JPH0697664B2 - Compound semiconductor annealing method - Google Patents

Compound semiconductor annealing method

Info

Publication number
JPH0697664B2
JPH0697664B2 JP59095391A JP9539184A JPH0697664B2 JP H0697664 B2 JPH0697664 B2 JP H0697664B2 JP 59095391 A JP59095391 A JP 59095391A JP 9539184 A JP9539184 A JP 9539184A JP H0697664 B2 JPH0697664 B2 JP H0697664B2
Authority
JP
Japan
Prior art keywords
compound semiconductor
annealing
substrate
film
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59095391A
Other languages
Japanese (ja)
Other versions
JPS60239030A (en
Inventor
敏樹 江畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59095391A priority Critical patent/JPH0697664B2/en
Publication of JPS60239030A publication Critical patent/JPS60239030A/en
Publication of JPH0697664B2 publication Critical patent/JPH0697664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Description

【発明の詳細な説明】 〔技術分野〕 本発明はGaAs,InP等の化合物半導体にN型もしくはP型
の不純物となり得るイオンを注入した後、化合物半導体
を高温にてアニールし、イオン注入層を活性化させる方
法に関するものである。
TECHNICAL FIELD The present invention implants an ion that can be an N-type or P-type impurity into a compound semiconductor such as GaAs or InP, and then anneals the compound semiconductor at a high temperature to form an ion-implanted layer. It relates to a method of activation.

〔背景技術〕[Background technology]

GaAs等の化合物半導体結晶基板を用いイオン注入によつ
てトランジスタや集積回路を製作する場合、アニールの
工程は導電層を形成する上で不可欠である。アニールは
一般にイオン注入された化合物半導体基板を抵抗加熱炉
で数十分間高温加熱処理するものである。加熱温度は基
板に含まれる蒸気圧の高い成分例えばAsやPが蒸発を開
始する温度より高いため基板が熱分解を生じるという問
題があつた。このためアニールによつて基板表面に形成
する導電層の電気的性質が変動し、バラツキが大きいと
いう問題があつた。
When manufacturing a transistor or an integrated circuit by ion implantation using a compound semiconductor crystal substrate such as GaAs, an annealing step is indispensable for forming a conductive layer. Annealing is generally a high temperature heat treatment for several tens of minutes in a resistance heating furnace for a compound semiconductor substrate into which ions have been implanted. Since the heating temperature is higher than the temperature at which components with high vapor pressure contained in the substrate, such as As and P, start to vaporize, there is a problem in that the substrate undergoes thermal decomposition. Therefore, there is a problem that the electrical properties of the conductive layer formed on the surface of the substrate change due to the annealing, resulting in large variations.

これを防ぐため蒸気圧の高い成分の蒸気圧下でアニール
したり蒸発を防ぐための保護膜例えば、SiO2膜やSi3N4
膜を基板表面に形成した後にアニールする方法が採られ
ている。しかしながら前者の方法では蒸気圧の高い成分
を含むガスが有毒であるため操作や処理が複雑なプロセ
スとなり、生産性が著しく低いという問題が残る。一
方、後者では保護膜の形成法、形成条件によつて膜の性
質が異なるため安定性、再現性が低くアニール中に保護
膜が割れる等の問題がある。
In order to prevent this, annealing is performed under the vapor pressure of a component with a high vapor pressure, or a protective film for preventing evaporation, such as SiO 2 film or Si 3 N 4
A method of annealing after forming the film on the substrate surface is adopted. However, in the former method, the gas containing a component having a high vapor pressure is toxic, so that the operation and treatment become complicated processes, and the productivity remains extremely low. On the other hand, in the latter case, since the properties of the film differ depending on the method of forming the protective film and the forming conditions, stability and reproducibility are low, and there is a problem that the protective film is cracked during annealing.

また、従来のアニール法は電気炉で数十分間高温熱処理
するため基板結晶内の残留不純物であるCrやMnが拡散や
表面近傍での高濃度化等を起こし、イオン注入された原
子と相互に影響を及ぼすことが知られている。このため
アニールによる活性化率が不安定となり、トランジスタ
や集積回路の電気特性を制御することが困難となつてい
る。さらに従来のアニール法では注入された原子がアニ
ール中に表面と平行な方向に十分の数ミクロンも拡散す
る横方向拡散も知られている。このため注入領域、例え
ば実効ゲート長が変化することになり1μmという微細
加工が必要な素子製造の面からは重大な問題となる。
Further, in the conventional annealing method, high temperature heat treatment is performed for several tens of minutes in an electric furnace, so that residual impurities such as Cr and Mn in the substrate crystal diffuse or increase the concentration in the vicinity of the surface, so that they do not interact with the ion-implanted atoms. Is known to affect. For this reason, the activation rate due to annealing becomes unstable, making it difficult to control the electrical characteristics of transistors and integrated circuits. Further, in the conventional annealing method, lateral diffusion is also known, in which the implanted atoms diffuse for a sufficient number of microns in a direction parallel to the surface during annealing. For this reason, the implantation region, for example, the effective gate length changes, which is a serious problem from the aspect of device manufacturing that requires fine processing of 1 μm.

これに対し、近年赤外線ランプによるアニール法が報告
されている。図3はその一例である。基板を急速に加熱
できるという特徴から従来法のアニールより約2桁短い
アニール時間が可能であり、従つて横方向拡散も抑制で
きると共に蒸気圧の高いAsやPの成分の蒸発も最小限に
低減できると報告されている。しかしながら、AsやPの
蒸発は原理的に皆無にできない。例えば、800℃で10秒
間熱処理しただけでも鏡面研磨されたGaAs基板表面の全
面にわたつて微小な斑点が生じ、いわゆるAs抜けが観察
され、AsやPの蒸発については依然問題が残つている。
On the other hand, in recent years, an annealing method using an infrared lamp has been reported. FIG. 3 is an example thereof. Due to the feature that the substrate can be heated rapidly, the annealing time can be about 2 orders of magnitude shorter than that of the conventional method, so lateral diffusion can be suppressed and evaporation of As and P components with high vapor pressure can be minimized. It is reported that it can. However, evaporation of As and P cannot be eliminated in principle. For example, even if only heat-treated at 800 ° C. for 10 seconds, minute spots are formed over the entire surface of the mirror-polished GaAs substrate, so-called As loss is observed, and there is still a problem with evaporation of As and P.

さらに、赤外線ランプの急速加熱の特徴を生かしてアニ
ールすると肉眼でも観察できる程の大きな「スリツプラ
イン」と呼ばれる結晶の歪が生じることが知られてい
る。これはその部分の結晶性が破壊されていることにな
りトランジスタや集積回路の電気特性を制御するための
重大な障害となつている。
Further, it is known that crystal annealing called "slipline", which is large enough to be observed with the naked eye, occurs when annealing is performed by taking advantage of the feature of rapid heating of an infrared lamp. This means that the crystallinity of that portion is destroyed, which is a serious obstacle to controlling the electrical characteristics of the transistor and the integrated circuit.

〔発明の開示〕[Disclosure of Invention]

本発明はこのような従来法の欠点を解消し、化合物半導
体の熱分解を防ぐと同時に横方向の拡散を抑制し、かつ
スリップラインの発生を防止し得るアニール法を提供す
るものである。
The present invention solves the drawbacks of the conventional method, and provides an annealing method capable of preventing thermal decomposition of a compound semiconductor, suppressing lateral diffusion, and preventing the occurrence of slip lines.

以下、実施例に即して、本発明を説明する。図1は化合
物半導体としてGaAs基板を用いる場合の本発明によるア
ニール法の構成を図示したものである。一度真空排気さ
れた後、N2ガスを満たした石英管11の内部中央に石英治
具12を介して保持された一対の厚さ数mmの同一形状をし
たカーボングラフアイト板13の間に両面に厚さ1000Åの
Si3N4膜14をプラズマCVD法で形成した一対のGaAs基板15
をイオン注入された面を互いに向き合うようにして置
き、石英管11の外部よりGaAs基板15の両面からランプヒ
ータ16を用いて照射して加熱させる。アニール温度は、
GaAs基板15の近傍に設置した熱電対により測定し、これ
を基準にしてランプに印加する電力をPID制御すること
により、加熱速度、アニール温度を一定にした。本発明
になるアニール法で900℃10秒間アニールした試料は従
来の電気炉で、800℃20分アニールした試料と同等のキ
ヤリア濃度プロフアイルを示した。さらにアニール時の
昇温速度を従来法と同じ20℃/秒〜80℃/秒とした急速
加熱でアニールしても従来法のようなスリツプラインは
観察されなかつた。
Hereinafter, the present invention will be described with reference to Examples. FIG. 1 illustrates a configuration of an annealing method according to the present invention when a GaAs substrate is used as a compound semiconductor. After being evacuated once, a pair of carbon graphite plates 13 of the same shape with a thickness of several mm are held in the center of the quartz tube 11 filled with N 2 gas through a quartz jig 12 on both sides. With a thickness of 1000Å
A pair of GaAs substrates 15 with Si 3 N 4 film 14 formed by plasma CVD method
Are placed so that their ion-implanted surfaces face each other, and the quartz tube 11 is irradiated with heat from both sides of the GaAs substrate 15 by using a lamp heater 16 to heat it. The annealing temperature is
The heating rate and the annealing temperature were kept constant by measuring with a thermocouple installed near the GaAs substrate 15 and PID controlling the power applied to the lamp with reference to this. The sample annealed at 900 ° C. for 10 seconds by the annealing method according to the present invention showed the same carrier concentration profile as the sample annealed at 800 ° C. for 20 minutes in the conventional electric furnace. Furthermore, no slip line was observed in the conventional method even when the annealing was performed by rapid heating with the temperature rising rate during annealing of 20 ° C./sec to 80 ° C./sec, the same as in the conventional method.

また上記条件のランプアニール法を適用し、ピンチオフ
電圧が0V〜−1.2Vの範囲のGaAs電界効果トランジスタを
作製したところ、17mm×17mm領域中の約7000個のトラン
ジスタのピンチオフ電圧のバラツキは1シグマで50〜10
0mVという結果を得た。ちなみに図2の様にしてアニー
ルした場合のバラツキは1シグマで150〜250mVと大きく
本発明がバラツキ低減に効果をもつことが明らかとな
り、基板15を重ねることによつて基板15、保護膜14の熱
分解を互いに防ぐ効果を確認できた。
In addition, when a lamp anneal method under the above conditions was applied to fabricate a GaAs field effect transistor with a pinch-off voltage in the range of 0V to -1.2V, the variation in pinch-off voltage of about 7,000 transistors in a 17mm x 17mm area was 1 sigma. At 50-10
I got a result of 0 mV. By the way, the variation when annealed as shown in FIG. 2 is as large as 150 to 250 mV for 1 sigma, and it is clear that the present invention has an effect of reducing the variation. The effects of mutually preventing thermal decomposition were confirmed.

本発明を構成する要件の一つはランプからの熱線として
赤外線のみならず、赤外線よりも波長の短い光をも利用
することにある。化合物半導体は赤外領域の光線に対し
て大きな透過率を有しているため赤外線による化合物半
導体基板の加熱は実質上効率が極めて小さくなる。そこ
で本発明では赤外線より短波長な光で基板を直接加熱す
ると同時に赤外線で基板を載せたカーボングラフアイト
治具を加熱することにより、加熱効率を著しく向上する
ことにある。
One of the requirements constituting the present invention is to use not only infrared rays but also light having a shorter wavelength than infrared rays as the heat rays from the lamp. Since the compound semiconductor has a large transmittance with respect to the light rays in the infrared region, the heating of the compound semiconductor substrate by the infrared light is substantially inefficient. Therefore, in the present invention, the heating efficiency is remarkably improved by directly heating the substrate with light having a wavelength shorter than that of infrared rays and simultaneously heating the carbon graphite jig on which the substrate is placed with infrared rays.

本発明のもう一つの要件は、ランプからの光を効率良く
吸収して半導体基板に対して熱源となる物体を基板に密
着して対称的に配置することである。図3に示す通り従
来法では基板が直接雰囲気にさらされており、基板の厚
さ方向、特に基板表面での急峻な温度勾配が存在する。
本発明ではこのような温度勾配をなくす事ができスリツ
プラインを防止することが可能となつた。この目的から
すると基板を挾む物体としてはランプからの光を効率良
く吸収する材質であれば本発明の目的を満たすことにな
り、何ら実施例に制限されるものではない。
Another requirement of the present invention is that the object, which efficiently absorbs the light from the lamp and serves as a heat source with respect to the semiconductor substrate, is arranged symmetrically in close contact with the substrate. As shown in FIG. 3, in the conventional method, the substrate is directly exposed to the atmosphere, and there is a steep temperature gradient in the thickness direction of the substrate, particularly on the substrate surface.
In the present invention, such a temperature gradient can be eliminated and slip lines can be prevented. From this point of view, the object sandwiching the substrate will satisfy the object of the present invention as long as it is a material that efficiently absorbs the light from the lamp, and is not limited to the examples.

さらにもう一つの要件は化合物半導体基板の少なくとも
イオン注入された面に無機化合物の保護膜を形成してア
ニールすることにある。これにより蒸気圧の高い成分の
蒸発を完全に阻止することが可能となる。この目的から
考えるに無機化合物膜としては実施例のSi3N4膜やプラ
ズマCVD法に何ら限定されるものではなく、他にSiO
2膜、Al2O3膜AlN膜等を周知の製法で形成することも可
能である。
Still another requirement is to form a protective film of an inorganic compound on at least the ion-implanted surface of the compound semiconductor substrate and anneal it. This makes it possible to completely prevent the evaporation of components having a high vapor pressure. Considering from this purpose, the inorganic compound film is not limited to the Si 3 N 4 film and the plasma CVD method of the embodiment, and other inorganic compound films such as SiO
It is also possible to form the two films, the Al 2 O 3 film, the AlN film and the like by a known manufacturing method.

さらにアニールは化合物半導体基板に高温で不必要な化
学反応を生じないために不活性ガス中で行なえば本発明
の目的を満たすことから雰囲気は実施例のN2ガスに何ら
限定されるものではなく、N2の他にAr,He等の不活性ガ
スやH2ガス及びそれらの混合ガスも適用できることを付
言する。
Further, the annealing is not limited to the N 2 gas of the embodiment because the object of the present invention can be satisfied if the annealing is performed in an inert gas so that an unnecessary chemical reaction does not occur in the compound semiconductor substrate at a high temperature. In addition to N 2 and N 2 , an inert gas such as Ar and He, a H 2 gas, and a mixed gas thereof can be applied.

【図面の簡単な説明】[Brief description of drawings]

図1は本発明によるアニール法の構成例を図示したもの
であり、図2は本発明の実施例を説明するための図であ
る。 図3は従来のアニール法の構成例である。 11……石英管 12……石英治具 13……カーボングラフアイト板 14……無機化合物膜 15……化合物半導体基板 16……ランプヒータ
FIG. 1 is a diagram showing a configuration example of an annealing method according to the present invention, and FIG. 2 is a diagram for explaining an embodiment of the present invention. FIG. 3 shows a configuration example of a conventional annealing method. 11 …… Quartz tube 12 …… Quartz jig 13 …… Carbon graphite plate 14 …… Inorganic compound film 15 …… Compound semiconductor substrate 16 …… Lamp heater

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/265 21/324 C 8617−4M D 8617−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication location H01L 21/265 21/324 C 8617-4M D 8617-4M

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】化合物半導体基板にN型またはP型となり
得るイオンを注入すると共に、少なくともこのイオン注
入面に無機化合物膜を形成し、 一対の前記化合物半導体基板を、互いの前記イオン注入
面が向かい合うようにして重ね合せ、 前記重ね合せた化合物半導体基板を、赤外線及びそれよ
りも短い波長域の光を吸収する材質からなる一対の支持
体によって、その厚さ方向の両側から挟み、この一対の
支持体を前記重ね合せた化合物半導体基板の両側に対称
的に配置し、 赤外線及びそれより短い波長域にスペクトルを持つラン
プを用いて、前記支持体を加熱することを特徴とする化
合物半導体のアニール法。
1. A compound semiconductor substrate is implanted with ions that can be N-type or P-type, and an inorganic compound film is formed on at least this ion-implanted surface. Stacked so as to face each other, sandwich the compound semiconductor substrate from the both sides in the thickness direction by a pair of supports made of a material that absorbs infrared rays and light in a wavelength range shorter than that, Annealing of a compound semiconductor, characterized in that supports are symmetrically arranged on both sides of the compound semiconductor substrates which are superposed, and the supports are heated by using a lamp having a spectrum in an infrared ray and a shorter wavelength region. Law.
JP59095391A 1984-05-11 1984-05-11 Compound semiconductor annealing method Expired - Lifetime JPH0697664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59095391A JPH0697664B2 (en) 1984-05-11 1984-05-11 Compound semiconductor annealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59095391A JPH0697664B2 (en) 1984-05-11 1984-05-11 Compound semiconductor annealing method

Publications (2)

Publication Number Publication Date
JPS60239030A JPS60239030A (en) 1985-11-27
JPH0697664B2 true JPH0697664B2 (en) 1994-11-30

Family

ID=14136344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59095391A Expired - Lifetime JPH0697664B2 (en) 1984-05-11 1984-05-11 Compound semiconductor annealing method

Country Status (1)

Country Link
JP (1) JPH0697664B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1242014B (en) * 1990-11-15 1994-02-02 Memc Electronic Materials PROCEDURE FOR THE TREATMENT OF SILICON SLICES TO OBTAIN IN IT CONTROLLED PRECIPITATION PROFILES FOR THE PRODUCTION OF ELECTRONIC COMPONENTS.
US5401669A (en) * 1993-05-13 1995-03-28 Memc Electronic Materials, Spa Process for the preparation of silicon wafers having controlled distribution of oxygen precipitate nucleation centers
JP2875768B2 (en) * 1994-11-30 1999-03-31 新日本無線株式会社 Heat treatment method for semiconductor substrate
CN110828365A (en) * 2019-11-19 2020-02-21 全球能源互联网研究院有限公司 Annealing assembly and annealing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115770A (en) * 1975-04-03 1976-10-12 Sanyo Electric Co Ltd Annealing method after ion injection
JPS57183041A (en) * 1981-05-06 1982-11-11 Nec Corp Annealing method for chemical semiconductor

Also Published As

Publication number Publication date
JPS60239030A (en) 1985-11-27

Similar Documents

Publication Publication Date Title
US5336641A (en) Rapid thermal annealing using thermally conductive overcoat
JPH07118471B2 (en) Method for Doping Semiconductor Wafer by Rapid Thermal Processing of Solid Flat Diffusion Source
US5250452A (en) Deposition of germanium thin films on silicon dioxide employing interposed polysilicon layer
JPH0697664B2 (en) Compound semiconductor annealing method
JPH0480880B2 (en)
US5101247A (en) Germanium silicon dioxide gate MOSFET
JPH0480878B2 (en)
JP2737781B2 (en) Heat treatment method for compound semiconductor substrate
JPS603124A (en) Annealing method of compound semiconductor
JPH0480879B2 (en)
JPS6130030A (en) Method of annealing multi-element semiconductor
JPS637022B2 (en)
JPS6175517A (en) Compound semiconductor substrate annealing method
JPS6142911A (en) Forming method of conductive layer by implanting ion
JP3084089B2 (en) Semiconductor device substrate and method of manufacturing the same
JPH04307741A (en) Manufacture of semiconductor device
JPS60240118A (en) Manufacture of si semiconductor
JPS60227416A (en) Annealing method of semiconductor substrate
JP3540918B2 (en) Method for manufacturing semiconductor device
JP2628911B2 (en) Heat treatment method for compound semiconductor
JPH02291119A (en) Heat treatment method for compound semiconductor substrate
JPH01260834A (en) Heat treatment of iii-v compound semiconductor substrate
JPS6022316A (en) Manufacture of compound semiconductor apparatus
JPS6134949A (en) Heat treatment for compound semiconductor substrate
Wu Shallow doping in silicon