JPWO2012025999A1 - トルク検出装置 - Google Patents

トルク検出装置 Download PDF

Info

Publication number
JPWO2012025999A1
JPWO2012025999A1 JP2011502965A JP2011502965A JPWO2012025999A1 JP WO2012025999 A1 JPWO2012025999 A1 JP WO2012025999A1 JP 2011502965 A JP2011502965 A JP 2011502965A JP 2011502965 A JP2011502965 A JP 2011502965A JP WO2012025999 A1 JPWO2012025999 A1 JP WO2012025999A1
Authority
JP
Japan
Prior art keywords
excitation
line
disconnection
resolver
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011502965A
Other languages
English (en)
Other versions
JP5051404B2 (ja
Inventor
青木 健一郎
健一郎 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Application granted granted Critical
Publication of JP5051404B2 publication Critical patent/JP5051404B2/ja
Publication of JPWO2012025999A1 publication Critical patent/JPWO2012025999A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/049Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting sensor failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • B62D6/10Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque characterised by means for sensing or determining torque
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Power Steering Mechanism (AREA)

Abstract

第1レゾルバ110の第1励磁コイル111に対しては第1励磁ライン210を介して第1励磁用交流信号(V1=A1・sin(ωt))を供給し、第2レゾルバ120の第2励磁コイル121に対しては第2励磁ライン220を介して第2励磁用交流信号(V2=−A2・sin(ωt))を供給する。レゾルバユニット100内では、第1励磁ライン210aと第2励磁ライン220aとを電気抵抗素子230で接続する。これにより、ワイヤハーネスにおけるグランドライン240b,第1励磁ライン210b,第2励磁ライン220bの何れかが断線してもトルクを検出することができる。

Description

本発明は、2つのレゾルバを備え、各レゾルバで検出した回転角に基づいてシャフトに働くトルクを検出するトルク検出装置に関する。
従来から、運転者の操舵操作に対して操舵アシストトルクを付与する電動パワーステアリング装置が知られている。電動パワーステアリング装置は、ステアリングシャフトに働いた操舵トルクをトルク検出装置で検出し、操舵トルクが大きくなるにしたがって増加する目標アシストトルクを算出し、算出した目標アシストトルクが得られるように、電動モータの通電量をフィードバック制御する。従って、電動パワーステアリング装置においては、特に、トルク検出装置の信頼性が要求される。
操舵トルク検出装置は、ステアリングシャフトに設けたトーションバーの捩れ角度を検出することにより、この捩れ角度に比例した操舵トルクを算出する。例えば、特開2003−315182号にて公開されているトルク検出装置は、2つのレゾルバを用いてトーションバーの捻れ角度を検出する構成を採用している。このトルク検出装置においては、トーションバーの一端側に第1レゾルバを、他端側に第2レゾルバを設け、第1レゾルバにて検出される回転角(θ)と第2レゾルバにて検出される回転角(θ)との差から、操舵トルクを検出する。
各レゾルバは、励磁用交流信号が供給されてロータコイルに通電する励磁コイルと、トーションバーの周囲に固定される一対の検出コイルとを備えている。一対の検出コイルは、互いに電気角で90度(π/2)ずらして組み付けられる。検出コイルの一方は、ロータの回転角のsin値に応じた振幅となる交流信号を出力し、検出コイルの他方は、ロータの回転角のcos値に応じた振幅となる交流信号を出力する。
2つのレゾルバは、トルク演算部を構成するECUに接続される。この場合、ECUは、第1レゾルバの励磁コイルと第2レゾルバの励磁コイルの各一端に共通の励磁ラインを接続して励磁用交流信号を供給する。また、ECUは、第1レゾルバの各検出コイルの一端にそれぞれ独立した検出ラインを接続してsin値検出信号とcos値検出信号とを入力し、第2レゾルバの各検出コイルの一端にそれぞれ独立した検出ラインを接続してsin値検出信号とcos値検出信号とを入力する。また、励磁コイルおよび検出コイルの他端は、共通のグランドラインにてECUと接続される。
ECUは、各レゾルバにおける一対の検出コイルの出力信号から、各レゾルバの設けられた位置におけるトーションバーの回転角をそれぞれ演算する。そして、2つの回転角の差からトーションバーに働く操舵トルクを検出する。
しかしながら、こうした従来から知られているトルク検出装置においては、励磁ラインが断線した場合には、2つの励磁コイルに励磁用交流信号が供給されなくなる。このため、各レゾルバでは一対の検出コイルから検出信号が出力されなくなり、操舵トルクの検出が不能になってしまう。この結果、電動パワーステアリング装置においては、操舵アシスト制御を継続することができなくなり、ハンドル操作が重くなる。また、断線時の冗長性を確保するために配線を2重化すると構成が複雑になってしまう。
本発明は、上記問題に対処するためになされたもので、ECU(トルク演算部)と、第1レゾルバおよび第2レゾルバを接続する配線本数をできるだけ増加させずに、断線に対する信頼性を向上させることを目的とする。
上記目的を達成するために、本発明のトルク検出装置の特徴は、第1励磁コイルに励磁用交流信号が供給されてシャフトの第1軸方向位置における回転角に応じた検出信号を出力する第1レゾルバと、第2励磁コイルに励磁用交流信号が供給されて前記シャフトの第2軸方向位置における回転角に応じた検出信号を出力する第2レゾルバとを有するレゾルバユニットと、前記レゾルバユニットとワイヤハーネスを介して接続され、前記第1励磁コイルおよび前記第2励磁コイルに励磁用交流信号を供給するとともに、前記第1レゾルバおよび前記第2レゾルバから出力される検出信号をそれぞれ入力して前記シャフトの第1軸方向位置における第1回転角および第2軸方向位置における第2回転角を計算し、前記計算した第1回転角と第2回転角とに基づいて前記シャフトの軸回り方向に働くトルクを計算により求めるトルク演算部とを備えたトルク検出装置において、前記トルク演算部は、前記第1励磁コイルに対しては第1励磁ラインを介して前記励磁用交流信号を供給し、前記第2励磁コイルに対しては前記第1励磁ラインとは異なる第2励磁ラインを介して前記励磁用交流信号を供給し、前記レゾルバユニットは、前記第1励磁ラインと前記第2励磁ラインとを電気的に接続する電気抵抗素子を備えたことにある。
本発明のトルク検出装置は、レゾルバユニットとトルク演算部とを備える。レゾルバユニットとトルク演算部とは、ワイヤハーネスを介して互いに電気的に接続される。レゾルバユニットは、シャフトの第1軸方向位置における回転角(第1回転角)を検出するための第1レゾルバと、シャフトの第2軸方向位置における回転角(第2回転角)を検出するための第2レゾルバとを備えている。第1レゾルバにおいては、トルク演算部から出力される励磁用交流信号が第1励磁コイルに供給される。この励磁用交流信号は、第1励磁ラインを介して第1励磁コイルに供給される。これにより第1レゾルバは、複数相の検出コイルから第1回転角に応じた振幅の検出信号を出力する。例えば、第1レゾルバは、sin相検出コイルとcos相検出コイルとを備え、sin相検出コイルから第1回転角のsin値に依存して振幅が増減する交流電圧を検出信号として出力し、cos相検出コイルから第1回転角のcos値に依存して振幅が増減する交流電圧を検出信号として出力する。
同様に、第2レゾルバにおいては、トルク演算部から出力される励磁用交流信号が第2励磁コイルに供給される。この励磁用交流信号は、第1励磁ラインとは異なる第2励磁ラインを介して第2励磁コイルに供給される。これにより第2レゾルバは、複数相の検出コイルから第2回転角に応じた振幅の検出信号を出力する。例えば、第2レゾルバは、sin相検出コイルとcos相検出コイルとを備え、sin相検出コイルから第2回転角のsin値に依存して振幅が増減する交流電圧を検出信号として出力し、cos相検出コイルから第2回転角のcos値に依存して振幅が増減する交流電圧を検出信号として出力する。
このように、第1レゾルバ,第2レゾルバにおいては、それぞれ独立した第1励磁ライン,第2励磁ラインを介して第1励磁コイル,第2励磁コイルに励磁用交流信号が供給されるように構成されている。また、第1励磁ラインと第2励磁ラインとは、レゾルバユニット内において、電気抵抗素子を介して接続されている。
トルク演算部は、第1レゾルバおよび第2レゾルバから出力される検出信号をそれぞれ入力し、入力した検出信号に基づいて第1回転角および第2回転角を計算し、計算した第1回転角と第2回転角とに基づいてシャフトの軸回り方向に働くトルクを計算により求める。
レゾルバユニットとトルク演算部とは、ワイヤハーネスを介して互いに電気的に接続されるが、ワイヤハーネスに含まれる第1励磁ラインが断線した場合には、第2励磁ラインのみを使ってレゾルバユニットに励磁用交流信号が供給される。第2励磁コイルには、第2励磁ラインから励磁用交流信号が供給される。第1励磁コイルには、第1励磁ラインから励磁用交流信号が供給されないが、第1励磁ラインと第2励磁ラインとがレゾルバユニット内で電気抵抗素子を介して接続されているため、第1励磁コイルには、電気抵抗素子を介して第2励磁ラインから励磁用交流信号が供給される。この場合、第1励磁コイルに流れる電流は、通常時(非断線時)に対して変動し、これに伴って、第1レゾルバの出力する検出信号の電圧も変動する。しかし、各相の検出信号の電圧バランスは変動しないため、第1回転角の計算には影響を与えない。従って、第1励磁ラインが断線した場合であっても、第1回転角を計算することができる。
同様に、ワイヤハーネスに含まれる第2励磁ラインが断線した場合には、第1励磁ラインのみを使ってレゾルバユニットに励磁用交流信号が供給される。第1励磁コイルには第1励磁ラインから励磁用交流信号が供給される。第2励磁コイルには、電気抵抗素子を介して第1励磁ラインから励磁用交流信号が供給される。この場合、第2励磁コイルに流れる電流は、通常時(非断線時)に対して変動し、これに伴って、第2レゾルバの出力する検出信号の電圧も変動する。しかし、各相の検出信号の電圧バランスは変動しないため、第2励磁ラインが断線した場合であっても、第2回転角を計算することができる。
このように本発明によれば、各レゾルバごとに励磁ラインを独立して設け、2つの励磁ラインの間に電気抵抗素子を設けることにより、構成の大幅な増加を伴うことなく低コストにて断線に対する信頼性を向上させることができる。
本発明の他の特徴は、前記第1励磁コイルは、前記第1励磁コイルの一端に接続される第1励磁ラインと、前記第1励磁コイルの他端に接続される共通グランドラインにより前記トルク演算部と接続され、前記第2励磁コイルは、前記第2励磁コイルの一端に接続される第2励磁ラインと、前記第2励磁コイルの他端に接続される前記共通グランドラインにより前記トルク演算部と接続され、前記トルク演算部は、前記第1励磁ラインおよび前記第2励磁ラインに、互いに同じ周波数であって位相が逆になる励磁用交流信号を別々に出力する逆位相コイル駆動回路を備えたことにある。
本発明においては、逆位相トルク駆動回路が、第1励磁ラインおよび第2励磁ラインに励磁用交流信号を別々に出力する。これにより、第1レゾルバにおいては、第1励磁ラインと共通グランドラインとの間に励磁用交流電圧が印加されて第1励磁コイルに交流電流が流れる。また、第2レゾルバにおいて、第2励磁ラインと共通グランドラインとの間に励磁用交流電圧が印加されて第2励磁コイルに交流電流が流れる。この共通グランドラインは、電源装置のグランドと同電位となるように接地されるものでよいが、必ずしもそのようにする必要はなく、励磁ラインと共通グランドラインとの間に励磁用交流電圧が発生するように、励磁用交流信号の振幅の中心となる電位に設定されればよい。
逆位相コイル駆動回路から第1励磁ラインに出力される励磁用交流信号と、逆位相コイル駆動回路から第2励磁ラインに出力される励磁用交流信号とは、互いに同じ周波数であって位相が逆になるように設定されている。
こうした構成においては、共通グランドラインが断線した場合であっても、レゾルバユニット内における共通グランドラインの電位が変化しない。従って、第1励磁コイルと第2励磁コイルとを通常時(共通グランドラインの非断線時)と同様に駆動することができる。これにより、本発明によれば、共通グランドラインが断線した場合であっても、第1回転角と第2回転角とを適正に計算することができ、この2つの回転角からトルクを検出することができる。尚、逆位相コイル駆動回路は、第1励磁ラインに出力する励磁用交流信号と第2励磁ラインに出力する励磁用交流信号とを常に逆位相にする必要はなく、共通グランドラインが断線しているときにのみ逆位相にするような構成であってもよい。
本発明の他の特徴は、前記第1レゾルバの出力する検出信号に基づいて前記第1励磁ラインの断線を検出する第1励磁ライン断線検出手段と、前記第2レゾルバの出力する検出信号に基づいて前記第2励磁ラインの断線を検出する第2励磁ライン断線検出手段と、前記第1励磁ラインの断線が検出された場合に、前記計算される第1回転角の符号を反転し、前記第2励磁ラインの断線が検出された場合に、前記計算される第2回転角の符号を反転する回転角補正手段とを備えたことにある。
本発明においては、第1励磁ラインが断線した場合、電気抵抗素子を介して第2励磁ラインから第1励磁コイルに励磁用交流信号が供給されるため、第1励磁コイルに流れる電流が通常時に比べて変化する。これに伴って、第1レゾルバの出力する検出信号の電圧も通常時に比べて変化する。こうした現象を捉えて、第1励磁ライン断線検出手段は、第1レゾルバの出力する検出信号の電圧に基づいて第1励磁ラインの断線を検出する。同様に、第2励磁ラインが断線した場合には、第2レゾルバの出力する検出信号の電圧が通常時に比べて変化する。こうした現象を捉えて、第2励磁ライン断線検出手段は、第2レゾルバの出力する検出信号の電圧に基づいて第2励磁ラインの断線を検出する。
第1励磁ラインが断線した場合、第1励磁コイルに供給される励磁用交流信号は、通常時に供給される励磁用交流信号に対して位相が反対となる。そこで、回転角補正手段は、第1励磁ラインの断線が検出された場合に、第1回転角の符号(正・負)を反転し、第2励磁ラインの断線が検出された場合に、第2回転角の符号を反転する。これにより、励磁ラインが断線した場合でも、適正に回転角を計算することができる。
本発明の他の特徴は、前記第1励磁ラインの断線が検出された場合に、前記第1レゾルバの出力する検出信号の位相遅れ量を補正し、前記第2励磁ラインの断線が検出された場合に、前記第2レゾルバの出力する検出信号の位相遅れ量を補正する位相遅れ量補正手段を備えたことにある。
本発明においては、第1励磁ラインが断線した場合、電気抵抗素子を介して第2励磁ラインから第1励磁コイルに励磁用交流信号が供給されるため、第1レゾルバの出力する検出信号の位相遅れ量が変化する。また、第2励磁ラインが断線した場合、電気抵抗素子を介して第1励磁ラインから第2励磁コイルに励磁用交流信号が供給されるため、第2レゾルバの出力する検出信号の位相遅れ量が変化する。そこで、本発明では、位相遅れ量補正手段が、第1励磁ラインの断線が検出された場合に、第1レゾルバの出力する検出信号の位相遅れ量を補正し、第2励磁ラインの断線が検出された場合に、第2レゾルバの出力する検出信号の位相遅れ量を補正する。これにより、励磁ラインが断線した場合における回転角を一層正確に計算することができる。
本発明の他の特徴は、前記電気抵抗素子にインダクタを直列に接続して、前記第1励磁ラインあるいは前記第2励磁ラインの断線時に前記第1レゾルバの出力する検出信号の位相遅れ量あるいは前記第2レゾルバの出力する検出信号の位相遅れ量が変化しないようにしたことにある。
本発明においては、第1励磁ラインと第2励磁ラインとの間に電気抵抗素子とインダクタとが直列に接続される。従って、第1励磁ラインあるいは第2励磁ラインが断線した場合には、第1励磁コイルあるいは第2励磁コイルに電気抵抗素子とインダクタを介して励磁用交流信号が供給されることになる。このため、インダクタのインダクタンスを予め調整しておくことで、一方の励磁ラインが断線した場合でも、レゾルバの出力する検出信号の位相遅れ量が変化しないようにすることができる。これにより、励磁ラインが断線した場合における回転角を一層正確に計算することができる。
本発明の他の特徴は、前記第1励磁ラインの断線、あるいは、前記第2励磁ラインの断線が検出されているときに異常報知を行う励磁ライン断線報知手段を備えたことにある。
本発明においては、上述したように第1励磁ラインあるいは第2励磁ラインが断線しているときであってもトルクを検出することができる。しかし、そのまま使用し続けてしまうと、正常であった励磁ラインあるいは共通グランドラインまでも断線した場合、つまり、2重故障が発生した場合には、トルクを検出することができなくなる。そこで、本発明においては、励磁ライン断線報知手段が、第1励磁ラインの断線、あるいは、第2励磁ラインの断線が検出されているときに異常報知を行う。これにより、ユーザーに対して修理を促すことができる。従って、2重故障の発生を抑制することができ信頼性が向上する。
本発明の他の特徴は、前記第1励磁ラインあるいは前記第2励磁ラインの一方を、前記共通グランドラインの設定電位と同電位に設定し、その状態における前記第1レゾルバあるいは前記第2レゾルバの検出信号に基づいて、前記共通グランドラインの断線を検出するグランドライン断線検出手段と、前記共通グランドラインの断線が検出されているときに異常報知を行うグランドライン断線報知手段とを備えたことにある。
本発明においては、上述したように逆位相コイル駆動回路から出力される励磁用交流信号により第1励磁コイルおよび第2励磁コイルが駆動されるため、共通グランドラインが断線した場合であっても、第1励磁コイルと第2励磁コイルとを通常時(共通グランドラインの非断線時)と同様に駆動することができる。しかし、そのまま使用し続けてしまうと、正常であった励磁ラインまでも断線した場合、つまり、2重故障が発生した場合には、トルクを検出することができなくなる。そこで、本発明においては、共通グランドラインの断線を検出するグランドライン断線検出手段と、共通グランドラインの断線が検出されているときに異常報知を行うグランドライン断線報知手段とを備えている。
共通グランドラインの断線を検出するにあたって、グランドライン断線検出手段は、第1励磁ラインあるいは第2励磁ラインの一方を共通グランドラインの設定電位と同電位に設定する。例えば、共通グランドラインが接地されている場合には、第1励磁ラインあるいは第2励磁ラインの一方の電位をゼロボルトに固定する。この場合、共通グランドラインが断線していなければ、共通グランドラインと第1励磁ラインとの間、あるいは、共通グランドラインと第2励磁ラインとの間の電位差はゼロボルトになるため、第1励磁コイルあるいは第2励磁コイルには電流が流れない。従って、第1レゾルバあるいは第2レゾルバは、検出信号を出力しない。一方、共通グランドラインが断線している場合には、第1励磁ラインと第2励磁ラインとの間に励磁用交流電圧が印加されることになり、第1励磁コイルと第2励磁コイルとの両方に電流が流れる。従って、共通グランドラインが断線している場合には、検出信号を出力しないはずのレゾルバから検出信号が出力される。
こうした現象を捉えて、グランドライン断線検出手段は、第1励磁ラインあるいは第2励磁ラインの一方を、共通グランドラインの設定電位と同電位に設定し、その状態における第1レゾルバあるいは第2レゾルバの検出信号の電圧に基づいて共通グランドラインの断線を検出する。そして、共通グランドラインの断線が検出されているときに、グランドライン断線報知手段が異常報知を行う。これにより、ユーザーに対して修理を促すことができる。従って、2重故障の発生を抑制することができ信頼性が向上する。
本発明の他の特徴は、前記第1励磁ラインあるいは前記第2励磁ラインの一方を前記トルク演算部で開放し、その状態において計算した第1回転角あるいは第2回転角に基づいて、前記電気抵抗素子の断線を検出する抵抗断線検出手段と、前記電気抵抗素子の断線が検出されているときに異常報知を行う抵抗断線報知手段とを備えたことにある。
本発明においては、電気抵抗素子が断線しても第1回転角および第2回転角を計算してトルクを検出することができる。しかし、そのまま使用し続けてしまうと、第1励磁ラインあるいは第2励磁ラインが断線したときにはトルクを検出することができなくなる。そこで、本発明においては、電気抵抗素子の断線を検出する抵抗断線検出手段と、電気抵抗素子の断線が検出されているときに異常報知を行う抵抗断線報知手段とを備えている。
電気抵抗素子の断線を検出するにあたって、抵抗断線検出手段は、第1励磁ラインあるいは第2励磁ラインの一方をトルク演算部で開放する。つまり、第1励磁ラインあるいは第2励磁ラインが断線した状態と同じ状態に設定する。この場合、電気抵抗素子が断線していなければ、適正な第1回転角あるいは第2回転角を計算することができる。一方、電気抵抗素子が断線している場合には、第1励磁コイルあるいは第2励磁コイルを適正に通電できなくなるため、適正な第1回転角あるいは第2回転角を計算することができない。
そこで、抵抗断線検出手段は、第1励磁ラインあるいは第2励磁ラインの一方をトルク演算部で開放した状態において計算した第1回転角あるいは第2回転角に基づいて、電気抵抗素子の断線を検出する。例えば、第1励磁ラインあるいは第2励磁ラインの一方を開放していない状態における回転角と、開放している状態における回転角とを比較し、両者が所定値以上相違している場合に、電気抵抗素子が断線していると判定する。そして、電気抵抗素子の断線が検出されているときに抵抗断線報知手段が異常報知を行う。これにより、ユーザーに対して修理を促すことができる。従って、2重故障の発生を抑制することができ信頼性が向上する。
図1は、実施形態に係るトルク検出装置を備えた電動パワーステアリング装置の概略構成図である。 図2は、レゾルバユニットの構成、および、レゾルバユニットとアシストECUとの接続を表す電気回路図である。 図3は、レゾルバユニットの等価回路図である。 図4は、第1励磁ラインの断線を表す電気回路図である。 図5は、第2励磁ラインの断線を表す電気回路図である。 図6は、グランドラインの断線を表す電気回路図である。 図7は、操舵トルク検出ルーチンを表すフローチャートである。 図8は、グランド断線検出サブルーチンを表すフローチャートである。 図9は、抵抗断線検出サブルーチンを表すフローチャートである。 図10は、断線異常処理ルーチンを表すフローチャートである。 図11は、変形例1に係る励磁信号制御ルーチンを表すフローチャートである。 図12は、変形例2に係る位相遅れ量切替ルーチンを表すフローチャートである。 図13は、変形例3に係るインダクタを追加した電気回路図である。 図14は、従来例に係るレゾルバユニットの構成、および、レゾルバユニットとアシストECUとの接続を表す電気回路図である。
以下、本発明の一実施形態について図面を用いて説明する。図1は、実施形態としてのトルク検出装置を備えた電動パワーステアリング装置の概略構成図である。
車両の電動パワーステアリング装置は、操舵ハンドル11の操舵により転舵輪である左右前輪FW1,FWを転舵する転舵機構10と、転舵機構10に設けられ操舵アシストトルクを発生するパワーアシスト部20と、パワーアシスト部20の電動モータ21を駆動制御するアシスト制御装置50(以下、アシストECU50と呼ぶ)と、車速センサ60と、レゾルバユニット100とを備えている。
転舵機構10は、操舵ハンドル11に上端を一体回転するように接続したステアリングシャフト12を備え、ステアリングシャフト12の下端にはピニオンギヤ13が一体回転するように接続されている。ピニオンギヤ13は、ラックバー14に形成されたラック歯と噛み合ってラックアンドピニオン機構を構成する。ラックバー14の両端には、図示しないタイロッドおよびナックルアームを介して左右前輪FW1,FW2が転舵可能に接続されている。左右前輪FW1,FW2は、ステアリングシャフト12の軸線回りの回転に伴うラックバー14の軸線方向の変位に応じて左右に転舵される。
ラックバー14には、パワーアシスト部20が組み付けられている。パワーアシスト部20は、操舵アシスト用の電動モータ21(例えば、3相DCブラシレスモータ)とボールねじ機構22とからなる。電動モータ21の回転軸は、ボールねじ機構22を介してラックバー14に動力伝達可能に接続されていて、その回転により左右前輪FW1,FW2の転舵をアシストする。ボールねじ機構22は、減速器および回転−直線変換器として機能するもので、電動モータ21の回転を減速するとともに直線運動に変換してラックバー14に伝達する。
電動モータ21には、その回転軸の回転角を検出するための回転角センサ61が設けられている。回転角センサ61は、アシストECU50に接続されている。
ステアリングシャフト12は、その軸方向の中間位置にトーションバー12aが設けられる。ステアリングシャフト12において、トーションバー12aの上端と操舵ハンドル11とを連結する部分を入力シャフト12inと呼び、トーションバー12aの下端とピニオンギヤ13とを連結する部分を出力シャフト12outと呼ぶ。
ステアリングシャフト12には、レゾルバユニット100が設けられる。レゾルバユニット100は、トーションバー12aと、入力シャフト12inに組み付けられた第1レゾルバ110と、出力シャフト12outに組み付けられた第2レゾルバ120とから構成される。第1レゾルバ110は、入力シャフト12inの回転角(トーションバー12aの一方端位置における回転角であって本発明の第1軸方向位置における回転角に相当する)に応じた信号を出力し、第2レゾルバ120は、出力シャフト12outの回転角(トーションバー12aの他方端位置における回転角であって本発明の第2軸方向位置における回転角に相当する)に応じた信号を出力する。操舵ハンドル11が回動操作されると、ステアリングシャフト12にトルクが働いてトーションバー12aが捩れる。トーションバー12aの捩れ角度は、ステアリングシャフト12に働く操舵トルクに比例する。従って、第1レゾルバ110で検出される回転角θと、第2レゾルバ120で検出される回転角θとの差を求めることでステアリングシャフト12に働く操舵トルクを検出することができる。第1レゾルバ110、第2レゾルバ120は、アシストECU50に接続されている。
アシストECU50は、マイクロコンピュータおよび信号処理回路等を備えた演算部30と、スイッチング回路で構成されるモータ駆動回路40(例えば、3相インバータ回路)とを備えている。演算部30は、アシスト演算部31と、トルク演算部32とから構成される。トルク演算部32は、レゾルバユニット100と接続されて、ステアリングシャフト12に働く操舵トルクを演算により検出する。レゾルバユニット100とトルク演算部32からなる構成が本発明のトルク検出装置に相当する。レゾルバユニット100とトルク演算部32については後述する。
モータ駆動回路40は、アシスト演算部31からのPWM制御信号を入力して、内部のスイッチング素子のデューティ比を制御することにより電動モータ21への通電量を調整する。モータ駆動回路40には、電動モータ21に流れる電流を検出する電流センサ41が設けられる。
アシスト演算部31は、電流センサ41、車速センサ60、回転角センサ61を接続している。車速センサ60は、車速vxを表す車速検出信号を出力する。また、アシスト演算部31は、トルク演算部32により算出した操舵トルクの計算結果を入力する。また、アシスト演算部31は、運転者に異常を報知するための警告ランプ65を接続しており、後述する断線検出時に警告ランプ65を点灯する。
次に、アシスト演算部31の実施する操舵アシスト制御について簡単に説明する。アシスト演算部31は、車速センサ60により検出される車速vxと、トルク演算部32により算出された操舵トルクTrとを取得し、取得した車速vxと操舵トルクTrに基づいて、目標アシストトルクを算出する。目標アシストトルクは、図示しないアシストマップ等を参照して、操舵トルクTrが大きくなるにしたがって増加し、かつ、車速vxが増加するにしたがって減少するように設定される。アシスト演算部31、この目標アシストトルクを発生させるために必要な目標電流を計算し、電流センサ41により検出された実電流と目標電流との偏差に基づいてPI制御(比例積分制御)式等を使って目標指令電圧を計算し、目標指令電圧に応じたPWM制御信号をモータ駆動回路40に出力する。アシスト演算部31は、回転角センサ61により検出される電動モータ21の回転角(電気角)を取得して、回転角に応じた3相(U相、V相,W相)のPWM制御信号を生成することにより、電動モータ21に3相駆動電圧を印加する。こうして、電動モータ21には、電流フィードバック制御により運転者の操舵方向と同じ方向に回転する向きの目標電流が流れる。これにより、運転者の操舵操作が、電動モータ21で発生するトルクにより適切にアシストされる。
こうした操舵アシスト制御を適切に実施するためには、信頼性の高い操舵トルクTrの検出を行う必要がある。そこで、本実施形態においては、以下の構成にて操舵トルクTrを検出する。
まず、レゾルバユニット100から説明する。図2は、レゾルバユニット100の概略回路構成を表す。第1レゾルバ110は、入力シャフト12inをロータとして備える。入力シャフト12inの外周側のステータには、ロータの周方向に沿って巻かれた第1励磁コイル111が固定して設けられている。ロータとなる入力シャフト12inには、第1ロータコイル114が固定して設けられている。第1ロータコイル114は、ロータの回転に伴って回転する。第1ロータコイル114は、ロータ内に設けた変圧器(図示略)を介して第1励磁コイル111と非接触にて電気的に接続され、第1励磁コイル111に印加される交流電圧によって通電される。尚、図示しないが、第1ロータコイル114は、回転角の分解能を高めるために、ロータの機械的な回転角に対して電気角がk倍となるように等角度間隔で複数配置されている。
第1レゾルバ110は、入力シャフト12inの外周側のステータに第1sin相検出コイル112および第1cos相検出コイル113とを備えている。第1sin相検出コイル112と第1cos相検出コイル113とは、互いに電気角がπ/2ずれる位置に配置される。
第1sin相検出コイル112および第1cos相検出コイル113は、第1ロータコイル114の回転平面上に配置され、第1ロータコイル114で発生する磁束により交流電圧信号を出力する。第1sin相検出コイル112および第1cos相検出コイル113で発生する交流電圧信号の振幅値は、第1ロータコイル114に対する第1sin相検出コイル112および第1cos相検出コイル113の回転位置に応じて変化する。つまり、第1sin相検出コイル112は、入力シャフト12inの回転角のsin値に応じた振幅となる交流電圧信号を出力し、第1cos相検出コイル113は、入力シャフト12inの回転角のcos値に応じた振幅となる交流電圧信号を出力する。
第1励磁コイル111の一端は、第1励磁ライン210を介してアシストECU50の第1励磁信号出力ポート50pe1に接続されている。尚、第1励磁ライン210に関して、レゾルバユニット100内に設けられる部分と、レゾルバユニット100とアシストECU50との間に配線されるハーネス部分とに区別して説明するには、レゾルバユニット100内に設けられる部分をユニット内第1励磁ライン210aと呼び、レゾルバユニット100とアシストECU50との間に設けられるハーネス部分をユニット外第1励磁ライン210bと呼ぶ。ユニット内第1励磁ライン210aとユニット外第1励磁ライン210bとは、第1励磁信号入力ポート100pe1にて接続される。
第1sin相検出コイル112の一端は、第1sin相検出ライン212を介してアシストECU50の第1sin相信号入力ポート50ps1に接続されている。また、第1cos相検出コイル113の一端は、第1cos相検出ライン213を介してアシストECU50の第1cos相信号入力ポート50pc1に接続されている。尚、第1sin相検出ライン212,第1cos相検出ライン213に関して、レゾルバユニット100内に設けられる部分と、レゾルバユニット100とアシストECU50との間に配線されるハーネス部分とに区別して説明するには、レゾルバユニット100内に設けられる部分をユニット内第1sin相検出ライン212a,ユニット内第1cos相検出ライン213aと呼び、レゾルバユニット100とアシストECU50との間に設けられるハーネス部分をユニット外第1sin相検出ライン212b,ユニット外第1cos相検出ライン213bと呼ぶ。ユニット内第1sin相検出ライン212aとユニット外第1sin相検出ライン212bとは、第1sin相信号出力ポート100ps1にて接続される。また、ユニット内第1cos相検出ライン213aとユニット外第1cos相検出ライン213bとは、第1cos相信号出力ポート100pc1にて接続される。
第2レゾルバ120は、出力シャフト12outをロータとして備える。出力シャフト12outの外周側のステータには、ロータの周方向に沿って巻かれた第2励磁コイル121が固定して設けられている。ロータとなる出力シャフト12outには、第2ロータコイル124が固定して設けられている。第2ロータコイル124は、ロータの回転に伴って回転する。第2ロータコイル124は、ロータ内に設けた変圧器(図示略)を介して第2励磁コイル121と非接触にて電気的に接続され、第2励磁コイル121に印加される交流電圧によって通電される。尚、図示しないが、第2ロータコイル124は、回転角の分解能を高めるために、ロータの機械的な回転角に対して電気角がk倍となるように等角度間隔で複数配置されている。
第2レゾルバ120は、出力シャフト12outの外周側のステータに第2sin相検出コイル122および第2cos相検出コイル123とを備えている。第2sin相検出コイル122と第2cos相検出コイル123とは、互いに電気角がπ/2ずれる位置に配置される。
第2sin相検出コイル122および第2cos相検出コイル123は、第2ロータコイル124の回転平面上に配置され、第2ロータコイル124で発生する磁束により交流電圧信号を出力する。第2sin相検出コイル122および第2cos相検出コイル123で発生する交流電圧信号の振幅値は、第2ロータコイル124に対する第2sin相検出コイル122および第2cos相検出コイル123の回転位置に応じて変化する。つまり、第2sin相検出コイル122は、出力シャフト12outの回転角のsin値に応じた振幅となる交流電圧信号を出力し、第2cos相検出コイル123は、出力シャフト12outの回転角のcos値に応じた振幅となる交流電圧信号を出力する。
第2励磁コイル121の一端は、第2励磁ライン220を介してアシストECU50の第2励磁信号出力ポート50pe2に接続されている。尚、第2励磁ライン220に関して、レゾルバユニット100内に設けられる部分と、レゾルバユニット100とアシストECU50との間に配線されるハーネス部分とに区別して説明するには、レゾルバユニット100内に設けられる部分をユニット内第2励磁ライン220aと呼び、レゾルバユニット100とアシストECU50との間に設けられるハーネス部分をユニット外第2励磁ライン220bと呼ぶ。ユニット内第2励磁ライン220aとユニット外第2励磁ライン220bとは、第2励磁信号入力ポート100pe2にて接続される。
第2sin相検出コイル122の一端は、第2sin相検出ライン222を介してアシストECU50の第2sin相信号入力ポート50ps2に接続されている。また、第2cos相検出コイル123の一端は、第2cos相検出ライン223を介してアシストECU50の第2cos相信号入力ポート50pc2に接続されている。尚、第2sin相検出ライン222,第2cos相検出ライン223に関して、レゾルバユニット100内に設けられる部分と、レゾルバユニット100とアシストECU50との間に配線されるハーネス部分とに区別して説明するには、レゾルバユニット100内に設けられる部分をユニット内第2sin相検出ライン222a,ユニット内第2cos相検出ライン223aと呼び、レゾルバユニット100とアシストECU50との間に設けられるハーネス部分をユニット外第2sin相検出ライン222b,ユニット外第2cos相検出ライン223bと呼ぶ。ユニット内第2sin相検出ライン222aとユニット外第2sin相検出ライン222bとは、第2sin相信号出力ポート100ps2にて接続される。また、ユニット内第2cos相検出ライン223aとユニット外第2cos相検出ライン223bとは、第2cos相信号出力ポート100pc2にて接続される。
また、ユニット内第1励磁ライン210aとユニット内第2励磁ライン220aとは、電気抵抗素子230を介して電気的に接続されている。つまり、第1励磁コイル111の一端(励磁信号入力側)と第2励磁コイル121の一端(励磁信号入力側)とがレゾルバユニット100のケーシング内において電気抵抗素子230により電気的に接続されている。以下、ユニット内第1励磁ライン210aと電気抵抗素子230との接続点を接続点Xaと呼び、ユニット内第2励磁ライン220aと電気抵抗素子230との接続点を接続点Xbと呼ぶ。
また、第1励磁コイル111の他端、第2励磁コイル121の他端、第1sin相検出コイル112の他端、第1cos相検出コイル113の他端、第2sin相検出コイル122の他端、第2cos相検出コイル123の他端は、共通のグランドライン240を介してアシストECU50のグランドポート50pgに接続される。尚、グランドライン240に関して、レゾルバユニット100内に設けられる部分と、レゾルバユニット100とアシストECU50との間に配線されるハーネス部分とに区別して説明するには、レゾルバユニット100内に設けられる部分をユニット内グランドライン240aと呼び、レゾルバユニット100とアシストECU50との間に設けられるハーネス部分をユニット外グランドライン240bと呼ぶ。ユニット内グランドライン240aとユニット外グランドライン240bとは、グランドポート100pgにて接続される。
レゾルバユニット100とアシストECU50との間に配線されるユニット外第1励磁ライン210b、ユニット外第1sin相検出ライン212b、ユニット外第1cos相検出ライン213b、ユニット外第2励磁ライン220b、ユニット外第2sin相検出ライン222b、ユニット外第2cos相検出ライン223b、ユニット外グランドライン240bは、束ねられてワイヤハーネスとなる。
尚、図2に示すレゾルバユニット100を等価回路で表すと図3のようになる。
アシストECU50は、コイル駆動回路52を備えている。このコイル駆動回路52は、第1励磁コイル駆動回路521と第2励磁コイル駆動回路522とを備えている。第1励磁コイル駆動回路521は、一定の周期、振幅の励磁用交流電圧を第1励磁信号出力ポート50pe1から出力する。以下、第1励磁信号出力ポート50pe1から出力される励磁用交流電圧を第1励磁信号と呼び、第1励磁信号の電圧値を第1励磁電圧Vと呼ぶ。第1励磁電圧Vは、振幅をAとすると、次式にて表される。
=A・sin(ωt)
また、第2励磁コイル駆動回路522は、第1励磁コイル駆動回路521から出力される励磁用交流電圧と同じ周波数であって、かつ、互いに逆位相(位相がπだけずれている)となるように設定された励磁用交流電圧を第2励磁信号出力ポート50pe2から出力する。以下、第2励磁信号出力ポート50pe2から出力される励磁用交流電圧を第2励磁信号と呼び、第2励磁信号の電圧値を第2励磁電圧Vと呼ぶ。第2励磁電圧Vは、振幅をAとすると、次式にて表される。
=−A・sin(ωt)
尚、第1励磁電圧Vおよび第2励磁電圧Vの振幅A,Aは、第1レゾルバ110,第2レゾルバ120の特性に合わせて設定される。本実施形態においては、ユニット外グランドライン240bが断線した場合でもユニット内グランドライン240aの電位を一定(この場合はゼロボルト)に維持できるように、振幅Aと振幅Aとは同じ値に設定されている(A=A)。
2つの励磁信号を生成するにあたって、例えば、アシストECU50は、正弦波信号をデジタル形式で記憶し、この正弦波信号を第1励磁コイル駆動回路521に出力するとともに、正弦波信号を反転した信号を第2励磁コイル駆動回路522に出力する。各駆動回路521,522は、入力したデジタル信号をアナログ電圧信号に変換するD/A変換器(図示略)と、D/A変換器の出力信号を増幅するアンプ(図示略)とを備え、アンプから上記式で表される励磁信号を出力する。尚、励磁信号は、その他色々な方法で生成することができる。例えば、パルス列信号を第1励磁コイル駆動回路521に供給するとともに、このパルス列信号を反転したパルス列信号を第2励磁コイル駆動回路522に供給する。そして、各駆動回路521,522にて、パルス列信号に対して波形成形処理を施して、互いに逆位相となる2種類の正弦波電圧を出力するようにしてもよい。
尚、第1励磁コイル駆動回路521と第2励磁コイル駆動回路522は、アシストECU50内のマイクロコンピュータからの指令により独立して制御される。従って、アシストECU50は、第1励磁信号と第2励磁信号とを独立して出力可能となっている。
第1励磁信号は、第1励磁ライン210を介して第1レゾルバ110の第1励磁コイル111に供給される。また、第2励磁信号は、第2励磁ライン220を介して第2レゾルバ120の第2励磁コイル121に供給される。
第1励磁信号により第1レゾルバ110の第1励磁コイル111が励磁されると、第1sin相検出コイル112および第1cos相検出コイル113で交流電圧が発生する。また、第2励磁信号により第2レゾルバ120の第2励磁コイル121が励磁されると、第2sin相検出コイル122および第2cos相検出コイル123で交流電圧が発生する。
第1sin相検出コイル112から出力される交流電圧信号を第1sin相検出信号と呼び、その電圧値を第1sin相検出電圧Es1と呼ぶ。また、第1cos相検出コイル113から出力される交流電圧信号を第1cos相検出信号と呼び、その電圧値を第1cos相検出電圧Ec1と呼ぶ。第1sin相検出電圧Es1、および、第1cos相検出電圧Ec1は次式にて表される。
Es1=α・A・sin(k・θ)・sin(ωt+φ)
Ec1=α・A・cos(k・θ)・sin(ωt+φ)
また、第2sin相検出コイル122から出力される交流電圧信号を第2sin相検出信号と呼び、その電圧値を第2sin相検出電圧Es2と呼ぶ。また、第2cos相検出コイル123から出力される交流電圧信号を第2cos相検出信号と呼び、その電圧値を第2cos相検出電圧Ec2と呼ぶ。第2sin相検出電圧Es2、および、第2cos相検出電圧Ec2は次式にて表される。
Es2=−α・A・sin(k・θ)・sin(ωt+φ)
Ec2=−α・A・cos(k・θ)・sin(ωt+φ)
ここで、θは入力シャフト12inに直結した第1レゾルバ110のロータの角度、θは出力シャフト12outに直結した第2レゾルバ120のロータの角度、αは第1レゾルバ110および第2レゾルバ120の変圧比、kは第1レゾルバ110および第2レゾルバ120の軸倍角、φは位相遅れ量、ωは角周波数、tは時間を表す。
アシストECU50は、第1sin相検出信号,第1cos相検出信号,第2sin相検出信号,第2cos相検出信号を、それぞれ第1sin相検出ライン212,第1cos相検出ライン213,第2sin相検出ライン222,第2cos相検出ライン223を介して入力する。アシストECU50は、第1sin相検出信号,第1cos相検出信号,第2sin相検出信号,第2cos相検出信号をアンプ51s1,51c1,51s2,51c2に入力してグランド電位に対する各検出信号の電圧を増幅し、増幅した電圧信号を図示しないA/D変換器によりデジタル値に変換し、このデジタル値をマイコンに入力してトルク計算処理を行う。
アシストECU50におけるトルク演算部32は、第1sin相検出信号,第1cos相検出信号,第2sin相検出信号,第2cos相検出信号を増幅しデジタル信号に変換してマイコンに入力する回路と、コイル駆動回路52と、マイコンによりトルク計算処理を行う機能部とから構成される。
次に、操舵トルクを計算する方法について説明する。まず、第1レゾルバ110により検出される第1sin相検出電圧Es1,第1cos相検出電圧Ec1から回転角θ(入力シャフト12inの回転角)を算出する方法について説明する。
第1sin相検出電圧Es1に、sin(ωt+φ)なる信号を乗算して1周期で積分した値をSs1とするとSs1は次式にて表される。
Figure 2012025999
同様に、第1cos相検出電圧Ec1に、sin(ωt+φ)なる信号を乗算して1周期で積分した値をSc1とするとSc1は次式にて表される。
Figure 2012025999
従って、この2つの式から回転角θは次式にて求めることができる。
Figure 2012025999
同様にして、第2レゾルバ120により検出される第2sin相検出電圧Es2,第2cos相検出電圧Ec2から、回転角θ(出力シャフト12outの回転角)は次式にて求めることができる。ここで、Ss2は、第2sin相検出電圧Es2に、sin(ωt+φ)なる信号を乗算して1周期で積分した値を表し、Sc2は、第2cos相検出電圧Ec2に、sin(ωt+φ)なる信号を乗算して1周期で積分した値を表す。
Figure 2012025999
上記式において負号(−)が付いているのは、第2レゾルバ120で使用される第2励磁信号(V=−A・sin(ωt))が、第1レゾルバ110で使用される第1励磁信号(V=A・sin(ωt))に対して逆位相となるからである。
トルク演算部32は、回転角θと回転角θとに基づいて、操舵トルクTrを次式にて計算する。
Tr=Kb・(θ−θ
ここでKbは、トーションバー12aの捩り特性に応じて決まる比例定数であり、予めマイコン内に記憶されている。
尚、上記による計算は、連続系に適用されるものである。従って、マイコンにより演算処理するトルク演算部32においては、例えば、励磁信号の1周期内に3回以上となる等間隔周期で検出電圧Es1,Ec1,Es2,Ec2をサンプリングする。そして、サンプリングした検出電圧Es1,Ec1,Es2,Ec2に、それぞれsin(ωt+φ)を乗算し、その乗算した値を1周期分(例えば3回分)加算することにより、上記Ss1,Sc1,Ss2,Sc2を算出すればよい。
このSs1,Sc1,Ss2,Sc2は、検出電圧Es1,Ec1,Es2,Ec2の振幅に応じた値(振幅に定数を乗じた値)となるため、以下、Ss1,Sc1,Ss2,Sc2を振幅と呼ぶ。
次に、トルク演算部32における励磁ライン210,220とグランドライン240の各断線時における動作について説明する。断線は、アシストECU50とレゾルバユニット100との間に配線されるワイヤハーネスの断線、あるいは、ワイヤハーネスをアシストECU50およびレゾルバユニット100に接続するコネクタの接触不良により発生する。従って、ここでは、レゾルバユニット100内における断線は発生しないものとしている。
まず、第1励磁ライン210が断線した場合の動作について説明する。図4に示すように、第1励磁ライン210(ユニット外第1励磁ライン210b)が断線した場合には、ユニット外第2励磁ライン220bのみを使ってレゾルバユニット100に第2励磁信号が供給される。この場合、アシストECU50から出力される第2励磁信号は、ユニット内第2励磁ライン220aに接続された電気抵抗素子230の接続点Xbで2つのルートに分かれて流れる。一つのルートは、接続点Xbからそのままユニット内第2励磁ライン220aを経由して第2励磁コイル121に流れるルートである。もう一つのルートは、接続点Xbから電気抵抗素子230とユニット内第1励磁ライン210aとを経由して第1励磁コイル111に流れるルートである。第1励磁コイル111および第2励磁コイル121に流れた電流は、共通のグランドライン240に流れてアシストECU50に戻る。これにより、第1励磁コイル111および第2励磁コイル121が励磁される。尚、励磁信号は交流電圧であるため上記ルートを逆方向にも流れるが、ここでは、正の電圧が印加されている状態における電流の流れを説明している。
この場合、第1励磁コイル111に流れる電流は、電気抵抗素子230の影響で通常時に比べて小さくなる。従って、第1sin相検出電圧Es1、および、第1cos相検出電圧Ec1は低下するが、回転角θの算出に関係する検出電圧の比は通常時と同じである。従って、第1励磁ライン210の断線が、回転角θの計算結果に影響しない。尚、この場合、第1励磁コイル111と第2励磁コイル121とは同位相の励磁用交流信号が供給されるため、回転角θの計算には負号を付ける(−1を乗じる)必要がある。
次に、第2励磁ライン220が断線した場合の動作について説明する。図5に示すように、第2励磁ライン(ユニット外第2励磁ライン220b)が断線した場合には、ユニット外第1励磁ライン210bのみを使ってレゾルバユニット100に第1励磁信号が供給される。この場合、アシストECU50から出力される第2励磁信号は、ユニット内第1励磁ライン210aに接続された電気抵抗素子230の接続点Xaで2つのルートに分かれて流れる。一つのルートは、接続点Xaからそのままユニット内第1励磁ライン210aを経由して第1励磁コイル111に流れるルートである。もう一つのルートは、接続点Xaから電気抵抗素子230とユニット内第2励磁ライン220aとを経由して第2励磁コイル121に流れるルートである。第1励磁コイル111および第2励磁コイル121に流れた電流は、共通のグランドライン240に流れてアシストECU50に戻る。これにより、第1励磁コイル111および第2励磁コイル121が励磁される。
この場合、第2励磁コイル121に流れる電流は、電気抵抗素子230の影響で通常時に比べて小さくなる。従って、第2sin相検出電圧Es2、および、第2cos相検出電圧Ec2は低下するが、回転角θの算出に関係する検出電圧の比は通常時と同じである。従って、第2励磁ライン220の断線が、回転角θの計算結果に影響しない。尚、この場合、第1励磁コイル111と第2励磁コイル121とは同位相の励磁用交流信号が供給されるため、回転角θの計算には負号を外す(−1を乗じない)必要がある。
第1励磁ライン210の断線時においては、第1sin相検出電圧Es1と第1cos相検出電圧Ec1が低下する。また、第2励磁ライン220の断線時においては、第2sin相検出電圧Es2と第2cos相検出電圧Ec2が低下する。従って、トルク演算部32は、検出電圧の低下に基づいて断線を検出することができ、しかも、断線した励磁ラインを特定することができる。
そこで、トルク演算部32は、回転角θ,θの算出のために求めた振幅Ss1,Sc1,Ss2,Sc2に基づいて、振幅Ss1,Sc1の二乗和の値(Ss1+Sc1)が基準値Se未満となるときに第1励磁ライン210が断線していると判定する。また、振幅Ss2,Sc2の二乗和の値(Ss2+Sc2)が基準値Se未満となるときに第2励磁ライン220が断線していると判定する。この基準値Seは、断線の有無を判定するために予め設定された設定値である。トルク演算部32は、この断線検出に基づいて、回転角θまたは回転角θの符号(正・負)を補正することで、適正な操舵トルクTrを演算することができる。
次に、グランドライン240が断線した場合の動作について説明する。図6に示すように、ユニット外グランドライン240bが断線した場合を考える。この場合、第1励磁ライン210および第2励磁ライン220は正常であるものとする。第1励磁コイル111の一端と第2励磁コイル121の一端とには、互いに逆位相となる励磁用交流信号が供給されており、かつ、第1励磁コイル111の他端と第2励磁コイル121の他端とは共通のグランドライン240に接続されている。従って、グランドライン240の電位Vgは、次式により、ゼロボルトであることが分かる。
Vg=(V+V)/2=0
このことは、ユニット外グランドライン240bが断線しても、レゾルバユニット100内のグランドライン240であるユニット内グランドライン240aの電位をゼロボルトに維持できることを意味している。従って、第1sin相検出コイル112、第1cos相検出コイル113、第2sin相検出コイル122、第2cos相検出コイル123は正常に動作可能となる。これにより、トルク演算部32は、第1sin相検出コイル112、第1cos相検出コイル113、第2sin相検出コイル122、第2cos相検出コイル123の出力電圧(検出電圧)を、通常時(非断線時)と同様にして検出することが可能となる。従って、回転角θ,θから操舵トルクTrを演算により求めることができる。
この場合、第1sin相検出コイル112、第1cos相検出コイル113、第2sin相検出コイル122、第2cos相検出コイル123の検出電圧が通常時と変わらないため、トルク演算部32ではグランドライン240の断線を検出することができない。グランドライン240が断線した場合でも、操舵トルクTrを正常に検出することができるものの、さらに、第1励磁ライン210あるいは第2励磁ライン220が断線する2重故障が発生した場合には、操舵トルクTrを検出することができなくなる。そこで、トルク演算部32では、グランド断線検出処理を実行することにより、グランドライン240の断線を早期に検出してドライバーに修理の必要性を報知する。このグランド断線検出処理については、後述する。
次に、トルク演算部32の実行する操舵トルク検出処理について説明する。図7は、操舵トルク検出ルーチンを表すフローチャートである。操舵トルク検出ルーチンは、マイコンのROM内に制御プログラムとして記憶されている。操舵トルク検出ルーチンは、イグニッションキーがオン状態となっている期間において、所定の短い周期で繰り返し実行される。尚、トルク演算部32は、操舵トルク検出ルーチンの起動とともに、コイル駆動回路52を作動させて、第1励磁信号出力ポート50pe1から第1励磁信号の出力を開始し、第2励磁信号出力ポート50pe2から第2励磁信号の出力を開始する。
トルク演算部32は、ステップS11において、グランド断線検出処理を行うタイミングか否かを判断する。グランド断線検出処理は、ユニット外グランドライン240bが断線しているか否かを診断する処理であり、予め設定された所定の周期にて行われる。ここでは、そのタイミングでは無い場合から説明する。グランド断線検出処理を行うタイミングでは無い場合には(S11:No)、トルク演算部32は、続くステップS12において、抵抗断線検出処理を行うタイミングか否かを判断する。この抵抗断線検出処理は、電気抵抗素子230の断線を診断する処理、つまり、ユニット内第1励磁ライン210aとユニット内第2励磁ライン220aとが電気抵抗素子230により連結されているか否かを判定する処理であり、予め設定された所定の周期にて行われる。ここでは、そのタイミングでは無い場合から説明する。
抵抗断線検出処理を行うタイミングでは無い場合には(S12:No)、トルク演算部32は、続くステップS13において、サンプリングした検出電圧Es1,Ec1,Es2,Ec2を読み込み、その検出電圧Es1,Ec1,Es2,Ec2に基づいて、振幅Ss1,Sc1,Ss2,Sc2を計算する。
トルク演算部32は、操舵トルク検出ルーチンとは別のサンプリングルーチンで、励磁信号の1周期当たりに3回以上となるサンプリング周期で検出電圧Es1,Ec1,Es2,Ec2の瞬時値をサンプリングしている。このステップS13の処理は、サンプリングルーチンでサンプリングした検出電圧Es1,Ec1,Es2,Ec2にsin(ωt+φ)を乗算した値を、励磁信号の1周期分加算して、振幅Ss1,Sc1,Ss2,Sc2を計算する。
続いて、トルク演算部32は、ステップS14において、振幅Ss1,Sc1,Ss2,Sc2に基づいて、第1励磁ライン210(ユニット外第1励磁ライン210b)あるいは第2励磁ライン220(ユニット外第2励磁ライン220b)が断線しているか否かを判定する。本実施形態においては、トルク演算部32は、振幅Ss1,Sc1の二乗和の値(Ss1+Sc1)が基準値Se未満となるときに第1励磁ライン210が断線していると判定する。また、トルク演算部32は、振幅Ss2,Sc2の二乗和の値(Ss2+Sc2)が基準値Se未満となるときに第2励磁ライン220が断線していると判断する。この基準値Seは、第1励磁ライン210あるいは第2励磁ライン220が断線していないときには、(Ss1+Sc1)あるいは(Ss2+Sc2)が基準値Seよりも大きくなり、かつ、第1励磁ライン210あるいは第2励磁ライン220が断線しているときには、(Ss1+Sc1)あるいは(Ss2+Sc2)が基準値Seよりも小さくなるように、予め設定された断線の有無を判定できる設定値である。
トルク演算部32は、ステップS15において、第1励磁ライン210と第2励磁ライン220の両方が断線していないと判定されたか否かを判断する。第1励磁ライン210と第2励磁ライン220の両方が断線していないと判定した場合(Ss15:Yes)には、ステップS16において、第1励磁ライン断線判定フラグFe1と第2励磁ライン断線判定フラグFe2をともに「0」に設定する。この第1励磁ライン断線判定フラグFe1,第2励磁ライン断線判定フラグFe2は、「1」により断線が検出されていることを表し、「0」により断線が検出されていないことを表す。
続いて、トルク演算部32は、ステップS17において、回転角θの計算式に用いる符号Kを「1」(正)に設定し、回転角θの計算式に用いる符号Kを「―1」(負)に設定する。
トルク演算部32は、ステップS15において、第1励磁ライン210あるいは第2励磁ライン220が断線していると判定した場合には、ステップS18において、片側の励磁ラインだけが断線しているか否かを判断する。第1励磁ライン210と第2励磁ライン220の両方が断線していると判定した場合(S18:No)には、ステップS19において、第1励磁ライン断線判定フラグFe1と第2励磁ライン断線判定フラグFe2をともに「1」に設定して、操舵トルク検出ルーチンを一旦終了する。この場合、操舵トルクの検出は不能になるため、操舵トルクTrの計算は行われない。
トルク演算部32は、ステップS18において、第1励磁ライン210あるいは第2励磁ライン220の何れか一方が断線していると判定した場合には、ステップS20において、第1励磁ライン210だけが断線しているか否かを判定する。第1励磁ライン210だけが断線していると判定した場合には、ステップS21において、第1励磁ライン断線判定フラグFe1を「1」に設定し、第2励磁ライン断線判定フラグFe2を「0」に設定する。続いて、ステップS22において、回転角θの計算に用いる符号Kを「−1」に設定し、回転角θの計算に用いる符号Kを「−1」に設定する。
一方、ステップS20において、第2励磁ライン220だけが断線していると判定した場合(S20:No)には、ステップS23において、第1励磁ライン断線判定フラグFe1を「0」に設定し、第2励磁ライン断線判定フラグFe2を「1」に設定する。続いて、ステップS24において、回転角θの計算に用いる符号Kを「1」に設定し、回転角θの計算に用いる符号Kを「1」に設定する。
トルク演算部32は、ステップS17,ステップS22,ステップS24の何れかにて符号K,Kを設定すると、その処理をステップS25に進める。トルク演算部32は、ステップS25において、次式により回転角θおよび回転角θを計算する。
θ=K・(1/k)・tan−1(Ss1/Sc1)
θ=K・(1/k)・tan−1(Ss2/Sc2)
続いて、トルク演算部32は、ステップS26において、次式により操舵トルクTrを計算する。
Tr=Kb・(θ−θ
続いて、トルク演算部32は、ステップS27において、計算された操舵トルクTrをアシスト演算部31に出力する。アシスト演算部31は、この操舵トルクTrを使って目標アシストトルクを計算し、この目標アシストトルクに対応した目標電流が電動モータ21に流れるようにモータ駆動回路40にPWM制御信号を出力する。これにより、電動モータ21から適正な操舵アシストトルクが発生する。
トルク演算部32は、ステップS27あるいはステップS19の処理を行うと、操舵トルク検出ルーチンを終了する。そして、所定の短い周期にて操舵トルク検出ルーチンを繰り返す。
トルク演算部32は、ステップS11においてグランド断線検出タイミングであると判断した場合には、その処理をステップS30に進める。上述したように、本実施形態におけるトルク検出装置は、グランドライン240(ユニット外グランドライン240b)が断線した場合でも、そのまま操舵トルクTrを検出することができる。しかし、グランドライン240に加えて第1励磁ライン210あるいは第2励磁ライン220までも断線した場合には、操舵トルクTrを検出することができなくなる。そこで、トルク演算部32では、定期的にグランド断線検出処理を実行することにより、グランドライン240の断線を早期に検出してドライバーに修理を促す。尚、グランド断線検出処理は、操舵トルク検出ルーチンの起動直後、および、起動後の予め設定された周期で定期的に行うようにするとよい。
図8は、操舵トルク検出ルーチンにおけるステップS30のグランド断線検出サブルーチンを表す。グランド断線検出サブルーチンが開始されると、トルク演算部32は、ステップS31において、直前回(1制御周期前)の操舵トルク検出ルーチンで計算した操舵トルクTr(n-1)を、今回の操舵トルクTrに設定する。これは、後述するようにグランド断線検出処理を行うときには、操舵トルクを検出することができないからである。尚、グランド断線検出処理を行うタイミングが操舵トルク検出ルーチンの起動直後である場合には、操舵トルクTrをゼロに設定すればよい。
トルク演算部32は、続くステップS32において、第1励磁信号出力ポート50pe1から出力する第1励磁信号を停止させて、第1励磁信号出力ポート50pe1の電位をゼロボルトに固定する。この場合、ユニット外グランドライン240bが断線していなければ、第1励磁コイル111には励磁電流が流れない。従って、第1sin相検出コイル112の検出電圧Es1および第1cos相検出コイル113の検出電圧Ec1は、基本的にはゼロボルトになる。一方、ユニット外グランドライン240bが断線していれば、第2励磁信号出力ポート50pe2から出力された第2励磁信号は、第2励磁ライン220を通って第2励磁コイル121に流れ、ユニット内グランドライン240aを通って第1励磁コイル111に流れ、第1励磁ライン210を通ってアシストECU50に戻る。このため、ユニット内グランドライン240aの電位が励磁電圧の1/2となる。従って、アシストECU50の第1sin相信号入力ポート50ps1および第1cos相信号入力ポート50pc1には電圧が発生する。
トルク演算部32は、こうした特性を利用してユニット外グランドライン240bの断線を診断する。トルク演算部32は、ステップS33において、上述した方法で振幅Ss1,Sc1を計算する。続いて、ステップS34において、振幅Ss1,Sc1の二乗和の値(Ss1+Sc1)が基準値Sg以下であるか否かを判断する。この基準値Sgは、ユニット外グランドライン240bが断線していないときには、(Ss1+Sc1)が基準値Sgよりも小さくなり、かつ、ユニット外グランドライン240bが断線しているときには、(Ss1+Sc1)が基準値よりも大きくなるように、予め設定された断線の有無を判定できる設定値である。ユニット外グランドライン240bが断線していなければ、振幅Ss1,Sc1は基本的にはゼロになるが、ノイズによる電圧を検出してしまうおそれがあるため、基準値Sgはノイズ等を考慮して設定される。
トルク演算部32は、振幅Ss1,Sc1の二乗和の値(Ss1+Sc1)が基準値Sg以下であると判定した場合(S34:Yes)には、ステップS35において、グランドライン断線判定フラグFgを「0」に設定し、振幅Ss1,Sc1の二乗和の値(Ss1+Sc1)が基準値Sgを超えると判定した場合(S34:No)には、ステップS36において、グランドライン断線判定フラグFgを「1」に設定する。グランドライン断線判定フラグFgは、「1」により断線が検出されていることを表し、「0」により断線が検出されていないことを表す。
トルク演算部32は、グランドライン断線判定フラグFgの設定を行うと、続いて、ステップS37において、第1励磁信号出力ポート50pe1からの第1励磁信号の出力を再開する。従って、操舵トルクTrの検出ができる状態に戻される。トルク演算部32は、ステップS37の処理を行うと、本サブルーチンを終了して、その処理をメインルーチンのステップS27に進める。この場合、ステップS27では、ステップS31において設定した操舵トルクTrがアシスト演算部31に出力されることになる。
尚、グランドライン240の断線を検出するにあたって、本実施形態においては、ステップS32において第1励磁信号の出力を停止させるようにしたが、それに代えて、第2励磁信号の出力を停止させて、その出力電圧をゼロボルトに固定するようにしてもよい。この場合には、ステップS33,S34においては、振幅Ss2,Sc2の二乗和の値(Ss2+Sc2)と基準値Sgとを比較するようにすればよい。
トルク演算部32は、操舵トルク検出ルーチン(図7)のステップS12において、抵抗断線検出タイミングであると判断した場合には、その処理をステップS40に進める。上述したように、本実施形態におけるトルク検出装置は、ユニット外励磁ライン210b(220b)の一方が断線しても操舵トルクTrを検出することができる。しかし、電気抵抗素子230が断線した場合には、ユニット外励磁ライン210b(220b)の一方が断線すると操舵トルクTrを検出することができなくなる。そこで、トルク演算部32では、定期的に抵抗断線検出処理を実行することにより、電気抵抗素子230の断線を早期に検出してドライバーに修理を促す。尚、抵抗断線検出処理は、操舵トルク検出ルーチンの起動直後、および、起動後の予め設定された周期で定期的に行うようにするとよい。
図9は、操舵トルク検出ルーチンにおけるステップS40のグランド断線検出サブルーチンを表す。グランド断線検出サブルーチンが開始されると、トルク演算部32は、ステップS41において、直前回(1制御周期前)の操舵トルク検出ルーチンで計算した操舵トルクTr(n-1)を、今回の操舵トルクTrに設定する。これは、後述するように抵抗断線検出処理を行うときには、操舵トルクを検出することができないからである。尚、抵抗断線検出処理を行うタイミングが操舵トルク検出ルーチンの起動直後である場合には、操舵トルクTrをゼロに設定すればよい。
トルク演算部32は、続くステップS42において、第1励磁信号出力ポート50pe1から出力する第1励磁信号を停止させて、第1励磁信号出力ポート50pe1をオープン状態(ハイインピーダンス)にする。この場合、ユニット外第1励磁ライン210bが断線した状態と同じ状態に設定される。従って、ユニット外第1励磁ライン210bが断線した場合の制御ロジック、つまり、符号Kを「−1」に設定して回転角θを計算すれば、適正な回転角θを検出することができるはずである。トルク演算部32は、こうした特性を利用して電気抵抗素子230の断線を診断する。
トルク演算部32は、ステップS43において、上述した方法で振幅Ss1,Sc1を計算する。続いて、ステップS44において、回転角θを次式により計算する。
θ=−(1/k)・tan−1(Ss1/Sc1)
続いて、トルク演算部32は、ステップS45において、直前回(1制御周期前)の操舵トルク検出ルーチンのステップS25で計算した回転角θ(n-1)と、今回のステップS44で計算した回転角θとの偏差Δθ(=|θ−θ(n-1)|)を計算し、偏差Δθが基準値θr以下であるか否かを判断する。この基準値θrは、電気抵抗素子230が断線していないときには、偏差Δθが基準値θrよりも小さくなり、電気抵抗素子230が断線しているときには、偏差Δθが基準値θrよりも大きくなるように、予め設定された断線の有無を判定できる設定値である。
トルク演算部32は、偏差Δθが基準値θr以下であると判定した場合(S45:Yes)には、ステップS46において、抵抗断線判定フラグFrを「0」に設定し、偏差Δθが基準値θrを超えると判定した場合(S45:Yes)には、ステップS47において、抵抗断線判定フラグFrを「0」に設定する。抵抗断線判定フラグFrは、「1」により断線が検出されていることを表し、「0」により断線が検出されていないことを表す。
トルク演算部32は、抵抗断線判定フラグFrの設定を行うと、続いて、ステップS48において、第1励磁信号出力ポート50pe1からの第1励磁信号の出力を再開する。従って、操舵トルクTrの検出ができる状態に戻される。トルク演算部32は、ステップS48の処理を行うと、本サブルーチンを終了して、その処理をメインルーチンのステップS27に進める。この場合、ステップS27では、ステップS41において設定した操舵トルクTrがアシスト演算部31に出力されることになる。
尚、電気抵抗素子230の断線を検出するにあたって、本実施形態においては、ステップS42において第1励磁信号出力ポート50pe1をオープン状態にしたが、それに代えて、第2励磁信号出力ポート50pe2をオープン状態にするようにしてもよい。この場合には、ステップS43〜S45においては、振幅Ss2,Sc2に基づいて回転角θを計算し、この回転角θと直前回の回転角θ(n-1)との偏差に基づいて断線を判定するようにすればよい。
次に、トルク演算部32が実行する断線異常処理について説明する。上述した操舵トルク検出ルーチンにおいては、ユニット外第1励磁ライン210b、ユニット外第2励磁ライン220b、ユニット外グランドライン240b、電気抵抗素子230の断線の有無を判定した。この断線異常処理では、その断線判定結果に基づいて、運転者への異常報知と、アシスト演算部31に対して操舵アシストの停止指令とを行うものである。
図10は、断線異常処理ルーチンを表すフローチャートである。断線異常処理ルーチンは、マイコンのROM内に制御プログラムとして記憶されている。断線異常処理ルーチンは、上述した操舵トルク検出ルーチンと並行して、所定の短い周期で繰り返し実行される。
断線異常処理ルーチンが起動すると、トルク演算部32は、ステップS51において、第1励磁ライン断線判定フラグFe1、第2励磁ライン断線判定フラグFe2、グランドライン断線判定フラグFg、抵抗断線判定フラグFrが全て「0」に設定されているか否かを判断し、全てのフラグが「0」に設定されている場合、つまり、どこにも断線が検出されていない場合には、本ルーチンを一旦終了する。
一方、4つの断線判定フラグFe1,Fe2,Fg,Frの1つでも「1」に設定されている場合には、ステップS52において、車両の警告ランプ65を点灯させる。これにより、ドライバーに対して異常が生じていることを認識させることができる。続いて、トルク演算部32は、ステップS53において、第1励磁ライン断線判定フラグFe1と第2励磁ライン断線判定フラグFe2との両方が「1」に設定されているか否かを判断する。2つの断線判定フラグFe1,Fe2がともに「1」に設定されている場合(S53:Yes)には、操舵トルクTrを検出することができないため、トルク演算部32は、ステップS54において、アシスト演算部31に対して、トルク検出不能信号を出力する。これにより、アシスト演算部31は、操舵アシスト制御を停止する。
また、ステップS53の判断が「No」となる場合には、ステップS55において、第1励磁ライン断線判定フラグFe1とグランドライン断線判定フラグFgとの両方が「1」に設定されているか否かを判断する。2つの断線判定フラグFe1,Fgがともに「1」に設定されている場合(S55:Yes)にも、操舵トルクTrを検出することができないためステップS54の処理を行う。
また、ステップS55の判断が「No」となる場合には、ステップS56において、第2励磁ライン断線判定フラグFe2とグランドライン断線判定フラグFgとの両方が「1」に設定されているか否かを判断する。2つの断線判定フラグFe2,Fgがともに「1」に設定されている場合(S56:Yes)にも、操舵トルクTrを検出することができないためステップS54の処理を行う。
また、ステップS56の判断が「No」となる場合には、ステップS57において、第1励磁ライン断線判定フラグFe1と抵抗断線判定フラグFrとの両方が「1」に設定されているか否かを判断する。2つの断線判定フラグFe1,Frがともに「1」に設定されている場合(S57:Yes)にも、操舵トルクTrを検出することができないためステップS54の処理を行う。
また、ステップS57の判断が「No」となる場合には、ステップS58において、第2励磁ライン断線判定フラグFe2と抵抗断線判定フラグFrとの両方が「1」に設定されているか否かを判断する。2つの断線判定フラグFe2,Frがともに「1」に設定されている場合(S58:Yes)にも、操舵トルクTrを検出することができないためステップS54の処理を行う。
トルク演算部32は、ステップS58において「No」と判定した場合には、操舵トルクTrを検出することができるため、ステップS54の処理をスキップして本ルーチンを一旦終了する。
この断線異常処理ルーチンでは、ユニット外第1励磁ライン210b、ユニット外第2励磁ライン220b、ユニット外グランドライン240bのうち、2つ以上のラインの断線が同時に検出されている場合にトルク検出不能信号を出力する。また、電気抵抗素子230の断線と、ユニット外第1励磁ライン210bあるいはユニット外第2励磁ライン220bの断線とが同時に検出されている場合にトルク検出不能信号を出力する。
以上説明した本実施形態のトルク検出装置によれば、第1励磁コイル111と第2励磁コイル121とに励磁信号を供給するラインを独立して設け、その供給ラインである第1励磁ライン210と第2励磁ライン220とをレゾルバユニット内において電気抵抗素子230で接続する構成を採用しているため、一方の励磁ラインが断線しても操舵トルクを検出することができる。
また、第1励磁ライン210に供給する第1励磁信号と、第2励磁ライン220に供給する第2励磁信号とが互いに逆位相(電圧波形が反転した信号)となるように励磁信号を生成しているため、グランドライン240が断線した場合であっても操舵トルクを検出することができる。このため、電動パワーステアリング装置において、操舵アシストを継続することができる。従って、電動パワーステアリング装置の信頼性が向上する。
図14は、本実施形態のトルク検出装置に対比させて表した従来のトルク検出装置の概略構成を表す。この図14と図2との比較からも分かるように、本実施形態のトルク検出装置では、レゾルバユニット100とアシストECU50とを接続する配線本数を従来のトルク検出装置のものに対して1本増やし、レゾルバユニット100内で第1励磁ライン210と第2励磁ライン220とを電気抵抗素子230で接続するという簡単な構成の追加で、断線に対する信頼性を向上させることができる。例えば、従来のトルク検出装置で励磁ラインとグランドラインの断線に対する信頼性を向上させようとした場合には、図14に破線で示すように、励磁ラインELとグランドラインGLとを1本ずつ追加して冗長構成にすることが考えられる。しかし、その場合には、励磁ラインELとグランドラインGLとが合計4本となり構成が複雑となる。また、励磁ラインELあるいはグランドラインGLの1本が断線した場合には、その断線を検出することができない。
これに対して、本実施形態においては、ワイヤハーネスの配線本数が1本増えるだけであるため、構成が複雑にならない。また、互いに逆位相となる第1励磁信号と第2励磁信号とを用いて第1励磁コイル111と第2励磁コイル121とを駆動するため、グランドライン240が断線した場合でも操舵トルクを検出することができる。
このように、本実施形態のトルク検出装置は、ワイヤハーネスの配線数の増加を1本のみに抑えても、断線に対する高い信頼性を確保することができる。また、各レゾルバ110,120の構成が従来のものとほとんど変わらないため、容易に実施することができる。
また、第1励磁ライン210、第2励磁ライン220、電気抵抗素子230、グランドライン240の断線の有無を診断し、それらの断線を検出したときには、警告ランプ65を点灯して運転者に修理を促す。従って、断線が2個所となる2重故障により操舵トルクを検出できなくなるといった不具合を抑制することができる。
次に、本実施形態の第1変形例について説明する。本実施形態においては、アシストECU50から、互いに逆位相となる第1励磁信号と第2励磁信号とをレゾルバユニット100に出力して、第1励磁コイル111と第2励磁コイル121とを駆動する構成であるが、通常時(非断線時)であれば、第1励磁信号と第2励磁信号とが同位相であってもよい。その場合には、第1励磁ライン210と第2励磁ライン220とを接続する電気抵抗素子230に電流が流れないため、電気抵抗素子230が発熱しなく、また、省エネルギーとなる。
そこで、第1変形例においては、グランドライン240の断線が検出されているときにのみ第1励磁信号と第2励磁信号とを逆位相にする。図11は、第1変形例としてのトルク演算部32が実行する励磁信号制御ルーチンを表すフローチャートである。励磁信号制御ルーチンは、マイコンのROM内に制御プログラムとして記憶されており、上述した操舵トルク検出ルーチンと並行して、所定の短い周期で繰り返し実行される。
励磁信号制御ルーチンが起動すると、トルク演算部32は、ステップS61において、グランドライン断線判定フラグFgが「0」に設定されているか否かを判断し、グランドライン断線判定フラグFgが「0」に設定されている場合には、ステップS62において、第1励磁信号と第2励磁信号とを同位相にして出力する。一方、グランドライン断線判定フラグFgが「1」に設定されている場合には、ステップS63において、第1励磁信号と第2励磁信号とを逆位相にして出力する。こうして、励磁信号の位相を決定すると励磁信号制御ルーチンを一旦終了する。尚、第1励磁信号と第2励磁信号とを同位相にする場合には、回転角θ,θの計算式に用いる符号K,Kを同一にする。
この変形例によれば、グランドライン240の断線が検出されていないときには、第1励磁信号と第2励磁信号とを同位相にするため、電気抵抗素子230に電流が流れない。この結果、電気抵抗素子230が発熱しない。また、省エネルギーとなる。また、グランドライン240の断線が検出されているときには、第1励磁信号と第2励磁信号とを逆位相にするため、レゾルバユニット100内におけるユニット内グランドライン240aの電位をゼロボルトに維持できる。このため、第1sin相検出コイル112、第1cos相検出コイル113、第2sin相検出コイル122、第2cos相検出コイル123は正常に動作し、適切に操舵トルクTrを検出することができる。
尚、第1励磁ライン210あるいは第2励磁ライン220の何れか一方の断線が検出されている場合には、第1励磁信号と第2励磁信号とを同位相にしても逆位相にしてもどちらでもよい。レゾルバユニット100には、片方の励磁信号しか入力しないからである。
次に、第2変形例について説明する。本実施形態においては、第1励磁ライン210あるいは第2励磁ライン220の断線時に電気抵抗素子230を介して第1励磁コイル111あるいは第2励磁コイル121が駆動される。従って、励磁信号に対する検出信号の位相遅れ量φが、通常時(非断線時)と断線時とで変化してしまい、振幅の計算精度が低下する。そこで、第2変形例においては、第1励磁ライン210あるいは第2励磁ライン220の断線が検出されている時には、計算式における位相遅れ量φの値を、電気抵抗素子230の抵抗値を考慮した値に変更する。
図12は、第2変形例としてのトルク演算部32が実行する位相遅れ量切替ルーチンを表すフローチャートである。位相遅れ量切替ルーチンは、マイコンのROM内に制御プログラムとして記憶されており、上述した操舵トルク検出ルーチンと並行して、所定の短い周期で繰り返し実行される。
位相遅れ量切替ルーチンが起動すると、トルク演算部32は、ステップS71において、第1励磁ライン断線判定フラグFe1が「0」に設定されているか否かを判断し、第1励磁ライン断線判定フラグFe1が「0」に設定されている(S71:Yes)場合には、ステップS72において、第2励磁ライン断線判定フラグFe2が「0」に設定されているか否かを判断する。ステップS72において「Yes」と判定した場合、つまり、第1励磁ライン210および第2励磁ライン220の断線が検出されていない場合には、ステップS73において、第1レゾルバ110における位相遅れ量φ1をφ0に設定し、第2レゾルバ120における位相遅れ量φ2をφ0に設定する。この位相遅れ量φ0は、電気抵抗素子230を介さずに励磁信号を励磁コイル111,121に供給した場合における位相遅れ量を予め設定した設定値である。また、位相遅れ量φ1は、第1レゾルバ110における振幅Ss1,Sc1の計算に使用する位相遅れ量φであり、位相遅れ量φ2は、第2レゾルバ120における振幅Ss2,Sc2の計算に使用する位相遅れ量φである。
一方、ステップS72において「No」と判定した場合、つまり、第2励磁ライン220のみ断線が検出されている場合には、ステップS74において、第1レゾルバ110における位相遅れ量φ1をφ0に設定し、第2レゾルバ120における位相遅れ量φ2をφrに設定する。この位相遅れ量φrは、電気抵抗素子230を介して励磁信号を励磁コイル111あるいは励磁コイル121に供給した場合における位相遅れ量を予め設定した設定値であり、電気抵抗素子230の抵抗値Rを考慮した値に設定される。
ステップS71において「No」と判定した場合には、ステップS75において、第2励磁ライン断線判定フラグFe2が「0」に設定されているか否かを判断する。ステップS75において「Yes」と判定した場合、つまり、第1励磁ライン210のみ断線が検出されている場合には、ステップS76において、第1レゾルバ110における位相遅れ量φ1をφrに設定し、第2レゾルバ120における位相遅れ量φ2をφ0に設定する。また、ステップS75において「No」と判定した場合は、第1励磁ライン210と第2励磁ライン220との両方の断線が検出されているため、操舵トルクTrの検出が不能であり、位相遅れ量φ1,φ2を設定をしない。
トルク演算部32は、ステップS73,S74,S76において位相遅れ量φ1,φ2を設定すると位相遅れ量切替ルーチンを一旦終了する。トルク演算部32は、位相遅れ量切替ルーチンを所定の短い周期で繰り返し実行する。
この第2変形例によれば、通常時(非断線時)と断線時とで位相遅れ量φを切り替えるため、適正な振幅Ss1,Sc1,Ss2,Sc2を計算することができる。これにより、回転角θ,θの計算精度が向上し、一層正確な操舵トルクTrを検出することができる。
次に、第3変形例について説明する。上述した第2変形例においては、第1励磁ライン210あるいは第2励磁ライン220の断線が検出された時に、計算式における位相遅れ量φを切り替えるように構成したが、この第3変形例においては、図13に示すように、電気抵抗素子230にインダクタ231を直列に接続する。これにより、ユニット内第1励磁ライン210aとユニット内第2励磁ライン220aとあいだに、電気抵抗素子230とインダクタ231との直列回路が接続されることになる。この場合、通常時と断線時とにおいて位相遅れ量φが等しくなるようにインダクタ231のインダクタンスの値を予め設定しておけばよい。
従って、この第3変形例においても、適正な振幅Ss1,Sc1,Ss2,Sc2を計算することができる。これにより、回転角θ,θの計算精度が向上し、正確な操舵トルクTrを検出することができる。また、第2変形例に比べてマイコンの演算負荷を低減することができる。
次に、第4変形例について説明する。上述した実施形態においては、グランドライン240の電位をゼロボルトに設定している。このため、第1励磁信号および第2励磁信号を発生させるコイル駆動回路52においては、正負電源が必要となる。そこで、第4変形例においては、正電源だけで励磁信号を生成できるように、グランドライン240の電位、つまり、グランドポート100pgの電位を電源電圧の半分程度に固定する。
例えば、電源電圧VDD=5Vの場合には、グランドライン240の電位を2.5Vに設定する。ここでは、グランドライン240をコモンライン240と呼び、グランドポート100pg,グランドポート50pgをコモンポート100pg,コモンポート50pgと呼ぶことにする。以下、「グランド」を「コモン」と読み替えることにする。
コモン電位を電源電圧VDDの1/2に固定した場合には、第1励磁電圧Vおよび第2励磁電圧Vは、次式にて表される。
=A・sin(ωt)+VDD/2
=−A・sin(ωt)+VDD/2
従って、アシストECU50のコイル駆動回路52は、第1励磁信号出力ポート50pe1および第2励磁信号出力ポート50pe2から、上記式で表される第1励磁信号および第2励磁信号を出力すればよい。この場合、ユニット外コモンライン240bの断線時においても、ユニット内コモンライン240aの電位をVDD/2に維持することができる。従って、第1sin相検出コイル112、第1cos相検出コイル113、第2sin相検出コイル122、第2cos相検出コイル123は正常に動作するため、通常時(非断線時)と同様にして回転角θ,θから操舵トルクTrを演算により求めることができる。
以上、本実施形態およびその変形例について説明したが、本発明は上記実施形態や変形例に限定されることなく、本発明の範囲内において種々の変更が可能である。
例えば、本実施形態においては、第1励磁信号と第2励磁信号とを、その位相が互いに逆となるように生成したが、必ずしも逆位相にする必要はない。また、本実施形態においては、グランドライン240の断線、励磁ライン210,220の断線、電気抵抗素子230の断線をそれぞれ検出するように構成しているが、必ずしもこうした断線検出機能を備える必要はない。
また、本実施形態においては、アシストECU50に設けられるマイクロコンピュータにより回転角θ,θの計算、および、操舵トルクTrの計算を行う構成であるが、回転角θ,θの計算は、RDコンバータ(Resolver−Digital−Converter)にて行い、RDコンバータで計算したデジタル角度データをアシストECU50に出力して、アシストECU50のマイクロコンピュータにて操舵トルクTrを計算するように構成することもできる。この場合、RDコンバータとレゾルバユニット100とがワイヤハーネスで接続されることになる。また、RDコンバータとアシストECUとで、本発明のトルク演算部を構成することになる。
また、本実施形態においては、励磁ライン210,220の断線検出、あるいは、グランドライン240の断線検出を、振幅の二乗和((Ss1+Sc1)あるいは(Ss2+Sc2))に基づいて行っているが、必ずしもそのようにする必要はなく、検出電圧Es1,Ec1,Es2,Ec2に基づくものであればよい。例えば、検出電圧Es1の絶対値(|Es1|)と検出電圧Ec1の絶対値(|Ec1|)との両方が同時に基準値Ee以下となる場合に第1励磁ライン210が断線していると判定してもよい。第2励磁ライン220についても同様に行うことができる。また、グランドライン240の断線検出については、例えば、検出電圧Es1の絶対値(|Es1|)あるいは検出電圧Ec1の絶対値(|Ec1|)の少なくとも一方が、基準値Eg以上となる場合に、グランドライン240が断線していると判定してもよい。

Claims (8)

  1. 第1励磁コイルに励磁用交流信号が供給されてシャフトの第1軸方向位置における回転角に応じた検出信号を出力する第1レゾルバと、第2励磁コイルに励磁用交流信号が供給されて前記シャフトの第2軸方向位置における回転角に応じた検出信号を出力する第2レゾルバとを有するレゾルバユニットと、
    前記レゾルバユニットとワイヤハーネスを介して接続され、前記第1励磁コイルおよび前記第2励磁コイルに励磁用交流信号を供給するとともに、前記第1レゾルバおよび前記第2レゾルバから出力される検出信号をそれぞれ入力して前記シャフトの第1軸方向位置における第1回転角および第2軸方向位置における第2回転角を計算し、前記計算した第1回転角と第2回転角とに基づいて前記シャフトの軸回り方向に働くトルクを計算により求めるトルク演算部と
    を備えたトルク検出装置において、
    前記トルク演算部は、前記第1励磁コイルに対しては第1励磁ラインを介して前記励磁用交流信号を供給し、前記第2励磁コイルに対しては前記第1励磁ラインとは異なる第2励磁ラインを介して前記励磁用交流信号を供給し、
    前記レゾルバユニットは、前記第1励磁ラインと前記第2励磁ラインとを電気的に接続する電気抵抗素子を備えたことを特徴とするトルク検出装置。
  2. 前記第1励磁コイルは、前記第1励磁コイルの一端に接続される第1励磁ラインと、前記第1励磁コイルの他端に接続される共通グランドラインにより前記トルク演算部と接続され、
    前記第2励磁コイルは、前記第2励磁コイルの一端に接続される第2励磁ラインと、前記第2励磁コイルの他端に接続される前記共通グランドラインにより前記トルク演算部と接続され、
    前記トルク演算部は、前記第1励磁ラインおよび前記第2励磁ラインに、互いに同じ周波数であって位相が逆になる励磁用交流信号を別々に出力する逆位相コイル駆動回路を備えたことを特徴とする請求項1記載のトルク検出装置。
  3. 前記第1レゾルバの出力する検出信号に基づいて前記第1励磁ラインの断線を検出する第1励磁ライン断線検出手段と、
    前記第2レゾルバの出力する検出信号に基づいて前記第2励磁ラインの断線を検出する第2励磁ライン断線検出手段と、
    前記第1励磁ラインの断線が検出された場合に、前記計算される第1回転角の符号を反転し、前記第2励磁ラインの断線が検出された場合に、前記計算される第2回転角の符号を反転する回転角補正手段と
    を備えたことを特徴とする請求項2記載のトルク検出装置。
  4. 前記第1励磁ラインの断線が検出された場合に、前記第1レゾルバの出力する検出信号の位相遅れ量を補正し、前記第2励磁ラインの断線が検出された場合に、前記第2レゾルバの出力する検出信号の位相遅れ量を補正する位相遅れ量補正手段を備えたことを特徴とする請求項3記載のトルク検出装置。
  5. 前記電気抵抗素子にインダクタを直列に接続して、前記第1励磁ラインあるいは前記第2励磁ラインの断線時に前記第1レゾルバの出力する検出信号の位相遅れ量あるいは前記第2レゾルバの出力する検出信号の位相遅れ量が変化しないようにしたことを特徴とする請求項3記載のトルク検出装置。
  6. 前記第1励磁ラインの断線、あるいは、前記第2励磁ラインの断線が検出されているときに異常報知を行う励磁ライン断線報知手段を備えたことを特徴とする請求項3ないし請求項5の何れか一項記載のトルク検出装置。
  7. 前記第1励磁ラインあるいは前記第2励磁ラインの一方を、前記共通グランドラインの設定電位と同電位に設定し、その状態における前記第1レゾルバあるいは前記第2レゾルバの検出信号に基づいて、前記共通グランドラインの断線を検出するグランドライン断線検出手段と、
    前記共通グランドラインの断線が検出されているときに異常報知を行うグランドライン断線報知手段と
    を備えたことを特徴とする請求項2ないし請求項6の何れか一項記載のトルク検出装置。
  8. 前記第1励磁ラインあるいは前記第2励磁ラインの一方を前記トルク演算部で開放し、その状態において計算した第1回転角あるいは第2回転角に基づいて、前記電気抵抗素子の断線を検出する抵抗断線検出手段と、
    前記電気抵抗素子の断線が検出されているときに異常報知を行う抵抗断線報知手段と
    を備えたことを特徴とする請求項1ないし請求項7の何れか一項記載のトルク検出装置。
JP2011502965A 2010-08-25 2010-08-25 トルク検出装置 Expired - Fee Related JP5051404B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/064333 WO2012025999A1 (ja) 2010-08-25 2010-08-25 トルク検出装置

Publications (2)

Publication Number Publication Date
JP5051404B2 JP5051404B2 (ja) 2012-10-17
JPWO2012025999A1 true JPWO2012025999A1 (ja) 2013-10-28

Family

ID=45723027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011502965A Expired - Fee Related JP5051404B2 (ja) 2010-08-25 2010-08-25 トルク検出装置

Country Status (5)

Country Link
US (1) US8656791B2 (ja)
EP (1) EP2610601A4 (ja)
JP (1) JP5051404B2 (ja)
CN (1) CN103080715B (ja)
WO (1) WO2012025999A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5569273B2 (ja) * 2010-09-07 2014-08-13 株式会社ジェイテクト 電動パワーステアリング装置
JP5953955B2 (ja) * 2012-06-07 2016-07-20 株式会社ジェイテクト トルクセンサ
JP5953965B2 (ja) * 2012-06-13 2016-07-20 株式会社ジェイテクト 回転角センサの異常検出装置
EP2913648B1 (en) * 2012-10-23 2019-12-18 NSK Ltd. Torque detection device, electric power steering device, and vehicle
RU2542348C1 (ru) * 2013-10-29 2015-02-20 Открытое акционерное общество "Конструкторское Бюро Промышленной Автоматики" Способ формирования механической характеристики электропривода постоянного тока
JP6489780B2 (ja) * 2014-09-25 2019-03-27 アイシン精機株式会社 制御装置
JP6083428B2 (ja) * 2014-12-16 2017-02-22 トヨタ自動車株式会社 車両の電動パワーステアリング装置
DE102015211224A1 (de) * 2015-06-18 2016-12-22 Robert Bosch Gmbh Verfahren und Schaltung zum Erkennen einer offenen Resolver-Erregerleitung
JP6443356B2 (ja) * 2016-01-29 2018-12-26 オムロン株式会社 ロードセル入力ユニット
JP2017169405A (ja) * 2016-03-17 2017-09-21 株式会社ジェイテクト モータ制御装置及び操舵制御装置
JP6782942B2 (ja) * 2016-11-14 2020-11-11 多摩川精機株式会社 検出器
JP7306648B2 (ja) * 2019-03-28 2023-07-11 日立Astemo株式会社 トルク検出装置及びパワーステアリング装置
JP7280099B2 (ja) * 2019-04-19 2023-05-23 株式会社ジェイテクト モータの制御システム、およびモータの制御装置
CN110987259B (zh) * 2019-12-23 2021-11-30 东北林业大学 一种基于磁聚焦式测量静态扭矩的测量系统及其测量方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096743A (en) * 1976-11-10 1978-06-27 Mcnab, Incorporated Shaft torque measuring system
US4762007A (en) * 1987-02-18 1988-08-09 Allen-Brady Company, Inc. Torque measuring apparatus
JP2687651B2 (ja) * 1990-02-15 1997-12-08 横河プレシジョン株式会社 磁気レゾルバの断線検出回路
JPH0720172A (ja) * 1993-06-30 1995-01-24 Yokogawa Hewlett Packard Ltd 回路定数・材料特性測定装置
JP2002022567A (ja) * 2000-07-03 2002-01-23 Showa Corp トルクセンサの異常検出装置
JP2002039795A (ja) * 2000-07-27 2002-02-06 Samutaku Kk レゾルバおよび、レゾルバの断線検出方法
US6823745B2 (en) * 2001-04-11 2004-11-30 Amiteq Co., Ltd. Relative-rotational-position detection apparatus
JP2003315178A (ja) * 2002-04-26 2003-11-06 Toyoda Mach Works Ltd トルク検出装置
JP3960120B2 (ja) * 2002-04-26 2007-08-15 株式会社ジェイテクト トルク検出装置
US7228783B2 (en) * 2005-08-05 2007-06-12 Gm Global Technology Operations, Inc. Pressure control system for a torque-transmitting mechanism
JP2007086018A (ja) * 2005-09-26 2007-04-05 Hitachi Cable Ltd 磁歪式トルクセンサ
JP4728764B2 (ja) * 2005-10-05 2011-07-20 本田技研工業株式会社 磁歪式トルクセンサとこれを利用した電動パワーステアリング装置
JP4572227B2 (ja) * 2007-11-29 2010-11-04 本田技研工業株式会社 磁歪式トルクセンサ及び電動ステアリング装置

Also Published As

Publication number Publication date
JP5051404B2 (ja) 2012-10-17
EP2610601A4 (en) 2014-12-10
US8656791B2 (en) 2014-02-25
CN103080715A (zh) 2013-05-01
EP2610601A1 (en) 2013-07-03
CN103080715B (zh) 2014-08-20
WO2012025999A1 (ja) 2012-03-01
US20130145865A1 (en) 2013-06-13

Similar Documents

Publication Publication Date Title
JP5051404B2 (ja) トルク検出装置
JP4911271B1 (ja) トルク検出装置
WO2009087991A1 (ja) モータ制御装置および電動パワーステアリング装置
JP2010048760A (ja) レゾルバの異常検出装置および電気式動力舵取装置
JP5720963B2 (ja) モータ制御装置
JP6669318B2 (ja) 電動パワーステアリング装置、及び電動パワーステアリング装置用モータの回転角検出方法
JP2011062044A (ja) モータ制御装置及び電動パワーステアリング装置
JP5092760B2 (ja) モータ制御装置および電動パワーステアリング装置
JP2010110147A (ja) モータ駆動制御装置及び電動パワーステアリング装置
JP4882513B2 (ja) 回転角検出装置およびトルクセンサ
JP3953889B2 (ja) 回転角検出装置とその温度補正方法
JP5862135B2 (ja) 電動パワーステアリング装置
JP4561160B2 (ja) 回転角検出装置及び電気式動力舵取装置
JP5703595B2 (ja) モータ制御装置及び電動パワーステアリング装置
JP2012083279A (ja) トルク検出装置
JP4779380B2 (ja) ブラシレスモータ及びこれを使用した電動パワーステアリング装置
JP5482680B2 (ja) トルク検出装置および電動パワーステアリング装置
JP2016041542A (ja) ステアリング装置
JP2012088198A (ja) トルク検出装置
JP5459184B2 (ja) 電動パワーステアリング装置
JP6349934B2 (ja) 位置検出装置及びサーボモータ
JP2007253703A (ja) 電動パワーステアリング装置
JP2009168558A (ja) 回転角検出装置および電気式動力舵取装置
JP2010074868A (ja) モータ駆動制御回路及び電動パワーステアリング装置
JP2005147791A (ja) 物理量検出装置およびトルク検出装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120627

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees