JP6877696B2 - 化合物、樹脂、組成物、レジストパターン形成方法、及び、回路パターン形成方法 - Google Patents

化合物、樹脂、組成物、レジストパターン形成方法、及び、回路パターン形成方法 Download PDF

Info

Publication number
JP6877696B2
JP6877696B2 JP2017558330A JP2017558330A JP6877696B2 JP 6877696 B2 JP6877696 B2 JP 6877696B2 JP 2017558330 A JP2017558330 A JP 2017558330A JP 2017558330 A JP2017558330 A JP 2017558330A JP 6877696 B2 JP6877696 B2 JP 6877696B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
acid
formula
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017558330A
Other languages
English (en)
Other versions
JPWO2017111165A1 (ja
Inventor
匠 樋田
匠 樋田
佐藤 隆
隆 佐藤
越後 雅敏
雅敏 越後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of JPWO2017111165A1 publication Critical patent/JPWO2017111165A1/ja
Application granted granted Critical
Publication of JP6877696B2 publication Critical patent/JP6877696B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/14Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with at least one hydroxy group on a condensed ring system containing two rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/02Condensation polymers of aldehydes or ketones with phenols only of ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/16Condensation polymers of aldehydes or ketones with phenols only of ketones with phenols
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/34Imagewise removal by selective transfer, e.g. peeling away
    • G03F7/343Lamination or delamination methods or apparatus for photolitographic photosensitive material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials For Photolithography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Pyrane Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、特定の構造を有する化合物、樹脂及びこれらを含有する組成物に関する。また、該組成物を用いるパターン形成方法(レジストパターン形成方法、及び、回路パターン形成方法)に関する。
半導体デバイスの製造において、フォトレジスト材料を用いたリソグラフィーによる微細加工が行われているが、近年、LSIの高集積化と高速度化に伴い、パターンルールによる更なる微細化が求められている。また、レジストパターン形成の際に使用するリソグラフィー用の光源は、KrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)へと短波長化されており、極端紫外光(EUV、13.5nm)の導入も見込まれている。
しかしながら、従来の高分子系レジスト材料を用いるリソグラフィーでは、その分子量が1万〜10万程度と大きく、分子量分布も広いため、パターン表面にラフネスが生じパターン寸法の制御が困難となり、微細化に限界がある。
そこで、これまでに、より解像性の高いレジストパターンを与えるために、種々の低分子量レジスト材料が提案されている。低分子量レジスト材料は分子サイズが小さいことから、解像性が高く、ラフネスが小さいレジストパターンを与えることが期待される。
現在、このような低分子系レジスト材料として、様々なものが知られている。例えば、低分子量多核ポリフェノール化合物を主成分として用いるアルカリ現像型のネガ型感放射線性組成物(例えば、特許文献1及び特許文献2参照)が提案されており、高耐熱性を有する低分子量レジスト材料の候補として、低分子量環状ポリフェノール化合物を主成分として用いるアルカリ現像型のネガ型感放射線性組成物(例えば、特許文献3及び非特許文献1参照)も提案されている。また、レジスト材料のベース化合物として、ポリフェノール化合物が、低分子量ながら高耐熱性を付与でき、レジストパターンの解像性やラフネスの改善に有用であることが知られている(例えば、非特許文献2参照)。
本発明者らは、エッチング耐性に優れるとともに、溶媒に可溶で湿式プロセスが適用可能な材料として、特定の構造の化合物及び有機溶媒を含有するレジスト組成物(特許文献4を参照。)を提案している。
また、レジストパターンの微細化が進むと、解像度の問題若しくは現像後にレジストパターンが倒れるといった問題が生じてくるため、レジストの薄膜化が望まれるようになる。ところが、単にレジストの薄膜化を行うと、基板加工に十分なレジストパターンの膜厚を得ることが難しくなる。そのため、レジストパターンだけではなく、レジストと加工する半導体基板との間にレジスト下層膜を作製し、このレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要になってきた。
現在、このようなプロセス用のレジスト下層膜として、種々のものが知られている。例えば、従来のエッチング速度の速いレジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、所定のエネルギーが印加されることにより末端基が脱離してスルホン酸残基を生じる置換基を少なくとも有する樹脂成分と溶媒とを含有する多層レジストプロセス用下層膜形成材料が提案されている(特許文献5参照)。また、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、特定の繰り返し単位を有する重合体を含むレジスト下層膜材料が提案されている(特許文献6参照)。さらに、半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、アセナフチレン類の繰り返し単位と、置換又は非置換のヒドロキシ基を有する繰り返し単位とを共重合してなる重合体を含むレジスト下層膜材料が提案されている(特許文献7参照)。
一方、この種のレジスト下層膜において高いエッチング耐性を持つ材料としては、メタンガス、エタンガス、アセチレンガスなどを原料に用いたCVDによって形成されたアモルファスカーボン下層膜がよく知られている。しかしながら、プロセス上の観点から、スピンコート法やスクリーン印刷等の湿式プロセスでレジスト下層膜を形成できるレジスト下層膜材料が求められている。
また、本発明者らは、エッチング耐性に優れるとともに、耐熱性が高く、溶媒に可溶で湿式プロセスが適用可能な材料として、特定の構造の化合物及び有機溶媒を含有するリソグラフィー用下層膜形成組成物(特許文献8を参照。)を提案している。
なお、3層プロセスにおけるレジスト下層膜の形成において用いられる中間層の形成方法に関しては、例えば、シリコン窒化膜の形成方法(特許文献9参照)や、シリコン窒化膜のCVD形成方法(特許文献10参照)が知られている。また、3層プロセス用の中間層材料としては、シルセスキオキサンベースの珪素化合物を含む材料が知られている(特許文献11及び12参照。)。
さらに光学部品形成組成物として、様々なものが提案されている。例えば、アクリル系樹脂が挙げられる(特許文献13〜14参照)。
特開2005−326838号公報 特開2008−145539号公報 特開2009−173623号公報 国際公開第2013/024778号 特開2004−177668号公報 特開2004−271838号公報 特開2005−250434号公報 国際公開第2013/024779号 特開2002−334869号公報 国際公開第2004/066377号 特開2007−226170号公報 特開2007−226204号公報 特開2010−138393号公報 特開2015−174877号公報
T.Nakayama,M.Nomura,K.Haga,M.Ueda:Bull.Chem.Soc.Jpn.,71,2979(1998) 岡崎信次、他22名「フォトレジスト材料開発の新展開」株式会社シーエムシー出版、2009年9月、p.211−259
上述したように、従来数多くのレジスト用途向けリソグラフィー用膜形成組成物及び下層膜用途向けリソグラフィー用膜形成組成物が提案されているが、スピンコート法やスクリーン印刷等の湿式プロセスが適用可能な高い溶媒溶解性を有するのみならず、耐熱性及びエッチング耐性を高い次元で両立させたものはなく、新たな材料の開発が求められている。
また、従来数多くの光学部材向け組成物が提案されているが、耐熱性、透明性及び屈折率を高い次元で両立させたものはなく、新たな材料の開発が求められている。
本発明は、上述の課題を解決すべくなされたものであり、その目的は、湿式プロセスが適用可能であり、耐熱性、溶解性及びエッチング耐性に優れるフォトレジスト及びフォトレジスト用下層膜を形成するために有用な、化合物、樹脂、組成物(例えば、リソグラフィー用膜形成又は光学部品形成に用いられる組成物)及び該組成物を用いたパターン形成方法(レジストパターン形成方法、及び、回路パターン形成方法)を提供することにある。
本発明者らは、前記課題を解決するために鋭意検討を重ねた結果、特定構造を有する化合物又は樹脂を用いることにより、前記課題を解決できることを見出し、本発明を完成するに到った。
すなわち、本発明は、次のとおりである。
[1]下記式(0)で表される、化合物。
Figure 0006877696
(式(0)中、Rは、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基又は炭素数6〜30のアリール基であり、
は、炭素数1〜60のN価の基又は単結合であり、
は、各々独立して、置換基を有していてもよい炭素原子数1〜30のアルキル基、置換基を有していてもよい炭素原子数6〜40のアリール基、置換基を有していてもよい炭素原子数2〜30のアルケニル基、置換基を有していてもよい炭素数1〜30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、前記アルキル基、前記アルケニル基及び前記アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、Rの少なくとも1つは水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
Xは、酸素原子、硫黄原子又は無架橋であることを表し、
mは、各々独立して0〜9の整数であり、ここで、mの少なくとも1つは1〜9の整数であり、
Nは、1〜4の整数であり、ここで、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよく、
rは、各々独立して0〜2の整数である。)
[2]前記式(0)で表される化合物が下記式(1)で表される化合物である、前記[1]に記載の化合物。
Figure 0006877696
(式(1)中、Rは、前記Rと同義であり、
は、炭素数1〜60のn価の基又は単結合であり、
〜Rは、各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、R〜Rの少なくとも1つは水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
及びmは、各々独立して、0〜8の整数であり、
及びmは、各々独立して、0〜9の整数であり、
但し、m、m、m及びmは同時に0となることはなく、
nは前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
〜pは、前記rと同義である。)
[3]前記式(0)で表される化合物が下記式(2)で表される化合物である、前記[1]に記載の化合物。
Figure 0006877696
(式(2)中、R0Aは、前記Rと同義であり、
1Aは、炭素数1〜60のn価の基又は単結合であり、
2Aは、各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、ハロゲン原子、シアノ基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、R2Aの少なくとも1つは水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
は、前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
は、酸素原子、硫黄原子又は無架橋であることを表し、
2Aは、各々独立して、0〜7の整数であり、但し、少なくとも1つのm2Aは1〜7の整数であり、
は、各々独立して、0又は1である。)
[4]前記式(1)で表される化合物が下記式(1−1)で表される化合物である、前記[2]に記載の化合物。
Figure 0006877696
(式(1−1)中、R、R、R、R、n、p〜p、m及びmは、前記と同義であり、
〜Rは、各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子、チオール基であり、
10〜R11は、各々独立して、水素原子又は酸解離性基であり、
及びmは、各々独立して、0〜7の整数であり、
但し、m、m、m及びmは同時に0となることはない。)
[5]前記式(1−1)で表される化合物が下記式(1−2)で表される化合物である、前記[4]に記載の化合物。
Figure 0006877696
(式(1−2)中、R、R、R、R、R10、R11、n、p〜p、m及びmは、前記と同義であり、
〜Rは、前記R〜Rと同義であり、
12〜R13は、前記R10〜R11と同義であり、
及びmは、各々独立して、0〜8の整数であり、
但し、m、m、m及びmは同時に0となることはない。)
[6]前記式(2)で表される化合物が下記式(2−1)で表される化合物である、前記[3]に記載の化合物。
Figure 0006877696
(式(2−1)中、R0A、R1A、n、q及びX、は、前記式(2)で説明したものと同義である。
3Aは、各々独立して、ハロゲン原子、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、又は炭素数2〜30のアルケニル基であり、
4Aは、各々独立して、水素原子又は酸解離性基であり、
6Aは、各々独立して、0〜5の整数である。)
[7]前記[1]に記載の化合物をモノマーとして得られる、樹脂。
[8]下記式(3)で表される構造を有する、前記[7]に記載の樹脂。
Figure 0006877696
(式(3)中、Lは、炭素数1〜30の直鎖状若しくは分岐状のアルキレン基又は単結合であり、
は、前記Rと同義であり、
は、炭素数1〜60のn価の基又は単結合であり、
〜Rは、各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、R〜Rの少なくとも1つは水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
及びmは、各々独立して、0〜8の整数であり、
及びmは、各々独立して、0〜9の整数であり、
但し、m、m、m及びmは同時に0となることはなく、
nは前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
〜pは、前記rと同義である。)
[9]下記式(4)で表される構造を有する、前記[7]に記載の樹脂。
Figure 0006877696
(式(4)中、Lは、炭素数1〜30の直鎖状若しくは分岐状のアルキレン基又は単結合であり、
0Aは、前記Rと同義であり、
1Aは、炭素数1〜60のn価の基又は単結合であり、
2Aは、各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、ハロゲン原子、シアノ基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、R2Aの少なくとも1つは水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
は、前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
は、酸素原子、硫黄原子又は無架橋であることを表し、
2Aは、各々独立して、0〜7の整数であり、但し、少なくとも1つのm2Aは1〜6の整数であり、
は、各々独立して、0又は1である。)
[10]前記[1]〜前記[6]のいずれかに記載の化合物及び前記[7]〜前記[9]のいずれかに記載の樹脂からなる群より選ばれる1種以上を含有する、組成物。
[11]溶媒をさらに含有する、前記[10]に記載の組成物。
[12]酸発生剤をさらに含有する、前記[10]又は前記[11]に記載の組成物。
[13]酸架橋剤をさらに含有する、前記[10]〜前記[12]のいずれかに記載の組成物。
[14]リソグラフィー用膜形成に用いられる、前記[10]〜前記[13]のいずれかに記載の組成物。
[15]光学部品形成に用いられる、前記[10]〜前記[13]のいずれかに記載の組成物。
[16]基板上に、前記[14]に記載の組成物を用いてフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。
[17]基板上に、前記[14]に記載の組成物を用いて下層膜を形成し、前記下層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。
[18]基板上に、前記[14]に記載の組成物を用いて下層膜を形成し、前記下層膜上に、レジスト中間層膜材料を用いて中間層膜を形成し、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成し、その後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることにより基板にパターンを形成する工程を含む、回路パターン形成方法。
本発明によれば、湿式プロセスが適用可能であり、耐熱性、溶解性及びエッチング耐性に優れるフォトレジスト及びフォトレジスト用下層膜を形成するために有用な、化合物、樹脂、組成物(例えば、リソグラフィー用膜形成又は光学部品形成に用いられる組成物)及び該組成物を用いたパターン形成方法(レジストパターン形成方法、及び、回路パターン形成方法)を提供することができる。
後述するように、本実施形態の化合物及び樹脂は、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であり、本実施形態のレジスト組成物は良好なレジストパターン形状を与える。
また、本実施形態の化合物及び樹脂は湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるフォトレジスト下層膜を形成するために有用な化合物、樹脂及びリソグラフィー用膜形成組成物を実現することができる。そして、このリソグラフィー用膜形成組成物は、耐熱性が高く、溶媒溶解性も高い、特定構造を有する化合物又は樹脂を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れたレジスト及び下層膜を形成することができる。加えて、下層膜を形成した場合、レジスト層との密着性にも優れるので、優れたレジストパターンを形成することができる。さらには、屈折率が高く、また低温から高温までの広範囲の熱処理によって着色が抑制されることから、各種光学形成組成物としても有用である。
以下、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
本実施形態の化合物は、下記式(0)で表される。
Figure 0006877696
(式(0)中、Rは、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基又は炭素数6〜30のアリール基であり、
は、炭素数1〜60のN価の基又は単結合であり、
は、各々独立して、置換基を有していてもよい炭素原子数1〜30のアルキル基、置換基を有していてもよい炭素原子数6〜40のアリール基、置換基を有していてもよい炭素原子数2〜30のアルケニル基、置換基を有していてもよい炭素数1〜30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、前記アルキル基、前記アルケニル基及び前記アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、Rの少なくとも1つは水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
Xは、酸素原子、硫黄原子又は無架橋であることを表し、
mは、各々独立して0〜9の整数であり、ここで、mの少なくとも1つは1〜9の整数であり、
Nは、1〜4の整数であり、ここで、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよく、
rは、各々独立して0〜2の整数である。)
前記「置換基を有していてもよい炭素数6〜30のアルキル基」は、特に限定されるものではないが、無置換のメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、シクロプロピル基、シクロブチル基等であってもよいし、ハロゲン原子、ニトロ基、アミノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基等の置換基を有するメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、シクロプロピル基、シクロブチル基等であってもよい。
前記「置換基を有していてもよい炭素数6〜40のアリール基」は、特に限定されるものではないが、無置換のフェニル基、ナフタレン基、ビフェニル基等であってもよいし、ハロゲン原子、ニトロ基、アミノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基等の置換基を有するフェニル基、ナフタレン基、ビフェニル基等であってもよい。
前記「置換基を有していてもよい炭素数2〜30のアルケニル基」は、特に限定されるものではないが、無置換のプロペニル基、ブテニル基等であってもよいし、ハロゲン原子、ニトロ基、アミノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基等の置換基を有するプロペニル基、ブテニル基等であってもよい。
前記「置換基を有していてもよい炭素数1〜30のアルコキシ基」は、特に限定されるものではないが、無置換のメトキシ基、エトキシ基、プロポキシ基、シクロヘキシロキシ基、フェノキシ基、ナフタレンオキシ基ビフェニル基等であってもよいし、ハロゲン原子、ニトロ基、アミノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基等の置換基を有するメトキシ基、エトキシ基、プロポキシ基、シクロヘキシロキシ基、フェノキシ基、ナフタレンオキシ基等であってもよい。
なお、後述するように「酸解離性基」とは、酸の存在下で開裂して、アルカリ可溶性基等の溶解性を変化させる官能基を生じる特性基をいう。アルカリ可溶性基としては、フェノール性水酸基、カルボキシル基、スルホン酸基、ヘキサフルオロイソプロパノール基などが挙げられ、フェノール性水酸基及びカルボキシル基が好ましく、フェノール性水酸基が特に好ましい。
また、式(0)で表される化合物は特に限定されるものではないが、着色性や化合物の分解性の抑制の観点から、下記(a)〜(e)の各々、又はこれらの組み合わせが好ましい。
(a):式(0)中、[ ]内の構造式におけるrが同じであること、即ち、[ ]内の構造式における2つのアリール構造で示される部位が同じ構造であることが好ましい。
(b):式(0)中、[ ]内の構造式において各アリール構造で示される部位に結合されるRは、同一のものであることが好ましく、各アリール構造で示される部位における結合部位が同一であることが更に好ましい。
(c):式(0)において、Nが1〜2であることが好ましく、1であることが更に好ましい。
(d):式(0)において、Rは、炭素数1〜30の直鎖状のアルキル基、又はフェニル基が好ましく、メチル基又はフェニル基であることが更に好ましい。
(e):式(0)において、Rは、炭素数1〜60のN価の基であることが好ましい。
前記式(0)で表される化合物は、架橋のし易さと有機溶媒への溶解性の観点から、下記式(0−1)で表される化合物が好ましい。
Figure 0006877696
(式(0−1)中、RY'は、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基又は炭素数6〜30のアリール基であり、
は、炭素数1〜60のN価の基又は単結合であり、
T'は、各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、置換基を有していてもよい炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
ここで、RT'の少なくとも1つは水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
Xは、酸素原子、硫黄原子又は無架橋であることを表し、
mは、各々独立して0〜9の整数であり、ここで、mの少なくとも1つは1〜9の整数であり、
Nは、1〜4の整数であり、ここで、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよく、
rは、各々独立して0〜2の整数である。)
以下、式(1)で表される化合物及び式(2)で表される化合物を中心として式(0)で表される化合物及び式(0−1)で表される化合物について説明する。但し、式(0)で表される化合物及び式(0−1)で表される化合物は下記説明に限定されるものではない。
[式(1)で表される化合物]
本実施形態の化合物は、下記式(1)で表されることが好ましい。本実施形態の化合物は、下記構造を有するため、さらに耐熱性が高く、溶媒溶解性も高い。
Figure 0006877696
前記(1)式中、Rは、前記Rと同義であり、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基又は炭素数6〜30のアリール基である。Rが、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基であることから、本化合物の酸化分解を抑制し着色を抑え、耐熱性が高く、溶媒溶解性を向上させることができる。
は炭素数1〜60のn価の基又は単結合であり、このRを介して各々の芳香環が結合している。
〜Rは、各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基である。但し、式(1)中、R〜Rの少なくとも1つは、水酸基又は水酸基の水素原子が酸解離性基で置換された基である。
及びmは、各々独立して、0〜8の整数であり、m及びmは、各々独立して、0〜9の整数である。但し、m、m、m及びmは同時に0となることはない。
nは1〜4の整数である。
〜pは各々独立して0〜2の整数である。なお、p〜pが0の場合には式(1)でナフタレン構造で示される部位は、ベンゼン構造を示し、p〜pが1の場合にはナフタレン構造を示し、p〜pが2の場合にはアントラセン又はフェナントレン等の三環構造を示す。
nは前記Nと同義であり、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよい。
なお、前記n価の基とは、n=1のときには、炭素数1〜60のアルキル基、n=2のときには、炭素数1〜60のアルキレン基、n=3のときには、炭素数2〜60のアルカンプロパイル基、n=4のときには、炭素数3〜60のアルカンテトライル基のことを示す。前記n価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基を有するもの等が挙げられる。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、前記n価の基は、炭素数6〜60の芳香族基を有していてもよい。
また、前記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子もしくは炭素数6〜60の芳香族基を有していてもよい。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
前記式(1)で表される化合物は、比較的に低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、分子中に4級炭素を有しており、結晶性が抑制され、リソグラフィー用膜製造に使用できるリソグラフィー用膜形成組成物として好適に使用される。
また、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であり、本実施形態のリソグラフィー用レジスト形成組成物は良好なレジストパターン形状を与える。
さらに、式(1)で表される化合物は、比較的に低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させつつ、膜の平坦性を高めることが容易であり、その結果、これを用いたリソグラフィー用下層膜形成組成物は埋め込み及び平坦化特性が比較的に有利に高められ得る。また、比較的に高い炭素濃度を有する化合物であることから、高いエッチング耐性をも付与される。
式(1)で表される化合物は、屈折率が高く、また低温から高温までの広範囲の熱処理によって着色が抑制されることから、各種光学部品形成組成物としても有用である。光学部品は、フィルム状、シート状で使われるほか、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路として有用である。
前記式(1)で表される化合物は、架橋のし易さと有機溶媒への溶解性の観点から、下記式(1−1)で表される化合物が好ましい。
Figure 0006877696
式(1−1)中、
、R、R、R、n、p〜p、m及びmは、前記と同義であり、
〜Rは、各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子、チオール基であり、
10〜R11は、各々独立して、水素原子又は酸解離性基であり、
及びmは、各々独立して0〜7の整数であり、
但し、m、m、m及びmは同時に0となることはない。
式(1−1)の化合物をアルカリ現像ポジ型レジスト用又は有機現像ネガ型レジスト用リソグラフィー用膜形成組成物として使用する際は、R10〜R11の少なくとも1つは酸解離性基である。一方、式(1−1)の化合物をアルカリ現像ネガ型レジスト用リソグラフィー用膜形成組成物、下層膜用リソグラフィー用膜形成組成物又は光学部品形成組成物として使用する際は、R10〜R11の少なくとも1つは水素原子である。
また、前記式(1−1)で表される化合物は、更なる架橋のし易さと有機溶媒への溶解性の観点から、下記式(1−2)で表される化合物が好ましい。
Figure 0006877696
式(1−2)中、
、R、R、R、R10、R11、n、p〜p、m及びmは、前記と同義であり、
〜Rは、前記R〜Rと同義であり、
12〜R13は、前記R10〜R11と同義であり、
及びmは、各々独立して、0〜8の整数である。但し、m、m、m及びmは同時に0となることはない。
また、原料の供給性の観点から、下記式(1a)で表される化合物であることが好ましい。
Figure 0006877696
前記式(1a)中、R〜R、m〜m及びnは、前記式(1)で説明したものと同義である。
前記式(1a)で表される化合物は、有機溶媒への溶解性の観点から、下記式(1b)で表される化合物であることがより好ましい。
Figure 0006877696
前記式(1b)中、R、R、R、R、R10、R11、m、m、nは前記式(1)で説明したものと同義であり、R、R、R10、R11、mは前記式(1−1)で説明したものと同義である。
前記式(a)で表される化合物は、反応性の観点から、下記式(1b')で表される化合物であることがさらに好ましい。
Figure 0006877696
前記式(1b)中、R、R、R、R、m、m、nは前記式(1)で説明したものと同義であり、R、R、R10、R11、m、mは前記式(1−1)で説明したものと同義である。
前記式(1b)で表される化合物は、有機溶媒への溶解性の観点から、下記式(1c)で表される化合物であることがさらに好ましい。
Figure 0006877696
前記式(1c)中、R、R、R〜R13、m〜m、nは前記式(1−2)で説明したものと同義である。
前記式(1b')で表される化合物は、反応性の観点から、下記式(1c')で表される化合物であることがさらに好ましい。
Figure 0006877696
前記式(1c')中、R、R、R〜R13、m〜m、nは前記式(1−2)で説明したものと同義である。
前記式(1)で表される化合物は、さらなる有機溶媒への溶解性の観点から、下記式(1d−1)〜(1d−2)で表される化合物であることが特に好ましい。
Figure 0006877696
前記式(1d−1)中、R、R、nは前記と同義であり、R4'及びR5'は各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子、チオール基であり、R10'及びR11'は水素原子又は酸解離性基である。m4'及びm5'は、0〜8の整数であり、m10'及びm11'は1〜9の整数であり、m4'+m10'及びm4'+m11'は各々独立して1〜9の整数である。
は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基が挙げられる。
4'及びR5'は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
前記R、R4'、R5'の各例示は、異性体を含んでいる。例えば、ブチル基には、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基を含んでいる。
Figure 0006877696
(1d−2)
前記式(1d−2)中、R、n、R4'、R5'、m4'、m5'、m10'、m11'は前記と同義であり、R1'は、炭素数1〜60の基である。
式(1)で表される化合物としては、以下の式で表される化合物を用いることができる。
Figure 0006877696
前記化合物中、R10〜R13は前記式(1−2)で説明したものと同義であり、R14は各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、又は炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子、チオール基であり、m14は0〜5の整数であり、m14'は0〜4の整数であり、m14''は0〜3の整数である。
14は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
前記R14の各例示は、異性体を含んでいる。例えば、ブチル基には、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基を含んでいる。
式(1)で表される化合物としては、更に以下の式で表される化合物を用いることができる。
Figure 0006877696
Figure 0006877696
前記化学式中、R10〜R13は前記式(1−2)で説明したものと同義であり、R15は、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、又は炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子、チオール基である。
15は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
前記R15の各例示は、異性体を含んでいる。例えば、ブチル基には、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基を含んでいる。
式(1)で表される化合物としては、更に以下の式で表される化合物を用いることができる。
Figure 0006877696
Figure 0006877696
前記化合物中、R10〜R13は前記式(1−2)で説明したものと同義であり、R16は、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキレン基、炭素数6〜30の2価のアリール基、又は炭素数2〜30の2価のアルケニル基である。
16は、例えば、メチレン基、エチレン基、プロペン基、ブテン基、ペンテン基、ヘキセン基、ヘプテン基、オクテン基、ノネン基、デセン基、ウンデセン基、ドデセン基、トリアコンテン基、シクロプロペン基、シクロブテン基、シクロペンテン基、シクロヘキセン基、シクロヘプテン基、シクロオクテン基、シクロノネン基、シクロデセン基、シクロウンデセン基、シクロドデセン基、シクロトリアコンテン基、2価のノルボルニル基、2価のアダマンチル基、2価のフェニル基、2価のナフチル基、2価のアントラセン基、2価のピレン基、2価のビフェニル基、2価のヘプタセン基、2価のビニル基、2価のアリル基、2価のトリアコンテニル基が挙げられる。
前記R16の各例示は、異性体を含んでいる。例えば、ブチル基には、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基を含んでいる。
式(1)で表される化合物としては、更に以下の式で表される化合物を用いることができる。
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
前記式化合物中、R10〜R13は前記式(1−2)で説明したものと同義であり、R14は各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、又は炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子、チオール基であり、m14は0〜5の整数である。
14は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
前記R14の各例示は、異性体を含んでいる。例えば、ブチル基には、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基を含んでいる。
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
前記式化合物中、R10〜R13は前記式(1−2)で説明したものと同義である。
式(1)で表される化合物としては、更に以下の式で表される化合物を用いることができる。
Figure 0006877696
原料の入手性の観点から、更に好ましくは以下に表される化合物である。
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
前記化合物中、R10〜R13は前記式(1−2)で説明したものと同義である。
[式(1)で表される化合物の製造方法]
本実施形態で使用される式(1)で表される化合物は、公知の手法を応用して適宜合成することができ、その合成手法は特に限定されない。例えば、(i)ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させる方法、(ii)ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するアルデヒド類とを酸触媒下にて重縮合し、得られたトリアリールメタン、又はキサンテン類のメチン部位を置換する方法がある。
また(i)ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させる方法としては(a)有機溶媒中で行う方法、(b)水溶媒中で行う方法、(c)無溶媒で行う方法などがある。
(i)(a)有機溶媒中で、ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させる方法としては、常圧下、ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させることによって、前記式(1)で表される化合物を得ることができる。また、その化合物の少なくとも1つのフェノール性水酸基に公知の方法により酸解離性基を導入できる。また、必要に応じて、加圧下で行うこともできる。
(i)(b)水溶媒中、又は(c)無溶媒で、ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させる方法としては、ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するケトン類とを酸及びメルカプト触媒下にて重縮合反応させることによって、前記式(1)で表される化合物を得ることができる。また、その化合物の少なくとも1つのフェノール性水酸基に公知の方法により酸解離性基を導入できる。また、本反応は、減圧下、常圧、加圧下で行うことができる。
前記ビフェノール類としては、例えば、ビフェノール、メチルビフェノール、メトキシビフェノール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、ビフェノールを用いることが原料の安定供給性の点でより好ましい。
前記ビナフトール類としては、例えば、ビナフトール、メチルビナフトール、メトキシビナフトール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、ビナフトールを用いることが、炭素原子濃度を上げ、耐熱性を向上させる点でより好ましい。
前記ビアントラセンオール類としては、例えば、ビアントラセンオール、メチルビアントラセンオール、メトキシビアントラセンオール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、ビアントラセンオールを用いることが、炭素原子濃度を上げ、耐熱性を向上させる点でより好ましい。
前記ケトン類としては、例えば、アセトン、メチルエチルケトン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることが、高い耐熱性を与える点で好ましく、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることが、エッチング耐性が高く、より好ましい。
ケトン類として、芳香環を有するケトンを用いることが、高い耐熱性及び高いエッチング耐性を兼備し好ましい。
前記反応に用いる酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸や、シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらのなかでも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることが好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01〜100質量部であることが好ましい。
前記反応に用いるメルカプト触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、アルキルチオール類やメルカプトカルボン酸類が広く知られており、例えばアルキルチオールとしては炭素数1〜12のアルキルメルカプタン、好ましくはn−オクチルメルカプタン、n−デシルメルカプタン、n−ドデシルメルカプタンが挙げられ、メルカプトカルボン酸としては2−メルカプトプロピオン酸、3−メルカプトプロピオン酸が上げられるが、これらに特に限定されない。これらの中でも、製造上の観点から、n−オクチルメルカプタン、n−デシルメルカプタン、n−ドデシルメルカプタンが好ましい。なお、メルカプト触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。また、メルカプト触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01〜100質量部であることが好ましい。
前記反応の際には、反応溶媒を用いてもよい。反応溶媒としては、用いるケトン類と、ビフェノール類、ビナフトール類又はビアントラセンジオールとの反応が進行するものであれば、特に限定されず、公知のものの中から適宜選択して用いることができる。例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル又はこれらの混合溶媒等が例示される。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
また、これらの溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0〜2000質量部の範囲であることが好ましい。さらに、前記反応における反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10〜200℃の範囲である。
本実施形態の式(1)で表される化合物を得るためには、反応温度は高い方が好ましく、具体的には60〜200℃の範囲が好ましい。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、ビフェノール類、ビナフトール類又はビアントラセンジオール、ケトン類、触媒を一括で仕込む方法や、ビフェノール類、ビナフトール類又はビアントラセンジオールやケトン類を触媒存在下で滴下していく方法がある。重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130〜230℃ にまで上昇させ、1〜50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物である化合物を得ることができる。
好ましい反応条件としては、ケトン類1モルに対し、ビフェノール類、ビナフトール類又はビアントラセンジオールを1.0モル〜過剰量、及び酸触媒を0.001〜1モル使用し、常圧で、50〜150℃で20分〜100時間程度反応させることにより進行する。
反応終了後、公知の方法により目的物を単離することができる。例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離させ、得られた固形物を濾過し、乾燥させた後、カラムクロマトにより、副生成物と分離精製し、溶媒留去、濾過、乾燥を行って目的物である前記式(1)で表される化合物を得ることができる。
(ii)ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するアルデヒド類とを酸触媒下にて重縮合し、得られたトリアリールメタン、又はキサンテン類のメチン部位を置換する方法としては、ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するアルデヒド類とを酸触媒下にて重縮合反応させることによって、前記式(1)で表される化合物のRを水素原子に置換した化合物(A)を得る。保護基導入剤によって化合物(A)の水酸基を保護基に置換した化合物(B)としたのち、前記式(1)で表される化合物のR部分に相当する水素原子を、塩基触媒下にてアルキル化剤と反応させることによって、前記式(1)で表される化合物のR部分に相当するアルキル基を導入する。更にそののちに、前記化合物(B)で水酸基を置換した保護基を脱保護することによって前記式(1)が得られる。また、その化合物の少なくとも1つのフェノール性水酸基に公知の方法により酸解離性基を導入できる。また、必要に応じて、加圧下で行うこともできる。前記アルキル化剤としては、公知のものから適宜選択して用いることができ、特に限定されない。例えば、塩化アルキル、臭化アルキル、ヨウ化アルキルなどが挙げられる。
前記製造方法において、化合物(B)の前記式(1)で表される化合物のR部分に相当する水素原子を、前記式(1)で表される化合物のR部分に相当するアルキル基を導入する方法としては、前記製造方法の塩基触媒下にてアルキル化剤と反応させる方法にかえて、化合物(B)にハロゲン化剤を反応させて、前記式(1)で表される化合物のR部分に相当する水素原子をハロゲン原子に置換したのちに、アルキル化剤と反応させることにより、前記式(1)を得ることもできる。アルキル化剤としては、公知のものから適宜選択して用いることができ、特に限定されない。例えば、グリニャール試薬、アルキルリチウムなどが挙げられる。
前記ビフェノール類としては、例えば、ビフェノール、メチルビフェノール、メトキシビフェノール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、ビフェノールを用いることが原料の安定供給性の点でより好ましい。
前記ビナフトール類としては、例えば、ビナフトール、メチルビナフトール、メトキシビナフトール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、ビナフトールを用いることが、炭素原子濃度を上げ、耐熱性を向上させる点でより好ましい。
前記ビアントラセンオール類としては、例えば、ビアントラセンオール、メチルビアントラセンオール、メトキシビアントラセンオール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、ビアントラセンオールを用いることが、炭素原子濃度を上げ、耐熱性を向上させる点でより好ましい。
前記アルデヒド類としては、例えば、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。
ポリフェノール化合物の少なくとも1つのフェノール性水酸基に酸解離性基を導入する方法は公知である。例えば、以下のようにして、前記化合物の少なくとも1つのフェノール性水酸基に酸解離性基を導入することができる。酸解離性基を導入するための化合物は、公知の方法で合成もしくは容易に入手でき、例えば、酸クロライド、酸無水物、ジカーボネートなどの活性カルボン酸誘導体化合物、アルキルハライド、ビニルアルキルエーテル、ジヒドロピラン、ハロカルボン酸アルキルエステルなどが挙げられるが特に限定はされない。
例えば、アセトン、テトラヒドロフラン(THF)、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に前記化合物を溶解又は懸濁させる。続いて、エチルビニルエーテル等のビニルアルキルエーテル又はジヒドロピランを加え、ピリジニウム p−トルエンスルホナート等の酸触媒の存在下、常圧で、20〜60℃、6〜72時間反応させる。反応液をアルカリ化合物で中和し、蒸留水に加え白色固体を析出させた後、分離した白色固体を蒸留水で洗浄し、乾燥することにより、水酸基の水素原子が酸解離性基に置換された化合物を得ることができる。
また、例えば、アセトン、THF、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に、水酸基を有する前記化合物を溶解又は懸濁させる。続いて、エチルクロロメチルエーテル等のアルキルハライド又はブロモ酢酸メチルアダマンチル等のハロカルボン酸アルキルエステルを加え、炭酸カリウム等のアルカリ触媒の存在下、常圧で、20〜110℃、6〜72時間反応させる。反応液を塩酸等の酸で中和し、蒸留水に加え白色固体を析出させた後、分離した白色固体を蒸留水で洗浄し、乾燥することにより、水酸基の水素原子が酸解離性基に置換された化合物を得ることができる。
なお、酸解離性基を導入するタイミングについては、ビナフトール類とケトン類との縮合反応後のみならず、縮合反応の前段階でもよい。また、後述する樹脂の製造を行ったのちに行ってもよい。
本実施形態において、酸解離性基とは、酸の存在下で開裂して、アルカリ可溶性基等の溶解性を変化させる官能基を生じる特性基をいう。アルカリ可溶性基としては、フェノール性水酸基、カルボキシル基、スルホン酸基、ヘキサフルオロイソプロパノール基などが挙げられ、フェノール性水酸基及びカルボキシル基が好ましく、フェノール性水酸基が特に好ましい。前記酸解離性基は、更に高感度・高解像度なパターン形成を可能にするために、酸の存在下で連鎖的に開裂反応を起こす性質を有することが好ましい。
[式(1)で表される化合物をモノマーとして得られる樹脂]
前記式(1)で表される化合物は、リソグラフィー用膜形成組成物として、そのまま使用することができる。また、前記式(1)で表される化合物をモノマーとして得られる樹脂としても使用することができる。例えば、前記式(1)で表される化合物と架橋反応性のある化合物とを反応させて得られる樹脂としても使用することができる。
前記式(1)で表される化合物をモノマーとして得られる樹脂としては、例えば、以下の式(3)に表される構造を有するものが挙げられる。すなわち、本実施形態のリソグラフィー用膜形成組成物は、下記式(3)に表される構造を有する樹脂を含有するものであってもよい。
Figure 0006877696
式(3)中、Lは、炭素数1〜30の直鎖状若しくは分岐状のアルキレン基又は単結合である。R、R、R〜R、m及びm、m及びm、p〜p、nは前記式(1)におけるものと同義であり、但し、m、m、m及びmは同時に0となることはなく、R〜Rの少なくとも1つは水酸基又は水酸基の水素原子が酸解離性基で置換された基である。
[式(1)で表される化合物をモノマーとして得られる樹脂の製造方法]
本実施形態の樹脂は、前記式(1)で表される化合物を架橋反応性のある化合物と反応させることにより得られる。架橋反応性のある化合物としては、前記式(1)で表される化合物をオリゴマー化又はポリマー化し得るものである限り、公知のものを特に制限なく使用することができる。その具体例としては、例えば、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート、不飽和炭化水素基含有化合物等が挙げられるが、これらに特に限定されない。
前記式(1)で表される構造を有する樹脂の具体例としては、例えば、前記式(1)で表される化合物を架橋反応性のある化合物であるアルデヒド及び/又はケトンとの縮合反応等によってノボラック化した樹脂が挙げられる。
ここで、前記式(1)で表される化合物をノボラック化する際に用いるアルデヒドとしては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。ケトンとしては、例えばアセトン、メチルエチルケトン、シクロブタノン、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらの中でも、ホルムアルデヒドがより好ましい。なお、これらのアルデヒド及び/又はケトン類は、1種を単独で又は2種以上を組み合わせて用いることができる。また、前記アルデヒド及び/又はケトン類の使用量は、特に限定されないが、前記式(1)で表される化合物1モルに対して、0.2〜5モルが好ましく、より好ましくは0.5〜2モルである。
前記式(1)で表される化合物とアルデヒド及び/又はケトンとの縮合反応において、触媒を用いることもできる。ここで使用する酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸や、シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらのなかでも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸が好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。
また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01〜100質量部であることが好ましい。但し、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4−ビニルシクロヘキセン、ノルボルナジエン、5−ビニルノルボルナ−2−エン、α−ピネン、β−ピネン、リモネンなどの非共役二重結合を有する化合物との共重合反応の場合は、必ずしもアルデヒド類は必要ない。
前記式(1)で表される化合物とアルデヒド及び/又はケトンとの縮合反応において、反応溶媒を用いることもできる。この重縮合における反応溶媒としては、公知のものの中から適宜選択して用いることができ、特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒等が例示される。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
また、これらの溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0〜2000質量部の範囲であることが好ましい。さらに、反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10〜200℃の範囲である。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、前記式(1)で表される化合物、アルデヒド及び/又はケトン類、触媒を一括で仕込む方法や、前記式(1)で表される化合物やアルデヒド及び/又はケトン類を触媒存在下で滴下していく方法がある。
重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130〜230℃ にまで上昇させ、1〜50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物であるノボラック化した樹脂を得ることができる。
ここで、前記式(3)で表される構造を有する樹脂は、前記式(1)で表される化合物の単独重合体であってもよいが、他のフェノール類との共重合体であってもよい。ここで共重合可能なフェノール類としては、例えば、フェノール、クレゾール、ジメチルフェノール、トリメチルフェノール、ブチルフェノール、フェニルフェノール、ジフェニルフェノール、ナフチルフェノール、レゾルシノール、メチルレゾルシノール、カテコール、ブチルカテコール、メトキシフェノール、メトキシフェノール、プロピルフェノール、ピロガロール、チモール等が挙げるが、これらに特に限定されない。
また、前記式(3)で表される構造を有する樹脂は、上述した他のフェノール類以外に、重合可能なモノマーと共重合させたものであってもよい。かかる共重合モノマーとしては、例えば、ナフトール、メチルナフトール、メトキシナフトール、ジヒドロキシナフタレン、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4−ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルナエン、ピネン、リモネン等が挙げられるが、これらに特に限定されない。なお、前記式(2)で表される構造を有する樹脂は、前記式(1)で表される化合物と上述したフェノール類との2元以上の(例えば、2〜4元系)共重合体であっても、前記式(1)で表される化合物と上述した共重合モノマーとの2元以上(例えば、2〜4元系)共重合体であっても、前記式(1)で表される化合物と上述したフェノール類と上述した共重合モノマーとの3元以上の(例えば、3〜4元系)共重合体であっても構わない。
なお、前記式(3)で表される構造を有する樹脂の分子量は、特に限定されないが、ポリスチレン換算の重量平均分子量(Mw)が500〜30,000であることが好ましく、より好ましくは750〜20,000である。また、架橋効率を高めるとともにベーク中の揮発成分を抑制する観点から、前記式(3)で表される構造を有する樹脂は、分散度(重量平均分子量Mw/数平均分子量Mn)が1.2〜7の範囲内のものが好ましい。なお、前記Mnは、後述する実施例に記載の方法により求めることができる。
前記式(3)で表される構造を有する樹脂は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、これら化合物及び/又は樹脂は、1−メトキシ−2−プロパノール(PGME)及び/又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、当該溶媒に対する溶解度が10質量%以上であることが好ましい。ここで、PGME及び/又はPGMEAに対する溶解度は、「樹脂の質量÷(樹脂の質量+溶媒の質量)×100(質量%)」と定義される。例えば、前記樹脂10gがPGMEA90gに対して溶解する場合は、前記樹脂のPGMEAに対する溶解度は、「10質量%以上」となり、溶解しない場合は、「10質量%未満」となる。
[式(2)で表される化合物]
本実施形態の化合物は、下記式(2)で表されることが好ましい。本実施形態の化合物は、下記構造を有するため、さらに耐熱性が高く、溶媒溶解性も高い。
Figure 0006877696
式(2)中、R0Aは、前記Rと同義であり、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基又は炭素数6〜30のアリール基である。
1Aは、炭素数1〜60のn価の基又は単結合であり、
2Aは、各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、ハロゲン原子、シアノ基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、同一のナフタレン環又はベンゼン環において同一であっても異なっていてもよい。但し、式(2)中、R2Aの少なくとも1つは水酸基又は水酸基の水素原子が酸解離性基で置換された基である。
は1〜4の整数であり、ここで、式(2)中、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよい。
は、各々独立して、酸素原子、硫黄原子又は無架橋であることを表す。ここで、Xが酸素原子又は硫黄原子である場合、高い耐熱性を発現する傾向にあるため好ましく、酸素原子であることがより好ましい。Xは、溶解性の観点からは、無架橋であることが好ましい。
2Aは、各々独立して、0〜6の整数である。但し、少なくとも1つのm2Aは1〜6の整数である。
は、各々独立して、0又は1である。なお、qが0の場合には式(2)でナフタレン構造で示される部位は、ベンゼン構造を示し、qが1の場合にはナフタレン構造を示す。
なお、前記n価の基とは、n=1のときには、炭素数1〜60のアルキル基、n=2のときには、炭素数1〜30のアルキレン基、n=3のときには、炭素数2〜60のアルカンプロパイル基、n=4のときには、炭素数3〜60のアルカンテトライル基のことを示す。前記n価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基を有するもの等が挙げられる。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、前記n価の基は、炭素数6〜60の芳香族基を有していてもよい。
また、前記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子もしくは炭素数6〜60の芳香族基を有していてもよい。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
また、前記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子もしくは炭素数6〜30の芳香族基を有していてもよい。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
前記式(2)で表される化合物は、比較的に低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、分子中に4級炭素を有しており、結晶性が抑制され、リソグラフィー用膜製造に使用できるリソグラフィー用膜形成組成物として好適に使用される。
また、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であり、本実施形態のリソグラフィー用レジスト形成組成物は良好なレジストパターン形状を与える。
さらに、比較的に低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させつつ、膜の平坦性を高めることが容易であり、その結果、これを用いたリソグラフィー用下層膜形成組成物は埋め込み及び平坦化特性が比較的に有利に高められ得る。また、比較的に高い炭素濃度を有する化合物であることから、高いエッチング耐性をも付与される。
屈折率が高く、また低温から高温までの広範囲の熱処理によって着色が抑制されることから、各種光学形成組成物としても有用である。光学部品は、フィルム状、シート状で使われるほか、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路として有用である。
前記式(2)で表される化合物は、架橋のし易さと有機溶媒への溶解性の観点から、下記式(2−1)で表される化合物が好ましい。
Figure 0006877696
式(2−1)中、R0A、R1A、n及びq及びXは、前記式(2)で説明したものと同義である。
3Aは、各々独立して、ハロゲン原子、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、又は炭素数2〜30のアルケニル基であり、同一のナフタレン環又はベンゼン環において同一であっても異なっていてもよい。
4Aは、各々独立して、水素原子又は酸解離性基である。
6Aは、各々独立して、0〜5の整数である。
前記式(2−1)で表される化合物をアルカリ現像ポジ型レジスト用又は有機現像ネガ型レジスト用リソグラフィー用膜形成組成物として使用する際は、R4Aの少なくとも1つは酸解離性基である。一方、式(2−1)で表される化合物をアルカリ現像ネガ型レジスト用リソグラフィー用膜形成組成物、下層膜用リソグラフィー用膜形成組成物又は光学部品形成組成物として使用する際は、R4Aの少なくとも1つは水素原子である。
また、原料の供給性の観点から、下記式(2a)で表される化合物であることが好ましい。
Figure 0006877696
前記式(2a)中、X、R0A〜R2A、m2A及びnは、前記式(2)で説明したものと同義である。
また、有機溶媒への溶解性の観点から、下記式(2b)で表される化合物であることがより好ましい。
Figure 0006877696
前記式(2b)中、X、R0A、R1A、R3A、R4A、m6A及びnは、前記式(2−1)で説明したものと同義である。
また、有機溶媒への溶解性の観点から、下記式(2c)で表される化合物であることがさらに好ましい。
Figure 0006877696
前記式(2c)中、X、R0A、R1A、R3A、R4A、m6A及びnは、前記式(2−1)で説明したものと同義である。
前記式(2)で表される化合物は、さらなる有機溶媒への溶解性の観点から、下記式(2d−1)〜(2d−2)で表される化合物であることが特に好ましい。
Figure 0006877696
前記式(2d−1)中、R0A、R1A、n、q、Xは前記と同義であり、R3A'は各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子であり、R4A'は水素原子又は酸解離性基である。m3A'は、0〜6の整数であり、m4A'は1〜7の整数であり、m3A'+m4A'は各々独立して1〜7の整数である。
0Aは、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基が挙げられる。
3A'は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
前記R0A、R3A'の各例示は、異性体を含んでいる。例えば、ブチル基には、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基を含んでいる。
Figure 0006877696
前記式(2d−2)中、R0A、R3A'、R4A'、m3A'、m4A'、q、Xは前記と同義であり、R1A'は、炭素数1〜60の基である。
前記式(2)で表される化合物は、原料入手性の観点から以下の構造が好ましい。
Figure 0006877696
Figure 0006877696
Figure 0006877696
前記化合物中、R0A、R1A'10〜R13は前記と同義である。
前記化合物は、キサンテン骨格を有する方が耐熱性の観点から好ましい。
式(2)で表される化合物としては、エッチング耐性の観点から以下の構造が好ましい。
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
前記化合物中、R0A、R1A'10〜R13は前記と同義である。
前記化合物は、ジベンゾキサンテン骨格を有する方が耐熱性の観点から好ましい。
式(2)で表される化合物としては、例えば以下の構造が挙げられる。
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
前記化合物は、キサンテン骨格を有する方が耐熱性の観点から好ましい。
さらに式(2)で表される化合物は、エッチング耐性の観点から以下の構造が好ましい。
Figure 0006877696
Figure 0006877696
Figure 0006877696
前記化合物中、R10〜R13は前記式(1−2)で説明したものと同義であり、R14は各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、又は炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子、チオール基であり、m14'は0〜4の整数である。
14は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
前記R14の各例示は、異性体を含んでいる。例えば、ブチル基には、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基を含んでいる。
式(2)で表される化合物としては、更に以下の構造が挙げられる。
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
前記化合物中、R10〜R13は前記式(1−2)で説明したものと同義であり、R15は、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、又は炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子、チオール基である。
15は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
前記R15の各例示は、異性体を含んでいる。例えば、ブチル基には、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基を含んでいる。
式(2)で表される化合物としては、更に以下の構造が挙げられる。
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
前記化合物中、R10〜R13は前記式(1−2)で説明したものと同義であり、R16は、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキレン基、炭素数6〜30の2価のアリール基、又は炭素数2〜30の2価のアルケニル基である。
16は、例えば、メチレン基、エチレン基、プロペン基、ブテン基、ペンテン基、ヘキセン基、ヘプテン基、オクテン基、ノネン基、デセン基、ウンデセン基、ドデセン基、トリアコンテン基、シクロプロペン基、シクロブテン基、シクロペンテン基、シクロヘキセン基、シクロヘプテン基、シクロオクテン基、シクロノネン基、シクロデセン基、シクロウンデセン基、シクロドデセン基、シクロトリアコンテン基、2価のノルボニル基、2価のアダマンチル基、2価のフェニル基、2価のナフチル基、2価のアントラセン基、2価のヘプタセン基、2価のビニル基、2価のアリル基、2価のトリアコンテニル基が挙げられる。
前記R16の各例示は、異性体を含んでいる。例えば、ブチル基には、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基を含んでいる。
式(2)で表される化合物としては、更に以下の構造が挙げられる。
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
前記化合物中、R10〜R13は前記式(1−2)で説明したものと同義であり、R14は各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、又は炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子、チオール基であり、m14'は0〜4の整数である。
14は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
前記R14の各例示は、異性体を含んでいる。例えば、ブチル基には、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基を含んでいる。
式(2)で表される化合物としては、更に以下の構造が挙げられる。
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
前記化合物中、R10〜R13は前記式(1−2)で説明したものと同義であり、R14は各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、又は炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子、チオール基であり、m14は0〜5の整数である。
14は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
前記R14の各例示は、異性体を含んでいる。例えば、ブチル基には、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基を含んでいる。
式(2)で表される化合物としては、更に以下の構造が挙げられる。
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
前記化合物中、R10〜R13は前記式(1−2)で説明したものと同義である。
式(2)で表される化合物としては、例えば以下の構造も挙げられる。
Figure 0006877696
前記化合物は、ジベンゾキサンテン骨格を有する方が耐熱性の観点から好ましい。
式(2)で表される化合物としては、原料の入手性の観点から、更に好ましくは以下に表される化合物である。
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
前記化合物中、R10〜R13は前記式(1−2)で説明したものと同義である。
前記化合物は、ジベンゾキサンテン骨格を有する方が耐熱性の観点から好ましい。
前記式(2)で表されない、たとえば以下に表される化合物は、感放射線性がなく、例えば組成物の溶解性制御剤として用いられる。
Figure 0006877696
[式(2)で表される化合物の製造方法]
本実施形態で使用される式(2)で表される化合物は、公知の手法を応用して適宜合成することができ、その合成手法は特に限定されない。例えば、(i)フェノール類、ナフトール類又はアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させる方法、(ii)フェノール類、ナフトール類又はアントラセンオールと、対応するアルデヒド類とを酸触媒下にて重縮合し、得られたトリアリールメタン、又はキサンテン類のメチン部位を置換する方法がある。
また(i)フェノール類、ナフトール類又はアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させる方法としては(a)有機溶媒中で行う方法、(b)水溶媒中で行う方法、(c)無溶媒で行う方法などがある。
(i)(a)有機溶媒中で、フェノール類、ナフトール類又はアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させる方法としては、常圧下、フェノール類、ナフトール類又はアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させることによって、前記式(2)で表される化合物を得ることができる。また、必要に応じて、加圧下で行うこともできる。またその化合物の少なくとも1つのフェノール性水酸基に公知の方法により酸解離性基を導入できる。
(i)(b)水溶媒中、又は(c)無溶媒で、フェノール類、ナフトール類又はアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させる方法としては、フェノール類、ナフトール類又はアントラセンオールと、対応するケトン類とを酸及びメルカプト触媒下にて重縮合反応させることによって、前記式(2)で表される化合物を得ることができる。また、その化合物の少なくとも1つのフェノール性水酸基に公知の方法により酸解離性基を導入できる。また、本反応は、減圧下、常圧、加圧下で行うことができる。
前記ナフトール類としては、特に限定されず、例えば、ナフトール、メチルナフトール、メトキシナフトール、ナフタレンジオール等が挙げられ、ナフタレンジオールを用いることがキサンテン構造を容易に作ることができる点でより好ましい。
前記フェノール類としては、特に限定されず、例えば、フェノール、メチルフェノール、メトキシベンゼン、カテコール、レゾルシノール、ハイドロキノン、トリメチルハイドロキノン等が挙げられる。
前記アントラセンオール類としては、例えば、アントラセンオール、メチルアントラセンオール、メトキシアントラセンオール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、アントラセンオールを用いることが、炭素原子濃度を上げ、耐熱性を向上させる点でより好ましい。
前記ケトン類としては、例えば、アセトン、メチルエチルケトンアセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることが、高い耐熱性を与える点で好ましく、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることが、エッチング耐性が高く、より好ましい。
ケトン類として、芳香環を有するケトンを用いることが、高い耐熱性及び高いエッチング耐性を兼備し好ましい。
前記酸触媒は、特に限定されず、周知の無機酸、有機酸より適宜選択することができる。例えば、塩酸、硫酸、リン酸、臭化水素酸、ふっ酸等の無機酸;シュウ酸、蟻酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸;あるいはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸が挙げられる。入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることが好ましい。また酸触媒については、1種類又は2種類以上を用いることができる。また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01〜100質量部であることが好ましい。
前記反応に用いるメルカプト触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、アルキルチオール類やメルカプトカルボン酸類が広く知られており、例えばアルキルチオールとしては炭素数1〜12のアルキルメルカプタン、好ましくはn−オクチルメルカプタン、n−デシルメルカプタン、n−ドデシルメルカプタンが挙げられ、メルカプトカルボン酸としては2−メルカプトプロピオン酸、3−メルカプトプロピオン酸が上げられるが、これらに特に限定されない。これらの中でも、製造上の観点から、n−オクチルメルカプタン、n−デシルメルカプタン、n−ドデシルメルカプタンが好ましい。なお、メルカプト触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。また、メルカプト触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01〜100質量部であることが好ましい。
前記式(2)で表される化合物を製造する際、反応溶媒を用いてもよい。反応溶媒としては、用いるケトン類とナフトール類等との反応が進行すれば特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒を用いることができる。前記溶媒の量は、特に限定されず、例えば、反応原料100質量部に対して0〜2000質量部の範囲である。
前記ポリフェノール化合物を製造する際、反応温度は、特に限定されず、反応原料の反応性に応じて適宜選択することができるが、10〜200℃の範囲であることが好ましい。本実施形態の式(2)で表される化合物を選択性良く合成するには、温度が低い方が、効果が高く10〜60℃の範囲がより好ましい。
前記式(2)で表される化合物の製造方法は、特に限定されないが、例えば、ナフトール類等、ケトン類、触媒を一括で仕込む方法や、触媒存在下ナフトール類やケトン類を滴下していく方法がある。重縮合反応終了後、系内に存在する未反応原料、触媒等を除去するために、反応釜の温度を130〜230℃ にまで上昇させ、1〜50mmHg程度で揮発分を除去することもできる。
前記式(2)で表される化合物を製造する際の原料の量は、特に限定されないが、例えば、ケトン類1モルに対し、ナフトール類等を2モル〜過剰量、及び酸触媒を0.001〜1モル使用し、常圧で、20〜60℃で20分〜100時間程度反応させることにより進行する。
前記式(2)で表される化合物を製造する際、前記反応終了後、公知の方法により目的物を単離する。目的物の単離方法は、特に限定されず、例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離、得られた固形物を濾過し、乾燥させた後、カラムクロマトにより、副生成物と分離精製し、溶媒留去、濾過、乾燥を行って目的化合物を得る方法が挙げられる。
(ii)フェノール類、ナフトール類又はアントラセンオールと、対応するアルデヒド類とを酸触媒下にて重縮合し、得られたトリアリールメタン、又はキサンテン類のメチン部位を置換する方法としては、フェノール類、ナフトール類又はアントラセンオールと、対応するアルデヒド類とを酸触媒下にて重縮合反応させることによって、前記式(2)で表される化合物のRを水素原子に置換した化合物(A')を得る。保護基導入剤によって化合物(A')の水酸基を保護基に置換した化合物(B')としたのち、前記式(2)で表される化合物のR部分に相当する水素原子を、塩基触媒下にてアルキル化剤と反応させることによって、前記式(2)で表される化合物のR部分に相当するアルキル基を導入する。更にそののちに、前記化合物(B')で水酸基を置換した保護基を脱保護することによって前記式(2)が得られる。また、その化合物の少なくとも1つのフェノール性水酸基に公知の方法により酸解離性基を導入できる。また、必要に応じて、加圧下で行うこともできる。前記アルキル化剤としては、公知のものから適宜選択して用いることができ、特に限定されない。例えば、塩化アルキル、臭化アルキル、ヨウ化アルキルなどが挙げられる。
前記製造方法において、化合物(B')の前記式(2)で表される化合物のRY部分に相当する水素原子を、前記式(2)で表される化合物のR部分に相当するアルキル基を導入する方法としては、前記製造方法の塩基触媒下にてアルキル化剤と反応させる方法にかえて、化合物(B')にハロゲン化剤を反応させて、前記式(2)で表される化合物のR部分に相当する水素原子をハロゲン原子に置換したのちに、アルキル化剤と反応させることにより、前記式(1)を得ることもできる。アルキル化剤としては、公知のものから適宜選択して用いることができ、特に限定されない。例えば、グリニャール試薬、アルキルリチウムなどが挙げられる。
前記フェノール類としては、例えば、フェノール、メチルフェノール、メトキシフェノール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、フェノールを用いることが原料の安定供給性の点でより好ましい。
前記ナフトール類としては、例えば、ナフトール、メチルナフトール、メトキシナフトール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、ナフトールを用いることが、炭素原子濃度を上げ、耐熱性を向上させる点でより好ましい。
前記ビアントラセンオール類としては、例えば、アントラセンオール、メチルアントラセンオール、メトキシアントラセンオール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、アントラセンオールを用いることが、炭素原子濃度を上げ、耐熱性を向上させる点でより好ましい。
前記アルデヒド類としては、例えば、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。
ポリフェノール化合物の少なくとも1つのフェノール性水酸基に酸解離性基を導入する方法は公知である。例えば、以下のようにして、前記化合物の少なくとも1つのフェノール性水酸基に酸解離性基を導入することができる。酸解離性基を導入するための化合物は、公知の方法で合成もしくは容易に入手でき、例えば、酸クロライド、酸無水物、ジカーボネートなどの活性カルボン酸誘導体化合物、アルキルハライド、ビニルアルキルエーテル、ジヒドロピラン、ハロカルボン酸アルキルエステルなどが挙げられるが特に限定はされない。
例えば、アセトン、テトラヒドロフラン(THF)、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に前記化合物を溶解又は懸濁させる。続いて、エチルビニルエーテル等のビニルアルキルエーテル又はジヒドロピランを加え、ピリジニウム p−トルエンスルホナート等の酸触媒の存在下、常圧で、20〜60℃、6〜72時間反応させる。反応液をアルカリ化合物で中和し、蒸留水に加え白色固体を析出させた後、分離した白色固体を蒸留水で洗浄し、乾燥することにより、水酸基の水素原子が酸解離性基に置換された化合物を得ることができる。
また、例えば、アセトン、THF、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に、水酸基を有する前記化合物を溶解又は懸濁させる。続いて、エチルクロロメチルエーテル等のアルキルハライド又はブロモ酢酸メチルアダマンチル等のハロカルボン酸アルキルエステルを加え、炭酸カリウム等のアルカリ触媒の存在下、常圧で、20〜110℃、6〜72時間反応させる。反応液を塩酸等の酸で中和し、蒸留水に加え白色固体を析出させた後、分離した白色固体を蒸留水で洗浄し、乾燥することにより、水酸基の水素原子が酸解離性基に置換された化合物を得ることができる。
なお、酸解離性基を導入するタイミングについては、ビナフトール類とケトン類との縮合反応後のみならず、縮合反応の前段階でもよい。また、後述する樹脂の製造を行ったのちに行ってもよい。
本実施形態において、酸解離性基とは、酸の存在下で開裂して、アルカリ可溶性基等の溶解性を変化させる官能基を生じる特性基をいう。アルカリ可溶性基としては、フェノール性水酸基、カルボキシル基、スルホン酸基、ヘキサフルオロイソプロパノール基などが挙げられ、フェノール性水酸基及びカルボキシル基が好ましく、フェノール性水酸基が特に好ましい。前記酸解離性基は、更に高感度・高解像度なパターン形成を可能にするために、酸の存在下で連鎖的に開裂反応を起こす性質を有することが好ましい。
[式(2)で表される化合物をモノマーとして得られる樹脂の製造方法]
前記式(2)で表される化合物は、リソグラフィー用膜形成組成物として、そのまま使用することができる。また、前記式(2)で表される化合物をモノマーとして得られる樹脂としても使用することができる。例えば、前記式(2)で表される化合物と架橋反応性のある化合物とを反応させて得られる樹脂としても使用することができる。
前記式(2)で表される化合物をモノマーとして得られる樹脂としては、例えば、以下の式(4)に表される構造を有するものが挙げられる。すなわち、本実施形態のリソグラフィー用膜形成組成物は、下記式(4)に表される構造を有する樹脂を含有するものであってもよい。
Figure 0006877696
式(4)中、Lは、炭素数1〜30の直鎖状若しくは分岐状のアルキレン基又は単結合である。
0A、R1A、R2A、m2A、n、q及びXは前記式(2)におけるものと同義であり、
が2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよい。
但し、R2Aの少なくとも1つは水酸基又は水酸基の水素原子が酸解離性基で置換された基である。
本実施形態の樹脂は、前記式(2)で表される化合物を架橋反応性のある化合物と反応させることにより得られる。
架橋反応性のある化合物としては、前記式(2)で表される化合物をオリゴマー化又はポリマー化し得るものである限り、公知のものを特に制限なく使用することができる。その具体例としては、例えば、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート、不飽和炭化水素基含有化合物等が挙げられるが、これらに特に限定されない。
前記式(2)で表される構造を有する樹脂の具体例としては、例えば、前記式(2)で表される化合物を架橋反応性のある化合物であるアルデヒド及び/又はケトンとの縮合反応等によってノボラック化した樹脂が挙げられる。
ここで、前記式(2)で表される化合物をノボラック化する際に用いるアルデヒドとしては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。ケトンとしては、例えばアセトン、メチルエチルケトン、シクロブタノン、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらの中でも、ホルムアルデヒドがより好ましい。なお、これらのアルデヒド及び/又はケトン類は、1種を単独で又は2種以上を組み合わせて用いることができる。また、前記アルデヒド及び/又はケトン類の使用量は、特に限定されないが、前記式(2)で表される化合物1モルに対して、0.2〜5モルが好ましく、より好ましくは0.5〜2モルである。
前記式(2)で表される化合物とアルデヒド及び/又はケトンとの縮合反応において、触媒を用いることもできる。ここで使用する酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸や、シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらのなかでも、製造上の観点から、有機酸又は固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸が好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01〜100質量部であることが好ましい。但し、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4−ビニルシクロヘキセン、ノルボルナジエン、5−ビニルノルボルナ−2−エン、α−ピネン、β−ピネン、リモネンなどの非共役二重結合を有する化合物との共重合反応の場合は、必ずしもアルデヒド類は必要ない。
前記式(2)で表される化合物とアルデヒド及び/又はケトンとの縮合反応において、反応溶媒を用いることもできる。この重縮合における反応溶媒としては、公知のものの中から適宜選択して用いることができ、特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒等が例示される。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
また、これらの溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0〜2000質量部の範囲であることが好ましい。さらに、反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10〜200℃の範囲である。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、前記式(2)で表される化合物、アルデヒド及び/又はケトン類、触媒を一括で仕込む方法や、前記式(2)で表される化合物やアルデヒド及び/又はケトン類を触媒存在下で滴下していく方法がある。
重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130〜230℃ にまで上昇させ、1〜50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物であるノボラック化した樹脂を得ることができる。
ここで、前記式(4)で表される構造を有する樹脂は、前記式(2)で表される化合物の単独重合体であってもよいが、他のフェノール類との共重合体であってもよい。ここで共重合可能なフェノール類としては、例えば、フェノール、クレゾール、ジメチルフェノール、トリメチルフェノール、ブチルフェノール、フェニルフェノール、ジフェニルフェノール、ナフチルフェノール、レゾルシノール、メチルレゾルシノール、カテコール、ブチルカテコール、メトキシフェノール、メトキシフェノール、プロピルフェノール、ピロガロール、チモール等が挙げるが、これらに特に限定されない。
また、前記式(4)で表される構造を有する樹脂は、上述した他のフェノール類以外に、重合可能なモノマーと共重合させたものであってもよい。かかる共重合モノマーとしては、例えば、ナフトール、メチルナフトール、メトキシナフトール、ジヒドロキシナフタレン、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4−ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルナエン、ピネン、リモネン等が挙げられるが、これらに特に限定されない。なお、前記式(2)で表される構造を有する樹脂は、前記式(2)で表される化合物と上述したフェノール類との2元以上の(例えば、2〜4元系)共重合体であっても、前記式(2)で表される化合物と上述した共重合モノマーとの2元以上(例えば、2〜4元系)共重合体であっても、前記式(2)で表される化合物と上述したフェノール類と上述した共重合モノマーとの3元以上の(例えば、3〜4元系)共重合体であっても構わない。
なお、前記式(4)で表される構造を有する樹脂の分子量は、特に限定されないが、ポリスチレン換算の重量平均分子量(Mw)が500〜30,000であることが好ましく、より好ましくは750〜20,000である。また、架橋効率を高めるとともにベーク中の揮発成分を抑制する観点から、前記式(4)で表される構造を有する樹脂は、分散度(重量平均分子量Mw/数平均分子量Mn)が1.2〜7の範囲内のものが好ましい。なお、前記Mnは、後述する実施例に記載の方法により求めることができる。
前記式(4)で表される構造を有する樹脂は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、これら化合物及び/又は樹脂は、1−メトキシ−2−プロパノール(PGME)及び/又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、当該溶媒に対する溶解度が10質量%以上であることが好ましい。ここで、PGME及び/又はPGMEAに対する溶解度は、「樹脂の質量÷(樹脂の質量+溶媒の質量)×100(質量%)」と定義される。例えば、前記樹脂10gがPGMEA90gに対して溶解する場合は、前記樹脂のPGMEAに対する溶解度は、「10質量%以上」となり、溶解しない場合は、「10質量%未満」となる。
[化合物及び/又は樹脂の精製方法]
本実施形態の化合物及び/又は樹脂の精製方法は、前記式(1)で表される化合物、前記式(1)で表される化合物をモノマーとして得られる樹脂、前記式(2)で表される化合物及び前記式(2)で表される化合物をモノマーとして得られる樹脂から選ばれる1種以上を、溶媒に溶解させて溶液(S)を得る工程と、得られた溶液(S)と酸性の水溶液とを接触させて、前記化合物及び/又は前記樹脂中の不純物を抽出する工程(第一抽出工程)とを含み、前記溶液(S)を得る工程で用いる溶媒が、水と任意に混和しない有機溶媒を含む。
当該第一抽出工程において、前記樹脂は、前記式(1)で表される化合物及び/又は式(2)で表される化合物と架橋反応性のある化合物との反応によって得られる樹脂であることが好ましい。本実施形態の精製方法によれば、上述した特定の構造を有する化合物又は樹脂に不純物として含まれうる種々の金属の含有量を低減することができる。
より詳細には、本実施形態の精製方法においては、前記化合物及び/又は前記樹脂を、水と任意に混和しない有機溶媒に溶解させて溶液(S)を得て、さらにその溶液(S)を酸性水溶液と接触させて抽出処理を行うことができる。これにより、前記溶液(S)に含まれる金属分を水相に移行させたのち、有機相と水相とを分離して金属含有量の低減された化合物及び/又は樹脂を得ることができる。
本実施形態の精製方法で使用する、化合物及と樹脂は単独使用でもよいが、2種以上混合して用いることもできる。また、前記化合物や樹脂は、各種界面活性剤、各種架橋剤、各種酸発生剤、各種安定剤等を含有していてもよい。
本実施形態で使用される水と任意に混和しない溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましく、具体的には、室温下における水への溶解度が30%未満である有機溶媒であり、より好ましくは20%未満であり、特に好ましくは10%未満である有機溶媒が好ましい。当該有機溶媒の使用量は、使用する化合物と樹脂の合計量に対して、1〜100質量倍であることが好ましい。
水と任意に混和しない溶媒の具体例としては、以下に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル等のエーテル類、酢酸エチル、酢酸n‐ブチル、酢酸イソアミル等のエステル類、メチルエチルケトン、メチルイソブチルケトン、エチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2‐ヘプタノン、2−ペンタノン等のケトン類;エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート類;n‐ヘキサン、n‐ヘプタン等の脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類等が挙げられる。これらの中でも、トルエン、2−ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル等が好ましく、メチルイソブチルケトン、酢酸エチル、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテートがより好ましく、メチルイソブチルケトン、酢酸エチルがよりさらに好ましい。メチルイソブチルケトン、酢酸エチル等は、前記化合物及び該化合物を構成成分として含む樹脂の飽和溶解度が比較的高く、沸点が比較的低いことから、工業的に溶媒を留去する場合や乾燥により除去する工程での負荷を低減することが可能となる。これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
本実施形態の精製方法で使用される酸性の水溶液としては、一般に知られる有機系化合物若しくは無機系化合物を水に溶解させた水溶液の中から適宜選択される。以下に限定されないが、例えば、塩酸、硫酸、硝酸、リン酸等の鉱酸を水に溶解させた鉱酸水溶液、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p−トルエンスルホン酸、トリフルオロ酢酸等の有機酸を水に溶解させた有機酸水溶液が挙げられる。これら酸性の水溶液は、それぞれ単独で用いることもできるし、また2種以上を組み合わせて用いることもできる。これら酸性の水溶液の中でも、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上の鉱酸水溶液、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p−トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上の有機酸水溶液であることが好ましく、硫酸、硝酸、及び酢酸、蓚酸、酒石酸、クエン酸等のカルボン酸の水溶液がより好ましく、硫酸、蓚酸、酒石酸、クエン酸の水溶液がさらに好ましく、蓚酸の水溶液がよりさらに好ましい。蓚酸、酒石酸、クエン酸等の多価カルボン酸は金属イオンに配位し、キレート効果が生じるために、より効果的に金属を除去できる傾向にあるものと考えられる。また、ここで用いる水は、本実施の形態の精製方法の目的に沿って、金属含有量の少ない水、例えばイオン交換水等を用いることが好ましい。
本実施形態の精製方法で使用する酸性の水溶液のpHは特に限定されないが、前記化合物や樹脂への影響を考慮し、水溶液の酸性度を調整することが好ましい。通常、pH範囲は0〜5程度であり、好ましくはpH0〜3程度である。
本実施形態の精製方法で使用する酸性の水溶液の使用量は特に限定されないが、金属除去のための抽出回数を低減する観点及び全体の液量を考慮して操作性を確保する観点から、当該使用量を調整することが好ましい。前記観点から、酸性の水溶液の使用量は、前記溶液(S)100質量%に対して、好ましくは10〜200質量%であり、より好ましくは20〜100質量%である。
本実施形態の精製方法においては、前記酸性の水溶液と、前記溶液(S)とを接触させることにより、溶液(S)中の前記化合物又は前記樹脂から金属分を抽出することができる。
本実施形態の精製方法においては、前記溶液(S)が、さらに水と任意に混和する有機溶媒を含むことが好ましい。水と任意に混和する有機溶媒を含む場合、前記化合物及び/又は樹脂の仕込み量を増加させることができ、また、分液性が向上し、高い釜効率で精製を行うことができる傾向にある。水と任意に混和する有機溶媒を加える方法は特に限定されない。例えば、予め有機溶媒を含む溶液に加える方法、予め水又は酸性の水溶液に加える方法、有機溶媒を含む溶液と水又は酸性の水溶液とを接触させた後に加える方法のいずれでもよい。これらの中でも、予め有機溶媒を含む溶液に加える方法が操作の作業性や仕込み量の管理のし易さの点で好ましい。
本実施形態の精製方法で使用される水と任意に混和する有機溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましい。水と任意に混和する有機溶媒の使用量は、溶液相と水相とが分離する範囲であれば特に限定されないが、使用する化合物と樹脂の合計量に対して、0.1〜100質量倍であることが好ましく、0.1〜50質量倍であることがより好ましく、0.1〜20質量倍であることがさらに好ましい。
本実施形態の精製方法において使用される水と任意に混和する有機溶媒の具体例としては、以下に限定されないが、テトラヒドロフラン、1,3−ジオキソラン等のエーテル類;メタノール、エタノール、イソプロパノール等のアルコール類;アセトン、N−メチルピロリドン等のケトン類;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル等のグリコールエーテル類等の脂肪族炭化水素類が挙げられる。これらの中でも、N−メチルピロリドン、プロピレングリコールモノメチルエーテル等が好ましく、N−メチルピロリドン、プロピレングリコールモノメチルエーテルがより好ましい。これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
抽出処理を行う際の温度は通常、20〜90℃であり、好ましくは30〜80℃の範囲である。抽出操作は、例えば、撹拌等により、よく混合させたあと、静置することにより行われる。これにより、溶液(S)中に含まれていた金属分が水相に移行する。また、本操作により、溶液の酸性度が低下し、化合物及び/又は樹脂の変質を抑制することができる。
前記混合溶液は静置により、化合物及び/又は樹脂と溶媒とを含む溶液相と、水相とに分離するので、デカンテーション等により、溶液相を回収する。静置する時間は特に限定されないが、溶媒を含む溶液相と水相との分離をより良好にする観点から、当該静置する時間を調整することが好ましい。通常、静置する時間は1分以上であり、好ましくは10分以上であり、より好ましくは30分以上である。また、抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。
本実施形態の精製方法において、前記第一抽出工程後、前記化合物又は前記樹脂を含む溶液相を、さらに水に接触させて、前記化合物又は前記樹脂中の不純物を抽出する工程(第二抽出工程)を含むことが好ましい。具体的には、例えば、酸性の水溶液を用いて前記抽出処理を行った後に、該水溶液から抽出され、回収された化合物及び/又は樹脂と溶媒を含む溶液相を、さらに水による抽出処理に供することが好ましい。上述の水による抽出処理は、特に限定されないが、例えば、前記溶液相と水とを、撹拌等により、よく混合させたあと、得られた混合溶液を、静置することにより行うことができる。当該静置後の混合溶液は、化合物及び/又は樹脂と溶媒とを含む溶液相と、水相とに分離するのでデカンテーション等により、溶液相を回収することができる。
また、ここで用いる水は、本実施の形態の目的に沿って、金属含有量の少ない水、例えば、イオン交換水等であることが好ましい。抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。また、抽出処理における両者の使用割合や、温度、時間等の条件は特に限定されないが、先の酸性の水溶液との接触処理の場合と同様で構わない。
こうして得られた化合物及び/又は樹脂と溶媒とを含む溶液に混入しうる水分については、減圧蒸留等の操作を施すことにより容易に除去できる。また、必要により前記溶液に溶媒を加え、化合物及び/又は樹脂の濃度を任意の濃度に調整することができる。
得られた化合物及び/又は樹脂と溶媒とを含む溶液から、化合物及び/又は樹脂を単離する方法は、特に限定されず、減圧除去、再沈殿による分離、及びそれらの組み合わせ等、公知の方法で行うことができる。必要に応じて、濃縮操作、ろ過操作、遠心分離操作、乾燥操作等の公知の処理を行うことができる。
[リソグラフィー用膜形成組成物]
本実施形態のリソグラフィー用膜形成組成物は、前記式(1)で表される化合物、前記式(1)で表される化合物をモノマーとして得られる樹脂、前記式(2)で表される化合物及び前記式(2)で表される化合物をモノマーとして得られる樹脂からなる群より選ばれる1種以上を含有する。
[化学増幅型レジスト用途向けリソグラフィー用膜形成組成物]
本実施形態における化学増幅型レジスト用途向けリソグラフィー用膜形成組成物(以下、レジスト組成物とも称す)は、前記式(1)で表される化合物、前記式(1)で表される化合物をモノマーとして得られる樹脂、前記式(2)で表される化合物及び前記式(2)で表される化合物をモノマーとして得られる樹脂からなる群より選ばれる1種以上を含有する。
また、本実施形態のレジスト組成物は、溶媒を含有することが好ましい。溶媒としては、特に限定されないが、例えば、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ−n−プロピルエーテルアセテート、エチレングリコールモノ−n−ブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエチレングリコールモノアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノ−n−プロピルエーテルアセテート、プロピレングリコールモノ−n−ブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテルなどのプロピレングリコールモノアルキルエーテル類;乳酸メチル、乳酸エチル、乳酸n−プロピル、乳酸n−ブチル、乳酸n−アミル等の乳酸エステル類;酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸n−ブチル、酢酸n−アミル、酢酸n−ヘキシル、プロピオン酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、3−メトキシ−2−メチルプロピオン酸メチル、3−メトキシブチルアセテート、3−メチル−3−メトキシブチルアセテート、3−メトキシ−3−メチルプロピオン酸ブチル、3−メトキシ−3−メチル酪酸ブチル、アセト酢酸メチル、ピルビン酸メチル、ピルビン酸エチル等の他のエステル類;トルエン、キシレン等の芳香族炭化水素類;2−ヘプタノン、3−ヘプタノン、4−ヘプタノン、シクロペンタノン(CPN)、シクロヘキサノン(CHN)等のケトン類;N,N−ジメチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミド類;γ−ラクトン等のラクトン類等を挙げることができるが、特に限定はされない。これらの溶媒は、単独で又は2種以上を使用することができる。
本実施形態で使用される溶媒は、安全溶媒であることが好ましく、より好ましくは、PGMEA、PGME、CHN、CPN、2−ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル及び乳酸エチルから選ばれる少なくとも1種であり、さらに好ましくはPGMEA、PGME及びCHNから選ばれる少なくとも一種である。
本実施形態において、固形成分の量と溶媒との量は、特に限定されないが、固形成分の量と溶媒との合計質量100質量%に対して、固形成分1〜80質量%及び溶媒20〜99質量%であることが好ましく、より好ましくは固形成分1〜50質量%及び溶媒50〜99質量%、さらに好ましくは固形成分2〜40質量%及び溶媒60〜98質量%であり、特に好ましくは固形成分2〜10質量%及び溶媒90〜98質量%である。
本実施形態のレジスト組成物は、他の固形成分として、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)からなる群より選ばれる少なくとも一種を含有してもよい。なお、本明細書において固形成分とは溶媒以外の成分をいう。
ここで、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)については公知のものが使用でき、特に限定されないが、例えば、国際公開第2013/024778号に記載されているものが好ましい。
[各成分の配合割合]
本実施形態のレジスト組成物において、レジスト基材として用いる化合物及び/又は樹脂の含有量は、特に限定されないが、固形成分の全質量(レジスト基材、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)(「任意成分(F)」とも称す)などの任意に使用される成分を含む固形成分の総和、以下同様。)の50〜99.4質量%であることが好ましく、より好ましくは55〜90質量%、さらに好ましくは60〜80質量%、特に好ましくは60〜70質量%である。前記含有量の場合、解像度が一層向上し、ラインエッジラフネス(LER)が一層小さくなる。
なお、レジスト基材として化合物と樹脂の両方を含有する場合、前記含有量は、両成分の合計量である。
本実施形態のレジスト組成物において、レジスト基材(以下、成分(A)とも称す。)、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)、任意成分(F)の含有量(成分(A)/酸発生剤(C)/酸架橋剤(G)/酸拡散制御剤(E)/任意成分(F))は、固形物基準の質量%で、
好ましくは50〜99.4/0.001〜49/0.5〜49/0.001〜49/0〜49、
より好ましくは55〜90/1〜40/0.5〜40/0.01〜10/0〜5、
さらに好ましくは60〜80/3〜30/1〜30/0.01〜5/0〜1、
特に好ましくは60〜70/10〜25/2〜20/0.01〜3/0、である。
各成分の配合割合は、その総和が100質量%になるように各範囲から選ばれる。前記配合にすると、感度、解像度、現像性等の性能に優れる。
本実施形態のレジスト組成物は、通常は、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば、孔径0.2μm程度のフィルター等でろ過することにより調製される。
本実施形態のレジスト組成物は、本発明の目的を阻害しない範囲で、本実施形態の樹脂以外の他の樹脂を含むことができる。当該樹脂は、特に限定されず、例えば、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン−無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体あるいはこれらの誘導体などが挙げられる。前記樹脂の含有量は、特に限定されず、使用する成分(A)の種類に応じて適宜調節されるが、成分(A)100質量部に対して、30質量部以下が好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下、特に好ましくは0質量部である。
[レジスト組成物の物性等]
本実施形態のレジスト組成物は、スピンコートによりアモルファス膜を形成することができる。また、一般的な半導体製造プロセスに適用することができる。前記式(1)及び/又は式(2)で表される化合物、これらをモノマーとして得られる樹脂の種類及び/又は用いる現像液の種類によって、ポジ型レジストパターン及びネガ型レジストパターンのいずれかを作り分けることができる。
ポジ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、5Å/sec以下が好ましく、0.05〜5Å/secがより好ましく、0.0005〜5Å/secがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、前記式(1)で表される化合物及び/又は該化合物を構成成分として含む樹脂の露光前後の溶解性の変化により、現像液に溶解する露光部と、現像液に溶解しない未露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
ネガ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、前記式(1)で表される化合物及び/又は該化合物を構成成分として含む樹脂のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
前記溶解速度は、23℃にて、アモルファス膜を所定時間現像液に浸漬させ、その浸漬前後の膜厚を、目視、エリプソメーター又はQCM法等の公知の方法によって測定し決定できる。
ポジ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、前記式(1)で表される化合物及び/又は該化合物を構成成分として含む樹脂のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
ネガ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における現像液に対する溶解速度は、5Å/sec以下が好ましく、0.05〜5Å/secがより好ましく、0.0005〜5Å/secがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、前記式(1)で表される化合物及び/又は該化合物を構成成分として含む樹脂の露光前後の溶解性の変化により、現像液に溶解する未露光部と、現像液に溶解しない露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
[非化学増幅型レジスト用途向けリソグラフィー用膜形成組成物]
本実施形態の非化学増幅型レジスト用途向けリソグラフィー用膜形成組成物(以下、感放射線性組成物とも称す)に含有させる成分(A)は、後述するジアゾナフトキノン光活性化合物(B)と併用し、g線、h線、i線、KrFエキシマレーザー、ArFエキシマレーザー、極端紫外線、電子線又はX線を照射することにより、現像液に易溶な化合物となるポジ型レジスト用基材として有用である。g線、h線、i線、KrFエキシマレーザー、ArFエキシマレーザー、極端紫外線、電子線又はX線により、成分(A)の性質は大きくは変化しないが、現像液に難溶なジアゾナフトキノン光活性化合物(B)が易溶な化合物に変化することで、現像工程によってレジストパターンを作り得る。
本実施形態の感放射線性組成物に含有させる成分(A)は、比較的低分子量の化合物であることから、得られたレジストパターンのラフネスは非常に小さい。また、前記式(1)中、R〜Rからなる群より選択される少なくとも1つがヨウ素原子を含む基であることが好ましく、前記式(2)中、R0A、R1A及びR2Aからなる群より選択される少なくとも1つがヨウ素原子を含む基であることが好ましい。本実施形態の感放射線性組成物は、このような好ましい態様であるヨウ素原子を含む基を有する成分(A)を適用した場合は、電子線、極端紫外線(EUV)、X線などの放射線に対する吸収能を増加させ、その結果、感度を高めることが可能となり好ましい。
本実施形態の感放射線性組成物に含有させる成分(A)のガラス転移温度は、好ましくは100℃以上、より好ましくは120℃以上、さらに好ましくは140℃以上、特に好ましくは150℃以上である。成分(A)のガラス転移温度の上限値は、特に限定されないが、例えば、400℃である。成分(A)のガラス転移温度が前記範囲内であることにより、半導体リソグラフィープロセスにおいて、パターン形状を維持しうる耐熱性を有し、高解像度などの性能が向上する。
本実施形態の感放射線性組成物に含有させる成分(A)のガラス転移温度の示差走査熱量分析により求めた結晶化発熱量は20J/g未満であるのが好ましい。また、(結晶化温度)−(ガラス転移温度)は好ましくは70℃以上、より好ましくは80℃以上、さらに好ましくは100℃以上、特に好ましくは130℃以上である。結晶化発熱量が20J/g未満、又は(結晶化温度)−(ガラス転移温度)が前記範囲内であると、感放射線性組成物をスピンコートすることにより、アモルファス膜を形成しやすく、かつレジストに必要な成膜性が長期に渡り保持でき、解像性を向上することができる。
本実施形態において、前記結晶化発熱量、結晶化温度及びガラス転移温度は、島津製作所製DSC/TA−50WSを用いた示差走査熱量分析により求めることができる。試料約10mgをアルミニウム製非密封容器に入れ、窒素ガス気流中(50mL/分)昇温速度20℃/分で融点以上まで昇温する。急冷後、再び窒素ガス気流中(30mL/分)昇温速度20℃/分で融点以上まで昇温する。さらに急冷後、再び窒素ガス気流中(30mL/分)昇温速度20℃/分で400℃まで昇温する。ステップ状に変化したベースラインの段差の中点(比熱が半分に変化したところ)の温度をガラス転移温度(Tg)、その後に現れる発熱ピークの温度を結晶化温度とする。発熱ピークとベースラインに囲まれた領域の面積から発熱量を求め、結晶化発熱量とする。
本実施形態の感放射線性組成物に含有させる成分(A)は、常圧下、100以下、好ましくは120℃以下、より好ましくは130℃以下、さらに好ましくは140℃以下、特に好ましくは150℃以下において、昇華性が低いことが好ましい。昇華性が低いとは、熱重量分析において、所定温度で10分間保持した際の重量減少が10%以下、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1%以下、特に好ましくは0.1%以下であることを示す。昇華性が低いことにより、露光時のアウトガスによる露光装置の汚染を防止することができる。また低ラフネスで良好なパターン形状を得ることができる。
本実施形態の感放射線性組成物に含有させる成分(A)は、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン(CHN)、シクロペンタノン(CPN)、2−ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル及び乳酸エチルから選ばれ、かつ、成分(A)に対して最も高い溶解能を示す溶媒に、23℃で、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上、特に好ましくは、PGMEA、PGME、CHNから選ばれ、かつ、(A)レジスト基材に対して最も高い溶解能を示す溶媒に、23℃で、20質量%以上、特に好ましくはPGMEAに対して、23℃で、20質量%以上溶解する。前記条件を満たしていることにより、実生産における半導体製造工程での使用が可能となる。
[ジアゾナフトキノン光活性化合物(B)]
本実施形態の感放射線性組成物に含有させるジアゾナフトキノン光活性化合物(B)は、ポリマー性及び非ポリマー性ジアゾナフトキノン光活性化合物を含む、ジアゾナフトキノン物質であり、一般にポジ型レジスト組成物において、感光性成分(感光剤)として用いられているものであれば特に制限なく、1種又は2種以上任意に選択して用いることができる。
このような感光剤としては、ナフトキノンジアジドスルホン酸クロライドやベンゾキノンジアジドスルホン酸クロライド等と、これら酸クロライドと縮合反応可能な官能基を有する低分子化合物又は高分子化合物とを反応させることによって得られた化合物が好ましいものである。ここで、酸クロライドと縮合可能な官能基としては、特に限定されないが、例えば、水酸基、アミノ基等が挙げられるが、特に水酸基が好適である。水酸基を含む酸クロライドと縮合可能な化合物としては、特に限定されないが、例えばハイドロキノン、レゾルシン、2,4−ジヒドロキシベンゾフェノン、2,3,4−トリヒドロキシベンゾフェノン、2,4,6−トリヒドロキシベンゾフェノン、2,4,4'−トリヒドロキシベンゾフェノン、2,3,4,4'−テトラヒドロキシベンゾフェノン、2,2',4,4'−テトラヒドロキシベンゾフェノン、2,2',3,4,6'−ペンタヒドロキシベンゾフェノン等のヒドロキシベンゾフェノン類、ビス(2,4−ジヒドロキシフェニル)メタン、ビス(2,3,4−トリヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)プロパン等のヒドロキシフェニルアルカン類、4,4',3",4"−テトラヒドロキシ−3,5,3',5'−テトラメチルトリフェニルメタン、4,4',2",3",4"−ペンタヒドロキシ−3,5,3',5'−テトラメチルトリフェニルメタン等のヒドロキシトリフェニルメタン類などを挙げることができる。
また、ナフトキノンジアジドスルホン酸クロライドやベンゾキノンジアジドスルホン酸クロライドなどの酸クロライドとしては、例えば、1,2−ナフトキノンジアジド−5−スルフォニルクロライド、1,2−ナフトキノンジアジド−4−スルフォニルクロライドなどが好ましいものとして挙げられる。
本実施形態の感放射線性組成物は、例えば、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば、孔径0.2μm程度のフィルター等でろ過することにより調製されることが好ましい。
[感放射線性組成物の特性]
本実施形態の感放射線性組成物は、スピンコートによりアモルファス膜を形成することができる。また、一般的な半導体製造プロセスに適用することができる。用いる現像液の種類によって、ポジ型レジストパターン及びネガ型レジストパターンのいずれかを作り分けることができる。
ポジ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、5Å/sec以下が好ましく、0.05〜5Å/secがより好ましく、0.0005〜5Å/secがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、前記式(1)で表される化合物及び/又は該化合物を構成成分として含む樹脂の露光前後の溶解性の変化により、現像液に溶解する露光部と、現像液に溶解しない未露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
ネガ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、前記式(1)で表される化合物及び/又は該化合物を構成成分として含む樹脂のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
前記溶解速度は、23℃にて、アモルファス膜を所定時間現像液に浸漬させ、その浸漬前後の膜厚を、目視、エリプソメーター又はQCM法等の公知の方法によって測定し決定できる。
ポジ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により照射した後、又は、20〜500℃で加熱した後の露光した部分の、23℃における現像液に対する溶解速度は、10Å/sec以上が好ましく、10〜10000Å/secがより好ましく、100〜1000Å/secがさらに好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10000Å/sec以下の溶解速度を有すると、解像性が向上する場合もある。これは、前記式(1)で表される化合物及び/又は該化合物を構成成分として含む樹脂のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
ネガ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により照射した後、又は、20〜500℃で加熱した後の露光した部分の、23℃における現像液に対する溶解速度は、5Å/sec以下が好ましく、0.05〜5Å/secがより好ましく、0.0005〜5Å/secがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、前記式(1)で表される化合物及び/又は該化合物を構成成分として含む樹脂の露光前後の溶解性の変化により、現像液に溶解する未露光部と、現像液に溶解しない露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
[各成分の配合割合]
本実施形態の感放射線性組成物において、成分(A)の含有量は、固形成分全重量(成分(A)、ジアゾナフトキノン光活性化合物(B)及びその他の成分(D)などの任意に使用される固形成分の総和、以下同様。)に対して、好ましくは1〜99質量%であり、より好ましくは5〜95質量%、さらに好ましくは10〜90質量%、特に好ましくは25〜75質量%である。本実施形態の感放射線性組成物は、成分(A)の含有量が前記範囲内であると、高感度でラフネスの小さなパターンを得ることができる。
本実施形態の感放射線性組成物において、ジアゾナフトキノン光活性化合物(B)の含有量は、固形成分全重量(成分(A)、ジアゾナフトキノン光活性化合物(B)及びその他の成分(D)などの任意に使用される固形成分の総和、以下同様。)に対して、好ましくは1〜99質量%であり、より好ましくは5〜95質量%、さらに好ましくは10〜90質量%、特に好ましくは25〜75質量%である。本実施の形態の感放射線性組成物は、ジアゾナフトキノン光活性化合物(B)の含有量が前記範囲内であると、高感度でラフネスの小さなパターンを得ることができる。
[その他の成分(D)]
本実施形態の感放射線性組成物には、本発明の目的を阻害しない範囲で、必要に応じて、成分(A)及びジアゾナフトキノン光活性化合物(B)以外の成分として、酸発生剤、酸架橋剤、酸拡散制御剤、溶解促進剤、溶解制御剤、増感剤、界面活性剤、有機カルボン酸又はリンのオキソ酸若しくはその誘導体等の各種添加剤を1種又は2種以上添加することができる。なお、本明細書において、その他の成分(D)を任意成分(D)ということがある。
本実施形態の感放射線性組成物において、各成分の配合割合(成分(A)/ジアゾナフトキノン光活性化合物(B)/任意成分(D))は、固形成分基準の質量%で、
好ましくは1〜99/99〜1/0〜98、
より好ましくは5〜95/95〜5/0〜49、
さらに好ましくは10〜90/90〜10/0〜10、
特に好ましくは20〜80/80〜20/0〜5、
最も好ましくは25〜75/75〜25/0、である。
各成分の配合割合は、その総和が100質量%になるように各範囲から選ばれる。本実施形態の感放射線性組成物は、各成分の配合割合を前記範囲にすると、ラフネスに加え、感度、解像度等の性能に優れる。
本実施形態の感放射線性組成物は、本発明の目的を阻害しない範囲で、本実施形態以外の樹脂を含んでもよい。このような樹脂としては、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン−無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体あるいはこれらの誘導体などが挙げられる。これらの樹脂の配合量は、使用する成分(A)の種類に応じて適宜調節されるが、成分(A)100質量部に対して、30質量部以下が好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下、特に好ましくは0質量部である。
[レジストパターンの形成方法]
本実施形態によるレジストパターンの形成方法は、上述した本実施形態のレジスト組成物又は感放射線性組成物を用いて基板上にレジスト膜を形成する工程と、形成されたレジスト膜を露光する工程と、前記レジスト膜を現像してレジストパターンを形成する工程とを備える。本実施形態におけるレジストパターンは多層プロセスにおける上層レジストとして形成することもできる。
レジストパターンを形成する方法としては、特に限定されないが、例えば、以下の方法が挙げられる。まず、従来公知の基板上に前記本実施形態のレジスト組成物又は感放射線性組成物を、回転塗布、流延塗布、ロール塗布等の塗布手段によって塗布することによりレジスト膜を形成する。従来公知の基板とは、特に限定されず、例えば、電子部品用の基板や、これに所定の配線パターンが形成されたもの等を例表することができる。より具体的には、シリコンウェハー、銅、クロム、鉄、アルミニウム等の金属製の基板や、ガラス基板等が挙げられる。配線パターンの材料としては、例えば銅、アルミニウム、ニッケル、金等が挙げられる。また、必要に応じて、前述基板上に無機系及び/又は有機系の膜が設けられたものであってもよい。無機系の膜としては、無機反射防止膜(無機BARC)が挙げられる。有機系の膜としては、有機反射防止膜(有機BARC)が挙げられる。ヘキサメチレンジシラザン等による表面処理を行ってもよい。
次に、必要に応じて、塗布した基板を加熱する。加熱条件は、レジスト組成物の配合組成等により変わるが、20〜250℃が好ましく、より好ましくは20〜150℃である。加熱することによって、レジストの基板に対する密着性が向上する場合があり好ましい。次いで、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線、及びイオンビームからなる群から選ばれるいずれかの放射線により、レジスト膜を所望のパターンに露光する。露光条件等は、レジスト組成物又は感放射線性組成物の配合組成等に応じて適宜選定される。本実施形態においては、露光における高精度の微細パターンを安定して形成するために、放射線照射後に加熱するのが好ましい。加熱条件は、レジスト組成物又は感放射線性組成物の配合組成等により変わるが、20〜250℃が好ましく、より好ましくは20〜150℃である。
次いで、露光されたレジスト膜を現像液で現像することにより、所定のレジストパターンを形成する。前記現像液としては、使用する式(1)若しくは式(2)で表される化合物又は式(1)若しくは式(2)で表される化合物をモノマーとして得られる樹脂に対して溶解度パラメーター(SP値)の近い溶剤を選択することが好ましく、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤等の極性溶剤、炭化水素系溶剤又はアルカリ水溶液を用いることができる。
ケトン系溶剤としては、例えば、1−オクタノン、2−オクタノン、1−ノナノン、2−ノナノン、アセトン、4−ヘプタノン、1−ヘキサノン、2−ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、イソホロン、プロピレンカーボネート等を挙げることができる。
エステル系溶剤としては、例えば、酢酸メチル、酢酸ブチル、酢酸エチル、酢酸イソプロピル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル−3−エトキシプロピオネート、3−メトキシブチルアセテート、3−メチル−3−メトキシブチルアセテート、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル等を挙げることができる。
アルコール系溶剤としては、例えば、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール(2−プロパノール)、n−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、イソブチルアルコール、n−ヘキシルアルコール、4−メチル−2−ペンタノール、n−ヘプチルアルコール、n−オクチルアルコール、n−デカノール等のアルコールや、エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤や、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール等のグリコールエーテル系溶剤等を挙げることができる。
エーテル系溶剤としては、例えば、前記グリコールエーテル系溶剤の他、ジオキサン、テトラヒドロフラン等が挙げられる。
アミド系溶剤としては、例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド、1,3−ジメチル−2−イミダゾリジノン等が使用できる。
炭化水素系溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素系溶剤、ペンタン、ヘキサン、オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
上述の溶剤は、複数混合してもよいし、性能を有する範囲内で、前記以外の溶剤や水と混合し使用してもよい。但し、本発明の効果を十二分に奏するためには、現像液全体としての含水率が70質量%未満であり、50質量%未満であることが好ましく、30質量%未満であることがより好ましく、10質量%未満であることがさらに好ましく、実質的に水分を含有しないことが特に好ましい。すなわち、現像液に対する有機溶剤の含有量は、現像液の全量に対して、30質量%以上100質量%以下であり、50質量%以上100質量%以下であることが好ましく、70質量%以上100質量%以下であることがより好ましく、90質量%以上100質量%以下であることがさらに好ましく、95質量%以上100質量%以下であることが特に好ましい。
アルカリ水溶液としては、例えば、モノ−、ジ−あるいはトリアルキルアミン類、モノ−、ジ−あるいはトリアルカノールアミン類、複素環式アミン類、テトラメチルアンモニウムヒドロキシド(TMAH)、コリン等のアルカリ性化合物が挙げられる。
特に、現像液は、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤から選択される少なくとも1種類の溶剤を含有する現像液が、レジストパターンの解像性やラフネス等のレジスト性能を改善するため好ましい。
現像液の蒸気圧は、20℃において、5kPa以下が好ましく、3kPa以下がさらに好ましく、2kPa以下が特に好ましい。現像液の蒸気圧を5kPa以下にすることにより、現像液の基板上あるいは現像カップ内での蒸発が抑制され、ウェハ面内の温度均一性が向上し、結果としてウェハ面内の寸法均一性が良化する。
5kPa以下の蒸気圧を有する具体的な例としては、1−オクタノン、2−オクタノン、1−ノナノン、2−ノナノン、4−ヘプタノン、2−ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルイソブチルケトン等のケトン系溶剤、酢酸ブチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル−3−エトキシプロピオネート、3−メトキシブチルアセテート、3−メチル−3−メトキシブチルアセテート、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル等のエステル系溶剤、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、イソブチルアルコール、n−ヘキシルアルコール、4−メチル−2−ペンタノール、n−ヘプチルアルコール、n−オクチルアルコール、n−デカノール等のアルコール系溶剤、エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤や、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール等のグリコールエーテル系溶剤、テトラヒドロフラン等のエーテル系溶剤、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミドのアミド系溶剤、トルエン、キシレン等の芳香族炭化水素系溶剤、オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
特に好ましい範囲である2kPa以下の蒸気圧を有する具体的な例としては、1−オクタノン、2−オクタノン、1−ノナノン、2−ノナノン、4−ヘプタノン、2−ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン等のケトン系溶剤、酢酸ブチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル−3−エトキシプロピオネート、3−メトキシブチルアセテート、3−メチル−3−メトキシブチルアセテート、乳酸エチル、乳酸ブチル、乳酸プロピル等のエステル系溶剤、n−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、イソブチルアルコール、n−ヘキシルアルコール、4−メチル−2−ペンタノール、n−ヘプチルアルコール、n−オクチルアルコール、n−デカノール等のアルコール系溶剤、エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤や、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール等のグリコールエーテル系溶剤、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミドのアミド系溶剤、キシレン等の芳香族炭化水素系溶剤、オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
現像液には、必要に応じて界面活性剤を適当量添加することができる。
界面活性剤としては特に限定されないが、例えば、イオン性や非イオン性のフッ素系及び/又はシリコン系界面活性剤等を用いることができる。これらのフッ素及び/又はシリコン系界面活性剤として、例えば、特開昭62−36663号公報、特開昭61−226746号公報、特開昭61−226745号公報、特開昭62−170950号公報、特開昭63−34540号公報、特開平7−230165号公報、特開平8−62834号公報、特開平9−54432号公報、特開平9−5988号公報、米国特許第5405720号明細書、同5360692号明細書、同5529881号明細書、同5296330号明細書、同5436098号明細書、同5576143号明細書、同5294511号明細書、同5824451号明細書記載の界面活性剤を挙げることができ、好ましくは、非イオン性の界面活性剤である。非イオン性の界面活性剤としては特に限定されないが、フッ素系界面活性剤又はシリコン系界面活性剤を用いることがさらに好ましい。
界面活性剤の使用量は現像液の全量に対して、通常0.001〜5質量%、好ましくは0.005〜2質量%、さらに好ましくは0.01〜0.5質量%である。
現像方法としては、たとえば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出しつづける方法(ダイナミックディスペンス法)などを適用することができる。パターンの現像を行なう時間には特に制限はないが、好ましくは10秒〜90秒である。
また、現像を行う工程の後に、他の溶媒に置換しながら、現像を停止する工程を実施してもよい。
現像の後には、有機溶剤を含むリンス液を用いて洗浄する工程を含むことが好ましい。
現像後のリンス工程に用いるリンス液としては、架橋により硬化したレジストパターンを溶解しなければ特に制限はなく、一般的な有機溶剤を含む溶液又は水を使用することができる。前記リンス液としては、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤から選択される少なくとも1種類の有機溶剤を含有するリンス液を用いることが好ましい。より好ましくは、現像の後に、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有するリンス液を用いて洗浄する工程を行う。さらにより好ましくは、現像の後に、アルコール系溶剤又はエステル系溶剤を含有するリンス液を用いて洗浄する工程を行う。さらにより好ましくは、現像の後に、1価アルコールを含有するリンス液を用いて洗浄する工程を行う。特に好ましくは、現像の後に、炭素数5以上の1価アルコールを含有するリンス液を用いて洗浄する工程を行う。パターンのリンスを行なう時間には特に制限はないが、好ましくは10秒〜90秒である。
ここで、現像後のリンス工程で用いられる1価アルコールとしては、直鎖状、分岐状、環状の1価アルコールが挙げられ、具体的には、1−ブタノール、2−ブタノール、3−メチル−1−ブタノール、tert−ブチルアルコール、1−ペンタノール、2−ペンタノール、1−ヘキサノール、4−メチル−2−ペンタノール、1−ヘプタノール、1−オクタノール、2−ヘキサノール、シクロペンタノール、2−ヘプタノール、2−オクタノール、3−ヘキサノール、3−ヘプタノール、3−オクタノール、4−オクタノールなどを用いることができ、特に好ましい炭素数5以上の1価アルコールとしては、1−ヘキサノール、2−ヘキサノール、4−メチル−2−ペンタノール、1−ペンタノール、3−メチル−1−ブタノールなどを用いることができる。
前記各成分は、複数混合してもよいし、前記以外の有機溶剤と混合し使用してもよい。
リンス液中の含水率は、10質量%以下が好ましく、より好ましくは5質量%以下、特に好ましくは3質量%以下である。含水率を10質量%以下にすることで、より良好な現像特性を得ることができる。
現像後に用いるリンス液の蒸気圧は、20℃において0.05kPa以上、5kPa以下が好ましく、0.1kPa以上、5kPa以下がさらに好ましく、0.12kPa以上、3kPa以下が最も好ましい。リンス液の蒸気圧を0.05kPa以上、5kPa以下にすることにより、ウェハ面内の温度均一性がより向上し、さらにはリンス液の浸透に起因した膨潤がより抑制され、ウェハ面内の寸法均一性がより良化する。
リンス液には、界面活性剤を適当量添加して使用することもできる。
リンス工程においては、現像を行ったウェハを上述の有機溶剤を含むリンス液を用いて洗浄処理する。洗浄処理の方法は特に限定されないが、たとえば、一定速度で回転している基板上にリンス液を塗出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面にリンス液を噴霧する方法(スプレー法)、などを適用することができ、この中でも回転塗布方法で洗浄処理を行い、洗浄後に基板を2000rpm〜4000rpmの回転数で回転させ、リンス液を基板上から除去することが好ましい。
レジストパターンを形成した後、エッチングすることによりパターン配線基板が得られる。エッチングの方法はプラズマガスを使用するドライエッチング及びアルカリ溶液、塩化第二銅溶液、塩化第二鉄溶液等によるウェットエッチングなど公知の方法で行うことが出来る。
レジストパターンを形成した後、めっきを行うことも出来る。前記めっき法としては、例えば、銅めっき、はんだめっき、ニッケルめっき、金めっきなどがある。
エッチング後の残存レジストパターンは有機溶剤で剥離することが出来る。前記有機溶剤として、PGMEA(プロピレングリコールモノメチルエーテルアセテート),PGME(プロピレングリコールモノメチルエーテル),EL(乳酸エチル)等が挙げられる。前記剥離方法としては、例えば、浸漬方法、スプレイ方式等が挙げられる。また、レジストパターンが形成された配線基板は、多層配線基板でもよく、小径スルーホールを有していてもよい。
本実施形態において得られる配線基板は、レジストパターン形成後、金属を真空中で蒸着し、その後レジストパターンを溶液で溶かす方法、すなわちリフトオフ法により形成することもできる。
[下層膜用途向けリソグラフィー用膜形成組成物]
本実施形態の下層膜用途向けリソグラフィー用膜形成組成物(以下、下層膜形成材料とも称す。)は、前記式(1)表される化合物、前記式(1)表される化合物をモノマーとして得られる樹脂、式(2)で表される化合物及び式(2)で表される化合物をモノマーとして得られる樹脂からなる群より選ばれる少なくとも1種の物質を含有する。本実施形態において前記物質は塗布性及び品質安定性の点から、下層膜形成材料中、1〜100質量%であることが好ましく、10〜100質量%であることがより好ましく、50〜100質量%であることがさらに好ましく、100質量%であることが特に好ましい。
本実施形態の下層膜形成材料は、湿式プロセスへの適用が可能であり、耐熱性及びエッチング耐性に優れる。さらに、本実施形態の下層膜形成材料は前記物質を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れた下層膜を形成することができる。さらに、本実施形態の下層膜形成材料はレジスト層との密着性にも優れるので、優れたレジストパターンを得ることができる。なお、本実施形態の下層膜形成材料は、本発明の効果が損なわれない範囲において、既に知られているリソグラフィー用下層膜形成材料等を含んでいてもよい。
[溶媒]
本実施形態の下層膜形成材料は、溶媒を含有してもよい。本実施形態の下層膜形成材料に用いられる溶媒としては、上述した物質が少なくとも溶解するものであれば、公知のものを適宜用いることができる。
溶媒の具体例としては、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のセロソルブ系溶媒;乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒;メタノール、エタノール、イソプロパノール、1−エトキシ−2−プロパノール等のアルコール系溶媒;トルエン、キシレン、アニソール等の芳香族系炭化水素等が挙げられる。これらの溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
前記溶媒の中で、安全性の点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、ヒドロキシイソ酪酸メチル、アニソールが特に好ましい。
溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、前記下層膜形成材料100質量部に対して、100〜10,000質量部であることが好ましく、200〜5,000質量部であることがより好ましく、200〜1,000質量部であることがさらに好ましい。
[架橋剤]
本実施形態の下層膜形成材料は、インターミキシングを抑制する等の観点から、必要に応じて架橋剤を含有していてもよい。本実施形態で使用可能な架橋剤は特に限定されないが、例えば、国際公開第2013/024779号に記載のものを用いることができる。
本実施形態の下層膜形成材料において、架橋剤の含有量は、特に限定されないが、下層膜形成材料100質量部に対して、5〜50質量部であることが好ましく、より好ましくは10〜40質量部である。上述の好ましい範囲にすることで、レジスト層とのミキシング現象の発生が抑制される傾向にあり、また、反射防止効果が高められ、架橋後の膜形成性が高められる傾向にある。
[酸発生剤]
本実施形態の下層膜形成材料は、熱による架橋反応をさらに促進させるなどの観点から、必要に応じて酸発生剤を含有していてもよい。酸発生剤としては、熱分解によって酸を発生するもの、光照射によって酸を発生するものなどが知られているが、いずれのものも使用することができる。例えば、国際公開第2013/024779号に記載のものを用いることができる。
本実施形態の下層膜形成材料において、酸発生剤の含有量は、特に限定されないが、下層膜形成材料100質量部に対して、0.1〜50質量部であることが好ましく、より好ましくは0.5〜40質量部である。上述の好ましい範囲にすることで、酸発生量が多くなって架橋反応が高められる傾向にあり、また、レジスト層とのミキシング現象の発生が抑制される傾向にある。
[塩基性化合物]
さらに、本実施形態の下層膜形成材料は、保存安定性を向上させる等の観点から、塩基性化合物を含有していてもよい。
塩基性化合物は、酸発生剤より微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。このような塩基性化合物としては、特に限定されないが、例えば、国際公開第2013/024779号に記載のものが挙げられる。
本実施形態における下層膜形成材料において、塩基性化合物の含有量は、特に限定されないが、下層膜形成材料100質量部に対して、0.001〜2質量部であることが好ましく、より好ましくは0.01〜1質量部である。上述の好ましい範囲にすることで、架橋反応を過度に損なうことなく保存安定性が高められる傾向にある。
[その他の添加剤]
また、本実施形態における下層膜形成材料は、熱硬化性の付与や吸光度をコントロールする目的で、他の樹脂及び/又は化合物を含有していてもよい。このような他の樹脂及び/又は化合物としては、ナフトール樹脂、キシレン樹脂ナフトール変性樹脂、ナフタレン樹脂のフェノール変性樹脂、ポリヒドロキシスチレン、ジシクロペンタジエン樹脂、(メタ)アクリレート、ジメタクリレート、トリメタクリレート、テトラメタクリレート、ビニルナフタレン、ポリアセナフチレンなどのナフタレン環、フェナントレンキノン、フルオレンなどのビフェニル環、チオフェン、インデンなどのヘテロ原子を有する複素環を含む樹脂や芳香族環を含まない樹脂;ロジン系樹脂、シクロデキストリン、アダマンタン(ポリ)オール、トリシクロデカン(ポリ)オール及びそれらの誘導体等の脂環構造を含む樹脂又は化合物等が挙げられるが、これらに特に限定されない。さらに、本実施形態における下層膜形成材料は、公知の添加剤を含有していてもよい。前記公知の添加剤としては、以下に限定されないが、例えば、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等が挙げられる。
[リソグラフィー用下層膜及び多層レジストパターンの形成方法]
本実施形態におけるリソグラフィー用下層膜は、前記下層膜形成材料から形成される。
また、本実施形態のパターン形成方法は、基板上に、本実施形態の下層膜形成材料を用いて下層膜を形成する工程(A−1)と、前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A−2)と、前記第2の形成工程の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程(A−3)と、を有する。
さらに、本実施形態の他のパターン形成方法は、基板上に、本実施形態の下層膜形成材料を用いて下層膜を形成する工程(B−1)と、前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程(B−2)と、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B−3)と、前記工程(B−3)の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(B−4)と、前記工程(B−4)の後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B−5)と、を有する。
本実施形態におけるリソグラフィー用下層膜は、本実施形態の下層膜形成材料から形成されるものであれば、その形成方法は特に限定されず、公知の手法を適用することができる。例えば、本実施形態の下層膜材料をスピンコートやスクリーン印刷等の公知の塗布法或いは印刷法などで基板上に付与した後、有機溶媒を揮発させるなどして除去することで、下層膜を形成することができる。
下層膜の形成時には、上層レジストとのミキシング現象の発生を抑制するとともに架橋反応を促進させるために、ベークをすることが好ましい。この場合、ベーク温度は、特に限定されないが、80〜450℃の範囲内であることが好ましく、より好ましくは200〜400℃である。また、ベーク時間も、特に限定されないが、10〜300秒の範囲内であることが好ましい。なお、下層膜の厚さは、要求性能に応じて適宜選定することができ、特に限定されないが、通常、30〜20,000nm程度であることが好ましく、より好ましくは50〜15,000nmとすることが好ましい。
下層膜を作製した後、2層プロセスの場合はその上に珪素含有レジスト層、或いは通常の炭化水素からなる単層レジスト、3層プロセスの場合はその上に珪素含有中間層、さらにその上に珪素を含まない単層レジスト層を作製することが好ましい。この場合、このレジスト層を形成するためのフォトレジスト材料としては公知のものを使用することができる。
基板上に下層膜を作製した後、2層プロセスの場合はその下層膜上に珪素含有レジスト層あるいは通常の炭化水素からなる単層レジストを作製することができる。3層プロセスの場合はその下層膜上に珪素含有中間層、さらにその珪素含有中間層上に珪素を含まない単層レジスト層を作製することができる。これらの場合において、レジスト層を形成するためのフォトレジスト材料は、公知のものから適宜選択して使用することができ、特に限定されない。
2層プロセス用の珪素含有レジスト材料としては、酸素ガスエッチング耐性の観点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーを使用し、さらに有機溶媒、酸発生剤、必要により塩基性化合物等を含むポジ型のフォトレジスト材料が好ましく用いられる。ここで珪素原子含有ポリマーとしては、この種のレジスト材料において用いられている公知のポリマーを使用することができる。
3層プロセス用の珪素含有中間層としてはポリシルセスキオキサンベースの中間層が好ましく用いられる。中間層に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。例えば、193nm露光用プロセスにおいて、下層膜として芳香族基を多く含み基板エッチング耐性が高い材料を用いると、k値が高くなり、基板反射が高くなる傾向にあるが、中間層で反射を抑えることによって、基板反射を0.5%以下にすることができる。このような反射防止効果がある中間層としては、以下に限定されないが、193nm露光用としてはフェニル基又は珪素−珪素結合を有する吸光基を導入された、酸或いは熱で架橋するポリシルセスキオキサンが好ましく用いられる。
また、Chemical Vapour Deposition(CVD)法で形成した中間層を用いることもできる。CVD法で作製した反射防止膜としての効果が高い中間層としては、以下に限定されないが、例えば、SiON膜が知られている。一般的には、CVD法よりスピンコート法やスクリーン印刷等の湿式プロセスによる中間層の形成の方が、簡便でコスト的なメリットがある。なお、3層プロセスにおける上層レジストは、ポジ型でもネガ型でもどちらでもよく、また、通常用いられている単層レジストと同じものを用いることができる。
さらに、本実施形態における下層膜は、通常の単層レジスト用の反射防止膜或いはパターン倒れ抑制のための下地材として用いることもできる。本実施形態の下層膜は、下地加工のためのエッチング耐性に優れるため、下地加工のためのハードマスクとしての機能も期待できる。
前記フォトレジスト材料によりレジスト層を形成する場合においては、前記下層膜を形成する場合と同様に、スピンコート法やスクリーン印刷等の湿式プロセスが好ましく用いられる。また、レジスト材料をスピンコート法などで塗布した後、通常、プリベークが行われるが、このプリベークは、80〜180℃で10〜300秒の範囲で行うことが好ましい。その後、常法にしたがい、露光を行い、ポストエクスポジュアーベーク(PEB)、現像を行うことで、レジストパターンを得ることができる。なお、レジスト膜の厚さは特に制限されないが、一般的には、30〜500nmが好ましく、より好ましくは50〜400nmである。
また、露光光は、使用するフォトレジスト材料に応じて適宜選択して用いればよい。一般的には、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3〜20nmの軟X線、電子ビーム、X線等を挙げることができる。
上述の方法により形成されるレジストパターンは、本実施形態における下層膜によってパターン倒れが抑制されたものとなる。そのため、本実施形態における下層膜を用いることで、より微細なパターンを得ることができ、また、そのレジストパターンを得るために必要な露光量を低下させ得る。
次に、得られたレジストパターンをマスクにしてエッチングを行う。2層プロセスにおける下層膜のエッチングとしては、ガスエッチングが好ましく用いられる。ガスエッチングとしては、酸素ガスを用いたエッチングが好適である。酸素ガスに加えて、He、Arなどの不活性ガスや、CO、CO2、NH3、SO2、N2、NO2、2ガスを加えることも可能である。また、酸素ガスを用いずに、CO、CO2、NH3、N2、NO2、2ガスだけでガスエッチングを行うこともできる。特に後者のガスは、パターン側壁のアンダーカット防止のための側壁保護のために好ましく用いられる。
一方、3層プロセスにおける中間層のエッチングにおいても、ガスエッチングが好ましく用いられる。ガスエッチングとしては、上述の2層プロセスにおいて説明したものと同様のものが適用可能である。とりわけ、3層プロセスにおける中間層の加工は、フロン系のガスを用いてレジストパターンをマスクにして行うことが好ましい。その後、上述したように中間層パターンをマスクにして、例えば酸素ガスエッチングを行うことで、下層膜の加工を行うことができる。
ここで、中間層として無機ハードマスク中間層膜を形成する場合は、CVD法やALD法等で、珪素酸化膜、珪素窒化膜、珪素酸化窒化膜(SiON膜)が形成される。窒化膜の形成方法としては、以下に限定されないが、例えば、特開2002−334869号公報(特許文献6)、WO2004/066377(特許文献7)に記載された方法を用いることができる。このような中間層膜の上に直接フォトレジスト膜を形成することができるが、中間層膜の上に有機反射防止膜(BARC)をスピンコートで形成して、その上にフォトレジスト膜を形成してもよい。
中間層として、ポリシルセスキオキサンベースの中間層も好ましく用いられる。レジスト中間層膜に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。ポリシルセスキオキサンベースの中間層の具体的な材料については、以下に限定されないが、例えば、特開2007−226170号(特許文献8)、特開2007−226204号(特許文献9)に記載されたものを用いることができる。
また、次の基板のエッチングも、常法によって行うことができ、例えば、基板がSiO2、SiNであればフロン系ガスを主体としたエッチング、p−SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行うことができる。基板をフロン系ガスでエッチングする場合、2層レジストプロセスの珪素含有レジストと3層プロセスの珪素含有中間層は、基板加工と同時に剥離される。一方、塩素系或いは臭素系ガスで基板をエッチングした場合は、珪素含有レジスト層又は珪素含有中間層の剥離が別途行われ、一般的には、基板加工後にフロン系ガスによるドライエッチング剥離が行われる。
本実施形態における下層膜は、これら基板のエッチング耐性に優れる特徴がある。なお、基板は、公知のものを適宜選択して使用することができ、特に限定されないが、Si、α−Si、p−Si、SiO、SiN、SiON、W、TiN、Al等が挙げられる。また、基板は、基材(支持体)上に被加工膜(被加工基板)を有する積層体であってもよい。このような被加工膜としては、Si、SiO、SiON、SiN、p−Si、α−Si、W、W−Si、Al、Cu、Al−Si等種々のLow−k膜及びそのストッパー膜等が挙げられ、通常、基材(支持体)とは異なる材質のものが用いられる。なお、加工対象となる基板或いは被加工膜の厚さは、特に限定されないが、通常、1,000,000nm程度であることが好ましく、より好ましくは75〜500,000nmである。
以下、本実施形態を合成例及び実施例によりさらに詳細に説明するが、本実施形態は、これらの例によってなんら限定されるものではない。
(炭素濃度及び酸素濃度)
有機元素分析により炭素濃度及び酸素濃度(質量%)を測定した。
装置:CHNコーダーMT−6(ヤナコ分析工業(株)製)
(分子量)
LC−MS分析により、Water社製Acquity UPLC/MALDI−Synapt HDMSを用いて測定した。
(溶解性)
23℃にて、化合物をプロピレングリコールモノメチルエーテル(PGME)に対して5質量%溶液になるよう溶解させ、その後、5℃にて30日間静置し、結果を以下の基準で評価した。
評価A:目視にて析出物なしを確認
評価C:目視にて析出物ありを確認
(合成実施例1)BiN−1の合成
攪拌機、冷却管及びビュレットを備えた内容積300mLの容器において、2−ナフトール(シグマ−アルドリッチ社製試薬)10g(69.0mmol)を120℃で溶融後、硫酸0.27gを仕込み、4−アセチルビフェニル(シグマ−アルドリッチ社製試薬)2.7g(13.8mmol)を加えて、内容物を120℃で6時間撹拌して反応を行って反応液を得た。次に反応液にN−メチル−2−ピロリドン(関東化学株式会社製)100mL、純水50mLを加えたあと、酢酸エチルにより抽出した。次に純水を加えて中性になるまで分液後、濃縮を行って溶液を得た。
得られた溶液を、カラムクロマトによる分離後、下記式(BiN−1)で表される目的化合物(BiN−1)が1.0g得られた。
得られた化合物(BiN−1)について、前記方法により分子量を測定した結果、466であった。また、炭素濃度は87.5質量%、酸素濃度は6.9質量%であった。
得られた化合物(BiN−1)について、前記測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(BiN−1)の化学構造を有することを確認した。
δ(ppm)9.69(2H,O−H)、7.01〜7.67(21H,Ph−H)、2.28(3H,C−H)
Figure 0006877696
(合成実施例2)BiP−1の合成
攪拌機、冷却管及びビュレットを備えた内容積300mLの容器において、o−フェニルフェノール(シグマ−アルドリッチ社製試薬)12g(69.0mmol)を120℃で溶融後、硫酸0.27gを仕込み、4−アセチルビフェニル(シグマ−アルドリッチ社製試薬)2.7g(13.8mmol)を加えて、内容物を120℃で6時間撹拌して反応を行って反応液を得た。次に反応液にN−メチル−2−ピロリドン(関東化学株式会社製)100mL、純水50mLを加えたあと、酢酸エチルにより抽出した。次に純水を加えて中性になるまで分液後、濃縮を行って溶液を得た。
得られた溶液を、カラムクロマトによる分離後、下記式(BiP−1)で表される目的化合物(BiP−1)が5.0g得られた。
得られた化合物(BiP−1)について、前記方法により分子量を測定した結果、518であった。また、炭素濃度は88.0質量%、酸素濃度は6.2質量%であった。
得られた化合物(BiP−1)について、前記測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(BiP−1)の化学構造を有することを確認した。
δ(ppm)9.48(2H,O−H)、6.88〜7.61(25H,Ph−H)、3.36(3H,C−H)
Figure 0006877696
(合成実施例3〜10)
合成実施例1において、原料である2−ナフトール及び4−アセチルビフェニルを下記表1のように変更した以外は合成実施例1と同様にして、各目的物を得た。
また、合成実施例3〜10にて得られた化合物についてそれぞれ、H−NMRで同定した。結果を表2に示す。
Figure 0006877696
Figure 0006877696
Figure 0006877696
Figure 0006877696
(合成実施例11)
[BisN−1の合成]
攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に、2,6−ジヒドロキシナフタレン(シグマ−アルドリッチ社製試薬)1.60g(10mmol)と、4−ビフェニルアルデヒド(三菱瓦斯化学社製)1.82g(10mmol)と、メチルイソブチルケトン30mLとを仕込み、95%の硫酸5mLを加えて、反応液を100℃で6時間撹拌して反応を行った。次に、反応液を濃縮し、純水50gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される化合物(BisN−1)3.05gを得た。
H−NMRにより以下のピークが見出され、下記式の化学構造を有することを確認した。
H−NMR:(d−DMSO、内部標準TMS)
δ(ppm)9.7(2H,O−H)、7.2〜8.5(19H,Ph−H)、6.6(1H,C−H)
Figure 0006877696
[Me−BisN−1の合成]
攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に、BisN−1を10g(21.4mmol)と、炭酸カリウム(関東化学製)7.4g(53.5mmol)、N,N−ジメチルホルムアミド(関東化学製)50mLとを仕込み、5℃にてヨウ化メチル(関東化学製)7.6g(53.5mmol)を5分間かけて加えたのち、室温にて6時間撹拌して反応を行った。次に、反応液に純水200mLを加えて反応性生物を析出させ、濾過を行って分離した。得られた固形分を洗浄、乾燥し、下記式で表される化合物(Me−BisN−1)を10g得た。
Figure 0006877696
[Me−XBiN−1の合成]
攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に、Me−BisN−1を2.5g(5.1mmol)と、ジメチルスルホキシド50mL(関東化学製)50mLとを仕込み、2.6mol/Lのn−ブチルリチウム(関東化学製)n−ヘキサン溶液2.2mL(n−ブチルリチウムとして5.61mmol)を加え、室温で30分間撹拌したのち、室温にてヨウ化メチル(関東化学製)2.1g(14.5mmol)を加えて室温で30分間攪拌して反応を行った。次に、反応液に純水200mLを加えて反応性生物を析出させ、濾過を行って分離した。得られた固形分を洗浄、乾燥し、下記式で表される化合物(Me−XBiN−1)2.2gを得た。
Figure 0006877696
[XBiN−1の合成]
攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に、Me−XBiN−1を15g(29mmol)と、ピリジン塩酸塩(関東化学製)80gを加え、190℃で溶融後、2時間撹拌し反応した。反応終了後、90℃に冷却し、90℃の純水を160mL加え結晶を析出させた。結晶を酢酸エチル/純水=250mL/100mLで洗浄し、次いで酢酸エチル100mLに溶解後、酢酸エチル/ヘキサン=150mL/150mLを加えて結晶を得た。得られた結晶を分離、乾燥し、下記式で表される化合物(XbiN−1)13gを得た。
得られた化合物(XbiN−1)について、前記方法により分子量を測定した結果、480であった。また、炭素濃度は85.0質量%、酸素濃度は10.0質量%であった。
前記測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(XBiN−1)の化学構造を有することを確認した。
δ(ppm)9.2(2H,O−H)、6.8〜7.9(19H,Ph−H)、2.5(3H,C−H)
Figure 0006877696
(合成実施例12〜13)
合成実施例11において原料である2,6−ジヒドロキシナフタレン及び4−ビフェニルアルデヒドを下記表3のように変更した以外は合成実施例11と同様にして、各目的物を得た。
また、合成実施例12〜13にて得られた化合物についてそれぞれ、H−NMRで同定した。結果を表4に示す。
Figure 0006877696
Figure 0006877696
Figure 0006877696
(合成実施例14〜15)
合成実施例1において、原料である2−ナフトール及び4−アセチルビフェニルを下記表5のように変更し、水1.5mL、ドデシルメルカプタン73mg(0.35mmol)、37%塩酸2.3g(22mmol)を加え、反応温度を55℃に変更した以外は合成実施例1と同様にして、各目的物を得た。
また、合成実施例14〜15にて得られた化合物についてそれぞれ、H−NMRで同定した。結果を表6に示す。
Figure 0006877696
Figure 0006877696
Figure 0006877696
(合成例1)
ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、1,5−ジメチルナフタレン1.09kg(7mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業(株)製試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5−ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。
得られたジメチルナフタレンホルムアルデヒドの分子量は、Mn:562、であった。
続いて、ジムロート冷却管、温度計及び攪拌翼を備えた内容積0.5Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流下で、上述のようにして得られたジメチルナフタレンホルムアルデヒド樹脂100g(0.51mol)とパラトルエンスルホン酸0.05gとを仕込み、190℃まで昇温させて2時間加熱した後、攪拌した。その後さらに、1−ナフトール52.0g(0.36mol)を加え、さらに220℃まで昇温させて2時間反応させた。溶剤希釈後、中和及び水洗を行い、溶剤を減圧下で除去することにより、黒褐色固体の変性樹脂(CR−1)126.1gを得た。
得られた樹脂(CR−1)は、Mn:885、Mw:2220、Mw/Mn:4.17であった。また、炭素濃度は89.1質量%、酸素濃度は4.5質量%であった。
[実施例1〜15、比較例1]
前記BiN−1、BiP−1、BiN−2、BiN−3、BiN−4、BiP−2、BiP−3、BiP−4、P−1、P−2、XBiN−1、XBiN−2、XBiN−3、P−3、P−4、CR−1につき、溶解度試験を行った。結果を第1表に示す。
また、表1に示す組成のリソグラフィー用下層膜形成材料を各々調製した。次に、これらのリソグラフィー用下層膜形成材料をシリコン基板上に回転塗布し、その後、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を各々作製した。酸発生剤、架橋剤及び有機溶媒については次のものを用いた。
酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
有機溶媒:プロピレングリコールモノメチルエーテルアセテートアセテート(PGMEA)
ノボラック:群栄化学社製 PSM4357
そして、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を第1表に示す。
[エッチング試験]
エッチング装置:サムコインターナショナル社製 RIE−10NR
出力:50W
圧力:20Pa
時間:2min
エッチングガス
Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
[エッチング耐性の評価]
エッチング耐性の評価は、以下の手順で行った。
まず、実施例1において用いる化合物(BiN−1)に代えてノボラック(群栄化学社製 PSM4357)を用いること以外は、実施例1と同様の条件で、ノボラックの下層膜を作製した。そして、このノボラックの下層膜を対象として、上述のエッチング試験を行い、そのときのエッチングレートを測定した。
次に、実施例1及び比較例1の下層膜を対象として、前記エッチング試験を同様に行い、そのときのエッチングレートを測定した。
そして、ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。
[評価基準]
S:ノボラックの下層膜に比べてエッチングレートが、−15%未満
A:ノボラックの下層膜に比べてエッチングレートが、−15%〜−10%未満
B:ノボラックの下層膜に比べてエッチングレートが、−10%〜+5%
C:ノボラックの下層膜に比べてエッチングレートが、+5%超
Figure 0006877696
[実施例16〜30]
次に、BiN−1、BiP−1、BiN−2、BiN−3、BiN−4、BiP−2、BiP−3、BiP−4、P−1、P−2、XBiN−1、XBiN−2、XBiN−3、P−3又は、P−4を含むリソグラフィー用下層膜形成材料の各溶液を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚70nmの下層膜を形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。なお、ArFレジスト溶液としては、下記式(11)の化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。
式(11)の化合物は、2−メチル−2−メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ−γ−ブチロラクトン3.00g、3−ヒドロキシ−1−アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn−ヘキサン中に滴下した。このようにして得られる生成樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて得た。
Figure 0006877696
前記式(11)中、40、40、20とあるのは、各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。
次いで、電子線描画装置(エリオニクス社製;ELS−7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。
得られた55nmL/S(1:1)及び80nmL/S(1:1)のレジストパターンの形状及び欠陥を観察した結果を、表8に示す。
[比較例2]
下層膜の形成を行わないこと以外は、実施例16と同様にして、フォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得た。結果を表8に示す。
Figure 0006877696
表7から明らかなように、本実施形態の化合物であるBiN−1、BiP−1、BiN−2、BiN−3、BiN−4、BiP−2、BiP−3、BiP−4、P−1、P−2、XBiN−1、XBiN−2、XBiN−3、P−3、P−4を用いた実施例1〜15では、溶解度及びエッチング耐性のいずれの点でも良好であることが確認された。一方、CR−1(フェノール変性ジメチルナフタレンホルムアルデヒド樹脂)を用いた比較例1では、エッチング耐性が不良であった。
また、実施例16〜30では、現像後のレジストパターン形状が良好であり、欠陥も見られないことが確認された。下層膜の形成を省略した比較例2に比して、解像性及び感度ともに有意に優れていることが確認された。
現像後のレジストパターン形状の相違から、実施例16〜30において用いたリソグラフィー用下層膜形成材料は、レジスト材料との密着性がよいことが示された。
[実施例31〜45]
実施例1〜15のリソグラフィー用下層膜形成材料の溶液を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚80nmの下層膜を形成した。この下層膜上に、珪素含有中間層材料を塗布し、200℃で60秒間ベークすることにより、膜厚35nmの中間層膜を形成した。さらに、この中間層膜上に、前記ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、珪素含有中間層材料としては、特開2007−226170号公報<合成例1>に記載の珪素原子含有ポリマーを用いた。
次いで、電子線描画装置(エリオニクス社製;ELS−7500,50keV)を用いて、フォトレジスト層をマスク露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、55nmL/S(1:1)のポジ型のレジストパターンを得た。
その後、サムコインターナショナル社製 RIE−10NRを用いて、得られたレジストパターンをマスクにして珪素含有中間層膜(SOG)のドライエッチング加工を行い、続いて、得られた珪素含有中間層膜パターンをマスクにした下層膜のドライエッチング加工と、得られた下層膜パターンをマスクにしたSiO膜のドライエッチング加工とを順次行った。
各々のエッチング条件は、下記に示すとおりである。
レジストパターンのレジスト中間層膜へのエッチング条件
出力:50W
圧力:20Pa
時間:1min
エッチングガス
Arガス流量:CF4ガス流量:O2ガス流量=50:8:2(sccm)
レジスト中間膜パターンのレジスト下層膜へのエッチング条件
出力:50W
圧力:20Pa
時間:2min
エッチングガス
Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
レジスト下層膜パターンのSiO膜へのエッチング条件
出力:50W
圧力:20Pa
時間:2min
エッチングガス
Arガス流量:C12ガス流量:Cガス流量:O2ガス流量
=50:4:3:1(sccm)
[評価]
上述のようにして得られたパターン断面(エッチング後のSiO膜の形状)を、(株)日立製作所製電子顕微鏡(S−4800)を用いて観察したところ、本実施形態の下層膜を用いた実施例は、多層レジスト加工におけるエッチング後のSiO膜の形状は矩形であり、欠陥も認められず良好であることが確認された。
[実施例46〜60]
実施例1〜15のリソグラフィー用下層膜形成材料と同組成の光学部品形成組成物溶液を膜厚300nmのSiO基板上に塗布して、260℃で300秒間ベークすることにより、膜厚100nmの光学部品形成膜を形成した。
次いで、ジェー・エー・ウーラム・ジャパン社製 真空紫外域多入射角分光エリプソメーター(VUV−VASE)を用いて、633nmの波長における屈折率及び透明性試験を行い、以下の基準に従って屈折率及び透明性を評価した。
[屈折率の評価基準]
A:屈折率が1.60以上
C:屈折率が1.60未満
[透明性の評価基準]
A:吸光定数が0.03未満
C:吸光定数が0.03以上
その結果、実施例46〜60のいずれも屈折率がAの評価、透明性がAの評価であり、光学部品形成組成物として有用であることが確認された。
上述したとおり、本発明は、前記実施形態及び実施例に限定されるものではなく、その要旨を逸脱しない範囲内において適宜変更を加えることが可能である。
本実施形態の化合物及び樹脂は、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であり、本実施形態のレジスト組成物は良好なレジストパターン形状を与える。
また、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるフォトレジスト下層膜を形成するために有用な化合物、樹脂及びリソグラフィー用膜形成組成物を実現することができる。そして、このリソグラフィー用膜形成組成物は、耐熱性が高く、溶媒溶解性も高い、特定構造を有する化合物又は樹脂を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れたレジスト及び下層膜を形成することができる。さらには、下層膜を形成した場合、レジスト層との密着性にも優れるので、優れたレジストパターンを形成することができる。
さらには屈折率が高く、また低温〜高温処理によって着色が抑制されることから、各種光学部品形成組成物としても有用である。
したがって、本発明は、例えば、電気用絶縁材料、レジスト用樹脂、半導体用封止樹脂、プリント配線板用接着剤、電気機器・電子機器・産業機器等に搭載される電気用積層板、電気機器・電子機器・産業機器等に搭載されるプリプレグのマトリックス樹脂、ビルドアップ積層板材料、繊維強化プラスチック用樹脂、液晶表示パネルの封止用樹脂、塗料、各種コーティング剤、接着剤、半導体用のコーティング剤、半導体用のレジスト用樹脂、下層膜形成用樹脂、フィルム状、シート状で使われるほか、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路等の光学部品等において、広く且つ有効に利用可能である。
特に、本発明はリソグラフィー用レジスト、リソグラフィー用下層膜及び多層レジスト用下層膜及び光学部品の分野において、特に有効に利用可能である。
2015年12月25日に出願された日本国特許出願2015−254433号の開示は、その全体が参照により本明細書に取り込まれる。
また、明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (24)

  1. 下記式(0)で表される、化合物。
    Figure 0006877696
    (式(0)中、RYは、メチル基又はフェニル基であり、
    Zは、ビフェノール又はシクロヘキシフェニル基を含む基であり、
    Tは、各々独立して、置換基を有していてもよい炭素原子数1〜30のアルキル基、置換基を有していてもよい炭素原子数6〜40のアリール基、置換基を有していてもよい炭素原子数2〜30のアルケニル基、置換基を有していてもよい炭素数1〜30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、前記アルキル基、前記アルケニル基及び前記アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、RTの少なくとも1つは水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
    Xは、酸素原子、硫黄原子又は無架橋であることを表し、
    mは、各々独立して0〜9の整数であり、ここで、mの少なくとも1つは1〜9の整数であり、
    Nは、1〜4の整数であり、ここで、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよく、
    rは、各々独立して0〜2の整数である。但し、Xが無架橋の場合、R T の少なくとも一つは、置換基を有していてもよい炭素数6〜40のアリール基である。
  2. 前記式(0)で表される化合物が下記式(1)で表される化合物である、請求項1に記載の化合物。
    Figure 0006877696
    (式(1)中、R0は、前記RYと同義であり、
    1は、ビフェノール又はシクロヘキシフェニル基を含む基であり、
    2〜R5は、各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、R2〜R5の少なくとも1つは水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
    2及びm3は、各々独立して、0〜8の整数であり、
    4及びm5は、各々独立して、0〜9の整数であり、
    但し、m2、m3、m4及びm5は同時に0となることはなく、
    nは前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
    2〜p5は、前記rと同義である。)
  3. 前記式(0)で表される化合物が下記式(2)で表される化合物である、請求項1に記載の化合物。
    Figure 0006877696
    (式(2)中、R0Aは、前記RYと同義であり、
    1Aは、ビフェノール又はシクロヘキシフェニル基を含む基であり、
    2Aは、各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、ハロゲン原子、シアノ基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、R2Aの少なくとも1つは水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
    Aは、前記Nと同義であり、ここで、nAが2以上の整数の場合、nA個の[ ]内の構造式は同一であっても異なっていてもよく、
    Aは、酸素原子、硫黄原子又は無架橋であることを表し、
    2Aは、各々独立して、0〜7の整数であり、但し、少なくとも1つのm2Aは1〜7の整数であり、
    Aは、各々独立して、0又は1である。但し、X A が無架橋の場合、R 2A の少なくとも一つは、置換基を有していてもよい炭素数6〜40のアリール基である。
  4. 前記式(1)で表される化合物が下記式(1−1)で表される化合物である、請求項2に記載の化合物。
    Figure 0006877696
    (式(1−1)中、R0、R1、R4、R5、n、p2〜p5、m4及びm5は、前記と同義であり、
    6〜R7は、各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子、チオール基であり、
    10〜R11は、各々独立して、水素原子又は酸解離性基であり、
    6及びm7は、各々独立して、0〜7の整数であり、
    但し、m4、m5、m6及びm7は同時に0となることはない。)
  5. 前記式(1−1)で表される化合物が下記式(1−2)で表される化合物である、請求項4に記載の化合物。
    Figure 0006877696
    (式(1−2)中、R0、R1、R6、R7、R10、R11、n、p2〜p5、m6及びm7は、前記と同義であり、
    8〜R9は、前記R6〜R7と同義であり、
    12〜R13は、前記R10〜R11と同義であり、
    8及びm9は、各々独立して、0〜8の整数であり、
    但し、m6、m7、m8及びm9は同時に0となることはない。)
  6. 前記式(2)で表される化合物が下記式(2−1)で表される化合物である、請求項3に記載の化合物。
    Figure 0006877696
    (式(2−1)中、R0A、R1A、nA、qA及びXA、は、前記式(2)で説明したものと同義である。
    3Aは、各々独立して、ハロゲン原子、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、又は炭素数2〜30のアルケニル基であり、
    4Aは、各々独立して、水素原子又は酸解離性基であり、
    6Aは、各々独立して、0〜5の整数である。但し、X A が無架橋の場合、R 2A の少なくとも一つは、置換基を有していてもよい炭素数6〜40のアリール基である。
  7. 請求項1に記載の化合物をモノマーとして得られる、樹脂。
  8. 下記式(3)で表される構造を有する、請求項7に記載の樹脂。
    Figure 0006877696
    (式(3)中、Lは、炭素数1〜30の直鎖状若しくは分岐状のアルキレン基又は単結合であり、
    0は、前記RYと同義であり、
    1は、ビフェノール又はシクロヘキシフェニル基を含む基であり、
    2〜R5は、各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、R2〜R5の少なくとも1つは水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
    2及びm3は、各々独立して、0〜8の整数であり、
    4及びm5は、各々独立して、0〜9の整数であり、
    但し、m2、m3、m4及びm5は同時に0となることはなく、
    nは前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
    2〜p5は、前記rと同義である。)
  9. 下記式(4)で表される構造を有する、請求項7に記載の樹脂。
    Figure 0006877696
    (式(4)中、Lは、炭素数1〜30の直鎖状若しくは分岐状のアルキレン基又は単結合であり、
    0Aは、前記RYと同義であり、
    1Aは、ビフェノール又はシクロヘキシフェニル基を含む基であり、
    2Aは、各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、ハロゲン原子、シアノ基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、R2Aの少なくとも1つは水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
    Aは、前記Nと同義であり、ここで、nAが2以上の整数の場合、nA個の[ ]内の構造式は同一であっても異なっていてもよく、
    Aは、酸素原子、硫黄原子又は無架橋であることを表し、
    2Aは、各々独立して、0〜7の整数であり、但し、少なくとも1つのm2Aは1〜6の整数であり、
    Aは、各々独立して、0又は1である。但し、X A が無架橋の場合、R 2A の少なくとも一つは、置換基を有していてもよい炭素数6〜40のアリール基である。
  10. 下記式(0)で表される化合物及び前記化合物をモノマーとして得られる樹脂からなる群より選ばれる1種以上を含有する、リソグラフィー用下層膜形成組成物。
    Figure 0006877696
    (式(0)中、R Y は、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基又は炭素数6〜30のアリール基であり、
    Z は、炭素数1〜60のN価の基又は単結合であり、
    T は、各々独立して、置換基を有していてもよい炭素原子数1〜30のアルキル基、置換基を有していてもよい炭素原子数6〜40のアリール基、置換基を有していてもよい炭素原子数2〜30のアルケニル基、置換基を有していてもよい炭素数1〜30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、前記アルキル基、前記アルケニル基及び前記アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R T の少なくとも1つは水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
    Xは、酸素原子、硫黄原子又は無架橋であることを表し、
    mは、各々独立して0〜9の整数であり、ここで、mの少なくとも1つは1〜9の整数であり、
    Nは、1〜4の整数であり、ここで、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよく、
    rは、各々独立して0〜2の整数である。)
  11. 前記式(0)で表される化合物が下記式(1)で表される化合物である、請求項10に記載のリソグラフィー用下層膜形成組成物。
    Figure 0006877696
    (式(1)中、R 0 は、前記R Y と同義であり、
    1 は、炭素数1〜60のn価の基又は単結合であり、
    2 〜R 5 は、各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、R 2 〜R 5 の少なくとも1つは水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
    2 及びm 3 は、各々独立して、0〜8の整数であり、
    4 及びm 5 は、各々独立して、0〜9の整数であり、
    但し、m 2 、m 3 、m 4 及びm 5 は同時に0となることはなく、
    nは前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
    2 〜p 5 は、前記rと同義である。)
  12. 前記式(0)で表される化合物が下記式(2)で表される化合物である、請求項10に記載のリソグラフィー用下層膜形成組成物。
    Figure 0006877696
    (式(2)中、R 0A は、前記R Y と同義であり、
    1A は、炭素数1〜60のn A 価の基又は単結合であり、
    2A は、各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、ハロゲン原子、シアノ基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、R 2A の少なくとも1つは水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
    A は、前記Nと同義であり、ここで、n A が2以上の整数の場合、n A 個の[ ]内の構造式は同一であっても異なっていてもよく、
    A は、酸素原子、硫黄原子又は無架橋であることを表し、
    2A は、各々独立して、0〜7の整数であり、但し、少なくとも1つのm 2A は1〜7の整数であり、
    A は、各々独立して、0又は1である。)
  13. 前記式(1)で表される化合物が下記式(1−1)で表される化合物である、請求項11に記載のリソグラフィー用下層膜形成組成物。
    Figure 0006877696
    (式(1−1)中、R 0 、R 1 、R 4 、R 5 、n、p 2 〜p 5 、m 4 及びm 5 は、前記と同義であり、
    6 〜R 7 は、各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子、チオール基であり、
    10 〜R 11 は、各々独立して、水素原子又は酸解離性基であり、
    6 及びm 7 は、各々独立して、0〜7の整数であり、
    但し、m 4 、m 5 、m 6 及びm 7 は同時に0となることはない。)
  14. 前記式(1−1)で表される化合物が下記式(1−2)で表される化合物である、請求項13に記載のリソグラフィー用下層膜形成組成物。
    Figure 0006877696
    (式(1−2)中、R 0 、R 1 、R 6 、R 7 、R 10 、R 11 、n、p 2 〜p 5 、m 6 及びm 7 は、前記と同義であり、
    8 〜R 9 は、前記R 6 〜R 7 と同義であり、
    12 〜R 13 は、前記R 10 〜R 11 と同義であり、
    8 及びm 9 は、各々独立して、0〜8の整数であり、
    但し、m 6 、m 7 、m 8 及びm 9 は同時に0となることはない。)
  15. 前記式(2)で表される化合物が下記式(2−1)で表される化合物である、請求項12に記載のリソグラフィー用下層膜形成組成物。
    Figure 0006877696
    (式(2−1)中、R 0A 、R 1A 、n A 、q A 及びX A 、は、前記式(2)で説明したものと同義である。
    3A は、各々独立して、ハロゲン原子、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、又は炭素数2〜30のアルケニル基であり、
    4A は、各々独立して、水素原子又は酸解離性基であり、
    6A は、各々独立して、0〜5の整数である。)
  16. 前記樹脂が、下記式(3)で表される構造を有する、請求項10に記載のリソグラフィー用下層膜形成組成物。
    Figure 0006877696
    (式(3)中、Lは、炭素数1〜30の直鎖状若しくは分岐状のアルキレン基又は単結合であり、
    0 は、前記R Y と同義であり、
    1 は、炭素数1〜60のn価の基又は単結合であり、
    2 〜R 5 は、各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、炭素数1〜30のアルコキシ基、ハロゲン原子、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、R 2 〜R 5 の少なくとも1つは水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
    2 及びm 3 は、各々独立して、0〜8の整数であり、
    4 及びm 5 は、各々独立して、0〜9の整数であり、
    但し、m 2 、m 3 、m 4 及びm 5 は同時に0となることはなく、
    nは前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
    2 〜p 5 は、前記rと同義である。)
  17. 前記樹脂が、下記式(4)で表される構造を有する、請求項10に記載のリソグラフィー用下層膜形成組成物。
    Figure 0006877696
    (式(4)中、Lは、炭素数1〜30の直鎖状若しくは分岐状のアルキレン基又は単結合であり、
    0A は、前記R Y と同義であり、
    1A は、炭素数1〜60のn A 価の基又は単結合であり、
    2A は、各々独立して、炭素数1〜30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6〜30のアリール基、炭素数2〜30のアルケニル基、ハロゲン原子、シアノ基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、R 2A の少なくとも1つは水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
    A は、前記Nと同義であり、ここで、n A が2以上の整数の場合、n A 個の[ ]内の構造式は同一であっても異なっていてもよく、
    A は、酸素原子、硫黄原子又は無架橋であることを表し、
    2A は、各々独立して、0〜7の整数であり、但し、少なくとも1つのm 2A は1〜6の整数であり、
    A は、各々独立して、0又は1である。)
  18. 溶媒をさらに含有する、請求項10〜17のいずれか一項に記載のリソグラフィー用下層膜形成組成物。
  19. 酸発生剤をさらに含有する、請求項10〜18のいずれか一項に記載のリソグラフィー用下層膜形成組成物。
  20. 酸架橋剤をさらに含有する、請求項10〜19のいずれか一項に記載のリソグラフィー用下層膜形成組成物。
  21. 光学部品形成に用いられる、請求項10〜20のいずれか一項に記載のリソグラフィー用下層膜形成組成物。
  22. 基板上に、請求項10〜20のいずれか一項に記載のリソグラフィー用下層膜形成組成物を用いてフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。
  23. 基板上に、請求項10〜20のいずれか一項に記載のリソグラフィー用下層膜形成組成物を用いて下層膜を形成し、前記下層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。
  24. 基板上に、請求項10〜20のいずれか一項に記載のリソグラフィー用下層膜形成組成物を用いて下層膜を形成し、前記下層膜上に、レジスト中間層膜材料を用いて中間層膜を形成し、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成し、その後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることにより基板にパターンを形成する工程を含む、回路パターン形成方法。
JP2017558330A 2015-12-25 2016-12-26 化合物、樹脂、組成物、レジストパターン形成方法、及び、回路パターン形成方法 Active JP6877696B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015254433 2015-12-25
JP2015254433 2015-12-25
PCT/JP2016/088737 WO2017111165A1 (ja) 2015-12-25 2016-12-26 化合物、樹脂、組成物、レジストパターン形成方法、及び、回路パターン形成方法

Publications (2)

Publication Number Publication Date
JPWO2017111165A1 JPWO2017111165A1 (ja) 2018-10-18
JP6877696B2 true JP6877696B2 (ja) 2021-05-26

Family

ID=59090595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017558330A Active JP6877696B2 (ja) 2015-12-25 2016-12-26 化合物、樹脂、組成物、レジストパターン形成方法、及び、回路パターン形成方法

Country Status (7)

Country Link
US (1) US11130724B2 (ja)
EP (1) EP3395845A4 (ja)
JP (1) JP6877696B2 (ja)
KR (1) KR20180099681A (ja)
CN (1) CN108473639A (ja)
TW (1) TWI752001B (ja)
WO (1) WO2017111165A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018016614A1 (ja) * 2016-07-21 2019-05-09 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びパターン形成方法
JPWO2018016634A1 (ja) * 2016-07-21 2019-05-09 三菱瓦斯化学株式会社 化合物、樹脂及び組成物、並びにレジストパターン形成方法及び回路パターン形成方法
JPWO2018056277A1 (ja) * 2016-09-20 2019-07-04 三菱瓦斯化学株式会社 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法
JPWO2018097215A1 (ja) * 2016-11-24 2019-10-17 三菱瓦斯化学株式会社 化合物、樹脂、組成物、パターン形成方法及び精製方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6877696B2 (ja) 2015-12-25 2021-05-26 三菱瓦斯化学株式会社 化合物、樹脂、組成物、レジストパターン形成方法、及び、回路パターン形成方法
JP7128582B2 (ja) * 2017-10-25 2022-08-31 田岡化学工業株式会社 ナフタレン骨格を有するビスアリールアルコール類及びその製造方法
US20210040290A1 (en) * 2018-01-31 2021-02-11 Mitsubishi Gas Chemical Company, Inc. Composition, method for forming resist pattern and method for forming insulating film
JP2021152557A (ja) * 2018-06-13 2021-09-30 Dic株式会社 フェノール性水酸基含有樹脂及びこれを用いたレジスト材料
KR20210036866A (ko) * 2018-07-31 2021-04-05 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 광학부품형성용 조성물 및 광학부품, 그리고, 화합물 및 수지
KR20210049094A (ko) * 2018-08-24 2021-05-04 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 화합물, 및 그것을 포함하는 조성물, 그리고, 레지스트패턴의 형성방법 및 절연막의 형성방법
TW202024006A (zh) * 2018-08-24 2020-07-01 日商三菱瓦斯化學股份有限公司 化合物,及包含其之組成物,以及阻劑圖型之形成方法及絕緣膜之形成方法
WO2020145406A1 (ja) * 2019-01-11 2020-07-16 三菱瓦斯化学株式会社 膜形成用組成物、レジスト組成物、感放射線性組成物、アモルファス膜の製造方法、レジストパターン形成方法、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法及び回路パターン形成方法
JPWO2020145407A1 (ja) * 2019-01-11 2021-11-18 三菱瓦斯化学株式会社 多環ポリフェノール樹脂、及び多環ポリフェノール樹脂の製造方法
KR102029127B1 (ko) * 2019-02-08 2019-10-07 영창케미칼 주식회사 반도체 제조 공정에 있어서 실리콘 또는 실리콘 화합물 패턴을 형성하기 위한 신규 방법
US20220308455A1 (en) * 2019-07-08 2022-09-29 Merck Patent Gmbh Rinse and method of use thereof for removing edge protection layers and residual metal hardmask components
JP2023008657A (ja) * 2021-07-06 2023-01-19 信越化学工業株式会社 密着膜形成材料、これを用いた密着膜の形成方法、及び密着膜形成材料を用いたパターン形成方法

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108665A (en) 1976-10-07 1978-08-22 Minnesota Mining And Manufacturing Company Stabilizers for photothermographic constructions
JPS58134631A (ja) * 1982-01-08 1983-08-10 Konishiroku Photo Ind Co Ltd 感光性組成物
JPS61138614A (ja) * 1984-12-10 1986-06-26 Matsushita Electric Works Ltd フエノ−ルノボラツクの製造方法
JPS62289536A (ja) * 1986-06-09 1987-12-16 Idemitsu Kosan Co Ltd 1−(p−ビフエニリル)−1,1−ビス(4′−ヒドロキシフエニル)メタン誘導体
US5310619A (en) * 1986-06-13 1994-05-10 Microsi, Inc. Resist compositions comprising a phenolic resin, an acid forming onium salt and a tert-butyl ester or tert-butyl carbonate which is acid-cleavable
DE59107712D1 (de) * 1990-09-13 1996-05-30 Ocg Microelectronic Materials Säurelabile Lösungsinhibitoren und darauf basierende positiv und negativ arbeitende strahlungsempfindliche Zusammensetzung
JPH051127A (ja) * 1991-02-18 1993-01-08 Yuka Shell Epoxy Kk ノボラツク型フエノール樹脂の製造方法
JPH06202320A (ja) * 1992-12-28 1994-07-22 Japan Synthetic Rubber Co Ltd 感放射線性樹脂組成物
DE4405108A1 (de) * 1993-02-18 1994-08-25 Fuji Photo Film Co Ltd Positiv arbeitende lichtempfindliche Zusammensetzung
JPH06301210A (ja) * 1993-04-15 1994-10-28 Fuji Photo Film Co Ltd ポジ型感光性組成物
EP0720052A1 (en) * 1994-12-27 1996-07-03 Mitsubishi Chemical Corporation Photosensitive composition and photosensitive lithographic printing plate
JP3591547B2 (ja) * 1995-09-18 2004-11-24 信越化学工業株式会社 ビスフェノールカルボン酸第三級エステル誘導体及び化学増幅ポジ型レジスト材料
US6844273B2 (en) 2001-02-07 2005-01-18 Tokyo Electron Limited Precleaning method of precleaning a silicon nitride film forming system
JP3774668B2 (ja) 2001-02-07 2006-05-17 東京エレクトロン株式会社 シリコン窒化膜形成装置の洗浄前処理方法
KR100876047B1 (ko) * 2001-03-29 2008-12-26 오사까 가스 가부시키가이샤 광활성 화합물 및 감광성 수지 조성물
JP3944134B2 (ja) * 2002-07-15 2007-07-11 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
TWI264440B (en) 2002-07-25 2006-10-21 Mitsubishi Gas Chemical Co (Meth)acrylate compound and cured product thereof
US7238462B2 (en) 2002-11-27 2007-07-03 Tokyo Ohka Kogyo Co., Ltd. Undercoating material for wiring, embedded material, and wiring formation method
JP3914493B2 (ja) 2002-11-27 2007-05-16 東京応化工業株式会社 多層レジストプロセス用下層膜形成材料およびこれを用いた配線形成方法
EP1592051A4 (en) 2003-01-24 2012-02-22 Tokyo Electron Ltd CHEMICAL VAPOR DEPOSITION METHOD FOR FORMING SILICON NITRIDE FILM ON A SUBSTRATE
JP3981030B2 (ja) 2003-03-07 2007-09-26 信越化学工業株式会社 レジスト下層膜材料ならびにパターン形成方法
KR20060071423A (ko) 2003-09-18 2006-06-26 미츠비시 가스 가가쿠 가부시키가이샤 레지스트용 화합물 및 감방사선성 조성물
CN1853141A (zh) 2003-09-18 2006-10-25 三菱瓦斯化学株式会社 抗蚀化合物和辐射敏感组合物
JP2005222573A (ja) 2004-02-03 2005-08-18 Konica Minolta Opto Inc プラスチック製光学素子及び光ピックアップ装置
JP4388429B2 (ja) 2004-02-04 2009-12-24 信越化学工業株式会社 レジスト下層膜材料ならびにパターン形成方法
EP1739485B1 (en) 2004-04-15 2016-08-31 Mitsubishi Gas Chemical Company, Inc. Resist composition
TWI495632B (zh) * 2004-12-24 2015-08-11 Mitsubishi Gas Chemical Co 光阻用化合物
TWI390347B (zh) 2005-10-14 2013-03-21 Mitsubishi Gas Chemical Co 光阻組成物
JP4659678B2 (ja) 2005-12-27 2011-03-30 信越化学工業株式会社 フォトレジスト下層膜形成材料及びパターン形成方法
US7585613B2 (en) 2006-01-25 2009-09-08 Shin-Etsu Chemical Co., Ltd. Antireflection film composition, substrate, and patterning process
JP4781280B2 (ja) 2006-01-25 2011-09-28 信越化学工業株式会社 反射防止膜材料、基板、及びパターン形成方法
JP4638380B2 (ja) 2006-01-27 2011-02-23 信越化学工業株式会社 反射防止膜材料、反射防止膜を有する基板及びパターン形成方法
JP5119599B2 (ja) 2006-02-01 2013-01-16 三菱瓦斯化学株式会社 感放射線性組成物
EP2080750B1 (en) 2006-11-02 2020-07-29 Mitsubishi Gas Chemical Company, Inc. Radiation-sensitive composition
JP4858136B2 (ja) * 2006-12-06 2012-01-18 三菱瓦斯化学株式会社 感放射線性レジスト組成物
JP5311750B2 (ja) * 2007-02-28 2013-10-09 株式会社Adeka フェノール樹脂、エポキシ樹脂、アルカリ現像性樹脂組成物及びアルカリ現像性感光性樹脂組成物
JP5446118B2 (ja) * 2007-04-23 2014-03-19 三菱瓦斯化学株式会社 感放射線性組成物
EP2219076B1 (en) 2007-12-07 2013-11-20 Mitsubishi Gas Chemical Company, Inc. Composition for forming base film for lithography and method for forming multilayer resist pattern
KR100964642B1 (ko) * 2008-02-22 2010-06-21 에스화인켐 주식회사 고굴절, 고탄성의 프리즘 시트와 이를 위한 조성물 및 그제조 방법
JP2010138393A (ja) 2008-11-13 2010-06-24 Nippon Kayaku Co Ltd 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
KR101797781B1 (ko) * 2009-09-09 2017-11-15 혼슈우 카가쿠고교 가부시키가이샤 신규한 트리스페놀 화합물
JP5707779B2 (ja) * 2010-08-24 2015-04-30 日立化成株式会社 感光性樹脂組成物、感光性フィルム、リブパターンの形成方法、中空構造の形成方法及び電子部品
WO2012090408A1 (ja) * 2010-12-28 2012-07-05 三菱瓦斯化学株式会社 芳香族炭化水素樹脂、リソグラフィー用下層膜形成組成物及び多層レジストパターンの形成方法
KR102082839B1 (ko) * 2011-08-12 2020-02-28 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 레지스트 조성물, 레지스트 패턴 형성방법, 이에 이용되는 폴리페놀 화합물 및 이로부터 유도될 수 있는 알코올 화합물
US9316913B2 (en) * 2011-08-12 2016-04-19 Mitsubishi Gas Chemical Company, Inc. Underlayer film-forming material for lithography, underlayer film for lithography, and pattern formation method
JP5977842B2 (ja) 2012-03-16 2016-08-24 中国科学院化学研究所 ビスフェノールa骨格構造含有の分子性ガラスフォトレジスト及びその製造方法並びに応用
US9469777B2 (en) 2012-08-21 2016-10-18 Nissan Chemical Industries, Ltd. Resist underlayer film forming composition that contains novolac resin having polynuclear phenol
JP2014073986A (ja) 2012-10-03 2014-04-24 Asahi Organic Chemicals Industry Co Ltd アントラセン誘導体及びその製造方法、化合物、組成物、硬化物並びに蛍光素子
JP5835194B2 (ja) * 2012-11-26 2015-12-24 信越化学工業株式会社 レジスト下層膜材料及びパターン形成方法
JP6344607B2 (ja) * 2013-02-08 2018-06-20 三菱瓦斯化学株式会社 レジスト組成物、レジストパターン形成方法及びそれに用いるポリフェノール誘導体
KR102094211B1 (ko) 2013-02-08 2020-03-27 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 신규 알릴 화합물 및 그 제조방법
CN104981463B (zh) * 2013-02-08 2018-04-13 三菱瓦斯化学株式会社 化合物、光刻用下层膜形成材料、光刻用下层膜及图案形成方法
US9252359B2 (en) 2013-03-03 2016-02-02 Adesto Technologies Corporation Resistive switching devices having a switching layer and an intermediate electrode layer and methods of formation thereof
US10303055B2 (en) 2014-03-13 2019-05-28 Mitsubishi Gas Chemical Company, Inc. Resist composition and method for forming resist pattern
JP2015174877A (ja) 2014-03-13 2015-10-05 日産化学工業株式会社 特定の硬化促進触媒を含む樹脂組成物
EP3118183B1 (en) 2014-03-13 2021-07-21 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and method for purifying the compound or resin
US9274426B2 (en) 2014-04-29 2016-03-01 Az Electronic Materials (Luxembourg) S.A.R.L. Antireflective coating compositions and processes thereof
JP6381318B2 (ja) 2014-06-30 2018-08-29 新日鉄住金化学株式会社 光学レンズ用活性エネルギー線硬化性樹脂組成物
JP2017088675A (ja) 2015-11-05 2017-05-25 Dic株式会社 ノボラック型フェノール性水酸基含有樹脂及びレジスト材料
JP6877696B2 (ja) 2015-12-25 2021-05-26 三菱瓦斯化学株式会社 化合物、樹脂、組成物、レジストパターン形成方法、及び、回路パターン形成方法
US20190359756A1 (en) * 2016-09-13 2019-11-28 Mitsubishi Gas Chemical Company, Inc. Optical member forming composition
KR20190057060A (ko) * 2016-09-20 2019-05-27 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 화합물, 수지, 조성물, 그리고 레지스트 패턴 형성방법 및 회로패턴 형성방법

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018016614A1 (ja) * 2016-07-21 2019-05-09 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びパターン形成方法
JPWO2018016634A1 (ja) * 2016-07-21 2019-05-09 三菱瓦斯化学株式会社 化合物、樹脂及び組成物、並びにレジストパターン形成方法及び回路パターン形成方法
JP7194355B2 (ja) 2016-07-21 2022-12-22 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びパターン形成方法
JP7194356B2 (ja) 2016-07-21 2022-12-22 三菱瓦斯化学株式会社 化合物、樹脂及び組成物、並びにレジストパターン形成方法及び回路パターン形成方法
JPWO2018056277A1 (ja) * 2016-09-20 2019-07-04 三菱瓦斯化学株式会社 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法
JP7061271B2 (ja) 2016-09-20 2022-04-28 三菱瓦斯化学株式会社 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法
JPWO2018097215A1 (ja) * 2016-11-24 2019-10-17 三菱瓦斯化学株式会社 化合物、樹脂、組成物、パターン形成方法及び精製方法
JP7145415B2 (ja) 2016-11-24 2022-10-03 三菱瓦斯化学株式会社 化合物、樹脂、組成物、パターン形成方法及び精製方法

Also Published As

Publication number Publication date
US11130724B2 (en) 2021-09-28
US20190010108A1 (en) 2019-01-10
TW201736329A (zh) 2017-10-16
EP3395845A1 (en) 2018-10-31
KR20180099681A (ko) 2018-09-05
TWI752001B (zh) 2022-01-11
JPWO2017111165A1 (ja) 2018-10-18
WO2017111165A1 (ja) 2017-06-29
CN108473639A (zh) 2018-08-31
EP3395845A4 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
JP6877696B2 (ja) 化合物、樹脂、組成物、レジストパターン形成方法、及び、回路パターン形成方法
JP7212449B2 (ja) 化合物及びその製造方法、並びに、組成物、光学部品形成用組成物、リソグラフィー用膜形成組成物、レジスト組成物、レジストパターンの形成方法、感放射線性組成物、アモルファス膜の製造方法、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法、レジストパターン形成方法、回路パターン形成方法、及び、精製方法
JP7069529B2 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JP6861950B2 (ja) 新規化合物及びその製造方法
JP2022033731A (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JP7069530B2 (ja) 化合物、樹脂、組成物及びパターン形成方法
JPWO2018016614A1 (ja) 化合物、樹脂、組成物及びパターン形成方法
JP6853957B2 (ja) 新規(メタ)アクリロイル化合物及びその製造方法
JP2022130463A (ja) 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法
JPWO2019142897A1 (ja) 化合物、樹脂、組成物及びパターン形成方法
JPWO2018016634A1 (ja) 化合物、樹脂及び組成物、並びにレジストパターン形成方法及び回路パターン形成方法
WO2018101377A1 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JP7083455B2 (ja) 化合物、樹脂、組成物及びパターン形成方法
WO2018101376A1 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
TWI797246B (zh) 化合物、樹脂、組成物、抗蝕圖型形成方法、電路圖型形成方法及樹脂之純化方法
JP7090843B2 (ja) 化合物、樹脂、組成物、パターン形成方法及び精製方法
JP7445382B2 (ja) 化合物、樹脂、組成物及びパターン形成方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180618

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210411

R151 Written notification of patent or utility model registration

Ref document number: 6877696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151