JPH08213409A - 半導体装置 - Google Patents
半導体装置Info
- Publication number
- JPH08213409A JPH08213409A JP7041373A JP4137395A JPH08213409A JP H08213409 A JPH08213409 A JP H08213409A JP 7041373 A JP7041373 A JP 7041373A JP 4137395 A JP4137395 A JP 4137395A JP H08213409 A JPH08213409 A JP H08213409A
- Authority
- JP
- Japan
- Prior art keywords
- gate
- semiconductor device
- element isolation
- thermal resistance
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 17
- 238000002955 isolation Methods 0.000 claims abstract description 23
- 239000000758 substrate Substances 0.000 claims description 8
- 238000009792 diffusion process Methods 0.000 abstract description 4
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 7
- 238000000034 method Methods 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/41758—Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/482—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
- H01L23/4824—Pads with extended contours, e.g. grid structure, branch structure, finger structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0642—Isolation within the component, i.e. internal isolation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0642—Isolation within the component, i.e. internal isolation
- H01L29/0649—Dielectric regions, e.g. SiO2 regions, air gaps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42372—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
- H01L29/4238—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/80—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
- H01L29/812—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
(57)【要約】
【目的】 ゲートフィンガー長をのばしてゲート幅を大
きくした時にもチャネル温度の上昇をおさえることがで
きる半導体装置を提供する。 【構成】 動作層(1)に素子分離領域が形成され、そ
してゲート電極(2)、ソース電極(3)、ドレイン電
極(4)が設けられた構造で、単位FETが並列に複数
個並べられた櫛形ゲート構造素子において、動作層領域
(1)をゲート電極(2)フィンガーと垂直な方向に形
成された素子分離領域によって分割することにより、熱
の拡散経路を広げることが可能となり、熱抵抗が低減さ
れ、チャネル温度の上昇がおさえられる。
きくした時にもチャネル温度の上昇をおさえることがで
きる半導体装置を提供する。 【構成】 動作層(1)に素子分離領域が形成され、そ
してゲート電極(2)、ソース電極(3)、ドレイン電
極(4)が設けられた構造で、単位FETが並列に複数
個並べられた櫛形ゲート構造素子において、動作層領域
(1)をゲート電極(2)フィンガーと垂直な方向に形
成された素子分離領域によって分割することにより、熱
の拡散経路を広げることが可能となり、熱抵抗が低減さ
れ、チャネル温度の上昇がおさえられる。
Description
【0001】
【産業上の利用分野】本発明は、半導体装置に関し、特
に高周波における高出力用GaAs電界効果型トランジ
スタ(FET)に関する。
に高周波における高出力用GaAs電界効果型トランジ
スタ(FET)に関する。
【0002】
【従来の技術】高出力FETでは出力を増加させるため
にゲート幅の増加が必要である。そのためゲートフィン
ガーを並列に形成する櫛形ゲート構造(インターディジ
ット構造)が採用されている。特に、素子高出力化に伴
う発熱量の増大に対処するためにチップを薄くして、裏
面に厚く金属を付けるPHS(プレーティド、ヒート、
シンク)構造によるものが採用されているが、チップに
そりが問題となるものである。図3は従来技術による高
出力FETの平面図を示すもので、半導体装置の動作層
(1)に、ゲート電極(2)、ソース電極(3)、ドレ
イン電極(4)が多数本並べられた構造をもつものが示
されている。
にゲート幅の増加が必要である。そのためゲートフィン
ガーを並列に形成する櫛形ゲート構造(インターディジ
ット構造)が採用されている。特に、素子高出力化に伴
う発熱量の増大に対処するためにチップを薄くして、裏
面に厚く金属を付けるPHS(プレーティド、ヒート、
シンク)構造によるものが採用されているが、チップに
そりが問題となるものである。図3は従来技術による高
出力FETの平面図を示すもので、半導体装置の動作層
(1)に、ゲート電極(2)、ソース電極(3)、ドレ
イン電極(4)が多数本並べられた構造をもつものが示
されている。
【0003】このように、出力向上のためにはフィンガ
ー本数を増やすことが有効であるが、必要以上に増やす
とチップ横幅が長くなり、チップ横幅が長くなると、チ
ップの機械的強度が弱くなる。また、マウント時の熱の
影響でチップのそりが更に大きくなるという問題点があ
った。そのため単位フィンガー長を伸ばすことが高出力
化のために必要となる。従来技術においては、図3に示
すように動作層(1)はゲートフィンガーに対して一様
に形成されるものである。
ー本数を増やすことが有効であるが、必要以上に増やす
とチップ横幅が長くなり、チップ横幅が長くなると、チ
ップの機械的強度が弱くなる。また、マウント時の熱の
影響でチップのそりが更に大きくなるという問題点があ
った。そのため単位フィンガー長を伸ばすことが高出力
化のために必要となる。従来技術においては、図3に示
すように動作層(1)はゲートフィンガーに対して一様
に形成されるものである。
【0004】
【発明が解決しようとする課題】上述のように、出力向
上のためにはフィンガー本数を増やすことが有効である
が、パッケージ容量の増大や組立時のチップそりなどの
問題が生じるので、高出力化のために単位フィンガー長
を伸ばすことが考えられる。このチップのそりの発生
は、特に素子高出力化に伴う発熱量の増大に対処するた
めにチップを薄くして、裏面に厚く金属を付けるPHS
(プレーティド、ヒート、シンク)構造によるものであ
る。そして、チップのそりが生じる原因は、チップの厚
さが薄いために、裏面に金属を厚く付けるとそのストレ
スで常温でもそりを生じ、且つ、ダイボンディング時に
熱が加わるとそりが更に強くなり、そりが生じることと
なる。このストレスがチップの基板に残ってしまい、信
頼度上問題(例えば、使用状態でのオン・オフによるね
つ衝撃でチップにクラックが生じたり、極端な場合に割
れてしまうことがある)となるものである。また、単純
にフィンガー長を伸ばしていくと、供給されるDC電力
に対して熱抵抗の減少分が小さくなるため、チャネル温
度の上昇を引き起こすという問題がある。
上のためにはフィンガー本数を増やすことが有効である
が、パッケージ容量の増大や組立時のチップそりなどの
問題が生じるので、高出力化のために単位フィンガー長
を伸ばすことが考えられる。このチップのそりの発生
は、特に素子高出力化に伴う発熱量の増大に対処するた
めにチップを薄くして、裏面に厚く金属を付けるPHS
(プレーティド、ヒート、シンク)構造によるものであ
る。そして、チップのそりが生じる原因は、チップの厚
さが薄いために、裏面に金属を厚く付けるとそのストレ
スで常温でもそりを生じ、且つ、ダイボンディング時に
熱が加わるとそりが更に強くなり、そりが生じることと
なる。このストレスがチップの基板に残ってしまい、信
頼度上問題(例えば、使用状態でのオン・オフによるね
つ衝撃でチップにクラックが生じたり、極端な場合に割
れてしまうことがある)となるものである。また、単純
にフィンガー長を伸ばしていくと、供給されるDC電力
に対して熱抵抗の減少分が小さくなるため、チャネル温
度の上昇を引き起こすという問題がある。
【0005】図4は、ゲートフィンガー長と熱抵抗およ
びチャネル温度上昇の関係を示したもので、横軸はフィ
ンガー長(μm)、縦軸の左側は熱抵抗(℃/W)、縦
軸の右側はΔT(℃)である。これは、フィンガー数9
6本の櫛形ゲート構造FETのフィンガー長を変えた場
合の熱抵抗と、その時のゲート幅に比例したDC電力を
供給した場合のチャネル温度の上昇分(ΔT)を示す。
ここでDC電力は、単位ゲート幅当たり1Wとする。
びチャネル温度上昇の関係を示したもので、横軸はフィ
ンガー長(μm)、縦軸の左側は熱抵抗(℃/W)、縦
軸の右側はΔT(℃)である。これは、フィンガー数9
6本の櫛形ゲート構造FETのフィンガー長を変えた場
合の熱抵抗と、その時のゲート幅に比例したDC電力を
供給した場合のチャネル温度の上昇分(ΔT)を示す。
ここでDC電力は、単位ゲート幅当たり1Wとする。
【0006】図4より、フィンガー長(μm)と縦軸左
側の熱抵抗(℃/W)の関係をみると、フィンガー長を
伸ばしてゲート幅を大きくすることで熱抵抗は低減され
るが、フィンガー長さとともに飽和する傾向にある。一
方、フィンガー長(μm)と縦軸右側のΔT(℃)の関
係をみると、フィンガー長が長くなるとΔT(℃)が増
加する。すなわちゲート幅に比例するDC電力を供給し
た場合、フィンガー長増加とともにΔTが増加し、チャ
ネル温度が増大するという問題がある。
側の熱抵抗(℃/W)の関係をみると、フィンガー長を
伸ばしてゲート幅を大きくすることで熱抵抗は低減され
るが、フィンガー長さとともに飽和する傾向にある。一
方、フィンガー長(μm)と縦軸右側のΔT(℃)の関
係をみると、フィンガー長が長くなるとΔT(℃)が増
加する。すなわちゲート幅に比例するDC電力を供給し
た場合、フィンガー長増加とともにΔTが増加し、チャ
ネル温度が増大するという問題がある。
【0007】
【課題を解決するための手段】本発明は、ゲート電極、
ドレイン電極およびソース電極が並列に多数本並べられ
た構造をもつ半導体装置において、動作層領域がゲート
電極に垂直な方向に形成された素子分離領域によって複
数個に分離されている構造を有することを特徴とする半
導体装置である。また、本発明は、素子分離領域の幅
が、半導体装置の基板の厚さのほぼ2倍であることを特
徴とする上記の半導体装置である。
ドレイン電極およびソース電極が並列に多数本並べられ
た構造をもつ半導体装置において、動作層領域がゲート
電極に垂直な方向に形成された素子分離領域によって複
数個に分離されている構造を有することを特徴とする半
導体装置である。また、本発明は、素子分離領域の幅
が、半導体装置の基板の厚さのほぼ2倍であることを特
徴とする上記の半導体装置である。
【0008】
【作用】本発明において、動作層領域が、ゲート電極に
垂直な方向に形成された素子分離領域によって、複数個
に分離されている構造を有することにより、ゲートフィ
ンガーを並列に形成する櫛形ゲート構造のもので熱抵抗
は低減され、チャネル温度が上昇することもなく、高出
力FETで出力を増加させることができるものである。
すなわち、単位FETが並列に複数個並べられた櫛形ゲ
ート構造素子において、動作層領域をゲートフィンガー
と垂直な方向に形成された素子分離領域によって分割す
ることにより、熱の拡散経路を広げることが可能とな
り、熱抵抗が低減され、チャネル温度の上昇がおさえら
れる。また、高出力FETにおいて、ゲートフィンガー
長をのばしてゲート幅を大きくした時のチャネル温度の
上昇をおさえられるものである。
垂直な方向に形成された素子分離領域によって、複数個
に分離されている構造を有することにより、ゲートフィ
ンガーを並列に形成する櫛形ゲート構造のもので熱抵抗
は低減され、チャネル温度が上昇することもなく、高出
力FETで出力を増加させることができるものである。
すなわち、単位FETが並列に複数個並べられた櫛形ゲ
ート構造素子において、動作層領域をゲートフィンガー
と垂直な方向に形成された素子分離領域によって分割す
ることにより、熱の拡散経路を広げることが可能とな
り、熱抵抗が低減され、チャネル温度の上昇がおさえら
れる。また、高出力FETにおいて、ゲートフィンガー
長をのばしてゲート幅を大きくした時のチャネル温度の
上昇をおさえられるものである。
【0009】
【実施例】本発明の実施例について図を用いて説明す
る。 [実施例1]図1は、本発明の第一の実施例による半導
体装置の平面図であり、図2は、その製造工程示す。ま
ず、図2(a)において、半絶縁性GaAs基板の上に
MBE法により形成された不純物濃度が2×1017c
m−3、厚さ0.3μmのn型GaAs層にフォトレジ
ストでパターニングを行う。
る。 [実施例1]図1は、本発明の第一の実施例による半導
体装置の平面図であり、図2は、その製造工程示す。ま
ず、図2(a)において、半絶縁性GaAs基板の上に
MBE法により形成された不純物濃度が2×1017c
m−3、厚さ0.3μmのn型GaAs層にフォトレジ
ストでパターニングを行う。
【0010】動作層以外の領域に、酸素あるいはボロン
をイオン注入法により選択的に注入して素子分離領域を
形成する。この時動作層領域(5)を分割するように素
子分離領域を形成する。ここで素子分離領域の幅は、チ
ップ状態でのGaAs厚(通常20〜50μm)の2倍
となるようにフォトレジストパターンを調整する。
をイオン注入法により選択的に注入して素子分離領域を
形成する。この時動作層領域(5)を分割するように素
子分離領域を形成する。ここで素子分離領域の幅は、チ
ップ状態でのGaAs厚(通常20〜50μm)の2倍
となるようにフォトレジストパターンを調整する。
【0011】次に、図2(b)において、300〜40
0nmの厚さに堆積されたSiO2等の絶縁膜上にフォ
トレジスト膜を塗布してパターニングし、その上に、例
えばアルミニウム膜を500nmの厚さに蒸着してリフ
トオフ法によりゲート電極(2)を形成する。次に、図
2(c)に示すように、ソース、ドレイン電極部分にフ
ォトレジスト膜でパターンを形成し、AuGe/Niを
蒸着してリフトオフ法によりオーミック電極(6)を形
成する。
0nmの厚さに堆積されたSiO2等の絶縁膜上にフォ
トレジスト膜を塗布してパターニングし、その上に、例
えばアルミニウム膜を500nmの厚さに蒸着してリフ
トオフ法によりゲート電極(2)を形成する。次に、図
2(c)に示すように、ソース、ドレイン電極部分にフ
ォトレジスト膜でパターンを形成し、AuGe/Niを
蒸着してリフトオフ法によりオーミック電極(6)を形
成する。
【0012】さらに、図2(d)に示すように、ソース
電極(3)、ドレイン電極(4)にAuメッキにより配
線金属を形成して電界効果トランジスタが完成する。以
上の工程で、図1に示す、動作層(1)に素子分離領域
が形成され、そしてゲート電極(2)、ソース電極
(3)、ドレイン電極(4)が設けられた構造になって
いる。このような構造にすることで、動作層領域内に設
けた素子分離領域に、素子内で発生した熱が拡散してい
くため、熱抵抗を低減することが可能となる。
電極(3)、ドレイン電極(4)にAuメッキにより配
線金属を形成して電界効果トランジスタが完成する。以
上の工程で、図1に示す、動作層(1)に素子分離領域
が形成され、そしてゲート電極(2)、ソース電極
(3)、ドレイン電極(4)が設けられた構造になって
いる。このような構造にすることで、動作層領域内に設
けた素子分離領域に、素子内で発生した熱が拡散してい
くため、熱抵抗を低減することが可能となる。
【0013】図5は、素子断面の熱拡散を示す図で、G
aAs基板(9)、動作層領域(5)、素子分離領域
(7)において、熱流(8)が矢印で示されている。図
5に示すように、熱が45°の方向に拡散していくと仮
定すると、素子分離領域は少なくともGaAs基板厚の
2倍以上あることが必要となる。すなわち、素子分離領
域(7)の幅は、チップ状態でのGaAs基板(9)の
厚(通常20〜50μm)のほぼ2倍となるようにする
ことが好ましい。なお、これは、幅を取りすぎるとフィ
ンガー長が長くなりすぎるという問題があり、重なりを
大きく取りすぎると熱抵抗が大きくなるもので、これら
の点から、ほぼ2倍とすることが好ましいものである。
aAs基板(9)、動作層領域(5)、素子分離領域
(7)において、熱流(8)が矢印で示されている。図
5に示すように、熱が45°の方向に拡散していくと仮
定すると、素子分離領域は少なくともGaAs基板厚の
2倍以上あることが必要となる。すなわち、素子分離領
域(7)の幅は、チップ状態でのGaAs基板(9)の
厚(通常20〜50μm)のほぼ2倍となるようにする
ことが好ましい。なお、これは、幅を取りすぎるとフィ
ンガー長が長くなりすぎるという問題があり、重なりを
大きく取りすぎると熱抵抗が大きくなるもので、これら
の点から、ほぼ2倍とすることが好ましいものである。
【0014】[実施例2]図6に、本発明の第2の実施
例を示す。図6は、動作層(1)に素子分離領域が形成
され、そしてゲート電極(2)、ソース電極(3)、ド
レイン電極(4)が設けられた構造で、動作層(5)領
域内に形成された素子分離領域を2本形成されているも
のである。同様に素子分離領域を複数設けることでさら
に熱抵抗が改善される。図7は、素子分離領域数と熱抵
抗の関係で、横軸に素子分離領域数、縦軸に熱抵抗(℃
/W)を示している。図7に示すように、同一ゲート幅
において、素子分離領域の数が増すとともに熱抵抗が低
減される。これによってチャネル温度の上昇を抑制する
ことが可能となる。なお、図7はゲート幅28.8m
m、フィンガー本数96本の場合を示す。
例を示す。図6は、動作層(1)に素子分離領域が形成
され、そしてゲート電極(2)、ソース電極(3)、ド
レイン電極(4)が設けられた構造で、動作層(5)領
域内に形成された素子分離領域を2本形成されているも
のである。同様に素子分離領域を複数設けることでさら
に熱抵抗が改善される。図7は、素子分離領域数と熱抵
抗の関係で、横軸に素子分離領域数、縦軸に熱抵抗(℃
/W)を示している。図7に示すように、同一ゲート幅
において、素子分離領域の数が増すとともに熱抵抗が低
減される。これによってチャネル温度の上昇を抑制する
ことが可能となる。なお、図7はゲート幅28.8m
m、フィンガー本数96本の場合を示す。
【0015】
【発明の効果】以上説明したように、本発明によれば、
動作層領域を複数個に分離するということにより熱抵抗
を低減することができるという効果を有し、チャネル温
度の抑制を図ることができ、素子信頼度の向上が可能と
なるという効果を奏するものである。
動作層領域を複数個に分離するということにより熱抵抗
を低減することができるという効果を有し、チャネル温
度の抑制を図ることができ、素子信頼度の向上が可能と
なるという効果を奏するものである。
【図1】本発明の一実施例の半導体装置の平面図
【図2】本発明の一実施例の半導体装置の製造工程を示
す図
す図
【図3】従来技術による半導体装置の平面図
【図4】ゲートフィンガー長と熱抵抗およびチャネル温
度上昇の関係
度上昇の関係
【図5】素子断面の熱拡散を示す図
【図6】本発明の第2の実施例の半導体装置の平面図
【図7】素子分離領域数と熱抵抗の関係
1 動作層 2 ゲート電極 3 ソース電極 4 ドレイン電極 5 動作層領域 6 オーミック電極 7 素子分離領域 8 熱流 9 GaAs基板
Claims (2)
- 【請求項1】 ゲート電極、ドレイン電極およびソース
電極が並列に多数本並べられた構造をもつ半導体装置に
おいて、動作層領域が、ゲート電極に垂直な方向に形成
された素子分離領域によって複数個に分離されている構
造を有することを特徴とする半導体装置。 - 【請求項2】 素子分離領域の幅が、半導体装置の基板
の厚さのほぼ2倍であることを特徴とする請求項1に記
載の半導体装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7041373A JPH08213409A (ja) | 1995-02-06 | 1995-02-06 | 半導体装置 |
US08/595,824 US5652452A (en) | 1995-02-06 | 1996-02-02 | Semiconductor device with pluralities of gate electrodes |
DE69602632T DE69602632T2 (de) | 1995-02-06 | 1996-02-05 | Feldeffekttransistor mit Kammstruktur |
EP96101606A EP0725445B1 (en) | 1995-02-06 | 1996-02-05 | Comb-shaped field effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7041373A JPH08213409A (ja) | 1995-02-06 | 1995-02-06 | 半導体装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08213409A true JPH08213409A (ja) | 1996-08-20 |
Family
ID=12606625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7041373A Pending JPH08213409A (ja) | 1995-02-06 | 1995-02-06 | 半導体装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US5652452A (ja) |
EP (1) | EP0725445B1 (ja) |
JP (1) | JPH08213409A (ja) |
DE (1) | DE69602632T2 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997024758A1 (en) * | 1995-12-28 | 1997-07-10 | Philips Electronics N.V. | Microwave power soi-mosfet with high conductivity metal gate |
JP2006269835A (ja) * | 2005-03-24 | 2006-10-05 | Nec Electronics Corp | 半導体装置 |
JP2007535140A (ja) * | 2004-02-25 | 2007-11-29 | クリー インコーポレイテッド | 熱スペーサを有する半導体デバイス |
EP2053660A1 (en) | 2007-10-26 | 2009-04-29 | Kabushiki Kaisha Toshiba | Semiconductor device |
EP2056351A2 (en) | 2007-10-31 | 2009-05-06 | Kabushiki Kaisha Toshiba | Semiconductor device |
JP2012028707A (ja) * | 2010-07-27 | 2012-02-09 | Sumitomo Electric Ind Ltd | 半導体装置 |
JP2015122493A (ja) * | 2013-12-20 | 2015-07-02 | フリースケール セミコンダクター インコーポレイテッド | インナービアを有する半導体デバイス |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3256110B2 (ja) * | 1995-09-28 | 2002-02-12 | シャープ株式会社 | 液晶表示装置 |
JP3129223B2 (ja) * | 1997-02-28 | 2001-01-29 | 日本電気株式会社 | 半導体装置 |
JP3379376B2 (ja) * | 1997-03-14 | 2003-02-24 | 松下電器産業株式会社 | 電界効果トランジスタおよびそれを用いた電力増幅器 |
JP3515886B2 (ja) * | 1997-09-29 | 2004-04-05 | 三菱電機株式会社 | 半導体装置およびその製造方法 |
US6373094B2 (en) | 1998-09-11 | 2002-04-16 | Texas Instruments Incorporated | EEPROM cell using conventional process steps |
US6084277A (en) * | 1999-02-18 | 2000-07-04 | Power Integrations, Inc. | Lateral power MOSFET with improved gate design |
US6313512B1 (en) * | 1999-02-25 | 2001-11-06 | Tyco Electronics Logistics Ag | Low source inductance compact FET topology for power amplifiers |
US6398347B1 (en) | 2000-07-24 | 2002-06-04 | Hewlett-Packard Company | Energy balanced ink jet printhead |
JP3712111B2 (ja) * | 2001-03-30 | 2005-11-02 | ユーディナデバイス株式会社 | 電力増幅用半導体装置 |
US6642578B1 (en) | 2002-07-22 | 2003-11-04 | Anadigics, Inc. | Linearity radio frequency switch with low control voltage |
JP2007505505A (ja) * | 2004-01-10 | 2007-03-08 | エイチブイブイアイ・セミコンダクターズ・インコーポレイテッド | パワー半導体装置およびそのための方法 |
US8530963B2 (en) * | 2005-01-06 | 2013-09-10 | Estivation Properties Llc | Power semiconductor device and method therefor |
WO2009027488A1 (de) * | 2007-08-31 | 2009-03-05 | Forschungsverbund Berlin E. V. | Plaited-signal-manifold-anschlussstruktur für ein hochfrequenzbauelement und ein solches hochfrequenzbauelement |
JP2012079942A (ja) * | 2010-10-01 | 2012-04-19 | Renesas Electronics Corp | 半導体装置 |
US8557643B2 (en) | 2011-10-03 | 2013-10-15 | International Business Machines Corporation | Transistor device with reduced gate resistance |
CN103700696A (zh) * | 2013-12-24 | 2014-04-02 | 中国电子科技集团公司第五十五研究所 | 一种均匀散热的串管结构GaN管芯 |
US9064864B1 (en) | 2013-12-30 | 2015-06-23 | Visic Technologies Ltd. | Semiconductor device |
WO2015101973A1 (en) * | 2013-12-30 | 2015-07-09 | Visic Technologies Ltd. | Semiconductor device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5853862A (ja) * | 1981-09-25 | 1983-03-30 | Toshiba Corp | 電界効果型半導体装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1254302A (en) * | 1968-03-11 | 1971-11-17 | Associated Semiconductor Mft | Improvements in insulated gate field effect transistors |
US4462041A (en) * | 1981-03-20 | 1984-07-24 | Harris Corporation | High speed and current gain insulated gate field effect transistors |
JPS57160148A (en) * | 1981-03-30 | 1982-10-02 | Toshiba Corp | Microwave integrated circuit device |
JPS63150966A (ja) * | 1986-12-13 | 1988-06-23 | Sony Corp | 電界効果型トランジスタ |
US5025296A (en) * | 1988-02-29 | 1991-06-18 | Motorola, Inc. | Center tapped FET |
EP0373803A3 (en) * | 1988-12-16 | 1991-07-10 | Raytheon Company | R. f. switching circuits |
EP0488801B1 (en) * | 1990-11-30 | 1998-02-04 | Sharp Kabushiki Kaisha | Thin-film semiconductor device |
US5321291A (en) * | 1991-12-16 | 1994-06-14 | Texas Instruments Incorporated | Power MOSFET transistor |
KR940008009Y1 (ko) * | 1991-12-24 | 1994-11-16 | 금성일렉트론 주식회사 | 가변 동작속도 트랜지스터 |
GB9201004D0 (en) * | 1992-01-17 | 1992-03-11 | Philips Electronic Associated | A semiconductor device comprising an insulated gate field effect device |
US5321292A (en) * | 1992-10-15 | 1994-06-14 | Atmel Corporation | Voltage limiting device having improved gate-aided breakdown |
JPH06151843A (ja) * | 1992-11-02 | 1994-05-31 | Sanyo Electric Co Ltd | 電解効果型トランジスタ |
-
1995
- 1995-02-06 JP JP7041373A patent/JPH08213409A/ja active Pending
-
1996
- 1996-02-02 US US08/595,824 patent/US5652452A/en not_active Expired - Fee Related
- 1996-02-05 DE DE69602632T patent/DE69602632T2/de not_active Expired - Fee Related
- 1996-02-05 EP EP96101606A patent/EP0725445B1/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5853862A (ja) * | 1981-09-25 | 1983-03-30 | Toshiba Corp | 電界効果型半導体装置 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997024758A1 (en) * | 1995-12-28 | 1997-07-10 | Philips Electronics N.V. | Microwave power soi-mosfet with high conductivity metal gate |
JP2007535140A (ja) * | 2004-02-25 | 2007-11-29 | クリー インコーポレイテッド | 熱スペーサを有する半導体デバイス |
KR101132898B1 (ko) * | 2004-02-25 | 2012-04-03 | 크리 인코포레이티드 | 열 스페이서를 갖는 반도체 소자 |
JP2012069966A (ja) * | 2004-02-25 | 2012-04-05 | Cree Inc | 熱スペーサを有する半導体デバイス |
JP2006269835A (ja) * | 2005-03-24 | 2006-10-05 | Nec Electronics Corp | 半導体装置 |
EP2053660A1 (en) | 2007-10-26 | 2009-04-29 | Kabushiki Kaisha Toshiba | Semiconductor device |
US7851832B2 (en) | 2007-10-26 | 2010-12-14 | Kabushiki Kaisha Toshiba | Semiconductor device |
EP2447998A1 (en) | 2007-10-26 | 2012-05-02 | Kabushiki Kaisha Toshiba | Semiconductor device |
EP2056351A2 (en) | 2007-10-31 | 2009-05-06 | Kabushiki Kaisha Toshiba | Semiconductor device |
US8546852B2 (en) | 2007-10-31 | 2013-10-01 | Kabushiki Kaisha Toshiba | Semiconductor device |
JP2012028707A (ja) * | 2010-07-27 | 2012-02-09 | Sumitomo Electric Ind Ltd | 半導体装置 |
JP2015122493A (ja) * | 2013-12-20 | 2015-07-02 | フリースケール セミコンダクター インコーポレイテッド | インナービアを有する半導体デバイス |
Also Published As
Publication number | Publication date |
---|---|
EP0725445A1 (en) | 1996-08-07 |
US5652452A (en) | 1997-07-29 |
DE69602632T2 (de) | 1999-12-09 |
DE69602632D1 (de) | 1999-07-08 |
EP0725445B1 (en) | 1999-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08213409A (ja) | 半導体装置 | |
US4984036A (en) | Field effect transistor with multiple grooves | |
US5616950A (en) | Thermally uniform transistor | |
JP2757805B2 (ja) | 半導体装置 | |
KR100349953B1 (ko) | 밀리미터파 대역에서 안정적으로 동작 가능한 전계 효과 트랜지스터 및 그 제조 방법 | |
JP2669392B2 (ja) | 半導体装置およびその実装構造 | |
JP4945216B2 (ja) | 高周波用半導体装置 | |
WO2008007467A1 (fr) | Transistor à effet de champ | |
JPH04293268A (ja) | 半導体装置とその製造方法 | |
JP2845232B2 (ja) | 半導体装置 | |
JPH09191018A (ja) | 半導体装置およびその製造方法 | |
JPH05152340A (ja) | 電界効果トランジスタ | |
JPH08195402A (ja) | 半導体装置およびその製造方法 | |
JPH11307552A (ja) | 半導体素子 | |
JPH05190574A (ja) | 電界効果トランジスタ | |
JP2008147278A (ja) | 電界効果トランジスタ | |
JPS6181673A (ja) | 半導体装置 | |
JPH0491441A (ja) | 電界効果トランジスタの製造方法 | |
JPH04116836A (ja) | マイクロ波半導体装置 | |
JPH0411742A (ja) | 半導体装置 | |
JPH08330332A (ja) | 半導体装置 | |
JPH06342813A (ja) | 電界効果トランジスタ | |
JPH0236062B2 (ja) | Handotaisochi | |
JPS62237746A (ja) | 半導体集積回路 | |
JPH06283709A (ja) | ゲートターンオフサイリスタ |