transmission characteristics of a material of a glass substrate 13 is provided among a short wavelength arc lamp 11, a silicon thin film 14, and a glass substrate 13. Thus, a light 12 which transmitted through the filter 15 includes only the wavelength constituents to be absorbed by the silicon thin film 14 and does not include the wavelength constituents to be absorbed by the glass substrate 13. Thus, even if the glass substrate 13 absorbs the light 12, no heating is performed. Therefore, even if a low-cost and low melting point non-alkali glass are used as a material of the glass substrate 13, this glass substrate 13 will neither be deformed nor be fused, thus enabling the silicon thin film 14 to be annealed fully.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラス基体上に形成されたシリコン薄膜へ短
波長アークランプの光を照射するアニール方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an annealing method in which a silicon thin film formed on a glass substrate is irradiated with light from a short wavelength arc lamp.

〔発明の1既要〕 本発明は、上記の様なアニール方法において、短波長ア
ークランプの光のうちでガラス基体に吸収される波長成
分を除去して照射を行うことによって、高性能の半導体
装置を低コストで製造することができる様にしたもので
ある。
[1 Summary of the Invention] The present invention provides a method for producing high-performance semiconductors by removing wavelength components of light from a short-wavelength arc lamp that are absorbed by the glass substrate in the annealing method as described above. This allows the device to be manufactured at low cost.

〔従来の技4$j ) 近年、大面積のガラス基体上にシリコン薄膜を形成し、
このシリコン薄膜に薄膜トランジスタ等の半導体装置を
製造して、液晶デイスプレィやコンタクトラインセンサ
等を製作することが行われている。
[Conventional technique 4 $j] In recent years, silicon thin films have been formed on large-area glass substrates,
Semiconductor devices such as thin film transistors are manufactured on this silicon thin film to manufacture liquid crystal displays, contact line sensors, and the like.

ところで、薄膜トランジスタ等のキャリア移動度を高く
するためには、シリコン薄膜への不純物注入後等に十分
なアニールを行ってシリコン薄膜の結晶性を向上させる
必要がある。
By the way, in order to increase the carrier mobility of thin film transistors and the like, it is necessary to improve the crystallinity of the silicon thin film by performing sufficient annealing after implanting impurities into the silicon thin film.

しかし、電気炉等によってアニールを長時間に亘って行
うのは、不純物の再拡散等が生じるので好ましくない。
However, it is not preferable to perform annealing for a long time using an electric furnace or the like because impurity re-diffusion may occur.

そこで、短時間の加熱が可能なハロゲンランプによるア
ニールが提案されている(例えば特公昭63−4240
6号公報)。
Therefore, annealing using a halogen lamp that can heat for a short time has been proposed (for example, Japanese Patent Publication No. 63-4240
Publication No. 6).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、第4図に示す様に、ハロゲンランプの光には
シリコンに吸収される波長成分が多くは含まれていない
ので、シリコン薄膜を効果的にはアニールすることがで
きない。このため、キャリア移動度が高くて高性能の薄
膜トランジスタ等は製造することができない。
However, as shown in FIG. 4, the light from the halogen lamp does not contain many wavelength components that are absorbed by silicon, so it is not possible to effectively anneal the silicon thin film. Therefore, high performance thin film transistors with high carrier mobility cannot be manufactured.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によるアニール方法は、短波長アークランプ11
の光12のうちでガラス基体13に吸収される波長成分
を除去して照射を行う様にしている。
The annealing method according to the present invention includes a short wavelength arc lamp 11
Irradiation is performed by removing wavelength components of the light 12 that are absorbed by the glass substrate 13.

〔作用〕[Effect]

本発明によるアニール方法では、シリコン薄膜14に吸
収される波長成分を短波長アークランプ11の光12が
多く含んでいるので、シリコン薄膜14を短時間で効果
的にアニールすることができる。
In the annealing method according to the present invention, since the light 12 from the short wavelength arc lamp 11 contains many wavelength components that are absorbed by the silicon thin film 14, the silicon thin film 14 can be effectively annealed in a short time.

また、短波長アークランプ11の光12はシリコン薄膜
14のみならずガラス基体13にも吸収される波長成分
を含んでいるが、この波長成分は除去して照射を行って
いるので、ガラス基体13が光12を吸収して加熱され
ることはない。従って、低融点のガラス基体13を使用
してもこのガラス基体13は変形したり融解したすせず
、シリコン薄膜14を十分にアニールすることができる
Furthermore, the light 12 from the short wavelength arc lamp 11 includes a wavelength component that is absorbed not only by the silicon thin film 14 but also by the glass substrate 13, but since the irradiation is performed with this wavelength component removed, the glass substrate 13 absorbs light 12 and is not heated. Therefore, even if a glass substrate 13 having a low melting point is used, the glass substrate 13 will not be deformed or melted, and the silicon thin film 14 can be sufficiently annealed.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第3図を参照しなが
ら説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 1 to 3.

第1図が、本実施例を示している。本実施例でも上述の
一従来例と同様に短時間の加熱が可能なランプアニール
を行うが、その光源は短波長アークランプ11である。
FIG. 1 shows this embodiment. In this embodiment as well, lamp annealing capable of short-time heating is performed as in the above-mentioned conventional example, but the light source is a short wavelength arc lamp 11.

第3図は、短波長アークランプ11からの光12の波長
分布を示している。この第3図と既述の第4図との比較
からも明らかな様に、短波長アークランプ11の光12
には、シリコンに吸収される波長成分が多く含まれてい
る。
FIG. 3 shows the wavelength distribution of the light 12 from the short wavelength arc lamp 11. As is clear from the comparison between this FIG. 3 and the previously described FIG. 4, the light 12 of the short wavelength arc lamp 11
contains many wavelength components that are absorbed by silicon.

従って本実施例では、上述の一従来例に比べて、ガラス
基体13上に形成されたシリコン薄膜14を短時間で効
果的にアニールすることができる。
Therefore, in this embodiment, the silicon thin film 14 formed on the glass substrate 13 can be effectively annealed in a shorter time than in the above-mentioned conventional example.

ところで、ガラス基体13の材料としては、ANガラス
(商品名、旭硝子側製)やNA−10(商品名、HOY
 A Ql製)等の低融点無アルカリガラス(融点は6
50℃程度)が多用されている。
By the way, the material of the glass substrate 13 is AN glass (product name, manufactured by Asahi Glass) and NA-10 (product name, HOY glass).
Low melting point non-alkali glass (melting point is 6
(approximately 50°C) is often used.

第2図は、これらのガラスの光透過特性を示している。Figure 2 shows the light transmission properties of these glasses.

この第2図から明らかな様に、波長が0.371 m程
度以下の光は上記のガラスに吸収される。
As is clear from FIG. 2, light with a wavelength of about 0.371 m or less is absorbed by the glass.

そして、第3図から明らかな様に、短波長アークランプ
11の光12はこの波長成分を含んでいる。
As is clear from FIG. 3, the light 12 from the short wavelength arc lamp 11 contains this wavelength component.

従って、第1図に示す様にシリコン薄膜14へ光12を
直接に照射する場合でもガラス基体13の周辺部等でシ
リコン薄膜14が形成されていないためにガラス基体1
3が露出していたり、またはガラス基体13側からこの
ガラス基体13を通してシリコン薄膜14へ光12を照
射する場合は、ガラス基体13が光12を吸収して加熱
される。
Therefore, even when the silicon thin film 14 is directly irradiated with the light 12 as shown in FIG.
3 is exposed, or when the light 12 is irradiated from the glass substrate 13 side to the silicon thin film 14 through the glass substrate 13, the glass substrate 13 absorbs the light 12 and is heated.

そして、ガラス基体13の材料が上述の様に低融点ガラ
スであるので、ガラス基体13が変形したり融解したり
して、半導体装置を製造することができない。これに対
しては、石英ガラス等の高融点ガラス(融点は1000
°C程度)を用いることもできるが、高融点ガラスはコ
ストが高い。
Since the material of the glass substrate 13 is low-melting glass as described above, the glass substrate 13 deforms or melts, making it impossible to manufacture a semiconductor device. In contrast, high melting point glasses such as quartz glass (melting point is 1000
℃) can also be used, but high melting point glass is expensive.

そこで本実施例では、短波長アークランプ11とシリコ
ン薄膜14及びガラス基体13との間に、フィルタ15
を配している。このフィルタ15は、ガラス基体13の
材料に応して、第2図に示した各種材料の光透過特性に
略等しい特性を有している。
Therefore, in this embodiment, a filter 15 is provided between the short wavelength arc lamp 11, the silicon thin film 14, and the glass substrate 13.
are arranged. Depending on the material of the glass substrate 13, this filter 15 has characteristics approximately equal to the light transmission characteristics of the various materials shown in FIG.

このため、フィルタ15を透過した光12は、シリコン
薄膜14に吸収される波長成分のみを含んでおり、ガラ
ス基体13に吸収される波長成分は含んでいない。
Therefore, the light 12 that has passed through the filter 15 includes only wavelength components that are absorbed by the silicon thin film 14 and does not include wavelength components that are absorbed by the glass substrate 13.

この結果、第1図に示す様にシリコン薄膜14へ光12
を直接に照射する場合は勿論、ガラス基体13側からこ
のガラス基体13を通してシリコン薄膜14へ光12を
Its躬する場合でもガラス基体13側にフィルタ15
を配すれば、ガラス基体13が光12を吸収して加熱さ
れることはない。
As a result, as shown in FIG.
Not only when the light 12 is directly irradiated, but also when the light 12 is transmitted from the glass substrate 13 side to the silicon thin film 14 through the glass substrate 13, there is a filter 15 on the glass substrate 13 side.
, the glass substrate 13 will not absorb the light 12 and be heated.

従って、ガラス基体13の材料として上述の様な低コス
トの低融点無アルカリガラスを使用していてもこのガラ
ス基体13は変形したり融解したすせず、シリコン薄膜
14を十分にアニールすることができる。
Therefore, even if the above-mentioned low-cost, low-melting-point non-alkali glass is used as the material for the glass substrate 13, the glass substrate 13 will not deform or melt, and the silicon thin film 14 will not be sufficiently annealed. can.

〔発明の効果〕〔Effect of the invention〕

本発明によるアニール方法では、シリコン薄膜を短時間
で効果的にアニールすることができ、しかも低融点のガ
ラス基体を使用してもこのガラス基体は変形したり融解
したすせずシリコン薄膜を1分にアニールすることがで
きるので、高性能の半導体装置を低コストで製造するこ
とができる。
With the annealing method according to the present invention, it is possible to effectively anneal a silicon thin film in a short period of time, and even if a glass substrate with a low melting point is used, the glass substrate does not deform or melt. Since the annealing process can be performed in a similar manner, high-performance semiconductor devices can be manufactured at low cost.

図はガラスの光透過特性を示すグラフ、第3図及び第4
図は夫々短波長アークランプ及びハロゲンランプの波長
分布を示すグラフである。
The figures are graphs showing the light transmission characteristics of glass, Figures 3 and 4.
The figure is a graph showing the wavelength distribution of a short wavelength arc lamp and a halogen lamp, respectively.

なお図面に用いた符号において、 11−・−・・・−−−m−・−・−短波長アークラン
プ12・・・−−m−−−・−−−−−−−・・光13
−−−−−−−・−一−−−−・−・ガラス基体14・
−−−−−−・−−一−−−・−・−シリコン薄膜15
−・・・−一−−−・−・−・−フィルタである。
In addition, in the symbols used in the drawings, 11-------------Short wavelength arc lamp 12----------------------- Light 13
−−−−−−・−1−−−−・−・Glass base 14・
−−−−−−・−−1−−−・−・−Silicon thin film 15
−...−1−−−・−・−・−filter.

Claims (1)

【特許請求の範囲】 ガラス基体上に形成されたシリコン薄膜へ短波長アーク
ランプの光を照射するアニール方法において、 前記光のうちで前記ガラス基体に吸収される波長成分を
除去して前記照射を行うことを特徴とするアニール方法
[Claims] In an annealing method in which a silicon thin film formed on a glass substrate is irradiated with light from a short wavelength arc lamp, the irradiation is performed by removing a wavelength component of the light that is absorbed by the glass substrate. An annealing method characterized by:
JP9705789A 1989-04-17 1989-04-17 Annealing method Pending JPH02275622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9705789A JPH02275622A (en) 1989-04-17 1989-04-17 Annealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9705789A JPH02275622A (en) 1989-04-17 1989-04-17 Annealing method

Publications (1)

Publication Number Publication Date
JPH02275622A true JPH02275622A (en) 1990-11-09

Family

ID=14182025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9705789A Pending JPH02275622A (en) 1989-04-17 1989-04-17 Annealing method

Country Status (1)

Country Link
JP (1) JPH02275622A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614133A (en) * 1994-05-27 1997-03-25 Sharp Kabushiki Kaisha Method for producing thin-film electro luminescent device
US6239413B1 (en) 1998-11-13 2001-05-29 Nec Corporation Light irradiation annealing apparatus having infrared radiation cut filter
WO2001059823A1 (en) * 2000-02-08 2001-08-16 Matsushita Electric Industrial Co., Ltd. Lamp anneal device and substrate of display device
WO2002047137A1 (en) * 2000-12-08 2002-06-13 Sony Corporation Semiconductor thin film forming method, production methods for semiconductor device and electrooptical device, devices used for these methods, and semiconductor device and electrooptical device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135630A (en) * 1982-02-08 1983-08-12 Fujitsu Ltd Annealing of semiconductor layer
JPS59121876A (en) * 1982-12-28 1984-07-14 Toshiba Corp Glass substrate for thin film device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135630A (en) * 1982-02-08 1983-08-12 Fujitsu Ltd Annealing of semiconductor layer
JPS59121876A (en) * 1982-12-28 1984-07-14 Toshiba Corp Glass substrate for thin film device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614133A (en) * 1994-05-27 1997-03-25 Sharp Kabushiki Kaisha Method for producing thin-film electro luminescent device
US6239413B1 (en) 1998-11-13 2001-05-29 Nec Corporation Light irradiation annealing apparatus having infrared radiation cut filter
WO2001059823A1 (en) * 2000-02-08 2001-08-16 Matsushita Electric Industrial Co., Ltd. Lamp anneal device and substrate of display device
WO2002047137A1 (en) * 2000-12-08 2002-06-13 Sony Corporation Semiconductor thin film forming method, production methods for semiconductor device and electrooptical device, devices used for these methods, and semiconductor device and electrooptical device
US7183229B2 (en) 2000-12-08 2007-02-27 Sony Corporation Semiconductor thin film forming method, production methods for semiconductor device and electrooptical device, devices used for these methods, and semiconductor device and electrooptical device

Similar Documents

Publication Publication Date Title
JPS60245172A (en) Insulated gate type semiconductor device
JPS5975670A (en) Manufacture of thin film semiconductor device
JPS6178119A (en) Manufacture of semiconductor
JPH02275622A (en) Annealing method
JPS6445126A (en) Manufacture of gaas compound semiconductor substrate
JPH0480880B2 (en)
JPH02119122A (en) Manufacture of low resistive polycrystalline semiconductor thin film
JPH04253323A (en) Manufacture of semiconductor device
JPS61289620A (en) Heat treatment for semiconductor thin film
JPH0697664B2 (en) Compound semiconductor annealing method
JPH03339B2 (en)
JPH0480878B2 (en)
JP3968381B2 (en) How to open the resin
JP3186187B2 (en) Method for manufacturing thin film transistor
KR0183784B1 (en) Method of manufacturing thin film transistor of lcd
JPH03284831A (en) Forming method for semiconductor thin-film
JPH02162772A (en) Semiconductor device
JPH0873296A (en) Quartz glass jig for heat treatment of silicon wafer and its use method
JPS60195100A (en) Treatment of indium phosphide crystal
JPH06326020A (en) Semiconductor device and manufacture thereof
JPS603124A (en) Annealing method of compound semiconductor
JPS6351646A (en) Intrinsic gettering process
JP2000277739A (en) Manufacture of thin-film transistor
JPH0697101A (en) Fabrication of thin film transistor
JPS5745246A (en) Manufacture of semiconductor device