JPWO2018078815A1 - 可変バルブタイミング機構付きエンジンの制御装置 - Google Patents

可変バルブタイミング機構付きエンジンの制御装置 Download PDF

Info

Publication number
JPWO2018078815A1
JPWO2018078815A1 JP2018547045A JP2018547045A JPWO2018078815A1 JP WO2018078815 A1 JPWO2018078815 A1 JP WO2018078815A1 JP 2018547045 A JP2018547045 A JP 2018547045A JP 2018547045 A JP2018547045 A JP 2018547045A JP WO2018078815 A1 JPWO2018078815 A1 JP WO2018078815A1
Authority
JP
Japan
Prior art keywords
oil
valve
engine
vvt
hydraulic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018547045A
Other languages
English (en)
Inventor
西本 敏朗
敏朗 西本
貴史 西尾
貴史 西尾
年希 居軒
年希 居軒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Publication of JPWO2018078815A1 publication Critical patent/JPWO2018078815A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/06Cutting-out cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/20Adjusting or compensating clearance
    • F01L1/22Adjusting or compensating clearance automatically, e.g. mechanically
    • F01L1/24Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically
    • F01L1/2405Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically by means of a hydraulic adjusting device located between the cylinder head and rocker arm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/08Lubricating systems characterised by the provision therein of lubricant jetting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0475Hollow camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/3443Solenoid driven oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34473Lock movement perpendicular to camshaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34479Sealing of phaser devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L2001/34486Location and number of the means for changing the angular relationship
    • F01L2001/34496Two phasers on different camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0005Deactivating valves
    • F01L2013/001Deactivating cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/02Camshaft drives characterised by their transmission means the camshaft being driven by chains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • F01L2303/02Initial camshaft settings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2305/00Valve arrangements comprising rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/05Timing control under consideration of oil condition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2810/00Arrangements solving specific problems in relation with valve gears
    • F01L2810/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/01Absolute values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/032Electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • F02D2041/0012Controlling intake air for engines with variable valve actuation with selective deactivation of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

エンジン(2)は、エンジンの運転領域に対応して、吸気バルブ(14)及び排気バルブ(15)の少なくとも一方の開弁タイミング又は閉弁タイミングを油圧駆動により変更するVVT機構(33,90)と、第1の所定の油圧以上の圧力でピストン方向にオイルを噴射するオイルジェット(28)とを備えている。エンジン(2)の制御装置は、VVT機構が用いる油圧の上限を第1の所定の油圧よりも低く設定し、且つVVT機構の作動速度を吸気バルブ及び排気バルブの開弁期間のオーバラップ量が多くなる方向には速く、該オーバラップ量が少なくなる方向には遅くなるように、VVT機構に対する油圧の供給を制御する。

Description

本発明は、可変バルブタイミング機構付きエンジンの制御装置に関する。
下記の特許文献1には、油圧式の可変バルブタイミング(Variable Valve Timing:VVT)機構を備えた自動車用エンジンにおいて、該VVT機構の油圧高さを規制することにより、VVT機構の進角及び遅角の双方向の作動速度を制限する構成が記載されている。この作動速度の制限により、VVT機構に供給される油量を少なくして、油圧の低下を抑制することによって、例えば、4気筒運転から2気筒運転への減気筒運転動作に必要な油圧を維持している。
特開2015−194132号公報
本願発明者らは、VVT機構を所定の油圧で作動させると、該VVT機構の動作速度が相対的に遅いことにより、吸気バルブ及び排気バルブの開弁期間のオーバラップ(重なり)量が少ない状態でバルブタイミングが切り替えられる。これにより、ポンピングロス(ポンプ損失)が増大して、燃費が悪化することを突き止めた。
本発明は、前記従来の問題を解決し、VVT機構の作動時におけるポンピングロスを低減できるようにすることを目的とする。
前記の目的を達成するため、本発明は、VVT機構の作動速度を、吸気バルブ及び排気バルブの開弁期間のオーバラップ量が多くなる方向には速くする一方、該オーバラップ量が少なくなる方向には遅くする構成とする。
具体的に、本発明は、可変バルブタイミング機構付きエンジンの制御装置を対象とし、次のような解決手段を講じた。
すなわち、第1の発明は、エンジンの運転領域に対応して、吸気バルブ及び排気バルブの少なくとも一方の開弁タイミング又は閉弁タイミングを油圧駆動により変更する可変バルブタイミング機構と、第1の所定の油圧以上の圧力でピストン方向にオイルを噴射するオイルジェットとを備えたエンジンの制御装置であって、可変バルブタイミング機構が用いる油圧の上限を第1の所定の油圧よりも低く設定し、且つ、可変バルブタイミング機構の作動速度を、吸気バルブ及び排気バルブの開弁期間のオーバラップ量が多くなる方向には速く、一方、該オーバラップ量が少なくなる方向には遅くなるように、可変バルブタイミング機構に対する油圧の供給を制御する。
これによれば、油圧が第1の所定の油圧よりも低く設定されていることから、オイルジェットからのオイルの噴射は行われない。このため、まず、油圧が相対的に高いオイルジェットが作動しないため、そのオイル噴射による油圧の低下がない状態で油圧の供給が制御される。その上、可変バルブタイミング機構の作動中の過渡期には、可変バルブタイミング機構の作動速度を吸気バルブ及び排気バルブにおける開弁期間のオーバラップ量が多くなる方向に速くし、一方、該オーバラップ量が少なくなる方向に遅くするので、いずれの場合も吸気バルブ及び排気バルブの開弁期間のオーバラップ量が多くなる。このため、可変バルブタイミング機構の作動中の過渡期におけるポンピングロスを低減できるので、燃費を改善することができる。
第2の発明は、上記第1の発明において、エンジンは複数の気筒を有しており、該エンジンは、複数の気筒の全てを作動させる全気筒運転動作と、該複数の気筒の一部を休止させる減気筒運転動作とを適宜行い、減気筒運転動作は、第1の所定の油圧よりも低い第2の所定の油圧の作用により休止中の気筒のバルブを停止して行ってもよい。
これによれば、休止気筒のバルブを停止させる油圧を確保することができる。
第3の発明は、上記第1又は第2の発明において、少なくとも排気バルブには、油圧駆動による可変バルブタイミング機構が介在しており、排気バルブにおける遅角方向への位相変化時における単位時間当たりのオイルの供給量を増やしてもよい。
これによれば、吸気バルブ及び排気バルブの開弁期間のオーバラップ量が多くなる方向の可変バルブタイミング機構の作動速度を速くすることができる。
第4の発明は、上記第1〜第3の発明において、油温が所定の油温よりも低い場合には、油圧を第1の所定の油圧よりも低い範囲で相対的に高く設定し、且つ、油温が所定の油温に達した場合には、油圧をエンジンの作動を維持する油圧以上の範囲で相対的に低く設定してもよい。
これによれば、油温が所定の油温以下の低い場合には、可変バルブタイミング機構の作動用の油の供給による油圧の低下が相対的に大きいので、該油圧を第1の所定の油圧よりも低い範囲で相対的に高く設定することにより、この相対的に大きい油圧の低下分を補うことができる。
第5の発明は、上記第1〜第4の発明において、少なくとも排気バルブには、油圧駆動による可変バルブタイミング機構が介在しており、排気バルブにおける遅角方向への位相変化時の作動速度が進角方向への位相変化時の作動速度よりも高くなるように、位相変化時における単位位相変化量当たりのオイルの消費量を進角側と比べて遅角側を少なくしてもよい。
これによれば、排気バルブの開閉タイミングの位相変化時における単位位相変化量当たりのオイルの消費量を進角側と比べて遅角側を少なくすると、可変バルブタイミング機構において、オイルの消費量が進角側よりも少ない遅角側での作動油圧の低下が小さくなる。その結果、作動油圧の低下が小さい排気バルブ側のVVT機構は、その作動速度が進角側よりも遅角側で速くなる。この場合、機構的には、排気用のVVT機構において、油の充填により作動する遅角作動室の室数を進角作動室の室数よりも少なくしている。
本発明によれば、可変バルブタイミング機構の作動時におけるポンピングロスを低減することができる。
図1は本発明の一実施形態に係るエンジンの制御装置における油圧式の可変バルブタイミング機構が設けられたエンジンの部分的な概略構成を示す断面図である。 図2(a)〜図2(c)は一実施形態に係る油圧式のバルブ停止機構の構成及び作動状態を示す断面図である。 図3は一実施形態に係る排気用の可変バルブタイミング機構であって、ロック機構によりベーン体(カム軸)が最進角位置に保持された状態でのカム軸に垂直な方向を示す断面図である。 図4は一実施形態に係る排気用の可変バルブタイミング機構であって、ロック機構が解除されてベーン体(カム軸)が最遅角位置に保持された状態でのカム軸に垂直な方向を示す断面図である。 図5の右図は図3のV−V線における断面図であり、図5の左図は油圧制御バルブを示す断面図である。 図6は一実施形態に係るエンジンのオイル供給装置の構成を示す概略図である。 図7は一実施形態に係る、電動式で吸気用の可変バルブタイミング機構と油圧式で排気用の可変バルブタイミング機構とを示すエンジンの模式的な側面図である。 図8は一実施形態に係る、各カム軸に固定された、電動式で吸気用の可変バルブタイミング機構と油圧式で排気用の可変バルブタイミング機構とを示す部分的な斜視図である。 図9は図8のIX−IX線における断面図である。 図10は一実施形態に係る排気用の可変バルブタイミング機構における作動速度の進角方向への制御方法を示す概念的なグラフである。 図11は一実施形態に係る排気用の可変バルブタイミング機構における作動速度の遅角方向への制御方法を示す概念的なグラフである。 図12は一実施形態に係る排気用の可変バルブタイミング機構の作動速度の制御方法を示す制御ブロック図である。 図13は一実施形態に係る排気用の可変バルブタイミング機構の作動速度(制限速度)と油温との関係を示すグラフである。 図14は一実施形態に係る排気用の可変バルブタイミング機構の作動速度(制限速度)及び油圧と油温との関係を示すグラフである。
以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物又はその用途を制限することを意図しない。
(一実施形態)
本発明の一実施形態について図面を参照しながら説明する。
図1は本発明の一実施形態に係るエンジンの制御装置における油圧作動式の可変バルブタイミング(VVT)機構が設けられたエンジンを示している。
(エンジンの構成)
図1に示すように、エンジン2は、例えば、第1気筒から第4気筒が図1の紙面に垂直な方向に直列に順次配置された直列4気筒ガソリンエンジンであって、自動車等の車両に搭載される。エンジン2において、ヘッドカバー3、シリンダヘッド4、シリンダブロック5、クランクケース(図示せず)及びオイルパン6(図6を参照。)が上下に連結されている。また、シリンダブロック5に形成された4つのシリンダボア7内をそれぞれに摺動可能なピストン8と、上記クランクケースに回転自在に支持されたクランク軸9とは、コネクティングロッド10によって連結されている。シリンダブロック5のシリンダボア7とピストン8とシリンダヘッド4とによって燃焼室11が気筒ごとに形成されている。
シリンダヘッド4には、燃焼室11にそれぞれ開口する吸気ポート12及び排気ポート13が設けられている。該吸気ポート12及び排気ポート13には、それぞれを開閉する吸気バルブ14及び排気バルブ15が配設されている。該吸気バルブ14及び排気バルブ15は、それぞれリターンスプリング16、17により閉方向(図1の上方)に付勢されており、それぞれ回転するカム軸18、19の外周に設けたカム部18a、19aによって、スイングアーム20、21のほぼ中央部に回転自在に設けられたカムフォロア20a、21aが下方に押される。スイングアーム20、21は、それぞれの一端側に設けられたピボット機構25aの頂部を支点として揺動することにより、各スイングアーム20、21の他端部において、吸気バルブ14及び排気バルブ15がリターンスプリング16、17の付勢力に抗して下方に押されて開動する。
エンジン2の気筒列方向の中央部に位置する第2気筒及び第3気筒のスイングアーム20、21におけるピボット機構(後述するHLA25のピボット機構25aと同様の構成を採る。)として、油圧によりバルブクリアランスを自動的に0に調整する公知の油圧ラッシュアジャスタ24(以下、Hydraulic Lash Adjusterの略記を用いてHLA24と呼ぶ。)が設けられている。なお、HLA24は、図6にのみ示す。
一方、エンジン2の気筒列方向の両端部に位置する第1気筒及び第4気筒のスイングアーム20、21に対しては、ピボット機構25aを有するバルブ停止機構付きHLA25が設けられている。このバルブ停止機構付きHLA25は、上記のHLA24と同様にバルブクリアランスを自動的に0に調整可能に構成されている。これに加え、バルブ停止機構付きHLA25は、エンジン2における全気筒の一部である第1気筒及び第4気筒の作動を休止させる減気筒運転時には、第1気筒及び第4気筒の吸排気バルブ14、15の作動を停止(開閉動作を停止)させる一方、全気筒(4気筒)を作動させる全気筒運転時には、第1気筒及び第4気筒の吸排気バルブ14、15を作動(開閉動作)させるようにする。なお、第2気筒及び第3気筒の吸排気バルブ14、15は、減気筒運転時及び全気筒運転時の双方で作動する。このため、減気筒運転時には、エンジン2の全気筒のうち第1気筒及び第4気筒のみの吸排気バルブ14、15が作動を停止し、全気筒運転時には、全気筒の吸排気バルブ14、15が作動する。なお、減気筒運転及び全気筒運転は、後述するように、エンジン2の運転状態に応じて適宜切り替えられる。
シリンダヘッド4における第1及び第4気筒に対応する吸気側及び排気側の部分には、上記のバルブ停止機構付きHLA25の下端部を挿入して装着するための装着穴26、27がそれぞれ設けられている。また、シリンダヘッド4における第2気筒及び第3気筒に対応する吸気側及び排気側の部分には、上記のHLA24の下端部を挿入して装着するための、装着穴26、27と同様の装着穴がそれぞれ設けられている。さらに、シリンダヘッド4には、バルブ停止機構付きHLA25用の装着穴26、27にそれぞれ連通する2つずつの油路(61、63)、(62、64)が穿設されている。バルブ停止機構付きHLA25が装着穴26、27に嵌合された状態で、各油路61、62は、バルブ停止機構付きHLA25におけるバルブ停止機構25b(図2(a)〜図2(c)を参照。)を作動させる油圧(作動圧)を供給するように構成されている。一方、油路63、64は、バルブ停止機構付きHLA25のピボット機構25aがバルブクリアランスを自動的に0に調整するための油圧を供給するように構成されている。なお、HLA24用の装着穴には、油路63、64のみが連通している。各油路61〜64については、図6により後に詳述する。
シリンダブロック5には、シリンダボア7の排気側の側壁内を気筒列方向に延びるメインギャラリ54が設けられている。メインギャラリ54の下側の近傍には、該メインギャラリ54と連通するピストン冷却用のオイルジェット28(オイル噴射バルブ)が各ピストン8に設けられている。オイルジェット28は、ピストン8の下側に配置されたノズル部28aを有しており、該ノズル部28aからピストン8の頂部の裏面に向けてエンジンオイル(以下、単にオイルと呼ぶ。)を噴射するように構成されている。
各カム軸18、19の上方には、パイプで形成されたオイルシャワー29、30がそれぞれ設けられている。潤滑用のオイルが、オイルシャワー29、30からその下方に位置するカム軸18、19のカム部18a、19aと、さらに下方に位置するスイングアーム20、21及びカムフォロア20a、21aの接触部とに滴下するように構成されている。
ここで、図2を参照しながら、油圧作動装置の1つであるバルブ停止機構25bについて説明する。バルブ停止機構25bは、エンジン2における全気筒の一部である第1気筒及び第4気筒の吸排気バルブ14、15のうち少なくとも一方のバルブ(本実施形態では、両方のバルブ)をエンジン2の運転状態に応じて油圧の作動により作動を停止する。これにより、エンジン2の運転状態に応じて減気筒運転に切り替えられた際には、バルブ停止機構25bによって第1気筒及び第4気筒の各吸排気バルブ14、15の開閉動作が停止する。また、全気筒運転に切り替えられた際には、バルブ停止機構25bによるバルブの作動が停止しなくなって、第1気筒及び第4気筒の各吸排気バルブ14、15の開閉動作が行われる。
上記したバルブ停止機構25bは、バルブ停止機構付きHLA25に設けられている。すなわち、バルブ停止機構付きHLA25は、ピボット機構25aとバルブ停止機構25bとを備える。ピボット機構25aは、油圧によりバルブクリアランスを自動的に0に調整する、公知のHLA24のピボット機構と実質的に同一の構成である。
バルブ停止機構25bには、図2(a)に示すように、ピボット機構25aの動作をロックするロック機構250が設けられている。該ロック機構250は、ピボット機構25aを軸方向に摺動自在に収納する有底の外筒251の側周面において径方向に対向する2箇所に形成した貫通孔251aに対してそれぞれ出入り可能に設けられた一対のロックピン252(ロック部材)を備えている。これら一対のロックピン252は、スプリング253により径方向の外側へ付勢されている。外筒251の内底部とピボット機構25aの底部との間には、ピボット機構25aを外筒251の上方に押圧して付勢するロストモーションスプリング254が設けられている。
上記の両ロックピン252が外筒251の貫通孔251aに嵌合している場合には、該両ロックピン252の上方に位置するピボット機構25aが上方に突出した状態で固定される。この場合には、ピボット機構25aの頂部がスイングアーム20、21の揺動の支点となるため、カム軸18、19の回転によりそのカム部18a、19aがカムフォロア20a、21aを下方に押すと、吸排気バルブ14、15がリターンスプリング16、17の付勢力に抗して下方に押されて開弁する。このように、第1気筒及び第4気筒において、ロックピン252がバルブ停止機構25bを貫通孔251aに嵌合した状態とすることにより、エンジン2は全気筒運転を行うことができる。
一方、図2(b)及び図2(c)に示すように、作動油圧によって上記の両ロックピン252の外側端面が押圧されると、スプリング253の付勢力に抗して、両ロックピン252が互いに接近するように外筒251の径方向の内側に後退する。その結果、両ロックピン252が外筒251の貫通孔251aから抜けるので、ロックピン252の上方に位置するピボット機構25aがロックピン252と共に外筒251の軸方向の下側に移動してバルブ停止状態となる。
すなわち、吸排気バルブ14、15を上方に付勢するリターンスプリング16、17が、ピボット機構25aを上方に付勢するロストモーションスプリング254よりも付勢力が強くなるように構成されている。これにより、カム軸18、19の回転により各カム部18a、19aがカムフォロア20a、21aをそれぞれ下方に押すと、吸排気バルブ14、15の頂部が各スイングアーム20、21の揺動の支点となる。その結果、吸排気バルブ14、15は閉弁されたまま、ピボット機構25aがロストモーションスプリング254の付勢力に抗して下方に押される。従って、作動油圧によりロックピン252を貫通孔251aに対して非嵌合の状態にすることにより、減気筒運転を行うことができる。
(油圧式排気VVT機構)
図3〜図5は油圧作動装置の1つである排気用の可変バルブタイミング(VVT)機構33(以下、単にVVT33と呼ぶ。)を示している。なお、図5には、該VVT33の動作を油圧により制御する油圧制御バルブ(Oil Control Valve)110も図示している。
図3〜図5に示すように、VVT33は、ほぼ円環状のハウジング201と、該ハウジング201の内部に収容されたベーン体202とを有している。ハウジング201は、クランク軸9と同期して回転するカムプーリ203と一体回転可能に連結されており、クランク軸9と連動して回転する。ベーン体202は、締結ボルト205により、排気バルブ15を開閉するカム軸19と一体回転可能に連結されている。
ハウジング201の内部には、該ハウジング201の内周面とベーン体202の外周面に設けられた複数のベーン202aとによって区画された複数の進角作動室207及び遅角作動室208がそれぞれ形成されている。進角作動室207及び遅角作動室208は、図5及び図6に示すように、それぞれ進角側油路211及び遅角側油路212を介して、公知の油圧制御バルブ110としての排気側第1方向切替バルブ35と接続されている。該排気側第1方向切替バルブ35は、可変容量型オイルポンプ36と接続されている。カム軸19及びベーン体202には、これら進角側油路211及び遅角側油路212の一部を構成する進角側通路215及び遅角側通路216がそれぞれ形成されている。
ここで、図3は、各進角側通路215を通して供給されたオイルにより、各ベーン202aがカムプーリ203に対して、すなわちクランク軸9に対して、最進角位置に保持されている場合を示し、図4は、これとは逆に、各遅角側通路216を通して供給されたオイルにより、各ベーン202aがカムプーリ203に対して最遅角位置に保持されている場合を示している。
進角側通路215は、ベーン体202において中心部近傍から放射状に延びて各進角作動室207とそれぞれ接続されている。遅角側通路216は、ベーン体202において中心部近傍から放射状に延びて各遅角作動室208とそれぞれ接続されている。ベーン体202における中心部近傍から放射状に延びる複数の進角側通路215のうちの1つは、ベーン体202の外周面におけるベーン202aが形成されていない部分に形成され、且つ後述するロックピン231が嵌合する嵌合凹部202bの底面と接続されている(図5を参照。)。この嵌合凹部202bを介して、複数の進角作動室207のうちの1つと接続される。なお、図4に示す遅角作動室208のうち、1つの遅角作動室208aは遅角側通路216と連通しておらず、オイルの供給はなく、ベーン202aに対する作動トルクは生じない。従って、遅角作動室208の室数は、進角作動室207の室数と比べて少ないため、作動に必要な油量も少なくなる。
図5に示すように、VVT33には、該VVT33の動作をロックするロック機構230が設けられている。該ロック機構230は、カム軸19のクランク軸9に対する位相角を特定の位相角で固定するためのロックピン231を有している。本実施形態では、この特定の位相角は最進角の位相角である。但し、最進角の位相角に限られず、どのような位相角であってもよい。
ロックピン231は、ハウジング201の径方向に摺動可能に配設されている。ハウジング201におけるロックピン231に対する該ハウジング201の径方向の外側の部分には、ばねホルダ232が固定されている。このばねホルダ232とロックピン231との間には、該ロックピン231をハウジング201の径方向の内側に付勢するロックピン付勢ばね233が設けられている。上記の嵌合凹部202bがロックピン231と対向する位置にあるときには、ロックピン付勢ばね233によって、ロックピン231が嵌合凹部202bと嵌合してロック状態となる。これにより、ベーン体202がハウジング201に固定されて、カム軸19のクランク軸9に対する位相角が固定される。
以上の構成により、排気側第1方向切替バルブ35の制御によって、VVT33の進角作動室207及び遅角作動室208へのオイルの供給量を制御することができる。具体的には、排気側第1方向切替バルブ35の制御により、進角作動室207に遅角作動室208よりも多くの供給量(高い油圧)でもってオイルを供給すると、カム軸19がその回転方向(図3及び図4の矢印の方向)に回動して、排気バルブ15の開時期が早くなり(図3を参照。)、カム軸19の最進角位置ではロックピン231が嵌合凹部202bに嵌合する。
一方、排気側第1方向切替バルブ35の制御により、遅角作動室208に進角作動室207よりも多くの供給量(高い油圧)でもってオイルを供給すると、カム軸19がその回転方向とは逆向きに回動して、排気バルブ15の開時期が遅くなる(図4を参照。)。カム軸19の最進角位置から遅角させる場合には、油圧により、ロックピン231をロックピン付勢ばね233に抗してハウジング201の径方向の外側に押し出すことにより、ロックピン231によるロックを解除する。このとき、嵌合凹部202bと連通する遅角作動室208を除く遅角作動室208には既にオイルが充填されている。このため、ロック解除の直後に、排気側第1方向切替バルブ35により、カム軸19をその回転方向とは逆向きに回動させることにより、排気バルブ15の開時期を遅く(遅角)することができる。
なお、VVT33のロックピン231のロック解除には、ロックピン付勢ばね233の付勢力に打ち克つ油圧を遅角作動室208に供給する必要があり、この油圧は、排気側第1方向切替バルブ35の制御によって得られる。また、この油圧を遅角作動室208に供給しながら、該油圧よりも低い油圧(基本的には、0に近い油圧)を進角作動室207に供給することにより、ロックピン231のロック解除の直後にカム軸19がその回転方向とは逆向きに回動して、ロック位置から外れる。その後に、排気側第1方向切替バルブ35の制御によって、排気バルブ15の開弁位相の制御を行う。
また、VVT33の各ベーン202aと、ハウジング201における該ベーン202aに対し、カム軸19の回転方向とは反対側に対向する部分との間(すなわち、進角作動室207)には、少なくとも1つのアシストばね(圧縮コイルばね)(図示せず)が配設されている。該アシストばねは、ベーン体202を進角側に付勢して、該ベーン体202の進角側への移動をアシストする。これは、カム軸19には、後述する燃料ポンプ81及びバキュームポンプ82(図6を参照。)の負荷が掛かっており、この負荷に打ち克ってベーン体202を最進角位置にまで確実に移動させる(ロックピン231を嵌合凹部202bに確実に嵌合させる)ためである。
図5の左図に、油圧制御バルブ110により構成される排気側第1方向切替バルブ35の構成の一例を示す。同左図に示すように、排気側第1方向切替バルブ35は、筐体350内に保持されたコイル351と、該コイル351の内側に摺動可能に支持されたプランジャ352と、該プランジャ352の一方の端部に保持されたスプール弁354と、該スプール弁354を内部に摺動可能に支持するスリーブ355と、筐体350から突出して配設されたコネクタ359とを有している。
スリーブ355はカムキャップ(不図示)に保持されており、そのプランジャ352側の端部は筐体350に保持されている。スプール弁354におけるプランジャ352と反対側の端部とスリーブ355の底部との間には、スプール弁354にコイル351側に付勢力を与える付勢ばね356が配設されている。
スリーブ355の一側面には、オイルポンプ36と接続された油路68及びカムキャップに形成された開口部を介して供給されるオイルの供給口357aが設けられている。スリーブ355の供給口357aが設けられた当該側面には、オイルの排出口(ドレイン)357b、357cが設けられている。
プランジャ352の他の側面には、進角側油路211及び遅角側油路212、並びにそれぞれに対応してカムキャップに形成された開口部を介して流通するオイルの流通口358a、358bが設けられている。
上記のコネクタ359にOCV駆動デューティ信号が入力されると、そのデューティ比に従って、スプール弁354がプランジャ352によって所定の位置に移動する。これにより、VVT33における進角作動室207又は遅角作動室208に流入する油量が決定される。
(オイル供給装置)
次に、図6を参照しながら、上述のエンジン2にオイルを供給するためのオイル供給装置1について詳細に説明する。
図6に示すように、オイル供給装置1は、クランク軸9の回転によって駆動される可変容量型オイルポンプ36(以下、オイルポンプ36という。)と、該オイルポンプ36と接続され、オイルポンプ36によって昇圧されたオイルをエンジン2の潤滑部及び油圧作動装置に導く給油路50(油圧経路)とを備えている。オイルポンプ36は、エンジン2により駆動される補機である。
給油路50は、パイプ、シリンダヘッド4、及びシリンダブロック5等に穿設されたオイルの通路である。給油路50は、第1連通路51と、メインギャラリ54と、第2連通路52と、第3連通路53と、複数の油路61〜69とから構成されている。
第1連通路51は、オイルポンプ36と連通され、該オイルポンプ36から、詳細には後述する吐出口361bから、シリンダブロック5内の分岐点54aまで延びている。メインギャラリ54は、シリンダブロック5内で気筒列方向に延びている。第2連通路52は、メインギャラリ54上の分岐点54bからシリンダヘッド4まで延びている。第3連通路53は、シリンダヘッド4内で吸気側と排気側との間をほぼ水平方向に延びている。複数の油路61〜69は、シリンダヘッド4内で第3連通路53から分岐している。
オイルポンプ36は、該オイルポンプ36の容量を変更してオイルポンプ36のオイル吐出量を可変にする公知の可変容量型オイルポンプであって、ハウジング361と、駆動軸362と、ポンプ要素と、カムリング366と、スプリング367と、リング部材368とを有している。
ハウジング361は、一端側が開口するように形成され、且つ内部が断面円形状の空間からなるポンプ収容室を有するポンプボディと該ポンプボディの上記一端側の開口を閉塞するカバー部材とから構成される。駆動軸362は、ハウジング361に回転自在に支持され、ポンプ収容室のほぼ中心部を貫通し、且つクランク軸9によって回転駆動される。ポンプ要素は、ポンプ収容室内に回転自在に収容されて中心部が駆動軸362に結合されたロータ363及び該ロータ363の外周部に放射状に切欠き形成された複数のスリット内にそれぞれ出没自在に収容されたべーン364から構成される。カムリング366は、ポンプ要素の外周側にロータ363の回転中心に対して偏心可能に配置され、ロータ363及び相隣接するベーン364と共に複数の作動油室であるポンプ室365を画成する。スプリング367は、ポンプボディ内に収容され、ロータ363の回転中心に対するカムリング366の偏心量が増大する側へ、カムリング366を常時付勢する付勢部材である。リング部材368は、ロータ363の内周側の両側部に摺動自在に配置され、ロータ363よりも小径の一対のリング状部材である。
また、ハウジング361は、内部のポンプ室365にオイルを供給する吸入口361aと、ポンプ室365からオイルを吐出する吐出口361bとを有している。ハウジング361の内部には、該ハウジング361の内周面とカムリング366の外周面とによって画成された圧力室369が形成されており、該圧力室369にはそれに開口する導入孔369aが設けられている。
このように、オイルポンプ36は、導入孔369aから圧力室369にオイルを導入することにより、カムリング366が支点361cに対して揺動して、ロータ363がカムリング366に対して相対的に偏心し、該オイルポンプ36の吐出容量が変化するように構成されている。
オイルポンプ36の吸入口361aには、オイルパン6に臨むオイルストレーナ39が接続されている。オイルポンプ36の吐出口361bと連通する第1連通路51には、上流側から下流側に順に、オイルフィルタ37及びオイルクーラ38が配置されている。オイルパン6内に貯留されたオイルは、オイルポンプ36により、オイルストレーナ39を通して汲み上げられ、その後、オイルフィルタ37で濾過され、且つオイルクーラ38で冷却された後、シリンダブロック5内のメインギャラリ54に導入される。
メインギャラリ54は、上述した、4つのピストン8の背面側に冷却用オイルを噴射するためのオイルジェット28と、クランク軸9を回動自在に支持する5つのメインジャーナルに配置されたメタルベアリングのオイル供給部41と、4つのコネクティングロッドを回転自在に連結する、クランク軸9のクランクピンに配置されたメタルベアリングのオイル供給部42とに接続されている。メインギャラリ54には、オイルが常時供給される。
メインギャラリ54上の分岐点54cの下流側には、油圧式チェーンテンショナにオイルを供給するオイル供給部43と、リニアソレノイドバルブ49を介してオイルポンプ36の圧力室369に、導入孔369aからオイルを供給する油路40とが接続されている。
第3連通路53の分岐点53aから分岐する油路68は、排気側第1方向切替バルブ35と接続されており、該排気側第1方向切替バルブ35の制御により、進角側油路211及び遅角側油路212を介して、排気用のVVT33の進角作動室207及び遅角作動室208にオイルがそれぞれ供給される。また、分岐点53aから分岐する油路64は、オイル供給部45(図6の白抜き三角△を参照。)と、HLA24(図6の黒三角▲を参照。)と、バルブ停止機構付きHLA25(図6の白抜き楕円を参照。)と、燃料ポンプ81と、バキュームポンプ82とに接続されている。オイル供給部45は、排気側のカム軸19のカムジャーナルにオイルを供給する。燃料ポンプ81は、カム軸19により駆動され、燃焼室11に燃料を供給する燃料噴射バルブに高圧の燃料を供給する。バキュームポンプ82は、カム軸19により駆動され、ブレーキマスタシリンダの圧力を確保する。該油路64には、オイルが常時供給される。さらに、油路64の分岐点64aから分岐する油路66は、排気側のスイングアーム21に潤滑用オイルを供給するオイルシャワー30と接続されており、該油路66にもオイルが常時供給される。
第3連通路53の分岐点53cから分岐する油路67には、該油路67の油圧を検出する油圧センサ70が配設されている。また、分岐点53dから分岐する油路63は、吸気側のカム軸18におけるカムジャーナルのオイル供給部44(図6の白抜き三角△を参照。)と、HLA24(図6の黒三角▲を参照。)と、バルブ停止機構付きHLA25(図6の白抜き楕円を参照。)とに接続されている。さらに、油路63の分岐点63aから分岐する油路65は、吸気側のスイングアーム20に潤滑用オイルを供給するオイルシャワー29と接続されている。
また、第3連通路53の分岐点53cから分岐する油路69には、オイルが流れる方向を上流側から下流側への一方向のみに規制する逆止バルブ48が配設されている。この油路69は、逆止バルブ48の下流側の分岐点69aで、バルブ停止機構付きHLA25用の装着穴26、27と連通する上記の2つの油路61、62に分岐する。油路61、62は、第2油圧制御バルブとしての吸気側第2方向切替バルブ46及び排気側第2方向切替バルブ47を介して、吸気側及び排気側の各バルブ停止機構付きHLA25のバルブ停止機構25bとそれぞれ接続されている。これら吸気側第2方向切替バルブ46及び排気側第2方向切替バルブ47をそれぞれ制御することにより、各バルブ停止機構25bにオイルが供給されるように構成されている。
クランク軸9を回転自在に支持するメタルベアリング、ピストン8並びにカム軸18、19等に供給された潤滑用及び冷却用のオイルは、潤滑及び冷却を終えた後には、図示しないドレイン油路を通ってオイルパン6内に滴下し、オイルポンプ36により環流される。
エンジン2の作動は、コントローラ100によって制御される。コントローラ100には、エンジン2の運転状態を検出する各種センサからの検出情報が入力される。コントローラ100は、例えば、クランク角センサ71によりクランク軸9の回転角度を検出し、この検出信号に基づいてエンジン回転速度を検出する。また、アクセルポジションセンサ72により、エンジン2が搭載された車両の乗員によるアクセルペダルの踏み込み量(アクセル開度)を検出し、これに基づいて要求トルクを算出する。さらに、油圧センサ70により油路67の圧力を検出する。また、油圧センサ70とほぼ同じ位置に設けた油温センサ73により、油路67におけるオイルの温度を検出する。なお、油圧センサ70及び油温センサ73は、給油路40に配設してもよい。さらに、カム軸18、19の近傍に設けられたカム角センサ74により、該カム軸18、19の回転位相を検出し、検出したカム角に基づいて各VVT33、90の位相角を検出する。また、水温センサ75によって、エンジン2を冷却する冷却水の温度(以下、水温という)を検出する。
コントローラ100は、公知のマイクロコンピュータをベースとする制御装置であって、少なくとも各種センサ(油圧センサ70、クランク角センサ71、スロットルポジションセンサ72、油温センサ73、カム角センサ74、及び水温センサ75等)からの検出信号を入力する信号入力部と、制御に係る演算処理を行う演算部と、制御対象となる装置(排気側第1方向切替バルブ35、吸気側及び排気側第2方向切替バルブ46、47、及びリニアソレノイドバルブ49等)に制御信号を出力する信号出力部と、制御に必要なプログラム及びデータ(油圧制御マップ及びデューティ比マップ等)を記憶する記憶部とを有している。
リニアソレノイドバルブ49は、エンジン2の運転状態に応じてオイルポンプ36の吐出量を制御するための流量(吐出量)制御バルブである。リニアソレノイドバルブ49の開弁時に、オイルポンプ36の圧力室369にオイルが供給されるように構成されている。ここでは、リニアソレノイドバルブ49自体の構成は公知であるため説明を省略する。
コントローラ100は、リニアソレノイドバルブ49に対し、エンジン2の運転状態に応じたデューティ比の制御信号を送信して、該リニアソレノイドバルブ49を介して、オイルポンプ36の圧力室369に供給する油圧を制御する。この圧力室369の油圧により、カムリング366の偏心量を制御してポンプ室365の内部容積の変化量を制御することによって、オイルポンプ36の流量(吐出量)を制御する。すなわち、上記のデューティ比によって、オイルポンプ36の容量が制御される。
(電動式吸気VVT機構)
図7は油圧式で排気用の可変バルブタイミング(VVT)機構33及び電動式で吸気用の可変バルブタイミング(VVT)機構90の動作を模式的に表している。図7に示すように、VVT33及びVVT90の各カムプーリ203は、クランク軸プーリ(スプロケット)9Aにより、タイミングチェーン114を介して駆動される。クランク軸プーリ9AとVVT33のカムプーリ203との間には、油圧式のチェーンテンショナ111が配設されている。また、VVT90のカムプーリ203とクランク軸プーリ9Aとの間には、チェーンガイド112が配設されている。VVT90のカム軸(図示せず)の端部には、後述するように、該カム軸の位相をシフトする電動モータ91が取り付けられている。
図8は油圧式のVVT33と電動式のVVT90との各カム軸を含む斜視図である。また、図9は図8のIX−IX線における断面構成を表している。
図8及び図9に示すように、電動式のVVT90は、電動モータ91とカム軸18における位相のシフトを生じさせる変換部92とから構成される。
図9に示すように、変換部92は、ギヤプーリ(スプロケット)93と、ギヤプラネタリ94と、ギヤカム軸95とから構成されている。ギヤプーリ93は、カムプーリ203の周縁部にねじ留めされ、且つ、例えば34個の内歯を有し、タイミングチェーン114からカムプーリ203に伝わった回転力(トルク)をギヤプラネタリ94に伝える。ギヤプラネタリ94は、ギヤプーリ93の内歯と噛み合う、例えば33個の大外歯及び27個の小外歯を有している。ギヤカム軸95は、ギヤプラネタリ94の小外歯と噛み合う、例えば28個の内歯を有し、カム軸19の端部に固持されている。ここで、電動モータ91の変換部92による減速比は154となる。
(VVT作動速度の制御)
本願発明者らは、例えば、高負荷運転から低負荷運転に移行する際、及び低負荷運転から高負荷運転に移行する際に、吸気バルブ及び排気バルブの開弁期間のオーバラップ量が少ない状態でバルブタイミングが切り替わることを確認している。このオーバラップ量が少ない状態は、ポンピングロスのために、燃費が悪化する一因となる。
図10及び図11は本発明の一実施形態に係るVVT作動速度の制御方法の概要を示している。図10は排気用のVVT33及び吸気用のVVT90によりカム軸18、19の各位相角を進角側にそれぞれシフトする際のバルブタイミングを表している。また、図11は吸気用のVVT33及び吸気用のVVT90によりカム軸18、19の各位相角を遅角側にそれぞれシフトする際のバルブタイミングを表している。
図10は、エンジン2の負荷が高負荷から低負荷に移行する場合に、各カム軸18、19の位相を進角側にシフトさせる状況を表している。ここでは、例えば、エンジン回転数が2000rpmで、空気充填効率が0.375から0.125まで低下する場合を想定している。各VVT33、90の進角方向への位相シフトは、例えば、吸気バルブ14の早閉じによる有効圧縮比の増加、及び排気バルブ15を早閉じとしてオーバラップ量を低減することによる燃焼安定性の向上等に寄与する。
図11は、エンジン2の負荷が低負荷から高負荷に移行する場合に、各カム軸18、19の位相を遅角側にシフトさせる状況を表している。ここでは、例えば、エンジン回転数が2000rpmで、空気充填効率が0.125から0.375まで上昇する場合を想定している。各VVT33、90の遅角方向への位相シフトは、例えば、吸気バルブ14の遅閉じ及び両バルブ14、15の開弁期間のオーバラップ量の増大によるポンピグロスの低減、排気バルブ15の遅開きによる高膨張比化等に寄与する。
本実施形態においては、図10に示すように、各VVT33、90を進角側にシフトする際に、吸気用のVVT90の作動速度(シフト速度)よりも、排気用のVVT33の作動速度(シフト速度)を遅く設定している。図10においては、吸気バルブ14のシフト動作における移行開始時のグラフi1から移行終了時のグラフi3までのシフト速度よりも、排気バルブ15のシフト動作における移行開始時のグラフe1から移行終了時のグラフe3までのシフト速度のほうが遅い。本実施形態においては、前述したように吸気用のVVT90として電動式を用いている。このため、電動式のVVT90の場合は、一般に油圧式のVVT33よりもそのシフト速度を速くすることは容易である。
これにより、例えば、排気バルブ15の移行中のグラフe2と吸気バルブ14の移行中のグラフi2とのオーバラップ量OL1は、排気バルブ15のシフト速度が吸気バルブ14のシフト速度よりも遅いことから、該オーバラップ量OL1が小さくなることを抑制することができる。
一方、本実施形態においては、図11に示すように、各VVT33、90を遅角側にシフトする際に、吸気用のVVT90の作動速度(シフト速度)よりも、排気用のVVT33の作動速度(シフト速度)を速く設定している。図11においては、吸気バルブ14のシフト動作における移行開始時のグラフi4から移行終了時のグラフi6までのシフト速度よりも、排気バルブ15のシフト動作における移行開始時のグラフe4から移行終了時のグラフe6までのシフト速度のほうが速い。
これにより、例えば、排気バルブ15の移行中のグラフe5と吸気バルブ14の移行中のグラフi5とのオーバラップ量OL2は、排気バルブ15のシフト速度が吸気バルブ14のシフト速度よりも速いことから、該オーバラップ量OL2が小さくなることを抑制することができる。
なお、本実施形態においては、吸気用のVVT90に電動式のVVT機構を用いている。上述のように、電動式のVVT機構は、一般に油圧式のVVT機構よりも動作速度が速いので、シフト中の過渡期には、油圧式の排気用VVT33のシフト開始時期をVVT90よりも早く開始してもよい。
図10及び図11に示したいずれの場合も、VVT33、90の作動中の過渡期におけるポンピングロスを低減できるので、燃費を改善することができる。
図12は本実施形態に係るVVT作動速度の制御方法を示す制御ブロック図である。本実施形態に係るVVTの作動速度を制御する、すなわちVVTの作動速度に制限を付与する対象は排気用のVVT33である。
図12に示すように、排気VVT要求進角マップブロックC01において、入力されるエンジン回転数及び空気充填効率から、VVT33の対応するマップ要求進角量が取得される。取得されたマップ要求進角量は、排気VVT速度制限要求ブロックC04に入力される。
一方、排気VVT速度制限値ブロックC02において、入力されるエンジン油温から、減気筒用及び全気筒用のVVT33におけるそれぞれ所定の速度制限値が取得される。取得された速度制限値は、スイッチブロックC03を介して、排気VVT速度制限要求ブロックC04に入力される。なお、スイッチブロックC03には、入力として、上記の排気VVTの速度制限値、及び減気筒(2気筒)運転か否かの「判定値」又は「速度制限なし」が入力され、これらは速度制限要求ブロックC04に入力される。
排気VVT速度制限要求ブロックC04からは、減気筒用又は全気筒用のいずれかの速度制限値に対応した排気VVT要求進角量が出力される。この後、出力された排気VVT要求進角量と現状の排気VVT実進角量との差分が算出され、この差分から、進角量の要求値(目標値)と実進角量との偏差(=「進角量の目/実偏差」)が算出されて、速度制限要求値と共に、進角F/B制御ブロックC05に入力される。
進角F/B制御ブロックC05において、入力された進角量の目/実偏差から、例えばPID(Proportional-Integral-Differential)制御法によりOCV駆動デューティが導出される。導出されたOCV駆動デューティは、図5に示した油圧制御バルブ(OCV)110に入力され、該油圧制御バルブ110が駆動される。
<第1の制御方法>
図13は本実施形態に係る排気用のVVT作動速度における制限速度と油温との関係を表している。ここでは、減気筒運転条件であって、エンジン2の潤滑用オイルの油圧を175kPaに固定した場合の、VVT33の遅角方向への作動速度(四角形■)と進角方向への作動速度(菱形◆)とを表している。
図13に示すように、油温が20℃の場合は、VVT作動速度は、遅角方向が40°CA/sであり、進角方向が45°CA/sである(但し、CAはクランク角を表す。以下、同様。)。油温が30℃の場合は、VVT作動速度は、遅角方向が65°CA/sであり、進角方向が55°CA/sである。油温が50℃の場合は、VVT作動速度は、遅角方向が110°CA/sであり、進角方向が65°CA/sである。油温が80℃及び120℃の場合は、VVT作動速度は、遅角方向が110°CA/sであり、進角方向が80°CA/sである。
このように、遅角方向の作動速度が進角方向の作動速度よりも速い。これは、図10において進角方向の作動速度が遅く、図11において遅角方向の作動速度が速いことに対応する。VVT33の作動速度を上げるには、油圧制御バルブ110からの単位時間当たりのオイルの供給量を増やすことになる。
公知のように、潤滑油は温度が低いほど、その動粘度は高くなる。このため、潤滑油は温度が低いほど、VVT作動時の油圧の低下が大きくなり、すなわち、油圧の落ち代が大きくなる。このとき、低下した油圧が、減気筒運転の維持に必要な油圧である105kPa(=第2の所定の油圧)を下回らないように、マージンを含めて油圧が175kPaに設定されている。また、上述したオイルジェット28は200kPa(=第1の所定の油圧)で作動するため、減気筒運転中に該オイルジェット28が作動しない油圧としても、175kPaが選ばれている。
<第2の制御方法>
図14は本実施形態に係る排気用のVVT作動速度における制限速度及び油圧と油温との関係を表している。ここでは、減気筒運転条件であって、エンジン2の潤滑用オイルの油圧を油温40℃以上で低減する場合の、VVT33の遅角方向への作動速度(実線)と進角方向への作動速度(破線)とを表している。なお、左縦軸はVVT作動速度を表し、右縦軸は油圧を表している。
図14に示すように、第2の制御方法においては、油温が40℃となった時点で、40℃未満で設定されていた油圧を175kPaから150kPaに低減する。これと同時に、油温が40℃となった時点で、遅角方向のVVT作動速度を40°CA/sから80°CA/sに増加する。さらに、遅角方向のVVT作動速度は、油温が90℃となった時点で、80°CA/sから110°CA/sに増加する。一方、進角方向のVVT作動速度は、油温に拘わらず、40°CA/sの一定値としている。第2の制御方法においても、遅角方向の作動速度が進角方向の作動速度よりも速いのは、図10において進角方向の作動速度が遅く、図11において遅角方向の作動速度が速いことに対応する。
上述したように、本実施形態においては、排気用のVVT33の油圧作動室の構成として、遅角作動室208の室数を3とし、一方、進角作動室207の室数を4としている。これにより、VVT33における単位位相変化量当たり(°CA/s)のオイルの消費量を進角側よりも遅角側で少なくすることができる。従って、図14に示すように、例えば、油温が40℃以上では、VVT33における遅角方向への作動速度を、オイルの消費量が少なく油圧の落ち込みが小さい分、進角方向への作動速度よりも速くすることができる。
その上、油温が高くなるほど(例えば90℃)、その動粘度が低くなり、VVT33の作動時の油圧の落ち込み量が減るので、その作動速度を、例えば80°CA/sから110°CA/sに高めることができるようになる。
また、図14に示すように、油温が40℃となった時点で、油圧を175kPaから150kPaに低減する。このように、エンジン2の発生トルクで生成される油圧を下げることによって燃費が向上する。なお、この150kPaという油圧は、VVT作動時の油圧の低下によっても、減気筒運転の維持に必要な油圧である105kPaを下回らない油圧である。また、この油圧の150kPaという値は、エンジン2の潤滑、すなわちエンジン2の作動を維持するのに必要な最低限の油圧でもある。
本実施形態によると、油温の上昇に伴って、オイルポンプ36からの吐出油圧を低下させる。言い換えれば、油温が低くオイルの動粘度が高いほど、該吐出油圧を上昇させている。このようにすると、VVT33の作動時に、油温に拘わらず、減気筒運転の維持に必要な油圧を下回ることがない。その上、エンジン2の生成トルクによって作動するオイルポンプ36に対する負荷が低下するので、燃費が改善される。
なお、遅角方向のVVT作動速度を40°CA/sから80°CA/sに増加させる温度を40℃としたが、この変更温度は30℃〜50℃の間であればよい。また、このVVT作動速度を80°CA/sから110°CA/sに増加させる温度を90℃としたが、この変更温度は80℃〜100℃の間であればよい。
また、第2の制御方法においては、遅角方向のVVT作動速度を段階的に上昇させたが、これに限られず、直線状に変化させてもよい。例えば、遅角方向のVVT作動速度を、温度が25℃では40°CA/sに設定し、120℃では110°CA/sに設定して、この2点を直線で結ぶように設定してもよい。
同様に、油圧においても、温度が25℃では175kPaに設定し、120℃では150kPaに設定して、この2点を直線で結ぶように設定してもよい。
−効果−
図10及び図11に示すように、油圧式で排気用のVVT33に対して、吸気バルブ及び排気バルブの開弁期間のオーバラップ量が多くなる方向には速くなるように、また、このオーバラップ量が少なくなる方向には遅くなるように、VVT33に対する油圧の供給を制御する。このため、該VVT33、90の作動中の過渡期におけるポンピングロスを低減できるので、燃費を改善することができる。
(他の実施形態)
本実施形態においては、速度制限の対象とするVVT機構として、油圧式で排気用のVVT33としたが、これに限られない。例えば、電動式で吸気用のVVT90を油圧式のVVT90とした場合には、速度制限の対象とするVVTは、VVT33及びVVT90のいずれか一方、又はその両方でもよい。
本発明に係るエンジンの制御装置は、油圧式の可変バルブタイミング機構と、エンジンの気筒の一部の作動を油圧の供給により休止させることによりエンジンの減気筒運転を行う油圧式のバルブ停止機構とを備えたエンジンの制御装置として有用である。
1 オイル供給装置
2 エンジン
3 ヘッドカバー
8 ピストン
9 クランク軸
14 吸気バルブ
15 排気バルブ
18 吸気側のカム軸
19 排気側のカム軸
25 バルブ停止機構付き油圧ラッシュアジャスタ
25a ピボット機構
25b バルブ停止機構
28 オイルジェット
33 油圧式で排気用の可変バルブタイミング機構
35 排気側第1方向切替バルブ
36 可変容量型オイルポンプ
90 電動式で吸気用の可変バルブタイミング機構
91 電動モータ
92 変換部
110 油圧制御バルブ(OCV)
207 進角作動室
208 遅角作動室

Claims (5)

  1. エンジンの運転領域に対応して、吸気バルブ及び排気バルブの少なくとも一方の開弁タイミング又は閉弁タイミングを油圧駆動により変更する可変バルブタイミング機構と、第1の所定の油圧以上の圧力でピストン方向にオイルを噴射するオイルジェットとを備えたエンジンの制御装置であって、
    前記可変バルブタイミング機構が用いる油圧の上限を前記第1の所定の油圧よりも低く設定し、且つ、
    前記可変バルブタイミング機構の作動速度を、前記吸気バルブ及び排気バルブの開弁期間のオーバラップ量が多くなる方向には速く、一方、該オーバラップ量が少なくなる方向には遅くなるように、前記可変バルブタイミング機構に対する油圧の供給を制御するエンジンの制御装置。
  2. 請求項1に記載のエンジンの制御装置において、
    前記エンジンは複数の気筒を有しており、
    前記エンジンは、前記複数の気筒の全てを作動させる全気筒運転動作と、前記複数の気筒の一部を休止させる減気筒運転動作とを適宜行い、
    前記減気筒運転動作は、前記第1の所定の油圧よりも低い第2の所定の油圧の作用により、休止中の気筒のバルブを停止して行うエンジンの制御装置。
  3. 請求項1又は2に記載のエンジンの制御装置において、
    少なくとも前記排気バルブには、油圧駆動による前記可変バルブタイミング機構が介在しており、
    前記排気バルブにおける遅角方向への位相変化時における単位時間当たりのオイルの供給量を増やすエンジンの制御装置。
  4. 請求項1〜3のいずれか1項に記載のエンジンの制御装置において、
    油温が所定の油温よりも低い場合には、油圧を前記第1の所定の油圧よりも低い範囲で相対的に高く設定し、且つ、
    油温が前記所定の油温に達した場合には、油圧を前記エンジンの作動を維持する油圧以上の範囲で相対的に低く設定するエンジンの制御装置。
  5. 請求項1〜4のいずれか1項に記載のエンジンの制御装置において、
    少なくとも前記排気バルブには、油圧駆動による前記可変バルブタイミング機構が介在しており、
    前記排気バルブにおける遅角方向への位相変化時の作動速度が進角方向への位相変化時の作動速度よりも高くなるように、位相変化時における単位位相変化量当たりのオイルの消費量を、進角側と比べて遅角側を少なくしているエンジンの制御装置。
JP2018547045A 2016-10-28 2016-10-28 可変バルブタイミング機構付きエンジンの制御装置 Pending JPWO2018078815A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/082144 WO2018078815A1 (ja) 2016-10-28 2016-10-28 可変バルブタイミング機構付きエンジンの制御装置

Publications (1)

Publication Number Publication Date
JPWO2018078815A1 true JPWO2018078815A1 (ja) 2019-06-27

Family

ID=62024552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018547045A Pending JPWO2018078815A1 (ja) 2016-10-28 2016-10-28 可変バルブタイミング機構付きエンジンの制御装置

Country Status (5)

Country Link
US (1) US20200049031A1 (ja)
EP (1) EP3505742A4 (ja)
JP (1) JPWO2018078815A1 (ja)
CN (1) CN109863287A (ja)
WO (1) WO2018078815A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7322514B2 (ja) * 2019-05-28 2023-08-08 マツダ株式会社 シリンダヘッド
US11560813B2 (en) * 2021-03-18 2023-01-24 Schaeffler Technologies AG & Co. KG Recirculating hydraulic fluid control valve
CN115614125A (zh) * 2022-09-07 2023-01-17 赛力斯集团股份有限公司 可变排量的机油泵控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176557A (ja) * 1996-12-16 1998-06-30 Toyota Motor Corp 内燃機関のバルブタイミング制御装置
JPH10331670A (ja) * 1997-05-29 1998-12-15 Toyota Motor Corp 内燃機関のバルブ特性制御装置
JPH10331612A (ja) * 1997-05-29 1998-12-15 Toyota Motor Corp 内燃機関の燃料噴射制御装置
WO2005056995A1 (ja) * 2003-12-12 2005-06-23 Hitachi, Ltd. エンジンの制御装置
JP2009002259A (ja) * 2007-06-22 2009-01-08 Suzuki Motor Corp 内燃機関の可変バルブタイミング制御装置
JP2015045288A (ja) * 2013-08-28 2015-03-12 マツダ株式会社 エンジンの制御装置
JP2015194132A (ja) * 2014-03-31 2015-11-05 マツダ株式会社 エンジンの制御装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161129A (ja) * 2001-11-26 2003-06-06 Mazda Motor Corp エンジンのバルブタイミング制御装置
JP4375201B2 (ja) * 2004-11-02 2009-12-02 トヨタ自動車株式会社 内燃機関の制御装置
JP4277897B2 (ja) * 2006-12-21 2009-06-10 トヨタ自動車株式会社 内燃機関の制御装置
JP4793369B2 (ja) * 2007-10-18 2011-10-12 トヨタ自動車株式会社 油圧システムの制御装置及びバルブタイミング制御装置
JP5251403B2 (ja) * 2008-09-30 2013-07-31 マツダ株式会社 内燃機関のバルブタイミング制御方法及び内燃機関システム
JP4743287B2 (ja) * 2009-02-04 2011-08-10 トヨタ自動車株式会社 可変動弁装置の制御装置
JP4816785B2 (ja) * 2009-02-20 2011-11-16 マツダ株式会社 ターボ過給機付きエンジンの制御方法および制御装置
JP4849150B2 (ja) * 2009-04-13 2012-01-11 トヨタ自動車株式会社 内燃機関の可変動弁装置
US9752581B2 (en) * 2011-11-07 2017-09-05 Aisin Seiki Kabushiki Kaisha Oil supply apparatus
JP6163831B2 (ja) * 2013-03-29 2017-07-19 マツダ株式会社 エンジンのオイル供給装置
JP5966999B2 (ja) * 2013-03-29 2016-08-10 マツダ株式会社 多気筒エンジンの制御装置
US10202911B2 (en) * 2013-07-10 2019-02-12 Ford Global Technologies, Llc Method and system for an engine for detection and mitigation of insufficient torque
JP6177610B2 (ja) * 2013-07-17 2017-08-09 日立オートモティブシステムズ株式会社 可変容量形ポンプ
JP6192480B2 (ja) * 2013-10-18 2017-09-06 日立オートモティブシステムズ株式会社 内燃機関のオイルポンプ及びオイルポンプのリリーフ圧制御装置
JP6294653B2 (ja) * 2013-12-18 2018-03-14 株式会社山田製作所 オイルポンプのリリーフ装置
JP6052205B2 (ja) * 2014-02-28 2016-12-27 マツダ株式会社 エンジンのバルブタイミング制御装置
JP6289943B2 (ja) * 2014-03-10 2018-03-07 日立オートモティブシステムズ株式会社 可変容量形ポンプ
JP6229564B2 (ja) * 2014-03-19 2017-11-15 アイシン精機株式会社 弁開閉時期制御装置
JP2015194131A (ja) * 2014-03-31 2015-11-05 マツダ株式会社 エンジンの制御装置
JP6410591B2 (ja) * 2014-12-18 2018-10-24 日立オートモティブシステムズ株式会社 可変容量形オイルポンプ
GB2551509B (en) * 2016-06-20 2020-08-26 Ford Global Tech Llc An engine assembly comprising a camshaft driven oil pump

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176557A (ja) * 1996-12-16 1998-06-30 Toyota Motor Corp 内燃機関のバルブタイミング制御装置
JPH10331670A (ja) * 1997-05-29 1998-12-15 Toyota Motor Corp 内燃機関のバルブ特性制御装置
JPH10331612A (ja) * 1997-05-29 1998-12-15 Toyota Motor Corp 内燃機関の燃料噴射制御装置
WO2005056995A1 (ja) * 2003-12-12 2005-06-23 Hitachi, Ltd. エンジンの制御装置
JP2009002259A (ja) * 2007-06-22 2009-01-08 Suzuki Motor Corp 内燃機関の可変バルブタイミング制御装置
JP2015045288A (ja) * 2013-08-28 2015-03-12 マツダ株式会社 エンジンの制御装置
JP2015194132A (ja) * 2014-03-31 2015-11-05 マツダ株式会社 エンジンの制御装置

Also Published As

Publication number Publication date
US20200049031A1 (en) 2020-02-13
EP3505742A4 (en) 2019-09-25
CN109863287A (zh) 2019-06-07
EP3505742A1 (en) 2019-07-03
WO2018078815A1 (ja) 2018-05-03

Similar Documents

Publication Publication Date Title
JP6163831B2 (ja) エンジンのオイル供給装置
JP6052205B2 (ja) エンジンのバルブタイミング制御装置
JP6123575B2 (ja) 多気筒エンジンの制御装置
JP6160539B2 (ja) エンジンの制御装置
JP5966999B2 (ja) 多気筒エンジンの制御装置
JP6213064B2 (ja) エンジンの制御装置
JP6187416B2 (ja) エンジンのオイル供給装置
JP2015194131A (ja) エンジンの制御装置
JP6787405B2 (ja) 可変バルブタイミング機構付エンジン
JP2016056771A (ja) エンジンのオイル供給装置
JP6094430B2 (ja) エンジンの制御装置
JP6123726B2 (ja) エンジンの制御装置
JPWO2018078815A1 (ja) 可変バルブタイミング機構付きエンジンの制御装置
JP6156182B2 (ja) 多気筒エンジンの制御装置
JP6330700B2 (ja) エンジンのオイル供給装置
JP6020307B2 (ja) 多気筒エンジンの制御装置
JP6146341B2 (ja) エンジンのバルブタイミング制御装置
JP6315061B1 (ja) 可変バルブタイミング機構付き自動車用エンジン
JP6315062B1 (ja) 可変バルブタイミング機構付きエンジンの制御装置
JP6149761B2 (ja) エンジンのバルブタイミング制御装置
JP6350635B2 (ja) 可変バルブタイミング機構付エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200428