JPS58135630A - Annealing of semiconductor layer - Google Patents

Annealing of semiconductor layer

Info

Publication number
JPS58135630A
JPS58135630A JP1867782A JP1867782A JPS58135630A JP S58135630 A JPS58135630 A JP S58135630A JP 1867782 A JP1867782 A JP 1867782A JP 1867782 A JP1867782 A JP 1867782A JP S58135630 A JPS58135630 A JP S58135630A
Authority
JP
Japan
Prior art keywords
infrared rays
filter
wave length
substrate
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1867782A
Other languages
Japanese (ja)
Inventor
Junji Sakurai
桜井 潤治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1867782A priority Critical patent/JPS58135630A/en
Publication of JPS58135630A publication Critical patent/JPS58135630A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To prevent penetration of infrared rays into a comparatively deep region, and to prevent destruction of a circuit element formed already in a substrate at the annealing process of the seimconductor layer according to irradiation of infrared rays by a method wherein infrared rays having the prescribed wave length or more are intercepted. CONSTITUTION:A filter 3 is provided between an infrared rays source 2 and the substrate 1 to cut the unnecessary wave length regions. The numeral 4 shows a mirror for convergency of infrared rays on the surface of the substrate. Because infrared rays cut by the filter 3 contain the wave length regions having high heating efficiency, and the temperature rise of the filter absorbing infrared rays thereof is remarkable, the filter is cooled according to the ventilation, etc., so as not to redischarge infrared rays of the long wave lengths. The filter to cut infrared rays on the long wave length side is manufactured according to the method as follows. Glass containing a metal element of a comparatively large quantity absorbs light of the wave length peculiar to the metal element thereof. Accordingly, when the filter is formed of glass containing a properly selected metal, the filter having the desired characteristic can be obtained.

Description

【発明の詳細な説明】 (a’)発明の技術分野 本発明は半導体層をアニールする技術に関するもので、
特に電磁波を照射して行うアニール方法に関するもので
ある。
Detailed Description of the Invention (a') Technical Field of the Invention The present invention relates to a technique for annealing a semiconductor layer.
In particular, it relates to an annealing method performed by irradiating electromagnetic waves.

(b)技術の背景 バルク状或いは層状の半導体材料の内部に存在する歪の
除去を目的とするアニールは半導体装置の製造に屡々用
いられる技術である。錬アニールは半導体ウェファ−全
体を加熱して行うが、イオン注入のように、歪の発生す
る領域が表面近傍に限られている場合は、赤外線ヒータ
で表面だけを加熱して実施することもある。
(b) Background of the Technology Annealing, which aims to remove strain existing inside bulk or layered semiconductor materials, is a technique often used in the manufacture of semiconductor devices. Refining annealing is performed by heating the entire semiconductor wafer, but if the area where strain occurs is limited to the vicinity of the surface, such as in ion implantation, it may be performed by heating only the surface with an infrared heater. .

また近年、多層集積回路或いは三次元集積回路を実現す
る為の技術として注目されている技術にラテラルエピタ
キシャル成長があり、これは、例えば二酸化珪素層上に
非晶質シリコン層を被着し、その一箇所から再結晶化を
開始して全域に及ぼすものであるが、単結晶化が水平方
向に進行することからラテラルエピタキシャル成長と呼
ばれている。ラテラルエピタキシャル成長に於ても、基
板の表面に被着した非単結晶シリコン層を溶融・再結晶
させる為に赤外線ヒータを用いることがある。
Also, in recent years, lateral epitaxial growth has been attracting attention as a technology for realizing multilayer integrated circuits or three-dimensional integrated circuits. Although recrystallization starts from a location and affects the entire area, it is called lateral epitaxial growth because single crystallization progresses in the horizontal direction. In lateral epitaxial growth, an infrared heater is sometimes used to melt and recrystallize the non-single crystal silicon layer deposited on the surface of the substrate.

かかる処理も広い意味でアニール技術に含まれるもので
ある。
Such processing is also included in annealing technology in a broad sense.

このような目的に使用される赤外線ヒータには、抵抗加
熱装置であるカーボンヒータや、アークランプ、ハロゲ
ンランプ等がある。
Infrared heaters used for this purpose include carbon heaters that are resistance heating devices, arc lamps, halogen lamps, and the like.

被照射体の温度を効率よく上昇させるのは赤外領域の電
磁波であるから、以下の本明細書に於ては、アニールの
目的で照射する電磁波を赤外光と表現する。この意味で
の赤外光は一部の可視光を含むことになる。
Since it is electromagnetic waves in the infrared region that efficiently raise the temperature of the irradiated object, in the following specification, the electromagnetic waves irradiated for the purpose of annealing will be expressed as infrared light. Infrared light in this sense includes some visible light.

(C’)従来技術と問題点 前記カーボンヒータ、アークランプ、ハνゲンランプ等
は、該装置から放射される赤外光のエネルギーによって
非単結晶シリコン層などの半導体層を加熱するものであ
るが、放射される赤外光は広い範囲の波長に亘るもので
あり、シリコン、二酸化珪素層等の材料中での吸収の程
度が異なる為、このような光源を用いて、半導体基板の
特定の深さの領域だけを選択的に加熱することは困難で
ある。
(C') Prior Art and Problems The carbon heaters, arc lamps, hagen lamps, etc. described above heat semiconductor layers such as non-single crystal silicon layers using the energy of infrared light emitted from the devices. Since the emitted infrared light spans a wide range of wavelengths and has different degrees of absorption in materials such as silicon and silicon dioxide layers, such light sources can be used to locate specific depths in the semiconductor substrate. It is difficult to selectively heat only those areas.

第1図はシリコン中で赤外光が1/10に減衰する距離
と波長との関係を示す図であるが、前記赤外光源から放
射される光の進入する深さは極めて広い範囲に亘ること
が読み取られる。
Figure 1 is a diagram showing the relationship between wavelength and the distance at which infrared light is attenuated to 1/10 in silicon, but the depth to which the light emitted from the infrared light source penetrates covers an extremely wide range. That can be read.

従って、多層集積回路を製造する場合のように、既に回
路素子が形成された基板の表面の多結晶シリコン層を単
結晶化すべく、赤外線ヒータの照射を行うと、基板内部
に迄進入する赤外光によって、既に形成された回路素子
も加熱され、その特性が大幅に変化することが起る。
Therefore, when irradiating with an infrared heater to monocrystallize a polycrystalline silicon layer on the surface of a substrate on which circuit elements have already been formed, as in the case of manufacturing multilayer integrated circuits, the infrared rays penetrate into the inside of the substrate. The light also heats already formed circuit elements, causing their properties to change significantly.

(d、)発明の目的 本発明の目的は、基板表面を加熱する為に照射。(d.) Purpose of the invention The purpose of the present invention is to use irradiation to heat the substrate surface.

した赤外光が比較的深い領域に迄進入することを防止し
、基板内に形成済の回路素子が破壊されることのない赤
外加熱法を提供することである。
An object of the present invention is to provide an infrared heating method that prevents infrared light from entering a relatively deep region and does not destroy circuit elements already formed in a substrate.

(e)発明の構成 本発明の半導体層のアニール法では、赤外光を照射して
半導体層を7ニールする工程に於て、赤外光源から発生
した赤外光のうち、所定波XJJ上の赤外光を遮断し、
該所定波長より短い波長の赤外光を前記半導体層に照射
することが行われる。
(e) Structure of the Invention In the semiconductor layer annealing method of the present invention, in the step of annealing the semiconductor layer by irradiating infrared light, a predetermined wave XJJ of the infrared light generated from the infrared light source is blocks infrared light,
The semiconductor layer is irradiated with infrared light having a wavelength shorter than the predetermined wavelength.

(f)発明の実施例 アニールの対象がシリコンである場合、該対象層の厚さ
をlpmとすると、第1図から明らかなように、0.5
μmよりも長波長の赤外光が、前記対象層を透過して進
入すると着像してよい、従って、何等かの方法によって
該領域の赤外光をカットしてやれば、照射されたエネル
ギーは表l115mの範囲でその大半が吸収され、より
深い領域の温度上昇は僅かとなる。
(f) Embodiment of the Invention When the target of annealing is silicon, and the thickness of the target layer is lpm, as is clear from FIG.
When infrared light with a wavelength longer than μm passes through the target layer and enters, it may form an image. Therefore, if the infrared light in this region is cut by some method, the irradiated energy will be exposed. Most of it is absorbed in the range of 115m, and the temperature rise in deeper regions is small.

本麹肩では、かかる観点から、第2図に示す如く、赤外
光源2と基板lとの閾にフィルター3を設け、不要の波
長領域をカットする。4は赤外光を基板表面に収束させ
る為のミラーである。
From this point of view, in this koji shoulder, as shown in FIG. 2, a filter 3 is provided at the threshold between the infrared light source 2 and the substrate 1 to cut out unnecessary wavelength regions. 4 is a mirror for converging infrared light onto the substrate surface.

フィルター3によってカットされる赤外光は、加熱効牢
の高い波長領域を含むので、これを吸収するフィルター
の温度上昇が著しいから、長波長の赤外光を再放出しな
いように、送風等の手段で強制的に冷却してやることが
必要である。
The infrared light cut by the filter 3 includes a wavelength range with high heating effect, so the temperature of the filter that absorbs it will rise significantly. It is necessary to forcibly cool it down.

長波長側の赤外光をカットするフィルターは、次のよう
な方法で作成することができる。
A filter that cuts infrared light on the long wavelength side can be created using the following method.

金属元素を比較的多量にふくむガラスは、その金属元素
に固有の波長の光を吸収する。従って、適当に選択され
た複数の種類の7C1lを含むガラスを製造し、該ガラ
スによってフィルターを形成すれば、所望の特性を持つ
フィルターを得ることができる。さらに長波長側をカッ
トする為には金属メッシユを使用するのが効果的である
Glass containing a relatively large amount of metal elements absorbs light at wavelengths specific to the metal elements. Therefore, by manufacturing a glass containing a plurality of appropriately selected types of 7C1l and forming a filter using the glass, a filter having desired characteristics can be obtained. Furthermore, it is effective to use a metal mesh to cut out the longer wavelength side.

上記の例では0.5μm以上の波長をカットしたが、こ
れは加熱しようとする層の材質や厚みによって当然変化
するものてあり、使用するフィルターの特性もそれに応
じて変−るもの7ある。
In the above example, wavelengths of 0.5 μm or more are cut, but this naturally varies depending on the material and thickness of the layer to be heated, and the characteristics of the filter used may also vary accordingly7.

(g)発明の効果 以上1m91したように、本発明によれば、基板表面の
半導体層のアニールに於て、基板の内部領域の温度を必
要以上に上昇させることがないので、基板内の状態を大
幅に変化させることなく、表面層のアニールを実施する
ことができる。
(g) Effects of the Invention and More As described above, according to the present invention, when annealing the semiconductor layer on the surface of the substrate, the temperature of the internal region of the substrate is not increased more than necessary, so that the condition inside the substrate is maintained. Annealing of the surface layer can be performed without significantly changing the surface layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はシリコン中の赤外光の減衰距離と波長との関係
を示す図、第2図は本g&―の一実施例を示す図であっ
て、図に於て1は基板、2は赤外光源、3はフィルター
、4はミラーである。
Fig. 1 is a diagram showing the relationship between the attenuation distance and wavelength of infrared light in silicon, and Fig. 2 is a diagram showing an example of this g&-, in which 1 is the substrate, 2 is the An infrared light source, 3 a filter, and 4 a mirror.

Claims (1)

【特許請求の範囲】[Claims] 電磁波を照射して半導体層をアニールする工程に於て、
電磁波発生源から発生した電磁波のうち、所定波長以上
の該電磁波を臆断し、該所定波長より短い波長の電磁波
を該半導体層に照射することを特徴とする半導体層のア
ニール方法。
In the process of annealing the semiconductor layer by irradiating electromagnetic waves,
A method for annealing a semiconductor layer, which comprises rejecting electromagnetic waves having a predetermined wavelength or more among electromagnetic waves generated from an electromagnetic wave generation source, and irradiating the semiconductor layer with electromagnetic waves having a wavelength shorter than the predetermined wavelength.
JP1867782A 1982-02-08 1982-02-08 Annealing of semiconductor layer Pending JPS58135630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1867782A JPS58135630A (en) 1982-02-08 1982-02-08 Annealing of semiconductor layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1867782A JPS58135630A (en) 1982-02-08 1982-02-08 Annealing of semiconductor layer

Publications (1)

Publication Number Publication Date
JPS58135630A true JPS58135630A (en) 1983-08-12

Family

ID=11978233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1867782A Pending JPS58135630A (en) 1982-02-08 1982-02-08 Annealing of semiconductor layer

Country Status (1)

Country Link
JP (1) JPS58135630A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288734U (en) * 1985-11-21 1987-06-06
JPH02275622A (en) * 1989-04-17 1990-11-09 Sony Corp Annealing method
US4981815A (en) * 1988-05-09 1991-01-01 Siemens Aktiengesellschaft Method for rapidly thermally processing a semiconductor wafer by irradiation using semicircular or parabolic reflectors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633821A (en) * 1979-08-29 1981-04-04 Chiyou Lsi Gijutsu Kenkyu Kumiai Photoannealing method for semiconductor layer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633821A (en) * 1979-08-29 1981-04-04 Chiyou Lsi Gijutsu Kenkyu Kumiai Photoannealing method for semiconductor layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288734U (en) * 1985-11-21 1987-06-06
JPH0421813Y2 (en) * 1985-11-21 1992-05-19
US4981815A (en) * 1988-05-09 1991-01-01 Siemens Aktiengesellschaft Method for rapidly thermally processing a semiconductor wafer by irradiation using semicircular or parabolic reflectors
JPH02275622A (en) * 1989-04-17 1990-11-09 Sony Corp Annealing method

Similar Documents

Publication Publication Date Title
US4870031A (en) Method of manufacturing a semiconductor device
US8759948B2 (en) Laser beam machining method and semiconductor chip
KR100407748B1 (en) Method and apparatus for laser heat treatment, and semiconductor device
US7592237B2 (en) Laser processing method and object to be processed
EP0127323B1 (en) A process for producing a single crystal semiconductor island on an insulator
US20090032509A1 (en) Laser Machining Method
TWI719266B (en) Manufacturing method of intermediate carrier board
JP7182456B2 (en) LASER PROCESSING METHOD AND SEMICONDUCTOR MEMBER MANUFACTURING METHOD
JPH07187890A (en) Laser annealing method
JPS58135630A (en) Annealing of semiconductor layer
TWI622099B (en) Apparatus and method to reduce particles in advanced anneal process
JP5518717B2 (en) Heating method of wafer by luminous flux
JP2000286195A (en) Method and equipment for laser heat treatment, and semiconductor device
JPH0420254B2 (en)
KR101918166B1 (en) Process for treating a substrate using a luminous flux of determined wavelength, and corresponding substrate
WO2020129569A1 (en) Laser machining method, semiconductor member production method, and semiconductor object
JPS6018913A (en) Manufacture of semiconductor device
JPS6250971B2 (en)
JPS59158514A (en) Manufacture of semiconductor device
JP2631121B2 (en) Laser melting recrystallization method of semiconductor thin film
JP6922851B2 (en) How to form a gettering layer
JPH0454964B2 (en)
JPS6170713A (en) Recrystallizing method of silicon film
JPH0547978B2 (en)
JP3962066B2 (en) Semiconductor manufacturing method and laser heat treatment apparatus using laser heat treatment method