JPH097985A - ケミカルメカニカルポリシングの操作をインシチュウでモニタするための装置及び方法 - Google Patents

ケミカルメカニカルポリシングの操作をインシチュウでモニタするための装置及び方法

Info

Publication number
JPH097985A
JPH097985A JP8074976A JP7497696A JPH097985A JP H097985 A JPH097985 A JP H097985A JP 8074976 A JP8074976 A JP 8074976A JP 7497696 A JP7497696 A JP 7497696A JP H097985 A JPH097985 A JP H097985A
Authority
JP
Japan
Prior art keywords
wafer
polishing
signal
thickness
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8074976A
Other languages
English (en)
Other versions
JP3431115B2 (ja
JPH097985A6 (ja
Inventor
Birang Manoocher
ビラン マヌーチャー
Johanson Nils
ジョアンソン ニルス
Gleason Alan
グレアソン アラン
Pyatigorski Gregory
ピャティゴースキー グレゴリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23639462&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH097985(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US08/605,769 external-priority patent/US5964643A/en
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JPH097985A publication Critical patent/JPH097985A/ja
Application granted granted Critical
Publication of JP3431115B2 publication Critical patent/JP3431115B2/ja
Publication of JPH097985A6 publication Critical patent/JPH097985A6/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/205Lapping pads for working plane surfaces provided with a window for inspecting the surface of the work being lapped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B47/00Drives or gearings; Equipment therefor
    • B24B47/10Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces
    • B24B47/12Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces by mechanical gearing or electric power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B51/00Arrangements for automatic control of a series of individual steps in grinding a workpiece
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0683Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating measurement during deposition or removal of the layer

Abstract

(57)【要約】 【課題】 研磨プロセスに関して正確性を向上し更に有
用な情報を与えるために用いる事ができる終点の検出器
及び方法を提供する。 【解決手段】 基板上の層の均一性を、係る層の研磨の
最中にインシチュウで測定する方法である。この方法
は、:研磨中にレーザービームを層へ向けるステップ
と;光ビームの基板からの反射されることにより発生す
る干渉信号をモニタするステップと;この干渉信号から
均一性の尺度を計算するステップとを備えている。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、半導体の製造に関
し、特に、ケミカルメカニカルポリシング(chemical me
chanical polishing :CMP)及びCMPプロセス中の
インシチュウ(in-situ)終点検出に関する。
【0002】
【従来の技術】現代の半導体集積回路(IC)製造のプ
ロセスにおいては、先に形成された層や構造の上に様々
な材料の層や構造を形成することが必要となる。しか
し、先に形成される際に、プロセス中のウエハの上面の
局所構造において、隆起物、高低差のある部分、谷間、
溝、及び/又はその他の表面の不均一さが現れ、非常に
不均一となることがしばしばである。次の層を形成する
際に、これらの不均一さが問題を生じさせる。例えば、
先に形成された層の上に細かい幾何的構造をもつフォト
リソグラフィのパターンを転写する場合は、フォーカス
を非常に浅くする必要がある。従って、表面は平坦で平
面的であることが不可欠であり、そうでなければ、パタ
ーンの中でフォーカスが合っている部分とそうでない部
分とが生じることになる。実際、表面の変動は、25x
25mmのダイの上に1000オングストローム未満の
オーダーである事が好ましい。更に、主要な処理ステッ
プにおいてこの不均一性をならしておかなければ、ウエ
ハ表面の局所構造が更に不均一となり、その先の処理に
おいて積層を重ねる際に更に問題が生じることとなる。
用いるダイの種類や幾何的なサイズによっては、この表
面の不均一性が、収率やデバイスの性能を悪化させる。
従って、IC構造体に何等かの平坦化(プラナリゼーシ
ョン(planarization))やレベリング(leveling)を行う
ことが望ましい。実際、多くの高密度ICの製造技術で
は、製造プロセスにおける重要な局面において、ウエハ
表面を平坦化する方法を使用できるようになっている。
【0003】半導体ウエハの平坦化又は局所構造の除去
を実現する方法の1つに、ケミカルメカニカルポリシン
グ(CMP)がある。一般的には、ケミカルメカニカル
ポリシング(CMP)プロセスは、圧力を制御した状態
で、回転する研磨プラーテンに対してウエハを保持し又
は回転させる。図1に示されるように、典型的なCMP
装置10は、研磨プラーテン16に対してウエハ14を
保持するための研磨ヘッド12を有している。研磨プラ
ーテン16は、パッド18によって覆われている。この
パッド18は典型的には裏張り層20を有し、これは、
ウエハ14を研磨するためにケミカルポリシングスラリ
と共に用いられるカバー層22とプラーテンとの間のイ
ンターフェースとなっている。しかし、パッドの中に
は、カバー層のみを有し裏張り層を有していないものも
ある。カバー層22は、通例は、オープンセル発泡ウレ
タン(例えばRodel IC1000)又はグルーブのある表面を
有するポリウレタンシート(例えばRodel EX2000)であ
る。このパッド材料は、研磨剤と化学品とを含有するケ
ミカルポリシングスラリによってウェットな状態となっ
ている。典型的なケミカルポリシングスラリの1例は、
KOH(水酸化カリウム)とヒュームドシリカ粒子(fum
ed-silica particles)とを含有している。プラーテン
は、通常は自身の中心軸24の回りに回転している。更
に、通常は研磨ヘッドが自身の中心軸26の回りに回転
し、平行移動アーム28を介してプラーテンの表面の端
から端まで平行移動する。図1には研磨ヘッドが1つし
か示されていないが、CMP装置には、典型的には、こ
のようなヘッドが1つ以上研磨プラーテンの周方向に間
隔をおいて配置される。
【0004】ある部分が所望の平面度又は相対厚さまで
平坦化されたかどうかを決定することに、CMPプロセ
スの最中に生じる特有の問題がある。一般に、所望の表
面特性や平坦状態に達したときを検出する必要がある。
このことは、様々な方法によって実施されてきた。当初
は、CMPプロセスの最中にウエハの性質をモニタする
ことは不可能であった。典型的には、ウエハをCMP装
置から取り出して別の場所で評価していた。ウエハが所
期のスペックに適合していなければ、CMP装置に再び
戻されて、再処理がなされていた。これは、時間がかか
り、しかも人手を要する手法である。あるいは、材料が
過剰に除去されてから初めて試験の結果がわかることも
あり、その部分を使用不可能にしてしまうこともあっ
た。従って、従来技術においては、CMPプロセスの最
中にインシチュウで、所望の表面性質又は厚さが達せら
れたときを検出することが可能な装置が必要であった。
【0005】
【発明が解決しようとする課題】CMPプロセスの最中
に終点をインシチュウに検出するために、様々な装置や
方法が開発されてきた。例えば、超音波の使用と結び付
いた装置及び方法や、機械的抵抗、電気的インピーダン
スないしウエハ表面温度と結び付いた装置及び方法が用
いられてきた。これらの装置や方法は、ウエハやその層
の厚さを決定することに依拠し、厚さの変化をモニタす
ることによりプロセスの終点を確定することに依拠して
いる。ウエハの表面の層が薄くなるようなケースでは、
厚さの変化を用いて、表面の層がいつ所望の深さになっ
たかを検出する。また、パターニングを有する表面が不
均一なウエハを平坦化するケースでは、厚さの変化をモ
ニタし、表面の不均一度のおよその深さを知ることによ
り、終点が決定される。厚さの変化が不均一度の深さと
等しくなったときに、CMPプロセスが終了する。これ
らの装置及び方法は、意図していた用途に対してそこそ
こ良好であったが、更に正確に終点の決定をすることが
できるシステムがなお必要である。
【0006】
【課題を解決するための手段】本発明は、研磨プロセス
に関して正確性を向上し更に有用な情報を与えるために
用いる事ができる終点の検出器及び方法を目指すもので
ある。本発明の装置及び方法は、CMPプロセスの最中
に、除去された材料の厚さ又はウエハ表面の平坦度をイ
ンシチュウに決定するための、干渉による技術を採用す
る。
【0007】具体的には、研磨パッドが上についた回転
可能な研磨プラーテンと、ウエハを研磨パッドに対して
保持するための回転可能な研磨ヘッドと、終点検出器と
を用いるケミカルメカニカルポリシング(CMP)の装
置及び方法によって、前述の目的が達せられる。研磨パ
ッドは裏張り層を有しており、この裏張り層は、ケミカ
ルスラリによってウェットな状態となっておりウエハと
のインターフェースの役割をするカバー層と、プラーテ
ンとの、インターフェースの役目をする。ウエハは、酸
化物層の下にある半導体基板から構成されている。そし
て、終点検出器は、レーザー光(レーザービーム)をウ
エハに向けて発する事が可能で且つ反射してくる光を検
出することが可能なレーザー干渉計と、プラーテンを貫
通して形成されているホール(穴)に近接して配置され
るウィンドウとを有している。このウィンドウは、少な
くともウエハがウィンドウの上方にある間は、ウエハに
入射するレーザー光のための通路の役割を果たす。
【0008】このウィンドウは、幾つかの形態が可能で
ある。これらの中には、プラーテンホールの内部に取り
付けられるインサートが挙げられる。このインサートは
レーザー光に対し透過性の高い、例えばクオーツ等の材
料で出来ている。このウィンドウの構成では、インサー
トの上面は、プラーテンの表面よりも上に突き出てお
り、また、プラーテンから遠ざかるように延長している
ため、ウエハがパッドに対して保持されているときは常
に、インサートの上面とウエハとの間にギャップが形成
されている。インサートをウエハに接触させずに、この
ギャップを出来るだけ小さくする方が好ましい。あるい
は、ウィンドウは、隣接する裏張り層がそこから取り除
かれた後の研磨パッドの一部分の形態であってもよい。
ポリウレタンカバー層は少なくとも一部分がレーザー光
に対して透過性を有しているため、この形態が可能であ
る。最後に、ウィンドウは、パッドのカバー層に形成さ
れたプラグの形態で裏張り層を有していない形態であっ
てもよい。このプラグは、好ましくは、レーザー光に対
して透過性の高いポリウレタン材料製である。
【0009】本発明の1つの具体例では、プラーテンを
貫くホール(穴)とウィンドウとは、円形である。別の
具体例では、ホールとウィンドウとは円弧形である。こ
の円弧形のウィンドウは、プラーテンの回転の中心と一
致する原点からある半径をもって構成される。本発明の
いくつかの具体例も、ウエハに入射している所のビーム
の直径が、用いている波長に対して可能な限り最小の直
径に比べて非常に大きいレーザー光を有している。
【0010】また、CMP装置は、ウィンドウがウエハ
に近接したときを感知する位置センサを有していてもよ
い。これにより、レーザー干渉計によって発せられたレ
ーザー光が障害なくウィンドウを通過しウエハに入射す
る事が可能となる。本発明の好ましい具体例では、係る
センサは、放射方向外側へ伸びるプラーテン外縁の部分
に沿って取り付けられているフラグを有している。更
に、プラーテンの外縁でシャシに取り付けられた光学的
干渉タイプのセンサを有している。このセンサは光ビー
ムを発することが可能であり、フラグによってこの光ビ
ームが干渉されたときだけ発せられる信号を生じさせ
る。従って、レーザービームが障害なしにウィンドウを
通りウエハへ入射できるときはいつでも、光ビームがフ
ラグによって干渉されるような、プラーテン上の位置
に、フラグは取り付けられる。
【0011】更に、レーザー干渉計は、ウエハから反射
してくる光が検出されるときは常に検出信号を発するた
めの装置を有し、また、位置センサは、ウィンドウがウ
エハに近接しているときは常に感知信号を出力するため
の要素を有している。このことにより、データ取得装置
が、位置センサからの感知信号の継続時間のための、レ
ーザー干渉計からの検出信号をサンプリングする事が可
能となる。そして、このデータ取得装置は、サンプリン
グされた検出信号を代表するデータ信号を出力するため
の要素を利用する。また、このデータ取得装置は、レー
ザー干渉計から所定の時間にわたってサンプリングされ
た検出信号を積分し、この検出信号をサンプリングして
積分したものを代表するデータ信号を出力する要素を有
している。プラーテンが一周する間に前述の所定のサン
プリング時間が得られない場合は、別の区分的データサ
ンプリング方法を利用してもよい。具体的には、あるサ
ンプリング時間に対してプラーテンが完全に一周するそ
れぞれの一周の間にレーザー干渉計から出力される検出
信号をサンプリングする方法を実行し、検出信号の各サ
ンプルをサンプリング時間にわたって積分して各サンプ
ルに対応する積分値を作り出し、そして、各積分値を保
存するための、要素を、データ取得装置は有していても
よい。また、プラーテンが完全に一周するその各一周の
後の累積サンプリング時間を計算し(この累積サンプリ
ング時間が、検出信号の各サンプルに対するサンプリン
グ時間の総和である場合)、この累積サンプリング時間
を所望の最小サンプリング時間と比較し、そして、累積
サンプリング時間が所定の最小サンプリング時間以上で
あった場合は保存された積分値を積分要素から総和を計
算するための要素へと転送するための、別の要素を、デ
ータ取得装置は利用する。従って、前述の出力は、この
総和の要素からの積分値の系列を表すデータ信号であ
る。
【0012】データ取得装置によるデータ信号の出力
は、CMPプロセスの最中に酸化物層が薄くなるにつれ
て、ウエハの酸化物層の表面から反射されるレーザービ
ームの部分とこの下のウエハ基板の表面から反射される
部分との間で干渉が生じる事により、周期的なものであ
る。従って、ブランク酸化物(blank oxide)ウエハの酸
化物層を薄くするCMPプロセスの終点は、データ信号
によって現れるサイクルの数を計数し、レーザービーム
の波長とウエハの酸化物層の反射係数とから出力信号の
1サイクルの間に除去される材料の厚さを計算し、酸化
物から除去されるべき材料の所望の厚さを、データ信号
により現れるサイクルの数と1サイクルの間に除去され
る材料の厚さとの積を備えた除去厚さと比較し、この除
去厚さが除去されるべき材料の所望の厚さ以上になった
ときにCMPを終了させるための、付加的な装置要素を
用いて、決定することが可能である。あるいは、全サイ
クルを計数する代りに、サイクルの一部を計数してもよ
い。この手順は、サイクル全体に対してではなくサイク
ルの一部に対して除去されるべき厚さを決定すること以
外は、ほぼ同じである。
【0013】ブランク酸化物ウエハのCMP処理終点を
決定する別の方法は、サイクルの所定の数又は1サイク
ルの所定の部分が終わるための要する時間を測定し、こ
の測定された時間に除去された材料の厚さを計算し、材
料の厚さを測定された時間で除して除去速度を算出し、
酸化物層から除去されるべき材料の所望の厚さから材料
の厚さを減じて残りの除去厚さを確定し、この残りの除
去厚さを除去速度で除して残りのCMP時間を確立し、
そして、この残りのCMP時間が経過した後CMPプロ
セスを終了させる、付加的な装置要素を用いる。
【0014】更に、この残りのCMP時間は、材料除去
速度の変化を補償するため、サイクルの前述の数が生じ
るたびに改められてもよい。このケースでは、この手順
は、材料の厚さを確定するステップにおいてまず初期の
繰り返しにおいて除去された厚さ全てを総和しこの累積
厚さを所望の厚さから減じて残りの厚さの数値を決定す
る点を除いて、ほぼ同じである。
【0015】しかし、ウエハが始めから不均一な表面局
所構造を有するためCMPプロセスで平坦化されるべき
である場合は、データ信号は、ウエハの表面がスムーズ
になった後でなければ周期性を有しない。このケースで
は、ウエハが平坦化したことを決定することに対応する
CMPプロセスの終点は、データ信号の周期な変化を検
出し、検出要素がこの周期的な変化を検出したときにC
MPプロセスを終了させる、付加的な装置要素を用いる
ことにより得られる。好ましくは、この検出要素は、こ
の変化の最初のほぼ1サイクル以内のデータ信号の周期
的な変化を検出する事が可能である。
【0016】条件によっては、パターニングされたウエ
ハ上の構造体の上の膜厚を制御することが望ましい。こ
の膜厚は、前述の平坦化によっていつも達成できるとは
限らない。しかし、データ信号をフィルタにかけて、特
定の膜厚が望ましい膜の下の特定の構造体や同様のサイ
ズが与えられた構造体のグループに関する周波数以外の
周波数をカットすることにより、この制御を得ることは
充分可能である。本質的には、信号が一旦フィルタにか
けられれば、ブランク酸化物のCMP終点を決定するた
めの前述したあらゆる方法を、パターニングされたウエ
ハに対して用いることが可能である。
【0017】また、データ取得装置により出力されるデ
ータ信号を、進行中のCMPプロセスの終点の決定以外
の事項に用いても有利である。従って、別の特徴におい
ては、本発明は、前記の層を研磨している最中に基板上
の層の均一性を測定するインシチュウの方法である。こ
の方法は、以下のステップを備えている:研磨中にレー
ザービームを層へ向けるステップと;光ビームの基板か
らの反射されることにより発生する干渉信号をモニタす
るステップと;この干渉信号から均一性の尺度(measure
)を計算するステップと。
【0018】好ましい具体例では、この計算するステッ
プは、干渉信号から特性信号を抽出する工程と;この抽
出された特性信号から均一性の尺度を計算する工程とを
備える。また、この方法は、均一性の尺度を参考値と比
較するステップと、この均一性の尺度が、参考値に対し
て所定の量以上広がったときに警告を発するステップと
を備えていてもよい。干渉信号は低周波成分を有し、抽
出のステップはこの低周波数成分の第1の特性を測定す
る工程と;第1の特性から、抽出情報を誘導する工程と
を有している。実際は、干渉計の信号の方も高周波成分
を有しており、抽出のステップも、この高周波成分の第
2の特性を測定する工程と、前記の第1の特性及び第2
の特性から、抽出情報を誘導する工程とを備えている。
更に具体的には、第1の特性及び第2の特性はそれぞ
れ、高周波数信号及び低周波数信号の振幅であり、誘導
する工程には、この低周波信号と高周波信号の比を計算
する操作を有している。
【0019】概説的には、別の特徴として、本発明は、
表面上に形成された層を有する基板を研磨するためのプ
ロセスの特徴をインシチュウに決定するための方法であ
る。この方法は、以下のステップを備える:研磨中に光
ビームを層へ向けるステップと;基板から反射される光
ビームによって発生される干渉信号をモニタするステッ
プと;干渉信号からシグネチャ(signature )を抽出する
ステップと;抽出されたシグネチャを、研磨プロセスの
所望の操作ポイントを代表する保存情報と比較するステ
ップと;抽出されたシグネチャが保存情報から所定の量
よりも大きく広がったときに警告信号を発するステップ
と。
【0020】好ましい具体例には、以下の特徴部分が含
まれる。この方法は、オペレータが視認するための視覚
的ディスプレイ装置上に干渉信号を表示するステップを
更に有している。更に、抽出のステップは、更に、干渉
信号から研磨速度を決定する工程と;干渉信号から均一
性の尺度を決定する工程とを備えている。比較するステ
ップは研磨速度及び均一性の尺度を、保存された情報と
比較する工程を有している。
【0021】概説的に、また別の特徴として、本発明
は、以下を備える基板研磨システムである:処理中は研
磨パッドを保持しているプラーテンと;処理中はプラー
テン上の研磨パッドに対して基板を保持する研磨ヘッド
と;処理中は研磨されるべき基板の側部に向けられてそ
こに入射し、干渉計信号を発生させる、コリメートされ
た光ビーム(collimated light beam )を発生する事が可
能な干渉計と;干渉信号から均一性の尺度を計算するよ
うにプログラムされたデータプロセッサと。
【0022】好ましい具体例では、研磨ヘッドとプラー
テンとは、処理中に両者が回転するように、回転可能と
なっている。また、干渉計は、レーザー干渉計である。
更に、データプロセッサも、干渉信号から特徴情報(fea
ture information )を抽出するように;また、抽出され
た特徴信号から均一性の尺度を計算するように、プログ
ラムされている。データプロセッサも、均一性の尺度と
参考値と比較するように;また、均一性の尺度が参考値
から所定の値広がったときに警告を発するように、プロ
グラムされている。
【0023】概説的に、更に別の特徴として、本発明
は、以下を備える基板研磨装置である:処理中に研磨パ
ッドを保持するプラーテンと;処理中にプラーテン上の
研磨パッドに対して基板を保持する研磨ヘッドと;コリ
メートされた光ビームを発する事が可能な干渉計と。プ
ラーテンは自身を貫通する通路を有し、干渉計は、光ビ
ームに、研磨の操作の少なくとも一部の間にこの通路を
通って基板に入射するような向きを与えるように配置さ
れる。また、この装置は、通路に対して調心されたウィ
ンドウを有し、このウィンドウを通って光ビームが基板
へ通過する。ウィンドウは、干渉計から到達する光ビー
ムを受容する散乱面を有している。
【0024】概説的に、また別の特徴として、本発明
は、上述のケミカルメカニカルポリシングシステムにお
いて用いるための研磨パッドである。この研磨パッド
は、研磨面と;底面とを有している。研磨パッドの底面
及び研磨面は、それらの内部に形成されたウィンドウを
有している。このウィンドウは、干渉計からの光に対し
て透過性を有し、また、散乱性の底面を有している。
【0025】ここに説明した利点に加えて、本発明のそ
の他の目的や利点は、添付した図面と共に説明される詳
細な説明から明らかになるであろう。
【0026】
【発明の実施の形態】図2は、本発明の一つの具体例に
従って変形されたCMP装置の一部を表している。プラ
ーテン16にはホール(穴)30が形成され、このホー
ルはプラーテンパッド18の上にある。研磨ヘッド12
の平行移動的な動きに関係なく、プラーテンが回転して
いる時間の一部の間、研磨ヘッド12によって保持され
るウエハ14から見えるように、このホール30の位置
が与えられる。レーザー干渉計32は、プラーテン16
の下にあって、ホール30がウエハ14に近接した時に
は、レーザー干渉計32によって投影されるレーザービ
ーム34がプラーテン16のホール30を通過してその
上にあるウエハ14の表面に入射するような位置に、固
定される。
【0027】プラーテンホール30及びウエハ14の詳
細な図(ウエハがプラーテンホール30の上にある場合
の)が、図3(a)〜(c)に示される。図3(a)に
示されるように、プラーテンホール30は、ステップ状
の直径を有し、ショルダ36を形成する。ショルダ36
は、レーザービーム34のためのウィンドウとして機能
するクオーツインサート38を有してこれを指示するた
めに用いられる。プラーテン16とインサート38の間
のインターフェースがシールされ、ウエハ14とインサ
ート38の間の通り道を見つけようとするケミカルスラ
リ40の一部がプラーテン16の底部から漏出できない
ようにされている。クオーツインサート38は、プラー
テン16の上面の上に突出し、部分的にプラーテンパッ
ド18の中に入り込む。このインサート38の突出部
は、インサート38の上面とウエハ14の表面との間の
ギャップを最小にする意図をもって置かれている。この
ギャップを最小にすることにより、このギャップに捉え
られるスラリ40の量が最小になる。このことは有利な
ことであり、何故なら、スラリ40はそこを通り抜ける
光を散乱させる傾向があり、レーザー干渉計32から発
せられるレーザービームの強度を弱めてしまうからであ
る。インサート38とウエハ14の間のスラリ40の層
が薄くなるほど、レーザービーム34とウエハに反射さ
れる光の弱化が少なくなる。約1mmのギャップであれ
ば、CMPプロセス中の弱化が受容される程度になると
考えられる。しかし、このギャップは小さいほど好まし
い。このギャップはできるだけ小さい方がよいが、CM
Pプロセス中はいつでもインサート38がウエハ14に
接しないことを確保するべきである。本発明の実験的な
具体例では、インサート38とウエハ14の間のギャッ
プは、10mils(250μm)あれば、満足な結果
を与える。
【0028】図3(b)は、プラーテン16とパッド1
8の別の具体例である。この具体例では、クオーツイン
サートは排除され、パッド18には貫通穴は存在しな
い。その代わりに、プラーテン16のホール30の上の
領域では、パッド18の裏張り層20(存在すれば)が
除去された。このことにより、ウエハ14とプラーテン
16の底部との間には、パッド18のポリウレタンカバ
ー層22だけが残っている。カバー層22に用いられる
ポリウレタン材料が、レーザー干渉計32からのレーザ
ービームを実質的に透過させるだろうことが、見出され
ている。従って、プラーテン30の上にあるカバー層2
2の一部が、レーザービーム34のためのウィンドウと
して機能する。この別の構成は、大きな利点を有してい
る。第1に、パッド18自身はウィンドウとして用いら
れているため、検出できる大きさのギャップは存在しな
い。従って、レーザービームの有害な散乱を生じさせる
スラリ40はほとんど存在しない。この別の具体例のも
う一つの利点は、パッドの消耗に関係しなくなることで
ある。図3(a)の最初に説明した具体例では、クオー
ツインサートとウエハ14との間のギャップは出来るだ
け小さくされていた。しかしパッド18は消耗するた
め、このギャップはまだ小さくなる。最後には、摩耗は
大きくなり、インサート38がウエハ14に接触して損
害を与える。図3(b)の別の具体例では、パッド18
は、ウィンドウとして用いられているため、また、ウエ
ハ14に接触するように設定されているため、パッド1
8の消耗による有害な効果はない。オープンセルのタイ
プのパッド及びグルーブを有する表面のタイプのパッド
を用いた実験によれば、グルーブを有する表面のパッド
の方がレーザービームの弱化が小さくなる結果が示され
たことに注目すべきである。従って、このタイプのパッ
ドを用いることが好ましい。
【0029】パッドのカバー層に用いられるポリウレタ
ン材料は、レーザービームに対して実質的に透過性を有
しているものの、透過性を阻害する添加物を含有してい
る。この問題点は、図3(c)に描かれている本発明の
具体例において排除される。この具体例では、プラーテ
ンホール30の上の領域における典型的なパッド材料
は、ソリッドな(中空ではない)ポリウレタンプラグ4
2に置き換えられる。このプラグ42は、レーザービー
ムのウィンドウとして機能し、パッド材料を包囲するグ
ルーブ(又はオープンセル構造)を有しないポリウレタ
ン材料製であり、透過性を阻害する添加物を含有してい
ない。従って、プラグ42を通ることによるレーザービ
ームの弱化は最小になる。好ましくは、プラグ42はパ
ッドと一体で成形される。
【0030】動作中は、本発明に従ったCMP装置は、
レーザー干渉計からのレーザービームを用いて、ウエハ
の表面から除去された材料の量を決定するか、又は、表
面が平坦化されたときを決定する。このプロセスの開始
を、図4を参照して説明する。レーザー及びコリメータ
44、ビームスプリッタ46、及び検出器48が、レー
ザー干渉計32の要素として描かれている。これが行わ
れることにより、前述したCMP装置の動作が容易にな
る。更に、クオーツインサート38をウィンドウとして
用いる図3(a)の具体例が、便宜のために示される。
無論、ここに描かれた構成は1つの可能な配置であり、
他の構成を用いてもよい。例えば、前述のウィンドウの
構成の全てを用いることができ、また、レーザー干渉計
32の別の具体例を用いることも可能である。代替でき
るレーザー干渉計の1つは、ウエハにある角度をもって
入射するビームを発生させるレーザーを用いるものであ
る。この具体例では、ウエハから反射される光が入射す
るような位置を検出器は与えられている。この代替的な
具体例には、ビームスプリッタは必要ではない。
【0031】図4に例示されるように、レーザー及びコ
リメータ44は、ビームスプリッタ46の下側部に入射
する、コリメートされたレーザービーム34を発生させ
る。ビーム34の一部が、ビームスプリッタ46及びク
オーツインサート38を通って進行していく。ビーム3
4のこの部分がインサートの下端に残れば、それはスラ
リ40を通って伝播し、ウエハ14の表面に入射する。
図5に詳細に示されているように、ウエハ14は、シリ
コンとその上の酸化物層52(例えばSiO2)とを有
する基板50を有している。
【0032】ウエハ14に入射するビームの一部は、酸
化物層52の表面で部分的に反射され、第1の反射ビー
ム54を形成する。しかし、光の一部は酸化物層52を
通過して、その下の基板50に入射する伝送ビーム56
を形成する。基板50に到達する伝送ビーム56から少
なくとも一部お光が酸化物層52へ反射し返され、第2
の反射ビーム58を形成する。第1の反射ビーム54と
第2の反射ビーム58は、これらの位相の関係によって
有益的にあるいは有害的に相互に作用し、位相関係が酸
化物層52の厚さに本質的な関数である場合は、結合ビ
ーム60を形成する。
【0033】上述の具体例では、単一の酸化物層を有す
るシリコン基板を用いているが、この分野の通常の技術
を有する者には、他の基板や他の酸化物層を用いても、
この干渉のプロセスが生じることは認識されるだろう。
重要な点は、入射するビームに対して、酸化物層が一部
反射し一部透過し、基板が少なくとも一部反射すること
である。更に、この干渉のプロセスを、基板の上に複数
の層を有するウエハに適用してもよい。再び、各層が部
分的に反射性を有し部分的に透過性である場合は、その
結果、干渉ビームが形成されるが、これは全ての層及び
基板からの反射ビームの結合である。
【0034】再び図4を参照すれば理解されるように、
第1の反射ビーム54及び第2の反射ビーム58(図
5)の結合である結合ビーム60は、スラリ40とイン
サート38を通って伝播し返し、ビームスプリッタ46
の上部分に達する。ビームスプリッタ46は、結合ビー
ム60の一部を、検出器48の方へ向きを変える。
【0035】プラーテン16は典型的には、CMPプロ
セスの最中は回転されるだろう。従って、プラーテンホ
ール30は、自身が一周する間にウエハ14を1回だけ
見えることになる。従って、ウエハ14にレーザービー
ム34が入射する時だけ、レーザー干渉計32からの検
出信号をサンプリングすることが可能である。レーザー
ビーム34がホール30を通って部分的にしか伝送され
ないときには検出信号はサンプリングされず、その理由
は、ホールのエッジでプラーテン16の底部によって一
部が干渉された場合は、信号に著しいノイズが発生する
だろうからである。このことが発生することを防止する
ため、位置センサ装置が結合される。ホール効果、渦電
流、光遮断器、又は音響センサ等の、あらゆる既知の近
接センサを用いることが可能であるが、本発明の実験例
には光遮断器のタイプのセンサが用いられ、以下に図面
と共に説明する。図6には、本発明に従ったレーザー干
渉計32を同期するための装置が示され、これには、光
遮断器タイプのセンサ62(例えば、LED/フォトダ
イオードのペア)をCMP装置のシャシのある固定点上
に載置され、プラーテン16の外周エッジの視界を有し
ている。このタイプのセンサ62は、発した光ビームが
遮断された時に活性化する。位置センサフラグ64が、
プラーテン16の外縁に取り付けられている。フラグ6
4の取り付け位置及び長さは、レーザー干渉計32から
のレーザービーム34が前述のウィンドウ構造体66を
完全に通過して伝送されたときにだけ、センサの光信号
を遮断する。例えば、図6に示されているように、セン
サ62は、プラーテン16の中心に関して、レーザー干
渉計32の直径方向の反対側に載置されていてもよい。
フラグ64は、プラーテン16において直径方向にウィ
ンドウ構造体66の反対側の位置に取り付けられてい
る。フラグ64の長さは、点線68によっておよそ決め
られるがフラグ64の正確な長さは、フラグ64がセン
サ62によって感知されている全時間、レーザービーム
がプラーテン16に全く干渉されないことを確保するよ
うに、細かく調整されるべきである。この細かな調節に
より、位置センサのあらゆるノイズ又は不正確性、レー
ザー干渉計32の応答性等を補償する。センサ62が一
旦活性化すれば、信号が発生し、これが、干渉計32か
らの検出信号をサンプリングすべき時を決定するために
用いられる。ウエハがレーザービームから見える所にあ
るときにレーザー干渉計の信号をサンプリングするため
にセンサ信号を用いることが可能な、データ取得システ
ムは、従来技術においても知られており、本発明の新規
な部分を構成しない。従って、ここにはその詳細は説明
しない。しかし、適切なシステムを選択に対して考慮す
べき事項はある。例えば、干渉計からの信号を所定の時
間にわたって積分することが好ましい。この積分によ
り、積分区間にわたり高周波ノイズが平均化されるた
め、信号−対−ノイズの比が改善される。このノイズ
は、様々な原因によるものであり、これには例えば、プ
ラーテン及びウエハの回転による振動や、平坦化が不均
等であることによるウエハ表面の変化等がある。上述の
装置では、信号を積分するための時間として、プラーテ
ンの1回転の間にどのくらいの長さをとることが可能か
を、クオーツウィンドウの直径及びプラーテンの回転ス
ピードが決定するだろう。しかし、しかし、状況によっ
ては、このような時間は適当ではないかも知れない。例
えば、許容できる信号−対−ノイズの比のために、積分
時間を更に長くとることが必要な場合があるだろうし、
あるいは、選択されたデータ取得システムに用いられる
インターフェースの回路のために、1周の間にとれる時
間よりも長い積分時間が最低でも必要な場合があるだろ
う。
【0036】この問題に対する1つの解決策は、プラー
テンホールをプラーテンの回転方向に沿って延長するこ
とである。換言すれば、ウィンドウ構造体66’(即
ち、インサート、パッド、又はプラグ)は、図7に示さ
れるように、円弧状の計状を有していてもよい。無論、
フラグ64’は、長くなったウィンドウ構造体66’に
適合するように拡大される。あるいは、ウィンドウは同
じままであるが、レーザー干渉計が、ウィンドウの真下
で回転プラーテンに据え付けられていてもよい。このケ
ースでは、CMP装置は、プラーテンの下にある干渉計
に適合するように改造する必要が有り、また、干渉計か
らの検出器信号の道筋をつけるように予め設定しておく
必要がある。しかし、どちらの方法においてもその正味
の結果は、プラーテンの各回転に対するデータ取得時間
を長くするものである。
【0037】プラーテンホール及びウィンドウを長くと
ることは有利である反面、プラーテンパッドの表面積を
幾分か小さくしてしまう。従って、プラーテンが回転す
るその回転の一部の間にウィンドウの上にあるディスク
の領域において、平坦化の速度が減少される。更に、プ
ラーテンホール及びウィンドウの長さは、ウエハのエッ
ジを越えてはならず、ウエハの平行移動位置に拘らず、
ウィンドウがウエハのエッジを越えた場合は、データサ
ンプリングが行われてはならない。従って、拡大したプ
ラーテンホール及びウィンドウの長さは、あるいは、プ
ラーテンに設置された干渉計がサンプリングできる時間
は、研磨ヘッドのあらゆる平行移動の運動に制限され
る。
【0038】従って、適切なデータ取得積分時間を得る
ために更に好ましい方法は、プラーテンの1回転以上の
回転に対してデータを収集することである。図8を参照
すれば、ステップ102の間に、プラーテンの各1回転
に対してとることができるデータ取得時間の間に、レー
ザー干渉計の信号がサンプリングされる。次に、ステッ
プ104及び106において、サンプリングされた信号
はそれぞれ、前述のデータ取得時間にわたって積分さ
れ、この積分値は保存される。そして、ステップ108
及び110においては、プラーテンが完全に1周するた
びにサンプリング時間の累積が計算され、所望の最小サ
ンプリング時間と比較される。無論、サンプルが1つだ
けとられたのであれば、これはただ1つのサンプリング
時間を構成するだろう。累積サンプリング時間が所望の
最小サンプリング時間以上になれば、ステップ112に
示されるように、保存されていた積分値が転送されて総
和される。そうでなければ、サンプリング、積分、保
存、累積サンプリング時間の計算及び所望の最小サンプ
リング時間との比較のプロセスが継続される。最終ステ
ップ114では、毎回保存されていた積分値が転送され
て総和されて作り出された総計積分値が、データ信号と
して出力される。ここに説明してきたデータ収集法は、
論理回路又はソフトウェアアルゴリズムを用いる多くの
既知の方法によって実施可能である。これらの方法はよ
く知られており、詳しい説明は冗長になるため、ここで
は割愛した。区分的なデータ収集の方法により、ウィン
ドウの直径やプラーテンの回転のスピードに関係なく、
問題所望の最小サンプリング時間に適合させる問題の解
決策が与えれらることは、注目すべきである。実際、こ
のプロセスが位置センサ装置と結び付いた場合は、プラ
ーテン回転スピードを変化させても信頼性の高いデータ
を得ることが可能である。必要なデータを得るために要
するプラーテン回転の数だけを変えればよい。
【0039】前述の第1の反射ビーム及び第2の反射ビ
ームは、図4及び図5に示されるように結合ビーム60
を形成し、検出器48で検知される干渉を生じさせる。
第1の反射ビーム及び第2の反射ビームが相互に位相が
合っている場合は、これらは検出器48において最大値
となる。これらのビームの位相が180゜ずれている場
合は、検出器において最小値となる。これらの反射ビー
ムの間のその他の位相関係により、干渉信号が、検出器
により検知される最大値と最小値の間のいずれかの値と
なるだろう。この結果により、検出器48からの信号出
力は、酸化物層52の厚さがCMPプロセスの最中に減
少されるにつれて、この厚さに対して周期的に変化す
る。実際、図9(a)及び(b)のグラフに示されてい
るように、検出器48からの信号出力は、正弦曲線状の
様式で変化するだろうことが観察された。図9(a)の
グラフは、時間(x−軸)に対する各サンプリング時間
にわたる検出信号の振幅(y−軸)の積分を示してい
る。このデータは、シリコン基板の上に形成されている
酸化物層(即ち、ブランク酸化物ウエハ)を有するウエ
ハにCMPの手順を実施しながら、図4の装置のレーザ
ー干渉計出力をモニタすることにより、得られたもので
ある。図9(b)のグラフは、図9(a)のグラフから
のデータにフィルタをかけた態様を表している。このフ
ィルタをかけた態様は、干渉計の出力信号における周期
的な変化を更にはっきりと示している。CMPプロセス
の最中に酸化物層から材料が除去されるときの速度によ
って、干渉信号の周期が制御されることは、注目すべき
である。従って、プラーテンパッドに対してウエハ上に
かかる下向きの力やプラーテンとウエハとの間の相対速
度が、この周期を決定する。図9(a)及び(b)でプ
ローブとされている出力信号の各周期中に、酸化物層は
ある厚さだけ除去される。除去された厚さは、レーザー
ビームの波長及び酸化物層の屈折率に比例している。具
体的には、1つの周期毎に除去される厚さの量は、およ
そλ/2nであり、λはレーザービームの自由空間波
長、nは酸化物層の屈折率である。従って、図10
(a)に例示される方法を用いれば、CMPプロセスの
最中に酸化物層がどのくらいインシチュウで除去される
かを決定することが可能である。第1に、ステップ20
2では、データ信号に現れるサイクルの数が計数され
る。次に、ステップ204では、出力信号の1サイクル
の間に除去される材料の厚さが、レーザービームの波長
とウエハの酸化物層の屈折率とから計算される。そし
て、ステップ206において、酸化物層から除去される
べき材料の所望の厚さが、実際に除去された厚さと比較
される。実際に除去された厚さは、データ信号に現れる
サイクルの数と、1サイクル中に除去される材料の厚さ
との積に等しくなる。最後のステップ208では、除去
された厚さが、除去されるべき材料の所望の厚さ以上と
なったときに、CMPプロセスが終了する。
【0040】あるいは、除去される材料の量を決定する
ためには、1サイクル全体よりも少ないサイクルを用い
てもよい。この方法では、材料が所望の量を越えて除去
される分を最小にすることができる。図10(a)のス
テップ202の括弧書きの部分に示されているように、
1サイクルの中の所定の部分が生じる回数が、各反復毎
に計数される。例えば、最大値(即ち、ピーク)と最小
値(即ち、谷)がそれぞれ生じること、あるいはその逆
が生じることが、サイクルの所定の部分を構成する。最
大値及び最小値は周知の信号処理の方法により簡単に検
出可能であるため、サイクルのこの特別な部分は便利で
ある。次に、ステップ204では、1サイクルの間に材
料がどのくらい除去されたかを決定した後、この厚さ
と、前述の所定の部分が代表する1サイクルの部分とを
掛合わせる。例えば、1.5サイクルを代表する、最大
値と最小値の発生を計数するケースでは、計算で得られ
た1サイクルの厚さを1.5倍して、サイクルの所定の
部分の間に除去された酸化物層の厚さを得ることができ
る。その他のステップはそのまま変えない。この別のア
プローチの正味の結果によれば、CMPプロセスは、サ
イクルの部分が生じた後に終了することができる。従っ
て、除去される材料のうち過剰な部分は、ほとんどのケ
ースでは、除去される材料の量を決定する基礎として全
サイクルを用いた場合よりも少なくなるだろう。
【0041】ここに述べてきた方法を、サイクルの終わ
り又はその部分から逆にたどることにより、所望の量の
材料が除去されたかどうかが決定される。しかし、上述
の如く、除去された材料の量は所望の量を越えてしまう
だろう。用途によっては、この過剰な材料の除去は許容
されないだろう。これらのケースでは、やがて来る周期
にわたって除去される材料の量を期待し予測し、所望の
量の材料が除去されると予測されたときに手順を止め
る、別の方法を採用することができる。この別の方法の
好ましい具体例は、図10(b)に例示される。そこに
示されているように、第1のステップ302は、検出器
信号において、最大値と最小値の最初の発生の間の時間
またはその逆の時間を測定する操作を有している(全サ
イクル又はその一部分のどちらを用いてもよい)。次
に、ステップ304では、サイクルのその部分の間に除
去される材料の量が、前述の方法によって決定される。
そして、ステップ306に示されるように、除去された
材料の量を測定時間で除することにより、除去速度が算
出される。これが、サイクルの前述の部分において材料
が除去されるときの速度を構成する。次のステップ30
8では、ステップ304で算出された材料の除去厚さを
除去すべき厚さから減じ、残りの除去厚さを決定する。
そして、ステップ310では、この残りの除去厚さを除
去速度で除すことにより、CMPプロセスを終了までど
のくらい継続すべきかを決定する。
【0042】しかし、検出器信号の周期、及び即ち除去
時間は、典型的には、CMPプロセスの進行につれて変
化するだろうことに注目すべきである。従って、上述の
方法は、これを補償するために反復される。換言すれ
ば、残りの時間が算出された後は、最大値と最小値の発
生又はその逆のそれぞれに対して、このプロセスが反復
される。従って、次に最大値と最小値がそれぞれ発生す
るまでの時間が測定され、この最大値と最小値の発生に
代表されるサイクルの部分(即ち1.5サイクル)の間
に除去される材料の厚さが測定時間で除され、この方法
の最初の反復におけると同様に、除去速度が算出され
る。しかし、次のステップ308では、括弧内に示され
るように、その前になされた反復全ての間に除去された
材料の量は、所望の厚さから減じられる前に決定され
る。この方法のその他の部分は同様であり、除去すべき
残りの厚さを新たに算出された除去速度で除して残りの
CMPプロセスの時間を決定する。この方法では、検出
器信号の1サイクルの所定の部分が生じる毎に残りのプ
ロセス時間を計算し直す。このプロセスは、次の反復を
開始できる前に残りのCMPプロセス時間がなくなるま
で続けられる。ステップ312に示されるように、この
ポイントでCMPプロセスが終了する。典型的には、除
去されるべき厚さが検出器信号の最初の1.5サイクル
では達せられず、先行した1.5サイクルに対して算出
された後の除去速度の変化は小さいだろう。従って、こ
の予測の方法は、ウエハから所望の厚さだけを除去する
には非常に正確な方法を与える。
【0043】ここに述べてきたモニタの手順は、スムー
ズな面を有するブランク酸化物ウエハに対して良好に機
能するが、表面が局所的に非常に不均一であるような、
パターニングされたウエハの多くに対してこの手順を平
坦化に用いても成功できないことが見出されている。こ
の理由としては、典型的なパターニングされたウエハは
ダイを有し、このダイには様々なサイズの異なる表面造
作(ぞうさく)が現れているからである。このサイズの
異なる表面造作は異なる速度で研磨される傾向を有して
いる。例えば、他の造作から相対的に遠くに配置されて
いる小さな表面造作は、他の大きな造作よりも早く減少
する傾向がある。図11(a)〜(c)には、酸化物層
52の表面造作72、74、76の1組が、その下の構
造体78、80、82と関連して例示される。これら
は、典型的なパターニングされたウエハ14上に見ら
れ、CMPプロセス中に変化していく。造作72は比較
的小さな造作であり、造作74は中ぐらいのサイズの造
作であり、造作76は比較的大きな造作である。図11
(a)には、研磨前の造作72、74、76を示し、図
11(b)は研磨プロセスの中ほどの造作72、74、
76を示し、図11(c)は研磨プロセスの終了に向け
た造作72、74、76を示す。図11(a)では、小
さい方の造作72は、中ぐらいの造作74及び大きい方
の造作76よりも早い速度で減少するだろう。更に、中
ぐらいの造作76は、大きな造作78よりも早い速度で
減っていくだろう。造作72、74、76が減っていく
速度も、研磨プロセスが進行するにつれて減少する。例
えば、小さい方の造作72は最初には高い減少速度を有
しているだろうが、この速度は研磨プロセス中に減少す
るだろう。従って、図11(b)には、造作72、7
4、76の高さが不均一になり始めていたのが、図11
(c)には、造作72、74、76の高さは実質的に均
一になっていることが示されている。サイズの異なる造
作が異なる速度で減っていき、この速度も変化するた
め、各造作から発せられる干渉信号は、異なる位相及び
周波数を有しているであろう。従って、造作72、7
4、76のそれぞれからの個々の反射の全てから部分的
に成る結合された干渉信号は、前述の周期的な正弦波状
信号ではなく、外見上ランダムな様式で変動するだろ
う。
【0044】しかし、上述のように、造作72、74、
76の研磨速度は、平坦化のポイントに近付く傾向があ
る。従って、造作72、74、76によって発生する干
渉ビームの間の位相差及び周波数差は、ゼロに近付くだ
ろう。この結果、結合された干渉信号が周期的な正弦波
の形態として認識できるようになる。従って、正弦波状
の干渉信号が開始するときを検出することにより、パタ
ーニングされたウエハの表面が平坦化された時を決定す
ることが可能となる。この方法は、図12に例示され
る。まず、ステップ402では、干渉計信号における前
述の正弦波状の変化に対するサーチが行われる。正弦波
状の変化が発見されれば、ステップ404に示されるよ
うに、CMPの手順は終了する。
【0045】図13は、CMPの手順が行われていると
きのパターニングされたウエハに対する検出器信号の振
幅を時間に対してプロットしたグラフである。このグラ
フを作成するために用いられたサンプリングされたデー
タは、次の積分値が報告されるまで、前の積分値に保持
された。従って、これは、ここに方形化されたピーク値
(squared-off peak value )が示されていることを説明
している。細密な検討により、認識可能な正弦波状のサ
イクルは、約250秒のところで現れていることが示さ
れる。ここは、パターニングされたウエハが最初に平坦
化された点と一致する。無論、干渉計の出力信号のリア
ルタイムのモニタにおいて、周期がいつ始まるかを正確
に知ることは不可能である。むしろ、周期が始まったと
確信できる前には、サイクルの少なくともどこか一部が
起こっているはずである。CMPの手順が終了する前
に、1サイクルだけが終わることが好ましい。信号がウ
エハの表面状にあるサイズの異なる造作を研磨すること
により生じたノイズの変化を単純に表しているのではな
く、周期が実際に始まっていることが、高度に確信でき
るため、1サイクルの制限は、実用的な選択である。更
に、この1サイクルの制限により、平坦化が達せられた
後に、少ない材料の量だけがウエハ表面から除去される
ことを確保する。2サイクル後の平坦化の程度は、1サ
イクル後と実質的に同じであったことが見出された。従
って、CMPの手順を継続させることは、ウエハ表面か
ら更に多くの材料を除去する事だけしか与えない。パタ
ーニングされたウエハが平坦化されればCMPプロセス
が終了する場合のケースでは、1サイクルが好ましい
が、これは本発明がこのような時間の枠にとらわる事を
意図しているわけではない。信号が特別強力であった場
合、サイクルの中の一部だけが終了した後に同じレベル
の確信を得ることも可能だろう。あるいは、信号が特別
に微弱であった場合、必要な確信を得るためには1サイ
クル以上必要なこともあるだろう。その選択は、用いて
いるシステムの特性に依存する。例えば、クオーツウィ
ンドウとウエハ表面との間のギャップのサイズは、信号
強度に影響するだろうことから、CMPプロセスを終了
させる前に何回サイクルをさせるかの決断に影響するだ
ろう。
【0046】レーザー干渉計からの出力信号がいつ周期
化し、即ちウエハ表面が平坦化されているかを実際に決
定することは、様々な方法により行うことが可能であ
る。例えば、信号をデジタル処理し、この決定を行うア
ルゴリズムを用いることができるだろう。この様な方法
は、米国特許第5,097,430号に開示され、その
特許では、信号の傾斜を用いて決定を行っている。更
に、カーブにフィッティングするための様々な周知のア
ルゴリズムを用いることが可能である。これらの方法
は、干渉計信号の正弦波曲線との類似性を見出すために
本質的に用いられるだろう。所定の許容範囲の中で一致
すれば、周期が開始したと決定される。半導体の用途に
よっては、パターニングされたウエハのダイ上に形成さ
れた構造体の上に形成された材料の厚さ(即ち膜厚)が
特定の深さのところにあることが必要であり、また、こ
の膜厚が、ダイとダイの間、並びにウエハとウエハとの
間で再現性をもつことが必要である。前述の典型的なパ
ターニングされたウエハを弊館かするための方法では、
この所望の再現性のある膜厚は必要がないだろう。平坦
化の方法の目的は、スムーズ且つ平坦な表面を作ること
であり、特定の膜厚を作ることではない。従って、特定
の構造又は同じ様なサイズを有する構造の群の上に膜厚
を制御することが望ましい場合は、別の方法を採用する
必要がある。この別の方法を、以下に説明する。
【0047】前述の如く、ダイ上のパターニングされた
構造の上に酸化物の層を形成することにより生じた、サ
イズの異なる表面造作はそれぞれ、独自の周波数及び位
相を有する反射干渉信号を生じさせる。サイズの異なる
表面造作のそれぞれの周波数及び位相が収斂したとき、
平坦化のポイントに単に近付いているに過ぎない。この
収斂の前には、サイズの様々に異なる表面造作によって
生じる干渉信号の独自の周波数及び位相が結合し、ラン
ダムに変化するように見える検出器信号を発生させる。
しかし、この信号を処理することにより、特別なサイズ
の造作又は同様のサイズの造作の群を除いて、異なる速
度で研磨されることになる全ての造作の干渉信号の寄与
を排除することが可能である。特定のサイズの造作又は
造作の群に関する干渉信号が分離されれば、ブランク酸
化物ディスクから材料を除去することに関して説明した
方法を用いて、所望の膜厚を得るために必要な量だけを
除去できる。
【0048】無論、着目する造作によって生じる干渉信
号の成分の周波数を、信号の処理の前に決定しておく必
要がある。上に形成される膜が特定の膜厚を有するよう
な構造に対応した構造だけがパターニングされたダイを
有する試験片上にCMPプロセスを実施することによ
り、この周波数は簡単に決定できると考えられる。この
CMPプロセスの最中に発せられる検出器信号を、周知
の方法によって解析して、前述の構造に関する表面造作
によって生じる干渉信号の周波数を決定する。
【0049】ウエハのCMP処理の最中に、インシチュ
ウで、ダイ上の特定の構造又は同じ様なサイズを有する
構造の群に対する膜厚を制御する、前述の方法を実施す
るために必要な特定のステップを、図14を参照しつつ
説明していく。ステップ502では、検出器信号をフィ
ルタにかけ、着目する構造に関する所定の周波数を有す
る信号の成分だけを通過させる。このステップは、周知
のバンドパスフィルタの技術を用いて実行される。次
に、ステップ504では、検出器信号において最大値と
最小値が最初に発生する間の時間又はその逆の時間の測
定がなされる(全サイクル又はその一部分のどちらを用
いてもよい)。サイクルのこの部分(即ち1.5サイク
ル)の間に除去される材料の量は、ステップ506にお
いて前述の方法により決定される。そして、ステップ5
08に示されているように、除去された材料の量を測定
時間で除して、除去速度が算出される。これは、サイク
ルの前述の部分において材料が除去された速度を構成す
る。次のステップ510では、ステップ506において
算出された材料除去の厚さが、除去されるべき所望の厚
さ(即ち、除去されたときに、着目する構造の上に所望
の膜厚を与える厚さ)から減じられて、残りの除去厚さ
を決定する。そして、ステップ512では、この残りの
除去厚さを前述の除去速度で除し、CMPプロセスを終
了までどのくらい継続すべきかを決定する。この残りの
時間が計算されれば、最大値と最小値がそれぞれ発生す
ること又はその逆に対して、プロセスが反復される。従
って、この方法の最初の反復におけると同様に、次の最
大値及び最小値の発生の間の時間が測定され、この最大
値及び最小値の発生に代表されるサイクルの部分(即ち
1.5サイクル)の間に除去される材料の厚さを測定値
で除して、除去速度が算出される。しかし、次のステッ
プ510では、括弧書きに示されているように、その前
の反復の全ての間に除去された材料の総量を、所望の厚
さから減ずる前に決定する。除去されるべき残りの厚さ
を新たに計算された除去速度で除して新しい残りのCM
P時間を決定する点で、この方法のその他の部分は同じ
である。このプロセスは、次の反復を始められるまで繰
り返される。ステップ514に示されているように、こ
のポイントでCMPプロセスが終了する。
【0050】上述の膜厚を制御するための方法は図10
(b)に例示されるCMPプロセス終点決定のための方
法を利用しているが、所望により、ここに記載されてい
るその他の終点決定の方法を用いてもよいことに注意す
べきである。
【0051】レーザー干渉計によって発生するレーザー
ビームのビームの直径(即ちスポット)及び波長を有利
なように操作することが可能であることに更に注意すべ
きである。図15の(a)及び(b)に示されているよ
うに、用いる波長に対し最小可能なスポットに合わせた
ビーム等の幅の狭いビーム84は、ウエハ14の表面に
対して、フォーカスできていない広いビーム86よりも
小さな領域をカバーする。この狭いビーム84は、広い
ビームに比べて、表面の不均一90による散乱(即ちビ
ーム88)を生じやすく、なぜなら、この広いビーム8
6はウエハ14の表面の更に広い面積に広がり、表面の
不均一90よりも大きな部分を包含するからである。従
って、広いビームは積分効果を有することとなり、ウエ
ハ14の表面を移動するときには、反射干渉信号に極端
な変動を生じさせにくい。従って、この理由から、ビー
ムは広い方が好ましい。レーザービームの幅を広くする
ためには、周知の光学装置を用いることが可能である。
【0052】また、ウィンドウの境界と境界の中にビー
ムが完全に含まれる時間は、ビームが広い時の方がビー
ムが狭い時に比べて少ないため、ビームが広いとプラー
テンの回転毎のデータ取得に使える時間を減らすことに
なることを、指摘する必要がある。しかし、前述のデー
タ取得の方法を用いれば、このことは大きな問題にはな
らないだろう。更に、ビームが広いと、ビームが狭い時
に比べて、光エネルギーをより大きな面積に拡散させて
しまうため、反射光の強度も幾分小さくなる。この難点
は、反射ビームの強度のロスが検出における要因とはな
らなくようにレーザー干渉計からのレーザービームの出
力を増加させることにより、克服可能である。
【0053】レーザービームの波長に関しては、遠赤外
から紫外までのあらゆる波長を用いることが可能であ
る。しかし、赤光の範囲のビームを用いることが好まし
い。これが好ましいことの理由は二重になっている。第
1に、波長が短いとケミカルスラリによって生じる散乱
の量が増加することになり、なぜなら、この散乱はレー
ザービームの周波数の4乗に比例するからである。従っ
て、波長が長い方が、散乱が少なくなる。しかし、波長
が長ければ干渉信号の周期毎に除去されるべき酸化物層
の量が多くなり、なぜなら、周期毎に除去される材料の
量はおよそλ/2nに等しいからである。従って、波長
が短ければ、1つの周期に除去される材料の量が少なく
なる。材料が過剰に除去される可能性を最小にするよう
に、各周期中に除去される材料を可能な限り少なくする
ことが望ましい。例えば、サイクルの数又はその一部が
計数されて除去された酸化物層の厚さが決定される、前
述の方法を用いたシステムでは、各サイクル又はその一
部の間に除去される材料の量が可能中限最小になれば、
所望の量に対して過剰に除去された材料が最小になる。
【0054】赤光レーザービームを選択することによ
り、波長の選択に関するこれらの2つの対立する要因を
最適にバランスさせると考えられる。赤光は、サイクル
毎に除去されるべき材料の量を制御不能にすることな
く、散乱を許容される程度にする。
【0055】更なる具体例 発生した干渉波形により、研磨プロセスに関する重要な
情報を更に得られる。この追加された情報を用いること
により、研磨された層の均一性のインシチュウによる測
定が可能になる。またこれを、CMPシステムが仕様
(スペック)の中で操作されていない(即ち、望ましく
操作されていない)かどうかを検出するために用いるこ
とも可能である。これらの両者を、以下に説明する。
【0056】均一性の測定 ウエハ/基板の表面にわたって均一な表面層を得るため
には、CMPプロセスにおいて行われる研磨及び/又は
平坦化の操作が一般に必要である。換言すれば、ウエハ
の中心とウエハのエッジとが同じ速度で研磨されるべき
である。典型的には、研磨後の層の厚さが約5〜10%
を越えて変動してはならない。均一性がこのレベルに達
しなかった場合は、デバイスの収率が低く許容できなく
なるため、ウエハは使用できなくなるだろう。実際に
は、ウエハ全体に均一な研磨速度を達することが非常に
困難な場合がしばしばである。典型的には、数多くの変
数を最適化してスペック内に保つことが必要とされる。
上述の終点検出器は、研磨されるべき層の均一性をモニ
タするためのツールとして非常に有用であり、また、イ
ンシチュウによるデータの取得及びデータ処理の双方の
モニタをすることも可能である。研磨中に干渉計によっ
て作り出された干渉波形が、研磨されるべき層の均一性
に関する情報を与えることを、我々は見出した。上述の
如く、表面層(即ち酸化物層)が研磨されるときには、
干渉計の出力が正弦波状の信号になって現れる。このピ
ークとピークの間の距離は、材料がどのくらい除去され
たかを指示している。この正弦波信号の頂点では、更に
高い周波数の別の正弦波信号も存在するだろう。この更
に高い周波数の方の信号の振幅は、ウエハの表面全体で
研磨後の層の厚さがどの程度まで変化したかを指示して
いる。
【0057】高い周波数の信号が現れる理由は、以下の
通りである。研磨が進むと同時に、典型的には干渉計は
ウエハ表面全体の様々な場所をサンプリング(又は注
目)する。なぜなら、研磨中は、プラーテンとウエハは
共に回転しており、更にウエハはプラーテンに対して軸
方向に運動しているからである。従って、研磨中は、研
磨されるべき層を干渉計が見るためのプラーテン内のホ
ールの上を、ウエハ表面の様々な領域が通過する。研磨
された層が完全に均一である場合は、その結果の干渉波
形は、ウエハ表面全体にわたっていろいろな場所をサン
プリングすることによる影響を受けない。即ち、それは
実質的に同じ振幅を有することになるだろう。換言すれ
ば、研磨された層が不均一ならば、様々な場所をサンプ
リングすることによって、正弦波を基礎とする信号に更
に変動を持込むことになる。この持込まれる変動は、用
いられている回転速度と掃引速度に依存する周波数を有
し、研磨された層の非均一性の程度に比例した振幅を有
している。このような波形の一例が、図16に示されて
いる。この特定の例では、周波数の高い信号を明確に例
示できるように、非均一性が相対的に大きくなってい
る。
【0058】周波数の高い信号のピークとピークの間の
振幅Ahfと周波数の低い信号のピークとピークの間の振
幅Alfとの比が、均一性の尺度になる。この比が小さく
なれば、研磨された層の均一性が高いことになり;その
逆の場合は、非均一性が大きくなる。
【0059】均一性の尺度を作り出すCMPシステム
が、図17に示される。図2に示されている前述の部材
に加えて、これは、干渉計の動作を制御するための、且
つ干渉信号からの均一性の尺度を発生させるために必要
な信号解析を行うためのコンピュータ150を備え、ま
た、様々な情報や結果をオペレータに対して表示するた
めのディスプレイユニット160を備えている。コンピ
ュータ150は、制御機能及び信号処理機能を行うこと
が出来るものであれば何れの装置でもよく、例えば、適
切なプログラミングを有する標準的なPCや、その用途
専用の特別にデザインされたデジタル処理ユニットであ
る。ディスプレイユニット160は、ビデオディスプレ
イ、プリンタ、又は、CMPシステムのオペレータに情
報を連通させるための装置の組合わせであってもよい。
【0060】均一性の尺度を発生させるために、コンピ
ュータ150は、図18に示されるような信号処理及び
その他の機能を実施実行するようにプログラミングされ
ている。これに関しては、コンピュータ150は2つの
プログラミング可能なバンドパスフィルタ、即ち、高周
波フィルタ152と低周波フィルタ154を提供する。
高周波フィルタ152は、均一性の情報を含んでいる高
周波信号の周波数の中心にある通過帯域を有し、また、
低周波フィルタ154は、研磨速度の情報を含んでいる
低周波信号の周波数の中心にある通過帯域を有してい
る。周期が数十秒のオーダーである場合は、これらの通
過帯域の両者の幅は数ミリヘルツ(millihertz)のオーダ
ーである。実に、通過帯域の幅は、中心周波数に比例し
て変化するようにプログラムされ、又は言い方を替えれ
ば、評価されるべき信号の周期に反比例するようにプロ
グラムされる。即ち、問題としている信号の周期が大き
くなれば、バンドパスフィルタのバンド幅が減少し、そ
の逆も真である。
【0061】図19(a)には、実際のシステムから得
られる干渉計信号の一例が示される。層が充分均一であ
ること、即ち、低周波信号の頂部に高周波信号がのって
いることが認識されていないことを、初期に信号が指示
していることに注目すべきである。研磨が短い周期の間
行われた後、高周波信号が現れ始め、非均一性があるレ
ベルになっていることを指示している。低周波フィルタ
154は低周波成分を選択し、他の成分をカットして、
図19(b)に示されている形態の出力信号を生じさせ
る。同様に、高周波数フィルタ152は高周波成分を選
択し、他の成分をカットして、図19(c)に示されて
いる形態の出力信号を生じさせる。
【0062】コンピュータ150は、フィルタ152及
び154の出力信号それぞれのピークとピークの間の振
幅を測定する2つの振幅測定機能156及び158を備
える。2つのフィルタされた信号が決定されれば、コン
ピュータ150は、高周波信号のピークとピークの間の
振幅と低周波信号のピークとピークの間の振幅との比
(即ち、Ahf/Alf)を計算する(機能ブロック162
を参照)。この比が計算された後は、コンピュータ15
0が計算値を、予めローカルメモリに保存した閾値又は
参照値164と比較し(ブロック166参照)する。計
算値が保存していた閾値を越えれば、コンピュータ15
0はオペレータに対し、研磨された層の非均一性が許容
量を越えたことを警告する。これに対し、オペレータは
プロセス変数を調整して、プロセスをスペック内に戻
す。
【0063】高周波信号は、研磨がある程度行われてか
ら現れる傾向があるため、非均一性の測定を行う前に待
機することが有用である。実に、研磨の操作全体におい
て研磨された層の均一性をモニタできるように、この比
を周期的に自動的に計算することが望ましい。このケー
スでは、オペレータが研磨プロセスにおいて現れる変化
及び/又は傾向を検出できるように、コンピュータ15
0がプロセスの間じゅう計算値を出力できることが望ま
しいだろう。実際の製造工程の間のウエハの研磨中に、
インシチュウでモニタが行われる場合に特に有用であろ
う。
【0064】ここに述べた機能は、コンピュータ上で走
らせるソフトウェアによって実行でき、また、この特別
の目的のために作られた専用の回路によって実行させて
もよいことに、注目すべきである。
【0065】バンドパスフィルタは、いわゆる当業者が
周知の技術を用いて実行可能である。ここに説明される
具体例では、これらはFIR(finite impulse renspon
e)(有限インパルス応答)フィルタで、周波数又は時間
領域(time domain)のいずれかに関して実施可能であ
る。しかし、干渉計信号が使用可能となるようにリアル
タイムでフィルタリング(filtering)を実施するために
は、フィルタリングは、適切な関数を発生した時の波形
で畳み込むことにより、時間領域において行われる。無
論、この適切な関数は、所望の特性を有する(即ち、中
心周波数及びバンド幅)バンドパスフィルタの時間領域
を単に表示するものである。
【0066】適切なフィルタの変数を特定するため、フ
ィルタによって選択されるべき信号の周波数を知ること
が必要である。この情報は、干渉計信号波形から容易に
得ることができる。例えば、低周波フィルタの中心周波
数は、ウエハ(例えば、酸化物のコーティングのみを有
するブランクウエハ)のバッチ(例えば25)を行い、
研磨速度の正確な尺度を得ることにより、得ることが可
能である。あるいは、研磨速度は、低周波信号のピーク
間の距離を測定することにより、研磨操作の開始時で決
定することが可能である。無論、このもう一つのアプロ
ーチを用いることで、多数のウエハにわたって測定値の
平均を行う場合と同様の正確性を得ることはできない。
いずれのケースにせよ、研磨速度はバンドパスフィルタ
の中心周波数を決定し、フィルタの所望のバンド幅とあ
わせてこの中心周波数を知ることにより、時間領域フィ
ルタ関数及び/又はFIRフィルタの計数の正確な形態
を直ちに決定することが可能でとなる。
【0067】高周波信号の周波数は、同様の手法;即
ち、CMPシステムがウエハを研磨しているときに干渉
計から発せられるトレースから直接得ることが可能であ
る。換言すれば、オペレータは単に高周波信号のピーク
間の距離を測定するだけでよいい。このプロセスは容易
に自動化できるため、オペレータは、ポインティングデ
バイス(例えば、マウス)により、ビデオディスプレイ
に表示される波形の2つのポイントをマークすることが
でき、また、自動的に周波数の計算を行った後適切なフ
ィルタ計数を発生するようにコンピュータにプログラミ
ングをすることが可能である。そして、フィルタ計数及
び/又はフィルタ関数の時間領域表示は、その後の研磨
の工程中にフィルタリングの操作を行うために用いるた
め、ローカルメモリに保存される。
【0068】プロセスシグネチャ また、干渉計波形は、システムのシグネチャ(即ち、そ
の特性)を表している。このため、これは、製造のオペ
レーションに対してシステムの特性を与えるために有用
な情報を与える。望ましく操作されていることがわかっ
ているシステムに対してシグネチャが得られた場合は、
参照値としてシグネチャ波形(又は波形から抽出された
特徴)を用いることが可能であり、この参照値に対し
て、次に発生するシグネチャを比較して、これらシグネ
チャが続いて得られたシステムが、スペックの中で実行
されているかどうかが決定される。例えば、研磨パッド
が取り替えられたり、新しいバッチのスラリがCMPシ
ステムに用いられた場合に、オペレータは、この変化
が、システムが実行する研磨の質に有害な影響を与える
かどうかを知る必要がある。CMPシステムの性能にお
ける変化によってシグネチャが変化することを、我々は
見出した。即ち、以前は存在していなかったような、あ
るいは以前に存在していた特徴が変化するような、ある
決まった変化が波形に現れる。これらの変化を検出する
ことにより、システムが望み通りに実行されていない時
を検出することが可能である。
【0069】ここに説明される具体例では、干渉計波形
から抽出された特徴は、研磨速度であり、均一性の尺度
である。これらの特性は、前述の方法を用いて、研磨の
最中に発生する干渉計の波形から容易に得ることができ
る。システムが正確に操作されていれば、特定の研磨速
度と特定の均一性の尺度を与えるだろう。これらの参考
値からはずれることは、システムが望ましい操作のポイ
ントから離れる方向にに移動していることを示し、オペ
レータに、製品の損害を防止するために適正化する行動
をとる必要があることを警告する。CMPシステムシグ
ネチャを用いる方法は、図20(a)に例示され、以下
に説明される。最初に、最適に操作されるべきとである
とわかっているCMP装置に対して、干渉計波形(即
ち、シグネチャ)が発せられる(ステップ250)。シ
ステムが最適に動作しているか否かの決定は、試験ウエ
ハのセットを処理してその結果を解析することにより、
実験的に決定可能である。得られた結果がスペックの中
に入っていた場合、この構成及び操作条件の組に対して
シグネチャを発生できる。干渉計波形の一部を捉える前
に、この波形が本当に、準備された研磨のシグネチャで
あるように、ウエハの研磨が酸化物の中を50〜100
%の間で行われることが望ましい。
【0070】波形が得られた後は、特定の着目する特徴
が、発せられた波形から抽出され(ステップ252)、
これは、後にシステムの性能の評価に用いる参考値とし
て利用するために、保存される(ステップ254)。あ
るいは、波形自体を保存して、参考値として用いてもよ
い。ここに説明した具体例では、抽出された特徴は、研
磨速度であり、均一性の尺度であり、これらの双方と
も、上述のように、波形から決定することが可能であ
る。
【0071】図20(b)に示されるように、後になっ
て、保存されていたシグネチャ(又は抽出された特徴)
を用いて、製造の用途で、そのシステム又は別のシステ
ムの特性を与えることが可能である。製造のためにシス
テムに特性を与えるために、そのシステムに対して新し
いシグネチャが得られ(ステップ258)、着目してい
る特徴が、新しいシグネチャから抽出される(ステップ
260)。そして、抽出された特徴は、特徴の参照値の
組と比較される(ステップ264)。抽出された特徴の
組によって特徴付けられるように、操作のポイントが、
保存された特徴の組の参考値によって定義される、参考
値の周囲の所定の領域に入っているならば、システムは
適正に操作されていると結論付けられ、また、製品ウエ
ハの処理のためのアウトラインを与えることが可能であ
る(ステップ266)。このプロセスが自動化された場
合は、このポイントで、コンピュータはオペレータに対
し、プロセスがスペック内に入っていないと警告を発し
てもよい。他方、操作のポイントが所定の範囲内に入ら
なかった場合は、これは、システムがスペック内で操作
されていないことの指示であり、オペレータは、この問
題に対して補正する行動をとることができるように、警
告を受ける(ステップ268)。この補正の行動には、
プロセス変数の一部を適正に調節し、プロセスをスペッ
ク内に入れるようにする操作を含んでいる。例えば、研
磨速度が過剰であった場合、又は、酸化物の非均一性が
許容を越えれば、オペレータは、新しいバッチのスラリ
に変えてみたり、パッド上の圧力を調節したり、あるい
は、パッドを交換したりすることが適切であると認識す
るだろう。この選択される補正の行動の特定のコース
は、無論、システムが望ましい操作ポイントからどの程
度ずれているかに、また、特定のシステムの操作変数の
構成に、また、オペレータの経験が何をオペレータ自身
に示唆しているかに、依存するだろう。
【0072】オペレータに対して更に有益な情報を提供
するために、コンピュータは適宜、抽出された特徴もデ
ィスプレイに出力する。このディスプレイに表示された
情報は、抽出された特徴、波形、抽出された特徴が、保
存されている参考値の組の様々な特徴とどの程度近いの
か、又は、オペレータにとってどの方法が最も有利に解
決するかを表している。
【0073】無論、製品ウエハの処理をしつつも、又
は、CMPプロセスにおいてプロセス変数が変化する
(例えば、新しい研磨パッドが用いられた時にはパッド
圧力が調節され新しいバッチのスラリが用いられる)た
びに、及び、CMPプロセスがまだスペック内にあるこ
とを知る必要が生じるようになるたびに、上述のインシ
チュウ/リアルタイムのモニタの手順を周期的に用いる
ことが可能である。更に、これを、実際の製品の代りに
ブランクウエハに用いて、実際の製品に用いる前にCM
Pシステムを特徴付けることが可能である。
【0074】我々は、シグネチャ波形から情報を抽出す
る直接且つ簡単なアプローチ、即ち、研磨速度と均一性
の尺度を用いたアプローチを説明してきたが、シグネチ
ャ又は干渉計の波形を、更に洗練された方法で解析する
ことも可能である(例えば、ほんの一例を挙げれば、パ
ターンないし特徴の認識又はその他のイメージ解析のア
ルゴリズム、又はニューラルネットワーク等)。様々な
抽出特徴がシステムの動作に関して伝える情報は、経験
を通じて決定でき、また、オペレータにとって最も重要
と認識される情報を伝達するものを用いることができ
る。
【0075】また、オペレータに対して干渉計波形(即
ちプロセスシグネチャ)を単に表示するだけで、オペレ
ータは、システムがどの程度うまく振る舞っているかに
関する価値あるフィードバックを得ることが可能となる
ことに注目すべきである。典型的には、人間の目は高度
に敏感であり、画像において予想される変化が僅かでも
生じればこれを検知する。従って、ある程度経験を積ん
だ後は、オペレータはしばしば、波形を見るだけで、C
MPシステムの性能全体の変化やさしせまった問題を検
知することが可能となるだろう。従って、ここに説明さ
れた具体例では、コンピュータも処理の間、シグネチャ
の波形をオペレータに表示することにより、オペレータ
がこれを用いて装置の性能をモニタすることが可能とな
る。
【0076】当業者が既知の技術を用いることにより、
オペレータが着目し変化を自動的に認識又は検出しオペ
レータに特定の問題があることを警告するソフトウェア
アルゴリズムを直ちに開発することが可能である。
【0077】性能を高めるための変形 別の具体例では、干渉計とウエハとの間のパッド内のウ
ィンドウを変形している。パッドは干渉計レーザービー
ムの実質的な部分を透過させるが、パッドの底面から著
しく反射してくる成分が存在することが見出されてい
る。この状況は、図21(a)に例示され、ここでは、
レーザー干渉計32から発せられるレーザービーム34
は、パッド22を通過して伝送され、伝送ビーム702
を形成し、また、レーザービーム34の一部は、パッド
22の裏側面704から反射されて、反射ビーム706
を形成する。反射ビーム706は、データ信号に著しい
直流(DC)シフトを生じさせる。図21(b)は、こ
のシフトを例示する(わかりやすくするために誇張して
描いている)。この例では、反射レーザー光によっても
たらされるDCシフトは信号全体に対して約8.0ボル
トを加える。このDCシフトは、データ信号の有用な部
分の解析に対して問題を生じさせる。例えば、データ解
析装置が0〜10ボルトの範囲で動作していれば、DC
シフトを受けた信号を増幅して着目する部分を強化する
ことは、信号のDC成分を低減又は排除しなければ不可
能である。DC成分が除去されなければ、装置は増幅信
号によって飽和してしまうだろう。DC成分を低減又は
排除することは、信号処理のための電子技術を新たに必
要とし、また、信号の有用な部分を損ねてしまう結果を
与えるだろう。DCシフトがここに記載されるほど大き
くない場合でも、これを排除するために何等かの信号処
理が必要となると思われる。従って、この不要なDC成
分を低減又は排除するための非電子技術的方法が望まし
い。
【0078】図21(c)に描かれるように、パッド2
2の裏側のウィンドウを構成する領域に散乱面704’
を形成することにより、この面から反射する光が弱化す
る。従って、データ信号の不要なDC成分が低減され
る。実際上は、散乱面704’は、伝達されない光70
8を散乱し、そのほとんどを干渉計32へ反射し返すと
いうことはない。ウエハから反射された光も、散乱面7
04’を通過し、その間、一部が散乱されるであろう。
しかし、これが干渉計の性能を著しく損ねることはない
ことが見出されている。
【0079】図21(d)には、散乱面704’を用い
たときに得られるデータ信号が例示される。示されるよ
うに、DC成分の排除と共に、信号は直ちに増幅され、
DC部分を電子的に排除する必要なく処理される。
【0080】どのように散乱面が作られるかは、重要な
問題ではない。研磨パッドの裏面のウィンドウの近辺を
サンディングすることにより、又は、散乱させるコーテ
ィング材料(例えば、スコッチテープ等)を貼ることに
より、あるいは所望の結果をもたらすその他の方法によ
り、散乱面を作ることができる。
【0081】
【発明の効果】以上詳細に説明してきたように、本発明
の装置及び方法は、CMPプロセスの最中に、除去され
た材料の厚さ又はウエハ表面の平坦度をインシチュウに
決定するための、干渉による技術を採用する。
【0082】このため、研磨プロセスに関して正確性を
向上し更に有用な情報を与えるために用いる事ができる
終点の検出器及び方法が提供される。
【図面の簡単な説明】
【図1】従来技術の典型的なケミカルメカニカルポリシ
ング(CMP)装置の側面図である。
【図2】本発明に従って構成された終点検出器を有する
ケミカルメカニカルポリシング装置の側面図である。
【図3】(a)〜(c)は、図2の装置のウィンドウ部
分の各具体例の簡略的な断面図である。
【図4】レーザービームを発し且つ反射した干渉ビーム
を検出する事が可能なレーザー干渉計の部材を示す、図
2の装置のウィンドウ部分の簡略的な断面図である。
【図5】レーザービームがウエハに入射し、ビームが反
射されて干渉ビームを形成するところを模式的に示す、
図2の装置によって処理されるべきブランク酸化物の簡
略的な断面図である。
【図6】ウィンドウとセンサフラグの間の相対的な配
置、並びに、センサとレーザー干渉計との間の相対的な
配置の、1つの可能性を示す、図2の装置のプラーテン
の簡略的な上面図である。
【図7】ウィンドウが円弧状である場合の、ウィンドウ
とセンサフラグとの間の相対的な配置、並びに、センサ
とレーザーとの間の相対的な配置を示す、図2の装置M
のプラーテンの簡略的な上面図である。
【図8】本発明に従った区分的なデータ取得の方法のフ
ローチャートである。
【図9】(a)及び(b)は、ブランク酸化物ウエハが
薄くなっていく行程における、レーザー干渉計からのデ
ータ信号の経時的変化を表すグラフである。グラフ
(a)は所望のサンプリング時間にわたって積分された
データ信号の積分値を示すグラフであり、(b)は、こ
の積分値をフィルタにかけた場合のグラフである。
【図10】(a)は、本発明に従ってブランク酸化物ウ
エハの酸化物層を薄くするCMPプロセスの終点を検出
する後方予見法のブロック線図であり、(b)は、本発
明に従ってブランク酸化物ウエハの酸化物層を薄くする
CMPプロセスの終点を検出する前方予見法のブロック
線図である。
【図11】(a)〜(c)は、図2の装置によって処理
されるべき不均一な面を有する、パターニングされたウ
エハの簡略的断面図である。(a)は、CMPプロセス
の開始時のウエハを示す図であり、(b)は、プロセス
半ばのウエハを表す図であり、(c)は、平坦化される
ポイントに近付いたウエハを表す図である。
【図12】本発明に従って、不均一な面を有するパター
ニングされたウエハを平坦化するためのCMPプロセス
の終点を決定する方法のフローチャートである。
【図13】パーターニングされたウエハの平坦化の最中
における、レーザー干渉計からのデータ信号の経時変化
を表すグラフである。
【図14】本発明に従って、特定のサイズの与えられた
構造体又は同様のサイズが与えられた構造体のグループ
の上に形成される膜の厚さを制御するためのCMPプロ
セスの、終点を決定するための方法のブロック線図であ
る。
【図15】(a)は、直径の小さなレーザービームによ
って照射されるべき表面欠陥を有するウエハの簡略的な
断面図である。(b)は、直径の広いレーザービームに
よって照射されるべき表面欠陥を有するウエハの簡略的
な断面図である。
【図16】非均一なウエハ表面に関する高周波信号を含
む、ブランク酸化物の薄化の最中におけるレーザー干渉
計からのデータ信号の周期的な変化を表すグラフであ
る。
【図17】干渉計と、干渉計の出力信号の波形を解析し
て応答するようにプログラミングされたコンピュータと
を有するCMPシステムを表す構成図である。
【図18】均一性のインシチュウでのモニタを実現する
ためにコンピュータの中で行われる機能のブロック線図
である。
【図19】(a)〜(c)は、干渉計の信号、低周波バ
ンドパスフィルタによりフィルタにかけられた後の干渉
計の信号、並びに、高周波バンドパスフィルタによりフ
ィルタにかけられた後の干渉計の信号を、それぞれ表す
グラフである。
【図20】(a),(b)は、シグネチャを発生させて
これをCMPシステムの中で用いて製造目的にかなうよ
うにするための、フローチャートである。
【図21】(a)は、研磨パッドをウィンドウとして用
い、パッドの裏側からの反射を示す、図2の装置のウィ
ンドウ部分の具体例の簡略的な断面図である。(b)
は、図21(a)の具体例のパッドの裏側からの反射に
より生じた大きなDC成分を有する、レーザー干渉計か
らのデータ信号の経時的な周期変化を示すグラフであ
る。(c)は、反射を抑制する散乱裏面を有するウィン
ドウとして研磨パッドを用いる、図2の装置のウィンド
ウ部分の一具体例の簡略的断面図である。(d)は、図
21(C)の具体例のパッドの散乱裏面の結果としてパ
ッドの裏側からの反射により生じた大きなDC成分を有
しない、レーザー干渉計からのデータ信号の経時的な周
期変化を示すグラフである。
【符号の説明】
10…CMP装置、12…研磨ヘッド、14…ウエハ、
16…研磨プラーテン、18…パッド、20…裏張り
層、22…カバー層、24…プラーテンの中心軸、26
…研磨ヘッドの中心軸、28…平行移動アーム、30…
ホール、32…レーザー干渉計、34…レーザービー
ム、36…ショルダ、38…クオーツインサート、40
…ケミカルスラリ、42…ポリウレタンプラグ、44…
コリメータ、46…ビームスプリッタ、48…検出器、
50…基板、52…酸化物層、54…第1の反射ビー
ム、56…伝送ビーム、58…第2の反射ビーム、60
…結合ビーム、62…光遮断器タイプセンサ、64…位
置センサフラグ、66,66’…ウィンドウ構造体、7
2,74,76…表面造作、78,80,82…構造
体、84…狭いビーム、86…広いビーム、88…ビー
ム、90…表面不均一、150…コンピュータ、160
…ディスプレイ、152…高周波フィルタ、154…低
周波フィルタ、156,158…振幅測定機能、702
…伝送ビーム、704…裏側面、704’…散乱面、7
06…反射ビーム、708…伝達されない光。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 ニルス ジョアンソン アメリカ合衆国, カリフォルニア州 95032, ロス ガトス, ケネディ ロ ード 16450 (72)発明者 アラン グレアソン アメリカ合衆国, カリフォルニア州 95112, サン ノゼ, ノース 15番 ストリート 617 (72)発明者 グレゴリー ピャティゴースキー アメリカ合衆国, カリフォルニア州 95051, サンタ クララ, キリー ブ ルバード 1000 ナンバー50

Claims (42)

    【特許請求の範囲】
  1. 【請求項1】 ウエハに対してケミカルメカニカルポリ
    シング(CMP)を行うための装置であって、 (a)研磨スラリによってウェットとなっている研磨パ
    ッドをその上に有する、回転可能な研磨プラーテンと、 (b)研磨パッドに対してウエハを保持するための、回
    転可能な研磨ヘッドであって、このウエハが酸化物層の
    下の半導体基板を備える、前記研磨ヘッドと、 (c)終点検出器であって、前記終点検出器は、(c
    1)ウエハへ向けてレーザービームを発生させることが
    可能であり、且つ、ウエハから反射されてくる光を検出
    することが可能な、レーザー干渉計と、(c2)該プラ
    ーテンの中に形成されたホール(穴)に近接して配置さ
    れるウィンドウであって、前記ウィンドウは、ウエハが
    前記ウィンドウの上にある時は、周期時間の少なくとも
    一部の間にレーザービームをウエハへ入射させるための
    通路を与える、前記ウィンドウとを備える前記終点検出
    器と、を備える装置。
  2. 【請求項2】 該ウィンドウが、該プラーテンの該ホー
    ルの内部に設置されるインサートを備え、前記インサー
    トは該レーザービームに対して透過性を有する請求項1
    に記載の装置。
  3. 【請求項3】 該ウィンドウが、該研磨パッドの一部で
    あって、該レーザービームに対して少なくとも部分的に
    透過性を有する該研磨パッドの前記一部を備える請求項
    1に記載の装置。
  4. 【請求項4】 該ウィンドウが、該パッドに形成された
    プラグであって、該レーザービームに対して透過性を有
    する前記プラグを備える請求項1に記載の装置。
  5. 【請求項5】 該プラーテンの中の該ホールと該ウィン
    ドウとが、該プラーテンの回転中心と一致する中心と一
    致する原点からある半径を有する円弧形状である請求項
    1に記載の装置。
  6. 【請求項6】 該終点検出器が更に、レーザー干渉計に
    よって発生するレーザービームが妨害されずに該ウィン
    ドウを通過して該ウエハに入射するように、ウィンドウ
    がウエハに近接しているときを感知するための位置セン
    サを備える請求項1に記載の装置。
  7. 【請求項7】(a)該レーザー干渉計が、ウエハから反
    射される光が検出される毎に検出信号を発生させるため
    の手段を備え、 (b)該位置センサが、該レーザー干渉計によって発生
    するレーザービームが妨害されずに該ウィンドウを通過
    して該ウエハに入射できるように、ウィンドウがウエハ
    に近接する毎に感知信号を出力するための手段を備え、 (c)該終点検出器が更に、該位置センサから信号を検
    知する期間のために該レーザー干渉計からの検出信号を
    サンプリングするための、該レーザー干渉計と該位置セ
    ンサとに接続されたデータ取得手段を備え、該データ取
    得手段はサンプリングされた検出信号を代表するデータ
    信号を出力するための手段を備える請求項6に記載の装
    置。
  8. 【請求項8】 該データ取得手段が (a)該レーザー干渉計からサンプリングされた検出信
    号を所定の時間にわたって積分するための手段を備え、 (b)該出力するための該手段は該検出信号の積分され
    たサンプルを代表するデータ信号を出力する請求項7に
    記載の装置。
  9. 【請求項9】 該出力するための該手段によって出力さ
    れるデータ信号が、周期的であり、且つ、該終点検出器
    が更に、 (a)データ信号によって現れるサイクルの数を計数す
    るための手段と、 (b)レーザービームの波長とウエハの酸化物層の屈折
    率とを用いて、データ信号の1サイクル中に除去される
    材料の厚さを計算するための手段と、 (C)酸化物層から除去されるべき材料の所望の厚さ
    を、該計数するための該手段によりデータ信号により現
    れたサイクルの数と、該計算するための該手段から1サ
    イクル中に除去される材料の厚さとの積である、除去厚
    さと比較するための手段と、 (d)該除去厚さが、除去されるべき材料の所望の厚さ
    以上になったときにCMPを終了させるための手段とを
    備える請求項7に記載の装置。
  10. 【請求項10】 該出力するための該手段によって出力
    されるデータ信号が周期的であり、且つ、該終点検出器
    が更に、 (a)データ信号により要求される時間を測定するため
    の手段であって、(i)所定のサイクルの数又は(i
    i)1サイクルの所定の部分との一方のそれぞれが生じ
    た後に完結させる、該測定するための該手段と (b)レーザービームの波長とウエハの酸化物層の屈折
    率とを用いて、該測定するための該手段によって測定さ
    れる時間の間に除去される材料の厚さを計算するための
    手段と、 (c)除去の速度を算出するための手段であって、該算
    出するための該手段は、除去される材料の厚さを該測定
    するための該手段から得られる測定された時間で除す
    る、該算出するための手段と、 (d)残りの除去厚さを確定するための手段であって、
    該確定するための該手段は、酸化物層から除去されるべ
    き所望の材料の厚さから除去された厚さの累積を減じ、
    前記除去された厚さの前記累積は、(i)所定のサイク
    ルの数又は(ii)1サイクルの所定の部分との一方の
    それぞれが生じた後に、該計算するための該手段によっ
    て計算された、除去されるべき材料の厚さを総和するた
    めの手段によって与えられる、前記確定するための手段
    と、 (e)残りのCMP時間を確立するための手段であっ
    て、前記確立するための前記手段は、残りの除去厚さを
    除去の速度で除する、前記確立するための手段と (f)残りのCMPの時間がなくなった後CMPを終了
    させるための手段とを備える請求項7に記載の装置。
  11. 【請求項11】 ウエハが最初は不均一な局所構造を有
    し、CMPの間に平坦化され、該出力するための手段に
    よって出力されるデータ信号がウエハの表面が平坦化さ
    れた後だけ周期的であり、終点検出器が更に、 (a)データ信号の周期的変化を検出するための手段
    と、 (b)該検出するための手段がデータ信号の周期的変化
    を検出したとき毎にCMPを終了させるための手段とを
    備える請求項7に記載の装置。
  12. 【請求項12】 酸化物層の下に半導体基板を備えるウ
    エハのケミカルメカニカルポリシング(CMP)のため
    の方法であって、該方法は、 (a)ウエハを、回転可能な研磨ヘッド内に、該回転可
    能な研磨ヘッドの下の研磨パッドに対して保持するステ
    ップであって、該パッドは研磨スラリによってウェット
    となっている、該保持するステップと、 (b)CMPが終了した終点を決定するップであって、
    該終点を決定ステップは、(b1)レーザービームをウ
    エハに向けて発するステップであって、該レーザービー
    ムは、プラーテン内に形成されたホール(穴)に近接す
    るように配置されたウィンドウを通過し、該ウィンドウ
    は、ウエハが該ウィンドウの上にあるときの時間の一部
    の間レーザービームのための通路を与える、該発するス
    テップと、(b2)ウエハから反射する光を検出するス
    テップとを備える該決定するステップとを備える方法。
  13. 【請求項13】 該決定する該ステップが、 ウィンドウがウエハに近接してレーザービームが妨害さ
    れずにウィンドウを通過してウエハに入射するときを感
    知するステップを備える請求項12に記載の方法。
  14. 【請求項14】(a)該検出するステップが、ウエハか
    ら反射される光が検出される毎に検出信号を発生するス
    テップを備え、 (b)該感知するステップが、該レーザー干渉計によっ
    て発生するレーザービームが妨害されずに該ウィンドウ
    を通過して該ウエハに入射できるように、ウィンドウが
    ウエハに近接する毎に感知信号を出力するステップを備
    え、 (c)該決定するステップが、データ取得のステップを
    備え、該データ取得のステップが(c1)感知信号の期
    間のためにレーザー干渉計から検出信号をサンプリング
    するステップと、(c2)サンプリングされた検出信号
    を代表するデータ信号を出力するステップとを備える請
    求項13に記載の方法。
  15. 【請求項15】 該データ取得のステップが更に、 (a)所定の期間の間の時間にわたって、サンプリング
    された検出信号を積分するステップを備え、 (b)該出力するステップが、検出信号の積分サンプル
    を代表するデータ信号を出力するステップを備える請求
    項14に記載の方法。
  16. 【請求項16】 データ信号が周期的であり、且つ、該
    決定のステップが更に、 (a)データ信号によって現れるサイクルの数を計数す
    るステップと、 (b)レーザービームの波長とウエハの酸化物層の屈折
    率とを用いて、データ信号の1サイクル中に除去される
    材料の厚さを計算するステップと、 (C)酸化物層から除去されるべき材料の所望の厚さ
    を、該計数するための該手段によりデータ信号により現
    れたサイクルの数と、該計算するための該手段から1サ
    イクル中に除去される材料の厚さとの積である、除去厚
    さと比較するステップと、 (d)該除去厚さが、除去されるべき材料の所望の厚さ
    以上になったときにCMPを終了させるためのステップ
    とを備える請求項14に記載の方法。
  17. 【請求項17】 データ信号が周期的であり、且つ、該
    決定のステップが更に、 (a)データ信号により要求される時間を測定するステ
    ップであって、(i)所定のサイクルの数又は(ii)
    1サイクルの所定の部分との一方のそれぞれが生じた後
    に完結させる、該測定するステップと (b)レーザービームの波長とウエハの酸化物層の屈折
    率とを用いて、該測定するための該手段によって測定さ
    れる時間の間に除去される材料の厚さを計算するステッ
    プと、 (c)除去される材料の厚さを測定された時間で除して
    除去の速度を算出するステップと、 (d)酸化物層から除去されるべき所望の材料の厚さか
    ら除去された厚さを減じて、残りの除去厚さを確定する
    ステップと、 (e)残りの除去厚さを除去の速度で除して、残りのC
    MP時間を確立するステップと (f)残りのCMPの時間がなくなった後CMPを終了
    させるステップとを備える請求項14に記載の方法。
  18. 【請求項18】 ウエハが最初は不均一な局所構造を有
    し、CMPの間に平坦化され、該出力するための手段に
    よって出力されるデータ信号がウエハの表面が平坦化さ
    れた後だけ周期的であり、該決定するステップが更に、 (a)データ信号の周期的変化をサーチするステップ
    と、 (b)データ信号に周期的変化が見つけられたとき毎に
    CMPを終了させるステップとを備える請求項14に記
    載の方法。
  19. 【請求項19】 ウエハが最初は不均一な局所構造を有
    し、CMPの間に平坦化され、該出力するための手段に
    よって出力されるデータ信号がウエハの表面が平坦化さ
    れた後だけ周期的であり、該決定するステップが更に、 (a)データ信号をフィルタにかけて、所定の周波数を
    有している成分だけを通過させるステップと、 (b)フィルタがかけられたデータ信号によって現れる
    サイクルの数を計数するステップと、 (c)レーザービームの波長とウエハの酸化物層の屈折
    率とを用いて、データ信号の1サイクル中に除去される
    材料の厚さを計算するステップと、 (d)酸化物層から除去されるべき材料の所望の厚さ
    を、フィルタがかけられたデータ信号により現れたサイ
    クルの数と、1サイクルの間に除去される材料の厚さと
    の積である、除去厚さと比較するステップと、 (e)該除去厚さが、除去されるべき材料の所望の厚さ
    以上になったときにCMPを終了させるためのステップ
    とを備える請求項14に記載の方法。
  20. 【請求項20】 ウエハが最初は不均一な局所構造を有
    し、CMPの間に平坦化され、該出力するための手段に
    よって出力されるデータ信号がウエハの表面が平坦化さ
    れた後だけ周期的であり、該決定するステップが更に、 (a)データ信号をフィルタにかけて、所定の周波数を
    有している成分だけを通過させるステップと、 (b)フィルタがかけられたデータ信号によって現れる
    サイクルの一部が生じる数を計数するステップと、 (c)レーザービームの波長とウエハの酸化物層の屈折
    率とを用いて、データ信号のサイクルの一部の間に除去
    される材料の厚さを計算するステップと、 (d)酸化物層から除去されるべき材料の所望の厚さ
    を、フィルタがかけられたデータ信号により現れたサイ
    クルの一部が生じる数と、サイクルの一部の間に除去さ
    れる材料の厚さとの積である、除去厚さと比較するステ
    ップと、 (e)該除去厚さが、除去されるべき材料の所望の厚さ
    以上になったときにCMPを終了させるためのステップ
    とを備える請求項14に記載の方法。
  21. 【請求項21】 基板上の層の均一性を、前記層の研磨
    の最中に測定するインシチュウの方法であって、 (a)研磨の最中に前記層の方へ光ビームを向けるステ
    ップと、 (b)前記基板から反射されてくる前記光ビームによっ
    て生じる干渉信号をモニタするステップと、 (c)前記干渉信号から均一性の尺度を計算するステッ
    プと、を備える方法。
  22. 【請求項22】 前記計算するステップが、 前記干渉信号から特徴情報を抽出するステップと、 前記抽出された特徴情報から均一性の前記尺度を計算す
    るステップと、を備える請求項21に記載の方法。
  23. 【請求項23】 均一性の前記尺度を参考値と比較する
    ステップと、均一性の前記尺度が該参考値から所定の量
    以上広がったときに警告を発するステップとを更に備え
    る請求項22に記載の方法。
  24. 【請求項24】 前記干渉信号が低周波数成分を含み、
    前記抽出するステップが、 前記低周波数成分の第1の特性を測定するステップと、 前記第1の特性から前記抽出された情報を誘導するステ
    ップと、を備える請求項22に記載の方法。
  25. 【請求項25】 前記干渉計信号が高周波成分を含み、
    前記抽出するステップが、 前記高周波数成分の第2の特性を測定するステップと、 前記第1の特性及び前記第2の特性から前記抽出された
    情報を誘導するステップと、を備える請求項24に記載
    の方法。
  26. 【請求項26】 前記第1の特性が前記高周波数信号の
    振幅であり、前記第2の特性が前記低周波数信号の振幅
    であり、前記誘導するステップが、前記高周波信号の振
    幅と前記低周波信号の振幅との比を計算するステップを
    備える請求項25に記載の方法。
  27. 【請求項27】 層を自身の上に有する基板を研磨する
    ためのプロセスの特性を評価するインシチュウの方法で
    あって、 (a)研磨の最中に前記層の方へ光ビームを向けるステ
    ップと、 (b)前記基板から反射されてくる前記光ビームによっ
    て発生する干渉信号をモニタするステップと、 (c)前記干渉信号からシグネチャを抽出するステップ
    と、 (d)前記抽出されたシグネチャを保存されている情報
    と比較するステップであって、前記保存されている情報
    は、該研磨プロセスに対して望ましい操作のポイントを
    代表している、前記比較するステップと、 (e)前記抽出されたシグネチャが前記保存されている
    情報から所定の量以上広がったとき、警告を発するステ
    ップとを備える方法。
  28. 【請求項28】 干渉信号を、オペレータが見ることが
    できるように、視覚的なディスプレイ装置上に表示する
    ステップを更に備える請求項27に記載の方法。
  29. 【請求項29】 前記抽出するステップが、 前記干渉信号から研磨速度を決定するステップと、 前記干渉信号から均一性の尺度を決定するステップと、
    を備え、前記比較するステップが、前記研磨速度及び均
    一性の前記尺度を前記保存されている情報と比較するス
    テップを備える請求項27に記載の方法。
  30. 【請求項30】 基板研磨システムであって、 (a)処理中に研磨パッドを保持するプラーテンと、 (b)処理中に基板をプラーテン上の研磨パッドに対し
    て保持する研磨ヘッドと、 (c)処理中に、研磨されるべき基板の側部に向けられ
    且つ入射するコリメートされた光ビームを発生させるこ
    とが可能な干渉計であって、前記干渉計は干渉信号を発
    生する、前記干渉計と、 (d)前記干渉信号から均一性の尺度を計算するように
    プログラミングされたデータプロセッサとを備える研磨
    システム。
  31. 【請求項31】 前記研磨ヘッドが、処理中に回転でき
    るように、回転可能となっている請求項30に記載の研
    磨システム。
  32. 【請求項32】 前記プラーテンが、処理中に回転でき
    るように、回転可能となっている請求項31に記載の研
    磨システム。
  33. 【請求項33】 前記干渉計が、レーザー干渉計である
    請求項32に記載の研磨システム。
  34. 【請求項34】 前記データプロセッサが更に、 前記干渉信号から特徴情報を抽出することと、 前記抽出された特徴情報から均一性の前記尺度を計算す
    ることと、をプログラミングされている請求項32に記
    載の研磨システム。
  35. 【請求項35】 前記データプロセッサが更に、 均一性の前記尺度を参考値と比較することと、 均一性の前記尺度が該参考値から所定の量以上広がった
    ときに警告を発することと、をプログラミングされてい
    る請求項34に記載の研磨システム。
  36. 【請求項36】 前記干渉信号が低周波数成分を含み、
    前記データプロセッサが、 前記低周波数成分の第1の特性を測定することと、 前記第1の特性から前記抽出された情報を誘導すること
    と、により特徴情報を抽出するようにプログラミングさ
    れている請求項35に記載の研磨システム。
  37. 【請求項37】 前記干渉信号が高周波数成分を含み、
    前記データプロセッサが、 前記高周波数成分の第2の特性を測定することと、 前記第2の特性から前記抽出された情報を誘導すること
    と、により特徴情報を抽出するようにプログラミングさ
    れている請求項36に記載の研磨システム。
  38. 【請求項38】 前記第1の特性が前記高周波数信号の
    振幅であり、前記第2の特性が前記低周波数信号の振幅
    であり、前記データプロセッサが、前記高周波信号の振
    幅と前記低周波信号の振幅との比を計算することにより
    特徴情報を抽出するようにプログラミングされている請
    求項37に記載の研磨システム。
  39. 【請求項39】 基板を研磨するための装置であって、
    前記装置は、 (a)処理中に研磨パッドを保持するプラーテンであっ
    て、前記プラーテンは内部に通路を有する、前記プラー
    テンと、 (b)処理中に基板をプラーテン上の研磨パッドに対し
    て保持する研磨ヘッドと、 (c)コリメートされた光ビームを発生させることが可
    能な干渉計であって、前記干渉計は、少なくとも研磨操
    作の一部の間に前記光ビームを前記通路に向け前記基板
    上に入射するように、配置される、前記干渉計と、 (d)前記ホールないし通路と調心され且つ基板へと通
    過する光ビームが通るウィンドウであって、前記ウィン
    ドウは、干渉計から到達する光ビームを受容する散乱面
    を有する、前記ウィンドウと、を備える装置。
  40. 【請求項40】 前記プラーテン上に載置される研磨パ
    ッドを更に備え、前記ウィンドウは、前記研磨パッド内
    に形成され前記通路と調心される請求項39に記載の装
    置。
  41. 【請求項41】 ケミカルメカニカルポリシングシステ
    ムにおいて用いるための研磨パッドであって、前記研磨
    パッドは、 (a)研磨面と、 (b)底面と、を備え、前記研磨パッドの前記底面及び
    前記研磨面の中にはウィンドウが形成され、前記ウィン
    ドウは、干渉計からの光に対して透過性を有し、散乱底
    面を有する研磨パッド。
  42. 【請求項42】 基板を研磨するための装置であって、
    前記装置は、 (a)処理中に研磨パッドを保持するプラーテンであっ
    て、前記プラーテンはウィンドウを有する、前記プラー
    テンと、 (b)処理中に基板をプラーテン上の研磨パッドに対し
    て保持する研磨ヘッドと、 (c)コリメートされた光ビームを発生させることが可
    能な干渉計であって、前記干渉計は、少なくとも研磨操
    作の一部の間に前記光ビームを前記通路に向け前記基板
    上に入射するように配置されて、研磨プロセスのインシ
    チュウによるモニタリングを与える、前記干渉計とを備
    える装置。
JP07497696A 1995-03-28 1996-03-28 ケミカルメカニカルポリシングの操作をインシチュウでモニタするための装置及び方法 Expired - Lifetime JP3431115B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US41398295A 1995-03-28 1995-03-28
US08/413992 1995-03-28
US08/413982 1995-03-28
US08/605769 1996-02-22
US08/605,769 US5964643A (en) 1995-03-28 1996-02-22 Apparatus and method for in-situ monitoring of chemical mechanical polishing operations

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003041566A Division JP3510622B2 (ja) 1995-03-28 2003-02-19 終点検出方法およびシステム

Publications (3)

Publication Number Publication Date
JPH097985A true JPH097985A (ja) 1997-01-10
JP3431115B2 JP3431115B2 (ja) 2003-07-28
JPH097985A6 JPH097985A6 (ja) 2006-03-02

Family

ID=23639462

Family Applications (3)

Application Number Title Priority Date Filing Date
JP07497696A Expired - Lifetime JP3431115B2 (ja) 1995-03-28 1996-03-28 ケミカルメカニカルポリシングの操作をインシチュウでモニタするための装置及び方法
JP2003041566A Expired - Lifetime JP3510622B2 (ja) 1995-03-28 2003-02-19 終点検出方法およびシステム
JP2003326193A Pending JP2004048051A (ja) 1995-03-28 2003-09-18 ケミカルメカニカルポリシングの操作をインシチュウでモニタするための装置及び方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2003041566A Expired - Lifetime JP3510622B2 (ja) 1995-03-28 2003-02-19 終点検出方法およびシステム
JP2003326193A Pending JP2004048051A (ja) 1995-03-28 2003-09-18 ケミカルメカニカルポリシングの操作をインシチュウでモニタするための装置及び方法

Country Status (5)

Country Link
US (5) US7731566B2 (ja)
EP (1) EP0738561B1 (ja)
JP (3) JP3431115B2 (ja)
KR (1) KR100542474B1 (ja)
DE (3) DE69632490T2 (ja)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1083977A (ja) * 1996-08-16 1998-03-31 Applied Materials Inc 機械化学的ポリッシング装置用のポリッシングパッドへの透明窓の形成
KR19980087549A (ko) * 1997-05-28 1998-12-05 로브그렌 리차드 선형 광택처리기를 사용하는 기계화학 광택공정의 원위치 종점 탐지와 최적화를 위한 방법과 장치
KR19980087550A (ko) * 1997-05-28 1998-12-05 로브그렌 리차드 화학적 기계식 폴리싱동안 두께 제어를 위한 방법 및 장치
JPH11221762A (ja) * 1997-12-03 1999-08-17 Siemens Ag 構成素子の研磨時の終点制御用装置、構成素子の研磨時の終点制御方法及び該装置乃至方法の用途
JP2001284300A (ja) * 1999-12-13 2001-10-12 Applied Materials Inc 光学監視を用いた研磨終点検出方法および装置
JP2001319907A (ja) * 2000-01-18 2001-11-16 Applied Materials Inc 2段階化学機械的研磨プロセスにおける光学的監視方法
US6342166B1 (en) 1998-12-10 2002-01-29 Nikon Corporation Method of detecting end point of polishing of wafer and apparatus for detecting end point of polishing
JP2003522937A (ja) * 1999-12-23 2003-07-29 ケーエルエー−テンカー テクノロジィース コーポレイション 渦電流測定あるいは光学測定を利用して、メタライゼーション処理を実状態で監視する方法
JP2003526938A (ja) * 2000-03-15 2003-09-09 ロデール ホールディングス インコーポレイテッド 調節された摩耗速度を有する窓部
JP2003534649A (ja) * 2000-05-19 2003-11-18 アプライド マテリアルズ インコーポレイテッド 化学機械研磨のための現場終点検出及びプロセス監視の方法並びに装置
US6670200B2 (en) 1998-05-21 2003-12-30 Nikon Corporation Layer-thickness detection methods and apparatus for wafers and the like, and polishing apparatus comprising same
JP2004503925A (ja) * 2000-06-09 2004-02-05 ストラスバウ 内蔵光学センサを備えた研磨パッド
WO2004021426A1 (ja) * 2002-08-30 2004-03-11 Toray Industries, Inc. 研磨パッド、定盤ホールカバー及び研磨装置並びに研磨方法及び半導体デバイスの製造方法
JP2004516947A (ja) * 2000-11-29 2004-06-10 スリーエム イノベイティブ プロパティズ カンパニー ウエハを研磨するための窓システムを有する研磨物品および方法
US6794206B2 (en) 2000-10-18 2004-09-21 Hitachi, Ltd. Method of polishing a film
US6832949B2 (en) 2001-10-26 2004-12-21 Jsr Corporation Window member for chemical mechanical polishing and polishing pad
US6855034B2 (en) 2001-04-25 2005-02-15 Jsr Corporation Polishing pad for semiconductor wafer and laminated body for polishing of semiconductor wafer equipped with the same as well as method for polishing of semiconductor wafer
WO2005104199A1 (ja) 2004-04-23 2005-11-03 Jsr Corporation 半導体ウエハ用研磨パッド及びこれを備える半導体ウエハ用研磨複層体並びに半導体ウエハの研磨方法
JP2006116614A (ja) * 2004-10-19 2006-05-11 Toray Ind Inc 研磨パッドおよび研磨装置
US7057744B2 (en) 2001-07-27 2006-06-06 Hitachi, Ltd. Method and apparatus for measuring thickness of thin film and device manufacturing method using same
US7183213B2 (en) 2003-07-17 2007-02-27 Jsr Corporation Chemical mechanical polishing pad and chemical mechanical polishing method
WO2007091439A1 (ja) * 2006-02-06 2007-08-16 Toray Industries, Inc. 研磨パッドおよび研磨装置
JP2007313645A (ja) * 1995-08-21 2007-12-06 Rohm & Haas Electronic Materials Cmp Holdings Inc 研磨パッドの製造方法及び研磨パッド
US7731568B2 (en) 2004-03-11 2010-06-08 Toyo Tire & Rubber Co., Ltd. Polishing pad and semiconductor device manufacturing method
US7871309B2 (en) 2004-12-10 2011-01-18 Toyo Tire & Rubber Co., Ltd. Polishing pad
US7874894B2 (en) 2006-05-17 2011-01-25 Toyo Tire & Rubber Co., Ltd. Polishing pad
US7927183B2 (en) 2006-05-17 2011-04-19 Toyo Tire & Rubber Co., Ltd. Polishing pad
JP2012515092A (ja) * 2009-01-16 2012-07-05 アプライド マテリアルズ インコーポレイテッド 窓支持部を具備する研磨パッドおよび研磨システム
US8348724B2 (en) 2007-05-16 2013-01-08 Toyo Tire & Rubber Co., Ltd. Polishing pad manufacturing method
US8398794B2 (en) 2006-04-19 2013-03-19 Toyo Tire & Rubber Co., Ltd. Method for manufacturing polishing pad
TWI392008B (zh) * 2007-03-15 2013-04-01 Toyo Tire & Rubber Co Polishing pad
US8409308B2 (en) 2007-05-31 2013-04-02 Toyo Tire & Rubber Co., Ltd. Process for manufacturing polishing pad
US8845852B2 (en) 2002-11-27 2014-09-30 Toyo Tire & Rubber Co., Ltd. Polishing pad and method of producing semiconductor device
JP2016007701A (ja) * 2014-06-25 2016-01-18 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド 化学機械研磨法

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7037403B1 (en) 1992-12-28 2006-05-02 Applied Materials Inc. In-situ real-time monitoring technique and apparatus for detection of thin films during chemical/mechanical polishing planarization
US6614529B1 (en) 1992-12-28 2003-09-02 Applied Materials, Inc. In-situ real-time monitoring technique and apparatus for endpoint detection of thin films during chemical/mechanical polishing planarization
DE69632490T2 (de) 1995-03-28 2005-05-12 Applied Materials, Inc., Santa Clara Verfahren und Vorrichtung zur In-Situ-Kontrolle und Bestimmung des Endes von chemisch-mechanischen Planiervorgängen
US5964643A (en) * 1995-03-28 1999-10-12 Applied Materials, Inc. Apparatus and method for in-situ monitoring of chemical mechanical polishing operations
US6537133B1 (en) 1995-03-28 2003-03-25 Applied Materials, Inc. Method for in-situ endpoint detection for chemical mechanical polishing operations
US6876454B1 (en) 1995-03-28 2005-04-05 Applied Materials, Inc. Apparatus and method for in-situ endpoint detection for chemical mechanical polishing operations
US6676717B1 (en) 1995-03-28 2004-01-13 Applied Materials Inc Apparatus and method for in-situ endpoint detection for chemical mechanical polishing operations
US5762536A (en) * 1996-04-26 1998-06-09 Lam Research Corporation Sensors for a linear polisher
WO1998005066A2 (en) * 1996-07-26 1998-02-05 Speedfam Corporation Methods and apparatus for the in-process detection and measurement of thin film layers
US5872633A (en) * 1996-07-26 1999-02-16 Speedfam Corporation Methods and apparatus for detecting removal of thin film layers during planarization
US5958148A (en) 1996-07-26 1999-09-28 Speedfam-Ipec Corporation Method for cleaning workpiece surfaces and monitoring probes during workpiece processing
US6328642B1 (en) 1997-02-14 2001-12-11 Lam Research Corporation Integrated pad and belt for chemical mechanical polishing
JPH10230451A (ja) * 1997-02-20 1998-09-02 Speedfam Co Ltd 研磨装置及びワーク測定方法
JPH10286766A (ja) * 1997-04-10 1998-10-27 Fujitsu Ltd 薄膜素子の自動ラッピング方法及びその装置
JP3231659B2 (ja) * 1997-04-28 2001-11-26 日本電気株式会社 自動研磨装置
US6111634A (en) * 1997-05-28 2000-08-29 Lam Research Corporation Method and apparatus for in-situ monitoring of thickness using a multi-wavelength spectrometer during chemical-mechanical polishing
JP3450651B2 (ja) 1997-06-10 2003-09-29 キヤノン株式会社 研磨方法及びそれを用いた研磨装置
TW374050B (en) * 1997-10-31 1999-11-11 Applied Materials Inc Method and apparatus for modeling substrate reflectivity during chemical mechanical polishing
US6301009B1 (en) * 1997-12-01 2001-10-09 Zygo Corporation In-situ metrology system and method
US6332470B1 (en) 1997-12-30 2001-12-25 Boris Fishkin Aerosol substrate cleaner
US5972162A (en) * 1998-01-06 1999-10-26 Speedfam Corporation Wafer polishing with improved end point detection
US6068539A (en) 1998-03-10 2000-05-30 Lam Research Corporation Wafer polishing device with movable window
JPH11300607A (ja) * 1998-04-16 1999-11-02 Speedfam-Ipec Co Ltd 研磨装置
WO2000026613A1 (en) * 1998-11-02 2000-05-11 Applied Materials, Inc. Optical monitoring of radial ranges in chemical mechanical polishing a metal layer on a substrate
US6280289B1 (en) 1998-11-02 2001-08-28 Applied Materials, Inc. Method and apparatus for detecting an end-point in chemical mechanical polishing of metal layers
US6159073A (en) 1998-11-02 2000-12-12 Applied Materials, Inc. Method and apparatus for measuring substrate layer thickness during chemical mechanical polishing
US6994607B2 (en) 2001-12-28 2006-02-07 Applied Materials, Inc. Polishing pad with window
US6716085B2 (en) 2001-12-28 2004-04-06 Applied Materials Inc. Polishing pad with transparent window
US6179709B1 (en) 1999-02-04 2001-01-30 Applied Materials, Inc. In-situ monitoring of linear substrate polishing operations
US6179688B1 (en) 1999-03-17 2001-01-30 Advanced Micro Devices, Inc. Method and apparatus for detecting the endpoint of a chemical-mechanical polishing operation
KR100435246B1 (ko) * 1999-03-31 2004-06-11 가부시키가이샤 니콘 연마체, 연마장치, 연마장치의 조정방법, 연마막 두께또는 연마종점의 측정방법, 및 반도체 디바이스의 제조방법
US6570662B1 (en) 1999-05-24 2003-05-27 Luxtron Corporation Optical techniques for measuring layer thicknesses and other surface characteristics of objects such as semiconductor wafers
WO2000071971A1 (en) 1999-05-24 2000-11-30 Luxtron Corporation Optical techniques for measuring layer thicknesses
US6224460B1 (en) * 1999-06-30 2001-05-01 Vlsi Technology, Inc. Laser interferometry endpoint detection with windowless polishing pad for chemical mechanical polishing process
US6406363B1 (en) 1999-08-31 2002-06-18 Lam Research Corporation Unsupported chemical mechanical polishing belt
US6524164B1 (en) 1999-09-14 2003-02-25 Applied Materials, Inc. Polishing pad with transparent window having reduced window leakage for a chemical mechanical polishing apparatus
US6628397B1 (en) 1999-09-15 2003-09-30 Kla-Tencor Apparatus and methods for performing self-clearing optical measurements
US6671051B1 (en) 1999-09-15 2003-12-30 Kla-Tencor Apparatus and methods for detecting killer particles during chemical mechanical polishing
US6299741B1 (en) 1999-11-29 2001-10-09 Applied Materials, Inc. Advanced electrolytic polish (AEP) assisted metal wafer planarization method and apparatus
US6379223B1 (en) 1999-11-29 2002-04-30 Applied Materials, Inc. Method and apparatus for electrochemical-mechanical planarization
US6506097B1 (en) * 2000-01-18 2003-01-14 Applied Materials, Inc. Optical monitoring in a two-step chemical mechanical polishing process
US8485862B2 (en) 2000-05-19 2013-07-16 Applied Materials, Inc. Polishing pad for endpoint detection and related methods
US7374477B2 (en) 2002-02-06 2008-05-20 Applied Materials, Inc. Polishing pads useful for endpoint detection in chemical mechanical polishing
EP1618991B1 (en) * 2000-05-19 2008-01-09 Applied Materials, Inc. Polishing pad
US6685537B1 (en) 2000-06-05 2004-02-03 Speedfam-Ipec Corporation Polishing pad window for a chemical mechanical polishing tool
JP2002001647A (ja) * 2000-06-19 2002-01-08 Rodel Nitta Co 研磨パッド
US6495464B1 (en) 2000-06-30 2002-12-17 Lam Research Corporation Method and apparatus for fixed abrasive substrate preparation and use in a cluster CMP tool
US6878038B2 (en) 2000-07-10 2005-04-12 Applied Materials Inc. Combined eddy current sensing and optical monitoring for chemical mechanical polishing
US6602724B2 (en) 2000-07-27 2003-08-05 Applied Materials, Inc. Chemical mechanical polishing of a metal layer with polishing rate monitoring
US6936154B2 (en) * 2000-12-15 2005-08-30 Asm Nutool, Inc. Planarity detection methods and apparatus for electrochemical mechanical processing systems
US6609961B2 (en) 2001-01-09 2003-08-26 Lam Research Corporation Chemical mechanical planarization belt assembly and method of assembly
US6608495B2 (en) 2001-03-19 2003-08-19 Applied Materials, Inc. Eddy-optic sensor for object inspection
US6491569B2 (en) 2001-04-19 2002-12-10 Speedfam-Ipec Corporation Method and apparatus for using optical reflection data to obtain a continuous predictive signal during CMP
US6966816B2 (en) 2001-05-02 2005-11-22 Applied Materials, Inc. Integrated endpoint detection system with optical and eddy current monitoring
US6514775B2 (en) 2001-06-29 2003-02-04 Kla-Tencor Technologies Corporation In-situ end point detection for semiconductor wafer polishing
US6599765B1 (en) 2001-12-12 2003-07-29 Lam Research Corporation Apparatus and method for providing a signal port in a polishing pad for optical endpoint detection
US6811466B1 (en) 2001-12-28 2004-11-02 Applied Materials, Inc. System and method for in-line metal profile measurement
US6930782B1 (en) 2003-03-28 2005-08-16 Lam Research Corporation End point detection with imaging matching in semiconductor processing
KR100541545B1 (ko) 2003-06-16 2006-01-11 삼성전자주식회사 화학기계적 연마 장비의 연마 테이블
US7153185B1 (en) 2003-08-18 2006-12-26 Applied Materials, Inc. Substrate edge detection
US7097537B1 (en) 2003-08-18 2006-08-29 Applied Materials, Inc. Determination of position of sensor measurements during polishing
US7264536B2 (en) 2003-09-23 2007-09-04 Applied Materials, Inc. Polishing pad with window
US7824730B2 (en) 2007-08-31 2010-11-02 United Technologies Corporation Method and apparatus for measuring coating thickness with a laser
US8337278B2 (en) 2007-09-24 2012-12-25 Applied Materials, Inc. Wafer edge characterization by successive radius measurements
DE102007055260A1 (de) * 2007-11-20 2009-05-28 Robert Bosch Gmbh Verfahren zur Prüfung der Oberflächenbeständigkeit
US8766658B2 (en) * 2008-07-18 2014-07-01 Tokyo Electron Limited Probe
CN101758448B (zh) * 2009-12-30 2011-07-27 东南大学 电化学电极抛光装置
JP5620141B2 (ja) * 2010-04-15 2014-11-05 東洋ゴム工業株式会社 研磨パッド
US8393940B2 (en) * 2010-04-16 2013-03-12 Applied Materials, Inc. Molding windows in thin pads
CN102441839B (zh) * 2011-11-11 2014-06-04 上海华力微电子有限公司 提高固定研磨料在研磨垫上进行cmp工艺稳定性的方法
US10226853B2 (en) * 2013-01-18 2019-03-12 Applied Materials, Inc. Methods and apparatus for conditioning of chemical mechanical polishing pads
WO2014126526A1 (en) 2013-02-14 2014-08-21 Qso Interferometer Systems Ab A method and apparatus for quantitative measurement of surface accuracy of an area
US20140329439A1 (en) * 2013-05-01 2014-11-06 Applied Materials, Inc. Apparatus and methods for acoustical monitoring and control of through-silicon-via reveal processing
CN103605844B (zh) * 2013-11-13 2016-05-11 中国科学院微电子研究所 一种cmp压力分布计算方法及研磨去除率的获取方法
US9425109B2 (en) * 2014-05-30 2016-08-23 Taiwan Semiconductor Manufacturing Co., Ltd. Planarization method, method for polishing wafer, and CMP system
US9475168B2 (en) * 2015-03-26 2016-10-25 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Polishing pad window
JP6622117B2 (ja) * 2016-03-08 2019-12-18 スピードファム株式会社 平面研磨装置及びキャリア
US9962805B2 (en) * 2016-04-22 2018-05-08 Taiwan Semiconductor Manufacturing Company, Ltd. Chemical mechanical polishing apparatus and method
US10569383B2 (en) 2017-09-15 2020-02-25 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Flanged optical endpoint detection windows and CMP polishing pads containing them
US10898986B2 (en) 2017-09-15 2021-01-26 Applied Materials, Inc. Chattering correction for accurate sensor position determination on wafer
CN111315535A (zh) * 2017-10-04 2020-06-19 圣戈班磨料磨具公司 磨料制品及其形成方法
DE102018105134A1 (de) * 2018-03-06 2019-09-12 Karl Heesemann Maschinenfabrik Gmbh & Co. Kg Verfahren zum Betreiben einer Schleifvorrichtung und Schleifvorrichtung
DE102018105133A1 (de) * 2018-03-06 2019-09-12 Karl Heesemann Maschinenfabrik Gmbh & Co. Kg Verfahren zum Betreiben einer Schleifvorrichtung
CN111316403A (zh) 2018-03-12 2020-06-19 应用材料公司 在抛光原位监测期间的滤波
TWI825075B (zh) * 2018-04-03 2023-12-11 美商應用材料股份有限公司 針對墊子厚度使用機器學習及補償的拋光裝置、拋光系統、方法及電腦儲存媒體
CN110797272B (zh) * 2018-08-01 2022-08-26 上海祖强能源有限公司 芯片切割方法及芯片切割装置
CN109290856B (zh) * 2018-10-24 2019-11-26 武汉理工大学 一种低刀具成本的圆弧打磨方法
TWI820308B (zh) 2019-03-21 2023-11-01 美商應用材料股份有限公司 監視化學機械拋光中的拋光墊紋理
TWI809389B (zh) * 2020-06-08 2023-07-21 美商應用材料股份有限公司 用於在拋光相鄰導電層的堆疊期間的輪廓控制的系統、方法及電腦程式產品
CN117900999A (zh) 2020-06-24 2024-04-19 应用材料公司 使用研磨垫磨损补偿的基板层厚度确定
US20220371152A1 (en) * 2021-05-20 2022-11-24 Applied Materials, Inc. Fourier filtering of spectral data for measuring layer thickness during substrate processing

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1075634A (fr) * 1953-03-12 1954-10-19 Dispositif de meulage à meule entaillée permettant d'observer le travail effectué
US4037367A (en) 1975-12-22 1977-07-26 Kruse James A Grinding tool
JPS55106769A (en) 1979-01-31 1980-08-15 Masami Masuko Lapping method and its apparatus
US4272024A (en) * 1979-08-27 1981-06-09 Kah Jr Carl L C Sprinkler head
US4328068A (en) 1980-07-22 1982-05-04 Rca Corporation Method for end point detection in a plasma etching process
JPS57138575A (en) 1981-02-16 1982-08-26 Hitachi Ltd Grinding machine
JPS584353A (ja) 1981-06-24 1983-01-11 Hitachi Ltd ラツピング装置
JPS58178526A (ja) 1982-04-14 1983-10-19 Nec Corp ウエ−ハポリシング方法
EP0105961B1 (de) 1982-10-14 1986-09-24 Ibm Deutschland Gmbh Verfahren zum Messen der abgetragenen Schichtdicke bei subtraktiven Werkstückbearbeitungsprozessen
JPS6037076A (ja) 1983-08-08 1985-02-26 Canon Inc 入力装置
JPS62190726A (ja) 1986-02-17 1987-08-20 Tokyo Electron Ltd 位置合わせ装置
JPS62190728A (ja) 1986-02-18 1987-08-20 Nippon Telegr & Teleph Corp <Ntt> エツチング終点モニタ法および装置
JPS62211927A (ja) 1986-03-12 1987-09-17 Nec Corp 半導体ウエ−ハの加工方法
US4793895A (en) 1988-01-25 1988-12-27 Ibm Corporation In situ conductivity monitoring technique for chemical/mechanical planarization endpoint detection
US4927485A (en) * 1988-07-28 1990-05-22 Applied Materials, Inc. Laser interferometer system for monitoring and controlling IC processing
DE3901017A1 (de) * 1989-01-14 1990-07-19 Leybold Ag Verfahren und vorrichtung zur ueberwachung des schichtabtrags bei einem trockenaetzprozess
JPH02222533A (ja) 1989-02-23 1990-09-05 Sumitomo Electric Ind Ltd 半導体ウェーハの研削装置
US5084071A (en) 1989-03-07 1992-01-28 International Business Machines Corporation Method of chemical-mechanical polishing an electronic component substrate and polishing slurry therefor
US4954142A (en) 1989-03-07 1990-09-04 International Business Machines Corporation Method of chemical-mechanical polishing an electronic component substrate and polishing slurry therefor
JPH02253288A (ja) * 1989-03-28 1990-10-12 Canon Inc 画像形成装置
US5177908A (en) 1990-01-22 1993-01-12 Micron Technology, Inc. Polishing pad
US5020283A (en) 1990-01-22 1991-06-04 Micron Technology, Inc. Polishing pad with uniform abrasion
JPH03234467A (ja) 1990-02-05 1991-10-18 Canon Inc スタンパの金型取付面の研磨方法およびその研磨機
US5257478A (en) 1990-03-22 1993-11-02 Rodel, Inc. Apparatus for interlayer planarization of semiconductor material
US5081421A (en) 1990-05-01 1992-01-14 At&T Bell Laboratories In situ monitoring technique and apparatus for chemical/mechanical planarization endpoint detection
US5242524A (en) 1990-05-16 1993-09-07 International Business Machines Corporation Device for detecting an end point in polishing operations
US5213655A (en) 1990-05-16 1993-05-25 International Business Machines Corporation Device and method for detecting an end point in polishing operation
US5132617A (en) 1990-05-16 1992-07-21 International Business Machines Corp. Method of measuring changes in impedance of a variable impedance load by disposing an impedance connected coil within the air gap of a magnetic core
USRE34425E (en) * 1990-08-06 1993-11-02 Micron Technology, Inc. Method and apparatus for mechanical planarization and endpoint detection of a semiconductor wafer
US5081796A (en) * 1990-08-06 1992-01-21 Micron Technology, Inc. Method and apparatus for mechanical planarization and endpoint detection of a semiconductor wafer
US6033437A (en) 1991-09-30 2000-03-07 Orbital Implant Technology Pegs for orbital implants
JPH05138531A (ja) 1991-11-21 1993-06-01 Mitsubishi Heavy Ind Ltd 研磨装置
US5196353A (en) 1992-01-03 1993-03-23 Micron Technology, Inc. Method for controlling a semiconductor (CMP) process by measuring a surface temperature and developing a thermal image of the wafer
US5514245A (en) 1992-01-27 1996-05-07 Micron Technology, Inc. Method for chemical planarization (CMP) of a semiconductor wafer to provide a planar surface free of microscratches
AU654901B2 (en) 1992-03-16 1994-11-24 De Beers Industrial Diamond Division (Proprietary) Limited Polishing pad
JPH07505583A (ja) 1992-04-13 1995-06-22 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー 研磨具
JP2770101B2 (ja) 1992-05-08 1998-06-25 コマツ電子金属株式会社 貼り合わせウェーハの研磨方法
US5265378A (en) 1992-07-10 1993-11-30 Lsi Logic Corporation Detecting the endpoint of chem-mech polishing and resulting semiconductor device
JPH0637076A (ja) 1992-07-15 1994-02-10 Seiko Instr Inc 半導体研磨方法
US5499733A (en) * 1992-09-17 1996-03-19 Luxtron Corporation Optical techniques of measuring endpoint during the processing of material layers in an optically hostile environment
US5234868A (en) 1992-10-29 1993-08-10 International Business Machines Corporation Method for determining planarization endpoint during chemical-mechanical polishing
US6614529B1 (en) 1992-12-28 2003-09-02 Applied Materials, Inc. In-situ real-time monitoring technique and apparatus for endpoint detection of thin films during chemical/mechanical polishing planarization
US5413651A (en) * 1993-03-23 1995-05-09 B&H Manufacturing Company Universal roll-fed label cutter
US5329734A (en) 1993-04-30 1994-07-19 Motorola, Inc. Polishing pads used to chemical-mechanical polish a semiconductor substrate
US5337015A (en) 1993-06-14 1994-08-09 International Business Machines Corporation In-situ endpoint detection method and apparatus for chemical-mechanical polishing using low amplitude input voltage
JP3326443B2 (ja) * 1993-08-10 2002-09-24 株式会社ニコン ウエハ研磨方法及びその装置
US5486129A (en) 1993-08-25 1996-01-23 Micron Technology, Inc. System and method for real-time control of semiconductor a wafer polishing, and a polishing head
US5394655A (en) 1993-08-31 1995-03-07 Texas Instruments Incorporated Semiconductor polishing pad
US5395801A (en) 1993-09-29 1995-03-07 Micron Semiconductor, Inc. Chemical-mechanical polishing processes of planarizing insulating layers
US5433651A (en) * 1993-12-22 1995-07-18 International Business Machines Corporation In-situ endpoint detection and process monitoring method and apparatus for chemical-mechanical polishing
US5413941A (en) 1994-01-06 1995-05-09 Micron Technology, Inc. Optical end point detection methods in semiconductor planarizing polishing processes
US5489233A (en) 1994-04-08 1996-02-06 Rodel, Inc. Polishing pads and methods for their use
JP3313505B2 (ja) 1994-04-14 2002-08-12 株式会社日立製作所 研磨加工法
US5791969A (en) * 1994-11-01 1998-08-11 Lund; Douglas E. System and method of automatically polishing semiconductor wafers
JPH08174411A (ja) 1994-12-22 1996-07-09 Ebara Corp ポリッシング装置
US6876454B1 (en) 1995-03-28 2005-04-05 Applied Materials, Inc. Apparatus and method for in-situ endpoint detection for chemical mechanical polishing operations
US6537133B1 (en) 1995-03-28 2003-03-25 Applied Materials, Inc. Method for in-situ endpoint detection for chemical mechanical polishing operations
US5964643A (en) * 1995-03-28 1999-10-12 Applied Materials, Inc. Apparatus and method for in-situ monitoring of chemical mechanical polishing operations
US6719818B1 (en) 1995-03-28 2004-04-13 Applied Materials, Inc. Apparatus and method for in-situ endpoint detection for chemical mechanical polishing operations
US5893796A (en) 1995-03-28 1999-04-13 Applied Materials, Inc. Forming a transparent window in a polishing pad for a chemical mechanical polishing apparatus
US6676717B1 (en) 1995-03-28 2004-01-13 Applied Materials Inc Apparatus and method for in-situ endpoint detection for chemical mechanical polishing operations
DE69632490T2 (de) * 1995-03-28 2005-05-12 Applied Materials, Inc., Santa Clara Verfahren und Vorrichtung zur In-Situ-Kontrolle und Bestimmung des Endes von chemisch-mechanischen Planiervorgängen
US5838447A (en) 1995-07-20 1998-11-17 Ebara Corporation Polishing apparatus including thickness or flatness detector
JP3321338B2 (ja) 1995-07-24 2002-09-03 株式会社東芝 半導体装置の製造方法および製造装置
US5605760A (en) * 1995-08-21 1997-02-25 Rodel, Inc. Polishing pads
JP3234467B2 (ja) 1995-09-26 2001-12-04 松下電工株式会社 軒樋接続構造
US5643048A (en) * 1996-02-13 1997-07-01 Micron Technology, Inc. Endpoint regulator and method for regulating a change in wafer thickness in chemical-mechanical planarization of semiconductor wafers
US5663797A (en) 1996-05-16 1997-09-02 Micron Technology, Inc. Method and apparatus for detecting the endpoint in chemical-mechanical polishing of semiconductor wafers
US5738567A (en) 1996-08-20 1998-04-14 Micron Technology, Inc. Polishing pad for chemical-mechanical planarization of a semiconductor wafer
US6146248A (en) 1997-05-28 2000-11-14 Lam Research Corporation Method and apparatus for in-situ end-point detection and optimization of a chemical-mechanical polishing process using a linear polisher
US6108091A (en) 1997-05-28 2000-08-22 Lam Research Corporation Method and apparatus for in-situ monitoring of thickness during chemical-mechanical polishing
US6111634A (en) 1997-05-28 2000-08-29 Lam Research Corporation Method and apparatus for in-situ monitoring of thickness using a multi-wavelength spectrometer during chemical-mechanical polishing
US6159234A (en) * 1997-08-01 2000-12-12 Peter M. Bonutti Method and apparatus for securing a suture
US6068539A (en) 1998-03-10 2000-05-30 Lam Research Corporation Wafer polishing device with movable window
US6159073A (en) 1998-11-02 2000-12-12 Applied Materials, Inc. Method and apparatus for measuring substrate layer thickness during chemical mechanical polishing
US6280289B1 (en) 1998-11-02 2001-08-28 Applied Materials, Inc. Method and apparatus for detecting an end-point in chemical mechanical polishing of metal layers
US6247998B1 (en) 1999-01-25 2001-06-19 Applied Materials, Inc. Method and apparatus for determining substrate layer thickness during chemical mechanical polishing
US6190234B1 (en) 1999-01-25 2001-02-20 Applied Materials, Inc. Endpoint detection with light beams of different wavelengths
US6179709B1 (en) 1999-02-04 2001-01-30 Applied Materials, Inc. In-situ monitoring of linear substrate polishing operations
US6213845B1 (en) 1999-04-26 2001-04-10 Micron Technology, Inc. Apparatus for in-situ optical endpointing on web-format planarizing machines in mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies and methods for making and using same
US6224460B1 (en) 1999-06-30 2001-05-01 Vlsi Technology, Inc. Laser interferometry endpoint detection with windowless polishing pad for chemical mechanical polishing process
US6171181B1 (en) 1999-08-17 2001-01-09 Rodel Holdings, Inc. Molded polishing pad having integral window
US6524164B1 (en) 1999-09-14 2003-02-25 Applied Materials, Inc. Polishing pad with transparent window having reduced window leakage for a chemical mechanical polishing apparatus
US6383058B1 (en) 2000-01-28 2002-05-07 Applied Materials, Inc. Adaptive endpoint detection for chemical mechanical polishing
US6485354B1 (en) 2000-06-09 2002-11-26 Strasbaugh Polishing pad with built-in optical sensor
US6336841B1 (en) 2001-03-29 2002-01-08 Macronix International Co. Ltd. Method of CMP endpoint detection
US6875077B2 (en) 2002-03-18 2005-04-05 Raytech Innovative Solutions, Inc. Polishing pad for use in chemical/mechanical planarization of semiconductor wafers having a transparent window for end-point determination and method of making
US7323415B2 (en) 2004-04-23 2008-01-29 Jsr Corporation Polishing pad for semiconductor wafer, polishing multilayered body for semiconductor wafer having same, and method for polishing semiconductor wafer
TWI256697B (en) * 2004-07-08 2006-06-11 Advanced Ion Beam Technology I Method for preventing wafer defect for a batch-type ion implanter spinning direction particle
US7182670B2 (en) 2004-09-22 2007-02-27 Rohm And Haas Electronic Materials Cmp Holdings, Inc. CMP pad having a streamlined windowpane
JP5309558B2 (ja) 2007-12-26 2013-10-09 トヨタ自動車株式会社 燃料電池システム
JP5138531B2 (ja) 2008-10-08 2013-02-06 アスモ株式会社 車両用ワイパ

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313645A (ja) * 1995-08-21 2007-12-06 Rohm & Haas Electronic Materials Cmp Holdings Inc 研磨パッドの製造方法及び研磨パッド
JP4714715B2 (ja) * 1995-08-21 2011-06-29 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド 研磨パッドの製造方法及び研磨パッド
JP2012109616A (ja) * 1995-08-21 2012-06-07 Rohm & Haas Electronic Materials Cmp Holdings Inc 研磨パッド
JP2010017848A (ja) * 1995-08-21 2010-01-28 Rohm & Haas Electronic Materials Cmp Holdings Inc 研磨パッドの製造方法及び研磨パッド
JPH1083977A (ja) * 1996-08-16 1998-03-31 Applied Materials Inc 機械化学的ポリッシング装置用のポリッシングパッドへの透明窓の形成
KR19980087549A (ko) * 1997-05-28 1998-12-05 로브그렌 리차드 선형 광택처리기를 사용하는 기계화학 광택공정의 원위치 종점 탐지와 최적화를 위한 방법과 장치
KR19980087550A (ko) * 1997-05-28 1998-12-05 로브그렌 리차드 화학적 기계식 폴리싱동안 두께 제어를 위한 방법 및 장치
JPH11221762A (ja) * 1997-12-03 1999-08-17 Siemens Ag 構成素子の研磨時の終点制御用装置、構成素子の研磨時の終点制御方法及び該装置乃至方法の用途
US7052920B2 (en) 1998-05-21 2006-05-30 Nikon Corporation Layer-thickness detection methods and apparatus for wafers and the like, and polishing apparatus comprising same
US6670200B2 (en) 1998-05-21 2003-12-30 Nikon Corporation Layer-thickness detection methods and apparatus for wafers and the like, and polishing apparatus comprising same
US6342166B1 (en) 1998-12-10 2002-01-29 Nikon Corporation Method of detecting end point of polishing of wafer and apparatus for detecting end point of polishing
JP2001284300A (ja) * 1999-12-13 2001-10-12 Applied Materials Inc 光学監視を用いた研磨終点検出方法および装置
JP2003522937A (ja) * 1999-12-23 2003-07-29 ケーエルエー−テンカー テクノロジィース コーポレイション 渦電流測定あるいは光学測定を利用して、メタライゼーション処理を実状態で監視する方法
JP4817575B2 (ja) * 1999-12-23 2011-11-16 ケーエルエー−テンカー コーポレイション 渦電流測定を利用して、メタライゼーション処理を実状態で監視する方法
JP2001319907A (ja) * 2000-01-18 2001-11-16 Applied Materials Inc 2段階化学機械的研磨プロセスにおける光学的監視方法
JP2003526938A (ja) * 2000-03-15 2003-09-09 ロデール ホールディングス インコーポレイテッド 調節された摩耗速度を有する窓部
JP2014208401A (ja) * 2000-05-19 2014-11-06 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 渦電流監視用研磨パッド
JP2003534649A (ja) * 2000-05-19 2003-11-18 アプライド マテリアルズ インコーポレイテッド 化学機械研磨のための現場終点検出及びプロセス監視の方法並びに装置
JP2004503925A (ja) * 2000-06-09 2004-02-05 ストラスバウ 内蔵光学センサを備えた研磨パッド
US6794206B2 (en) 2000-10-18 2004-09-21 Hitachi, Ltd. Method of polishing a film
JP2004516947A (ja) * 2000-11-29 2004-06-10 スリーエム イノベイティブ プロパティズ カンパニー ウエハを研磨するための窓システムを有する研磨物品および方法
US6855034B2 (en) 2001-04-25 2005-02-15 Jsr Corporation Polishing pad for semiconductor wafer and laminated body for polishing of semiconductor wafer equipped with the same as well as method for polishing of semiconductor wafer
US7057744B2 (en) 2001-07-27 2006-06-06 Hitachi, Ltd. Method and apparatus for measuring thickness of thin film and device manufacturing method using same
US7119908B2 (en) 2001-07-27 2006-10-10 Hitachi, Ltd. Method and apparatus for measuring thickness of thin film and device manufacturing method using same
US6832949B2 (en) 2001-10-26 2004-12-21 Jsr Corporation Window member for chemical mechanical polishing and polishing pad
WO2004021426A1 (ja) * 2002-08-30 2004-03-11 Toray Industries, Inc. 研磨パッド、定盤ホールカバー及び研磨装置並びに研磨方法及び半導体デバイスの製造方法
US8845852B2 (en) 2002-11-27 2014-09-30 Toyo Tire & Rubber Co., Ltd. Polishing pad and method of producing semiconductor device
US7183213B2 (en) 2003-07-17 2007-02-27 Jsr Corporation Chemical mechanical polishing pad and chemical mechanical polishing method
US7731568B2 (en) 2004-03-11 2010-06-08 Toyo Tire & Rubber Co., Ltd. Polishing pad and semiconductor device manufacturing method
US7323415B2 (en) 2004-04-23 2008-01-29 Jsr Corporation Polishing pad for semiconductor wafer, polishing multilayered body for semiconductor wafer having same, and method for polishing semiconductor wafer
WO2005104199A1 (ja) 2004-04-23 2005-11-03 Jsr Corporation 半導体ウエハ用研磨パッド及びこれを備える半導体ウエハ用研磨複層体並びに半導体ウエハの研磨方法
JP2006116614A (ja) * 2004-10-19 2006-05-11 Toray Ind Inc 研磨パッドおよび研磨装置
US7871309B2 (en) 2004-12-10 2011-01-18 Toyo Tire & Rubber Co., Ltd. Polishing pad
WO2007091439A1 (ja) * 2006-02-06 2007-08-16 Toray Industries, Inc. 研磨パッドおよび研磨装置
KR101294863B1 (ko) * 2006-02-06 2013-08-08 도레이 카부시키가이샤 연마 패드 및 연마 장치
US8337277B2 (en) 2006-02-06 2012-12-25 Toray Industries, Inc. Polishing pad and polishing apparatus
US8398794B2 (en) 2006-04-19 2013-03-19 Toyo Tire & Rubber Co., Ltd. Method for manufacturing polishing pad
US8500932B2 (en) 2006-04-19 2013-08-06 Toyo Tire & Rubber Co., Ltd. Method for manufacturing polishing pad
US9050707B2 (en) 2006-04-19 2015-06-09 Toyo Tire & Rubber Co., Ltd. Method for manufacturing polishing pad
US7874894B2 (en) 2006-05-17 2011-01-25 Toyo Tire & Rubber Co., Ltd. Polishing pad
US7927183B2 (en) 2006-05-17 2011-04-19 Toyo Tire & Rubber Co., Ltd. Polishing pad
TWI392008B (zh) * 2007-03-15 2013-04-01 Toyo Tire & Rubber Co Polishing pad
US9018099B2 (en) 2007-03-15 2015-04-28 Toyo Tire & Rubber Co., Ltd. Polishing pad
US8348724B2 (en) 2007-05-16 2013-01-08 Toyo Tire & Rubber Co., Ltd. Polishing pad manufacturing method
US8409308B2 (en) 2007-05-31 2013-04-02 Toyo Tire & Rubber Co., Ltd. Process for manufacturing polishing pad
JP2012515092A (ja) * 2009-01-16 2012-07-05 アプライド マテリアルズ インコーポレイテッド 窓支持部を具備する研磨パッドおよび研磨システム
JP2016007701A (ja) * 2014-06-25 2016-01-18 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド 化学機械研磨法

Also Published As

Publication number Publication date
US20080227367A1 (en) 2008-09-18
DE69635816D1 (de) 2006-04-20
KR100542474B1 (ko) 2006-01-11
EP0738561A1 (en) 1996-10-23
US8092274B2 (en) 2012-01-10
US20140038501A1 (en) 2014-02-06
DE69618698D1 (de) 2002-03-14
JP3431115B2 (ja) 2003-07-28
US20100240281A1 (en) 2010-09-23
US20110070808A1 (en) 2011-03-24
US7731566B2 (en) 2010-06-08
DE69632490D1 (de) 2004-06-17
US8556679B2 (en) 2013-10-15
EP0738561B1 (en) 2002-01-23
US20120107971A1 (en) 2012-05-03
DE69618698T2 (de) 2002-08-14
JP2004006663A (ja) 2004-01-08
DE69632490T2 (de) 2005-05-12
US7841926B2 (en) 2010-11-30
DE69635816T2 (de) 2006-10-12
JP2004048051A (ja) 2004-02-12
JP3510622B2 (ja) 2004-03-29

Similar Documents

Publication Publication Date Title
JP3431115B2 (ja) ケミカルメカニカルポリシングの操作をインシチュウでモニタするための装置及び方法
JP4963908B2 (ja) ポリッシングパッド
JPH097985A6 (ja) ケミカルメカニカルポリシングの操作をインシチュウでモニタするための装置及び方法
US7118450B2 (en) Polishing pad with window and method of fabricating a window in a polishing pad
US8795029B2 (en) Apparatus and method for in-situ endpoint detection for semiconductor processing operations
US6860791B2 (en) Polishing pad for in-situ endpoint detection
JP2011249833A (ja) Cmpプロセス中のインシチュウ終点検出に用いるポリッシングパッド

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030507

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term