JP7248166B2 - 培地組成物 - Google Patents
培地組成物 Download PDFInfo
- Publication number
- JP7248166B2 JP7248166B2 JP2022031822A JP2022031822A JP7248166B2 JP 7248166 B2 JP7248166 B2 JP 7248166B2 JP 2022031822 A JP2022031822 A JP 2022031822A JP 2022031822 A JP2022031822 A JP 2022031822A JP 7248166 B2 JP7248166 B2 JP 7248166B2
- Authority
- JP
- Japan
- Prior art keywords
- cells
- medium
- cell
- manufactured
- culture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N1/00—Preservation of bodies of humans or animals, or parts thereof
- A01N1/02—Preservation of living parts
- A01N1/0205—Chemical aspects
- A01N1/021—Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0068—General culture methods using substrates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M25/00—Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
- C12M25/16—Particles; Beads; Granular material; Encapsulation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2509/00—Methods for the dissociation of cells, e.g. specific use of enzymes
- C12N2509/10—Mechanical dissociation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2513/00—3D culture
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/70—Polysaccharides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/70—Polysaccharides
- C12N2533/72—Chitin, chitosan
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/70—Polysaccharides
- C12N2533/78—Cellulose
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2535/00—Supports or coatings for cell culture characterised by topography
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Sustainable Development (AREA)
- Immunology (AREA)
- Dentistry (AREA)
- Environmental Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Description
散培養と比較して、細胞の機能を維持したまま細胞を高密度に培養することが可能である(特許文献2、3)。更に、これらのゲル基材に細胞を埋め込んだ状態で大きさ100~300μmのマイクロカプセルを作成し、当該マイクロカプセルを分散させながら水溶液培地で細胞を培養する方法も開発されている(非特許文献3)。しかしながら、これらの方法は、ゲル基材が可視光を透過しない場合は培養細胞の継時的な観察ができない、ゲル基材を含む培地やマイクロカプセルは粘度が高いため当該培地中から細胞を回収するために酵素処理(例えば、コラーゲンゲルの場合はコラゲナーゼ処理)等の煩雑かつ細胞に障害を与える操作を必要とする、長期間培養する際に必要な培地交換が困難である等の問題を有している。近年、熱やせん断力などの処理によりゲル基材から細胞回収が可能となる技術が開発されているが、熱やせん断力等は細胞機能に悪影響を与えることがある上に、当該ゲル基材の生体に対する安全性については未だ明らかにはなっていない(特許文献4、5、非特許文献4、5、6、7)。また、小さくカットした果実や野菜等の粒状食品を均一に分散、浮遊させ、その沈殿や浮上を防ぐためのゾル状食品が食品分野にて開発されているが、当該ゾル状食品は分散させた粒状食品を回収することは考慮しておらず、細胞や組織を浮遊状態で培養できるかどうかの検討もなされていない(特許文献6)。水溶液中のジェランがカルシウムイオンの作用によりゲル化し、微細構造を形成することが知られている(非特許文献8)。
。それらの良好な増殖を達成するためには、十分な酸素の供給と均一な混合状態の維持、さらに細胞の破損を防ぐ等が重要である。培養液への酸素の供給と細胞や組織の懸濁は、通気と機械的攪拌とを組み合わせて行なわれる場合と、通気のみにより行なわれる場合とがあるが、前者は、攪拌による細胞や組織の破損が原因で増殖不良を招く場合があり、一方、後者は細胞や組織のせん断は少ないが、高密度培養では均一な混合状態を維持することが困難となる場合があるため、細胞や組織が沈降して増殖効率が低下する等の問題がある。
胞及び/又は組織の培養方法を提供することにある。
[2]培養時の培地組成物の交換処理及び培養終了後において細胞または組織の回収が可能である[1]の培地組成物。
[3]細胞または組織の回収の際に、温度変化、化学処理、酵素処理、せん断力のいずれも必要としない[1]の培地組成物。
[4]粘度が、8mPa・s以下であることを特徴とする[1]の培地組成物。
[5]前記ナノファイバーの平均繊維径が0.001~1.00μm、平均繊維径(D)に対する平均繊維長(L)の比(L/D)が2~500であることを特徴とする[1]の培地組成物。
[6]前記ナノファイバーが高分子化合物から構成されることを特徴とする[1]の培地組成物。
[7]前記高分子化合物が、多糖類であることを特徴とする[6]の培地組成物。
[8]前記多糖類が、
セルロース、キチン及びキトサンからなる群から選択されるいずれかの非水溶性多糖類;又は
ヒアルロン酸、ジェランガム、脱アシル化ジェランガム、ラムザンガム、ダイユータンガム、キサンタンガム、カラギーナン、ザンタンガム、ヘキスロン酸、フコイダン、ペクチン、ペクチン酸、ペクチニン酸、ヘパラン硫酸、ヘパリン、ヘパリチン硫酸、ケラト硫酸、コンドロイチン硫酸、デルマタン硫酸、ラムナン硫酸、アルギン酸及びそれらの塩からなる群から選択される水溶性多糖類
を含む、[7]の培地組成物。
[9]前記多糖類が、セルロース又はキチンを含む、[8]の培地組成物。
[10]前記ナノファイバーが、粉砕により得られたものであることを特徴とする[9]に記載の培地組成物。
[11]細胞培養用である、[1]乃至[10]のいずれかに記載の培地組成物。
[12]前記細胞が、接着細胞または浮遊細胞であることを特徴とする[11]の培地組成物。
[13]前記接着細胞が、スフェアであることを特徴とする[12]の培地組成物。
[14][1]乃至[13]のいずれかに記載の培地組成物と、細胞又は組織とを含む、細胞又は組織培養物。
[15][1]乃至[13]のいずれかに記載の培地組成物中で細胞または組織を培養することを特徴とする、細胞又は組織の培養方法。
[16][14]の培養物から細胞または組織を分離することを特徴とする、細胞又は組
織の回収方法。
[17]前記分離が、遠心分離で行われることを特徴とする[16]の回収方法。
[18][1]乃至[13]のいずれかの培地組成物中で接着細胞を培養することを特徴とするスフェアの製造方法。
[19][1]乃至[13]のいずれかの培地組成物を調製するための培地添加剤であって、当該ナノファイバー又は当該ナノファイバーを構成する水溶性高分子化合物を含むことを特徴とする培地添加剤。
[20][19]の培地添加剤と培地を混合することを特徴とする培地組成物の製造方法。
[21][1]乃至[13]のいずれかの培地組成物の製造方法であって、当該ナノファイバー又は当該ナノファイバーを構成する水溶性高分子化合物と培地を混合することを特徴とする培地組成物の製造方法。
[22][1]乃至[13]のいずれかに記載の培地組成物中で細胞または組織を保存することを特徴とする、細胞又は組織の保存方法。
[23][1]乃至[13]のいずれかに記載の培地組成物中で細胞または組織を輸送することを特徴とする、細胞又は組織の輸送方法。
[24][1]乃至[13]のいずれかに記載の培地組成物中で細胞または組織を培養することを特徴とする、細胞又は組織の増殖方法。
[25]以下の工程を含む、接着細胞の継代培養方法:
(1)[1]乃至[13]のいずれかに記載の培地組成物中で接着細胞を浮遊培養すること;及び
(2)培養容器からの細胞の剥離操作を行うことなく、(i)工程(1)の浮遊培養により
得られた接着細胞を含む培養物に、新鮮な[1]乃至[13]のいずれかに記載の培地組成物を添加するか、或いは(ii)新鮮な[1]乃至[13]のいずれかに記載の培地組成物へ、工程(1)の浮遊培養により得られた接着細胞を含む培養物の全部又は一部を添加すること。
[26]キチンナノファイバーを含有する培地組成物中で接着細胞を該キチンナノファイバーに付着した状態で浮遊培養することを含む、接着細胞の増殖方法。
[27]培地組成物中のキチンナノファイバーの含有量が、0.0001%(重量/容量)以上、0.1%(重量/容量)以下である、[26]記載の方法。
できる。
本明細書において用いる用語につき、以下の通り定義する。
ば、平滑筋細胞または骨格筋細胞)、膵臓ベータ細胞、メラニン細胞、造血前駆細胞、及び単核細胞等が含まれる。当該体細胞は、例えば皮膚、腎臓、脾臓、副腎、肝臓、肺、卵巣、膵臓、子宮、胃、結腸、小腸、大腸、脾臓、膀胱、前立腺、精巣、胸腺、筋肉、結合組織、骨、軟骨、血管組織、血液、心臓、眼、脳または神経組織などの任意の組織から採取される細胞が含まれる。幹細胞とは、自分自身を複製する能力と他の複数系統の細胞に分化する能力を兼ね備えた細胞であり、その例としては、以下に限定されるものではないが、胚性幹細胞(ES細胞)、胚性腫瘍細胞、胚性生殖幹細胞、人工多能性幹細胞(iPS細胞)、神経幹細胞、造血幹細胞、間葉系幹細胞、肝幹細胞、膵幹細胞、筋幹細胞、生殖幹細胞、腸幹細胞、癌幹細胞、毛包幹細胞などが含まれる。前駆細胞とは、前記幹細胞から特定の体細胞や生殖細胞に分化する途中の段階にある細胞である。癌細胞とは、体細胞から派生して無限の増殖能を獲得した細胞である。細胞株とは、生体外での人為的な操作により無限の増殖能を獲得した細胞であり、その例としては、以下に限定されるものではないが、CHO(チャイニーズハムスター卵巣細胞株)、HCT116、Huh7、HEK293(ヒト胎児腎細胞)、HeLa(ヒト子宮癌細胞株)、HepG2(ヒト肝癌細胞株)、UT7/TPO(ヒト白血病細胞株)、MDCK、MDBK、BHK、C-33A、HT-29、AE-1、3D9、Ns0/1、Jurkat、NIH3T3、PC12、S2、Sf9、Sf21、High Five(登録商標)、Vero等が含まれる。
浮遊させることのできる期間としては、少なくとも5分以上、好ましくは、1時間以上、24時間以上、48時間以上、6日以上、21日以上であるが、浮遊状態を保つ限りこれらの期間に限定されない。
当該培地組成物は、好ましくは、培養時の培地組成物の交換処理及び培養終了後において細胞または組織の回収が可能である組成物であり、より好ましくは、細胞または組織の回収の際に、温度変化、化学処理、酵素処理、せん断力のいずれも必要としない組成物である。
本発明の培地組成物中に含まれるナノファイバーは、液体培地中で、細胞及び/又は組織を均一に浮遊させる効果を示すものである。より詳細には、低分子化合物や高分子化合物が共有結合やイオン結合、静電相互作用や疎水性相互作用、ファンデルワールス力などを介して集合及び自己組織化し液体培地中でナノファイバーを形成したもの、あるいは、高分子化合物からなる比較的大きな繊維構造体を高圧処理などにより微細化することにより得られたナノファイバー等が、本発明の培地組成物中に含まれるナノファイバーとして挙げられる。理論には拘束されないが、本発明の培地組成物においては、ナノファイバーが三次元のネットワークを形成し、これが細胞や組織を支えることにより、細胞や組織の浮遊状態が維持される。
ナノファイバーを含む液体の粘度は、例えば後述の実施例に記載の方法で測定することができる。具体的には、25℃条件下で音叉振動式粘度測定(SV-1A、A&D Company Ltd.)を用いて評価することができる。
本発明に用いる低分子化合物の好ましい具体例としては、特に制限されるものではないが、例えば、L-イソロイシン誘導体やL-バリン誘導体、L-リシン誘導体などのアミノ酸誘導体、trans-1,2-ジアミノシクロヘキサンジアミド誘導体等のシクロヘキサンジアミン誘導体、5-アミノイソフタル酸誘導体、R-12-ヒドロキシステアリ
ン酸、1,3,5-ベンゼントリカルボキサイミド、cis-1,3,5-シクロヘキサントリカルボキサミド、2,4-ジベンジリデン-D-ソルビトール、N-ラウロイル-L-グルタミン酸-α,γ-ビス-n-ブチルアミド、デヒドロアビエチン酸カルシウム等の低分子ゲル化剤を挙げることができる。
ここでいう塩としては、リチウム、ナトリウム、カリウムといったアルカリ金属の塩;カルシウム、バリウム、マグネシウムといったアルカリ土類金属の塩;アルミニウム、亜鉛、銅、鉄等の塩;アンモニウム塩;テトラエチルアンモニウム、テトラブチルアンモニウム、メチルトリブチルアンモニウム、セチルトリメチルアンモニウム、ベンジルメチルヘキシルデシルアンモニウム、コリン等の四級アンモニウム塩;ピリジン、トリエチルアミン、ジイソプロピルアミン、エタノールアミン、ジオラミン、トロメタミン、メグルミン、プロカイン、クロロプロカイン等の有機アミンとの塩;グリシン、アラニン、バリン等のアミノ酸との塩等が挙げられる。
。
、分別沈澱、結晶化、各種のイオン交換クロマトグラフィー、セファデックスLH-20等を用いたゲル濾過クロマトグラフィー、活性炭、シリカゲル等による吸着クロマトグラフィーもしくは薄層クロマトグラフィーによる活性物質の吸脱着処理、あるいは逆相カラムを用いた高速液体クロマトグラフィー等を単独あるいは任意の順序に組み合わせ、また反復して用いることにより、実施することができる。ジェランガムの生産微生物の例としては、これに限定されるものではないが、スフィンゴモナス・エロディア(Sphingomonas elodea)及び当該微生物の遺伝子を改変した微生物が挙げられる。
そして、脱アシル化ジェランガムの場合、市販のもの、例えば、三晶株式会社製「KELCOGEL(シーピー・ケルコ社の登録商標)CG-LA」、三栄源エフ・エフ・アイ株式会社製「ケルコゲル(シーピー・ケルコ社の登録商標)」等を使用することができる。
本発明の培地組成物は、上述の原料から調製されたナノファイバーを含む。ナノファイバーの調製方法は、原料として非水溶性の高分子化合物(例えば、セルロース、キチン等の非水溶性多糖類)を用いた場合と、水溶性の高分子化合物(例えば、脱アシル化ジェランガム等の水溶性多糖類)を用いた場合とで異なる。
圧力(処理圧力)は、通常、50~250MPaであり、好ましくは150~245MPaである。圧送圧力が50MPa未満の場合には、ナノファイバーの微細化が不充分となり、微細化により期待される効果が得られない恐れがある。
例えば、セルロースナノファイバーの場合、通常0.0001%乃至1.0%(重量/容量)、例えば0.0005%乃至1.0%(重量/容量)、好ましくは0.001%乃至0.5%(重量/容量)、より好ましくは0.01%乃至0.1%(重量/容量)、更に好ましくは、0.01%乃至0.05%(重量/容量)培地中に添加すれば良い。
セルロースナノファイバーのうちパルプセルロースナノファイバーの場合、培地中の濃度の下限値は、浮遊作用発現の観点及び、浮遊静置培養を可能にする観点から、好ましくは、0.01%(重量/容量)以上、0.015%(重量/容量)以上、0.02%(重量/容量)以上、0.025%(重量/容量)以上、又は、0.03%(重量/容量)以上である。また、パルプセルロースナノファイバーの場合、培地中の濃度の上限値は、培地の粘度を実質的に高めない観点から、好ましくは0.1%(重量/容量)以下、又は0.04%(重量/容量)以下である。
微結晶セルロースナノファイバーの場合、培地中の濃度の下限値は、浮遊作用発現の観点から、好ましくは0.01%(重量/容量)以上、0.03%(重量/容量)以上、又は0.05%(重量/容量)以上である。浮遊静置培養を可能にする観点からは、培地中の微結晶セルロースナノファイバー濃度の下限値は、好ましくは0.03%(重量/容量)以上、又は0.05%(重量/容量)以上である。また、微結晶セルロースナノファイバーの場合、培地中の濃度の上限値は、好ましくは、0.1%(重量/容量)以下である。
キチンナノファイバーの場合、通常0.0001%乃至1.0%(重量/容量)、例えば0.0005%乃至1.0%(重量/容量)、好ましくは 0.001%乃至0.5%(重量/容量)、より好ましくは0.01%乃至0.1%(重量/容量)、最も好ましくは、0.03%乃至0.07%(重量/容量)培地中に添加すれば良い。浮遊作用発現の観点から、培地中のキチンナノファイバー濃度の下限値は、好ましくは0.0001%(重量/容量)以上、0.0003%(重量/容量)以上、0.0005%(重量/容量)以上、又は0.001%(重量/容量)以上である。浮遊静置培養を可能にする観点から
は、培地中のキチンナノファイバーの下限値は、好ましくは0.03%(重量/容量)以上である。培地中のキチンナノファイバー濃度の上限値は、好ましくは、0.1%(重量/容量)以下である。
セルロースナノファイバー、キチンナノファイバー等の非水溶性のナノファイバーについては、通常、0.1%(重量/容量)以下の濃度であれば、培地組成物の粘度を実質的に高めることはない。
カラギーナンの場合、0.0005%乃至1.0%(重量/容量)、好ましくは 0.001%乃至0.5%(重量/容量)、より好ましくは0.01%乃至0.1%(重量/容量)、最も好ましくは、0.02%乃至0.1%(重量/容量)培地中に添加すれば良い。浮遊作用発現の観点及び、浮遊静置培養を可能にする観点から、培地中のカラギーナン濃度の下限値は、好ましくは、0.01%以上である。培地中のカラギーナン濃度の上限値は、好ましくは、0.1%(重量/容量)以下である。培地の粘度を実質的に高めない観点から、カラギーナンの上限値を、0.04%(重量/容量)以下とすることもまた好ましい。
脱アシル化ジェランガムの場合、通常0.001%乃至1.0%(重量/容量)、例えば、0.005%乃至1.0%(重量/容量)、好ましくは0.003%乃至0.5%(重量/容量)、より好ましくは0.01%乃至0.1%(重量/容量)、更に好ましくは0.01乃至0.05%(重量/容量)、最も好ましくは、0.01%乃至0.02%(重量/容量)培地中に添加すれば良い。浮遊作用発現の観点から、培地中の脱アシル化ジェランガム濃度の下限値は、好ましくは0.005%(重量/容量)以上、又は0.01%以上である。浮遊静置培養を可能にする観点から、培地中の脱アシル化ジェランガム濃度の下限値は、好ましくは0.01%(重量/容量)以上である。培地の粘度を実質的に高めない観点から、培地中の脱アシル化ジェランガム濃度の上限値は、0.05%(重量/容量)以下である。培地の粘度を実質的に高めない観点から、脱アシル化ジェランガムの上限値を、0.04(重量/容量)%以下とすることもまた好ましい。
上記ナノファイバーに加えて、多糖類を複数種(好ましくは2種)組み合わせて使用することもできる。多糖類の濃度は、当該液体培地の粘度を実質的に高めること無く細胞及び/又は組織を均一に浮遊させる(好ましくは浮遊静置させる)ことのできる範囲で、適宜設定することができる。例えば、ナノファイバーと多糖類との組合せを用いる場合、ナノファイバーの濃度としては0.005~0.1%(重量/容量)、好ましくは0.01~0.07%(重量/容量)が例示され、多糖類の濃度としては、0.005~0.4%(重量/容量)、好ましくは0.1~0.4%(重量/容量)が例示される。具体的な濃度範囲の組合せとしては、以下が例示される。
セルロースまたはキチンナノファイバー:0.005~0.1%(好ましくは0.01~0.07%)(重量/容量)
多糖類
キサンタンガム:0.1~0.4%(重量/容量)
アルギン酸ナトリウム:0.1~0.4%(重量/容量)(好ましくは0.0001~0.4%(重量/容量))
ローカストビーンガム:0.1~0.4%(重量/容量)
メチルセルロース:0.1~0.4%(重量/容量)(好ましくは0.2~0.4%(重量/容量))
カラギーナン:0.05~0.1%(重量/容量)
ダイユータンガム:0.05~0.1%(重量/容量)
ネイティブジェランガム:0.0001~0.4%(重量/容量)
濃度(%)=ナノファイバーの重量(g)/培地組成物の容量(ml)×100
一態様において、本発明の培地組成物には、金属カチオン、例えば2価の金属カチオン(カルシウムイオン、マグネシウムイオン、亜鉛イオン、鉄イオンおよび銅イオン等)、好ましくはカルシウムイオンを含有する。特に、本発明の培地組成物に含まれるナノファイバーが、水溶性の高分子化合物(例えば、脱アシル化ジェランガム等の水溶性多糖類)から構成されているとき、本発明の培地組成物は上記金属カチオンを含むことが好ましい。金属カチオンが含まれることにより、当該水溶性の高分子化合物(例えば、脱アシル化ジェランガム等の水溶性多糖類)が金属カチオンを介して集合し、培地組成物中でナノファイバーを形成し、これが三次元ネットワークを構築することにより、結果として、細胞または組織を浮遊させて培養できるナノファイバーが形成されるからである。
本発明の培地組成物中に含まれる培地としては、例えばダルベッコ改変イーグル培地(Dulbecco’s Modified Eagles’s Medium;DMEM)、ハムF12培地(Ham’s Nutrient Mixture F12)、DMEM/F12培地、マッコイ5A培地(McCoy’s 5A medium)、イーグルMEM培地(Eagles’s Minimum Essential Medium;EMEM)、αMEM培地(alpha Modified Eagles’s Minimum Essential Medium;αMEM)、MEM培地(Minimum Essential Medium)、RPMI1640培地、イスコフ改変ダルベッコ培地(Iscove’s Modified Dulbecco’s Medium;IMDM)、MCDB131培地、ウィリアム培地E、IPL41培地、Fischer’s培地、StemPro34(インビトロジェン社製)、X-VIVO 10(ケンブレックス社製)、X-VIVO 15(ケンブレックス社製)、HPGM(ケンブレックス社製)、StemSpan H3000(ステムセルテクノロジー社製)、StemSpanSFEM(ステムセルテクノロジー社製)、StemlineII(シグマアルドリッチ社製)、QBSF-60(クオリティバイオロジカル社製)、StemProhESCSFM(インビトロジェン社製)、mTeSR1或いは2培地(ステムセルテクノロジー社製)、Sf-900II(インビトロジェン社製)、Opti-Pro(インビトロジェン社製)、などが挙げられる。
てその他の化学成分あるいは生体成分を一種類以上組み合わせて添加することもできる。動物由来の細胞及び/又は組織の培地に添加される成分としては、ウシ胎児血清、ヒト血清、ウマ血清、インシュリン、トランスフェリン、ラクトフェリン、コレステロール、エタノールアミン、亜セレン酸ナトリウム、モノチオグリセロール、2-メルカプトエタノール、ウシ血清アルブミン、ピルビン酸ナトリウム、ポリエチレングリコール、各種ビタミン、各種アミノ酸、寒天、アガロース、コラーゲン、メチルセルロース、各種サイトカイン、各種ホルモン、各種増殖因子、各種細胞外マトリックスや各種細胞接着分子などが挙げられる。培地に添加されるサイトカインとしては、例えばインターロイキン-1(IL-1)、インターロイキン-2(IL-2)、インターロイキン-3(IL-3)、インターロイキン-4(IL-4)、インターロイキン-5(IL-5)、インターロイキン-6(IL-6)、インターロイキン-7(IL-7)、インターロイキン-8(IL-8)、インターロイキン-9(IL-9)、インターロイキン-10(IL-10)、インターロイキン-11(IL-11)、インターロイキン-12(IL-12)、インターロイキン-13(IL-13)、インターロイキン-14(IL-14)、インターロイキン-15(IL-15)、インターロイキン-18(IL-18)、インターロイキン-21(IL-21)、インターフェロン-α(IFN-α)、インターフェロン-β(IFN-β)、インターフェロン-γ(IFN-γ)、顆粒球コロニー刺激因子(G-CSF)、単球コロニー刺激因子(M-CSF)、顆粒球-マクロファージコロニー刺激因子(GM-CSF)、幹細胞因子(SCF)、flk2/flt3リガンド(FL)、白血病細胞阻害因子(LIF)、オンコスタチンM(OM)、エリスロポエチン(EPO)、トロンボポエチン(TPO)などが挙げられるが、これらに限られるわけではない。
れるわけではない。
また、遺伝子組替え技術によりこれらのサイトカインや増殖因子のアミノ酸配列を人為的に改変させたものも添加させることもできる。その例としては、IL-6/可溶性IL-6受容体複合体あるいはHyper IL-6(IL-6と可溶性IL-6受容体との融合タンパク質)などが挙げられる。
ン及びスルバクタムのホルムアルデヒド・フードラートエステル、タゾバクタム、アズトレオナム、スルファゼチン、イソスルファゼチン、ノルカディシン、m-カルボキシフェニル、フェニルアセトアミドホスホン酸メチル、クロルテトラサイクリン、オキシテトラサイクリン、テトラサイクリン、デメクロサイクリン、ドキシサイクリン、メタサイクリン、並びにミノサイクリンが挙げられる。
上記ナノファイバーを、液体培地の粘度を実質的に高めること無く細胞及び/又は組織を均一に浮遊させる(好ましくは浮遊静置させる)ことのできる濃度となるように、細胞及び/又は組織を培養する際に用いられる培地と混合することにより、上記本発明の培地組成物を製造することができる。本発明は、かかる本発明の培地組成物の製造方法をも提供する。
溶かして調製した液体培地(培地の水溶液)とを混合した後に、滅菌して使用してもよい。該分散液と液体培地の滅菌は、混合する前に、別々に行ってもよい。水性溶媒の例としては、水、ジメチルスルホキシド(DMSO)などが挙げられるが、これらに限られるわけではない。水性溶媒としては、水が好ましい。水性溶媒中には、適切な緩衝剤や塩が含まれていてもよい。上記ナノファイバーの分散液は、本発明の培地組成物を調製するための培地添加剤として有用である。本発明は、かかる培地添加剤をも提供する。
また、上記高分子化合物は、必要に応じて滅菌処理を施してもよい。滅菌方法は特に制限はなく、例えば、放射線滅菌、エチレンオキサイドガス滅菌、オートクレーブ滅菌、フィルター滅菌等が挙げられる。
ートクレーブ滅菌)を行う。静置培養に使用する任意の培地を撹拌(例えば、ホモミキサー等)しながら、当該培地に前記滅菌後のナノファイバー分散液を添加し、当該培地と均一になるように混合する。本水溶液と培地の混合方法は特に制限はなく、例えばピペッティング等の手動での混合、マグネチックスターラーやメカニカルスターラー、ホモミキサー、ホモジナイザー等の機器を用いた混合が挙げられる。
本発明は、上記本発明の培地組成物を用いて、細胞又は組織を増殖させる培養方法;得られる細胞又は組織を、例えばろ過、遠心又は磁性分離により、回収する方法;本発明の培地組成物を用いて、スフェアを製造する方法をも提供するものである。
を解明する際、細胞と目的の因子を共存させて培養した時の細胞の数や種類、細胞表面分化マーカーや発現遺伝子の変化を解析するが、この際に本発明の培地組成物を用いることにより解析対象となる細胞の数を効率よく増幅できるだけでなく、効率よく回収することができる。目的とする因子を解明する際の培養条件、培養装置、培地の種類、本発明ナノファイバーの種類、ナノファイバーの含量、添加物の種類、添加物の含量、培養期間、培養温度などは、本明細書に記載した範囲から当事者により適宜選択される。培養により増殖或いは出現した細胞は、当該分野にて標準的な顕微鏡を用いて観察することができる。この際、培養した細胞について特異的抗体を用いて染色してもよい。目的の因子により変化した発現遺伝子は、培養した細胞からRNA(リボ核酸)を抽出しノーザンブロッティング法、RT-PCR法などによって検出することができる。また、細胞表面分化マーカーは、特異的抗体を用いてELISAやフローサイトメトリーにより検出し、目的の因子による分化や増殖に対する効果を観察することができる。
密度で接着細胞を培養することができる。
に用いられるシャーレ、フラスコ、プラスチックバック、テフロン(登録商標)バック、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウエルプレート、マルチプレート、マルチウエルプレート、チャンバースライド、チューブ、トレイ、培養バック、ローラーボトル等の培養器材を用いて培養することが可能である。これらの培養器材の材質は特に制限されないが、例えば、ガラス、ポリ塩化ビニル、セルロース系ポリマー、ポリスチレン、ポリメチルメタクリレート、ポリカーボネート、ポリスルホン、ポリウレタン、ポリエステル、ポリアミド、ポリスチレン、ポリプロピレン等のプラスチック等が挙げられる。また、これらのプラスチックに対して種々の表面処理(例えば、プラズマ処理、コロナ処理等)を施してもよい。更に、これらの培養器材に対しては、予め細胞外マトリックスや細胞接着分子などをコーティングしてもよい。このようなコーティング材料としては、コラーゲンI乃至XIX、フィブロネクチン、ビトロネクチン、ラミニン-1乃至12、ニトジェン、テネイシン,トロンボスポンジン,フォンビルブランド(von Willebrand)因子、オステオポンチン、フィブリノーゲン、各種エラスチン、各種プロテオグリカン、各種カドヘリン、デスモコリン、デスモグレイン、各種インテグリン、E-セレクチン、P-セレクチン、L-セレクチン、免疫グロブリン、ヒアルロン酸、スーパーファミリー、マトリゲル、ポリ-D-リジン、ポリ-L-リジン、キチン、キトサン、セファロース、アルギン酸ゲル、ハイドロゲル、さらにこれらの切断断片などが挙げられる。これらのコーティング材料は、遺伝子組換え技術によりアミノ酸配列を人為的に改変させたものも使用することできる。また、細胞及び/又は組織の培養器材に対する接着を阻害するためのコーティング材料を用いることもできる。このようなコーティング材料としては、シリコン、ポリ(2-ヒドロキシメチルメタクリレート)、ポリ(2-メタクリロイルオキシエチルホスホリルコリン)等が挙げられるが、これらに限られるわけではない。
ミン樹脂、ユリア樹脂、アニリン樹脂、アイオノマー樹脂、ポリカーボネート、コラーゲン、デキストラン、ゼラチン、セルロース、アルギン酸塩及びこれらの混合物等が使用できる。当該担体は、細胞の接着を高める、或いは細胞からの物質の放出を高める化合物でコートされてもよい。この様なコーティング材料の例としては、ポリ(モノステアロイルグリセリドコハク酸)、ポリ-D,L-ラクチド-co-グリコリド、ヒアルロン酸ナトリウム、n-イソプロピルアクリルアミド、コラーゲンI乃至XIX、フィブロネクチン、ビトロネクチン、ラミニン-1乃至12、ニトジェン、テネイシン、トロンボスポンジン、フォンビルブランド(von Willebrand)因子、オステオポンチン、フィブリノーゲン、各種エラスチン、各種プロテオグリカン、各種カドヘリン、デスモコリン、デスモグレイン、各種インテグリン、E-セレクチン、P-セレクチン、L-セレクチン、免疫グロブリンスーパーファミリー、マトリゲル、ポリ-D-リジン、ポリ-L-リジン、キチン、キトサン、セファロース、アルギン酸ゲル、各種ハイドロゲル、さらにこれらの切断断片などが挙げられる。この際、2種以上のコーティング材料を組みわせても良い。また更に、細胞及び/又は組織を表面上に担持した担体の培養に用いられる培地に対して、グァーガム、タマリンドガム、ローカストビーンガム、アラビアガム、タラガム、タマリンドガム、メチルセルロース等の多糖類を1種以上混合することができる。また、当該担体は、磁性体材料、例えばフェライトを含有していてもよい。当該担体の直径は数10μmから数100μm、より好ましくは100μmから200μmであり、その比重は、1に近いことが好ましく、より好ましくは0.9~1.2、特に好ましくは約1.0である。当該担体の例としては、これに限られるものではないが、Cytodex1(登録商標)、Cytodex 3(登録商標)、Cytoline1(登録商標)、C
ytoline2(登録商標)、Cytopore1(登録商標)、Cytopore2(登録商標)、(以上、GE Healthcare Life Sciences)、B
iosilon(登録商標)(NUNC)、Cultispher-G(登録商標)、Cultispher-S(登録商標)(以上、Thermo SCIENTIFIC)、HILLEXCT(登録商標)、ProNectinF-COATED(登録商標)、及びHILLEXII(登録商標)(SoloHill Engineering)等が挙
げられる。当該担体は、必要に応じて滅菌処理を施してもよい。滅菌方法は特に制限はなく、例えば、放射線滅菌、エチレンオキサイドガス滅菌、オートクレーブ滅菌及び乾熱滅菌等が挙げられる。当該担体を用いて動物細胞を培養する方法としては特に制限はなく、通常の流動層型培養槽又は充填層型培養槽を用いる培養方法等を用いることができる。この際、細胞及び/又は組織を表面上に担持させた担体は、本発明のナノファイバーを含有する培地組成物を用いることにより振とう等の操作を行わずに均一に分散することができるため、目的とする細胞及び/又は組織を細胞機能の損失無く培養することができる。本法により培養された細胞及び/又は組織は、培養後に担体に担持させたまま遠心やろ過処理を行うことにより、回収することができる。この際、用いた液体培地を加えた後、遠心やろ過処理を行ってもよい。例えば、遠心する際の重力加速度(G)は100乃至400Gであり、ろ過処理をする際に用いるフィルターの細孔の大きさは10μm乃至100μmであるが、これらに制限されることは無い。また、担体中にフェライト等の磁性を有する材料を内包させておけば、磁力により培養した担体を回収することができる。本法により培養された細胞及び/又は組織は、各種キレート剤、熱処理や酵素を用いて担体から剥離することにより回収することができる。
ルアルコール部分酢化物等の温度感受性高分子、ポリアクリルアミド、ポリビニルアルコール、メチルセルロース、ニトロセルロース、セルロースブチレート、ポリエチレンオキシド、poly(2-hydroxyethylmethacrylate)/polycaprolactone等のハイドロゲルが挙げられる。また、これらの高分子を2種以上用いて細胞を包埋するための担体を作製することも可能である。更に、当該担体には、これらの高分子以外に生理活性物質を有していても良い。この生理活性物質の例としては、細胞増殖因子、分化誘導因子、細胞接着因子、抗体、酵素、サイトカイン、ホルモン、レクチン、又は細胞外マトリックス等が挙げられ、これらを複数含有させることも可能である。また更に、細胞及び/又は組織を包埋した担体の培養に用いられる培地に対して、グァーガム、タマリンドガム、アルギン酸プロピレングリコールエステル、ローカストビーンガム、アラビアガム、タラガム、メチルセルロース等の増粘剤を1種以上混合することができる。
ATURE PROTOCOLS,VOL.6,NO.5,2011,689-700、NATURE PROTOCOLS,VOL.6,NO.5,2011,572-579、Stem Cell Research,7,2011,97-111、Stem Cell Rev and Rep,6,2010,248-259等に記載された方法を用いることもできる。
また、スフェアを形成させる培養の際に用いる培地中に、スフェアの形成を早める、或いはその維持を促進する成分を含有させることもできる。このような効果を有する成分の例としては、ジメチルスルホキシド、スーパーオキシドジムスターゼ、セルロプラスミン、カタラーゼ、ペルオキシダーゼ、L-アスコルビン酸、L-アスコルビン酸リン酸エステル、トコフェロール、フラボノイド、尿酸、ビリルビン、含セレン化合物、トランスフェリン、不飽和脂肪酸、アルブミン、テオフィリン、フォルスコリン、グルカゴン、ヂブチルリルcAMP、Y27632、Fasudil(HA1077)、H-1152、Wf-536等のROCK阻害剤などを挙げることができる。含セレン化合物としては、亜セレン酸ナトリウム、セレン酸ナトリウム、ジメチルセレニド、セレン化水素、セレノメチオニン、Se― メチルセレノシステイン、セレノシスタチオニン、セレノシステイン
、セレノホモシステイン、アデノシン-5’-ホスホセレン酸、Se―アデノシルセレノメチオニンが挙げられる。また、目的とするサイズの均一な細胞凝集塊を得るためには、使用する細胞非付着性培養容器上に、目的とする細胞凝集塊と同一径の複数の凹みを導入することもできる。これらの凹みが互いに接しているか、あるいは目的とする細胞凝集塊の直径の範囲内であれば、細胞を播種した際、播種した細胞は凹みと凹みの間で細胞凝集塊を形成することなく、確実に凹みの中でその容積に応じた大きさの細胞凝集塊を形成し、均一サイズの細胞凝集塊集団を得ることができる。この際の凹みの形状としては半球または円錐上が好ましい。
また、フィーダー細胞と共培養することにより、スフェアを形成させることもできる。スフェア形成を促進させるためのフィーダー細胞としては、如何なる接着性細胞でも用いることが可能であるが、好適には各種細胞に応じたフィーダー細胞が望ましい。限定されるものではないが、例えば肝臓や軟骨由来の細胞のスフェアを形成させる場合、そのフィーダー細胞の例としてはCOS-1細胞や血管内皮細胞が好適な細胞種として挙げられる。
さらに、本発明のナノファイバーを含有する培養組成物を用いてスフェアを形成させることもできる。その際、当該ナノファイバーの濃度が、細胞の浮遊培養(好ましくは浮遊静置培養)を可能とする濃度となるように、当該ナノファイバーをスフェア形成の際に用いる培地中に添加すれば良い。例えば、当該ナノファイバーの濃度が、通常0.0001%乃至1.0%(重量/容量)、例えば0.0005%乃至1.0%(重量/容量)、好ましくは0.001%乃至0.3%(重量/容量)、より好ましくは0.005%乃至0.1%(重量/容量)、さらに好ましくは0.01%乃至0.05%(重量/容量)となるように、当該ナノファイバーをスフェア形成の際に用いる培地中に添加すれば良い。スフェアは、当該ナノファイバーを含む培地中に目的とする細胞を均一に分散させ、3日間乃至10日間静置して培養することにより調製される。ここで調製されたスフェアは、遠心やろ過処理を行うことにより、回収することができる。例えば、遠心する際の重力加速度(G)は100乃至400Gであり、ろ過処理をする際に用いるフィルターの細孔の大きさは10μm乃至100μmであるが、これらに制限されることは無い。また、目的とする細胞に特異的に結合する抗体を表面上にコーティングした磁性微粒子を用いて、磁力により培養したスフェアを回収することができる。この様な磁性微粒子の例としては、ダイナビーズ(ヴェリタス社製)、MACSマイクロビーズ(ミルテニーバイオテク社製)、BioMag(テクノケミカル社製)等が挙げられる。
このようなスフェアは、そのまま静置培養を続けることでも10日以上、好ましくは13日以上、さらに好ましくは30日以上の期間において増殖能を保持し得るが、さらに静置培養中に定期的に機械的分割を行うことで、またはさらに単細胞化処理と凝集を行うことで、実質的に無期限に増殖能を保持し得る。
スフェアの培養に用いられる培養容器は、一般的に動物細胞の培養が可能なものであれば特に限定されないが、例えば、フラスコ、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウエルプレート、マルチプレート、マルチウエルプレート、チャンバースライド、シャーレ、チューブ、トレイ、培養バック、ローラーボトル等が挙げられる。
スフェアの静置培養に用いられる培地は、細胞接着因子を含むことが可能であり、その例としては、マトリゲル、コラーゲンゲル、ゼラチン、ポリ-L-リジン、ポリ-D-リジン、ラミニン、フィブロネクチンが挙げられる。これらの細胞接着因子は、2種類以上を組み合わせて添加することもできる。また更に、スフェアの培養に用いられる培地に対してグァーガム、タマリンドガム、アルギン酸プロピレングリコールエステル、ローカストビーンガム、アラビアガム、タラガム、メチルセルロース等の増粘剤を更に混合することができる。
本発明のナノファイバーを含有する培地組成物を用いることにより、振とう等の操作を行わずに均一に培養液中に分散することができるため、目的とする細胞及び/又は組織を細胞機能の損失無くスフェアとして培養することができる。本法により静置培養されたスフェアは、培養後に遠心やろ過処理を行うことにより、回収することができる。この際、用いた液体培地を加えた後、遠心やろ過処理を行ってもよい。例えば、遠心する際の重力加速度(G)は100乃至400Gであり、ろ過処理をする際に用いるフィルターの細孔の大きさは10μm乃至100μmであるが、これらに制限されることは無い。また、目的とする細胞に特異的に結合する抗体を表面上にコーティングした磁性微粒子を用いて、磁力により培養したスフェアを回収することができる。この様な磁性微粒子の例としては、ダイナビーズ(ヴェリタス社製)、MACSマイクロビーズ(ミルテニーバイオテク社製)、BioMag(テクノケミカル社製)等が挙げられる。回収されたスフェアは、更に各種キレート剤、熱、フィルターや酵素等の処理を用いて解すことにより単一な細胞として分散させることができる。
本発明の培地組成物を用いて静置培養を開始する際に接種される植物細胞塊の量は、目的の細胞の増殖速度、培養様式(回分培養、流加培養、連続培養等)、培養期間などに応じて変動するが、例えば、カルス等の植物細胞塊を培養する場合、本発明の培地組成物に対する細胞塊の湿重量が4~8(重量/容積(w/v))%、好ましくは5~7(w/v)%となるように本発明の培地組成物に接種される。培養の際の植物細胞塊の粒径は3mm乃至40mm、好ましくは3mm乃至20mm、より好ましくは5mm乃至15mmで
ある。ここで「粒径」とは、例えば植物細胞塊が球形である場合はその直径を意味し、楕円球形である場合にはその長径を意味し、その他の形状においても同様にとり得る最大長を意味する。
また、本発明は、上記本発明の培地組成物を用いた、細胞または組織を保存する保存方法および輸送方法を提供する。本発明の保存又は輸送方法においては、本発明の培地組成物を用いることにより、細胞や組織を浮遊状態で(好ましくは、浮遊静置状態で)、保存又は輸送することができる。
ート剤(例、EDTA)、糖アルコール(例、マンニトール、ソルビトール)、グリセロール等を挙げることが出来る。
ミネーションを回避するため、細胞や組織の本発明の培地組成物中の分散物を入れた容器は、好適には密封される。
脱アシル化ジェランガム含有培地の調製及び粘度測定
脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を0.4%(w/v)となるように純水に懸濁させた後、90℃にて加熱攪拌し溶解させた。本水溶液を攪拌しながら室温まで放冷し、121℃で20分オートクレーブ滅菌した。300mLトールビーカーに2倍濃度のDMEM/F-12培地(Aldrich社製)50mLと滅菌水47.5mLを入れ、室温でホモミキサー(3000rpm)で攪拌しながら脱アシル化ジェランガム水溶液2.5mLを添加し、そのまま1分攪拌を続けることで脱アシル化ジェランガム終濃度0.01%培地組成物を調製した。同様に終濃度が0.02
、0.03、0.05%(w/v)となるよう脱アシル化ジェランガム水溶液を添加した培地組成物を調製した。本培地組成物の粘度は37℃条件下でE型粘度計(東機産業株式会社製、Viscometer TVE-22L、標準ロータ1°34’×R24)を用いて、回転数100rpmで5分間測定した。
ヒト子宮頸癌細胞株HeLa(DSファーマバイオメディカル社製)を、10%(v/v)胎児ウシ血清を含むEMEM培地(WAKO社製)に250000個/mLとなるように懸濁し、本懸濁液10mLをEZ SPHERE(旭硝子社製)に播種した後、CO2インキュベーター(5%CO2)内で3日間培養した。ここで得られたスフェア(直径100~200μm)の懸濁液10mLを遠心処理(200G、5分間)してスフェアを沈降させ、上清を除くことによりスフェア懸濁液1.0mLを調製した。引き続き、上記で調製した脱アシル化ジェランガム含有培地を1.5mLエッペンドルフチューブに1.0mLずつ入れ、更にHeLa細胞スフェア懸濁液10μLを加えた。タッピングにより細胞塊を分散させ、37℃でインキュベートし、1時間後の細胞の分散状態を目視にて観察した。
メチルセルロース含有培地の調製
200mLナスフラスコにDMEM/F-12培地(Aldrich社製)100mLを入れ、メチルセルロース(M0387、Aldrich社製)0.1gを加えた。氷浴にて冷却しながら攪拌し、メチルセルロースを溶解させた。本溶液を用いて終濃度が0.1、0.3、0.6、1.0%(w/v)となるようメチルセルロース水溶液を添加した培地組成物を調製した。
コラーゲン含有培地の調製
0.3%セルマトリックスタイプI-A(新田ゼラチン社製)6.5mLに10倍濃度のDMEM/F-12培地(Aldrich社製)1mL、再構成用緩衝液(新田ゼラチン社製)1mL及び純水1.5mLを入れ、氷中にて撹拌しながら0.2%のコラーゲン含有培地を調製した。同様に、終濃度が0.01、0.05、0.1、0.2%(w/v)となるようコラーゲンを添加した培地組成物を調製した。
上記で調製した培地組成物についても脱アシル化ジェランガム含有培地と同様にHeLa細胞スフェアの浮遊試験および粘度測定を実施した。ただし、1.0%(w/v)メチルセルロースの粘度は、装置の測定範囲より50rpmにて測定した。
以下の参考試験例では、CO2インキュベーターにおけるCO2の濃度(%)は、雰囲気中のCO2の体積%で示した。また、PBSはリン酸緩衝生理食塩水(シグマアルドリッチジャパン社製)を意味し、FBSは牛胎児血清(Biological Industries社製)を意味する。また、(w/v)は、1体積あたりの重量を表わす。
脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を0.3%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した。本溶液を用いて10%(v/v)胎児ウシ血清及び10ng/mLのトロンボポエチン(WAKO社製)を含むIMDM培地(ギブコ社製)に終濃度0.015%(w/v)の脱アシル化ジェランガムを添加した培地組成物を調製した。引き続き、ヒト白血病細胞株UT7/TPOを、20000細胞/mLとなるように上記の脱アシル化ジェランガムを添加した培地組成物に播種した後、6ウェル平底マイクロプレート(コーニング社製)のウェルに1ウェル当たり5mLとなるように分注した。同様に、ヒト子宮頸癌細胞株HeLa(DSファーマバイオメディカル社製)を、20000細胞/mLとなるように10%(v/v)胎児ウシ血清を含むEMEM培地(WAKO社製)に0.015%(w/v)の脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を添加した培地組成物に播種した後、6ウェル平底マイクロプレート(コーニング社製)のウェルに1ウェル当たり5mLとなるように分注した。これらの細胞懸濁液をCO2インキュベーター(5%CO2)内にて3日間静置状態で培養した。その後、培養液の一部を回収し、トリパンブルー染色液(インヴィトロジェン社製)を同量添加した後、血球計算盤(エルマ販売株式会社製)にて生細胞の数を測定した。
ヒト肝癌細胞株HepG2(DSファーマバイオメディカル社製)を、10%(v/v)胎児ウシ血清を含むDMEM培地(WAKO社製)に250000個/mLとなるように懸濁し、本懸濁液10mLをEZ SPHERE(旭硝子社製)に播種した後、CO2インキュベーター(5%CO2)内で7日間培養した。同様に、ヒト子宮頸癌細胞株HeLa(DSファーマバイオメディカル社製)を、10%(v/v)胎児ウシ血清を含むEMEM培地(WAKO社製)に250000個/mLとなるように懸濁し、本懸濁液10mLをEZ SPHERE(旭硝子社製)に播種した後、CO2インキュベーター(5%CO2)内で7日間培養した。ここで得られたそれぞれの細胞株のスフェア(直径100~200μm)の懸濁液2.5mLを遠心処理(200G、5分間)してスフェアを沈降させ上清を除いた。引き続き、本スフェア(約800個)に上記培地10mLを添加して懸濁した後、平底チューブ(BM機器社製)に移した。同様に、上記培地に0.015%(w/v)の脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を添加した培地組成物を用いてスフェアの懸濁液を作成し、平底チューブ(BM機器社製)に移した。なお、0.015%(w/v)の脱アシル化ジェランガムを添加した培地組成物は、まず脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を0.3%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した後、1/20希釈で10%(v/v)胎児ウシ血清を含むDMEM培地に添加することにより調製した。
HepG2細胞及びHeLa細胞に関して、脱アシル化ジェランガムを含まない培地にて培養した際の細胞数を1としたときの相対的細胞数を表5に示す。また、脱アシル化ジェランガムを含まない培地で培養した際の死細胞率(死細胞数/生細胞数)を1としたときの相対的死細胞率を表6に示す。また、HepG2細胞及びHeLa細胞のスフェアを該培地組成物で培養した際の浮遊状態を図1及び図2にそれぞれ示す。さらに、培養したHeLa細胞のスフェアの形状を図3に示す。
マイクロキャリアCytodex(登録商標) 1(GE Healthcare Li
fe Sciences社製)をPBSに0.02g/mLとなるように懸濁し1晩静置
後、上清を捨てて新たなPBSで本マイクロキャリアを2回洗浄した。その後、再度PBSで0.02g/mLとなるように懸濁し、121℃、20分間オートクレーブ滅菌した。引き続き、本マイクロキャリアを70%エタノールにて2回、PBSにて3回洗浄した後、10%(v/v)胎児ウシ血清を含むDMEM培地(WAKO社製)にて0.02g/mLとなるように懸濁した。本マイクロキャリア懸濁液を用いて、120mgのCytodex(登録商標)1及び4000000個のHepG2細胞を含むDMEM培地(10%(v/v)胎児ウシ血清含有)20mLを調製し、本細胞懸濁液を予めシリコンコーティング剤(旭テクノグラス社製)で処理したビーカー中にて37℃、6時間、スターラーで撹拌(100rpm)しながら培養した。ここで、HepG2細胞がマイクロキャリアに接着していることを顕微鏡にて確認した。引き続き、細胞が接着したマイクロキャリアを10%(v/v)胎児ウシ血清を含むDMEM培地にて2回洗浄し、同培地3mLにて懸濁した。
キサンタンガム(KELTROL CG、三晶株式会社製)を1%(w/v)の濃度となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解した。本水溶液を用いて、キサンタンガムについて終濃度が0.1、0.15、0.2%(w/v)であるDMEM/F-12培地組成物を調製した。また、0.2%(w/v)のκ-カラギーナン(GENUGEL WR-80-J、三晶株式会社製)及び0.2%(w/v)のローカストビーンガム(GENUGUM RL-200-J、三晶株式会社製)を含む水溶液を90℃にて加熱することにより調製し、本水溶液を用いて0.03、0.04、0.05%(w/v)のκ-カラギーナンとローカストビーンガムを含むDMEM/F-12培地(シグマ社製)組成物を調製した。
参考試験例2と同様の方法を用いて0.015%の脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を含有するDMEM/F-12培地組成物を調製した。引き続き、本培地組成物1mLを70μm、40μmのフィルター(BDファルコン社製)、30μm、20μmのフィルター(アズワン社製)、10μmのフィルター(Partec社製)、5μm、1.2μm、0.45μm、0.2μmのフィルター(ザルトリウス・ステディム・ジャパン社製)を用いてそれぞれろ過した。参考試験例2と同様の方法を用いて作成したHepG2細胞のスフェアを、上記のろ液に対して約数十個添加した後、1時間37℃にて静置して、スフェア細胞の浮遊状態を目視にて観察した。その結果、HepG2細胞のスフェアは、10μm以上のフィルターを透過した培地組成物においては浮遊状態にて維持されるが、5μm以下のフィルターを透過した培地組成物
においては沈殿することを確認した。更に、ここで浮遊状態にあるHepG2細胞のスフェアは、室温にて300G、5分間の遠心処理、或いは等量の培地を加えた後室温にて200G、5分間の遠心処理を施すことにより沈降し、回収できることを確認した。
参考試験例2と同様の方法を用いて0.01%の脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)及び10%(v/v)胎児ウシ血清を含有するEMEM培地(WAKO社製)の組成物を調製した。引き続き、HeLa細胞を、1000個/mLの濃度になるように添加した後、24ウェルプレート(コーニング社製)に分注した。本プレートを9日間、37℃にて浮遊静置培養した後、スフェアの形成を顕微鏡にて確認した。更に、300G、5分間の遠心処理によりスフェア細胞を沈降させ、PBS5mLにて1回洗浄した後、100μLのトリプシン-EDTA(エチレンジアミン四酢酸)溶液(WAKO社製)を添加し、37℃で5分間保温した。ここで得られた細胞懸濁液100μLに対して10%(v/v)胎児ウシ血清を含むEMEM培地を100μL添加し、その一部の細胞懸濁液に対してトリパンブルー染色液(インヴィトロジェン社製)を同量添加した後、血球計算盤(エルマ販売株式会社製)にて生細胞の数を測定した。その結果、170000個/mLまでHeLa細胞が増えていることが確認された。該培地組成物にて形成したHeLa細胞のスフェアを図6に示す。
脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を0.4%(w/v)となるように純水に懸濁させた後、90℃にて加熱攪拌し溶解させた。300mLトールビーカーに2倍濃度のDMEM/F-12培地(Aldrich社製)95mLを入れ、室温でマグネチックスターラーにて攪拌しながら脱アシル化ジェランガム水溶液5mLを添加し、そのまま5分攪拌を続けることで脱アシル化ジェランガム終濃度0.02%培地組成物を調製した。さらに当培地組成物をホモミキサー(3000rpm)により5分間攪拌した。調製した培地組成物を光学顕微鏡(KEYENCE社、BIOREVO BZ-9000)により観察した。観察された構造体を図7に示す。
脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)20mgと、DMEM/F-12培地(Life Technologies社製)1.58gを200mL三角フラスコに入れ、純水100mLを注いだ。121℃で20分オートクレーブ滅菌し、脱アシル化ジェランガム濃度が0.02%であるDMEM/F-12培地組成物を調製した。調製した培地に、デキストランビーズCytodex1(Size 200μm、GE Healthcare Life Sciences社製)を添加し、ビ
ーズの分散状態を目視にて確認した。浮遊分散状態を○、一部沈降/分散状態を△、沈降状態を×として評価した。結果を表9に示す。
キサンタンガム(KELTROL CG、三晶株式会社製)を0.5%(w/v)の濃
度となるように純水に懸濁した後、90℃にて加熱しながらの撹拌により溶解した。同様にアルギン酸ナトリウム(ダックアルギン酸NSPM、フードケミファ社製)、ローカストビーンガム(GENUGUM RL-200-J、三晶株式会社製)、κ-カラギーナン(GENUGEL WR-80-J、三晶株式会社製)、ダイユータンガム(KELCO CRETE DG-F、三晶株式会社製)について、0.5%(w/v)の水溶液を作製した。
本水溶液と0.2もしくは0.1%(w/v)脱アシル化ジェランガム溶液と10倍濃度のDMEM/F-12培地を混合し、80℃で30分過熱した。室温まで放冷した後、7.5%炭酸水素ナトリウム水溶液を添加し、終濃度0.01、0.02%(w/v)の脱アシル化ジェランガムと終濃度0.1、0.2、0.3、0.4%(w/v)の他の多糖を含有するDMEM/F-12培地組成物を調製した。また、脱アシル化ジェランガムを含む培地を前記同様に調製した後、メチルセルロース(cP400、WAKO株式会社製)の粉末を添加した。氷浴にて攪拌し、メチルセルロースを溶解させ、終濃度0.01、0.02%(w/v)の脱アシル化ジェランガムと終濃度0.1、0.2、0.3、0.4%(w/v)の他のメチルセルロースを含有するDMEM/F-12培地組成物を調製した。
参考試験例9の多糖混合系と同様の方法で、終濃度が0.005、0.01%(w/v)の脱アシル化ジェランガムと他の多糖を含むDMEM/F-12培地を調製した。多糖は最終濃度がキサンタンガム、アルギン酸ナトリウム、ローカストビーンガムは0.1%(w/v)、メチルセルロースは0.2%(w/v)、κ-カラギーナンとダイユータンガムは0.05%(w/v)となるように調製した。それぞれの培地組成物の状態と分析例1と同様の方法で測定した粘度を表11~16に示す。
塩化カルシウム、硫酸マグネシウム、塩化マグネシウムを含まないDMEM/F-12(D9785、Aldrich製)を使用し、参考試験例8の方法と同様に0.02%(w/v)の脱アシル化ジェランガムを含むDMEM/F-12培地組成物を調製した。また、終濃度がDMEM/F-12培地の規定量になるよう、塩化カルシウムまたは硫酸マグネシウム、塩化マグネシウムを添加したDMEM/F-12培地組成物を調製した。DMEM/F-12培地の規定組成より、それぞれの終濃度は塩化カルシウム0.116g/L、硫酸マグネシウム0.049g/L、塩化マグネシウム0.061g/Lとした。
調製した培地組成物にデキストランビーズCytodex1(GE Healthca
re Life Sciences社製)を加え、2日後にビーズの分散を目視にて確認した。浮遊分散状態を○、一部沈降/分散状態を△、沈降状態を×として評価した。結果を
表17に示す。
0.1%(w/v)脱アシル化ジェランガム溶液と5倍濃度のDMEM/F-12培地(塩化カルシウム、硫酸マグネシウム、塩化マグネシウム不含、D9785、Aldrich製)、塩化カルシウム1167mg、硫酸マグネシウム489mg、塩化マグネシウム287mgを純水300mLに溶解させた塩溶液を調製した。200mLのトールビーカーに脱アシル化ジェランガム水溶液と純水を入れ、イカリ型攪拌羽を用いて200rpmで溶液を攪拌した。培地液と水を混合したA液を添加し、そのまま10分攪拌した。次いで塩溶液を添加、さらに7.5%炭酸水素ナトリウム水溶液を1.6mL添加し、終濃度0.02%の脱アシル化ジェランガムを含むDMEM/F-12培地組成物を調製した。それぞれの液の混合量を表に示す。調製4時間後に、6本の培地組成物について、ポリスチレンビーズとCytodex1の分散評価を行なった。結果を表18、19に示す。
0.1%(w/v)脱アシル化ジェランガム溶液と高濃度の培地液を調製した。高濃度の培地液は10倍濃度のMEM(M0268、Aldrich製)、RPMI-1640(R6504、Aldrich製)と5倍濃度のDMEM(高圧滅菌対応培地、ニッスイ製)を調製した。0.1%(w/v)脱アシル化ジェランガム溶液と各高濃度培地、濃度調整用の純水を混合し、80℃で30分過熱した。室温まで放冷した後、7.5%炭酸水素ナトリウム水溶液を添加し、終濃度0.01、0.02、0.03%(w/v)の脱アシル化ジェランガム含有する培地組成物をそれぞれ調製した。
調製した6本の培地組成物について、ポリスチレンビーズとデキストランビーズCytodex1の浮遊分散状態を○、一部沈降/分散状態を△、沈降状態を×として評価した。結果を表20、21に示す。
参考例1に倣い、0.038%(w/v)の脱アシル化ジェランガムを含むDMEM/F-12培地組成物を調製した。培地はホモミキサーを用いて3000rpmと6000
rpmにて1分攪拌し調製した。本培地組成物の粒度分布について、ベックマンコールター(株)製Multisizer4(コールター原理による精密粒度分布測定装置)を用いて測定し、体積基準粒度分布のメジアン径(d50)を求めた。結果を表22に示す。
ガラス製の100mL試験管に、脱アシル化ジェランガム1gと、純水40mLを秤りとり、100℃で30分加熱し、懸濁液を調製した。この懸濁液に、リン酸水溶液(85%)1gを添加し、5時間加熱還流した。その後、12時間撹拌しながら、室温まで放冷
することで得た白色懸濁液を、99%エタノール(500mL)に注いだ。生じた綿状の白色固体を、ろ取後、乾燥させることで、脱アシル化ジェランガムのリン酸化物として、淡褐色固体(0.4g)を得た。リン酸基が導入されたことは、フーリエ変換赤外分光分析(株式会社島津製作所製、IR-Prestage21)によって確認した(1700cm-1;P-OH、1296cm-1、1265cm-1;P=O)。淡褐色固体をマイクロ波加熱分解装置(ETHOS TC, マイルストーンゼネラル製)によって分解した後に、誘導結合プラズマ発光分光分析装置(ICP-OES) (SPS 5520, SIIナノテクノロジー社製)に
よってリン原子の含有率を測定した結果、3.5wt%(n=2)であった。
任意量のリン酸化した脱アシル化ジェランガム(30mg)と、DMEM/F-12培地(ライフテクノロジーズ社製)1.56gを200mL三角フラスコに入れ、純水100mLを注いだ。121℃で20分オートクレーブ滅菌し、脱アシル化ジェランガム濃度が0.03%であるDMEM/F-12培地組成物を調製した。調製した培地に、デキストランビーズCytodex1(GEヘルスケアバイオサイエンス社製)を添加し、ビーズの分散状態を目視にて確認した。0.03%(w/v)のリン酸化した脱アシル化ジェランガム濃度において、ビーズの分散状態が認められた。
脱アシル化ジェランガム水溶液と培地溶液とを下表に示す割合で添加することで混合して、脱アシル化ジェランガム濃度が0.02%であるDMEM/F-12培地組成物を調製したときのポリスチレンビーズ(Size 500-600μm、Polysciences Inc.製)の分散状態を評価した。結果を表23、24に示す。1日以上静置することで、全ての条件で、スチレンビーズが分散した。
脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を最終濃度が0.02或いは0.04%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて30分間或いは121℃にて20分間加熱することにより溶解した。更に、本水溶液100mLを孔径が0.22μmのポリエーテルスルホン製メンブレンフィルター(コーニング社製)にてろ過した。引き続き、本ろ液を2乃至4倍濃度のDMEM/F-12培地(シグマ・アルドリッチ社製)と混合した後、マイルドミキサー(SI-24、タイテック社製)にて1時間振とうし、最終濃度0.01或いは0.015%(w/v)の脱アシル化ジェランガムを含む培地組成物をそれぞれ調製した(例えば、0.02%(w/v)脱アシル化ジェランガム水溶液と2倍濃度のDMEM/F-12培地を25mLずつ混合し、0.01%(w/v)の脱アシル化ジェランガム培地組成物を50mL調製した)。参考試験例2と同様の方法を用いてHepG2細胞のスフェアを作成し、上記で調製した培地1mLにそれぞれ数10個のスフェアを添加した後、37℃にて静置して、1時間及び1晩後のスフェア細胞の浮遊状態を目視にて観察した。その結果、HepG2細胞のスフェアは、上記の培地組成物全てにおいて浮遊状態にて維持されることを確認した。更に、2倍容量の培地を添加した後、本細胞懸濁液を遠心処理(500G
、5分)することによりHepG2細胞のスフェアが沈降し、細胞が回収できることを全ての培地組成物において確認した。1晩後のスフェアの分散状態を目視にて確認した際、浮遊分散状態を○、一部沈降/分散状態を△、沈降状態を×として評価した結果を表25に示す。
ヒト胎児腎細胞株HEK293(DSファーマバイオメディカル社製)を、10%(v/v)胎児ウシ血清を含むEMEM培地(WAKO社製)に250000個/mLとなるように懸濁し、本懸濁液10mLをEZ SPHERE(旭硝子社製)に播種した後、CO2インキュベーター(5%CO2)内で2日間培養した。ここで得られたHEK293細胞のスフェア(直径100~200μm)の懸濁液10mLを遠心処理(200G、5分間)してスフェアを沈降させ上清を除いた後、1mLに懸濁した。引き続き、本スフェア懸濁液200μL(細胞数は約200000個)に上記培地10mLを添加して懸濁した後、平底チューブ(BM機器社製)に移した。同様に、上記培地に0.015%(w/v)の脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を添加した培地組成物を用いてスフェアの懸濁液を作成し、平底チューブ(BM機器社製)に移した。なお、0.015%(w/v)の脱アシル化ジェランガムを添加した培地組成物は、まず脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を0.3%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した後、1/20希釈で10%(v/v)胎児ウシ血清を含むEMEM培地に添加することにより調製した。
た。しかも、該培地組成物は、脱アシル化ジェランガムを含まない培地組成物と比べて細胞を増殖させた際に死細胞の割合が少なく、細胞増殖の促進効果が優れていることが確認された。この際、既存の培地で培養したスフェアは培養容器の底面に沈降していた。
HEK293細胞に関して、脱アシル化ジェランガムを含まない培地にて培養した際の細胞数を1としたときの相対的細胞数を表26に示す。また、脱アシル化ジェランガムを含まない培地で培養した際の死細胞率(死細胞数/生細胞数)を1としたときの相対的死細胞率を表27に示す。
脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を0.3%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した。本溶液を用いてSf-900(登録商標)IIISFM培地(ギブコ社製)に終濃度0.015
%(w/v)の脱アシル化ジェランガムを添加した培地組成物を調製した。引き続き、Spodoptera frugiperda由来のSf9細胞(ギブコ社製)を、100000細胞/mLとなるように上記の脱アシル化ジェランガムを添加した培地組成物に播種した後、24ウェル平底マイクロプレート(コーニング社製)のウェルに1ウェル当たり1mLとなるように分注した。これらの細胞懸濁液をインキュベーター内にて25℃で5日間静置培養した。その後、培養液の一部を回収し、トリパンブルー染色液(インヴィトロジェン社製)を同量添加した後、血球計算盤(エルマ販売株式会社製)にて生細胞の数を測定した。なお、対照として脱アシル化ジェランガムを含まない培地組成物を作成し、同様の実験を行った。
脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を0.3%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した。本溶液を用いてStemSpan SFEM培地(StemCell Technologies社製)に終濃度0.015%(w/v)の脱アシル化ジェランガム、20ng/mLのトロンボポエチン(WAKO社製)及び100ng/mLの幹細胞因子(SCF、WAKO社製)を添加した培地組成物を調製した。引き続き、ヒト臍帯血由来のCD34陽性細胞(ロンザ社製)を、10000細胞/mLとなるように上記の脱アシル化ジェランガムを添加した培地組成物に播種した後、24ウェル平底マイクロプレート(コーニング社製)のウェルに1ウェル当たり1mLとなるように分注した。これらの細胞懸濁液を37℃で7日間、CO2インキュベーター(5%CO2)内で静置培養した。その後、培養液の一部を回収し、トリパンブルー染色液(インヴィトロジェン社製)を同量添加した後、血球計算盤(エルマ販売株式会社製)にて生細胞の数を測定した。また、残りの培養液に3倍容量の培地を添加して遠心処理(500G、5分間)を行うことにより全ての細胞を沈降させた。なお、対照として脱アシル化ジェランガムを含まない培地組成物を作成し、同様の実験を行った。
参考試験例2と同様の方法を用いて0.015%の脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)及び10%(v/v)胎児ウシ血清を含有するDMEM培地(WAKO社製)の組成物を調製した。引き続き、HepG2細胞を、15000個/mLの細胞濃度になるように添加した後、24ウェルプレート(コーニング社製)に1mL分注した。本プレートを7日間、37℃にて浮遊静置培養した後、スフェアの形成を顕微鏡にて確認した。更に、400G、5分間の遠心処理によりスフェア細胞を沈降させ、PBS5mLにて1回洗浄した後、100μLのトリプシン-EDTA(エチレンジアミン四酢酸)溶液(WAKO社製)を添加し、37℃で5分間保温した。ここで得られた細胞懸濁液100μLに対して10%(v/v)胎児ウシ血清を含むDMEM培地を100μL添加し、その一部の細胞懸濁液に対してトリパンブルー染色液(インヴィトロジェン社製)を同量添加した後、血球計算盤(エルマ販売株式会社製)にて生細胞の数を測定した。その結果、HepG2細胞は、該培地組成物にてスフェアを形成し、また細胞数も80800個/mLまでが増えていることが確認された。該培地組成物にて形成したHepG2細胞のスフェアを図8に示す。
ダイユータンガム(KELKO-CRETE DG、三晶株式会社製)を0.3%(w/v)の濃度となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解した。本水溶液を用いて、ダイユータンガムについて終濃度が0.1%(w/v)であるDMEM/F-12培地組成物を調製した。また、0.5%(w/v)のネイティブ型ジェランガム(ケルコゲル HT、三栄源エフ・エフ・アイ株式会社製)を含む水溶液を90℃にて加熱することにより調製し、本水溶液を用いて0.05、0.1%(w/v)のネイティブ型ジェランガムを含むDMEM/F-12培地(シグマ社製)組成物を調製した。
ラミニン或いはフィブロネクチンにてコーティングしたGEM(登録商標、Global Eukaryotic Microcarrier、ジーエルサイエンス株式会社製
)懸濁溶液を500μLずつ1.5mL容量のマイクロテストチューブ(エッペンドルフ社製)に分注し、磁石スタンド(TA4899N12、多摩川精機株式会社製)を使用して上記GEM懸濁溶液からGEMを集積させて溶媒を除去した。更に、10%(v/v)胎児ウシ血清を含有するDMEM培地(WAKO社製)500μLによりGEMを2回洗浄した後、同上培地500μLに懸濁した。本懸濁液を細胞低接着プレートであるスミロンセルタイトプレート24F(住友ベークライト株式会社製)に1ウェルあたり50μL分注した。引き続き、別途調製したHepG2細胞を250000細胞/mLとなる様に添加し、同上培地にて最終容量を500μL/ウェルとした。本細胞懸濁液を手動にて撹拌した後、本プレートを一晩、CO2インキュベーター(5%CO2)内で静置した。GEM上での細胞の接着を顕微鏡にて確認した後、細胞懸濁液を1.5mL容量のマイクロテストチューブ(エッペンドルフ社製)に移し、上記磁石スタンドを用いて細胞付着GEMを集積させて上清を除去した。
べて、細胞増殖の促進効果が優れていることが確認された。また、磁力を用いることにより該培地組成物からHepG2細胞付着GEMを集積させることが可能であり、更に本GEMからHepG2細胞が回収できることを確認した。
脱アシル化ジェランガム含有或いは非含有培地にてHepG2細胞をGEM上で6日間培養した際の細胞数を表30に示す。また、HepG2細胞を付着させたラミニンコートGEMを該培地組成物で培養した際の浮遊状態を図9に示す。
参考試験例24と同様に、フィブロネクチンにてコーティングしたGEM(登録商標、Global Eukaryotic Microcarrier、ジーエルサイエンス
株式会社製)をMF-Medium(登録商標)間葉系幹細胞増殖培地(東洋紡株式会社製)に懸濁した。本懸濁液を細胞低接着プレートであるスミロンセルタイトプレート24F(住友ベークライト株式会社製)に1ウェルあたり50μL分注した。引き続き、別途調製したヒト骨髄由来の間葉系幹細胞(Cell Applications社製)を250000細胞/mLとなる様に添加し、参考試験例24と同様に、本プレートを一晩、CO2インキュベーター(5%CO2)内で静置させて間葉系幹細胞が接着したGEMを調製した。
脱アシル化ジェランガム含有或いは非含有培地にて間葉系幹細胞をGEM上で4日間培養した際の細胞数を表31に示す。
以下の試験は、株式会社PGリサーチ製アルギン酸三次元培養キットの方法に準じて実施した。別途調製したHepG2細胞を400000細胞/mLとなる様にアルギン酸ナトリウム溶液(株式会社PGリサーチ製)2.5mLに添加し、更にヒト組み換えラミニン511(株式会社ベリタス製)を5μg/mLとなる様に添加し、細胞懸濁液を調製した。本細胞懸濁液についてゾンデを装着した5mLシリンジ(テルモ株式会社製)で回収した後、本シリンジに22G注射針(テルモ株式会社製)を装着した。引き続き、塩化カルシウム水溶液(株式会社PGリサーチ製)が2mLずつ添加してある24ウェル平底マイクロプレート(株式会社PGリサーチ製)のウェルに対して、本細胞懸濁液を10滴ずつ添加した。10分間、室温にて静置してからアルギン酸ビーズの形成を確認した後、塩化カルシウム溶液を除去し、PBS2mLを添加して室温で15分静置した。更に、PBSを除去した後、10%(v/v)胎児ウシ血清を含むDMEM培地(WAKO社製)2mLを添加し室温で15分静置した。培地を除去した後、参考試験例2と同様の方法を用いて調製した0.03%の脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)及び10%(v/v)胎児ウシ血清を含有するDMEM培地(WAKO社製)の培地組成物或いは脱アシル化ジェランガムを含まない同上培地それぞれ1mLを各ウェルに添加し、8日間、CO2インキュベーター(5%CO2)内で静置培養した。なお、培地交換は、培養4日目に実施した。
脱アシル化ジェランガム含有或いは非含有培地にてHepG2細胞をアルギン酸ビーズ内で8日間培養した際の細胞数を表32に示す。また、HepG2細胞を包埋したアルギン酸ビーズを該培地組成物で培養した際の浮遊状態を図10に示す。
A:組織培養用コラーゲンCellmatrix(登録商標)TypeI‐A(セルマ
トリックス、新田ゼラチン株式会社製)、B:10倍濃度のDMEM/F-12培地(A
ldrich社製)、C:再構成用緩衝液(0.05N水酸化ナトリウム溶液100mLに炭酸水素ナトリウム2.2g、HEPES(4‐(2‐hydroxyethyl)‐1‐piperazineethanesulfonic acid))4.77gを加え
てろ過滅菌したもの)のそれぞれを氷中にて冷却しながらA:B:C=8:1:1となるように混合した。更に、ヒト組み換えラミニン511(株式会社ベリタス製)を5μg/mLとなる様に添加し、コラーゲン混合溶液500μLを調製した。本混合溶液に対して別途調製したHepG2細胞を200000細胞/mLとなる様に添加し、25G注射針(テルモ株式会社製)を装着した1.5mLシリンジ(テルモ株式会社製)を用いて全量を回収した。引き続き、37℃にて予め保温した10%(v/v)胎児ウシ血清を含有するDMEM培地(WAKO社製)10mLを添加した平底チューブ(BM機器社製)に対して、上記シリンジを用いて1滴ずつ細胞懸濁液を滴下した。37℃水浴中にて10分間保温して、直径2mm程度の不定形なコラーゲンゲルカプセルの形成を確認した後、参考試験例2と同様の方法にて最終濃度0.04%となるように脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を添加し、軽く撹拌して上記カプセルを浮遊させた。引き続き、5日間、CO2インキュベーター(5%CO2)内で本チューブを静置培養した。
脱アシル化ジェランガム含有或いは非含有培地にてHepG2細胞をコラーゲンゲルカプセル内で5日間培養した際の細胞数を表33に示す。また、HepG2細胞を包埋したコラーゲンゲルカプセルを該培地組成物で培養した際の浮遊状態を図11に示す。
参考試験例2と同様の方法を用いて0.015%の脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)及び10%(v/v)胎児ウシ血清を含有するDMEM培地(WAKO社製)の組成物を調製した。また、対照として脱アシル化ジェランガムを含まない同上培地を調製した。参考試験例2と同様の方法を用いてHepG2細胞のスフェアを作成し、上記で調製した培地1mLにそれぞれ86000個の細胞数となるようにスフェアを添加した後、1時間37℃にて静置して、スフェア細胞の浮遊状態を目視にて観察した。更に、メッシュサイズが40μmのセルストレーナー(ベクトン・ディッキンソン社製)上に本細胞懸濁液を添加し、スフェアをフィルター上に捕捉した。引き続き、フィルターの裏面からPBS10mLを流し込むことによりスフェアを15mLチューブに回収し、300G、5分間の遠心処理によりスフェアを沈降させた。上清を除去した後、スフェアに対して500μLのトリプシン-EDTA(エチレンジアミン四酢酸)溶液(WAKO社製)を添加し、37℃で5分間保温した。ここで得られた細胞懸濁液に対して10%(v/v)胎児ウシ血清を含むDMEM培地を1mL添加し、その一部に対してトリパンブルー染色液(インヴィトロジェン社製)を同量添加した後、血球計算盤(エルマ販売株式会社製)にて生細胞の数を測定した。その結果、HepG2細胞のスフェアは、上記の培地組成物において浮遊状態にて維持されることを確認した。更に、0.015%の脱アシル化ジェランガムを含む本スフェア懸濁液をフィルター処理することにより、HepG2細胞のスフェアを、脱アシル化ジェランガムを含まない培地と同等の回収率にて細胞が回収できることを確認した。脱アシル化ジェランガムを含まない培地を用いてフィルターにて回収されたHepG2細胞数を1としたときの、脱アシル化ジェランガムを含む培地から回収された相対的細胞数を表34に示す。
参考試験例9と同様の方法を用いて、キサンタンガム(KELTROL CG、三晶株式会社製)、アルギン酸ナトリウム(ダックアルギン酸NSPM、フードケミファ社製)、ローカストビーンガム(GENUGUM RL-200-J、三晶株式会社製)、メチルセルロース(cP400、WAKO株式会社製)、κ-カラギーナン(GENUGEL
WR-80-J、三晶株式会社製)、ペクチン(GENU pectin LM-102AS、三晶株式会社製)或いはダイユータンガム(KELCO CRETE DG-F、三晶株式会社製)と脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を組み合わせて混合したDMEM/F-12培地組成物を調製した。参考試験例2と同様の方法を用いてHepG2細胞のスフェアを作成し、上記で調製した培地1mLにそれぞれ数10個のスフェアを添加した後、37℃にて静置して、1時間及び1晩後のスフェア細胞の浮遊状態を目視にて観察した。その結果、HepG2細胞のスフェアは
、上記の培地組成物全てにおいて浮遊状態にて維持されることを確認した。更に、2倍容量の培地を添加した後、本細胞懸濁液を遠心処理(500G、5分)することによりHepG2細胞のスフェアが沈降し、細胞が回収できることを全ての培地組成物において確認した。1晩後のスフェアの分散状態を目視にて確認した際、浮遊分散状態を○、一部沈降/分散状態を△、沈降状態を×として評価した結果を表35及び表36に示す。なお、表中の-は未実施を示す。
上記(比較例)にて調製した脱アシル化ジェランガム含有培地とメチルセルロース含有培地について、デキストランビーズCytodex(登録商標) 1(GE Healthcare Life Sciences社製)とHeLa細胞スフェアの分散状態を比較した。結果を表(表37及び38)に示す。Cytodex1とHeLa細胞スフェアの分散状態はよく相関していることから、Cytodex1を細胞スフェアモデルとして使用することができる。
参考試験例9にて調製した多糖および脱アシル化ジェランガム含有培地について、ポリスチレンビーズ(Size 500-600μm、Polysciences Inc.製)とHepG2細胞スフェアの分散状態を比較した。浮遊分散状態を○、一部沈降/分散状態を△、沈降状態を×として評価した。結果を表(表39)に示す。ポリスチレンビーズとHepG2細胞スフェアの分散状態はよく相関していることから、ポリスチレンビーズを細胞スフェアモデルとして使用することができる。
塩水選にて精選されたイネ日本晴の完熟種子(湖東農業協同組合より購入)50粒を50mLポリスチレンチューブ(BDファルコン社製)に移し、滅菌水50mLにて洗浄し
た後、70%エタノール水30mL中にて1分間撹拌した。エタノール水を除去した後、キッチンハイター(花王株式会社製)30mLを添加し、1時間撹拌した。キッチンハイターを除去した後、滅菌水50mLにて4回洗浄した。ここで滅菌した種子を、2μg/mLの2,4-ジクロロフェノキシ酢酸(シグマ・アルドリッチ社製)及び寒天を含むムラシゲ・スクーグ基礎培地(M9274、シグマ・アルドリッチ社製)1.5mL/ウェル(24ウェル平底マイクロプレート(コーニング社製))上に置床した。30℃、16時間暗所/8時間暗所の条件にて3週間培養し、種子の胚盤上で増殖したクリーム色のカルス(1~2mm)を採取した。
市販の結晶セルロース(旭化成ケミカルズ株式会社製 PH-101)4質量部に純水396質量部を加え分散させた後、(株)スギノマシン製高圧粉砕装置(スターバーストシステム)を用いて、220MPaにて100回粉砕処理を行い、結晶セルロース由来のセルロースナノファイバーの水分散液(MNC)を得た。得られた分散液をシャーレに測りとり、110℃にて1時間乾燥を行い、水分を除去して残渣の量を測定し、濃度を測定した。その結果、水中のセルロース濃度(固形分濃度)は、1.0質量%であった。この水分散液を121℃、20分間オートクレーブ処理し、滅菌した。
市販のクラフトパルプ(王子エフテックス株式会社製LBKP、固形分89質量%)5質量部に純水145質量部を加えて分散させた後、増幸産業株式会社製石臼式粉砕装置(マスコロイダー)を用いて、1500rpmにて9回粉砕処理を行い、パルプスラリーを作製した。前記パルプスラリーを株式会社スギノマシン社製高圧粉砕装置(スターバーストシステム)用いて、220MPaにて300回処理することにより、ナノセルロースの水分散液(PNC)を得た。得られた分散液をシャーレに測りとり、110℃にて1時間乾燥を行い、水分を除去して残渣の量を測定し、濃度を測定した。その結果、水中のセルロース濃度(固形分濃度)は、1.6質量%であった。この水分散液を121℃、20分間オートクレーブ処理し、滅菌した。
市販のキチン粉末(甲陽ケミカル株式会社製)20質量部に純水980質量部を加えて分散させた後、(株)スギノマシン製高圧粉砕装置(スターバーストシステム)を用いて、245MPaにて200回粉砕処理を行い、キチンナノファイバーの水分散液(CT)を得た。得られた分散液をシャーレに測りとり、110℃にて1時間乾燥を行い、水分を除去して残渣の量を測定し、濃度を測定した。その結果、水中のキチン濃度(固形分濃度)は、2.0質量%であった。この水分散液を121℃、20分間オートクレーブ処理し、滅菌した。
ナノファイバーの平均繊維径(D)は以下のようにして求めた。まず応研商事(株)製コロジオン支持膜を日本電子(株)製イオンクリーナ(JIC-410)で3分間親水化処理を施し、製造例1~3において作製したナノファイバー分散液(超純水にて希釈)を数滴滴下し、室温乾燥した。これを(株)日立製作所製透過型電子顕微鏡(TEM、H-8000)(10,000倍)にて加速電圧200kVで観察し、得られた画像を用いて、標本数:200~250本のナノファイバーについて一本一本の繊維径を計測し、その数平均値を平均繊維径(D)とした。
また、平均繊維長(L)は、製造例において作製したナノファイバー分散液を純水により100ppmとなるように希釈し、超音波洗浄機を用いてナノファイバーを均一に分散させた。このナノファイバー分散液を予め濃硫酸を用いて表面を親水化処理したシリコンウェハー上へキャストし、110℃にて1時間乾燥させて試料とした。得られた試料の日本電子(株)製走査型電子顕微鏡(SEM、JSM-7400F)(2,000倍)で観察した画像を用いて、標本数:150~250本のナノファイバーについて一本一本の繊維長を計測し、その数平均値を平均繊維長(L)とした。
製造例1乃至製造例3で得られたナノファイバーの平均繊維径D及び平均繊維長Lを求め、これらの値よりアスペクト比L/Dを求めた。得られた結果を表40に示す。
前述の製造例1乃至製造例3で調製したナノファイバー分散液および脱アシル化ジェランガム水溶液を用いて、下記表41に記載の培地組成物を調製した。
まず、製造例1乃至製造例3で調製したセルロースナノファイバーMNC、PNC及びキチンナノファイバーへ滅菌水を加えることで、それぞれ1%(w/v)水分散液へと希釈した。一方で、脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製:DAG)1質量部へ99体積部の滅菌水を加え、121℃、20分間オートクレーブ処理することによって溶解および滅菌させ、脱アシル化ジェランガム1%(w/v)水溶液を調製した。
前述の1%(w/v)分散液または水溶液1体積部を50mLコニカルチューブにとり、49体積部の滅菌水を加えて、均一となるまでピペッティングした。ここへ0.22μmフィルターにより滅菌ろ過した2倍濃度のDMEM(high glucose、Aldrich社製、所定量の炭酸水素ナトリウムを含む)を50体積部添加し、ピペッティングにより混合し、ナノファイバー濃度が0.01%(w/v)の培地組成物を調整した。
同様に最終濃度が0.01~0.1%(w/v)の所望の濃度となるようナノファイバー分散液または脱アシル化ジェランガム水溶液を添加した培地組成物を調製した。
κ‐カラギーナン(GENUGEL WR-80-J、三晶株式会社製:Car)(実施例5)、ローカストビーンガム(GENUGUM RL-200-J、三晶株式会社製:LBG)(比較例2)、キサンタンガム(KELTROL CG、三晶株式会社製:Xan)(比較例3)、ダイユータンガム(KELCO CRETE DG-F、三晶株式会社製:DU)(比較例4)、アルギン酸Na(ダックアルギン酸NSPM、フードケミファ社製:Alg)(比較例5)1質量部へ99質量部の滅菌水を加え、121℃、20分間オートクレーブ処理することによって、溶解および滅菌させた。
前述により調製した多糖溶液について、実施例1乃至4と同様な操作により、最終濃度が0.03、0.05、0.07、0.1%(w/v)となるよう多糖溶液を添加した培地組成物を調製した。
実施例1~5及び比較例2~5の培地組成物に、ポリスチレンビーズ(Polysciences Inc.社製、200-300μm)を添加し、ボルテックス撹拌により培地組成物中にビーズが均一に分散したのを確認した後、室温(25℃)において一日間静置し、ビーズの分散状態を目視にて確認した。培地組成物中で均一にビーズが浮遊した状態を◎、一部上清を生じた状態を○、沈降状態を×として評価した。結果を表41に示す。
とによってビーズが沈降し、細胞培養条件では浮遊作用は得られなかった。比較例2乃至比較例5ではビーズは完全に底面へ沈降した。
試験例2と同様に、実施例2、4及び5並びに比較例2の培地組成物について、低濃度領域(0.01~0.04%(w/v))における浮遊作用を詳細に評価した。ポリスチレンビーズを添加し、2日間静置後、ビーズの分散状態を目視にて確認した。浮遊分散状態を○、沈降状態を×として評価した。一部沈降/分散状態については、10mLコニカ
ルチューブ内における浮遊領域の高さに基づきビーズ浮遊率を算出した。結果を表42に示す。
実施例1~5及び比較例2~5の培地組成物の粘度を、25℃条件下で音叉振動式粘度
測定(SV-1A、A&D Company Ltd.)を用いて評価した。結果を図13に示す。この結果、本発明の培地組成物は、ナノファイバーまたは増粘性多糖の含有量が極めて少ないため、一般的な培地の粘度と比較して、顕著な粘度増加は見られないとする結果が得られた。試験例2の結果との比較から、粘度と浮遊作用との間に相関は認められなかった。
実施例1乃至5、比較例3乃至4において調製した培地組成物を予め濃硫酸を用いて表面を親水化処理したシリコンウェハー上へキャストし、110℃(比較例1のみ室温)にて1時間乾燥させた後、純水によりかけ洗いし余分な塩分等を除去した後、再度110℃1時間乾燥させた状態で試料とした。前述の試料を日本電子(株)製走査型電子顕微鏡(SEM、JSM-7400F、10,000倍)を用いて観察した。実施例1乃至4および比較例3乃至4の培地組成物の観察結果を図14乃至21へと示した。
ヒト肝癌細胞株HepG2(DSファーマバイオメディカル社製)を、10%(v/v)胎児ウシ血清を含むDMEM培地(WAKO社製)に50000個/mLとなるように懸濁し、前記懸濁液10mLをEZ SPHERE(旭硝子社製)に播種した後、CO2インキュベーター(5%CO2)内で2日間培養した。ここで得られたスフェアの懸濁液80mLを遠心処理(800rpm、5分間)してスフェアを沈降させ、上清を除くことによりスフェア懸濁液4.5mLを調製した。引き続き、実施例1乃至4および比較例1、比較例3乃至5の培地組成物を15mLコニカルチューブに10mLずつ入れ、更にHepG2細胞のスフェア懸濁液100μLを加えた。ピペッティングによりスフェアを分散させ、37℃で5日間インキュベートし、培地組成物中におけるスフェアの分散状態を目視にて観察した。培地組成物中で均一にスフェアが浮遊した状態を◎、上清を生じた状態を○、沈降状態を×として評価した。実施例1乃至5、比較例3乃至5の培地組成物の観察結果を表43および図22乃至29へ示した。
製造例1乃至製造例3で調製したセルロースナノファイバーMNC、PNC及びキチンナノファイバーへ滅菌水を加えることで、それぞれ1%(w/v)水分散液を調製した。一方で、脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製:DAG)1質量部へ99体積部の滅菌水を加え、121℃、20分間オートクレーブ処理することによって溶解および滅菌させ、1%(w/v)水溶液を調製した。前述にて調製した1%(w/v)ファイバー分散液または脱アシル化ジェランガム水溶液を用いて、終濃度が0.01%、0.03%、0.06%及び0.1%(w/v)となるように10%(v/v)胎児ウシ血清を含むDMEM培地(日水製薬社製、high-glucose)に添加し、培地組成物を調製した。
κ‐カラギーナン(GENUGEL WR-80-J、三晶株式会社製:Car)、キサンタンガム(KELTROL CG、三晶株式会社製:Xan)、ダイユータンガム(KELCO CRETE DG-F、三晶株式会社製:DU)、アルギン酸Na(ダックアルギン酸NSPM、フードケミファ社製:Alg)1質量部へ99体積部の滅菌水を加え、121℃、20分間オートクレーブ処理することによって溶解および滅菌させ、それぞれ1%(w/v)多糖水溶液を調製した。前述により調製した各多糖水溶液について、実施例5乃至8と同様な操作により、10%(v/v)胎児ウシ血清を含むDMEM培地(日水製薬社製)へ終濃度0.01%、0.03%、0.06%及び0.1%(w/v)となるように多糖水溶液を添加し、培地組成物を調製した。
ヒト乳癌細胞株MCF-7(DSファーマバイオメディカル社製)及びヒトメラノーマ細胞株A375(ATCC製)を、33333細胞/mLとなるように実施例1’乃至実施例5’および比較例3’乃至比較例5’にて調製した培地組成物に播種した後、96ウェル平底超低接着表面マイクロプレート(コーニング社製、#3474)のウェルに1ウェル当たり150μLになるように分注した。なお、陰性対照としてナノファイバーまたは多糖を含まない同上培地にMCF7細胞或いはA375細胞を懸濁したものを分注した。引き続き、本プレートをCO2インキュベーター(37℃、5%CO2)内にて最大6日間静置状態で培養した。2日間及び6日間培養後の培養液に対して、ATP試薬150μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引くことで生細胞の数を測定した。
マウス前駆脂肪細胞株3T3-L1(ATCC社製)を、10%FBS含有DMEM培地を用いて10cmポリスチレンシャーレ上に播種し、5%CO2、37℃に設定したインキュベーター内で培養した。3T3-L1細胞がコンフルエントになった状態で、培地を吸引除去し、D-PBS(和光純薬社製)でFBSを取り除き、0.25%Trypsin及び1mMEDTA含有液1ml(和光純薬社製)を上記ポリスチレンシャーレに添加した。細胞の剥離を確認した後、10体積%FBS含有DMEM培地を添加してシャーレから細胞を回収し、遠心分離管に移した。300×gで遠心分離をした後、上清を取り除いた。約100×104細胞/mLの細胞懸濁液として、1.5mLマイクロチューブに100μLの細胞懸濁液を添加し、10%(v/v)FBSを含むように予め調製しておいた実施例1乃至実施例2、実施例4乃至実施例5、比較例3および比較例5の培地組成物を100μLずつ添加し、ピペッティングすることにより細胞懸濁液を作製した。
密閉状態で室温下にて10日間静置状態で保存し、3日、10日間経過後の細胞懸濁液の一部を10%FBS含有DMEM培地で1/10希釈し、希釈した細胞懸濁液100μLにATP試薬100μL(CellTiter-GloTM Luminescent
Cell Viability Assay, Promega社製)を添加し懸濁させ、15分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引くことで生細胞の数を測定した。陰性対照は多糖を含まない培地のみのサンプルとした。
チャイニーズハムスター卵巣株CHO-K1-hIFNβ細胞(北九州高等専門学校、
川原教授より譲渡)を、10%FBS含有F12培地を用いて10cmポリスチレンシャーレ上に播種し、5%CO2、37℃に設定したインキュベーター内で培養した。CHO-K1-hIFNβ細胞がコンフルエントになった状態で、培地を吸引除去し、D-PBS(和光純薬社製)でFBSを取り除き、0.25%Trypsin及び1mMEDTA含有液1ml(和光純薬社製)を上記ポリスチレンシャーレに添加した。細胞の剥離を確認した後、10%FBS含有F12培地を添加してシャーレから細胞を回収し、遠心分離管に移した。300Xgで遠心分離をした後、上清を取り除いた。約5x106細胞/mLの細胞懸濁液として、1.5mLマイクロチューブに25μLの細胞懸濁液を添加し、10%(v/v)FBSを含むように予め調製しておいた実施例2、実施例4の培地組成物を25μLずつ添加し、ピペッティングすることにより細胞懸濁液を作製した。密閉状態で室温下にて1日間保存後の細胞懸濁液の一部を10%FBS含有F12培地で1/10希釈し、希釈した細胞懸濁液100μLにATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay,
Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引くことで生細胞の数を測定した。陰性対照は多糖を含まない培地のみのサンプルとした。
マウス前駆脂肪細胞株3T3-L1(ATCC社製)を、10%FBS含有DMEM培地を用いて10cmポリスチレンシャーレ上に播種し、5%CO2、37℃に設定したインキュベーター内で培養した。3T3-L1細胞が40%コンフルエントになった状態で、培地を吸引除去し、D-PBS(和光純薬社製)でFBSを取り除き、0.25%Trypsin及び1mMEDTA含有液1ml(和光純薬社製)を上記ポリスチレンシャーレに添加した。細胞の剥離を確認した後、10体積%FBS含有DMEM培地を添加してシャーレから細胞を回収し、遠心分離管に移した。300×gで遠心分離をした後、上清を取り除いた。約100×104細胞/mLの細胞懸濁液として、1.5mLマイクロチューブに100μLの細胞懸濁液を添加し、10%(v/v)FBSを含むように予め調製しておいた実施例2及び実施例4、比較例5の多糖類の濃度の異なる培地組成物を100μLずつ添加し、ピペッティングすることにより細胞懸濁液を作製した。
密閉状態で室温下にて8日間静置状態で保存し、0日、5日、8日間経過後の細胞懸濁液の一部を10%FBS含有DMEM培地で1/5希釈し、希釈した細胞懸濁液100μLにATP試薬100μL(CellTiter-GloTM Luminescent
Cell Viability Assay, Promega社製)を添加し懸濁させ、15分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引くことで生細胞の数を測定した。陰性対照は多糖を含まない培地のみのサンプルとした。
脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を0.3%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した。本溶液を用いて10%(v/v)胎児ウシ血清を含むEMEM培地(和光純薬社製)に終濃度0.005%(w/v)および0.015%の脱アシル化ジェランガム添加した培地組成物あるいは脱アシル化ジェランガムを含まない未添加培地組成物を調製した。引き続き、血清を除去した培地で1昼夜培養した(スタベーション処理)イヌ腎臓尿細管上皮細胞株MDCK(DSファーマバイオメディカル社製)を、100000細胞/mLとなるように上記の脱アシル化ジェランガムを添加した培地組成物に播種した後、96ウェル平底超低接着表面マイクロプレート(コーニング社製、#3474)のウェルに1ウェル当たり100μLになるように分注した。各プレートはCO2インキュベーター(37℃、5%CO2)内にて静置状態で培養し、15日間継続した。2、6、9、12、15日目の培養液に対してATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引くことで生細胞の数を測定した。
脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を0.3%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した。本溶液を用いて5%(v/v)胎児ウシ血清を含むEmedium199培地(シグマ社製)に終濃度0.005%(w/v)および0.015%の脱アシル化ジェランガム添加した培地組成物あるいは脱アシル化ジェランガムを含まない未添加培地組成物を調製した。引き続き、血清を除去した培地で1昼夜培養した(スタベーション処理)サル腎臓上皮細胞株Vero(DSファーマバイオメディカル社製)を、100000細胞/mLとなるように上記の脱アシル化ジェランガムを添加した培地組成物に播種した後、96ウェル平底超低接着表面マイクロプレート(コーニング社製、#3474)のウェルに1ウェル当たり100μLになるように分注した。各プレートはCO2インキュベーター(37℃、5%CO2)内にて静置状態で培養し、15日間継続した。2、6、9、12、15日目の培養液に対してATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引くことで生細胞の数を測定した。
製造例2で調製したセルロースナノファイバー(PNC)、キチンナノファイバー(バイオマスナノファイバー BiNFi-S(ビンフィス) 2質量%、株式会社スギノマシン)および脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製
)を1%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した。無血清培地KBM220培地(コージンバイオ社製)に終濃度0.01%(w/v), 0.03%, 0.1%のセルロースナノファイバーを添加した培地組成物、無血清培地KBM220培地に終濃度0.01%(w/v), 0.03%, 0.1%のキチンナノファイバーを添加した培地組成物、無血清培地KBM220培地(コージンバイオ社製)に終濃度0.005%(w/v), 0.015%, 0.03%, 0.06%, 0.1%の脱アシル化ジェランガム添加した培地組成物、そして上記基材を含まない未添加培地組成物を調製した。引き続き、血清を除去した培地で1昼夜培養した(スタベーション処理)イヌ腎臓尿細管上皮細胞株MDCK(DSファーマバイオメディカル社製)を、100000細胞/mLとなるように上記のそれぞれの基材を添加した培地組成物に播種した後、96ウェル平底超低接着表面マイクロプレート(コーニング社製、#3474)のウェルに1ウェル当たり100μLになるように分注した。各プレートはCO2インキュベーター(37℃、5%CO2)内にて静置状態で培養し、14日間継続した。3、7、10、14日目の培養液に対してATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引くことで生細胞の数を測定した。
製造例1で調製したセルロースナノファイバー(PNC)、キチンナノファイバー(バイオマスナノファイバー BiNFi-S(ビンフィス) 2質量%、株式会社スギノマシン)および脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を1%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した。無血清培地KBM220培地に終濃度0.0001%(w/v), 0.0003%, 0.001%, 0.003%, 0.01%, 0.02%, 0.03%のキチンナノファイバーを添加した培地組成物、無血清培地KBM220培地(コージンバイオ社製)に終濃度0.005%(w/v), 0.015%, 0.03%の脱アシル化ジェランガム添加した培地組成物、そして上記基材を含まない未添加培地組成物を調製した。引き続き、血清を除去した培地で1昼夜培養した(スタベーション処理)イヌ腎臓尿細管上皮細胞株MDCK(DSファーマバイオメディカル社製)を、100000細胞/mLとなるように上記の脱アシル化ジェランガムあるいはキチンナノファイバーを添加した培地組成物に播種した後、96ウェル平底超低接着表面マイクロプレート(コーニング社製、#3474)のウェルに1ウェル当たり100μLになるように分注した。各プレートはCO2インキュベーター(37℃、5%CO2)内にて静置状態で培養し、14日間継続した。5、9、12、15日目の培養液に対してATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay, Prom
ega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引き3点の平均値として生細胞の数を測定した。
初回培養;
製造例2で調製したセルロースナノファイバー(PNC)、キチンナノファイバー(バイオマスナノファイバー BiNFi-S(ビンフィス) 2質量%、株式会社スギノマシン)を1%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した。無血清培地KBM220培地に終濃度0.01%(w/v)のキチンナノファイバーを添加した培地組成物、無血清培地KBM220培地(コージンバイオ社製)およびキチンナノファイバーを含まない未添加培地組成物を調製した。引き続き、血清を除去した培地で1昼夜培養した(スタベーション処理)イヌ腎臓尿細管上皮細胞株MDCK(DSファーマバイオメディカル社製)を、75000細胞/mLとなるように上記のキチンナノファイバーを添加した培地組成物に播種した後、三角フラスコ125ml(コーニング
社製、#431405)に1フラスコ当たり30mLになるように分注した。フラスコはCO2インキュベーター(37℃、5%CO2)内にて静置状態で培養し、6日間継続した。0、6日目の培養液をピペットで懸濁した後に100μLを3点分注し、それぞれにATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光置を差し引くことで生細胞の数を測定した。
継代培養に対する効果を確認するために、0.01%キチンナノファイバーを含む培地でMDCK細胞を6日間培養した細胞懸濁液を用いて検討した。細胞懸濁液3mlと未添加培地組成物27mlを混合しキチンナノファイバー濃度を0.001%にした細胞懸濁液と、細胞懸濁液3mlと終濃度0.01%(w/v)のキチンナノファイバーを添加した培地組成物27mlを混合しキチンナノファイバー濃度を0.01%にした細胞懸濁液を、それぞれ三角フラスコ125mlに分注した。フラスコはCO2インキュベーター(37℃、5%CO2)内にて静置状態で培養し、14日間継続した。0、7、14日目の培養液をピペットで懸濁した後に100μLを3点ずつ分注し、それぞれにATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引き3点の平均値として生細胞の数を測定した。
製造例1で調製したセルロースナノファイバー(PNC)、キチンナノファイバー(バイオマスナノファイバー BiNFi-S(ビンフィス) 2質量%、株式会社スギノマ
シン)および脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を1%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した。無血清培地KBM220培地(コージンバイオ社製)あるいはCosmedium 012培地(コスモバイオ社製)に終濃度0.001%(w/v)、0.01%のキチンナノファイバーを添加した培地組成物、無血清培地KBM220培地あるいはCosmedium 012培地に終濃度0.015%(w/v)、 0.03%の脱アシル化ジェラ
ンガム添加した培地組成物、そして上記基材を含まない未添加培地組成物を調製した。引き続き、血清を除去した培地で1昼夜培養した(スタベーション処理)イヌ腎臓尿細管上皮細胞株MDCK(DSファーマバイオメディカル社製)を、100000細胞/mLとなるように上記の脱アシル化ジェランガムあるいはキチンナノファイバーを添加した培地組成物に播種した後、96ウェル平底超低接着表面マイクロプレート(コーニング社製、#3474)のウェルに1ウェル当たり100μLになるように分注した。各プレートはCO2インキュベーター(37℃、5%CO2)内にて静置状態で培養し、12日間継続した。4、8、12日目の培養液に対してATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引き3点の平均値として生細胞の数を測定した。
胞状態について顕微鏡観察したところ、脱アシル化ジェランガムを用いた培地条件では細胞凝集塊(スフェア)が分散しているだけであるが、キチンナノファイバーを用いた培地条件ではスフェアおよび細胞がぶどうの房状に増殖している様子が観察された。KBM220培地を用いた培養でのRLU値(ATP測定、発光強度)を表61に、Cosmedium012培地を用いた培養でのRLU値(ATP測定、発光強度)を表62に示す。4日間培養の顕微鏡観察の結果を図40に示す。
キトサンナノファイバー(バイオマスナノファイバー BiNFi-S、1質量%、株式会社スギノマシン)とキチンナノファイバー(バイオマスナノファイバー BiNFi-S(ビンフィス) 2質量%、株式会社スギノマシン)及び、参考例1と同様にして脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を1%(w/v)となるように超純水(Milli-Q水)に懸濁した後に90℃にて撹拌しながら調製した水溶液をそれぞれ121℃で20分オートクレーブ滅菌した。無血清培地KBM220培地(コージンバイオ社製)に終濃度0.001%(w/v)、0.003%、0.01%、0.03%のキトサンナノファーバーあるいはキチンナノファイバーを添加した培地組成物、無血清培地KBM220培地に終濃度0.015%(w/v)、0.03%の脱アシル化ジェランガム添加した培地組成物、そして上記基材を含まない未添加培地組成物を調製した。引き続き、血清を除去した培地で1昼夜培養した(スタベーション処理)イヌ腎臓尿細管上皮細胞株MDCK(DSファーマバイオメディカル社製)を、100000細胞/mLとなるように上記の脱アシル化ジェランガム、キトサンナノファイバーあるいはキチンナノファイバーを添加した培地組成物に播種した後、96ウェル平底超低接着表面マイクロプレート(コーニング社製、#3474)のウェルに1ウェル当たり100μLになるように分注した。各プレートはCO2インキュベーター(37℃、5%CO2)内にて静置状態で培養し、12日間継続した。7、11日目の培養液に対してATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引き3点の平均値として生細胞の数を測定した。
製造例2で調製したセルロースナノファイバー(PNC)及び、実施例5と同様にしてκ‐カラギーナン(GENUGEL WR-80-J、三晶株式会社製:Car)1質量%(w/v)水溶液を作製して使用した。10%FBS含有Williams’E培地(ライフテクノロジー社製)に終濃度0.03%(w/v)、0.1%のPNCあるいはカラギーナンを添加した培地組成物、そして上記基材を含まない未添加培地組成物を調製した。引き続き、新鮮カニクイザル初代肝細胞(株式会社イナリサーチ社製)を、2,50
0,000細胞/mLとなるように上記のPNCあるいはカラギーナンを添加した培地組成物に混合した後、細胞凍結用Cryogenic vial(サーモサイエンティフィック社製)に分注した。なお、基材を含まない同上培地にカニクイザル初代肝細胞を懸濁したものを分注した。上記の操作は2ロット実施した。引き続き、本チューブを冷蔵(約4℃)にて2日間静置状態で輸送した。2日間冷蔵条件下で輸送した後の、細胞懸濁液に対してトリパンブルー試薬(ライフテクノロジー社製)を用いて、懸濁液中の細胞生存率を測定した。
マウス前駆脂肪細胞株3T3-L1(ATCC社製)を、10%FBS含有DMEM培地を用いて10cmポリスチレンシャーレ上に播種し、5%CO2、37℃に設定したインキュベーター内で培養した。3T3-L1細胞がコンフルエントになった状態で、培地を吸引除去し、D-PBS(和光純薬社製)でFBSを取り除き、0.25%Trypsin及び1mMEDTA含有液1ml(和光純薬社製)を上記ポリスチレンシャーレに添加した。細胞の剥離を確認した後、10体積%FBS含有DMEM培地を添加してシャーレから細胞を回収し、遠心分離管に移した。300×gで遠心分離をした後、上清を取り除いた。約200×104細胞/mLの細胞懸濁液として、1.5mLマイクロチューブに150μLの細胞懸濁液を添加し、10%(v/v)FBSを含むように予め調製しておいた実施例2(PNC濃度0.06%)乃至実施例4(DAG濃度0.03%)、比較例5(Alg濃度0.03%)の培地組成物および陰性対照として10体積%FBS含有DMEM培地を150μLずつ添加し、ピペッティングすることにより細胞懸濁液(約100×104細胞/mL)を作製した。
Claims (8)
- 細胞または組織を浮遊させて培養できる培地組成物であって、カラギーナンから構成されるナノファイバーを含有することを特徴とする、培地組成物。
- 培養時の培地組成物の交換処理及び培養終了後において細胞または組織の回収が可能である請求項1に記載の培地組成物。
- 粘度が、8mPa・s以下であることを特徴とする請求項1に記載の培地組成物。
- 培地組成物中のカラギーナンの濃度が、0.001%乃至0.5%(重量/容量)である、請求項1に記載の培地組成物。
- 請求項1乃至4のいずれか1項に記載の培地組成物と、細胞又は組織とを含む、細胞または組織培養物。
- 細胞または組織が、25℃において浮遊し、37℃において、沈降する請求項5に記載の培養物。
- 請求項1乃至4のいずれか1項に記載の培地組成物中で細胞または組織を培養することを特徴とする、細胞または組織の培養方法。
- 請求項5または6に記載の培養物から細胞または組織を分離することを特徴とする、細胞または組織の回収方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023041220A JP2023063498A (ja) | 2014-01-23 | 2023-03-15 | 培地組成物 |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014010842 | 2014-01-23 | ||
JP2014010842 | 2014-01-23 | ||
JP2014123772 | 2014-06-16 | ||
JP2014123772 | 2014-06-16 | ||
JP2014174574 | 2014-08-28 | ||
JP2014174574 | 2014-08-28 | ||
JP2014217761 | 2014-10-24 | ||
JP2014217761 | 2014-10-24 | ||
JP2020126690A JP7036165B2 (ja) | 2014-01-23 | 2020-07-27 | 培地組成物 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020126690A Division JP7036165B2 (ja) | 2014-01-23 | 2020-07-27 | 培地組成物 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023041220A Division JP2023063498A (ja) | 2014-01-23 | 2023-03-15 | 培地組成物 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022066359A JP2022066359A (ja) | 2022-04-28 |
JP7248166B2 true JP7248166B2 (ja) | 2023-03-29 |
Family
ID=53681484
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015559123A Active JP6536411B2 (ja) | 2014-01-23 | 2015-01-23 | 培地組成物 |
JP2019105287A Active JP6741122B2 (ja) | 2014-01-23 | 2019-06-05 | 培地組成物 |
JP2020126690A Active JP7036165B2 (ja) | 2014-01-23 | 2020-07-27 | 培地組成物 |
JP2022031822A Active JP7248166B2 (ja) | 2014-01-23 | 2022-03-02 | 培地組成物 |
JP2023041220A Pending JP2023063498A (ja) | 2014-01-23 | 2023-03-15 | 培地組成物 |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015559123A Active JP6536411B2 (ja) | 2014-01-23 | 2015-01-23 | 培地組成物 |
JP2019105287A Active JP6741122B2 (ja) | 2014-01-23 | 2019-06-05 | 培地組成物 |
JP2020126690A Active JP7036165B2 (ja) | 2014-01-23 | 2020-07-27 | 培地組成物 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023041220A Pending JP2023063498A (ja) | 2014-01-23 | 2023-03-15 | 培地組成物 |
Country Status (11)
Country | Link |
---|---|
US (3) | US10487308B2 (ja) |
EP (1) | EP3098300B1 (ja) |
JP (5) | JP6536411B2 (ja) |
KR (4) | KR102232289B1 (ja) |
CN (2) | CN105934511B (ja) |
CA (1) | CA2937801C (ja) |
HK (1) | HK1231509A1 (ja) |
IL (1) | IL246877B (ja) |
SG (2) | SG11201606056RA (ja) |
TW (2) | TWI719697B (ja) |
WO (1) | WO2015111686A1 (ja) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108138130A (zh) | 2015-08-31 | 2018-06-08 | 爱平世股份有限公司 | 多能干细胞制造系统和生产诱导多能干细胞的方法 |
JP6849957B2 (ja) * | 2015-11-10 | 2021-03-31 | 国立大学法人京都大学 | ラミニンフラグメント含有培地を用いる細胞培養方法 |
CN105543163A (zh) * | 2016-01-30 | 2016-05-04 | 马忠仁 | 一种用于全悬浮培养mdck细胞的无血清培养基 |
CN109072181A (zh) * | 2016-03-09 | 2018-12-21 | 日产化学株式会社 | 容易回收细胞的悬浮培养用培养基组合物和细胞回收方法 |
TW201738256A (zh) * | 2016-04-04 | 2017-11-01 | 日產化學工業股份有限公司 | 蛋白質產生方法 |
WO2017199737A1 (ja) * | 2016-05-16 | 2017-11-23 | 富士フイルム株式会社 | 培養細胞の回収方法および培養細胞分散液 |
EP3460050B1 (en) * | 2016-05-19 | 2021-11-03 | FUJIFILM Corporation | Cell culturing method, culture medium, and culture medium kit |
CN106222236A (zh) * | 2016-07-27 | 2016-12-14 | 郑州点石生物技术有限公司 | 血液中微生物检测试剂及其制备方法 |
CN106011071B (zh) * | 2016-08-09 | 2019-03-01 | 海南海医药物安全性评价研究有限责任公司 | 一种原代肿瘤细胞培养组合物及其应用 |
EP3521416B1 (en) * | 2016-09-30 | 2020-07-01 | FUJIFILM Corporation | Method for evaluating a culture medium |
CN110475856B (zh) * | 2017-03-30 | 2024-05-24 | 日产化学株式会社 | 使用纳米纤维的细胞培养 |
US11252954B2 (en) | 2017-09-08 | 2022-02-22 | Nissan Chemical Corporation | Method for preserving a cell material in an unfrozen state |
JP7058410B2 (ja) | 2017-10-03 | 2022-04-22 | 国立大学法人東海国立大学機構 | 繊維長測定用プレパラートの製造方法、繊維長測定用分散液の調製方法、繊維長測定方法、繊維長測定用プレパラート、繊維長測定装置、および繊維長測定装置の制御プログラム |
EP3691738A4 (en) * | 2017-10-05 | 2021-06-16 | The Johns Hopkins University | IMPLANTABLE BIOREACTOR AND ITS MANUFACTURING AND USE PROCESSES |
JP7275474B2 (ja) * | 2018-03-07 | 2023-05-18 | 東洋製罐グループホールディングス株式会社 | 容器入り有機ナノファイバー分散体及びその製造方法 |
CN108998441A (zh) * | 2018-08-02 | 2018-12-14 | 南方医科大学深圳医院 | 一种三维肿瘤球培养基添加剂、培养基以及三维肿瘤球培养方法 |
EP3831926A4 (en) * | 2018-08-06 | 2021-10-20 | Nissan Chemical Corporation | CELL CULTURE SYSTEM AND CELL MASS PRODUCTION PROCESS USING IT |
CN112567223A (zh) * | 2018-08-17 | 2021-03-26 | 国立大学法人大阪大学 | 粒子的分配方法 |
KR20240056665A (ko) * | 2018-08-31 | 2024-04-30 | 닛산 가가쿠 가부시키가이샤 | 접착성 세포의 부유 배양용 배지 조성물 |
CN112996901A (zh) | 2018-09-11 | 2021-06-18 | 日产化学株式会社 | 分离装置及使用该分离装置对分离对象物进行分离的方法 |
CN109628377A (zh) * | 2019-01-02 | 2019-04-16 | 贵州省人民医院 | 一种小鼠原代肝细胞灌注式分离及离体培养方法 |
EP3924468A1 (en) * | 2019-02-11 | 2021-12-22 | Miltenyi Biotec B.V. & Co. KG | Generation of human pluripotent stem cell derived artificial tissue structures without three dimensional matrices |
JP7428866B2 (ja) * | 2019-06-20 | 2024-02-07 | シンフォニアテクノロジー株式会社 | 細胞回収方法及び細胞培養装置 |
EP3985101A4 (en) * | 2019-07-04 | 2022-09-14 | Nissan Chemical Corporation | METHOD FOR PRODUCING A CULTURE MEDIUM COMPOSITION FOR THE SUSPENSION CULTURE OF ADHERENT CELLS |
JP7493713B2 (ja) | 2019-10-31 | 2024-06-03 | 国立大学法人東京工業大学 | 浮遊培養用培地添加剤、培地組成物及び培養方法 |
JP7410491B2 (ja) * | 2019-10-31 | 2024-01-10 | 国立大学法人東京工業大学 | 浮遊培養用培地添加剤、培地組成物及び培養方法 |
WO2021146252A1 (en) * | 2020-01-13 | 2021-07-22 | The Regents Of The University Of California | Methods of preserving tissues for transplantation |
KR102347035B1 (ko) * | 2020-03-04 | 2022-01-04 | 주식회사 바이나리 | 전해수를 포함하는 생체조직 투명화 키트, 이를 이용한 생체조직의 투명화 방법 및 3차원 이미지화를 위한 면역염색 방법 |
WO2021177344A1 (ja) * | 2020-03-05 | 2021-09-10 | 積水メディカル株式会社 | 細胞含有液用保存容器及び保存液 |
CN111567403B (zh) * | 2020-06-22 | 2022-12-23 | 河南省农业科学院 | 一种含甲壳素的植物组织培养用添加剂、含添加剂的培养基或栽培基质及其制备方法 |
CN111661933B (zh) * | 2020-06-30 | 2022-08-16 | 武汉合缘绿色生物股份有限公司 | 一种用于调节水体营养及预防病害的生物制剂及其制备方法 |
JP1681965S (ja) | 2020-07-27 | 2021-03-29 | ||
WO2022045201A1 (ja) * | 2020-08-27 | 2022-03-03 | 株式会社カネカ | 接着性細胞を組織から効率的に製造する方法 |
CN112538513B (zh) * | 2020-12-11 | 2022-12-06 | 湖南美柏生物医药有限公司 | 细胞外基质mb生物蛋白及其制备试剂盒与方法 |
CN112980689A (zh) * | 2021-02-08 | 2021-06-18 | 湖南美柏生物医药有限公司 | 一种贴壁细胞的培养装置、2.5d蜂箱式培养体系及方法 |
JP1699777S (ja) | 2021-03-05 | 2021-11-15 | ||
JPWO2022210659A1 (ja) * | 2021-03-31 | 2022-10-06 | ||
EP4353817A1 (en) * | 2021-06-11 | 2024-04-17 | Kyoto University | Low temperature-managed cell aggregates and cell aggregate maintaining method |
CN113564104A (zh) * | 2021-07-02 | 2021-10-29 | 深圳韦拓生物科技有限公司 | 一种人卵母细胞体外成熟液及其制备方法和应用 |
WO2023063417A1 (ja) * | 2021-10-15 | 2023-04-20 | 日産化学株式会社 | 撹拌を伴う接着性細胞の浮遊培養方法 |
WO2023063418A1 (ja) * | 2021-10-15 | 2023-04-20 | 日産化学株式会社 | 接着性細胞のスフェアのサイズ及び/又は個数の制御方法 |
JPWO2023176931A1 (ja) * | 2022-03-16 | 2023-09-21 | ||
CN115074322B (zh) * | 2022-07-01 | 2024-01-26 | 江南大学 | 一种高效获取多种生物活性功能因子的鼻黏膜外胚层间充质干细胞三维培养方法 |
WO2024030482A1 (en) * | 2022-08-02 | 2024-02-08 | Lundquist Institute For Biomedical Innovation At Harbor-Ucla Medical Center | Preparation and use of functional human tissues |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006109367A1 (ja) | 2005-04-05 | 2006-10-19 | Obihiro University Of Agriculture And Veterinary Medicine | 細胞遊離法、細胞遊離液、細胞培養法、細胞培養液、細胞液、細胞液製剤、細胞定着法及び細胞定着液 |
JP2007319074A (ja) | 2006-05-31 | 2007-12-13 | Kyushu Univ | ナノファイバーを含む新規スキャフォールドおよびその用途 |
JP2013541956A (ja) | 2010-10-27 | 2013-11-21 | ユー ピー エム キュンメネ コーポレーション | 植物由来の細胞培養材料 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62171680A (ja) | 1986-01-25 | 1987-07-28 | Nitta Zerachin Kk | 動物細胞培養法 |
JPH07100029B2 (ja) | 1987-02-26 | 1995-11-01 | 雪印乳業株式会社 | 付着依存性動物正常細胞の包埋培養法 |
JPH0823893A (ja) | 1994-07-14 | 1996-01-30 | Sanei Gen F F I Inc | 粒状食品入りゾル状食品の製造法 |
JP3553858B2 (ja) | 1999-08-25 | 2004-08-11 | 東洋紡績株式会社 | 血管網類似構造体を有する細胞培養用モジュール |
US6872311B2 (en) * | 2002-01-31 | 2005-03-29 | Koslow Technologies Corporation | Nanofiber filter media |
JP2004236553A (ja) | 2003-02-05 | 2004-08-26 | Hitachi Ltd | マイクロキャリア並びにこれを使用した細胞培養装置及び細胞培養方法 |
JP4439221B2 (ja) | 2003-08-14 | 2010-03-24 | メビオール株式会社 | 熱可逆ハイドロゲル形成性組成物 |
JP2005270891A (ja) | 2004-03-26 | 2005-10-06 | Tetsuo Kondo | 多糖類の湿式粉砕方法 |
JP4919464B2 (ja) | 2006-03-02 | 2012-04-18 | 国立大学法人大阪大学 | 三次元組織の製造方法およびそれに用いる細胞外マトリックスの製造方法。 |
US8679809B2 (en) * | 2006-05-19 | 2014-03-25 | The University Of Hong Kong | Cell-matrix microspheres, methods for preparation and applications |
WO2008127256A1 (en) * | 2006-06-01 | 2008-10-23 | Massachusetts Institute Of Technology | Control of cells and cell multipotentiality in three dimensional matrices |
JP5171146B2 (ja) | 2007-07-27 | 2013-03-27 | 学校法人 関西大学 | 温度応答性を有する生分解性ポリマー及びその製造方法 |
EP3095470A1 (en) * | 2008-02-07 | 2016-11-23 | Shahar Cohen | Compartmental extract compositions for tissue engineering |
BRPI0920956A2 (pt) | 2008-11-20 | 2015-08-18 | Centocor Ortho Biotech Inc | Cultura de células-tronco pluripotentes em microveículos |
JP5232976B2 (ja) | 2009-02-18 | 2013-07-10 | 愛知県 | バイオマス粉砕方法及びバイオマス粉砕装置並びに糖類製造方法 |
CN101603064B (zh) * | 2009-05-27 | 2012-07-18 | 上海交通大学 | 一种由卫矛醇制备d-塔格糖以及l-塔格糖的方法 |
WO2011026498A1 (en) * | 2009-09-01 | 2011-03-10 | Medovent Gmbh | Chitosan tissue dressing |
ES2897598T3 (es) * | 2009-11-27 | 2022-03-01 | Stempeutics Res Pvt Ltd | Métodos de preparación de células madre mesenquimales, composiciones y kit de las mismas |
JP5889523B2 (ja) | 2010-09-21 | 2016-03-22 | 国立大学法人大阪大学 | スフェロイド作製装置およびスフェロイド作製方法 |
JP5846550B2 (ja) * | 2011-05-02 | 2016-01-20 | 国立研究開発法人物質・材料研究機構 | 短繊維足場材料、短繊維−細胞複合凝集塊作製方法及び短繊維−細胞複合凝集塊 |
KR102039494B1 (ko) * | 2011-12-22 | 2019-11-01 | 라이프 테크놀로지스 코포레이션 | 세포 배양 배지 및 방법 |
WO2013147264A1 (ja) | 2012-03-30 | 2013-10-03 | 味の素株式会社 | 硫酸化化合物を含む幹細胞増殖用培地 |
SG11201504219QA (en) * | 2012-12-11 | 2015-06-29 | Pall Technology Uk Ltd | Recipient for cell cultivation |
-
2015
- 2015-01-23 US US15/113,762 patent/US10487308B2/en active Active
- 2015-01-23 KR KR1020167022919A patent/KR102232289B1/ko active IP Right Grant
- 2015-01-23 KR KR1020227003406A patent/KR102411750B1/ko active IP Right Grant
- 2015-01-23 KR KR1020217008352A patent/KR102359148B1/ko active IP Right Grant
- 2015-01-23 JP JP2015559123A patent/JP6536411B2/ja active Active
- 2015-01-23 EP EP15740159.7A patent/EP3098300B1/en active Active
- 2015-01-23 CN CN201580005644.2A patent/CN105934511B/zh active Active
- 2015-01-23 SG SG11201606056RA patent/SG11201606056RA/en unknown
- 2015-01-23 TW TW108139728A patent/TWI719697B/zh active
- 2015-01-23 SG SG10201806217UA patent/SG10201806217UA/en unknown
- 2015-01-23 KR KR1020227020583A patent/KR102539240B1/ko active IP Right Grant
- 2015-01-23 TW TW104102279A patent/TWI675101B/zh active
- 2015-01-23 CN CN202011601891.8A patent/CN112662611A/zh active Pending
- 2015-01-23 CA CA2937801A patent/CA2937801C/en active Active
- 2015-01-23 WO PCT/JP2015/051787 patent/WO2015111686A1/ja active Application Filing
-
2016
- 2016-07-21 IL IL246877A patent/IL246877B/en unknown
-
2017
- 2017-05-22 HK HK17105192.6A patent/HK1231509A1/zh unknown
-
2019
- 2019-06-05 JP JP2019105287A patent/JP6741122B2/ja active Active
- 2019-10-24 US US16/662,944 patent/US20200095542A1/en not_active Abandoned
-
2020
- 2020-07-27 JP JP2020126690A patent/JP7036165B2/ja active Active
-
2022
- 2022-03-02 JP JP2022031822A patent/JP7248166B2/ja active Active
-
2023
- 2023-03-15 JP JP2023041220A patent/JP2023063498A/ja active Pending
- 2023-08-08 US US18/446,136 patent/US20230383245A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006109367A1 (ja) | 2005-04-05 | 2006-10-19 | Obihiro University Of Agriculture And Veterinary Medicine | 細胞遊離法、細胞遊離液、細胞培養法、細胞培養液、細胞液、細胞液製剤、細胞定着法及び細胞定着液 |
JP2007319074A (ja) | 2006-05-31 | 2007-12-13 | Kyushu Univ | ナノファイバーを含む新規スキャフォールドおよびその用途 |
JP2013541956A (ja) | 2010-10-27 | 2013-11-21 | ユー ピー エム キュンメネ コーポレーション | 植物由来の細胞培養材料 |
Non-Patent Citations (6)
Title |
---|
Biomaterials, 2013, Vol.34, pp.4404-4417 |
Biotechnol. Lett., 2012, Vol.34, pp.795-803 |
HASSANZADEH, P., et al.,Chitin nanofiber micropatterned flexible substrates for tissue engineering,Journal of Materials Chemistry B,2013年09月14日,Vol. 1, No. 34,pp.4217-4224 |
HUSSAIN, A., et al.,Functional 3-D Cardiac Co-Culture Model Using Bioactive Chitosan Nanofiber Scaffolds,Biotechnology and Bioengineering,2012年10月05日,Vol. 110, No. 2,pp. 637-647 |
J. Appl. Polym. Sci., 2013, Vol.130, pp.3374-3383 |
J. Membr. Sci., 2014.01.15, Vol.450, pp.224-234 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7248166B2 (ja) | 培地組成物 | |
JP7113466B2 (ja) | 培地組成物及び当該組成物を用いた細胞又は組織の培養方法 | |
JP6668756B2 (ja) | 培地組成物の製造方法 | |
US10370696B2 (en) | Method for cell recovery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220325 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220325 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230227 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7248166 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |