JPWO2013031900A1 - 配線欠陥検出方法および配線欠陥検出装置、並びに半導体基板の製造方法 - Google Patents

配線欠陥検出方法および配線欠陥検出装置、並びに半導体基板の製造方法 Download PDF

Info

Publication number
JPWO2013031900A1
JPWO2013031900A1 JP2013531398A JP2013531398A JPWO2013031900A1 JP WO2013031900 A1 JPWO2013031900 A1 JP WO2013031900A1 JP 2013531398 A JP2013531398 A JP 2013531398A JP 2013531398 A JP2013531398 A JP 2013531398A JP WO2013031900 A1 JPWO2013031900 A1 JP WO2013031900A1
Authority
JP
Japan
Prior art keywords
wiring
defect
value
voltage
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013531398A
Other languages
English (en)
Other versions
JP5744212B2 (ja
Inventor
裕史 狩田
裕史 狩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2013531398A priority Critical patent/JP5744212B2/ja
Publication of JPWO2013031900A1 publication Critical patent/JPWO2013031900A1/ja
Application granted granted Critical
Publication of JP5744212B2 publication Critical patent/JP5744212B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/07Non contact-making probes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/2805Bare printed circuit boards
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

本発明の一形態における配線欠陥検出方法は、欠陥部の温度上昇値が、予め設定されているフレーム数閾値内において、温度上昇閾値を越える場合、対応する画素が欠陥であると判定することができる。本発明に係る配線欠陥検出装置は、半導体基板の温度を測定し画像化する温度測定画像化部を備えている。

Description

本発明は、液晶パネルおよび太陽電池パネル等の半導体基板に形成された配線の欠陥検出に好適な配線欠陥検出方法および配線欠陥検出装置、並びに半導体基板の製造方法に関する。
半導体基板の一例として、例えば、液晶パネルの製造プロセスは、アレイ(TFT)工程、セル(液晶)工程、およびモジュール工程に大別される。このうち、アレイ工程においては、透明基板上に、ゲート電極、半導体膜、ソース・ドレイン電極、保護膜、および透明電極が形成された後にアレイ検出が行われ、電極または配線等の配線の短絡の有無が検出される。
通常、アレイ検出においては、このような欠陥を、配線の端部にプローブを接触させ、配線両端における電気抵抗または隣接する配線間の電気抵抗および電気容量を測定することにより特定している。しかしながら、アレイ検出において、配線部の欠陥の有無を検出できたとしても、その欠陥の位置を特定するのは容易ではなかった。
例えば、上記の問題を改善し、欠陥の位置を特定する方法として、リーク欠陥基板に電圧を印加させて発熱させ、赤外線カメラによりリーク欠陥基板表面温度を撮像したものを用いて欠陥位置を特定する赤外線検出がある。
特許文献1は赤外線画像により基板の短絡欠陥を検出する赤外線検出に関するものであり、電圧を印加する前後の基板の赤外線画像の差画像を用いることにより、発熱している配線を検出し、欠陥位置を特定できるようにしている。
また特許文献2にも、赤外線カメラを用いた故障診断方法が開示されている。
日本国公開特許公報「特開平06−207914号公報(公開日:1994年7月26日)」 日本国公開特許公報「特開平04−348266号公報(公開日:1992年12月3日)」
しかしながら、特許文献1および2の技術を用いると、十分な温度変化が得られない低発熱欠陥の場合、欠陥部(発熱している配線部)および背景部(発熱していない配線部、および基板上の配線部以外の部分)における赤外線画像の差画像を比較しても明確なコントラストの差が生じない虞がある。この場合、該差画像の2値化を行ったところで欠陥部と背景部とを十分に分離することができず、欠陥部を特定することが困難である。
本発明は、上記の課題に鑑みて為されたものであり、その目的は、半導体基板(リーク欠陥基板)の発熱までの時間(フレーム数)および温度上昇値に閾値を設定することにより、欠陥部の発熱量(赤外線画像の強度)に関わらず、基板上の欠陥部を高精度に検出することができる方法および装置、並びに基板の製造方法を提供することにある。
そこで、上記の課題を解決するために、本発明に係る配線欠陥検出方法は、
半導体基板に形成された配線に所定の電圧を印加する電圧印加工程と、
上記電圧印加工程にて電圧印加した半導体基板の少なくとも一部の領域の温度を、赤外線カメラを用いて一定時間連続して測定する測定工程と、
上記測定工程で測定した温度値から、該電圧印加する前の該半導体基板の温度値を差分して導出される温度上昇値が、閾値以上であるか否かを判断する判断工程と、
上記判断工程にて閾値以上であると判断された場合には上記領域に形成された上記配線に短絡欠陥があると判定し、該閾値未満であると判断された場合には該配線に短絡欠陥は無いと判定する欠陥判定工程と、
を含むことを特徴としている。
上記の構成によれば、欠陥が低発熱であるが故に温度変化不足となり、赤外線画像の差分画像を用いた欠陥検出方法にて欠陥であるか否かを判断することが難しい欠陥の場合であっても、目視に頼る赤外線画像を用いずに温度上昇値などの数値データを用いて判断することによって、欠陥を高精度に検出することができる。言い換えれば、欠陥の発熱量(赤外線画像の強度)に関わらず、半導体基板上の短絡に伴う欠陥を高精度に検出することができる。
また本発明の係る配線欠陥検出装置は、上記の課題を解決するために、
半導体基板に形成された配線に所定の電圧を印加する電圧印加手段と、
上記半導体基板の温度を測定する赤外線カメラと、
上記赤外線カメラが上記半導体基板の温度を一定時間連続して測定する測定手段と、
上記測定手段によって得られる温度値から、該電圧印加する前の該半導体基板の温度値を差分して温度上昇値を導出し、導出した温度上昇値が閾値以上であるか否かを判断する判断手段と、
上記判断手段で上記閾値以上であると判断された場合には上記配線に短絡欠陥があると判定し、該閾値未満であると判断された場合には該短絡欠陥は無いと判定する欠陥判定手段とを備えており、
上記測定手段、上記判断手段、および上記欠陥判定手段を、制御部に設けていることを特徴としている。
上記の構成によれば、欠陥が低発熱であるが故に温度変化不足となり、赤外線画像の差分画像を用いた欠陥検出方法にて欠陥であるか否かを判断することが難しい欠陥の場合であっても、目視に頼る赤外線画像を用いずに温度上昇値などの数値データを用いて判断することによって、欠陥を高精度に検出することができる。言い換えれば、欠陥部の発熱量(赤外線画像の強度)に関わらず、欠陥を高精度に検出することができる。
また、本発明に係る、半導体基板の製造方法は、
基板上に、ゲート電極、ソース電極、および、ドレイン電極のうちの少なくとも1つと、それに繋がる配線と、半導体膜とを形成して、当該配線が形成された半導体基板を形成する半導体基板形成工程と、
上記半導体基板に形成された上記配線に所定の電圧を印加する電圧印加工程と、
上記電圧印加工程にて電圧印加した半導体基板の少なくとも一部の領域の温度を、赤外線カメラを用いて一定時間連続して測定する測定工程と、
上記測定工程で測定した温度値から、該電圧印加する前の該半導体基板の温度値を差分して導出される温度上昇値が、閾値以上であるか否かを判断する判断工程と、
上記判断工程にて閾値以上であると判断された場合には上記領域に形成された上記配線に短絡欠陥があると判定し、該閾値未満であると判断された場合には該配線に短絡欠陥は無いと判定する欠陥判定工程と、
を含むことを特徴としている。
以上のように、本発明に係る配線欠陥検出方法および配線欠陥検出装置により、欠陥が低発熱であるが故に温度変化不足となり、赤外線画像の差分画像を用いた欠陥検出方法にて欠陥であるか否かを判断することが難しい欠陥の場合であっても、目視に頼る赤外線画像を用いずに温度上昇値などの数値データを用いて判断することによって、基板上の欠陥部を高精度に検出することができる。言い換えれば、欠陥部の発熱量(赤外線画像の強度)に関わらず、半導体基板上の欠陥部を高精度に検出することができる。
本発明の実施形態に係る配線欠陥検出装置の構成を示すブロック図、および液晶パネルを有するマザー基板の構成を示す斜視図である。 本発明の実施形態に係る配線欠陥検出装置の構成を示す斜視図である。 本発明の実施形態に係る液晶パネルおよびプローブの平面図である。 本発明の実施形態に係る配線欠陥検出方法を示すフローチャートである。 本発明の実施形態に係る画素部の欠陥を示す模式図である。 本発明の実施形態に係る温度上昇閾値を算出する際の背景画像を作成する方法の概略図である。 本発明の実施形態に係る欠陥部の温度変化曲線を示すグラフである。 本発明の実施形態に係る背景部の温度変化曲線を示すグラフである。 本発明の実施形態において用いられる短絡経路を示す模式図である。
本発明に係る配線欠陥検出装置および配線欠陥検出方法の一実施形態について、図1〜図8を参照して説明する。
(1)配線欠陥検出装置の構成
図1の(a)は、本実施形態における配線欠陥検出装置100の構成を示すブロック図であり、図1の(b)は、配線欠陥検出装置100を用いて配線欠陥検出される対象であるマザー基板1(半導体基板)の斜視図である。
配線欠陥検出装置100は、図1の(b)に示すマザー基板1上に形成された複数の液晶パネル2(半導体基板)において配線等の欠陥を検出することができる。そのため、配線欠陥検出装置100は、図1の(a)に示すように、液晶パネル2と導通させるためのプローブ3、および、プローブ3を各液晶パネル2上に移動させるプローブ移動手段4を備えている。また配線欠陥検出装置100は、赤外線画像を取得するための赤外線カメラ5、および、赤外線カメラ5を液晶パネル2上において移動させるカメラ移動手段6を備えている。更に配線欠陥検出装置100は、プローブ移動手段4およびカメラ移動手段6を制御する制御部7(測定手段、判断手段、欠陥判定手段)を備えている。
上記プローブ3には、液晶パネル2の配線間の抵抗を測定するための抵抗測定部8、および、液晶パネル2の配線間に電圧を印加するための電圧印加部9(電圧印加手段)が接続されている。これら抵抗測定部8および電圧印加部9は、制御部7により制御されている。
上記制御部7は、配線間の抵抗値および画像データを記憶するデータ記憶部10に接続されている。
図2は、本実施形態における配線欠陥検出装置100の構成を示す斜視図である。配線欠陥検出装置100は、図2に示すように、基台上にアライメントステージ11が設置されており、アライメントステージ11にはマザー基板1が載置できるように構成されている。マザー基板1が載置されたアライメントステージ11は、プローブ移動手段4およびカメラ移動手段6のXY座標軸と平行に位置調整される。このとき、アライメントステージ11の位置調整には、アライメントステージ11の上方に設けられた、マザー基板1の位置を確認するための光学カメラ12が用いられる。
上記プローブ移動手段4は、アライメントステージ11の外側に配置されたガイドレール13aにスライド可能に設置されている。また、プローブ移動手段4の本体側にもガイドレール13bおよび13cが設置されており、マウント部14aがこれらのガイドレール13に沿ってXYZの各座標方向に移動できるように設置されている。このマウント部14aには、液晶パネル2に対応したプローブ3が搭載されている。
上記カメラ移動手段6は、プローブ移動手段4の外側に配置されたガイドレール13dにスライド可能に設置されている。また、カメラ移動手段6の本体にもガイドレール13eおよび13fが設置されており、3箇所のマウント部14b、14c、および14dがこれらのガイドレール13に沿ってXYZの各座標方向に別々に移動することができる。
本実施形態において、配線欠陥検出装置100に備えられている赤外線カメラ5は2種類ある。一方は、マクロ測定用の赤外線カメラ5aであり、もう一方はミクロ測定用の赤外線カメラ5bである。
配線欠陥検出装置100のマウント部14cにはマクロ測定用の赤外線カメラ5aが搭載され、マウント部14bにはミクロ測定用の赤外線カメラ5bが搭載され、また、マウント部14dには光学カメラ16が搭載されている。
マクロ測定用の赤外線カメラ5aは、視野が520×405mm程度まで広げられたマクロ測定が可能な赤外線カメラである。マクロ測定用の赤外線カメラ5aは、視野を広げるため、例えば、4台の赤外線カメラを組み合わせて構成されている。すなわち、マクロ測定用の赤外線カメラ1台当たりの視野は、マザー基板1の概ね1/4になっている。
また、ミクロ測定用の赤外線カメラ5bは、視野が32×24mm程度と小さいが高分解能の撮影が行えるミクロ測定が可能な赤外線カメラである。
なお、カメラ移動手段6には、マウント部を追加して、欠陥箇所を修正するためのレーザ照射装置を搭載することもできる。レーザ照射装置を搭載することにより、欠陥部の位置を特定した後、欠陥部にレーザを照射することにより連続して欠陥修正を行うことができる。
プローブ移動手段4およびカメラ移動手段6は、それぞれが別々のガイドレール13aおよび13dに設置されている。そのため、アライメントステージ11の上方をX座標方向に、互いに干渉されずに移動することができる。これにより、液晶パネル2にプローブ3を接触させた状態のまま、赤外線カメラ5a、5b、および光学カメラ16を液晶パネル2上に移動させることができる。
図3(a)は、マザー基板1に形成されている複数の液晶パネル2のうちの1つの液晶パネル2の平面図である。各液晶パネル2には、図3(a)に示すように、走査線および信号線が交差する各交点にTFTが形成された画素部17、および、走査線および信号線をそれぞれ駆動する駆動回路部18が形成されている。液晶パネル2の縁部には、端子部19a〜19dが設置されており、端子部19a〜19dは画素部17または駆動回路部18の配線と繋がっている。
なおこの液晶パネル2は、透明基板上に、ゲート電極、半導体膜、ソース電極、ドレイン電極、保護膜、および透明電極が形成されることで作製されている。以下にこの液晶パネル2の具体的な製造方法について一例を挙げて説明する。
まず、透明基板全体に、スパッタリング法により、例えばチタン膜、アルミニウム膜およびチタン膜等の金属膜を順に成膜し、その後、フォトリソグラフィによりパターニングして、ゲート配線、ゲート電極および容量配線を例えば4000Å程度の厚さで形成する。
続いて、ゲート配線、ゲート電極および容量配線が形成された基板全体に、例えばプラズマCVD(Chemical Vapor Deposition)法により、窒化シリコン膜等を成膜し、ゲート絶縁膜を厚さ4000Å程度に形成する。
さらに、ゲート絶縁膜が形成された基板全体に、プラズマCVD法により、真性アモルファスシリコン膜、および、リンがドープされたn+アモルファスシリコン膜を連続して成膜する。その後、これらのシリコン膜をフォトリソグラフィによりゲート電極上に島状にパターニングして、厚さ2000Å程度の真性アモルファスシリコン層、および厚さ500Å程度のn+アモルファスシリコン層が積層された半導体膜を形成する。
そして、上記半導体膜が形成された基板全体に、スパッタリング法により、アルミニウム膜およびチタン膜等を成膜した後に、フォトリソグラフィによりパターニングして、ソース配線、ソース電極、導電膜、ドレイン電極をそれぞれ厚さ2000Å程度に形成する。
続いて、ソース電極およびドレイン電極をマスクとして上記半導体膜のn+アモルファスシリコン層をエッチングすることにより、チャネル部をパターニングして、TFTを形成する。
さらに、TFTが形成された基板全体に、スピンコート法により、例えば、アクリル系の感光性樹脂を塗布し、その塗布された感光性樹脂をフォトマスクを介して露光する。その後、上記露光した感光性樹脂を現像することにより、ドレイン電極上に層間絶縁膜を厚さ2μm〜3μm程度に形成する。続いて、層間絶縁膜にコンタクトホールを各画素毎に形成する。
次に、層間絶縁膜上の基板全体に、スパッタリング法により、ITO膜を成膜し、その後、フォトリソグラフィによりパターニングして、透明電極を厚さ1000Å程度に形成する。
以上のようにして、液晶パネル2(半導体基板)を形成することができる。
なお、以上の製造方法の一例は、マザー基板1(半導体基板)に対して適用することができ、大型の透明基板を用いて、複数(例えば図1(b)では8つ)の液晶パネルが形成される領域に上述の各過程を適用してゲート電極などを形成し、透明電極を形成した後に、以下に説明する配線欠陥検査方法を実施して、欠陥が検出されたものについては欠陥の修復を行ない、必要に応じて再度配線欠陥検査方法を実施して欠陥の無い良品を製造し、欠陥が検出されなかったものについてはその時点で良品とする。そして、例えば、その後工程として、各液晶パネルをマザー基板から分離して、1つの液晶パネルとして製造を完了することができる。欠陥修復は、例えばレーザを照射して短絡部分を切断する方法があるがこれに限定されるものではない。
図3(b)は、液晶パネル2に設置された端子部19a〜19dと導通させるためのプローブ3(電圧印加手段)の平面図である。プローブ3は、図3(a)に示す液晶パネル2の大きさとほぼ同じ大きさの枠状の形状を成しており、液晶パネル2に設置された端子部19a〜19dに対応した複数のプローブ針21a〜21dを備えている。
複数のプローブ針21a〜21dは、スイッチングリレー(図示なし)を介して、プローブ針21の一本ずつを個別に図1の(a)に示す抵抗測定部8および電圧印加部9に接続することができる。このため、プローブ3は、端子部19a〜19dに繋がる複数の配線を選択的に接続させたり、複数の配線をまとめて接続させたりすることができる。
また、プローブ3は、液晶パネル2とほぼ同じ大きさの枠の形状を成している。そのため、端子部19a〜19dと、プローブ針21a〜21dとの位置を合わせる際に、プローブ3の枠の内側から光学カメラ16を用いて該位置を確認することができる。
上記のように、本実施形態に係る配線欠陥検出装置100は、プローブ3、および、プローブ3と接続された抵抗測定部8を備えており、プローブ3を液晶パネル2に導通させて、後述するような各配線の抵抗値および隣接する配線間の抵抗値などを測定することができる。
また、本実施形態に係る配線欠陥検出装置100は、プローブ3、プローブ3と接続された電圧印加部9、および、赤外線カメラ5を備えている。そして、プローブ3を介して液晶パネル2の配線または配線間に電圧を印加する前後に、赤外線カメラ5を用いて液晶パネル2の温度を測定する。
具体的には、電圧を印加する前後に赤外線カメラ5を用いて液晶パネル2を動画で撮像する。撮像して得られた動画像は、データ記憶部10に保存される。
データ記憶部10に保存された動画像は、制御部7においてデータ処理され、画素ごとの温度値が算出される。この温度値も、データ記憶部10に保存される。
更に制御部7は、データ記憶部10に保存された電圧印加前の画像と電圧印加後の画像とからその差分画像を算出し、画像化されたデータの画素ごとに、電圧印加による発熱に基づいた温度上昇値を算出する。これより、この「画像化されたデータの画素」を「データ画素」と表現する。算出された温度上昇値が、予め設定された時間(フレーム数)閾値内に、予め設定された温度上昇閾値を越えた場合、対応するデータ画素に欠陥が含まれていると判定する。つまり、欠陥部であると特定する。この予め設定された時間(フレーム数)閾値および予め設定された温度上昇閾値については後述する。
以下では、このような構成を具備する本実施形態の配線欠陥検出装置100を用いておこなう欠陥検出について詳述する。
特に、本実施形態の配線欠陥検出装置100では、1台の装置により、抵抗検査および赤外線検出を兼用して行うことができる。
(2)配線欠陥検出方法
図4は、本実施形態に係る配線欠陥検出装置100を用いた配線欠陥検出方法のフローチャートである。
本実施形態の配線欠陥検出方法は、図1の(b)に示すマザー基板1に形成された複数の液晶パネル2について、ステップS1〜ステップS21のステップにより、順次、配線欠陥検出が実施される。
本実施形態の配線欠陥検出方法は、
(i)液晶パネル2に形成された配線に所定の電圧を印加する電圧印加工程と、
(ii)電圧印加工程にて電圧印加した液晶パネル2の少なくとも一部の領域の温度を、赤外線カメラ5を用いて一定時間連続して測定する測定工程と、
(iii)測定工程で測定した温度値から、電圧印加する前の液晶パネル2の温度値を差分して導出される温度上昇値が、閾値以上であるか否かを判断する判断工程と、
(iv)上記判断工程にて閾値以上であると判断された場合には上記領域に形成された上記配線に短絡欠陥があると判定し、該閾値未満であると判断された場合には該配線に短絡欠陥は無いと判定する欠陥判定工程と、
を含む。
以下、ステップS1〜ステップS21の各ステップについて説明する。
ステップS1では、図2に示す配線欠陥検出装置100のアライメントステージ11にマザー基板1が載置され、XY座標軸と平行になるように基板の位置が調整される。
ステップS2では、図2に示すプローブ移動手段4によりプローブ3が、ステップS1において位置調整がされたマザー基板1の、検出対象となる液晶パネル2の上部に移動され、プローブ針21a〜21dが液晶パネル2の端子部19a〜19dと接触する。
ステップS3では、ステップS2に続けて、各種欠陥の検出モードに対応して、抵抗検査するための配線または配線間が選択され、導通させるプローブ針21の切り替えが行われる。
ここで、各種欠陥の検出モードについて、図5(a)〜(c)を用いて説明する。図5(a)〜(c)では、一例として、画素部17に生じる欠陥部23(配線短絡部)の位置を模式的に示している。
図5(a)は、例えば、走査線および信号線のように、配線Xおよび配線Yが上下に交差する液晶パネルにおいて、当該交差部分において配線Xと配線Yとが短絡している欠陥部23を示している。導通させるプローブ針21を、図3に示した21aと21dとの組または21bと21cとの組に切り替え、配線X1〜X10および配線Y1〜Y10に関して1対1で配線間の抵抗値を測定することにより、欠陥部23の有無を特定することができる。
図5(b)は、例えば、走査線および補助容量線のような、隣接する配線Xの配線間において短絡した欠陥部23を示している。このような欠陥部23は、導通させるプローブ針21を、21bの奇数番と21dの偶数番との組に切り替えて、配線X1〜X10の隣り合う配線間の抵抗値を測定することにより、欠陥部23の有る配線を特定することができる。
図5(c)は、例えば、信号線および補助容量線のような、隣接する配線Yの配線間において短絡した欠陥部23を示している。このような欠陥部23は、導通させるプローブ針21を、21aの奇数番と21cの偶数番との組に切り替えて、配線Y1〜Y10の隣り合う配線間の抵抗値を測定することにより、欠陥部23の有る配線を特定できる。
ステップS4では、ステップS3において切り替えられたプローブ針21を導通して、選択された配線または配線間の抵抗値を測定し、取得する。取得された抵抗値は、データ記憶部10に記憶される。
ステップS5では、ステップS4において取得された抵抗値と、予めデータ記憶部10に記憶されている、欠陥が無いパネル(基準パネル)の配線または配線間の抵抗値とが比較される。ここでは、ステップS4で取得された抵抗値が、予めデータ記憶部10に記憶されている欠陥が無いパネルの配線または配線間の抵抗値と同一である場合、ステップS20に移行する。ステップS4で取得された抵抗値が、欠陥が無いパネルの配線または配線間の抵抗値と同一である場合は、この検出モードにおいて欠陥は無いと特定することができる。
一方、ステップS5において、ステップS4で取得された抵抗値が、予めデータ記憶部10に記憶されている欠陥が無いパネルの配線または配線間の抵抗値と同一でない場合、ステップS6に移行する。ステップS4で取得された抵抗値が、予めデータ記憶部10に記憶されている欠陥が無いパネルの配線または配線間の抵抗値と同一でない場合、この検出モードにおいて配線または配線間に欠陥が存在する可能性が有ると特定することができる。欠陥が存在する可能性が有る場合、赤外線検出をおこなう必要がある。
例えば、図5(a)に示すように、配線Xおよび配線Yが交差する箇所において欠陥部23が生じる場合は、配線間の抵抗検査により、配線X4および配線Y4に異常が検出されるので、欠陥部23の位置まで特定することができる。そのため、図5(a)に示す欠陥部23の場合は、その位置を赤外線検出により特定(ステップS6)することを必ずしも要しない。つまり、配線Xと配線Yのすべての組み合わせ毎に抵抗検査するのであれば、位置特定もできるので、赤外線検出は不要となる。しかし、組み合わせ数は膨大であるため長時間を要する。例えば、フルハイビジョン用液晶パネルの場合、配線Xが1080本、配線Yが1920なので、全組み合わせは約207万となる。このような組み合わせ毎に抵抗検査をすると、タクトが長時間となり、検出処理能力が大幅に低くなってしまい、現実的ではない。そのため、配線Xと配線Yのすべての組み合わせをいくつかにまとめて抵抗検査をすることで、抵抗検査回数を削減できる。例えば、一つにまとめた配線Xと、一つにまとめた配線Yとの間で抵抗検査を行えば、この抵抗検査回数はわずか1回となる。しかしながら、抵抗検査により、配線間の短絡を検出することはできるが、位置を特定することはできない。そのため、欠陥部23の位置を赤外線検出により特定することが必要となる。
一方、図5(b)または図5(c)のように、隣接する配線間において欠陥部23が生じる場合は、一対の配線、例えば、配線X3と配線X4との間に欠陥部が有ることは特定できる。しかし、その配線の長さ方向においては欠陥部23の位置は特定できないため、欠陥部23の位置を赤外線検出により特定することが必要となる。
隣り合う配線間の抵抗検査は膨大な数であるため長時間を要する。例えば、フルハイビジョン用液晶パネルの場合、隣り合う配線X間の抵抗検査回数は1079、隣り合う配線Y間の抵抗検査回数は1919となる。図5(b)の場合のような隣り合う配線X間の抵抗検査の場合、すべてのX奇数番と、すべてのX偶数番との間で抵抗検査を行えば、この抵抗検査回数はわずか1回となる。図5(c)の場合のような隣り合う配線Y間の抵抗検査の場合、すべてのY奇数番と、すべてのY偶数番との間で抵抗検査を行えば、この抵抗検査回数はわずか1回となる。しかしながら、抵抗検査により、配線間の短絡を検出することはできるが、位置を特定することはできない。そのため、欠陥部23の位置を赤外線検出により特定することが必要となる。
そこで、ステップS6(電圧印加工程)では、液晶パネル2に対して赤外線検出で配線に印加する電圧値が、ステップS4においてデータ記憶部10に記憶された抵抗値に基づいて設定される。
具体的には、ステップS6(電圧印加工程)では、ステップS4において取得した抵抗値の平方根に比例する印加電圧V(ボルト)を、上記液晶パネル2に印加する。すなわち、ステップS6では、印加電圧V(ボルト)を以下の式(1);
Figure 2013031900
と設定する。
ここで、単位時間当たりの発熱量J(ジュール)は、以下の式(2);
Figure 2013031900
と表されるから、上記式(1)および(2)より、単位時間当たりの発熱量Jは以下の式(3);
Figure 2013031900
と表される。
すなわち、式(1)に基づいて、抵抗値の平方根に比例する印加電圧V(ボルト)を液晶パネル2に印加することにより、単位時間当たりの発熱量を一定にすることができる。
したがって、基板の種類または基板上における欠陥部23の発生場所等の短絡原因により、欠陥部23を含む短絡経路の抵抗値は大きく変動するが、本実施形態のステップS6を行えば、単位時間当たりの発熱量を一定にすることができる。
ステップS7(測定工程)では、ステップS6にて設定された電圧値に基づく電圧を液晶パネル2に印加する前に、赤外線カメラ5を用いて発熱していない液晶パネル2の動画像を読み込む。詳しく述べると、図1に示されている制御部7が、赤外線カメラ5を用いて発熱していない液晶パネル2の温度を測定し、測定された温度値データを記録している画像データをコンピュータメモリに読み込み、データ記憶部10に記憶させる。
ステップS8(電圧印加工程、測定工程)では、まずステップS6にて設定された電圧値に基づく電圧を液晶パネル2に印加する。そして、赤外線カメラ5を用いて、電圧が印加されてからの発熱している液晶パネル2の動画像を読み込む。詳しく述べると、図1に示されている制御部7が、赤外線カメラ5を用いて発熱している液晶パネル2の温度値を測定し、測定された温度値データを記録している画像データをコンピュータメモリに読み込み、データ記憶部10に記憶させる。ここで、印加電圧の調整は、制御部7が電圧印加部9を制御して行う。
ステップS9(判断工程)では、制御部7が、ステップS7にて読み込まれた電圧印加前の動画像から温度上昇閾値を算出する。ここで、図6を参照しながら、本実施形態における温度上昇閾値の算出方法を説明する。
上記温度上昇閾値は、図6に示されているように、電圧印加前の発熱していない液晶パネル2の動画像(9フレーム分)の隣接フレーム間において、該動画像を差分して積算平均することにより背景画像(符号付(絶対値ではない))を作成し、この背景画像のヒストグラムの平均値と標準偏差を用いて、以下の式(4);
Figure 2013031900
と設定される。
例えば、nを大きく設定すると、式(4)から、温度上昇閾値が大きくなるので、背景ノイズを削減することが可能となる。本実施形態おいては、nを4に設定して温度上昇閾値を算出しており、温度上昇閾値は約0.1(ΔK)と設定される。
しかしながら、本発明は、式(4)においてn=4に限定されるものではない。
ステップS10(判断工程)では、制御部7が、ステップS7にて読み込まれた電圧印加前の発熱していない液晶パネル2の動画像のデータ画素ごとの基準温度値を算出する。ここで、基準温度値とは、図6に示されている方法により作成された背景画像に対応する温度値のことである。
ステップS11(判断工程)では、制御部7が、ステップS8にて読み込まれた電圧を印加されてからの発熱している液晶パネル2の動画像のデータ画素ごとの温度上昇値を算出する。ここで、温度上昇値は、以下の式(5);
Figure 2013031900
から算出される。
ステップS12(欠陥判定工程)では、液晶パネル2に電圧が印加された後の時間、すなわちフレーム数が、フレーム数閾値に達したか否かが判定される。ここで、液晶パネル2に電圧が印加された後のフレーム数が、フレーム数閾値に達したと判定された場合、ステップS15に移行し、このときのフレーム数が取得される。反対に、液晶パネル2に電圧が印加された後のフレーム数が、フレーム数閾値に達していないと判定された場合、次のステップS13に移行し、フレーム数がカウントされる。
ステップS13(欠陥判定工程)では、電圧が印加された後に赤外線カメラ5により液晶パネル2の温度測定が始まってからのフレーム数がカウントされる。
ステップS14(欠陥判定工程)では、温度上昇値が予め設定された温度上昇閾値を越えたか否かが判定される。ここで、温度上昇値が温度上昇閾値より大きいと判定された場合、ステップS15に移行し、このときのフレーム数が取得される。反対に、温度上昇値が温度上昇閾値以下であると判定された場合、ステップS12に戻り、再度、液晶パネル2に電圧が印加された後のフレーム数が、フレーム数閾値に達したか否かが判定される。
ステップS15(欠陥判定工程)では、ステップS13にてカウントされたフレーム数が取得される。
ステップS16(欠陥判定工程)では、ステップS15にて取得されたフレーム数が、予め設定されたフレーム数閾値未満か否かが判定される。ここで、ステップS15において取得されたフレーム数が、予め設定されたフレーム数閾値未満である場合、次のステップS17(欠陥判定工程)に移行し、対応するデータ画素に欠陥が含まれていると判定される。つまり、欠陥部であると特定される。反対に、ステップS15において取得されたフレーム数が、予め設定されたフレーム数閾値以上である場合、ステップS18(欠陥判定工程)に移行し、対応するデータ画素に欠陥が含まれていないと判定される。つまり、背景部であると特定される。
なお、フレーム数閾値であるが、例えば、液晶パネル2に電圧が印加された後の時間の閾値が3秒と設定されている場合、フレームレートを25フレーム/秒とすると、フレーム数閾値は75フレームとなる。本実施形態におけるフレーム数閾値は、この75フレームと設定されている。
しかしながら、本発明は、閾値「3秒」、フレーム数閾値「75」に限定されるものではない。
すなわち、閾値は、標準偏差を整数倍したものに上記したヒストグラムの平均値を加算して得ることができる値とすることができる。また、閾値は、標準偏差を2倍以上4倍以下としたものに、上記したヒストグラムの平均値を加算して得ることができる値とすることが好ましい。2倍を下回る場合、欠陥だけでなく背景ノイズも過検出してしまうため、欠陥と背景の分離が困難になる傾向にあり、4倍を超える場合、欠陥が背景に埋もれて欠陥部の検出が困難になる傾向にある。
また、フレーム数閾値は、25fpsの場合、一定時間を75フレーム以上、250フレーム以下とすることが好ましい。75フレームを下回る場合、欠陥部の温度上昇不足により、欠陥と背景の分離が困難になり、250フレームを超えると、計算負荷が大きくなる(処理に時間がかかる)ため、タクトタイムが伸びてしまう。
ここで、図面を参照しながら、欠陥の有無を、各ステップに沿って説明をする。
まず、欠陥部の温度変化曲線が示されている図7を参照する。図中の曲線より、温度上昇閾値である0.1(ΔK)を越えているのは、フレーム数が略4のときであることか分かる(S14およびS15)。本実施形態におけるフレーム数閾値は上述の通りに75フレームであるので、4よりも大きいことが分かる(S16)。したがって、このデータ画素に欠陥が含まれていると判定できる。つまり、欠陥部であると特定できる(S17)。
次に、背景部の温度曲線変化が示されている図8を参照する。図中の曲線より、どのフレーム数においても温度上昇閾値を越えないまま、曲線がフレーム数閾値に達していることが分かる(S14、S12、およびS15)。つまり、この場合のフレーム数は、フレーム数閾値「75」より小さくなることはない(S16)。したがって、このデータ画素に欠陥が含まれていないと判定できる。つまり、背景部であると特定できる(S18)。
このようにして、各データ画素における欠陥の有無が制御部10によって判定されている。
ステップS19では、検出中の液晶パネル2におけるデータ画素の全てにおいて検出が終了しているか否かが判定される。ここで、検出中の液晶パネル2におけるデータ画素の全てにおいて検出が終了していない場合、ステップS11に戻り、次の検出対象となるデータ画素に対して検出が始められ、欠陥の有無が判定される。反対に、検出中の液晶パネル2におけるデータ画素の全てにおいて検出が終了している場合、次のステップS20に移行する。
ステップS20では、検出中の液晶パネル2において、検出モードの全てにおいて検出が終了しているか否かが判定される。ここで、検出中の液晶パネル2において、検出モードの全てにおいて検出が終了していない場合、ステップS3に戻り、次の検出モードに対応するようにプローブ3の接続が切り替えられ、欠陥検出が繰り返される。反対に、検出中の液晶パネル2において、検出モードの全てにおいて検出が終了している場合、次のステップS21に移行する。
なお、上述の検出モードとは、図5に示したような欠陥部23の種類に対応した検出の方法(電圧の印加方法)を示している。すなわち、図5(a)の配線Xと配線Yとの短絡欠陥に対応した検出の方法、図5(b)の配線X間の短絡欠陥に対応した検出の方法、および、図5(c)の配線Y間の短絡欠陥に対応した検出の方法である3つの検出モードである。
ステップS21では、検出中のマザー基板1について、液晶パネル2の全てにおいて欠陥検出が終了しているか否かが判定される。ここで、液晶パネル2の全てにおいて欠陥検出が終了していない場合、ステップS2に戻り、次の検出対象となる液晶パネル2にプローブが移動されて、欠陥検出が繰り返される。反対に、液晶パネル2の全てにおいて欠陥検出が終了している場合、配線欠陥検出は終了となる。
(3)本実施形態の作用効果
本実施形態によれば、液晶パネル2に電圧が印加された後に、液晶パネル2におけるデータ画素ごとに時間に対する温度値が測定される。そして、データ画素ごとに予め算出された基準温度値との差分により、データ画素ごとの温度上昇値が算出される。更に、測定する時間(フレーム数)および温度上昇値に閾値を設定することにより、この設定された時間閾値(フレーム数閾値)内において温度上昇閾値を越えたデータ画素には、欠陥が含まれていると判定される。つまり、欠陥部だと特定される。
また、本実施形態に係る配線欠陥検出方法および配線欠陥検出装置を用いれば、欠陥が低発熱であるが故に温度変化不足となり、赤外線画像の差分画像を用いた欠陥検出方法にて欠陥であるか否かを判定することが難しい欠陥の場合であっても、目視に頼る赤外線画像を用いずに温度上昇値などの数値データを用いて判定することによって、基板上の欠陥部23を高精度に検出することができる。言い換えれば、欠陥部23の発熱量(赤外線画像の強度)に関わらず、半導体基板上の欠陥部23を高精度に検出することができる。
(4)変形例
本変形例では、上記実施形態における装置と同様の装置を用い、印加電圧V(ボルト)が実施形態と異なるよう、以下のように設定する。
上述の実施形態では、ステップS6において、ステップS4において取得した抵抗値の平方根に比例する印加電圧V(ボルト)を液晶パネル2に印加する。これに対して、本変形例では、ステップS4において取得した抵抗値に比例する印加電圧V(ボルト)を、液晶パネル2(図1の(b)および図2)に印加する。
具体的には、本実施形態のステップS6では、印加電圧V(ボルト)を以下の式(6);
Figure 2013031900
と設定する。ここで、電流I(アンペア)は次の式(7);
Figure 2013031900
となる。つまり、印加電圧を適切に定めることにより、電流を一定にすることができる。
ここで、基板に形成された配線の抵抗値Rは、次の式(8);
Figure 2013031900
であり、電気抵抗率ρおよび断面積Aは、配線の種類および場所によって決まっている定数である。したがって、単位長さ当たりの配線の抵抗値R/L=ρ/Aも定数となる。すなわち、配線の種類および場所ごとに付与した番号をiとすると、配線iの単位長さ当たりの抵抗値r(i)は、次の式(9);
Figure 2013031900
と表される。
したがって、配線iの単位長さ当たりの配線iの発熱量は、上記式(2)、(7)および(9)より、次の式(10);
Figure 2013031900
となる。
ここで、図9は、短絡経路を説明するための図であり、薄膜トランジスタ基板の電気的配線図の一例である。図9の薄膜トランジスタ基板は、ガラス基板上に走査線(配線)31〜35と信号線(配線)41〜45が格子状に配置され、各交点には図示しない薄膜トランジスタおよび透明画素電極が接続された、全体で5×5画素が形成された基板である。この薄膜トランジスタ基板と、図示しない共通電極基板とを平行に配置して、その間に液晶が封入したものが、液晶パネルである。また、薄膜トランジスタ基板には、図9に示すように、走査線の各引き出し線31p〜35pの先端部を共通線30により共通に接続して静電破壊を防止するようにしている。信号線についても同様である。図9に示す薄膜トランジスタ基板では、走査線33と信号線43との間に、短絡箇所50が形成されている。このような薄膜トランジスタ基板において、短絡経路が引き出し線33p→走査線33→短絡箇所50→信号線43→引き出し線43pのように分けられた場合を考えると、単位長さ当たりの走査線33および信号線43の発熱量を、それぞれ一定にすることができる。
したがって、短絡箇所の電気抵抗の大小に関わらず、あらかじめ定数mを適切に定めておくことにより、赤外線画像により、走査線33および信号線43を安定して認識することができる。
そして、この認識された配線部分を更に解析して、走査線33と信号線43とが短絡している部分を特定することにより、短絡箇所を特定することができる。もし、短絡箇所の抵抗値が高い場合、短絡箇所の発熱量が大きくなるため、赤外線画像から短絡箇所を容易に特定することができる。
また、配線の抵抗値に基づいて電圧を定めるには、制御部7が上記式(1)ないしは式(6)を計算する処理をその都度実行すればよい。あるいは、抵抗値と電圧との関係を予めテーブルにして記憶しておき、制御部7がこのテーブルをその都度参照して、抵抗値から電圧を定めればよい。
以上のように、本実施形態の配線欠陥検出方法および配線欠陥検出装置によっても、実施形態と同様に、欠陥を赤外線画像により認識することができる。
なお、本発明は上述した各実施形態に限定されるものではない。当業者は、請求項に示した範囲内において、本発明をいろいろと変更できる。すなわち、請求項に示した範囲内において、適宜変更された技術的手段を組み合わせれば、新たな実施形態が得られる。すなわち、発明の詳細な説明の項においてなされた具体的な実施形態は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内で、いろいろと変更して実施することができるものである。
(本発明の総括)
本発明に係る配線欠陥検出方法は、
半導体基板に形成された配線に所定の電圧を印加する電圧印加工程と、
上記電圧印加工程にて電圧印加した半導体基板の少なくとも一部の領域の温度を、赤外線カメラを用いて一定時間連続して測定する測定工程と、
上記測定工程で測定した温度値から、該電圧印加する前の該半導体基板の温度値を差分して導出される温度上昇値が、閾値以上であるか否かを判断する判断工程と、
上記判断工程にて閾値以上であると判断された場合には上記領域に形成された上記配線に短絡欠陥があると判定し、該閾値未満であると判断された場合には該配線に短絡欠陥は無いと判定する欠陥判定工程と、
を含むことを特徴としている。
上記の構成によれば、欠陥が低発熱であるが故に温度変化不足となり、赤外線画像の差分画像を用いた欠陥検出方法にて欠陥であるか否かを判断することが難しい欠陥の場合であっても、目視に頼る赤外線画像を用いずに温度上昇値などの数値データを用いて判断することによって、欠陥を高精度に検出することができる。言い換えれば、欠陥の発熱量(赤外線画像の強度)に関わらず、半導体基板上の短絡に伴う欠陥を高精度に検出することができる。
また、本発明に係る配線欠陥検出方法は、上記の構成に加えて、
上記判断工程において用いられる上記閾値は、上記電圧印加する前の上記半導体基板を赤外線カメラを用いて一定時間連続して撮像して得られる動画像の隣接フレーム間において、該動画像を差分して積算平均することにより作成した背景画像のヒストグラムの平均値および標準偏差を用いて、該標準偏差を整数倍したものに該平均値を加算して得る、ことが好ましい。
これにより、上記整数を適切に設定することで適切な上記閾値を得ることができ、適切に背景ノイズを削減できるようになるため、欠陥を高精度に検出することができる。
また、本発明に係る配線欠陥検出方法は、上記の構成に加えて、
上記電圧印加工程では、上記配線の抵抗値を測定して、測定した抵抗値に基づいて特定された電圧を印加して、該配線を発熱させる、ことが好ましい。
上記の構成によれば、抵抗検査によって事前に取得された抵抗値に基づいて特定された電圧を、半導体基板(リーク欠陥基板)に印加することにより、印加電圧が高すぎて短絡欠陥を含む配線を焼き切ってしまうことがない。
より具体的には、上記閾値は、上記標準偏差を2倍以上4倍以下としたものに上記平均値を加算して得る、ことができる。
これにより、上記整数を上記のように設定することで最適な上記温度上昇閾値を得ることができ、最適に背景ノイズを削減できるようになるため、欠陥を高精度に検出することができる。
また、より具体的には、25fps(frames per second)の場合、上記一定時間を75フレーム以上、250フレーム以下とすることができる。
これにより、上記フレーム数閾値を上記のように設定することで、半導体基板上における背景部と欠陥部とを最適に分離することができ、欠陥を高精度に検出することができる。
また本発明の係る配線欠陥検出装置は、
半導体基板に形成された配線に所定の電圧を印加する電圧印加手段と、
上記半導体基板の温度を測定する赤外線カメラと、
上記赤外線カメラが上記半導体基板の温度を一定時間連続して測定する測定手段と、
上記測定手段によって得られる温度値から、該電圧印加する前の該半導体基板の温度値を差分して温度上昇値を導出し、導出した温度上昇値が閾値以上であるか否かを判断する判断手段と、
上記判断手段で上記閾値以上であると判断された場合には上記配線に短絡欠陥があると判定し、該閾値未満であると判断された場合には該短絡欠陥は無いと判定する欠陥判定手段とを備えており、
上記測定手段、上記判断手段、および上記欠陥判定手段を、制御部に設けていることを特徴としている。
上記の構成によれば、欠陥が低発熱であるが故に温度変化不足となり、赤外線画像の差分画像を用いた欠陥検出方法にて欠陥であるか否かを判断することが難しい欠陥の場合であっても、目視に頼る赤外線画像を用いずに温度上昇値などの数値データを用いて判断することによって、欠陥を高精度に検出することができる。言い換えれば、欠陥部の発熱量(赤外線画像の強度)に関わらず、欠陥を高精度に検出することができる。
また、本発明に係る、半導体基板の製造方法は、
基板上に、ゲート電極、ソース電極、および、ドレイン電極のうちの少なくとも1つと、それに繋がる配線と、半導体膜とを形成して、当該配線が形成された半導体基板を形成する半導体基板形成工程と、
上記半導体基板に形成された上記配線に所定の電圧を印加する電圧印加工程と、
上記電圧印加工程にて電圧印加した半導体基板の少なくとも一部の領域の温度を、赤外線カメラを用いて一定時間連続して測定する測定工程と、
上記測定工程で測定した温度値から、該電圧印加する前の該半導体基板の温度値を差分して導出される温度上昇値が、閾値以上であるか否かを判断する判断工程と、
上記判断工程にて閾値以上であると判断された場合には上記領域に形成された上記配線に短絡欠陥があると判定し、該閾値未満であると判断された場合には該配線に短絡欠陥は無いと判定する欠陥判定工程と、
を含むことを特徴としている。
本発明は、液晶パネルなどの配線を有する半導体基板の配線状態の検出に用いることができる。
1 マザー基板(半導体基板)
2 液晶パネル(半導体基板)
3 プローブ(電圧印加手段)
4 プローブ移動手段
5、5a、5b 赤外線カメラ
6 カメラ移動手段
7 制御部(測定手段、判断手段、欠陥判定手段)
8 抵抗測定部
9 電圧印加部(電圧印加手段)
10 データ記憶部
11 アライメントステージ
12、16 光学カメラ
13a、13b、13c、13d、13e、13f ガイドレール
14a、14b、14d、14d マウント部
17 画素部
18 駆動回路部
19a、19b、19c、19d 端子部
21a、21b、21c、21d プローブ部
23 欠陥部(配線短絡部)
30、40a、40b 共通線
31、32、33、34、35 走査線
31p、32p、33p、34p、35p 走査線引出線
41、42、43、44、45 信号線
41p、42p、43p、44p、45p 信号線引出線
50 短絡箇所
100 配線欠陥検出装置

Claims (7)

  1. 半導体基板に形成された配線に所定の電圧を印加する電圧印加工程と、
    上記電圧印加工程にて電圧印加した半導体基板の少なくとも一部の領域の温度を、赤外線カメラを用いて一定時間連続して測定する測定工程と、
    上記測定工程で測定した温度値から、該電圧印加する前の該半導体基板の温度値を差分して導出される温度上昇値が、閾値以上であるか否かを判断する判断工程と、
    上記判断工程にて閾値以上であると判断された場合には上記領域に形成された上記配線に短絡欠陥があると判定し、該閾値未満であると判断された場合には該配線に短絡欠陥は無いと判定する欠陥判定工程と、
    を含んでいることを特徴とする配線欠陥検出方法。
  2. 上記判断工程において用いられる上記閾値は、上記電圧印加する前の上記半導体基板を赤外線カメラを用いて一定時間連続して撮像して得られる動画像の隣接フレーム間において、該動画像を差分して積算平均することにより作成した背景画像のヒストグラムの平均値および標準偏差を用いて、該標準偏差を整数倍したものに該平均値を加算して得る、
    ことを特徴とする請求項1に記載の配線欠陥検出方法。
  3. 上記電圧印加工程では、上記配線の抵抗値を測定して、測定した抵抗値に基づいて特定された電圧を印加して、該配線を発熱させる、
    ことを特徴とする請求項1または2に記載の配線欠陥検出方法。
  4. 上記閾値は、上記標準偏差を2倍以上4倍以下としたものに上記平均値を加算して得る、ことを特徴とする請求項2に記載の配線欠陥検出方法。
  5. 25fpsの場合、上記一定時間を75フレーム以上、250フレーム以下とする、
    ことを特徴とする請求項1〜3の何れかに記載の配線欠陥検出方法。
  6. 半導体基板に形成された配線に所定の電圧を印加する電圧印加手段と、
    上記半導体基板の温度を測定する赤外線カメラと、
    上記赤外線カメラが上記半導体基板の温度を一定時間連続して測定する測定手段と、
    上記測定手段によって得られる温度値から、該電圧印加する前の該半導体基板の温度値を差分して温度上昇値を導出し、導出した温度上昇値が閾値以上であるか否かを判断する判断手段と、
    上記判断手段で上記閾値以上であると判断された場合には上記配線に短絡欠陥があると判定し、該閾値未満であると判断された場合には該短絡欠陥は無いと判定する欠陥判定手段とを備えており、
    上記測定手段、上記判断手段、および上記欠陥判定手段を、制御部に設けていることを特徴とする配線欠陥検出装置。
  7. 基板上に、ゲート電極、ソース電極、および、ドレイン電極のうちの少なくとも1つと、それに繋がる配線と、半導体膜とを形成して、当該配線が形成された半導体基板を形成する半導体基板形成工程と、
    上記半導体基板に形成された上記配線に所定の電圧を印加する電圧印加工程と、
    上記電圧印加工程にて電圧印加した半導体基板の少なくとも一部の領域の温度を、赤外線カメラを用いて一定時間連続して測定する測定工程と、
    上記測定工程で測定した温度値から、該電圧印加する前の該半導体基板の温度値を差分して導出される温度上昇値が、閾値以上であるか否かを判断する判断工程と、
    上記判断工程にて閾値以上であると判断された場合には上記領域に形成された上記配線に短絡欠陥があると判定し、該閾値未満であると判断された場合には該配線に短絡欠陥は無いと判定する欠陥判定工程と、
    を含むことを特徴とする、半導体基板の製造方法。
JP2013531398A 2011-08-31 2012-08-30 配線欠陥検出方法および配線欠陥検出装置、並びに半導体基板の製造方法 Expired - Fee Related JP5744212B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013531398A JP5744212B2 (ja) 2011-08-31 2012-08-30 配線欠陥検出方法および配線欠陥検出装置、並びに半導体基板の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011189647 2011-08-31
JP2011189647 2011-08-31
PCT/JP2012/072021 WO2013031900A1 (ja) 2011-08-31 2012-08-30 配線欠陥検出方法および配線欠陥検出装置、並びに半導体基板の製造方法
JP2013531398A JP5744212B2 (ja) 2011-08-31 2012-08-30 配線欠陥検出方法および配線欠陥検出装置、並びに半導体基板の製造方法

Publications (2)

Publication Number Publication Date
JPWO2013031900A1 true JPWO2013031900A1 (ja) 2015-03-23
JP5744212B2 JP5744212B2 (ja) 2015-07-08

Family

ID=47756378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013531398A Expired - Fee Related JP5744212B2 (ja) 2011-08-31 2012-08-30 配線欠陥検出方法および配線欠陥検出装置、並びに半導体基板の製造方法

Country Status (4)

Country Link
US (1) US9239341B2 (ja)
JP (1) JP5744212B2 (ja)
CN (1) CN103733055B (ja)
WO (1) WO2013031900A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293771B (zh) * 2013-06-26 2015-11-25 深圳市华星光电技术有限公司 液晶配向检查机及方法
CN104297612A (zh) * 2014-08-04 2015-01-21 浪潮(北京)电子信息产业有限公司 一种检测引起短路的器件的方法和装置
CN104569722A (zh) * 2014-12-31 2015-04-29 江苏武进汉能光伏有限公司 一种薄膜电池微短路的测试方法
CN108362712B (zh) 2018-03-14 2022-09-30 京东方科技集团股份有限公司 一种基板母板及其检测方法
KR20210022278A (ko) 2019-08-20 2021-03-03 삼성전자주식회사 적외선 카메라를 이용한 불량 부품 검출 장치 및 방법
CN111338904B (zh) * 2020-03-03 2023-01-31 上海聪链信息科技有限公司 一种计算板芯片温度异常的侦测方法
CN112540471B (zh) * 2020-12-04 2021-11-23 Tcl华星光电技术有限公司 显示面板、点灯测试方法、点灯测试装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207914A (ja) * 1993-01-11 1994-07-26 Hitachi Ltd 欠陥検出方法と装置および赤外線検出方法と装置
JPH1114576A (ja) * 1997-06-25 1999-01-22 Toshiba Corp 実装基板の劣化診断方法および装置
JP2001337059A (ja) * 2000-05-26 2001-12-07 Toshiba Corp プリント配線板の劣化検出方法および装置
JP2002350491A (ja) * 2001-05-30 2002-12-04 Moric Co Ltd 半導体回路の検査方法および検査装置
JP2003215081A (ja) * 2002-01-24 2003-07-30 Central Glass Co Ltd 板ガラスに形成された導電線の断線検査方法およびその装置
JP2005503532A (ja) * 2000-11-30 2005-02-03 キャンデゼント テクノロジーズ コーポレイション 電気短絡欠陥を赤外線検出するための方法およびシステム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2961948B2 (ja) 1991-05-27 1999-10-12 日本電気株式会社 情報処理装置の故障診断方式
JP3246704B2 (ja) * 1995-02-27 2002-01-15 シャープ株式会社 配線基板の検査装置
CN1242273C (zh) * 2001-05-30 2006-02-15 株式会社萌利克 半导体电路的检测方法和检测装置
KR20040103918A (ko) * 2002-01-23 2004-12-09 마리나 시스템 코포레이션 결함 검출 및 분석을 위한 적외선 서모그래피
US7474115B1 (en) * 2004-12-28 2009-01-06 Dupont Displays, Inc. Organic electronic device display defect detection
CN101059459A (zh) * 2007-06-05 2007-10-24 北京理工大学 显微热成像方法及其装置
US20100074515A1 (en) * 2008-02-05 2010-03-25 Kla-Tencor Corporation Defect Detection and Response
JP4416827B1 (ja) * 2008-09-10 2010-02-17 シャープ株式会社 評価装置、校正方法、校正プログラム、及び、記録媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207914A (ja) * 1993-01-11 1994-07-26 Hitachi Ltd 欠陥検出方法と装置および赤外線検出方法と装置
JPH1114576A (ja) * 1997-06-25 1999-01-22 Toshiba Corp 実装基板の劣化診断方法および装置
JP2001337059A (ja) * 2000-05-26 2001-12-07 Toshiba Corp プリント配線板の劣化検出方法および装置
JP2005503532A (ja) * 2000-11-30 2005-02-03 キャンデゼント テクノロジーズ コーポレイション 電気短絡欠陥を赤外線検出するための方法およびシステム
JP2002350491A (ja) * 2001-05-30 2002-12-04 Moric Co Ltd 半導体回路の検査方法および検査装置
JP2003215081A (ja) * 2002-01-24 2003-07-30 Central Glass Co Ltd 板ガラスに形成された導電線の断線検査方法およびその装置

Also Published As

Publication number Publication date
CN103733055B (zh) 2015-11-25
JP5744212B2 (ja) 2015-07-08
US20140159759A1 (en) 2014-06-12
CN103733055A (zh) 2014-04-16
WO2013031900A1 (ja) 2013-03-07
US9239341B2 (en) 2016-01-19

Similar Documents

Publication Publication Date Title
JP5705976B2 (ja) 配線欠陥検査方法および配線欠陥検査装置、並びに半導体基板の製造方法
JP5744212B2 (ja) 配線欠陥検出方法および配線欠陥検出装置、並びに半導体基板の製造方法
JP5628410B2 (ja) 欠陥検査方法、欠陥検査装置、及び基板の製造方法
TWI518318B (zh) 配線缺陷檢查方法及配線缺陷檢查裝置
JP5323906B2 (ja) 配線欠陥検出方法および配線欠陥検出装置
WO2013145839A1 (ja) 欠陥検出装置
WO2013128738A1 (ja) 欠陥検出方法、欠陥検出装置、および半導体基板の製造方法
JP5590043B2 (ja) Tft基板検査装置およびtft基板検査方法
JP5352066B2 (ja) 電子回路基板の製造装置
JP2013250098A (ja) 配線欠陥検出方法および配線欠陥検出装置、並びに配線基板の製造方法
JP5007925B2 (ja) Tftアレイ検査における電子線走査方法
JP5826690B2 (ja) 配線欠陥検出装置、配線欠陥検出方法、配線欠陥検出プログラムおよび配線欠陥検出プログラム記録媒体
JP2014025902A (ja) 欠陥検出方法、欠陥検出装置、および半導体基板の製造方法
JP2013108854A (ja) 配線欠陥検査方法および配線欠陥検査装置
JP2013174511A (ja) 画像表示された線領域の先端位置を特定する先端位置特定方法および先端位置特定装置、並びに、短絡欠陥の位置を特定する位置特定方法および位置特定装置
KR102070056B1 (ko) 유기전계발광 표시소자의 검사시스템 및 방법
JP2014009965A (ja) 配線欠陥検査装置、配線欠陥検査方法、及び半導体基板の製造方法
JP2010085247A (ja) Tftアレイの検査方法及びtftアレイ検査装置
JP2010122615A (ja) Tftアレイの検査方法及びtftアレイの検査装置
JP2004253631A (ja) 成膜パターン修復装置及び成膜パターン修復方法、並びに電気光学装置の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150428

R150 Certificate of patent or registration of utility model

Ref document number: 5744212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees