JP7194356B2 - 化合物、樹脂及び組成物、並びにレジストパターン形成方法及び回路パターン形成方法 - Google Patents

化合物、樹脂及び組成物、並びにレジストパターン形成方法及び回路パターン形成方法 Download PDF

Info

Publication number
JP7194356B2
JP7194356B2 JP2018528898A JP2018528898A JP7194356B2 JP 7194356 B2 JP7194356 B2 JP 7194356B2 JP 2018528898 A JP2018528898 A JP 2018528898A JP 2018528898 A JP2018528898 A JP 2018528898A JP 7194356 B2 JP7194356 B2 JP 7194356B2
Authority
JP
Japan
Prior art keywords
group
formula
carbon atoms
compound
integer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018528898A
Other languages
English (en)
Other versions
JPWO2018016634A1 (ja
Inventor
雅敏 越後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of JPWO2018016634A1 publication Critical patent/JPWO2018016634A1/ja
Application granted granted Critical
Publication of JP7194356B2 publication Critical patent/JP7194356B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/16Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/40Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings
    • C07C271/42Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/48Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/40Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings
    • C07C271/42Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/54Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F120/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F20/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Architecture (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Description

本発明は、特定の構造を有する化合物、樹脂及びこれらを含有する組成物に関する。また、該組成物を用いるパターン形成方法(レジストパターン形成方法及び回路パターン形成方法)に関する。
半導体デバイスの製造において、フォトレジスト材料を用いたリソグラフィーによる微細加工が行われているが、近年、LSIの高集積化と高速度化に伴い、パターンルールによる更なる微細化が求められている。また、レジストパターン形成の際に使用するリソグラフィー用の光源は、KrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)へと短波長化されており、極端紫外光(EUV、13.5nm)の導入も見込まれている。
しかしながら、従来の高分子系レジスト材料を用いるリソグラフィーでは、その分子量が1万~10万程度と大きく、分子量分布も広いため、パターン表面にラフネスが生じパターン寸法の制御が困難となり、微細化に限界がある。
そこで、これまでに、より解像性の高いレジストパターンを与えるために、種々の低分子量レジスト材料が提案されている。低分子量レジスト材料は分子サイズが小さいことから、解像性が高く、ラフネスが小さいレジストパターンを与えることが期待される。
現在、このような低分子系レジスト材料として、様々なものが知られている。例えば、低分子量多核ポリフェノール化合物を主成分として用いるアルカリ現像型のネガ型感放射線性組成物(例えば、特許文献1及び特許文献2参照)が提案されており、高耐熱性を有する低分子量レジスト材料の候補として、低分子量環状ポリフェノール化合物を主成分として用いるアルカリ現像型のネガ型感放射線性組成物(例えば、特許文献3及び非特許文献1参照)も提案されている。また、レジスト材料のベース化合物として、ポリフェノール化合物が、低分子量ながら高耐熱性を付与でき、レジストパターンの解像性やラフネスの改善に有用であることが知られている(例えば、非特許文献2参照)。
本発明者らは、エッチング耐性に優れるとともに、溶媒に可溶で湿式プロセスが適用可能な材料として、特定の構造の化合物及び有機溶媒を含有するレジスト組成物(例えば、特許文献4を参照)を提案している。
また、レジストパターンの微細化が進むと、解像度の問題若しくは現像後にレジストパターンが倒れるといった問題が生じてくるため、レジストの薄膜化が望まれるようになる。ところが、単にレジストの薄膜化を行うと、基板加工に十分なレジストパターンの膜厚を得ることが難しくなる。そのため、レジストパターンだけではなく、レジストと加工する半導体基板との間にレジスト下層膜を作製し、このレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要になっている。
現在、このようなプロセス用のレジスト下層膜として、種々のものが知られている。例えば、従来のエッチング速度の速いレジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、所定のエネルギーが印加されることにより末端基が脱離してスルホン酸残基を生じる置換基を少なくとも有する樹脂成分と溶媒とを含有する多層レジストプロセス用下層膜形成材料が提案されている(例えば、特許文献5参照)。また、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、特定の繰り返し単位を有する重合体を含むレジスト下層膜材料が提案されている(例えば、特許文献6参照)。さらに、半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、アセナフチレン類の繰り返し単位と、置換又は非置換のヒドロキシ基を有する繰り返し単位とを共重合してなる重合体を含むレジスト下層膜材料が提案されている(例えば、特許文献7参照)。
一方、この種のレジスト下層膜において高いエッチング耐性を持つ材料としては、メタンガス、エタンガス、アセチレンガス等を原料に用いたCVDによって形成されたアモルファスカーボン下層膜がよく知られている。しかしながら、プロセス上の観点から、スピンコート法やスクリーン印刷等の湿式プロセスでレジスト下層膜を形成できるレジスト下層膜材料が求められている。
また、本発明者らは、エッチング耐性に優れるとともに、耐熱性が高く、溶媒に可溶で湿式プロセスが適用可能な材料として、特定の構造の化合物及び有機溶媒を含有するリソグラフィー用下層膜形成組成物(例えば、特許文献8参照)を提案している。
なお、3層プロセスにおけるレジスト下層膜の形成において用いられる中間層の形成方法に関しては、例えば、シリコン窒化膜の形成方法(例えば、特許文献9参照)や、シリコン窒化膜のCVD形成方法(例えば、特許文献10参照)が知られている。また、3層プロセス用の中間層材料としては、シルセスキオキサンベースの珪素化合物を含む材料が知られている(例えば、特許文献11及び12参照)。
さらに光学部品形成組成物として、様々なものが提案されている。例えば、アクリル系樹脂が挙げられる(例えば、特許文献13~14参照)。
特開2005-326838号公報 特開2008-145539号公報 特開2009-173623号公報 国際公開第2013/024778号 特開2004-177668号公報 特開2004-271838号公報 特開2005-250434号公報 国際公開第2013/024779号 特開2002-334869号公報 国際公開第2004/066377号 特開2007-226170号公報 特開2007-226204号公報 特開2010-138393号公報 特開2015-174877号公報
T.Nakayama,M.Nomura,K.Haga,M.Ueda:Bull.Chem.Soc.Jpn.,71,2979(1998) 岡崎信次、他22名「フォトレジスト材料開発の新展開」株式会社シーエムシー出版、2009年9月、p.211-259
上述したように、従来数多くのレジスト用途向けリソグラフィー用膜形成組成物及び下層膜用途向けリソグラフィー用膜形成組成物が提案されているが、スピンコート法やスクリーン印刷等の湿式プロセスが適用可能な高い溶媒溶解性を有するのみならず、耐熱性及びエッチング耐性を高い次元で両立させたものはなく、新たな材料の開発が求められている。また、アルカリ現像性、光感度及び解像度に優れるレジスト永久膜を得るのに好適な新たな材料の開発も求められている。
さらに、従来数多くの光学部材向け組成物が提案されているが、耐熱性、透明性及び屈折率を高い次元で両立させたものはなく、新たな材料の開発が求められている。
本発明は、上記従来技術の課題を鑑みてなされたものであり、その目的は、湿式プロセスが適用可能であり、耐熱性に優れ、溶解性及びエッチング耐性に優れるフォトレジスト及びフォトレジスト用下層膜を形成するために有用な、化合物、樹脂及び組成物を提供することにある。また、該組成物を用いたレジスト膜、レジスト下層膜、レジスト永久膜、パターン形成方法を提供することにある。さらには、光学部材向け組成物を提供することにある。
本発明者らは、上記従来技術の課題を解決するために鋭意検討を重ねた結果、特定構造を有する化合物又は樹脂を用いることにより、上記従来技術の課題を解決できることを見出し、本発明を完成するに到った。
すなわち、本発明は、つぎのとおりである。
[1]
下記式(0)で表される、化合物。
Figure 0007194356000001
(0)
(式(0)中、Rは、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基であり、
は、炭素数1~60のN価の基又は単結合であり、
は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が下記式(0-1)で表される基で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、Rの少なくとも1つは下記式(0-1)で表される基を含み、
Xは、酸素原子、硫黄原子又は無架橋であることを示し、
mは、各々独立して0~9の整数であり、ここで、mの少なくとも1つは1~9の整数であり、
Nは、1~4の整数であり、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよく、
rは、各々独立して0~2の整数である。)
Figure 0007194356000002
(0-1)
(式(0-1)中、Rは、水素原子又はメチル基である。)
[2]
前記式(0)で表される化合物が下記式(1)で表される化合物である、[1]に記載の化合物。
Figure 0007194356000003
(1)
(式(1)中、Rは、前記Rと同義であり、
は、炭素数1~60のn価の基又は単結合であり、
~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が前記式(0-1)で表される基で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R~Rの少なくとも1つは前記式(0-1)で表される基を含み、
及びmは、各々独立して、0~8の整数であり、
及びmは、各々独立して、0~9の整数であり、
但し、m、m、m及びmは同時に0になることはなく、
nは前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
~pは、前記rと同義である。)
[3]
前記式(0)で表される化合物が下記式(2)で表される化合物である、[1]に記載の化合物。
Figure 0007194356000004
(2)
(式(2)中、R0Aは、前記Rと同義であり、
1Aは、炭素数1~60のn価の基又は単結合であり、
2Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が前記式(0-1)で表される基で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2Aの少なくとも1つは前記式(0-1)で表される基を含み、
は、前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
は、酸素原子、硫黄原子又は無架橋であることを示し、
2Aは、各々独立して、0~7の整数であり、但し、少なくとも1つのm2Aは1~7の整数であり、
は、各々独立して、0又は1である。)
[4]
前記式(1)で表される化合物が下記式(1-1)で表される化合物である、[2]に記載の化合物。
Figure 0007194356000005
(1-1)
(式(1-1)中、R、R、R、R、n、p~p、m及びmは、前記式(1)におけるものと同義であり、
~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基であり、
10~R11は、各々独立して、水素原子又は下記式(0-2)で表される基であり、
ここで、R10~R11の少なくとも1つは下記式(0-2)で表される基であり、
及びmは、各々独立して、0~7の整数であり、
但し、m、m、m及びmは同時に0になることはない。)
Figure 0007194356000006
(0-2)
(式(0-2)中、Rは、前記式(0-1)におけるものと同義であり、sは、0~30の整数である。)
[5]
前記式(1-1)で表される化合物が下記式(1-2)で表される化合物である、[4]に記載の化合物。
Figure 0007194356000007
(1-2)
(式(1-2)中、R、R、R、R、R10、R11、n、p~p、m及びmは、前記式(1-1)におけるものと同義であり、
~Rは、前記R~Rと同義であり、
12~R13は、前記R10~R11と同義であり、
及びmは、各々独立して、0~8の整数であり、
但し、m、m、m及びmは同時に0になることはない。)
[6]
前記式(2)で表される化合物が下記式(2-1)で表される化合物である、[3]に記載の化合物。
Figure 0007194356000008
(2-1)
(式(2-1)中、R0A、R1A、n、q及びX、は、前記式(2)におけるものと同義であり、
3Aは、各々独立して、置換基を有していてもよい炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基であり、
4Aは、各々独立して、水素原子又は下記式(0-2)で表される基であり、
ここで、R4Aの少なくとも1つは下記式(0-2)で表される基であり、
6Aは、各々独立して、0~5の整数である。)
Figure 0007194356000009
(0-2)
(式(0-2)中、Rは、前記式(0-1)におけるものと同義であり、sは、0~30の整数である。)
[7]
[1]に記載の化合物をモノマーとして得られる、樹脂。
[8]
下記式(3)で表される構造を有する、[7]に記載の樹脂。
Figure 0007194356000010
(3)
(式(3)中、Lは、置換基を有していてもよい炭素数1~30のアルキレン基、置換基を有していてもよい炭素数6~30のアリーレン基、置換基を有していてもよい炭素数1~30のアルコキシレン基又は単結合であり、前記アルキレン基、前記アリーレン基、前記アルコキシレン基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
は、前記Rと同義であり、
は、炭素数1~60のn価の基又は単結合であり、
~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が前記式(0-1)で表される基で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R~Rの少なくとも1つは前記式(0-1)で表される基を含み、
及びmは、各々独立して、0~8の整数であり、
及びmは、各々独立して、0~9の整数であり、
但し、m、m、m及びmは同時に0になることはなく、
nは前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
~pは、前記rと同義である。)
[9]
下記式(4)で表される構造を有する、[7]に記載の樹脂。
Figure 0007194356000011
(4)
(式(4)中、Lは、置換基を有していてもよい炭素数1~30のアルキレン基、置換基を有していてもよい炭素数6~30のアリーレン基、置換基を有していてもよい炭素数1~30のアルコキシレン基又は単結合であり、前記アルキレン基、前記アリーレン基、前記アルコキシレン基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
0Aは、前記Rと同義であり、
1Aは、炭素数1~30のn価の基又は単結合であり、
2Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が前記式(0-1)で表される基で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2Aの少なくとも1つは前記式(0-1)で表される基を含み、
は、上記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
は、酸素原子、硫黄原子又は無架橋であることを示し、
2Aは、各々独立して、0~7の整数であり、但し、少なくとも1つのm2Aは1~6の整数であり、
は、各々独立して、0又は1である。)
[10]
[1]~[6]のいずれかに記載の化合物及び[7]~[9]のいずれかに記載の樹脂からなる群より選ばれる1種以上を含有する、組成物。
[11]
溶媒をさらに含有する、[10]に記載の組成物。
[12]
酸発生剤をさらに含有する、[10]又は[11]に記載の組成物。
[13]
架橋剤をさらに含有する、[10]~[12]のいずれかに記載の組成物。
[14]
前記架橋剤は、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物及びアジド化合物からなる群より選ばれる少なくとも1種である、[13]に記載の組成物。
[15]
前記架橋剤は、少なくとも1つのアリル基を有する、[13]又は[14]に記載の組成物。
[16]
前記架橋剤の含有割合が、[1]~[6]のいずれかに記載の化合物及び[7]~[9]のいずれかに記載の樹脂からなる群より選ばれる1種以上を含有する組成物の合計質量を100質量部とした場合に、0.1~100質量部である、[13]~[15]のいずれかに記載の組成物。
[17]
架橋促進剤をさらに含有する、[13]~[16]のいずれかに記載の組成物。
[18]
前記架橋促進剤は、アミン類、イミダゾール類、有機ホスフィン類、及びルイス酸からなる群より選ばれる少なくとも1種である、[17]に記載の組成物。
[19]
前記架橋促進剤の含有割合が、[1]~[6]のいずれかに記載の化合物及び[7]~[9]のいずれかに記載の樹脂からなる群より選ばれる1種以上を含有する組成物の合計質量を100質量部とした場合に、0.1~5質量部である、[17]又は[18]に記載の組成物。
[20]
ラジカル重合開始剤をさらに含有する、[10]~[19]のいずれかに記載の組成物。
[21]
前記ラジカル重合開始剤は、ケトン系光重合開始剤、有機過酸化物系重合開始剤及びアゾ系重合開始剤からなる群より選ばれる少なくとも1種である、[10]~[20]のいずれかに記載の組成物。
[22]
前記ラジカル重合開始剤の含有割合が、[1]~[6]のいずれかに記載の化合物及び[7]~[9]のいずれかに記載の樹脂からなる群より選ばれる1種以上を含有する組成物の合計質量を100質量部とした場合に、0.05~25質量部である、[10]~[21]のいずれかに記載の組成物。
[23]
リソグラフィー用膜形成に用いられる、[10]~[22]のいずれかに記載の組成物。
[24]
レジスト永久膜形成に用いられる、[10]~[22]のいずれかに記載の組成物。
[25]
光学部品形成に用いられる、[10>~[22]のいずれかに記載の組成物。
[26]
基板上に、[23]に記載の組成物を用いてフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。
[27]
基板上に、[23]に記載の組成物を用いて下層膜を形成し、前記下層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。
[28]
基板上に、[23]に記載の組成物を用いて下層膜を形成し、前記下層膜上に、レジスト中間層膜材料を用いて中間層膜を形成し、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成し、その後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることにより基板にパターンを形成する工程を含む、回路パターン形成方法。
本発明に係る化合物及び樹脂は、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であり、本発明に係る組成物は、良好なレジストパターン形状を与える。
以下、本発明を実施するための形態(以下、「本実施形態」ともいう。)について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
本実施形態の化合物は後述の式(0)で表される化合物、又は、当該化合物をモノマーとして得られる樹脂である。本発明に係る化合物及び樹脂は、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるフォトレジスト下層膜を形成するために有用である。そして、このリソグラフィー用膜形成組成物は、耐熱性が高く、溶媒溶解性も高い、特定構造を有する化合物又は樹脂を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れたレジスト及び下層膜を形成することができる。加えて、下層膜を形成した場合、レジスト層との密着性にも優れるので、優れたレジストパターンを形成することができる。また、本実施形態における化合物及び樹脂は、感光性材料に用いた際の感度や解像度に優れるものであり、耐熱性の高さを維持しつつ、更に、汎用有機溶剤や他の化合物、樹脂成分、および添加剤との相溶性に優れるレジスト永久膜を形成するために有用である。
さらには、屈折率が高く、また低温から高温までの広範囲の熱処理によって着色が抑制されることから、各種光学形成組成物としても有用である。
[式(0)で表される化合物]
本実施形態の化合物は、下記式(0)で表される。
Figure 0007194356000012
(0)
(式(0)中、Rは、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基であり、
は、炭素数1~60のN価の基又は単結合であり、
は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が下記式(0-1)で表される基で置換された基であり、上記アルキル基、上記アリール基、上記アルケニル基、上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、Rの少なくとも1つは下記式(0-1)で表される基を含み、
Xは、酸素原子、硫黄原子又は無架橋であることを示し、
mは、各々独立して0~9の整数であり、ここで、mの少なくとも1つは1~9の整数であり、
Nは、1~4の整数であり、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよく、
rは、各々独立して0~2の整数である。)
Figure 0007194356000013
(0-1)
(式(0-1)中、Rは、水素原子又はメチル基である。)
式(0-1)で表される基を含む基とは、式(0-1)で表される基を有する基であり、例えば、式(0-1)で表される基、式(0-1)で表される基で置換されたメトキシ基、式(0-1)で表される基で置換されたエトキシ基、式(0-1)で表される基で置換されたプロポキシ基、式(0-1)で表される基で置換されたエトキシエトキシ基、式(0-1)で表される基で置換されたプロポキシプロポキシ基、及び式(0-1)で表される基で置換されたフェニルオキシ基が挙げられる。
は、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基である。アルキル基は、直鎖状、分岐状若しくは環状のアルキル基を用いることができる。Rが、水素原子、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基又は炭素数6~30のアリール基であることにより、優れた耐熱性及び溶媒溶解性を付与することができる。
は炭素数1~60のN価の基又は単結合であり、このRを介して各々の芳香環が結合している。Nは、1~4の整数であり、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよい。なお、上記N価の基とは、N=1のときには、炭素数1~60のアルキル基、N=2のときには、炭素数1~30のアルキレン基、N=3のときには、炭素数2~60のアルカンプロパイル基、N=4のときには、炭素数3~60のアルカンテトライル基のことを示す。上記N価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基を有するもの等が挙げられる。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、上記N価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~60の芳香族基を有していてもよい。
は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が上記式(0-1)で表される基で置換された基であり、上記アルキル基、上記アリール基、上記アルケニル基、上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、Rの少なくとも1つは水酸基の水素原子がアリルオキシアルキル基、アクリルオキシアルキル基及びアクリルオキシアルキル基から選ばれる1つの基で置換された基を含む。なお、上記アルキル基、アルケニル基及びアルコキシ基は、直鎖状、分岐状若しくは環状の基であってもよい。
ここで、水酸基の水素原子がビニルフェニルメチル基で置換された基とは、ビニルフェニルメチル基を有する基であり、例えば、ビニルフェニルメチル基、ビニルフェニルメチルメチル基、ビニルフェニルメチルフェニル基等が挙げられる。
Xは、酸素原子、硫黄原子又は無架橋であることを示し、Xが酸素原子又は硫黄原子である場合、高い耐熱性を発現する傾向にあるため好ましく、酸素原子であることがより好ましい。Xは、溶解性の観点からは、無架橋であることが好ましい。また、mは、各々独立して0~9の整数であり、mの少なくとも1つは1~9の整数である。
式(0)中、ナフタレン構造で示される部位は、r=0の場合には単環構造であり、r=1の場合には二環構造であり、r=2の場合には三環構造となる。rは、各々独立して0~2の整数である。上述のmは、rで決定される環構造に応じてその数値範囲が決定される。
上記式(0)で表される化合物は、比較的に低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、分子中に3級炭素又は4級炭素を有しており、結晶性が抑制され、リソグラフィー用膜製造に使用できるリソグラフィー用膜形成組成物として好適に使用される。
また、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であるため、式(0)で表される化合物を含むリソグラフィー用レジスト形成組成物は、良好なレジストパターン形状を与えることができる。
さらに、比較的に低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させつつ、膜の平坦性を高めることが容易であり、その結果、式(0)で表される化合物を含むリソグラフィー用下層膜形成組成物は、埋め込み及び平坦化特性が良好である。また、式(0)で表される化合物は比較的に高い炭素濃度を有する化合物であることから、高いエッチング耐性をも付与することができる。
さらにまた、式(0)で表される化合物を含む組成物は、芳香族密度が高いため屈折率が高く、また低温から高温までの広範囲の熱処理によって着色が抑制されることから、各種光学部品形成組成物としても有用である。中でも4級炭素を有する化合物が、酸化分解を抑制して化合物の着色を抑え、耐熱性が高く、溶媒溶解性を向上させる観点から好ましい。光学部品は、フィルム状、シート状で使われるほか、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路として有用である。
[式(1)で表される化合物]
本実施形態における式(0)で表される化合物は、下記式(1)で表される化合物であることが好ましい。本実施形態の化合物は、下記式(1)で表される化合物であることにより、耐熱性がより高く、溶媒溶解性もより高い傾向にある。
Figure 0007194356000014
(1)
上記(1)式中、Rは、上記Rと同義であり、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基である。Rが、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基であることにより、耐熱性が比較的高く、溶媒溶解性が向上する傾向にある。また、Rは、炭素数1~30のアルキル基又は炭素数6~30のアリール基であることが、酸化分解を抑制して化合物の着色を抑え、耐熱性及び溶媒溶解性を向上させる観点から好ましい。
は、炭素数1~60のn価の基又は単結合であり、このRを介して各々の芳香環が結合している。
~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が上記式(0-1)で表される基で置換された基であり、上記アルキル基、上記アリール基、上記アルケニル基、上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R~Rの少なくとも1つは上記式(0-1)で表される基を含む。
及びmは、各々独立して、0~8の整数であり、m及びmは、各々独立して、0~9の整数である。但し、m、m、m及びmは同時に0になることはない。
nは上記Nと同義であり、1~4の整数である。ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよい。
~pは各々独立して0~2の整数である。
なお、上記アルキル基、アルケニル基及びアルコキシ基は、直鎖状、分岐状若しくは環状の基であってもよい。
なお、上記n価の基とは、n=1のときには、炭素数1~60のアルキル基、n=2のときには、炭素数1~60のアルキレン基、n=3のときには、炭素数2~60のアルカンプロパイル基、n=4のときには、炭素数3~60のアルカンテトライル基のことを示す。上記n価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基、及び脂環式炭化水素基を有するものが挙げられる。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、上記n価の基は、炭素数6~60の芳香族基であってもよい。
また、上記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~60の芳香族基を有していてもよい。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
上記式(1)で表される化合物は、比較的に低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、分子中に3級炭素又は4級炭素を有しており、結晶性が抑制され、リソグラフィー用膜製造に使用できるリソグラフィー用膜形成組成物として好適に使用される。
また、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であるため、上記式(1)で表される化合物を含むリソグラフィー用レジスト形成組成物は、良好なレジストパターン形状を与えることができる。
さらに、比較的に低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させつつ、膜の平坦性を高めることが容易であり、その結果、これを用いたリソグラフィー用下層膜形成組成物は、埋め込み及び平坦化特性が良好である。また、比較的に高い炭素濃度を有する化合物であることから、高いエッチング耐性をも付与することができる。
さらにまた、芳香族密度が高いため屈折率が高く、また低温から高温までの広範囲の熱処理によって着色が抑制されることから、各種光学部品形成組成物としても有用である。中でも4級炭素を有する化合物が、酸化分解を抑制して化合物の着色を抑え、耐熱性が高く、溶媒溶解性を向上させる観点から好ましい。光学部品は、フィルム状、シート状で使われるほか、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路として有用である。
上記式(1)で表される化合物は、架橋のし易さと有機溶媒への溶解性の観点から、下記式(1-1)で表される化合物であることが好ましい。
Figure 0007194356000015
(1-1)
式(1-1)中、
、R、R、R、n、p~p、m及びmは、上記式(1)におけるものと同義であり、
~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基であり、
10~R11は、各々独立して、水素原子又は下記式(0-2)で表される基であり、
ここで、R10~R11の少なくとも1つは下記式(0-2)で表される基であり、
及びmは、各々独立して0~7の整数であり、
但し、m、m、m及びmは同時に0になることはない。
Figure 0007194356000016
(0-2)
(式(0-2)中、Rは、上記式(0-1)におけるものと同義であり、sは、0~30の整数である。)
また、上記式(1-1)で表される化合物は、更なる架橋のし易さと有機溶媒への溶解性の観点から、下記式(1-2)で表される化合物であることが好ましい。
Figure 0007194356000017
(1-2)
式(1-2)中、
、R、R、R、R10、R11、n、p~p、m及びmは、上記式(1-1)におけるものと同義であり、
~Rは、上記R~Rと同義であり、
12~R13は、上記R10~R11と同義であり、
及びmは、各々独立して、0~8の整数である。但し、m、m、m及びmは同時に0になることはない。
さらに、上記式(1-1)で表される化合物は、原料の供給性の観点から、下記式(1a)で表される化合物であることが好ましい。
Figure 0007194356000018
(1a)
上記式(1a)中、R~R、m~m及びnは、上記式(1)で説明したものと同義である。
上記式(1a)で表される化合物は、有機溶媒への溶解性の観点から、下記式(1b)で表される化合物であることがより好ましい。
Figure 0007194356000019
(1b)
上記式(1b)中、R、R、R、R、R10、R11、m、m、nは上記式(1)で説明したものと同義であり、R、R、R10、R11、m、mは上記式(1-1)で説明したものと同義である。
前記式(1a)で表される化合物は、反応性の観点から、下記式(1b’)で表される化合物であることがさらに好ましい。
Figure 0007194356000020
(1b’)
上記式(1b)中、R、R、R、R、m、m、nは上記式(1)で説明したものと同義であり、R、R、R10、R11、m、mは上記式(1-1)で説明したものと同義である。
上記式(1b)で表される化合物は、有機溶媒への溶解性の観点から、下記式(1c)で表される化合物であることがさらに好ましい。
Figure 0007194356000021
(1c)
上記式(1c)中、R、R、R~R13、m~m、nは上記式(1-2)で説明したものと同義である。
前記式(1b’)で表される化合物は、反応性の観点から、下記式(1c’)で表される化合物であることがさらに好ましい。
Figure 0007194356000022
(1c’)
前記式(1c’)中、R、R、R~R13、m~m、nは前記式(1-2)で説明したものと同義である。
上記式(0)で表される化合物の具体例を以下に例示するが、式(0)で表される化合物は、ここで列挙した具体例に限定されるものではない。
Figure 0007194356000023
Figure 0007194356000024
Figure 0007194356000025
Figure 0007194356000026
Figure 0007194356000027
Figure 0007194356000028
Figure 0007194356000029
Figure 0007194356000030
Figure 0007194356000031
Figure 0007194356000032
Figure 0007194356000033
Figure 0007194356000034
Figure 0007194356000035
Figure 0007194356000036
Figure 0007194356000037
Figure 0007194356000038
Figure 0007194356000039
Figure 0007194356000040
Figure 0007194356000041
上記式中、Xは、上記式(0)で説明したものと同義であり、RT’は上記式(0)で説明したRTと同義であり、mは各々独立して、1~6の整数である。
上記式(0)で表される化合物の具体例を、さらに以下に例示するが、式(0)で表される化合物は、ここで列挙した具体例に限定されるものではない。
Figure 0007194356000042
Figure 0007194356000043
Figure 0007194356000044
Figure 0007194356000045
Figure 0007194356000046
Figure 0007194356000047
Figure 0007194356000048
Figure 0007194356000049
Figure 0007194356000050
Figure 0007194356000051
Figure 0007194356000052
Figure 0007194356000053
Figure 0007194356000054
Figure 0007194356000055
Figure 0007194356000056
Figure 0007194356000057
Figure 0007194356000058
Figure 0007194356000059
Figure 0007194356000060
Figure 0007194356000061
Figure 0007194356000062
Figure 0007194356000063
Figure 0007194356000064
上記式中、Xは、上記式(0)で説明したものと同義であり、RY’、Z’は上記式(0)で説明したRY、Zと同義である。さらに、OR4Aの少なくとも1つは下記式(0-1)で表される基を含む。
Figure 0007194356000065
(0-1)
以下に、上記式(1)で表される化合物の具体例を例示するが、式(1)で表される化合物は、ここで列挙した化合物には限定されない。
Figure 0007194356000066
Figure 0007194356000067
Figure 0007194356000068
Figure 0007194356000069
Figure 0007194356000070
Figure 0007194356000071
Figure 0007194356000072
Figure 0007194356000073
Figure 0007194356000074
Figure 0007194356000075
Figure 0007194356000076
Figure 0007194356000077
Figure 0007194356000078
Figure 0007194356000079
前記化合物中、R、R、R、Rは上記式(1)で説明したものと同義である。m及びmは0~6の整数でありm及びmは0~7の整数である。
但し、R、R、R、Rから選ばれる少なくとも1つは下記式(0-1)で表される基を含み、m、m、m、mが同時に0となることはない。
Figure 0007194356000080
(0-1)
(式(0-1)中、Rは、水素原子又はメチル基である。)
Figure 0007194356000081
Figure 0007194356000082
Figure 0007194356000083
Figure 0007194356000084
Figure 0007194356000085
Figure 0007194356000086
Figure 0007194356000087
Figure 0007194356000088
Figure 0007194356000089
Figure 0007194356000090
Figure 0007194356000091
Figure 0007194356000092
Figure 0007194356000093
前記式中、R10、R11、R12、R13は上記式(1-2)で説明したものと同義であり、R10~R13の少なくとも1つは下記式(0-2)で表される基である。
Figure 0007194356000094
(0-2)
(式(0-2)中、Rは、前記式(0-1)におけるものと同義であり、sは、0~30の整数である。)
前記式(1)で表される化合物は、さらなる有機溶媒への溶解性の観点から、下記式(BiF-1)~(BiF-10)で表される化合物であることが特に好ましい。
Figure 0007194356000095
(BiF-1)
Figure 0007194356000096
(BiF-2)
Figure 0007194356000097
(BiF-3)
Figure 0007194356000098
(BiF-4)
Figure 0007194356000099
(BiF-5)
Figure 0007194356000100
(BiF-6)
Figure 0007194356000101
(BiF-7)
Figure 0007194356000102
(BiF-8)
Figure 0007194356000103
(BiF-9)
Figure 0007194356000104
(BiF-10)
前記式中、R10、R11、R12、R13は上記式(1-2)で説明したものと同義であり、R10~R13の少なくとも1つは下記式(0-2)で表される基である。
Figure 0007194356000105
(0-2)
(式(0-2)中、Rは、前記式(0-1)におけるものと同義であり、sは、0~30の整数である。)
以下、上記式(0)で表される化合物の具体例をさらに例示するが、式(0)で表される化合物は、ここで列挙した具体例に限定されるものではない。
Figure 0007194356000106
前記式中、R、R、nは上記式(1-1)で説明したものと同義であり、R10’及びR11’は上記式(1-1)で説明したR10及びR11と同義であり、R4’及びR5’は各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が下記式(0-1)で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、エーテル結合、ケトン結合またはエステル結合を含んでいてもよく、R10’及びR11’の少なくとも1つは下記式(0-2)で置換された基を含む。m4’及びm5’は、0~8の整数であり、m10’及びm11’は1~9の整数であり、m4’+m10’及びm4’+m11’は各々独立して1~9の整数である。
Figure 0007194356000107
(0-2)
(式(0-2)中、Rは、前記式(0-1)におけるものと同義であり、sは、0~30の整数である。)
としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基が挙げられる。
4’及びR5’としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
前記R、R4’、R5’の各例示は、異性体を含む。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
Figure 0007194356000108
前記式中、R10~R13は前記式(1-2)で説明したものと同義であり、R16は、炭素数1~30の直鎖状、分岐状若しくは環状のアルキレン基、炭素数6~30の2価のアリール基、又は炭素数2~30の2価のアルケニル基である。
16としては、例えば、メチレン基、エチレン基、プロペン基、ブテン基、ペンテン基、ヘキセン基、ヘプテン基、オクテン基、ノネン基、デセン基、ウンデセン基、ドデセン基、トリアコンテン基、シクロプロペン基、シクロブテン基、シクロペンテン基、シクロヘキセン基、シクロヘプテン基、シクロオクテン基、シクロノネン基、シクロデセン基、シクロウンデセン基、シクロドデセン基、シクロトリアコンテン基、2価のノルボルニル基、2価のアダマンチル基、2価のフェニル基、2価のナフチル基、2価のアントラセン基、2価のピレン基、2価のビフェニル基、2価のヘプタセン基、2価のビニル基、2価のアリル基、2価のトリアコンテニル基が挙げられる。
前記R16の各例示は、異性体を含む。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
Figure 0007194356000109
Figure 0007194356000110
Figure 0007194356000111
Figure 0007194356000112
Figure 0007194356000113
前記式中、R10~R13は前記式(1-2)で説明したものと同義であり、R14は各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、又は炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基であり、m14は0~5の整数であり、m14’は0~4の整数であり、m14は0~5の整数である。
14としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
前記R14の各例示は、異性体を含む。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
Figure 0007194356000114
前記式中、R、R4’、R5’、m4’、m5’、m10’、m11’は前記と同義であり、R1’は、炭素数1~60の基である。
Figure 0007194356000115
前記式中、R10~R13は前記式(1-2)で説明したものと同義であり、R14は各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、又は炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基であり、m14は0~5の整数であり、m14’は0~4の整数であり、m14’’は0~3の整数である。
14としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
前記R14の各例示は、異性体を含む。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
Figure 0007194356000116
前記式中、R10~R13は前記式(1-2)で説明したものと同義であり、R15は、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、又は炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基である。
15としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
前記R15の各例示は、異性体を含む。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
Figure 0007194356000117
Figure 0007194356000118
Figure 0007194356000119
Figure 0007194356000120
Figure 0007194356000121
Figure 0007194356000122
Figure 0007194356000123
Figure 0007194356000124
Figure 0007194356000125
前記式中、R10~R13は前記式(1-2)で説明したものと同義である。
前記式(0)で表される化合物は、原料の入手性の観点から、更に好ましくは以下に列挙される化合物である。
Figure 0007194356000126
Figure 0007194356000127
Figure 0007194356000128
Figure 0007194356000129
Figure 0007194356000130
Figure 0007194356000131
Figure 0007194356000132
Figure 0007194356000133
Figure 0007194356000134
Figure 0007194356000135
Figure 0007194356000136
Figure 0007194356000137
Figure 0007194356000138
Figure 0007194356000139
Figure 0007194356000140
Figure 0007194356000141
Figure 0007194356000142
Figure 0007194356000143
Figure 0007194356000144
Figure 0007194356000145
Figure 0007194356000146
Figure 0007194356000147
Figure 0007194356000148
Figure 0007194356000149
Figure 0007194356000150
Figure 0007194356000151
Figure 0007194356000152
Figure 0007194356000153
Figure 0007194356000154
Figure 0007194356000155
Figure 0007194356000156
Figure 0007194356000157
Figure 0007194356000158
Figure 0007194356000159
Figure 0007194356000160
Figure 0007194356000161
Figure 0007194356000162
Figure 0007194356000163
Figure 0007194356000164
Figure 0007194356000165
Figure 0007194356000166
Figure 0007194356000167
Figure 0007194356000168
Figure 0007194356000169
Figure 0007194356000170
Figure 0007194356000171
Figure 0007194356000172
Figure 0007194356000173
Figure 0007194356000174
Figure 0007194356000175
Figure 0007194356000176
Figure 0007194356000177
Figure 0007194356000178
Figure 0007194356000179
Figure 0007194356000180
Figure 0007194356000181
Figure 0007194356000182
Figure 0007194356000183
Figure 0007194356000184
Figure 0007194356000185
Figure 0007194356000186
Figure 0007194356000187
Figure 0007194356000188
Figure 0007194356000189
Figure 0007194356000190
Figure 0007194356000191
Figure 0007194356000192
Figure 0007194356000193
Figure 0007194356000194
Figure 0007194356000195
Figure 0007194356000196
Figure 0007194356000197
Figure 0007194356000198
Figure 0007194356000199
前記式中、R10~R13は前記式(1-2)で説明したものと同義である。
さらに前記式(0)で表される化合物は、エッチング耐性の観点から、以下の構造を有する化合物であることが好ましい。
Figure 0007194356000200
Figure 0007194356000201
Figure 0007194356000202
前記式中、R0Aは前記式(0)中のRと同義であり、R1A’は前記式(0)中のRと同義であり、R10~R13は、前記式(1-2)で説明したものと同義である。
Figure 0007194356000203
Figure 0007194356000204
前記式中、R10~R13は、前記式(1-2)で説明したものと同義である。R14は各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、又は炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基であり、m14は0~4の整数である。
14としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
前記R14の各例示は、異性体を含む。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
Figure 0007194356000205
Figure 0007194356000206
Figure 0007194356000207
Figure 0007194356000208
Figure 0007194356000209
前記式中、R10~R13は前記式(1-2)で説明したものと同義であり、R15は、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、又は炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基である。
15としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
前記R15の各例示は、異性体を含む。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
Figure 0007194356000210
Figure 0007194356000211
Figure 0007194356000212
前記式中、R10~R13は前記式(1-2)で説明したものと同義であり、R16は、炭素数1~30の直鎖状、分岐状若しくは環状のアルキレン基、炭素数6~30の2価のアリール基、又は炭素数2~30の2価のアルケニル基である。
16としては、例えば、メチレン基、エチレン基、プロペン基、ブテン基、ペンテン基、ヘキセン基、ヘプテン基、オクテン基、ノネン基、デセン基、ウンデセン基、ドデセン基、トリアコンテン基、シクロプロペン基、シクロブテン基、シクロペンテン基、シクロヘキセン基、シクロヘプテン基、シクロオクテン基、シクロノネン基、シクロデセン基、シクロウンデセン基、シクロドデセン基、シクロトリアコンテン基、2価のノルボニル基、2価のアダマンチル基、2価のフェニル基、2価のナフチル基、2価のアントラセン基、2価のヘプタセン基、2価のビニル基、2価のアリル基、2価のトリアコンテニル基が挙げられる。
前記R16の各例示は、異性体を含む。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
Figure 0007194356000213
Figure 0007194356000214
Figure 0007194356000215
Figure 0007194356000216
Figure 0007194356000217
Figure 0007194356000218
Figure 0007194356000219
前記式中、R10~R13は前記式(1-2)で説明したものと同義であり、R14は各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、又は炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基であり、m14’は0~4の整数である。
14としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
前記R14の各例示は、異性体を含む。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
Figure 0007194356000220
Figure 0007194356000221
前記式中、R10~R13は前記式(1-2)で説明したものと同義であり、R14は各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、又は炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基であり、m14は0~5の整数である。
14としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
前記R14の各例示は、異性体を含む。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
Figure 0007194356000222
Figure 0007194356000223
Figure 0007194356000224
Figure 0007194356000225
Figure 0007194356000226
Figure 0007194356000227
Figure 0007194356000228
Figure 0007194356000229
Figure 0007194356000230
Figure 0007194356000231
Figure 0007194356000232
Figure 0007194356000233
前記式中、R10~R13は前記式(1-2)で説明したものと同義である。
上記に列挙した化合物の中でも、耐熱性の観点から、ジベンゾキサンテン骨格を有する化合物がより好ましい。
式(0)で表される化合物は、原料の入手性の観点から、更に好ましくは以下に列挙される化合物である。
Figure 0007194356000234
Figure 0007194356000235
Figure 0007194356000236
Figure 0007194356000237
Figure 0007194356000238
Figure 0007194356000239
Figure 0007194356000240
Figure 0007194356000241
Figure 0007194356000242
Figure 0007194356000243
Figure 0007194356000244
Figure 0007194356000245
Figure 0007194356000246
Figure 0007194356000247
Figure 0007194356000248
Figure 0007194356000249
Figure 0007194356000250
Figure 0007194356000251
Figure 0007194356000252
Figure 0007194356000253
Figure 0007194356000254
Figure 0007194356000255
Figure 0007194356000256
Figure 0007194356000257
Figure 0007194356000258
Figure 0007194356000259
Figure 0007194356000260
Figure 0007194356000261
Figure 0007194356000262
Figure 0007194356000263
Figure 0007194356000264
Figure 0007194356000265
Figure 0007194356000266
前記式中、R10~R13は前記式(1-2)で説明したものと同義である。
上記で列挙した化合物の中でも、耐熱性の観点から、ジベンゾキサンテン骨格を有する化合物がより好ましい。
上記式(0)で表される化合物は、原料入手性の観点から、以下の構造を有する化合物であることが好ましい。
Figure 0007194356000267
Figure 0007194356000268
前記式中、R0Aは前記式(0)中のRと同義であり、R1A’は前記式(0)中のRと同義であり、R10~R13は、前記式(1-2)で説明したものと同義である。
前記で列挙した化合物は、耐熱性の観点から、キサンテン骨格を有する化合物であることがより好ましい。
上記式(0)で表される化合物としては、さらに、以下の式で表される化合物が挙げられる。
Figure 0007194356000269
Figure 0007194356000270
Figure 0007194356000271
Figure 0007194356000272
Figure 0007194356000273
Figure 0007194356000274
Figure 0007194356000275
Figure 0007194356000276
Figure 0007194356000277
Figure 0007194356000278
Figure 0007194356000279
Figure 0007194356000280
Figure 0007194356000281
Figure 0007194356000282
Figure 0007194356000283
Figure 0007194356000284
Figure 0007194356000285
Figure 0007194356000286
Figure 0007194356000287
Figure 0007194356000288
Figure 0007194356000289
Figure 0007194356000290
Figure 0007194356000291
Figure 0007194356000292
Figure 0007194356000293
Figure 0007194356000294
Figure 0007194356000295
Figure 0007194356000296
Figure 0007194356000297
Figure 0007194356000298
Figure 0007194356000299
Figure 0007194356000300
Figure 0007194356000301
Figure 0007194356000302
Figure 0007194356000303
Figure 0007194356000304
Figure 0007194356000305
Figure 0007194356000306
Figure 0007194356000307
Figure 0007194356000308
Figure 0007194356000309
Figure 0007194356000310
Figure 0007194356000311
Figure 0007194356000312
Figure 0007194356000313
Figure 0007194356000314
Figure 0007194356000315
Figure 0007194356000316
Figure 0007194356000317
Figure 0007194356000318
Figure 0007194356000319
Figure 0007194356000320
Figure 0007194356000321
Figure 0007194356000322
Figure 0007194356000323
Figure 0007194356000324
Figure 0007194356000325
Figure 0007194356000326
Figure 0007194356000327
Figure 0007194356000328
Figure 0007194356000329
Figure 0007194356000330
Figure 0007194356000331
Figure 0007194356000332
前記式中、R10~R13は前記式(1-2)で説明したものと同義であり、R14、R15、R16、m14、m14‘は前記式で説明したものと同義である。
[式(1)で表される化合物の製造方法]
本実施形態で使用される式(1)で表される化合物は、公知の手法を応用して適宜合成することができ、その合成手法は特に限定されない。
例えば、常圧下、ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するアルデヒド類又はケトン類とを酸触媒下にて重縮合反応させることによりポリフェノール化合物を得て、続いて、ポリフェノール化合物の少なくとも1つのフェノール性水酸基に、下記式(0-1A)で表される基を導入することにより得られる。
また、下記式(0-1B)で表される基を導入して、そのヒドロキシ基に下記式(0-1A)で表される基を導入することによっても得られる。また、必要に応じて、加圧下で行うこともできる。
Figure 0007194356000333
(0-1A)
(式(0-1A)中、Rは、水素原子又はメチル基である。)
Figure 0007194356000334
(0-1B)
(式(0-1B)中、Rは、炭素数1~30の直鎖状、分岐状若しくは環状のアルキレン基であり、sは、0~30の整数である。)
上記ビフェノール類としては、例えば、ビフェノール、メチルビフェノール、メトキシビナフトール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらの中でも、ビフェノールを用いることが原料の安定供給性の点でより好ましい。
上記ビナフトール類としては、例えば、ビナフトール、メチルビナフトール、メトキシビナフトール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらの中でも、ビナフトールを用いることが、炭素原子濃度を上げ、耐熱性を向上させる点でより好ましい。
上記アルデヒド類としては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらの中でも、ベンズアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラールを用いることが、高い耐熱性を与える点で好ましく、ベンズアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラールを用いることが、エッチング耐性が高く、より好ましい。
上記ケトン類としては、例えば、アセトン、メチルエチルケトン、シクロブタノン、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらの中でも、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることが、高い耐熱性を与える点で好ましく、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることが、エッチング耐性が高く、より好ましい。
アルデヒド類又はケトン類として、芳香環を有するアルデヒド又は芳香族を有するケトンを用いることが、高い耐熱性及び高いエッチング耐性を兼備する点で好ましい。
上記反応に用いる酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸;ケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらの中でも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることが好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。
上記反応の際には、反応溶媒を用いてもよい。反応溶媒としては、用いるアルデヒド類又はケトン類と、ビフェノール類、ビナフトール類又はビアントラセンジオールとの反応が進行するものであれば、特に限定されず、公知のものの中から適宜選択して用いることができる。反応溶媒としては、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル又はこれらの混合溶媒等が挙げられる。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
また、これらの反応溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、上記反応における反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。
ポリフェノール化合物を得るためには、反応温度は高い方が好ましく、具体的には60~200℃の範囲が好ましい。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、ビフェノール類、ビナフトール類又はビアントラセンジオール、アルデヒド類又はケトン類、触媒を一括で仕込む方法や、ビフェノール類、ビナフトール類又はビアントラセンジオールやアルデヒド類又はケトン類を触媒存在下で滴下していく方法が挙げられる。重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物である化合物を単離することができる。
好ましい反応条件としては、アルデヒド類又はケトン類1モルに対し、ビフェノール類、ビナフトール類又はビアントラセンジオールを1.0モル~過剰量、及び酸触媒を0.001~1モル使用し、常圧で、50~150℃で20分~100時間程度反応させることが挙げられる。
反応終了後、公知の方法により目的物を単離することができる。例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離させ、得られた固形物を濾過し、乾燥させた後、カラムクロマトグラフにより、副生成物と分離精製し、溶媒留去、濾過、乾燥を行って目的物である上記式(1)で表される化合物を得ることができる。
ポリフェノール化合物の少なくとも1つのフェノール性水酸基に上記式(0-1A)で表される基を導入する方法は公知である。例えば、以下のようにして、上記化合物の少なくとも1つのフェノール性水酸基に式(0-1A)で表される基を導入することができる。式(0-1A)で表される基を導入するための化合物は、公知の方法で合成し又は容易に入手でき、例えば、2-イソナトエチルメタクリレート、2-イソナトエチルアクリレートが挙げられるがこれらに特に限定はされない。
例えば、アセトン、テトラヒドロフラン(THF)、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に上記化合物を溶解又は懸濁させる。続いて、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキサイド、ナトリウムエトキサイド等の塩基触媒の存在下、常圧で、20~150℃、6~72時間反応させる。反応液を酸で中和し、蒸留水に加え白色固体を析出させた後、分離した固体を蒸留水で洗浄し、又は溶媒を蒸発乾固させて、必要に応じて蒸留水で洗浄し、乾燥することにより、水酸基の水素原子が上記式(0-1A)で表される基に置換された化合物を得ることができる。
なお、上記式(0-1A)で表される基で置換された基を導入するタイミングについては、ビナフトール類とアルデヒド類又はケトン類との縮合反応後のみならず、縮合反応の前段階でもよい。また、後述する樹脂の製造を行った後に行ってもよい。
また、ポリフェノール化合物の少なくとも1つのフェノール性水酸基に、上記式(0-1B)で表される基を導入して、そのヒドロキシ基に式(0-1A)で表される基を導入する方法も公知である。
例えば、以下のようにして、上記化合物の少なくとも1つのフェノール性水酸基に式(0-1B)で表される基を導入して、そのヒドロキシ基に式(0-1A)で表される基を導入することができる。
式(0-1B)で表される基を導入するための化合物は、公知の方法で合成又は容易に入手でき、例えば、クロロエタノール、ブロモエタノール、酢酸-2-クロロエチル、酢酸-2-ブロモエチル、酢酸-2-ヨードエチル、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートが挙げられるがこれらに特に限定はされない。
例えば、アセトン、テトラヒドロフラン(THF)、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に上記化合物を溶解又は懸濁させる。続いて、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキサイド、ナトリウムエトキサイド等の塩基触媒の存在下、常圧で、20~150℃、6~72時間反応させる。反応液を酸で中和し、蒸留水に加え白色固体を析出させた後、分離した固体を蒸留水で洗浄し、又は溶媒を蒸発乾固させて、必要に応じて蒸留水で洗浄し、乾燥することにより、水酸基の水素原子が式(0-1B)で表される基に置換された化合物を得ることができる。
酢酸-2-クロロエチル、酢酸-2-ブロモエチル、酢酸-2-ヨードエチルを使用する場合、アセトキシエチル基が導入された後、脱アシル反応を生じることにより、ヒドロキシエチル基が導入される。
エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートを使用する場合、アルキレンカーボネートを付加させ、脱炭酸反応が生じることにより、ヒドロキシアルキル基が導入される。
その後、アセトン、テトラヒドロフラン(THF)、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に上記化合物を溶解又は懸濁させる。続いて、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキサイド、ナトリウムエトキサイド等の塩基触媒の存在下、常圧で、20~150℃、6~72時間反応させる。反応液を酸で中和し、蒸留水に加え白色固体を析出させた後、分離した固体を蒸留水で洗浄し、又は溶媒を蒸発乾固させて、必要に応じて蒸留水で洗浄し、乾燥することにより、ヒドロキシ基の水素原子が式(0-1A)で表される基で置換された基に置換された化合物を得ることができる。
本実施形態において、式(0-1A)で表される基で置換された基とは、ラジカル又は酸/アルカリの存在下で反応し、塗布溶媒や現像液に使用される酸、アルカリ又は有機溶媒に対する溶解性が変化する。上記式(0-1A)で表される基で置換された基は、更に高感度・高解像度なパターン形成を可能にするために、ラジカル又は酸/アルカリの存在下で連鎖的に反応を起こす性質を有することが好ましい。
[式(1)で表される化合物をモノマーとして得られる樹脂]
上記式(1)で表される化合物は、リソグラフィー用膜形成組成物や光学部品形成に用いられる組成物(以下、単に「組成物」ともいう。)として、そのまま使用することができる。また、上記式(1)で表される化合物をモノマーとして得られる樹脂を、組成物として使用することもできる。樹脂は、例えば、上記式(1)で表される化合物と架橋反応性のある化合物とを反応させて得られる。
上記式(1)で表される化合物をモノマーとして得られる樹脂としては、例えば、以下の式(3)で表される構造を有するものが挙げられる。すなわち、本実施形態の組成物は、下記式(3)で表される構造を有する樹脂を含有するものであってもよい。
Figure 0007194356000335
(3)
式(3)中、Lは、置換基を有していてもよい炭素数1~30のアルキレン基、置換基を有していてもよい炭素数6~30のアリーレン基、置換基を有していてもよい炭素数1~30のアルコキシレン基又は単結合であり、上記アルキレン基、上記アリーレン基、上記アルコキシレン基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよい。また、前記アルキレン基、アルコキシレン基は、直鎖状、分岐状若しくは環状の基であってもよい。
は、上記Rと同義であり、
は、炭素数1~60のn価の基又は単結合であり、
~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、上記アルキル基、上記アリール基、上記アルケニル基、上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R~Rの少なくとも1つは上記式(0-1)で表される基を含み、
及びmは、各々独立して、0~8の整数であり、
及びmは、各々独立して、0~9の整数であり、
但し、m、m、m及びmは同時に0になることはなく、
nは上記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
~pは、上記rと同義である。
[式(1)で表される化合物をモノマーとして得られる樹脂の製造方法]
本実施形態の樹脂は、上記式(1)で表される化合物を架橋反応性のある化合物と反応させることにより得られる。架橋反応性のある化合物としては、上記式(1)で表される化合物をオリゴマー化又はポリマー化し得るものである限り、公知のものを特に制限なく使用することができる。その具体例としては、例えば、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート、不飽和炭化水素基含有化合物等が挙げられるが、これらに特に限定されない。
上記式(3)で表される構造を有する樹脂の具体例としては、例えば、上記式(1)で表される化合物を架橋反応性のある化合物であるアルデヒド及び/又はケトンとの縮合反応等によってノボラック化した樹脂が挙げられる。
ここで、上記式(1)で表される化合物をノボラック化する際に用いるアルデヒドとしては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。ケトンとしては、上記ケトン類が挙げられる。これらの中でも、ホルムアルデヒドがより好ましい。なお、これらのアルデヒド及び/又はケトン類は、1種を単独で又は2種以上を組み合わせて用いることができる。また、上記アルデヒド及び/又はケトン類の使用量は、特に限定されないが、上記式(1)で表される化合物1モルに対して、0.2~5モルであることが好ましく、より好ましくは0.5~2モルである。
上記式(1)で表される化合物とアルデヒド及び/又はケトンとの縮合反応において、触媒を用いることもできる。ここで使用する酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸;ケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらの中でも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸が好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。
また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。但し、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、5-ビニルノルボルナ-2-エン、α-ピネン、β-ピネン、リモネン等の非共役二重結合を有する化合物との共重合反応の場合は、必ずしもアルデヒド類は必要ない。
上記式(1)で表される化合物とアルデヒド及び/又はケトンとの縮合反応において、反応溶媒を用いることもできる。この重縮合における反応溶媒としては、公知のものの中から適宜選択して用いることができ、特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒等が挙げられる。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
また、これらの溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、上記式(1)で表される化合物、アルデヒド及び/又はケトン類、触媒を一括で仕込む方法や、上記式(1)で表される化合物やアルデヒド及び/又はケトン類を触媒存在下で滴下していく方法が挙げられる。
重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物であるノボラック化した樹脂を単離することができる。
ここで、上記式(3)で表される構造を有する樹脂は、上記式(1)で表される化合物の単独重合体であってもよいが、他のフェノール類との共重合体であってもよい。ここで共重合可能なフェノール類としては、例えば、フェノール、クレゾール、ジメチルフェノール、トリメチルフェノール、ブチルフェノール、フェニルフェノール、ジフェニルフェノール、ナフチルフェノール、レゾルシノール、メチルレゾルシノール、カテコール、ブチルカテコール、メトキシフェノール、メトキシフェノール、プロピルフェノール、ピロガロール、チモール等が挙げるが、これらに特に限定されない。
また、上記式(3)で表される構造を有する樹脂は、上述した他のフェノール類以外に、重合可能なモノマーと共重合させたものであってもよい。かかる共重合モノマーとしては、例えば、ナフトール、メチルナフトール、メトキシナフトール、ジヒドロキシナフタレン、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルナエン、ピネン、リモネン等が挙げられるが、これらに特に限定されない。なお、上記式(2)で表される構造を有する樹脂は、上記式(1)で表される化合物と上述したフェノール類との2元以上の(例えば、2~4元系)共重合体であっても、上記式(1)で表される化合物と上述した共重合モノマーとの2元以上(例えば、2~4元系)共重合体であっても、上記式(1)で表される化合物と上述したフェノール類と上述した共重合モノマーとの3元以上の(例えば、3~4元系)共重合体であっても構わない。
なお、上記式(3)で表される構造を有する樹脂の分子量は、特に限定されないが、ポリスチレン換算の重量平均分子量(Mw)が500~30,000であることが好ましく、より好ましくは750~20,000である。また、架橋効率を高めるとともにベーク中の揮発成分を抑制する観点から、上記式(3)で表される構造を有する樹脂は、分散度(重量平均分子量Mw/数平均分子量Mn)が1.2~7の範囲内であることが好ましい。なお、上記Mw及びMnは、後述する実施例に記載の方法により求めることができる。
上記式(3)で表される構造を有する樹脂は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、1-メトキシ-2-プロパノール(PGME)及び/又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、当該溶媒に対する溶解度が10質量%以上であることが好ましい。ここで、PGME及び/又はPGMEAに対する溶解度は、「樹脂の質量÷(樹脂の質量+溶媒の質量)×100(質量%)」と定義される。例えば、上記樹脂10gがPGMEA90gに対して溶解する場合は、上記樹脂のPGMEAに対する溶解度は、「10質量%以上」となり、溶解しない場合は、「10質量%未満」となる。
[式(2)で表される化合物]
本実施形態における式(0)で表される化合物は、下記式(2)で表される化合物であることが好ましい。本実施形態の化合物は、下記式(2)で表される化合物であることにより、耐熱性が高く、溶媒溶解性も高い傾向にある。
Figure 0007194356000336
(2)
式(2)中、R0Aは、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基である。
1Aは、炭素数1~60のn価の基又は単結合であり、
2Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子がビニルフェニルメチル基で置換された基であり、上記アルキル基、上記アリール基、上記アルケニル基、上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2Aの少なくとも1つは上記式(0-1)で表される基を含む。
は1~4の整数であり、ここで、式(2)中、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよい。
は、各々独立して、酸素原子、硫黄原子又は無架橋であることを示す。ここで、Xが酸素原子又は硫黄原子である場合、高い耐熱性を発現する傾向にあるため好ましく、酸素原子であることがより好ましい。Xは、溶解性の観点からは、無架橋であることが好ましい。
2Aは、各々独立して、0~6の整数である。但し、少なくとも1つのm2Aは1~6の整数である。
は、各々独立して、0又は1である。
なお、上記n価の基とは、n=1のときには、炭素数1~60のアルキル基、n=2のときには、炭素数1~30のアルキレン基、n=3のときには、炭素数2~60のアルカンプロパイル基、n=4のときには、炭素数3~60のアルカンテトライル基のことを示す。上記n価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基を有するもの等が挙げられる。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、上記n価の基は、炭素数6~60の芳香族基を有していてもよい。
また、上記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~60の芳香族基を有していてもよい。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
また、上記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30の芳香族基を有していてもよい。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
上記式(2)で表される化合物は、比較的に低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、分子中に3級炭素又は4級炭素を有しており、結晶性が抑制され、リソグラフィー用膜製造に使用できるリソグラフィー用膜形成組成物として好適に使用される。
また、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であるため、上記式(2)で表される化合物を含むリソグラフィー用レジスト形成組成物は良好なレジストパターン形状を与えることができる。
さらに、比較的に低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させつつ、膜の平坦性を高めることが容易であり、その結果、これを用いたリソグラフィー用下層膜形成組成物は埋め込み及び平坦化特性が良好である。また、比較的に高い炭素濃度を有する化合物であることから、高いエッチング耐性をも付与することができる。
さらにまた、芳香族密度が高いため屈折率が高く、また低温から高温までの広範囲の熱処理によって着色が抑制されることから、各種光学部品形成組成物としても有用である。中でも4級炭素を有する化合物が、酸化分解を抑制し化合物の着色を抑え、耐熱性が高く、溶媒溶解性を向上させる観点から好ましい。光学部品は、フィルム状、シート状で使われるほか、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路として有用である。
上記式(2)で表される化合物は、架橋のし易さと有機溶媒への溶解性の観点から、下記式(2-1)で表される化合物であることが好ましい。
Figure 0007194356000337
(2-1)
式(2-1)中、R0A、R1A、n、q及びXは、上記式(2)におけるものと同義である。
3Aは、各々独立して、置換基を有していてもよい炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基であり、同一のナフタレン環又はベンゼン環において同一であっても異なっていてもよい。
4Aは、各々独立して、水素原子又は下記式(0-2)で表される基であり、
ここで、R4Aの少なくとも1つは下記式(0-2)で表される基であり、
6Aは、各々独立して、0~5の整数である。
Figure 0007194356000338
(0-2)
(式(0-2)中、Rは、前記式(0-1)におけるものと同義であり、sは、0~30の整数である。)
上記式(2-1)で表される化合物をアルカリ現像ポジ型レジスト用又は有機現像ネガ型レジスト用リソグラフィー用膜形成組成物として使用する際は、R4Aの少なくとも1つは酸解離性基である。一方、式(2-1)で表される化合物をアルカリ現像ネガ型レジスト用リソグラフィー用膜形成組成物、下層膜用リソグラフィー用膜形成組成物又は光学部品形成組成物として使用する際は、R4Aの少なくとも1つは水素原子である。
また、上記式(2-1)で表される化合物は、原料の供給性の観点から、下記式(2a)で表される化合物であることが好ましい。
Figure 0007194356000339
(2a)
上記式(2a)中、X、R0A~R2A、m2A及びnは、上記式(2)で説明したものと同義である。
また、上記式(2-1)で表される化合物は、有機溶媒への溶解性の観点から、下記式(2b)で表される化合物であることがより好ましい。
Figure 0007194356000340
(2b)
上記式(2b)中、X、R0A、R1A、R3A、R4A、m6A及びnは、上記式(2-1)で説明したものと同義である。
また、上記式(2-1)で表される化合物は、有機溶媒への溶解性の観点から、下記式(2c)で表される化合物であることがさらに好ましい。
Figure 0007194356000341
(2c)
上記式(2c)中、X、R0A、R1A、R3A、R4A、m6A及びnは、上記式(2-1)で説明したものと同義である。
上記式(2)で表される化合物は、さらなる有機溶媒への溶解性の観点から、下記式(BisN-1)~(BisN-4)、(XBisN-1)~(XBisN-3)、(BiN-1)~(BiN-4)又は(XBiN-1)~(XBiN-3)で表される化合物であることが特に好ましい。
Figure 0007194356000342
(BisN-1)
Figure 0007194356000343
(BisN-2)
Figure 0007194356000344
(BisN-3)
Figure 0007194356000345
(BisN-4)
Figure 0007194356000346
(XBisN-1)
Figure 0007194356000347
(XBisN-2)
Figure 0007194356000348
(XBisN-3)
Figure 0007194356000349
(BiN-1)
Figure 0007194356000350
(BiN-2)
Figure 0007194356000351
(BiN-3)
Figure 0007194356000352
(BiN-4)
Figure 0007194356000353
(XBiN-1)
Figure 0007194356000354
(XBiN-2)
Figure 0007194356000355
(XBiN-3)
[式(2)で表される化合物の製造方法]
本実施形態で使用される式(2)で表される化合物は、公知の手法を応用して適宜合成することができ、その合成手法は特に限定されない。
例えば、常圧下、フェノール類、ナフトール類と、対応するアルデヒド類又はケトン類とを酸触媒下にて重縮合反応させることによりポリフェノール化合物を得て、続いて、ポリフェノール化合物の少なくとも1つのフェノール性水酸基に、下記式(0-1A)で表される基を導入することにより得られる。
または、下記式(0-1B)で表される基を導入して、そのヒドロキシ基に式(0-1A)で示される基を導入することにより得られる。また、必要に応じて、加圧下で行うこともできる。
Figure 0007194356000356
(0-1A)
(式(0-1A)中、Rは、水素原子又はメチル基である。)
Figure 0007194356000357
(0-1B)
(式(0-1B)中、Rは、炭素数1~30の直鎖状、分岐状若しくは環状のアルキレン基であり、sは、0~30の整数である。)
上記ナフトール類としては、特に限定されず、例えば、ナフトール、メチルナフトール、メトキシナフトール、ナフタレンジオール等が挙げられ、ナフタレンジオールを用いることがキサンテン構造を容易に作ることができる点でより好ましい。
上記フェノール類としては、特に限定されず、例えば、フェノール、メチルフェノール、メトキシベンゼン、カテコール、レゾルシノール、ハイドロキノン、トリメチルハイドロキノン等が挙げられる。
上記アルデヒド類としては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらの中でも、ベンズアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラールを用いることが、高い耐熱性を与える点で好ましく、ベンズアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラールを用いることが、エッチング耐性が高く、より好ましい。
上記ケトン類としては、例えば、アセトン、メチルエチルケトン、シクロブタノン、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらの中でも、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることが、高い耐熱性を与える点で好ましく、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることが、エッチング耐性が高く、より好ましい。
ケトン類として、芳香環を有するケトンを用いることが、高い耐熱性及び高いエッチング耐性を兼備する点から好ましい。
上記反応に用いる酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。酸触媒としては、特に限定されず、周知の無機酸、有機酸より適宜選択することができる。例えば、塩酸、硫酸、リン酸、臭化水素酸、ふっ酸等の無機酸;シュウ酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸;ケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸が挙げられる。入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることが好ましい。また酸触媒については、1種類又は2種類以上を用いることができる。
上記反応の際には、反応溶媒を用いてもよい。反応溶媒としては、用いるアルデヒド類又はケトン類とナフトール類等との反応が進行すれば特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒を用いることができる。上記溶媒の量は、特に限定されず、例えば、反応原料100質量部に対して0~2000質量部の範囲である。
上記ポリフェノール化合物を製造する際、反応温度は、特に限定されず、反応原料の反応性に応じて適宜選択することができるが、10~200℃の範囲であることが好ましい。上記ポリフェノール化合物を選択性良く合成するには、温度が低い方が、効果が高く10~60℃の範囲がより好ましい。
上記ポリフェノール化合物の製造方法は、特に限定されないが、例えば、ナフトール類等、アルデヒド類又はケトン類、触媒を一括で仕込む方法や、触媒存在下ナフトール類やアルデヒド類又はケトン類を滴下していく方法がある。重縮合反応終了後、系内に存在する未反応原料、触媒等を除去するために、反応釜の温度を130~230℃ にまで上昇させ、1~50mmHg程度で揮発分を除去することもできる。
上記ポリフェノール化合物を製造する際の原料の量は、特に限定されないが、例えば、アルデヒド類又はケトン類1モルに対し、ナフトール類等を2モル~過剰量、及び酸触媒を0.001~1モル使用し、常圧で、20~60℃で20分~100時間程度反応させることにより進行する。
上記ポリフェノール化合物を製造する際、上記反応終了後、公知の方法により目的物を単離する。目的物の単離方法は、特に限定されず、例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離、得られた固形物を濾過し、乾燥させた後、カラムクロマトにより、副生成物と分離精製し、溶媒留去、濾過、乾燥を行って目的化合物を得る方法が挙げられる。
ポリフェノール化合物の少なくとも1つのフェノール性水酸基に式(0-1A)で表される基を導入する方法は公知である。例えば、以下のようにして、上記化合物の少なくとも1つのフェノール性水酸基に式(0-1A)で表される基を導入することができる。式(0-1A)で表される基を導入するための化合物は、公知の方法で合成又は容易に入手でき、例えば、2-イソシアナトエチルメタクリレート、2-イソシアナトエチルアクリレートが挙げられるがこれらに特に限定はされない。
例えば、アセトン、テトラヒドロフラン(THF)、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に上記化合物を溶解又は懸濁させる。続いて、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキサイド、ナトリウムエトキサイド等の塩基触媒の存在下、常圧で、20~150℃、6~72時間反応させる。反応液を酸で中和し、蒸留水に加え白色固体を析出させた後、分離した固体を蒸留水で洗浄し、又は溶媒を蒸発乾固させて、必要に応じて蒸留水で洗浄し、乾燥することにより、水酸基の水素原子が式(0-1A)で表される基に置換された化合物を得ることができる。
なお、式(0-1A)で表される基で置換された基を導入するタイミングについては、ビナフトール類とアルデヒド類又はケトン類との縮合反応後のみならず、縮合反応の前段階でもよい。また、後述する樹脂の製造を行った後に行ってもよい。
また、ポリフェノール化合物の少なくとも1つのフェノール性水酸基に、式(0-1B)で表される基を導入して、そのヒドロキシ基に式(0-1A)で表される基を導入する方法も公知である。
例えば、以下のようにして、上記化合物の少なくとも1つのフェノール性水酸基に式(0-1B)で表される基を導入して、そのヒドロキシ基に式(0-1A)で表される基を導入することができる。
式(0-1B)で表される基を導入するための化合物は、公知の方法で合成又は容易に入手でき、例えば、クロロエタノール、ブロモエタノール、酢酸-2-クロロエチル、酢酸-2-ブロモエチル、酢酸-2-ヨードエチル、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートが挙げられるが特に限定はされない。
例えば、アセトン、テトラヒドロフラン(THF)、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に上記化合物を溶解又は懸濁させる。続いて、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキサイド、ナトリウムエトキサイド等の塩基触媒の存在下、常圧で、20~150℃、6~72時間反応させる。反応液を酸で中和し、蒸留水に加え白色固体を析出させた後、分離した固体を蒸留水で洗浄し、又は溶媒を蒸発乾固させて、必要に応じて蒸留水で洗浄し、乾燥することにより、水酸基の水素原子が式(0-1B)で表される基に置換された化合物を得ることができる。
酢酸-2-クロロエチル、酢酸-2-ブロモエチル、酢酸-2-ヨードエチルを使用する場合、アセトキシエチル基が導入された後、脱アシル反応を生じることにより、ヒドロキシエチル基が導入される。
エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートを使用する場合、アルキレンカーボネートを付加させ、脱炭酸反応が生じることにより、ヒドロキシアルキル基が導入される。
その後、アセトン、テトラヒドロフラン(THF)、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に上記化合物を溶解又は懸濁させる。続いて、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキサイド、ナトリウムエトキサイド等の塩基触媒の存在下、常圧で、20~150℃、6~72時間反応させる。反応液を酸で中和し、蒸留水に加え白色固体を析出させた後、分離した固体を蒸留水で洗浄し、又は溶媒を蒸発乾固させて、必要に応じて蒸留水で洗浄し、乾燥することにより、ヒドロキシ基の水素原子が式(0-1A)で表される基で置換された基に置換された化合物を得ることができる。
本実施形態において、式(0-1A)で表される基で置換された基とは、ラジカル又は酸/アルカリの存在下で反応し、塗布溶媒や現像液に使用される酸、アルカリ又は有機溶媒に対する溶解性が変化する。上記式(0-1A)で表される基で置換された基は、更に高感度・高解像度なパターン形成を可能にするために、ラジカル又は酸/アルカリの存在下で連鎖的に反応を起こす性質を有することが好ましい。
[式(2)で表される化合物をモノマーとして得られる樹脂の製造方法]
上記式(2)で表される化合物は、リソグラフィー用膜形成組成物や光学部品形成に用いられる組成物として、そのまま使用することができる。また、上記式(2)で表される化合物をモノマーとして得られる樹脂を、組成物として使用することができる。樹脂は、例えば、上記式(2)で表される化合物と架橋反応性のある化合物とを反応させて得られる樹脂としても使用することができる。
上記式(2)で表される化合物をモノマーとして得られる樹脂としては、例えば、以下の式(4)で表される構造を有するものが挙げられる。すなわち、本実施形態のリソグラフィー用膜形成組成物は、下記式(4)に表される構造を有する樹脂を含有するものであってもよい。
Figure 0007194356000358
(4)
式(4)中、Lは、置換基を有していてもよい炭素数1~30のアルキレン基、置換基を有していてもよい炭素数6~30のアリーレン基、置換基を有していてもよい炭素数1~30のアルコキシレン基又は単結合であり、上記アルキレン基、上記アリーレン基、上記アルコキシレン基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよい。また、前記アルキレン基、アルコキシレン基は、直鎖状、分岐状若しくは環状の基であってもよい。
0Aは、上記Rと同義であり、
1Aは、炭素数1~30のn価の基又は単結合であり、
2Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が上記式(0-1)で表される基で置換された基であり、上記アルキル基、上記アリール基、上記アルケニル基、上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2Aの少なくとも1つは上記式(0-1)で表される基を含み、
は、上記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
は、酸素原子、硫黄原子又は無架橋であることを示し、
2Aは、各々独立して、0~7の整数であり、但し、少なくとも1つのm2Aは1~6の整数であり、
は、各々独立して、0又は1である。
[式(2)で表される化合物をモノマーとして得られる樹脂の製造方法]
本実施形態の樹脂は、上記式(2)で表される化合物を架橋反応性のある化合物と反応させることにより得られる。
架橋反応性のある化合物としては、上記式(2)で表される化合物をオリゴマー化又はポリマー化し得るものである限り、公知のものを特に制限なく使用することができる。その具体例としては、例えば、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート、不飽和炭化水素基含有化合物等が挙げられるが、これらに特に限定されない。
上記式(4)で表される構造を有する樹脂の具体例としては、例えば、上記式(2)で表される化合物を架橋反応性のある化合物であるアルデヒド及び/又はケトンとの縮合反応等によってノボラック化した樹脂が挙げられる。
ここで、上記式(2)で表される化合物をノボラック化する際に用いるアルデヒドとしては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。ケトンとしては、上記ケトン類が挙げられる。これらの中でも、ホルムアルデヒドがより好ましい。なお、これらのアルデヒド及び/又はケトン類は、1種を単独で又は2種以上を組み合わせて用いることができる。また、上記アルデヒド及び/又はケトン類の使用量は、特に限定されないが、上記式(2)で表される化合物1モルに対して、0.2~5モルであることが好ましく、より好ましくは0.5~2モルである。
上記式(2)で表される化合物とアルデヒド及び/又はケトンとの縮合反応において、酸触媒を用いることもできる。ここで使用する酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸;ケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらのなかでも、製造上の観点から、有機酸又は固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸が好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。
また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。但し、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、5-ビニルノルボルナ-2-エン、α-ピネン、β-ピネン、リモネン等の非共役二重結合を有する化合物との共重合反応の場合は、必ずしもアルデヒド類は必要ない。
上記式(2)で表される化合物とアルデヒド及び/又はケトンとの縮合反応において、反応溶媒を用いることもできる。この重縮合における反応溶媒としては、公知のものの中から適宜選択して用いることができ、特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒等が挙げられる。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
また、これらの溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、上記式(2)で表される化合物、アルデヒド及び/又はケトン類、触媒を一括で仕込む方法や、上記式(2)で表される化合物やアルデヒド及び/又はケトン類を触媒存在下で滴下していく方法が挙げられる。
重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃ にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物であるノボラック化した樹脂を単離することができる。
ここで、上記式(4)で表される構造を有する樹脂は、上記式(2)で表される化合物の単独重合体であってもよいが、他のフェノール類との共重合体であってもよい。ここで共重合可能なフェノール類としては、例えば、フェノール、クレゾール、ジメチルフェノール、トリメチルフェノール、ブチルフェノール、フェニルフェノール、ジフェニルフェノール、ナフチルフェノール、レゾルシノール、メチルレゾルシノール、カテコール、ブチルカテコール、メトキシフェノール、メトキシフェノール、プロピルフェノール、ピロガロール、チモール等が挙げるが、これらに特に限定されない。
また、上記式(4)で表される構造を有する樹脂は、上述した他のフェノール類以外に、重合可能なモノマーと共重合させたものであってもよい。かかる共重合モノマーとしては、例えば、ナフトール、メチルナフトール、メトキシナフトール、ジヒドロキシナフタレン、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルナエン、ピネン、リモネン等が挙げられるが、これらに特に限定されない。なお、上記式(4)で表される構造を有する樹脂は、上記式(2)で表される化合物と上述したフェノール類との2元以上の(例えば、2~4元系)共重合体であっても、上記式(2)で表される化合物と上述した共重合モノマーとの2元以上(例えば、2~4元系)共重合体であっても、上記式(2)で表される化合物と上述したフェノール類と上述した共重合モノマーとの3元以上の(例えば、3~4元系)共重合体であっても構わない。
なお、上記式(4)で表される構造を有する樹脂の分子量は、特に限定されないが、ポリスチレン換算の重量平均分子量(Mw)が500~30,000であることが好ましく、より好ましくは750~20,000である。また、架橋効率を高めるとともにベーク中の揮発成分を抑制する観点から、上記式(4)で表される構造を有する樹脂は、分散度(重量平均分子量Mw/数平均分子量Mn)が1.2~7の範囲内であることが好ましい。なお、上記Mw及びMnは、後述する実施例に記載の方法により求めることができる。
上記式(4)で表される構造を有する樹脂は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、1-メトキシ-2-プロパノール(PGME)及び/又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、当該溶媒に対する溶解度が10質量%以上であることが好ましい。ここで、PGME及び/又はPGMEAに対する溶解度は、「樹脂の質量÷(樹脂の質量+溶媒の質量)×100(質量%)」と定義される。例えば、上記樹脂10gがPGMEA90gに対して溶解する場合は、上記樹脂のPGMEAに対する溶解度は、「10質量%以上」となり、溶解しない場合は、「10質量%未満」となる。
[化合物及び/又は樹脂の精製方法]
本実施形態の化合物及び/又は樹脂の精製方法は、上記式(1)で表される化合物、上記式(1)で表される化合物をモノマーとして得られる樹脂、上記式(2)で表される化合物及び上記式(2)で表される化合物をモノマーとして得られる樹脂から選ばれる1種以上を、溶媒に溶解させて溶液(S)を得る工程と、得られた溶液(S)と酸性の水溶液とを接触させて、上記化合物及び/又は上記樹脂中の不純物を抽出する工程(第一抽出工程)とを含み、上記溶液(S)を得る工程で用いる溶媒が、水と任意に混和しない有機溶媒を含む。
当該第一抽出工程において、上記樹脂は、上記式(1)で表される化合物及び/又は式(2)で表される化合物と架橋反応性のある化合物との反応によって得られる樹脂であることが好ましい。本実施形態の精製方法によれば、上述した特定の構造を有する化合物又は樹脂に不純物として含まれ得る種々の金属の含有量を低減することができる。
より詳細には、本実施形態の精製方法においては、上記化合物及び/又は上記樹脂を、水と任意に混和しない有機溶媒に溶解させて溶液(S)を得て、さらにその溶液(S)を酸性水溶液と接触させて抽出処理を行うことができる。これにより、上記溶液(S)に含まれる金属分を水相に移行させた後、有機相と水相とを分離して金属含有量の低減された化合物及び/又は樹脂を得ることができる。
本実施形態の精製方法で使用する、化合物及び/又は樹脂は単独で使用してもよいが、2種以上混合して用いることもできる。また、上記化合物や樹脂は、各種界面活性剤、各種架橋剤、各種酸発生剤、各種安定剤等を含有していてもよい。
本実施形態で使用される水と任意に混和しない溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましく、具体的には、室温下における水への溶解度が30%未満、より好ましくは20%未満、さらに好ましくは10%未満である有機溶媒である。当該有機溶媒の使用量は、使用する化合物と樹脂の合計量に対して、1~100質量倍であることが好ましい。
水と任意に混和しない溶媒の具体例としては、以下に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル等のエーテル類、酢酸エチル、酢酸n-ブチル、酢酸イソアミル等のエステル類、メチルエチルケトン、メチルイソブチルケトン、エチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、2-ペンタノン等のケトン類;エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート類;n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類等が挙げられる。これらの中でも、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル等が好ましく、メチルイソブチルケトン、酢酸エチル、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテートがより好ましく、メチルイソブチルケトン、酢酸エチルがよりさらに好ましい。メチルイソブチルケトン、酢酸エチル等は、上記化合物及び該化合物を構成成分として含む樹脂の飽和溶解度が比較的高く、沸点が比較的低いことから、工業的に溶媒を留去する場合や乾燥により除去する工程での負荷を低減することが可能となる。これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
本実施形態の精製方法で使用される酸性の水溶液としては、一般に知られる有機系化合物若しくは無機系化合物を水に溶解させた水溶液の中から適宜選択される。酸性水溶液としては、以下に限定されないが、例えば、塩酸、硫酸、硝酸、リン酸等の鉱酸を水に溶解させた鉱酸水溶液、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸、トリフルオロ酢酸等の有機酸を水に溶解させた有機酸水溶液が挙げられる。これら酸性の水溶液は、それぞれ単独で用いることもできるし、また2種以上を組み合わせて用いることもできる。これら酸性の水溶液の中でも、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上の鉱酸水溶液、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上の有機酸水溶液であることが好ましく、硫酸、硝酸、及び酢酸、蓚酸、酒石酸、クエン酸等のカルボン酸の水溶液がより好ましく、硫酸、蓚酸、酒石酸、クエン酸の水溶液がさらに好ましく、蓚酸の水溶液がよりさらに好ましい。蓚酸、酒石酸、クエン酸等の多価カルボン酸は金属イオンに配位し、キレート効果が生じるために、より効果的に金属を除去できる傾向にあるものと考えられる。また、ここで用いる水は、本実施の形態の精製方法の目的に沿って、金属含有量の少ない水、例えばイオン交換水等を用いることが好ましい。
本実施形態の精製方法で使用する酸性の水溶液のpHは特に限定されないが、上記化合物や樹脂への影響を考慮し、水溶液の酸性度を調整することが好ましい。酸性水溶液のpHは、好ましくは0~5程度であり、より好ましくはpH0~3程度である。
本実施形態の精製方法で使用する酸性の水溶液の使用量は特に限定されないが、金属除去のための抽出回数を低減する観点及び全体の液量を考慮して操作性を確保する観点から、当該使用量を調整することが好ましい。上記観点から、酸性の水溶液の使用量は、上記溶液(S)100質量%に対して、好ましくは10~200質量%であり、より好ましくは20~100質量%である。
本実施形態の精製方法においては、上記酸性の水溶液と、上記溶液(S)とを接触させることにより、溶液(S)中の上記化合物又は上記樹脂から金属分を抽出することができる。
本実施形態の精製方法においては、上記溶液(S)が、さらに水と任意に混和する有機溶媒をさらに含むことが好ましい。溶液(S)が水と任意に混和する有機溶媒を含む場合、上記化合物及び/又は樹脂の仕込み量を増加させることができ、また、分液性が向上し、高い釜効率で精製を行うことができる傾向にある。水と任意に混和する有機溶媒を加える方法は特に限定されない。例えば、予め有機溶媒を含む溶液に加える方法、予め水又は酸性の水溶液に加える方法、有機溶媒を含む溶液と水又は酸性の水溶液とを接触させた後に加える方法のいずれでもよい。これらの中でも、予め有機溶媒を含む溶液に加える方法が操作の作業性や仕込み量の管理のし易さの点で好ましい。
本実施形態の精製方法で使用される水と任意に混和する有機溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましい。水と任意に混和する有機溶媒の使用量は、溶液相と水相とが分離する範囲であれば特に限定されないが、使用する化合物と樹脂の合計量に対して、0.1~100質量倍であることが好ましく、0.1~50質量倍であることがより好ましく、0.1~20質量倍であることがさらに好ましい。
本実施形態の精製方法において使用される水と任意に混和する有機溶媒の具体例としては、以下に限定されないが、テトラヒドロフラン、1,3-ジオキソラン等のエーテル類;メタノール、エタノール、イソプロパノール等のアルコール類;アセトン、N-メチルピロリドン等のケトン類;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル等のグリコールエーテル類等の脂肪族炭化水素類が挙げられる。これらの中でも、N-メチルピロリドン、プロピレングリコールモノメチルエーテル等が好ましく、N-メチルピロリドン、プロピレングリコールモノメチルエーテルがより好ましい。これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
抽出処理を行う際の温度は通常、20~90℃であり、好ましくは30~80℃の範囲である。抽出操作は、例えば、撹拌等により、よく混合させたあと、静置することにより行われる。これにより、溶液(S)中に含まれていた金属分が水相に移行する。また、本操作により、溶液の酸性度が低下し、化合物及び/又は樹脂の変質を抑制することができる。
上記混合溶液は静置により、化合物及び/又は樹脂と溶媒とを含む溶液相と、水相とに分離するので、デカンテーション等により、溶液相を回収する。静置する時間は特に限定されないが、溶媒を含む溶液相と水相との分離をより良好にする観点から、当該静置する時間を調整することが好ましい。通常、静置する時間は1分以上であり、好ましくは10分以上であり、より好ましくは30分以上である。また、抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。
本実施形態の精製方法において、上記第一抽出工程後、上記化合物又は上記樹脂を含む溶液相を、さらに水に接触させて、上記化合物又は上記樹脂中の不純物を抽出する工程(第二抽出工程)を含むことが好ましい。具体的には、例えば、酸性の水溶液を用いて上記抽出処理を行った後に、該水溶液から抽出され、回収された化合物及び/又は樹脂と溶媒を含む溶液相を、さらに水による抽出処理に供することが好ましい。上記の水による抽出処理は、特に限定されないが、例えば、上記溶液相と水とを、撹拌等により、よく混合させたあと、得られた混合溶液を、静置することにより行うことができる。当該静置後の混合溶液は、化合物及び/又は樹脂と溶媒とを含む溶液相と、水相とに分離するのでデカンテーション等により、溶液相を回収することができる。
また、ここで用いる水は、本実施の形態の目的に沿って、金属含有量の少ない水、例えば、イオン交換水等であることが好ましい。抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。また、抽出処理における両者の使用割合や、温度、時間等の条件は特に限定されないが、先の酸性の水溶液との接触処理の場合と同様で構わない。
こうして得られた化合物及び/又は樹脂と溶媒とを含む溶液に混入しうる水分については、減圧蒸留等の操作を施すことにより容易に除去できる。また、必要により上記溶液に溶媒を加え、化合物及び/又は樹脂の濃度を任意の濃度に調整することができる。
得られた化合物及び/又は樹脂と溶媒とを含む溶液から、化合物及び/又は樹脂を単離する方法は、特に限定されず、減圧除去、再沈殿による分離、及びそれらの組み合わせ等、公知の方法で行うことができる。必要に応じて、濃縮操作、ろ過操作、遠心分離操作、乾燥操作等の公知の処理を行うことができる。
[組成物]
本実施形態の組成物は、上記式(1)で表される化合物、上記式(1)で表される化合物をモノマーとして得られる樹脂、上記式(2)で表される化合物及び上記式(2)で表される化合物をモノマーとして得られる樹脂からなる群より選ばれる1種以上を含有する。また、本実施形態の組成物は、リソグラフィー用膜形成組成物や光学部品形成組成物であることができる。
[化学増幅型レジスト用途向けリソグラフィー用膜形成組成物]
本実施形態における化学増幅型レジスト用途向けリソグラフィー用膜形成組成物(以下、「レジスト組成物」ともいう。)は、上記式(1)で表される化合物、上記式(1)で表される化合物をモノマーとして得られる樹脂、上記式(2)で表される化合物及び上記式(2)で表される化合物をモノマーとして得られる樹脂からなる群より選ばれる1種以上をレジスト基材として含有する。
また、本実施形態の組成物(レジスト組成物)は、溶媒をさらに含有することが好ましい。溶媒としては、特に限定されないが、例えば、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-プロピルエーテルアセテート、エチレングリコールモノ-n-ブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のエチレングリコールモノアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノ-n-プロピルエーテルアセテート、プロピレングリコールモノ-n-ブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル等のプロピレングリコールモノアルキルエーテル類;乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸n-アミル等の乳酸エステル類;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、酢酸n-アミル、酢酸n-ヘキシル、プロピオン酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシ-2-メチルプロピオン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メトキシ-3-メチルプロピオン酸ブチル、3-メトキシ-3-メチル酪酸ブチル、アセト酢酸メチル、ピルビン酸メチル、ピルビン酸エチル等の他のエステル類;トルエン、キシレン等の芳香族炭化水素類;2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロペンタノン(CPN)、シクロヘキサノン(CHN)等のケトン類;N,N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;γ-ラクトン等のラクトン類等を挙げることができるが、これらに特に限定はされない。これらの溶媒は、単独で又は2種以上を使用することができる。
本実施形態で使用される溶媒は、安全溶媒であることが好ましく、より好ましくは、PGMEA、PGME、CHN、CPN、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル及び乳酸エチルから選ばれる少なくとも1種であり、さらに好ましくはPGMEA、PGME及びCHNから選ばれる少なくとも一種である。
本実施形態において、固形成分の量と溶媒との量は、特に限定されないが、固形成分の量と溶媒との合計質量100質量%に対して、固形成分1~80質量%及び溶媒20~99質量%であることが好ましく、より好ましくは固形成分1~50質量%及び溶媒50~99質量%、さらに好ましくは固形成分2~40質量%及び溶媒60~98質量%であり、特に好ましくは固形成分2~10質量%及び溶媒90~98質量%である。
本実施形態の組成物(レジスト組成物)は、他の固形成分として、酸発生剤(C)、架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)からなる群より選ばれる少なくとも一種をさらに含有してもよい。なお、本明細書において固形成分とは溶媒以外の成分をいう。
ここで、酸発生剤(C)、架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)については公知のものが使用でき、特に限定されないが、例えば、国際公開第2013/024778号に記載されているものが好ましい。
[各成分の配合割合]
本実施形態のレジスト組成物において、レジスト基材として用いる化合物及び/又は樹脂の含有量は、特に限定されないが、固形成分の全質量(レジスト基材、酸発生剤(C)、架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)等の任意に使用される成分を含む固形成分の総和、以下同様。)の50~99.4質量%であることが好ましく、より好ましくは55~90質量%、さらに好ましくは60~80質量%、特に好ましくは60~70質量%である。レジスト基材として用いる化合物及び/又は樹脂の含有量が上記範囲である場合、解像度が一層向上し、ラインエッジラフネス(LER)が一層小さくなる傾向にある。
なお、レジスト基材として化合物と樹脂の両方を含有する場合、上記含有量は、両成分の合計量である。
[その他の成分(F)]
本実施形態のレジスト組成物には、本発明の目的を阻害しない範囲で、必要に応じて、レジスト基材、酸発生剤(C)、架橋剤(G)及び酸拡散制御剤(E)以外の成分として、溶解促進剤、溶解制御剤、増感剤、界面活性剤、有機カルボン酸又はリンのオキソ酸若しくはその誘導体、熱及び/又は光硬化触媒、重合禁止剤、難燃剤、充填剤、カップリング剤、熱硬化性樹脂、光硬化性樹脂、染料、顔料、増粘剤、滑剤、消泡剤、レベリング剤、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等の各種添加剤を1種又は2種以上添加することができる。なお、本明細書において、その他の成分(F)を任意成分(F)ということがある。
本実施形態のレジスト組成物において、レジスト基材(以下、「成分(A)」ともいう。)、酸発生剤(C)、架橋剤(G)、酸拡散制御剤(E)、任意成分(F)の含有量(成分(A)/酸発生剤(C)/架橋剤(G)/酸拡散制御剤(E)/任意成分(F))は、固形物基準の質量%で、
好ましくは50~99.4/0.001~49/0.5~49/0.001~49/0~49、
より好ましくは55~90/1~40/0.5~40/0.01~10/0~5、
さらに好ましくは60~80/3~30/1~30/0.01~5/0~1、
特に好ましくは60~70/10~25/2~20/0.01~3/0、である。
各成分の配合割合は、その総和が100質量%になるように各範囲から選ばれる。各成分の配合割合が上記範囲である場合、感度、解像度、現像性等の性能に優れる傾向にある。
本実施形態のレジスト組成物は、通常は、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば、孔径0.2μm程度のフィルター等でろ過することにより調製される。
本実施形態のレジスト組成物は、本発明の目的を阻害しない範囲で、本実施形態の樹脂以外のその他の樹脂を含むことができる。その他の樹脂としては、特に限定されず、例えば、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン-無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体あるいはこれらの誘導体等が挙げられる。その他の樹脂の含有量は、特に限定されず、使用する成分(A)の種類に応じて適宜調節されるが、成分(A)100質量部に対して、30質量部以下であることが好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下、特に好ましくは0質量部である。
[レジスト組成物の物性等]
本実施形態のレジスト組成物を用いて、スピンコートによりアモルファス膜を形成することができる。また、本実施形態のレジスト組成物は、一般的な半導体製造プロセスに適用することができる。上記式(1)及び/又は式(2)で表される化合物、これらをモノマーとして得られる樹脂の種類及び/又は用いる現像液の種類によって、ポジ型レジストパターン及びネガ型レジストパターンのいずれかを作り分けることができる。
ポジ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、5Å/sec以下であることが好ましく、0.05~5Å/secであることがより好ましく、0.0005~5Å/secであることがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、溶解速度が0.0005Å/sec以上であると、解像性が向上する傾向にある。これは、上記式(1)で表される化合物及び/又は該化合物を構成成分として含む樹脂の露光前後の溶解性の変化により、現像液に溶解する露光部と、現像液に溶解しない未露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
ネガ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、上記式(1)で表される化合物及び/又は該化合物を構成成分として含む樹脂のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
上記溶解速度は、23℃にて、アモルファス膜を所定時間現像液に浸漬させ、その浸漬前後の膜厚を、目視、エリプソメーター又はQCM法等の公知の方法によって測定し決定できる。
ポジ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、上記式(1)及び(2)で表される化合物及び/又は該化合物を構成成分として含む樹脂のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
ネガ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における現像液に対する溶解速度は、5Å/sec以下が好ましく、0.05~5Å/secがより好ましく、0.0005~5Å/secがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、上記式(1)で表される化合物及び/又は該化合物を構成成分として含む樹脂の露光前後の溶解性の変化により、現像液に溶解する未露光部と、現像液に溶解しない露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
[非化学増幅型レジスト用途向けリソグラフィー用膜形成組成物]
本実施形態の非化学増幅型レジスト用途向けリソグラフィー用膜形成組成物(以下、「感放射線性組成物」ともいう。)に含有させる成分(A)は、後述するジアゾナフトキノン光活性化合物(B)と併用し、g線、h線、i線、KrFエキシマレーザー、ArFエキシマレーザー、極端紫外線、電子線又はX線を照射することにより、現像液に易溶な化合物となるポジ型レジスト用基材として有用である。g線、h線、i線、KrFエキシマレーザー、ArFエキシマレーザー、極端紫外線、電子線又はX線により、成分(A)の性質は大きくは変化しないが、現像液に難溶なジアゾナフトキノン光活性化合物(B)が易溶な化合物に変化することで、現像工程によってレジストパターンを作り得る。
本実施形態の感放射線性組成物に含有させる成分(A)は、比較的低分子量の化合物であることから、得られたレジストパターンのラフネスは非常に小さい。また、上記式(1)中、R~Rからなる群より選択される少なくとも1つがヨウ素原子を含む基であることが好ましく、上記式(2)中、R0A、R1A及びR2Aからなる群より選択される少なくとも1つがヨウ素原子を含む基であることが好ましい。本実施形態の感放射線性組成物は、このような好ましい態様であるヨウ素原子を含む基を有する成分(A)を適用した場合は、電子線、極端紫外線(EUV)、X線等の放射線に対する吸収能を増加させ、その結果、感度を高めることが可能となり好ましい。
本実施形態の感放射線性組成物に含有させる成分(A)のガラス転移温度は、好ましくは100℃以上、より好ましくは120℃以上、さらに好ましくは140℃以上、特に好ましくは150℃以上である。成分(A)のガラス転移温度の上限値は、特に限定されないが、例えば、400℃である。成分(A)のガラス転移温度が上記範囲内であることにより、半導体リソグラフィープロセスにおいて、パターン形状を維持しうる耐熱性を有し、高解像度等の性能が向上する傾向にある。
本実施形態の感放射線性組成物に含有させる成分(A)のガラス転移温度の示差走査熱量分析により求めた結晶化発熱量は20J/g未満であるのが好ましい。また、(結晶化温度)-(ガラス転移温度)は好ましくは70℃以上、より好ましくは80℃以上、さらに好ましくは100℃以上、特に好ましくは130℃以上である。結晶化発熱量が20J/g未満、又は(結晶化温度)-(ガラス転移温度)が上記範囲内であると、感放射線性組成物をスピンコートすることにより、アモルファス膜を形成しやすく、かつレジストに必要な成膜性が長期に渡り保持でき、解像性を向上することができる傾向にある。
本実施形態において、上記結晶化発熱量、結晶化温度及びガラス転移温度は、島津製作所製DSC/TA-50WSを用いた示差走査熱量分析により求めることができる。試料約10mgをアルミニウム製非密封容器に入れ、窒素ガス気流中(50mL/分)昇温速度20℃/分で融点以上まで昇温する。急冷後、再び窒素ガス気流中(30mL/分)昇温速度20℃/分で融点以上まで昇温する。さらに急冷後、再び窒素ガス気流中(30mL/分)昇温速度20℃/分で400℃まで昇温する。ステップ状に変化したベースラインの段差の中点(比熱が半分に変化したところ)の温度をガラス転移温度(Tg)、その後に現れる発熱ピークの温度を結晶化温度とする。発熱ピークとベースラインに囲まれた領域の面積から発熱量を求め、結晶化発熱量とする。
本実施形態の感放射線性組成物に含有させる成分(A)は、常圧下、100以下、好ましくは120℃以下、より好ましくは130℃以下、さらに好ましくは140℃以下、特に好ましくは150℃以下において、昇華性が低いことが好ましい。昇華性が低いとは、熱重量分析において、所定温度で10分保持した際の重量減少が10%以下、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1%以下、特に好ましくは0.1%以下であることを示す。昇華性が低いことにより、露光時のアウトガスによる露光装置の汚染を防止することができる。また低ラフネスで良好なパターン形状を得ることができる。
本実施形態の感放射線性組成物に含有させる成分(A)は、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン(CHN)、シクロペンタノン(CPN)、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル及び乳酸エチルからなる群より選ばれ、かつ、成分(A)に対して最も高い溶解能を示す溶媒に、23℃で、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上溶解する。特に好ましくは、PGMEA、PGME、CHNからなる群より選ばれ、かつ、(A)レジスト基材に対して最も高い溶解能を示す溶媒に、23℃で、20質量%以上、特に好ましくはPGMEAに対して、23℃で、20質量%以上溶解する。上記条件を満たしていることにより、実生産における半導体製造工程での使用が容易となる。
[ジアゾナフトキノン光活性化合物(B)]
本実施形態の感放射線性組成物に含有させるジアゾナフトキノン光活性化合物(B)は、ポリマー性及び非ポリマー性ジアゾナフトキノン光活性化合物を含む、ジアゾナフトキノン物質であり、一般にポジ型レジスト組成物において、感光性成分(感光剤)として用いられているものであれば特に制限なく、1種又は2種以上を任意に選択して用いることができる。
成分(B)としては、ナフトキノンジアジドスルホン酸クロライドやベンゾキノンジアジドスルホン酸クロライド等と、これら酸クロライドと縮合反応可能な官能基を有する低分子化合物又は高分子化合物とを反応させることによって得られた化合物が好ましいものである。ここで、酸クロライドと縮合可能な官能基としては、特に限定されないが、例えば、水酸基、アミノ基等が挙げられるが、特に水酸基が好適である。水酸基を含む酸クロライドと縮合可能な化合物としては、特に限定されないが、例えばハイドロキノン、レゾルシン、2、4-ジヒドロキシベンゾフェノン、2、3、4-トリヒドロキシベンゾフェノン、2、4、6-トリヒドロキシベンゾフェノン、2、4、4’-トリヒドロキシベンゾフェノン、2、3、4、4’-テトラヒドロキシベンゾフェノン、2、2’、4、4’-テトラヒドロキシベンゾフェノン、2、2’、3、4、6’-ペンタヒドロキシベンゾフェノン等のヒドロキシベンゾフェノン類、ビス(2、4-ジヒドロキシフェニル)メタン、ビス(2、3、4-トリヒドロキシフェニル)メタン、ビス(2、4-ジヒドロキシフェニル)プロパン等のヒドロキシフェニルアルカン類、4、4’、3”、4”-テトラヒドロキシ-3、5、3’、5’-テトラメチルトリフェニルメタン、4、4’、2”、3”、4”-ペンタヒドロキシ-3、5、3’、5’-テトラメチルトリフェニルメタン等のヒドロキシトリフェニルメタン類等を挙げることができる。
また、ナフトキノンジアジドスルホン酸クロライドやベンゾキノンジアジドスルホン酸クロライド等の酸クロライドとしては、例えば、1、2-ナフトキノンジアジド-5-スルフォニルクロライド、1、2-ナフトキノンジアジド-4-スルフォニルクロライド等が好ましいものとして挙げられる。
本実施形態の感放射線性組成物は、例えば、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば、孔径0.2μm程度のフィルター等でろ過することにより調製されることが好ましい。
[感放射線性組成物の特性]
本実施形態の感放射線性組成物は、スピンコートによりアモルファス膜を形成することができる。また本実施形態の感放射線性組成物は、一般的な半導体製造プロセスに適用することができる。用いる現像液の種類によって、ポジ型レジストパターン及びネガ型レジストパターンのいずれかを作り分けることができる。
ポジ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、5Å/sec以下であることが好ましく、0.05~5Å/secであることがより好ましく、0.0005~5Å/secであることがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、溶解速度が0.0005Å/sec以上であると、解像性が向上する傾向にある。これは、上記式(1)及び(2)で表される化合物及び/又は該化合物を構成成分として含む樹脂の露光前後の溶解性の変化により、現像液に溶解する露光部と、現像液に溶解しない未露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
ネガ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、上記式(1)及び(2)で表される化合物及び/又は該化合物を構成成分として含む樹脂のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
上記溶解速度は、23℃にて、アモルファス膜を所定時間現像液に浸漬させ、その浸漬前後の膜厚を、目視、エリプソメーター又はQCM法等の公知の方法によって測定し決定できる。
ポジ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により照射した後、又は、20~500℃で加熱した後の露光した部分の、23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましく、10~10000Å/secであることがより好ましく、100~1000Å/secであることがさらに好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10000Å/sec以下の溶解速度を有すると、解像性が向上する場合もある。これは、上記式(1)及び(2)で表される化合物及び/又は該化合物を構成成分として含む樹脂のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある傾向にある。
ネガ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により照射した後、又は、20~500℃で加熱した後の露光した部分の、23℃における現像液に対する溶解速度は、5Å/sec以下であることが好ましく、0.05~5Å/secであることがより好ましく、0.0005~5Å/secであることがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、溶解速度が0.0005Å/sec以上であると、解像性が向上する場合もある。これは、上記式(1)及び(2)で表される化合物及び/又は該化合物を構成成分として含む樹脂の露光前後の溶解性の変化により、現像液に溶解する未露光部と、現像液に溶解しない露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある傾向にある。
[各成分の配合割合]
本実施形態の感放射線性組成物において、成分(A)の含有量は、固形成分全重量(成分(A)、ジアゾナフトキノン光活性化合物(B)及びその他の成分(D)等の任意に使用される固形成分の総和、以下同様。)に対して、好ましくは1~99質量%であり、より好ましくは5~95質量%、さらに好ましくは10~90質量%、特に好ましくは25~75質量%である。本実施形態の感放射線性組成物は、成分(A)の含有量が上記範囲内であると、高感度でラフネスの小さなパターンを得ることができる傾向にある。
本実施形態の感放射線性組成物において、ジアゾナフトキノン光活性化合物(B)の含有量は、固形成分全重量(成分(A)、ジアゾナフトキノン光活性化合物(B)及びその他の成分(D)等の任意に使用される固形成分の総和、以下同様。)に対して、好ましくは1~99質量%であり、より好ましくは5~95質量%、さらに好ましくは10~90質量%、特に好ましくは25~75質量%である。本実施の形態の感放射線性組成物は、ジアゾナフトキノン光活性化合物(B)の含有量が上記範囲内であると、高感度でラフネスの小さなパターンを得ることができる傾向にある。
[その他の成分(D)]
本実施形態の感放射線性組成物には、本発明の目的を阻害しない範囲で、必要に応じて、成分(A)及びジアゾナフトキノン光活性化合物(B)以外の成分として、酸発生剤、架橋剤、酸拡散制御剤、溶解促進剤、溶解制御剤、増感剤、界面活性剤、有機カルボン酸又はリンのオキソ酸若しくはその誘導体、熱及び/又は光硬化触媒、重合禁止剤、難燃剤、充填剤、カップリング剤、熱硬化性樹脂、光硬化性樹脂、染料、顔料、増粘剤、滑剤、消泡剤、レベリング剤、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等の各種添加剤を1種又は2種以上添加することができる。なお、本明細書において、その他の成分(D)を任意成分(D)ということがある。
本実施形態の感放射線性組成物において、各成分の配合割合(成分(A)/ジアゾナフトキノン光活性化合物(B)/任意成分(D))は、固形成分基準の質量%で、
好ましくは1~99/99~1/0~98、
より好ましくは5~95/95~5/0~49、
さらに好ましくは10~90/90~10/0~10、
よりさらに好ましくは20~80/80~20/0~5、
さらにより好ましくは25~75/75~25/0、である。
各成分の配合割合は、その総和が100質量%になるように各範囲から選ばれる。本実施形態の感放射線性組成物は、各成分の配合割合を上記範囲にすると、ラフネスに加え、感度、解像度等の性能に優れる傾向にある。
本実施形態の感放射線性組成物は、本発明の目的を阻害しない範囲で、本実施形態以外のその他の樹脂を含んでもよい。その他の樹脂としては、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン-無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体あるいはこれらの誘導体等が挙げられる。これらの樹脂の配合量は、使用する成分(A)の種類に応じて適宜調節されるが、成分(A)100質量部に対して、30質量部以下であることが好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下、特に好ましくは0質量部である。
[レジストパターンの形成方法]
本実施形態によるレジストパターンの形成方法は、上述した本実施形態のレジスト組成物又は感放射線性組成物を用いて基板上にフォトレジスト層を形成した後、上記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む。具体的には、基板上にレジスト膜を形成する工程と、形成されたレジスト膜を露光する工程と、上記レジスト膜を現像してレジストパターンを形成する工程とを備える。本実施形態におけるレジストパターンは多層プロセスにおける上層レジストとして形成することもできる。
レジストパターンを形成する方法としては、特に限定されないが、例えば、以下の方法が挙げられる。まず、従来公知の基板上に上記本実施形態のレジスト組成物又は感放射線性組成物を、回転塗布、流延塗布、ロール塗布等の塗布手段によって塗布することによりレジスト膜を形成する。従来公知の基板とは、特に限定されず、例えば、電子部品用の基板や、これに所定の配線パターンが形成されたもの等が挙げられる。より具体的には、シリコンウェハー、銅、クロム、鉄、アルミニウム等の金属製の基板や、ガラス基板等が挙げられる。配線パターンの材料としては、例えば銅、アルミニウム、ニッケル、金等が挙げられる。また、必要に応じて、前述基板上に無機系及び/又は有機系の膜が設けられたものであってもよい。無機系の膜としては、無機反射防止膜(無機BARC)が挙げられる。有機系の膜としては、有機反射防止膜(有機BARC)が挙げられる。基板上ではヘキサメチレンジシラザン等による表面処理を行ってもよい。
次に、必要に応じて、レジスト組成物又は感放射線性組成物を塗布した基板を加熱する。加熱条件は、レジスト組成物又は感放射線組成物の配合組成等により変わるが、20~250℃であることが好ましく、より好ましくは20~150℃である。加熱することによって、レジストの基板に対する密着性が向上する傾向にあり好ましい。次いで、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線、及びイオンビームからなる群から選ばれるいずれかの放射線により、レジスト膜を所望のパターンに露光する。露光条件等は、レジスト組成物又は感放射線性組成物の配合組成等に応じて適宜選定される。本実施形態においては、露光における高精度の微細パターンを安定して形成するために、放射線照射後に加熱するのが好ましい。加熱条件は、レジスト組成物又は感放射線性組成物の配合組成等により変わるが、20~250℃であることが好ましく、より好ましくは20~150℃である。
次いで、露光されたレジスト膜を現像液で現像することにより、所定のレジストパターンを形成する。上記現像液としては、使用する式(1)若しくは式(2)で表される化合物又は式(1)若しくは式(2)で表される化合物をモノマーとして得られる樹脂に対して溶解度パラメーター(SP値)の近い溶剤を選択することが好ましく、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤等の極性溶剤、炭化水素系溶剤又はアルカリ水溶液を用いることができる。
ケトン系溶剤としては、例えば、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、アセトン、4-ヘプタノン、1-ヘキサノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、イソホロン、プロピレンカーボネート等が挙げられる。
エステル系溶剤としては、例えば、酢酸メチル、酢酸ブチル、酢酸エチル、酢酸イソプロピル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル等が挙げられる。
アルコール系溶剤としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール(2-プロパノール)、n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソブチルアルコール、n-ヘキシルアルコール、4-メチル-2-ペンタノール、n-ヘプチルアルコール、n-オクチルアルコール、n-デカノール等のアルコールや、エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤や、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール等のグリコールエーテル系溶剤等が挙げられる。
エーテル系溶剤としては、例えば、上記グリコールエーテル系溶剤の他、ジオキサン、テトラヒドロフラン等が挙げられる。
アミド系溶剤としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド、1,3-ジメチル-2-イミダゾリジノン等が挙げられる。
炭化水素系溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素系溶剤、ペンタン、ヘキサン、オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
上記の溶剤は、複数混合してもよいし、性能を有する範囲内で、上記以外の溶剤や水と混合し使用してもよい。但し、本発明の効果を十二分に奏するためには、現像液全体としての含水率が70質量%未満であることが好ましく、50質量%未満であることがより好ましく、30質量%未満であることがさらに好ましく、10質量%未満であることがよりさらに好ましく、実質的に水分を含有しないことがさらにより好ましい。すなわち、現像液に対する有機溶剤の含有量は、現像液の全量に対して、30質量%以上100質量%以下であることが好ましく、50質量%以上100質量%以下であることがより好ましく、70質量%以上100質量%以下であることがさらに好ましく、90質量%以上100質量%以下であることがよりさらに好ましく、95質量%以上100質量%以下であることがさらにより好ましい。
アルカリ水溶液としては、例えば、モノ-、ジ-あるいはトリアルキルアミン類、モノ-、ジ-あるいはトリアルカノールアミン類、複素環式アミン類、テトラメチルアンモニウムヒドロキシド(TMAH)、コリン等のアルカリ性化合物が挙げられる。
特に、現像液としては、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤から選択される少なくとも1種類の溶剤を含有する現像液が、レジストパターンの解像性やラフネス等のレジスト性能を改善するため好ましい。
現像液の蒸気圧は、20℃において、5kPa以下であることが好ましく、3kPa以下であることがさらに好ましく、2kPa以下であることが特に好ましい。現像液の蒸気圧が5kPa以下であることにより、現像液の基板上あるいは現像カップ内での蒸発が抑制され、ウェハ面内の温度均一性が向上し、結果としてウェハ面内の寸法均一性が良化する傾向にある。
20℃において5kPa以下の蒸気圧を有する具体的な現像液の例としては、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、4-ヘプタノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルイソブチルケトン等のケトン系溶剤;酢酸ブチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル等のエステル系溶剤;n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソブチルアルコール、n-ヘキシルアルコール、4-メチル-2-ペンタノール、n-ヘプチルアルコール、n-オクチルアルコール、n-デカノール等のアルコール系溶剤;エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤や;エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール等のグリコールエーテル系溶剤;テトラヒドロフラン等のエーテル系溶剤;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドのアミド系溶剤;トルエン、キシレン等の芳香族炭化水素系溶剤;オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
特に好ましい範囲である20℃において2kPa以下の蒸気圧を有する具体的な現像液の例としては、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、4-ヘプタノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン等のケトン系溶剤;酢酸ブチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸エチル、乳酸ブチル、乳酸プロピル等のエステル系溶剤;n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソブチルアルコール、n-ヘキシルアルコール、4-メチル-2-ペンタノール、n-ヘプチルアルコール、n-オクチルアルコール、n-デカノール等のアルコール系溶剤;エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤;エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール等のグリコールエーテル系溶剤;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドのアミド系溶剤;キシレン等の芳香族炭化水素系溶剤;オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
現像液には、必要に応じて界面活性剤を適当量添加することができる。界面活性剤としては特に限定されないが、例えば、イオン性や非イオン性のフッ素系及び/又はシリコン系界面活性剤等を用いることができる。これらのフッ素及び/又はシリコン系界面活性剤として、例えば、特開昭62-36663号公報、特開昭61-226746号公報、特開昭61-226745号公報、特開昭62-170950号公報、特開昭63-34540号公報、特開平7-230165号公報、特開平8-62834号公報、特開平9-54432号公報、特開平9-5988号公報、米国特許第5405720号明細書、同5360692号明細書、同5529881号明細書、同5296330号明細書、同5436098号明細書、同5576143号明細書、同5294511号明細書、同5824451号明細書記載の界面活性剤を挙げることができ、好ましくは、非イオン性の界面活性剤である。非イオン性の界面活性剤としては特に限定されないが、フッ素系界面活性剤又はシリコン系界面活性剤を用いることがさらに好ましい。
界面活性剤の使用量は現像液の全量に対して、通常0.001~5質量%、好ましくは0.005~2質量%、さらに好ましくは0.01~0.5質量%である。
現像方法としては、例えば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出しつづける方法(ダイナミックディスペンス法)等を適用することができる。パターンの現像を行なう時間には特に制限はないが、好ましくは10秒~90秒である。
また、現像を行う工程の後に、他の溶媒に置換しながら、現像を停止する工程を実施してもよい。
現像の後には、有機溶剤を含むリンス液を用いて洗浄する工程を含むことが好ましい。
現像後のリンス工程に用いるリンス液としては、架橋により硬化したレジストパターンを溶解しなければ特に制限はなく、一般的な有機溶剤を含む溶液又は水を使用することができる。上記リンス液としては、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤から選択される少なくとも1種類の有機溶剤を含有するリンス液を用いることが好ましい。より好ましくは、現像の後に、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有するリンス液を用いて洗浄する工程を行う。さらにより好ましくは、現像の後に、アルコール系溶剤又はエステル系溶剤を含有するリンス液を用いて洗浄する工程を行う。さらにより好ましくは、現像の後に、1価アルコールを含有するリンス液を用いて洗浄する工程を行う。特に好ましくは、現像の後に、炭素数5以上の1価アルコールを含有するリンス液を用いて洗浄する工程を行う。パターンのリンスを行なう時間には特に制限はないが、好ましくは10秒~90秒である。
ここで、現像後のリンス工程で用いられる1価アルコールとしては、直鎖状、分岐状、環状の1価アルコールが挙げられ、具体的には、1-ブタノール、2-ブタノール、3-メチル-1-ブタノール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、1-ヘキサノール、4-メチル-2-ペンタノール、1-ヘプタノール、1-オクタノール、2-ヘキサノール、シクロペンタノール、2-ヘプタノール、2-オクタノール、3-ヘキサノール、3-ヘプタノール、3-オクタノール、4-オクタノール等を用いることができ、特に好ましい炭素数5以上の1価アルコールとしては、1-ヘキサノール、2-ヘキサノール、4-メチル-2-ペンタノール、1-ペンタノール、3-メチル-1-ブタノール等が挙げられる。
上記各成分は、複数混合してもよいし、上記以外の有機溶剤と混合し使用してもよい。
リンス液中の含水率は、10質量%以下であることが好ましく、より好ましくは5質量%以下、特に好ましくは3質量%以下である。含水率を10質量%以下にすることで、より良好な現像特性を得ることができる傾向にある。
現像後に用いるリンス液の蒸気圧は、20℃において0.05kPa以上、5kPa以下であることが好ましく、0.1kPa以上、5kPa以下であることがより好ましく、0.12kPa以上、3kPa以下であることがさらに好ましい。リンス液の蒸気圧を0.05kPa以上、5kPa以下にすることにより、ウェハ面内の温度均一性がより向上し、さらにはリンス液の浸透に起因した膨潤がより抑制され、ウェハ面内の寸法均一性がより良化する傾向にある。
リンス液には、界面活性剤を適当量添加して使用することもできる。
リンス工程においては、現像を行ったウェハを上記の有機溶剤を含むリンス液を用いて洗浄処理する。洗浄処理の方法は特に限定されないが、たとえば、一定速度で回転している基板上にリンス液を塗出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面にリンス液を噴霧する方法(スプレー法)等を適用することができ、この中でも回転塗布方法で洗浄処理を行い、洗浄後に基板を2000rpm~4000rpmの回転数で回転させ、リンス液を基板上から除去することが好ましい。
レジストパターンを形成した後、エッチングすることによりパターン配線基板が得られる。エッチングの方法はプラズマガスを使用するドライエッチング及びアルカリ溶液、塩化第二銅溶液、塩化第二鉄溶液等によるウェットエッチング等の公知の方法で行うことができる。
レジストパターンを形成した後、めっきを行うことも出来る。上記めっき法としては、例えば、銅めっき、はんだめっき、ニッケルめっき、金めっき等が挙げられる。
エッチング後の残存レジストパターンは有機溶剤で剥離することができる。上記有機溶剤として、PGMEA(プロピレングリコールモノメチルエーテルアセテート),PGME(プロピレングリコールモノメチルエーテル),EL(乳酸エチル)等が挙げられる。上記剥離方法としては、例えば、浸漬方法、スプレイ方式等が挙げられる。また、レジストパターンが形成された配線基板は、多層配線基板でもよく、小径スルーホールを有していてもよい。
本実施形態において得られる配線基板は、レジストパターン形成後、金属を真空中で蒸着し、その後レジストパターンを溶液で溶かす方法、すなわちリフトオフ法により形成することもできる。
[下層膜用途向けリソグラフィー用膜形成組成物]
本実施形態の下層膜用途向けリソグラフィー用膜形成組成物(以下、「下層膜形成材料」ともいう。)は、上記式(1)表される化合物、上記式(1)表される化合物をモノマーとして得られる樹脂、式(2)で表される化合物及び式(2)で表される化合物をモノマーとして得られる樹脂からなる群より選ばれる少なくとも1種の物質を含有する。本実施形態において上記物質は塗布性及び品質安定性の点から、下層膜形成材料中、1~100質量%であることが好ましく、10~100質量%であることがより好ましく、50~100質量%であることがさらに好ましく、100質量%であることが特に好ましい。
本実施形態の下層膜形成材料は、湿式プロセスへの適用が可能であり、耐熱性及びエッチング耐性に優れる。さらに、本実施形態の下層膜形成材料は上記物質を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れた下層膜を形成することができる。さらに、本実施形態の下層膜形成材料はレジスト層との密着性にも優れるので、優れたレジストパターンを得ることができる。なお、本実施形態の下層膜形成材料は、本発明の効果が損なわれない範囲において、既に知られているリソグラフィー用下層膜形成材料等を含んでいてもよい。
[溶媒]
本実施形態の下層膜形成材料は、溶媒を含有してもよい。本実施形態の下層膜形成材料に用いられる溶媒としては、上述した物質が少なくとも溶解するものであれば、公知のものを適宜用いることができる。
溶媒の具体例としては、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のセロソルブ系溶媒;乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒;メタノール、エタノール、イソプロパノール、1-エトキシ-2-プロパノール等のアルコール系溶媒;トルエン、キシレン、アニソール等の芳香族系炭化水素等が挙げられる。これらの溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
上記溶媒の中で、安全性の点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、ヒドロキシイソ酪酸メチル、アニソールが特に好ましい。
溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、上記下層膜形成材料100質量部に対して、100~10000質量部であることが好ましく、200~5000質量部であることがより好ましく、200~1000質量部であることがさらに好ましい。
[架橋剤]
本実施形態の下層膜形成材料は、インターミキシングを抑制する等の観点から、必要に応じて架橋剤を含有していてもよい。本実施形態で使用可能な架橋剤は特に限定されないが、例えば、国際公開第2013/024779号に記載のものを用いることができる。
本実施形態において使用可能な架橋剤の具体例としては、例えば、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、アクリレート化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物、アジド化合物等が挙げられるが、これらに特に限定されない。これらの架橋剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。これらの中でもベンゾオキサジン化合物、エポキシ化合物又はシアネート化合物が好ましく、エッチング耐性向上の観点から、ベンゾオキサジン化合物がより好ましい。
前記フェノール化合物としては、公知のものが使用できる。例えば、フェノール類としては、フェノールの他、クレゾール類、キシレノール類等のアルキルフェノール類、ヒドロキノン等の多価フェノール類、ナフトール類、ナフタレンジオール類等の多環フェノール類、ビスフェノールA、ビスフェノールF等のビスフェノール類、あるいはフェノールノボラック、フェノールアラルキル樹脂等の多官能性フェノール化合物等が挙げられる。中でも、耐熱性及び溶解性の点から、アラルキル型フェノール樹脂が好ましい。
前記エポキシ化合物としては、公知のものが使用でき、1分子中にエポキシ基を2個以上有するもの中から選択される。例えば、ビスフェノールA、ビスフェノールF、3,3',5,5’-テトラメチル-ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、2,2' -ビフェノール、3,3',5,5’-テトラメチル-4,4’-ジヒドロキシビフェノール、レゾルシン、ナフタレンジオール類等の2価のフェノール類のエポキシ化物、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、トリス(2,3-エポキシプロピル)イソシアヌレート、トリメチロールメタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリエチロールエタントリグリシジルエーテル、フェノールノボラック、o-クレゾールノボラック等の3価以上のフェノール類のエポキシ化物、ジシクロペンタジエンとフェノール類の共縮合樹脂のエポキシ化物、フェノール類とパラキシリレンジクロライド等から合成されるフェノールアラルキル樹脂類のエポキシ化物、フェノール類とビスクロロメチルビフェニル等から合成されるビフェニルアラルキル型フェノール樹脂のエポキシ化物、ナフトール類とパラキシリレンジクロライド等から合成されるナフトールアラルキル樹脂類のエポキシ化物等が挙げられる。これらのエポキシ樹脂は、単独で用いてもよく、2種以上を併用してもよい。中でも、耐熱性と溶解性の観点から、フェノールアラルキル樹脂類、ビフェニルアラルキル樹脂類から得られるエポキシ樹脂等の常温で固体状エポキシ樹脂が好ましい。
前記シアネート化合物としては、1分子中に2個以上のシアネート基を有する化合物であれば特に制限なく、公知のものを使用することができる。本実施形態において、好ましいシアネート化合物としては、1分子中に2個以上の水酸基を有する化合物の水酸基をシアネート基に置換した構造のものが挙げられる。また、シアネート化合物は、芳香族基を有するものが好ましく、シアネート基が芳香族基に直結した構造のものを好適に使用することができる。このようなシアネート化合物としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールM、ビスフェノールP、ビスフェノールE、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエンノボラック樹脂、テトラメチルビスフェノールF、ビスフェノールAノボラック樹脂、臭素化ビスフェノールA、臭素化フェノールノボラック樹脂、3官能フェノール、4官能フェノール、ナフタレン型フェノール、ビフェニル型フェノール、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂、ジシクロペンタジエンアラルキル樹脂、脂環式フェノール、リン含有フェノール等の水酸基をシアネート基に置換した構造のものが挙げられる。これらのシアネート化合物は、単独でまたは2種以上を適宜組み合わせて使用してもよい。また、上記したシアネート化合物は、モノマー、オリゴマー及び樹脂のいずれの形態であってもよい。
前記アミノ化合物としては、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4'-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン、O-トリジン、m-トリジン、4,4’-ジアミノベンズアニリド、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4-アミノフェニル-4-アミノベンゾエート、2-(4-アミノフェニル)-6-アミノベンゾオキサゾール等が例示される。さらに、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4'-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル等の芳香族アミン類、ジアミノシクロヘキサン、ジアミノジシクロヘキシルメタン、ジメチルージアミノジシクロヘキシルメタン、テトラメチルージアミノジシクロヘキシルメタン、ジアミノジシクロヘキシルプロパン、ジアミノビシクロ[2.2.1]ヘプタン、ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、3(4),8(9)-ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン、1,3-ビスアミノメチルシクロヘキサン、イソホロンジアミン等の脂環式アミン類、エチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族アミン類等が挙げられる。
前記ベンゾオキサジン化合物としては、二官能性ジアミン類と単官能フェノール類から得られるP-d型ベンゾオキサジン、単官能性ジアミン類と二官能性フェノール類から得られるF-a型ベンゾオキサジン等が挙げられる。
前記メラミン化合物の具体例としては、例えば、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1~6個のメチロール基がメトキシメチル化した化合物又はその混合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1~6個がアシロキシメチル化した化合物又はその混合物などが挙げられる。
前記グアナミン化合物の具体例としては、例えば、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がアシロキシメチル化した化合物又はその混合物などが挙げられる。
前記グリコールウリル化合物の具体例としては、例えば、テトラメチロールグリコールウリル、テトラメトキシグリコールウリル、テトラメトキシメチルグリコールウリル、テトラメチロールグリコールウリルのメチロール基の1~4個がメトキシメチル化した化合物又はその混合物、テトラメチロールグリコールウリルのメチロール基の1~4個がアシロキシメチル化した化合物又はその混合物などが挙げられる。
前記ウレア化合物の具体例としては、例えば、テトラメチロールウレア、テトラメトキシメチルウレア、テトラメチロールウレアの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルウレアなどが挙げられる。
また、本実施形態においては、架橋性向上の観点から、少なくとも1つのアリル基を有する架橋剤を用いてもよい。少なくとも1つのアリル基を有する架橋剤の具体例としては、2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、ビス(3-アリル-4-ヒドロキシフェニル)スルホン、ビス(3-アリル-4-ヒドロキシフェニル)スルフィド、ビス(3-アリル-4-ヒドロキシフェニル)エ-テル等のアリルフェノール類、2,2-ビス(3-アリル-4-シアナトフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-シアナトフェニル)プロパン、ビス(3-アリル-4-シアナトシフェニル)スルホン、ビス(3-アリル-4-シアナトフェニル)スルフィド、ビス(3-アリル-4-シアナトフェニル)エ-テル等のアリルシアネート類、ジアリルフタレート、ジアリルイソフタレート、ジアリルテレフタレート、トリアリルイソシアヌレート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールアリルエーテル等が挙げられるが、これら例示されたものに限定されるものではない。これらは単独でも、2種類以上の混合物であってもよい。これらの中でも、ビスマレイミド化合物及び/又は付加重合型マレイミド樹脂との相溶性に優れるという観点から、2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、ビス(3-アリル-4-ヒドロキシフェニル)スルホン、ビス(3-アリル-4-ヒドロキシフェニル)スルフィド、ビス(3-アリル-4-ヒドロキシフェニル)エ-テル等のアリルフェノール類が好ましい。
下層膜形成材料中の架橋剤の含有量は、特に限定されないが、下層膜形成材料100質量部に対して、0.1~100質量部であることが好ましく、5~50質量部であることがより好ましく、さらに好ましくは10~40質量部である。架橋剤の含有量を上記範囲にすることで、レジスト層とのミキシング現象の発生が抑制される傾向にあり、また、反射防止効果が高められ、架橋後の膜形成性が高められる傾向にある。
[架橋促進剤]
本実施形態の下層膜形成材料には、必要に応じて架橋、硬化反応を促進させるための架橋促進剤を用いることができる。
前記架橋促進剤としては、架橋、硬化反応を促進させるものであれば、特に限定されないが、例えば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等が挙げられる。これらの架橋促進剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。これらの中でもイミダゾール類又は有機ホスフィン類が好ましく、架橋温度の低温化の観点から、イミダゾール類がより好ましい。
前記架橋促進剤としては、以下に限定されないが、例えば、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの三級アミン、2-メチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-へプタデシルイミダゾール、2,4,5-トリフェニルイミダゾールなどのイミダゾール類、トリブチルホスフィン、メチルジフェニルホスフイン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィンなどの有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレートなどのテトラ置換ホスホニウム・テトラ置換ボレート、2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレートなどのテトラフェニルボロン塩などが挙げられる。
架橋促進剤の配合量としては、通常、下層膜形成材料全体を100質量部とした場合に、好ましくは0.1~10質量部であり、より好ましくは、制御のし易さ及び経済性の観点から0.1~5質量部であり、さらに好ましくは0.1~3質量部である。
[ラジカル重合開始剤]
本実施形態の下層膜形成材料には、必要に応じてラジカル重合開始剤を配合することができる。ラジカル重合開始剤としては、光によりラジカル重合を開始させる光重合開始剤であってもよいし、熱によりラジカル重合を開始させる熱重合開始剤であってもよい。
このようなラジカル重合開始剤としては、特に制限されず、従来用いられているものを適宜採用することができる。例えば、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジメチルケタール、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチルプロパン-1-オン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のケトン系光重合開始剤、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセテートパーオキサイド、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、1,1-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、イソブチリルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシン酸パーオキサイド、m-トルオイルベンゾイルパーオキサイド、ベンゾイルパーオキサイド、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジ-2-エトキシヘキシルパーオキシジカーボネート、ジ-3-メトキシブチルパーオキシジカーボネート、ジ-s-ブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、α,α’-ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノオエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサノエート、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシマレート、t-ブチルパーオキシ-3,5,5-トリメトルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシアセテート、t-ブチルパーオキシ-m-トルイルベンゾエート、t-ブチルパーオキシベンゾエート、ビス(t-ブチルパーオキシ)イソフタレート、2,5-ジメチル-2,5-ビス(m-トルイルパーオキシ)ヘキサン、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアリルモノカーボネート、t-ブチルトリメチルシリルパーオキサイド、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,3-ジメチル-2,3-ジフェニルブタン等の有機過酸化物系重合開始剤が挙げられる。
また、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス(2-メチル-N-フェニルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[N-(4-クロロフェニル)-2-メチルプロピオンアミジン]ジヒドリドクロリド、2,2’-アゾビス[N-(4-ヒドロフェニル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(フェニルメチル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(2-プロペニル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[N-(2-ヒドロキシエチル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(5-ヒドロキシ-3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド]、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)エチル]プロピオンアミド]、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(2-メチルプロピオンアミド)、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス(2-メチルプロパン)、ジメチル-2,2-アゾビス(2-メチルプロピオネート)、4,4’-アゾビス(4-シアノペンタン酸)、2,2’-アゾビス[2-(ヒドロキシメチル)プロピオニトリル]等のアゾ系重合開始剤も挙げられる。本実施形態におけるラジカル重合開始剤としては、これらのうちの1種を単独で用いても2種以上を組み合わせて用いてもよく、他の公知の重合開始剤をさらに組み合わせて用いてもよい。
前記ラジカル重合開始剤の含有量としては、化学量論的に必要な量であればよいが、前記下層膜形成材料を100質量部とした場合に0.05~25質量部であることが好ましく、0.1~10質量部であることがより好ましい。ラジカル重合開始剤の含有量が0.05質量部以上である場合には、硬化が不十分となることを防ぐことができる傾向にあり、他方、ラジカル重合開始剤の含有量が25質量部以下である場合には、下層膜形成材料の室温での長期保存安定性が損なわれることを防ぐことができる傾向にある。
[酸発生剤]
本実施形態の下層膜形成材料は、熱による架橋反応をさらに促進させる等の観点から、必要に応じて酸発生剤を含有していてもよい。酸発生剤としては、熱分解によって酸を発生するもの、光照射によって酸を発生するもの等が知られているが、いずれのものも使用することができる。例えば、国際公開第2013/024779号に記載のものを用いることができる。
本実施形態の下層膜形成材料において、酸発生剤の含有量は、特に限定されないが、下層膜形成材料100質量部に対して、0.1~50質量部であることが好ましく、より好ましくは0.5~40質量部である。上記の好ましい範囲にすることで、酸発生量が多くなって架橋反応が高められる傾向にあり、また、レジスト層とのミキシング現象の発生が抑制される傾向にある。
[塩基性化合物]
さらに、本実施形態の下層膜形成材料は、保存安定性を向上させる等の観点から、塩基性化合物を含有していてもよい。
塩基性化合物は、酸発生剤より微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。このような塩基性化合物としては、特に限定されないが、例えば、国際公開第2013/024779号に記載のものが挙げられる。
本実施形態における下層膜形成材料において、塩基性化合物の含有量は、特に限定されないが、下層膜形成材料100質量部に対して、0.001~2質量部であることが好ましく、より好ましくは0.01~1質量部である。上記の好ましい範囲にすることで、架橋反応を過度に損なうことなく保存安定性が高められる傾向にある。
[その他の添加剤]
また、本実施形態における下層膜形成材料は、熱や光による硬化性の付与や吸光度をコントロールする目的で、他の樹脂及び/又は化合物を含有していてもよい。このような他の樹脂及び/又は化合物としては、ナフトール樹脂、キシレン樹脂ナフトール変性樹脂、ナフタレン樹脂のフェノール変性樹脂、ポリヒドロキシスチレン、ジシクロペンタジエン樹脂、(メタ)アクリレート、ジメタクリレート、トリメタクリレート、テトラメタクリレート、ビニルナフタレン、ポリアセナフチレン等のナフタレン環、フェナントレンキノン、フルオレン等のビフェニル環、チオフェン、インデン等のヘテロ原子を有する複素環を含む樹脂や芳香族環を含まない樹脂;ロジン系樹脂、シクロデキストリン、アダマンタン(ポリ)オール、トリシクロデカン(ポリ)オール及びそれらの誘導体等の脂環構造を含む樹脂又は化合物等が挙げられるが、これらに特に限定されない。さらに、本実施形態における下層膜形成材料は、公知の添加剤を含有していてもよい。上記公知の添加剤としては、以下に限定されないが、例えば、熱及び/又は光硬化触媒、重合禁止剤、難燃剤、充填剤、カップリング剤、熱硬化性樹脂、光硬化性樹脂、染料、顔料、増粘剤、滑剤、消泡剤、レベリング剤、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等が挙げられる。
[リソグラフィー用下層膜及び多層レジストパターンの形成方法]
本実施形態におけるリソグラフィー用下層膜は、上記下層膜形成材料から形成される。
また、本実施形態のレジストパターン形成方法は、上記組成物を用いて基板上に下層膜を形成し、該下層膜上に、少なくとも1層のフォトレジスト層を形成した後、該フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む。より詳しくは、基板上に、本実施形態の下層膜形成材料を用いて下層膜を形成する工程(A-1)と、上記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A-2)と、上記(A-2)工程の後、上記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程(A-3)と、を有する。
さらに、本実施形態の回路パターン形成方法は、上記組成物を用いて基板上に下層膜を形成し、該下層膜上にレジスト中間層膜材料を用いて中間層膜を形成し、該中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程、当該フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程、当該レジストパターンをマスクとして上記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして上記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることにより基板にパターンを形成する工程、を含む。
より詳しくは、基板上に、本実施形態の下層膜形成材料を用いて下層膜を形成する工程(B-1)と、上記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程(B-2)と、上記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B-3)と、上記工程(B-3)の後、上記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(B-4)と、上記工程(B-4)の後、上記レジストパターンをマスクとして上記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして上記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B-5)と、を有する。
本実施形態におけるリソグラフィー用下層膜は、本実施形態の下層膜形成材料から形成されるものであれば、その形成方法は特に限定されず、公知の手法を適用することができる。例えば、本実施形態の下層膜材料をスピンコートやスクリーン印刷等の公知の塗布法或いは印刷法等で基板上に付与した後、有機溶媒を揮発させるなどして除去し、次いで、公知の方法で架橋、硬化させて、本実施形態のリソグラフィー用下層膜を形成することができる。架橋方法としては、熱硬化、光硬化等の手法が挙げられる。
下層膜の形成時には、上層レジストとのミキシング現象の発生を抑制するとともに架橋反応を促進させるために、ベークを施すことが好ましい。この場合、ベーク温度は、特に限定されないが、80~450℃の範囲内であることが好ましく、より好ましくは200~400℃である。また、ベーク時間も、特に限定されないが、10~300秒の範囲内であることが好ましい。なお、下層膜の厚さは、要求性能に応じて適宜選定することができ、特に限定されないが、通常、30~20000nm程度であることが好ましく、より好ましくは50~15000nmである。
下層膜を作製した後、2層プロセスの場合はその上に珪素含有レジスト層、或いは通常の炭化水素からなる単層レジスト、3層プロセスの場合はその上に珪素含有中間層、さらにその上に珪素を含まない単層レジスト層を作製することが好ましい。この場合、このレジスト層を形成するためのフォトレジスト材料としては公知のものを使用することができる。
基板上に下層膜を作製した後、2層プロセスの場合はその下層膜上に珪素含有レジスト層あるいは通常の炭化水素からなる単層レジストを作製することができる。3層プロセスの場合はその下層膜上に珪素含有中間層、さらにその珪素含有中間層上に珪素を含まない単層レジスト層を作製することができる。これらの場合において、レジスト層を形成するためのフォトレジスト材料は、公知のものから適宜選択して使用することができ、特に限定されない。
2層プロセス用の珪素含有レジスト材料としては、酸素ガスエッチング耐性の観点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーを使用し、さらに有機溶媒、酸発生剤、必要により塩基性化合物等を含むポジ型のフォトレジスト材料が好ましく用いられる。ここで珪素原子含有ポリマーとしては、この種のレジスト材料において用いられている公知のポリマーを使用することができる。
3層プロセス用の珪素含有中間層としてはポリシルセスキオキサンベースの中間層が好ましく用いられる。中間層に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。例えば、193nm露光用プロセスにおいて、下層膜として芳香族基を多く含み基板エッチング耐性が高い材料を用いると、k値が高くなり、基板反射が高くなる傾向にあるが、中間層で反射を抑えることによって、基板反射を0.5%以下にすることができる。このような反射防止効果がある中間層としては、以下に限定されないが、193nm露光用としてはフェニル基又は珪素-珪素結合を有する吸光基を導入された、酸或いは熱で架橋するポリシルセスキオキサンが好ましく用いられる。
また、Chemical Vapour Deposition(CVD)法で形成した中間層を用いることもできる。CVD法で作製した反射防止膜としての効果が高い中間層としては、以下に限定されないが、例えば、SiON膜が知られている。一般的には、CVD法よりスピンコート法やスクリーン印刷等の湿式プロセスによる中間層の形成の方が、簡便でコスト的なメリットがある。なお、3層プロセスにおける上層レジストは、ポジ型でもネガ型でもどちらでもよく、また、通常用いられている単層レジストと同じものを用いることができる。
さらに、本実施形態における下層膜は、通常の単層レジスト用の反射防止膜或いはパターン倒れ抑制のための下地材として用いることもできる。本実施形態の下層膜は、下地加工のためのエッチング耐性に優れるため、下地加工のためのハードマスクとしての機能も期待できる。
上記フォトレジスト材料によりレジスト層を形成する場合においては、上記下層膜を形成する場合と同様に、スピンコート法やスクリーン印刷等の湿式プロセスが好ましく用いられる。また、レジスト材料をスピンコート法等で塗布した後、通常、プリベークが行われるが、このプリベークは、80~180℃で10~300秒の範囲で行うことが好ましい。その後、常法にしたがい、露光を行い、ポストエクスポジュアーベーク(PEB)、現像を行うことで、レジストパターンを得ることができる。なお、レジスト膜の厚さは特に制限されないが、一般的には、30~500nmが好ましく、より好ましくは50~400nmである。
また、露光光は、使用するフォトレジスト材料に応じて適宜選択して用いればよい。一般的には、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3~20nmの軟X線、電子ビーム、X線等を挙げることができる。
上記の方法により形成されるレジストパターンは、本実施形態における下層膜によってパターン倒れが抑制されたものとなる。そのため、本実施形態における下層膜を用いることで、より微細なパターンを得ることができ、また、そのレジストパターンを得るために必要な露光量を低下させ得る。
次に、得られたレジストパターンをマスクにしてエッチングを行う。2層プロセスにおける下層膜のエッチングとしては、ガスエッチングが好ましく用いられる。ガスエッチングとしては、酸素ガスを用いたエッチングが好適である。酸素ガスに加えて、He、Ar等の不活性ガスや、CO、CO2、NH3、SO2、N2、NO2、H2ガスを加えることも可能である。また、酸素ガスを用いずに、CO、CO2、NH3、N2、NO2、H2ガスだけでガスエッチングを行うこともできる。特に後者のガスは、パターン側壁のアンダーカット防止のための側壁保護のために好ましく用いられる。
一方、3層プロセスにおける中間層のエッチングにおいても、ガスエッチングが好ましく用いられる。ガスエッチングとしては、上記の2層プロセスにおいて説明したものと同様のものが適用可能である。とりわけ、3層プロセスにおける中間層の加工は、フロン系のガスを用いてレジストパターンをマスクにして行うことが好ましい。その後、上述したように中間層パターンをマスクにして、例えば酸素ガスエッチングを行うことで、下層膜の加工を行うことができる。
ここで、中間層として無機ハードマスク中間層膜を形成する場合は、CVD法やALD法等で、珪素酸化膜、珪素窒化膜、珪素酸化窒化膜(SiON膜)が形成される。窒化膜の形成方法としては、以下に限定されないが、例えば、特開2002-334869号公報(特許文献6)、WO2004/066377(特許文献7)に記載された方法を用いることができる。このような中間層膜の上に直接フォトレジスト膜を形成することができるが、中間層膜の上に有機反射防止膜(BARC)をスピンコートで形成して、その上にフォトレジスト膜を形成してもよい。
中間層として、ポリシルセスキオキサンベースの中間層も好ましく用いられる。レジスト中間層膜に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。ポリシルセスキオキサンベースの中間層の具体的な材料については、以下に限定されないが、例えば、特開2007-226170号(特許文献8)、特開2007-226204号(特許文献9)に記載されたものを用いることができる。
また、次の基板のエッチングも、常法によって行うことができ、例えば、基板がSiO2、SiNであればフロン系ガスを主体としたエッチング、p-SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行うことができる。基板をフロン系ガスでエッチングする場合、2層レジストプロセスの珪素含有レジストと3層プロセスの珪素含有中間層は、基板加工と同時に剥離される。一方、塩素系或いは臭素系ガスで基板をエッチングした場合は、珪素含有レジスト層又は珪素含有中間層の剥離が別途行われ、一般的には、基板加工後にフロン系ガスによるドライエッチング剥離が行われる。
本実施形態における下層膜は、これら基板のエッチング耐性に優れる特徴がある。なお、基板は、公知のものを適宜選択して使用することができ、特に限定されないが、Si、α-Si、p-Si、SiO、SiN、SiON、W、TiN、Al等が挙げられる。また、基板は、基材(支持体)上に被加工膜(被加工基板)を有する積層体であってもよい。このような被加工膜としては、Si、SiO、SiON、SiN、p-Si、α-Si、W、W-Si、Al、Cu、Al-Si等種々のLow-k膜及びそのストッパー膜等が挙げられ、通常、基材(支持体)とは異なる材質のものが用いられる。なお、加工対象となる基板或いは被加工膜の厚さは、特に限定されないが、通常、50~10,000nm程度であることが好ましく、より好ましくは75~5000nmである。
本実施形態における組成物を塗布してなるレジスト永久膜は、必要に応じてレジストパターンを形成した後、最終製品にも残存する永久膜として好適である。永久膜の具体例としては、半導体デバイス関連では、ソルダーレジスト、パッケージ材、アンダーフィル材、回路素子等のパッケージ接着層や集積回路素子と回路基板の接着層、薄型ディスプレー関連では、薄膜トランジスタ保護膜、液晶カラーフィルター保護膜、ブラックマトリクス、スペーサーなどが挙げられる。特に、本実施形態における組成物からなる永久膜は、耐熱性や耐湿性に優れている上に昇華成分による汚染性が少ないという非常に優れた利点も有する。特に表示材料において、重要な汚染による画質劣化の少ない高感度、高耐熱、吸湿信頼性を兼ね備えた材料となる。
本実施形態における組成物をレジスト永久膜用途に用いる場合には、硬化剤の他、更に必要に応じてその他の樹脂、界面活性剤や染料、充填剤、架橋剤、溶解促進剤などの各種添加剤を加え、有機溶剤に溶解することにより、レジスト永久膜用組成物とすることができる。
本実施形態におけるリソグラフィー用膜形成組成物やレジスト永久膜用組成物は上記各成分を配合し、攪拌機等を用いて混合することにより調製できる。また、本実施形態におけるレジスト下層膜用組成物やレジスト永久膜用組成物が充填剤や顔料を含有する場合には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散あるいは混合して調製することができる。
以下、本実施形態を合成例及び実施例によりさらに詳細に説明するが、本実施形態は、これらの例によってなんら限定されるものではない。
(炭素濃度及び酸素濃度)
下記装置を用いて有機元素分析により炭素濃度及び酸素濃度(質量%)を測定した。
装置:CHNコーダーMT-6(ヤナコ分析工業(株)製)
(分子量)
化合物の分子量は、LC-MS分析により、Water社製Acquity UPLC/MALDI-Synapt HDMSを用いて測定した。
また、以下の条件でゲル浸透クロマトグラフィー(GPC)分析を行い、ポリスチレン換算の重量平均分子量(Mw)、数平均分子量(Mn)、及び分散度(Mw/Mn)を求めた。
装置:Shodex GPC-101型(昭和電工(株)製)
カラム:KF-80M×3
溶離液:THF 1mL/min
温度:40℃
(溶解性)
23℃にて、化合物をプロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン(CHN)、乳酸エチル(EL)、メチルアミルケトン(MAK)又はテトラメチルウレア(TMU)に対して3質量%溶液になるよう攪拌して溶解させた後、1週間後の結果を以下の基準で評価した。
評価A:目視にていずれかの溶媒で析出物がないことを確認した。
評価C:目視にていずれかの溶媒で析出物があることを確認した。
[化合物の構造]
化合物の構造は、Bruker社製「Advance600II spectrometer」を用いて、以下の条件で、1H-NMR測定を行い、確認した。
周波数:400MHz
溶媒:d6-DMSO
内部標準:TMS
測定温度:23℃
<合成例1> XBisN-1の合成
攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に2,6-ナフタレンジオール(シグマ-アルドリッチ社製試薬)3.20g(20mmol)と4-ビフェニルカルボキシアルデヒド(三菱瓦斯化学社製)1.82g(10mmol)とを30mLメチルイソブチルケトンに仕込み、95%の硫酸5mLを加えて、反応液を100℃で6時間撹拌して反応を行った。次に反応液を濃縮し、純水50gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(XBisN-1)で表される目的化合物が3.05g得られた。400MHz-H-NMRにより下記式(XBisN-1)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)9.7(2H,O-H)、7.2~8.5(19H,Ph-H)、6.6(1H,C-H)
尚、2,6-ナフタレンジオールの置換位置が1位であることは、3位と4位のプロトンのシグナルがダブレットであることから確認した。
Figure 0007194356000359
(XBisN-1)
<合成例1A> E-XBisN-1の合成
攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に上記式(XBisN-1)で表される化合物10g(21mmol)と炭酸カリウム14.8g(107mmol)とを50mLジメチルホルムアミドに仕込み、酢酸-2-クロロエチル6.56g(54mmol)を加えて、反応液を90℃で12時間撹拌して反応を行った。次に反応液を氷浴で冷却し結晶を析出させ、濾過を行って分離した。続いて攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に上記結晶40g、メタノール40g、THF100g及び24%水酸化ナトリウム水溶液を仕込み、反応液を還流下で4時間撹拌して反応を行った。その後、氷浴で冷却し、反応液を濃縮し析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(E-XBisN-1)で表される目的化合物が5.9g得られた。400MHz-H-NMRにより下記式(E-XBisN-1)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)8.6(2H,O-H)、7.2~7.8(19H,Ph-H)、6.7(1H,C-H)、4.0(4H,-O-CH-)、3.8(4H,-CH-OH)
Figure 0007194356000360
(E-XBisN-1)
<合成例2> BisF-1の合成
攪拌機、冷却管及びビュレットを備えた内容積200mLの容器を準備した。この容器に、4,4-ビフェノール(東京化成社製試薬)30g(161mmol)と、4-ビフェニルアルデヒド(三菱瓦斯化学社製)15g(82mmol)と、酢酸ブチル100mLとを仕込み、p-トルエンスルホン酸(関東化学社製試薬)3.9g(21mmol)を加えて、反応液を調製した。この反応液を90℃で3時間撹拌して反応を行った。次に、反応液を濃縮し、ヘプタン50gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。濾過により得られた固形物を乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式(BisF-1)で表される目的化合物5.8gを得た。400MHz-H-NMRにより以下のピークが見出され、下記式(BisF-1)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)9.4(4H,O-H)、6.8~7.8(22H,Ph-H)、6.2(1H,C-H)
また、得られた化合物について、上記方法により分子量を測定した結果、536であった。
Figure 0007194356000361
(BisF-1)
<合成例2A> E-BisF-1の合成
攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に上記式(BisF-1)で表される化合物11.2g(21mmol)と炭酸カリウム14.8g(107mmol)とを50mLジメチルホルムアミドに仕込み、酢酸-2-クロロエチル6.56g(54mmol)を加えて、反応液を90℃で12時間撹拌して反応を行った。次に反応液を氷浴で冷却し結晶を析出させ、濾過を行って分離した。続いて攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に上記結晶40g、メタノール40g、THF100g及び24%水酸化ナトリウム水溶液を仕込み、反応液を還流下で4時間撹拌して反応を行った。その後、氷浴で冷却し、反応液を濃縮し析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(E-BisF-1)で表される目的化合物が5.9g得られた。400MHz-H-NMRにより、下記式(E-BisF-1)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)8.6(4H,O-H)、6.8~7.8(22H,Ph-H)、6.2(1H,C-H)、4.0(8H,-O-CH-)、3.8(8H,-CH-OH)
また、得られた化合物について、上記方法により分子量を測定した結果、712であった。
Figure 0007194356000362
(E-BisF-1)
<合成実施例1-1> UaXBisN-1の合成
攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に上記式(XBisN-1)で表される化合物10.0g(21mmol)、2-イソシアナトエチルメタクリレート6.1g、トリエチルアミン0.5g、p-メトキシフェノール0.05gとを50mLメチルイソブチルケトンに仕込み、80℃に加温して撹拌した状態で、24時間撹拌して反応を行った。50℃まで冷却し、反応液を純水中に滴下して析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(UaXBisN-1)で表される目的化合物が3.0g得られた。400MHz-H-NMRにより、下記式(UaXBisN-1)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)
7.2~7.8(19H,Ph-H)、6.8(2H、NH)、6.7(1H,C-H)、6.5(4H,=CH)、3.1~4.6(8H,-O-CH-CH-N-)、2.0(6H,-CH
また、得られた化合物について、上記方法により分子量を測定した結果、776であった。
熱分解温度は370℃、ガラス転移点は90℃、融点は200℃であり、高耐熱性が確認できた。
Figure 0007194356000363
(UaXBisN-1)
<合成実施例1-2> UaE-XBisN-1の合成
上記式(XBisN-1)で表される化合物の代わりに、上記式(E-XBisN-1)で表される化合物を用いた以外、合成実施例1と同様に反応させ、下記式(UaE-XBisN-1)で表される目的化合物が3.2g得られた。400MHz-H-NMRにより、下記式(UaE-XBisN-1)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS)
7.2~7.8(19H,Ph-H)、6.8(2H、NH)、6.7(1H,C-H)、6.5(4H,=CH)、3.1~4.6(16H,-O-CH-CH-O-、-O-CH-CH-N-)、2.0(6H,-CH
また、得られた化合物について、上記方法により分子量を測定した結果、864であった。
熱分解温度は360℃、ガラス転移点は85℃、融点は195℃であり、高耐熱性が確認できた。
Figure 0007194356000364
(UaE-XBisN-1)
<合成実施例2-1> UaBisF-1の合成
上記式(XBisN-1)で表される化合物の代わりに、上記式(BisF-1)で表される化合物を用いた以外、合成実施例1-1と同様に反応させ、下記式(UaBisF-1)で表される目的化合物が2.5g得られた。400MHz-H-NMRにより、下記式(UaBisF-1)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)6.8~7.8(22H,Ph-H)、6.5(8H,=CH)、6.2(1H,C-H)、4.1~4.7(16H,-O-CH-CH-N-)、2.0(12H,-CH) また、得られた化合物について、上記方法により分子量を測定した結果、1156であった。
熱分解温度は365℃、ガラス転移点は65℃、融点は185℃であり、高耐熱性が確認できた。
Figure 0007194356000365
(UaBisF-1)
<合成実施例2-2> UaE-BisF-1の合成
上記式(XBisN-1)で表される化合物の代わりに、上記式(E-BisF-1)で表される化合物を用いた以外、合成実施例1-2と同様に反応させ、下記式(UaE-BisF-1)で表される目的化合物が2.6g得られた。400MHz-H-NMRにより、下記式(UaE-BisF-1)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)6.8~7.8(22H,Ph-H)、6.5(8H,=CH)、6.2(1H,C-H)、4.1~4.7(32H,-O-CH-CH-O-、-O-CH-CH-N-)、2.0(12H,-CH
また、得られた化合物について、上記方法により分子量を測定した結果、1133であった。
熱分解温度は355℃、ガラス転移点は60℃、融点は175℃であり、高耐熱性が確認できた。
Figure 0007194356000366
(UaE-BisF-1)
<合成例3> BiN-1の合成
攪拌機、冷却管及びビュレットを備えた内容積300mLの容器において、2-ナフトール(シグマ-アルドリッチ社製試薬)10g(69.0mmol)を120℃で溶融後、硫酸0.27gを仕込み、4-アセチルビフェニル(シグマ-アルドリッチ社製試薬)2.7g(13.8mmol)を加えて、内容物を120℃で6時間撹拌して反応を行って反応液を得た。次に反応液にN-メチル-2-ピロリドン(関東化学株式会社製)100mL、純水50mLを加えたあと、酢酸エチルにより抽出した。次に純水を加えて中性になるまで分液後、濃縮を行って溶液を得た。
得られた溶液を、カラムクロマトによる分離後、下記式(BiN-1)で表される目的化合物(BiN-1)が1.0g得られた。
得られた化合物(BiN-1)について、上述の方法により分子量を測定した結果、466であった。
得られた化合物(BiN-1)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(BiN-1)の化学構造を有することを確認した。
δ(ppm)9.69(2H,O-H)、7.01~7.67(21H,Ph-H)、2.28(3H,C-H)
Figure 0007194356000367
(BiN-1)
<合成例3A> E-BiN-1の合成
攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に上記式で示される化合物(BisN-1)10.5g(21mmol)と炭酸カリウム14.8g(107mmol)とを50mLジメチルホルムアミドに仕込み、酢酸-2-クロロエチル6.56g(54mmol)を加えて、反応液を90℃で12時間撹拌して反応を行った。次に反応液を氷浴で冷却し結晶を析出させ、濾過を行って分離した。続いて攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に前記結晶40g、メタノール40g、THF100g及び24%水酸化ナトリウム水溶液を仕込み、反応液を還流下で5時間撹拌して反応を行った。その後、氷浴で冷却し、反応液を濃縮し析出した固形物を濾過し、乾燥させた後、カラムクロマトグラフによる分離精製を行い、下記式で示される目的化合物を4.6g得た。400MHz-H-NMRにより下記式の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)8.6(2H,O-H)、7.2~7.8(19H,Ph-H)、6.7(1H,C-H)、4.0(4H,-O-CH-)、3.8(4H,-CH-OH)
Figure 0007194356000368
(E-BiN-1)
<合成実施例3-1> UaBiN-1の合成
上記式(XBisN-1)で表される化合物の代わりに、上記式(BiN-1)で表される化合物を用いたこと以外は合成実施例1-1と同様に反応させ、下記式(UaBiN-1)で表される目的化合物3.5gを得た。
400MHz-H-NMRにより、下記式(UaBiN-1)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)7.2~7.8(21H,Ph-H)、6.8(2H、NH)、6.7(1H,C-H)、6.5(4H,=CH)、3.1~4.6(16H,-O-CH-CH-O-、-O-CH-CH-N-)、2.3(3H,-CH3)、2.0(6H,-CH
Figure 0007194356000369
(UaBiN-1)
得られた化合物について、前記方法により分子量を測定した結果、776であった。
熱分解温度は390℃、ガラス転移点は72℃、融点は224℃であり、高耐熱性を有することが確認できた。
<合成実施例3-2> UaE-BiN-1の合成
上記式(XBisN-1)で表される化合物の代わりに、上記式(E-BiN-1)で表される化合物を用いたこと以外、合成実施例1-2と同様に反応させ、下記式(UaE-BiN-1)で表される目的化合物3.9gを得た。
400MHz-H-NMRにより、下記式(UaE-BiN-1)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)7.2~7.8(21H,Ph-H)、6.8(2H、NH)、6.7(1H,C-H)、6.5(4H,=CH)、3.1~4.6(16H,-O-CH-CH-O-、-O-CH-CH-N-)、2.3(3H,-CH3)、2.0(6H,-CH
Figure 0007194356000370
(UaE-BiN-1)
得られた化合物について、前記方法により分子量を測定した結果、864であった。
熱分解温度は362℃、ガラス転移点は70℃、融点は226℃であり、高耐熱性を有することが確認できた。
<合成例4> BiP-1の合成
2-ナフトールの代わりに、o-フェニルフェノールを使用する以外は合成例1と同様に反応させ、下記式(BiP-1)で表される目的化合物が1.0g得られた。
得られた化合物(BiP-1)について、上述の方法により分子量を測定した結果、466であった。
得られた化合物(BiP-1)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(BiP-1)の化学構造を有することを確認した。
δ(ppm)9.67(2H,O-H)、6.98~7.60(25H,Ph-H)、2.25(3H,C-H)
Figure 0007194356000371
(BiP-1)
<合成例4A> E-BiP-1の合成
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に上記式(BiP-1)で表される化合物11.2g(21mmol)と炭酸カリウム14.8g(107mmol)とを50mLジメチルホルムアミドに仕込み、酢酸-2-クロロエチル6.56g(54mmol)を加えて、反応液を90℃で12時間撹拌して反応を行った。次に反応液を氷浴で冷却し結晶を析出させ、濾過を行って分離した。続いて攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に前記結晶40g、メタノール40g、THF100g及び24%水酸化ナトリウム水溶液を仕込み、反応液を還流下で4時間撹拌して反応を行った。その後、氷浴で冷却し、反応液を濃縮し析出した固形物を濾過し、乾燥させた後、カラムクロマトグラフによる分離精製を行い、下記式(E-BisF-1)で表される目的化合物5.9gを得た。
400MHz-H-NMRにより、下記式(E-BiP-1)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)8.6(4H,O-H)、6.8~7.6(25H,Ph-H)、4.0(4H,-O-CH-)、3.8(4H,-CH-OH)、2.2(3H,C-H)
得られた化合物について、前記方法により分子量を測定した結果、606であった。
Figure 0007194356000372
(E-BiP-1)
<合成実施例4-1> UaBiP-1の合成
上記式(XBisN-1)で表される化合物の代わりに、上記式(BiP-1)で表される化合物を用いたこと以外は合成実施例1-2と同様に反応させ、下記式(UaBiP-1)で表される目的化合物6.6gを得た。
400MHz-H-NMRにより、下記式(UaBiP-1)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)6.8~7.8(25H,Ph-H)、6.5(4H,=CH)、4.1~4.7(8H,-O-CH-CH-N-)、2.3(3H,-CH3)、2.0(6H,-CH
熱分解温度は371℃、ガラス転移点は84℃、融点は232℃であり、高耐熱性を有することが確認できた。
Figure 0007194356000373
(UaBiP-1)
得られた化合物について、前記方法により分子量を測定した結果、828であった。
<合成実施例4-2> UaE-BiP-1の合成
上記式(XBisN-1)で表される化合物の代わりに、上記式(E-BiP-1)で表される化合物を用いたこと以外、合成実施例1-2と同様に反応させ、下記式(UaE-BiP-1)で表される目的化合物4.6gを得た。
400MHz-H-NMRにより、下記式(UaE-BiP-1)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)6.8~7.8(25H,Ph-H)、6.8(2H、NH)、6.5(4H,=CH)、3.1~4.6(16H,-O-CH-CH-O-、-O-CH-CH-N-)、2.3(3H,-CH)2.0(6H,-CH
Figure 0007194356000374
(UaE-BiP-1)
得られた化合物について、前記方法により分子量を測定した結果、916であった。
熱分解温度は372℃、ガラス転移点は70℃、融点は210℃であり、高耐熱性を有することが確認できた。
(合成例5~17)
合成例3の原料である2-ナフトール(原料1)及び4-アセチルビフェニル(原料2)を表1のように変更し、その他は合成例3と同様に行い、各目的物を得た。
各目的化合物は、H-NMRで同定した(表2)。
Figure 0007194356000375
Figure 0007194356000376
Figure 0007194356000377
(BiN-2)
Figure 0007194356000378
(BiN-3)
Figure 0007194356000379
(BiN-4)
Figure 0007194356000380
(XBiN-1)
Figure 0007194356000381
(XBiN-2)
Figure 0007194356000382
(XBiN-3)
Figure 0007194356000383
(BiP-2)
Figure 0007194356000384
(BiP-3)
Figure 0007194356000385
(BiP-4)
Figure 0007194356000386
(P-1)
Figure 0007194356000387
(P-2)
Figure 0007194356000388
(P-3)
Figure 0007194356000389
(P-4)
(合成例18~20)
合成実施例1の原料である4-ビフェニルアルデヒド(原料2)を表3のように変更し、その他は合成実施例3と同様に行い、各目的化合物を得た。
各目的化合物は、1H-NMRで同定した(表4)。
Figure 0007194356000390
Figure 0007194356000391
Figure 0007194356000392
(XBisN-2)
Figure 0007194356000393
(XBisN-3)
Figure 0007194356000394
(XBisN-4)
(合成例21~22)
合成例3の原料である2-ナフトール(原料1)及び4-アセチルビフェニル(原料2)を表5のように変更し、水1.5mL、ドデシルメルカプタン73mg(0.35mmol)、37%塩酸2.3g(22mmol)を加え、反応温度を55℃に変更し、その他は合成実施例3と同様に行い、各目的化合物を得た。
各目的化合物は、1H-NMRで同定した(表6)。
Figure 0007194356000395
Figure 0007194356000396
Figure 0007194356000397
(P-5)
Figure 0007194356000398
(P-6)
(合成例5A~22A)
合成例3Aの原料である前記式(BiN-1)で表される化合物を表7のように変更し、その他は合成例3Aと同様の条件にて合成を行い、それぞれ、目的化合物を得た。各目的化合物の構造は400MHz-H-NMR(d-DMSO、内部標準TMS)およびLC-MSで分子量を確認することにより、同定した。
(合成実施例5-1~22-1)
合成実施例3-1の原料である前記式(E-BiN-1)で表される化合物を表7のように変更し、その他は合成実施例3-1と同様の条件にて合成を行い、それぞれ、目的化合物を得た。各目的化合物の構造は400MHz-H-NMR(d-DMSO、内部標準TMS)およびLC-MSで分子量を確認することにより、同定した。
(合成実施例5-2~22-2)
合成実施例3-2の原料である前記式(E-BiN-1)で表される化合物を表7のように変更し、その他は合成実施例3-2と同様の条件にて合成を行い、それぞれ、各目的化合物を得た。各目的化合物の構造は400MHz-H-NMR(d-DMSO、内部標準TMS)およびLC-MSで分子量を確認することにより、同定した。
Figure 0007194356000399
Figure 0007194356000400
(E-BiN-2)
Figure 0007194356000401
(UaBiN-2)
Figure 0007194356000402
(UaE-BiN-2)
Figure 0007194356000403
(E-BiN-3)
Figure 0007194356000404
(UaBiN-3)
Figure 0007194356000405
(UaE-BiN-3)
Figure 0007194356000406
(E-BiN-4)
Figure 0007194356000407
(UaBiN-4)
Figure 0007194356000408
(UaE-BiN-4)
Figure 0007194356000409
(E-BiP-2)
Figure 0007194356000410
(UaBiP-2)
Figure 0007194356000411
(UaE-BiP-2)
Figure 0007194356000412
(E-BiP-3)
Figure 0007194356000413
(UaBiP-3)
Figure 0007194356000414
(UaE-BiP-3)
Figure 0007194356000415
(E-BiP-4)
Figure 0007194356000416
(UaBiP-4)
Figure 0007194356000417
(UaE-BiP-4)
Figure 0007194356000418
(E-P-1)
Figure 0007194356000419
(UaP-1)
Figure 0007194356000420
(UaE-P-1)
Figure 0007194356000421
(E-P-2)
Figure 0007194356000422
(UaP-2)
Figure 0007194356000423
(UaE-P-2)
Figure 0007194356000424
(E-BisN-1)
Figure 0007194356000425
(UaBisN-1)
Figure 0007194356000426
(UaE-BisN-1)
Figure 0007194356000427
(E-XBiN-2)
Figure 0007194356000428
(UaXBiN-2)
Figure 0007194356000429
(UaE-XBiN-2)
Figure 0007194356000430
(E-XBiN-3)
Figure 0007194356000431
(UaXBiN-3)
Figure 0007194356000432
(UaE-XBiN-3)
Figure 0007194356000433
(E-P-3)
Figure 0007194356000434
(UaP-3)
Figure 0007194356000435
(UaE-P-3)
Figure 0007194356000436
(E-P-4)
Figure 0007194356000437
(UaP-4)
Figure 0007194356000438
(UaE-P-4)
Figure 0007194356000439
(E-XBisN-2)
Figure 0007194356000440
(UaXBisN-2)
Figure 0007194356000441
(UaE-XBisN-2)
Figure 0007194356000442
(E-XBisN-3)
Figure 0007194356000443
(UaXBisN-3)
Figure 0007194356000444
(UaE-XBisN-3)
Figure 0007194356000445
(E-XBisN-4)
Figure 0007194356000446
(UaXBisN-4)
Figure 0007194356000447
(UaE-XBisN-4)
Figure 0007194356000448
(E-P-5)
Figure 0007194356000449
(UaP-5)
Figure 0007194356000450
(UaE-P-5)
Figure 0007194356000451
(E-P-6)
Figure 0007194356000452
(UaP-6)
Figure 0007194356000453
(UaE-P-6)
(合成例23)樹脂(R1-XBisN-1)の合成
ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積1Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、合成例1で得られた化合物(XBisN-1)を32.6g(70mmol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液21.0g(ホルムアルデヒドとして280mmol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてオルソキシレン(和光純薬工業(株)製試薬特級)180.0gを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、オルソキシレンを減圧下で留去することにより、褐色固体の樹脂(R1-XBisN-1)34.1gを得た。
得られた樹脂(R1-XBisN-1)は、Mn:1975、Mw:3650、Mw/Mn:1.84であった。
(合成例24)樹脂(R2-XBisN-1)の合成
ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積1Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、合成例1で得られた化合物(XBisN-1)を32.6g(70mmol、三菱ガス化学(株)製)、4-ビフェニルアルデヒド50.9g(280mmol、三菱ガス化学(株)製)、アニソール(関東化学(株)製)100mL及びシュウ酸二水和物(関東化学(株)製)10mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてオルソキシレン(和光純薬工業(株)製試薬特級)180.0gを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、有機相の溶媒および未反応の4-ビフェニルアルデヒドを減圧下で留去することにより、褐色固体の樹脂(R2-XBisN-1)34.7gを得た。
得られた樹脂(R2-XBisN-1)は、Mn:1610、Mw:2567、Mw/Mn:1.59であった。
<合成例23A> E-R1-XBisN-1の合成
攪拌機、冷却管及びビュレットを備えた内容積500mlの容器に合成例23で得られた樹脂(R1-XBisN-1)30gと炭酸カリウム29.6g(214mmol)とを100mlジメチルホルムアミドに仕込み、酢酸-2-クロロエチル13.12g(108mmol)を加えて、反応液を90℃で12時間撹拌して反応を行った。次に反応液を氷浴で冷却し結晶を析出させ、濾過を行って分離した。続いて攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に前記結晶40g、メタノール80g、THF100g及び24%水酸化ナトリウム水溶液を仕込み、反応液を還流下で4時間撹拌して反応を行った。その後、氷浴で冷却し、反応液を濃縮し析出した固形物を濾過し、乾燥させることにより、褐色固体の樹脂(E-R1-XBisN-1)26.5gを得た。
得られた樹脂(E-R1-XBisN-1)は、Mn:2176、Mw:3540、Mw/Mn:1.62であった。
<合成実施例23-1> UaR1-XBisN-1の合成
攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に上記式(R1-XBisN-1)で表される樹脂20.0g、2-イソシアナトエチルメタクリレート12.2g、トリエチルアミン1.0g、p-メトキシフェノール0.1gを100mLメチルイソブチルケトンに仕込み、80℃に加温して撹拌した状態で、24時間撹拌して反応を行った。50℃まで冷却し、反応液を純水中に滴下して析出した固形物を濾過し、乾燥させた後、褐色固体の(UaR1-XBisN-1)で表される樹脂23.6gを得た。
得られた樹脂(UaR1-XBisN-1)は、Mn:2130、Mw:3590、Mw/Mn:1.55であった。
<合成実施例23-2> UaE-R1-XBisN-1の合成
合成例23で得られた上記式(R1-XBisN-1)で表される樹脂の代わりに、合成例23Aで得られた上記式(E-R1-XBisN-1)を用いたこと以外は合成実施例23-1と同様に反応させ、褐色固体の(UaE-R1-XBisN-1)で表される樹脂25.0gを得た。
得られた樹脂(UaE-R1-XBisN-1)は、Mn:2371、Mw:4240、Mw/Mn:1.79であった。
<合成例24A> E-R2-XBisN-1の合成
攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に上述の樹脂(R2-XBisN-1)30gと炭酸カリウム29.6g(214mmol)とを100mLジメチルホルムアミドに仕込み、酢酸-2-クロロエチル13.12g(108mmol)を加えて、反応液を90℃で12時間撹拌して反応を行った。次に反応液を氷浴で冷却し結晶を析出させ、濾過を行って分離した。続いて攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に前記結晶40g、メタノール80g、THF100g及び24%水酸化ナトリウム水溶液を仕込み、反応液を還流下で4時間撹拌して反応を行った。その後、氷浴で冷却し、反応液を濃縮し析出した固形物を濾過し、乾燥させることにより、褐色固体の樹脂(E-R2-XBisN-1)22.3gを得た。
得られた樹脂(E-R2-XBisN-1)は、Mn:2516、Mw:3960、Mw/Mn:1.62であった。
<合成実施例24-1> UaR2-XBisN-1の合成
合成例23で得られた上記式(R1-XBisN-1)の代わりに、合成例24で得られた上記式(R2-XBisN-1)で表される化合物33.2gを使用した以外は合成実施例23-1と同様に反応させ、褐色固体の(UaR2-XBisN-1)で表される樹脂40.1gを得た。
得られた樹脂(UaR2-XBisN-1)は、Mn:2446、Mw:4510、Mw/Mn:1.84であった。
<合成実施例24-2> UaE-R2-XBisN-1の合成
合成例23で得られた上記式(R1-XBisN-1)で表される樹脂の代わりに、合成例24Aで得られた上記式(E-R2-XBisN-1)を用いたこと以外は合成実施例23-1と同様に反応させ、褐色固体の(UaE-R2-XBisN-1)で表される樹脂29.0gを得た。
得られた樹脂(UaE-R2-XBisN-1)は、Mn:2679、Mw:4830、Mw/Mn:1.80であった。
(合成比較例1)
ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、1,5-ジメチルナフタレン1.09kg(7mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業(株)製試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5-ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。得られたジメチルナフタレンホルムアルデヒドの分子量は、Mn:562、であった。
続いて、ジムロート冷却管、温度計及び攪拌翼を備えた内容積0.5Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流下で、上記のようにして得られたジメチルナフタレンホルムアルデヒド樹脂100g(0.51mol)とパラトルエンスルホン酸0.05gとを仕込み、190℃まで昇温させて2時間加熱した後、攪拌した。その後さらに、1-ナフトール52.0g(0.36mol)を加え、さらに220℃まで昇温させて2時間反応させた。溶剤希釈後、中和及び水洗を行い、溶剤を減圧下で除去することにより、黒褐色固体の変性樹脂(CR-1)126.1gを得た。得られた樹脂(CR-1)は、Mn:885、Mw:2220、Mw/Mn:4.17であった。
(実施例1-1~24-2、比較例1)
上記合成実施例1-1~24-2に記載の化合物あるいは樹脂、合成比較例1に記載のCR-1を用いて溶解度試験を行った。結果を表8に示す。
また、表8に示す組成のリソグラフィー用下層膜形成材料を各々調製した。
次に、これらのリソグラフィー用下層膜形成材料をシリコン基板上に回転塗布し、その後、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を各々作製した。酸発生剤、架橋剤及び有機溶媒については以下のものを用いた。
酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
有機溶媒:プロピレングリコールモノメチルエーテルアセテートアセテート(PGMEA)
(実施例25~44)
また、下記表9に示す組成のリソグラフィー用下層膜形成材料を各々調製した。次に、これらのリソグラフィー用下層膜形成材料をシリコン基板上に回転塗布し、その後、その後、110℃で60秒間ベークして塗膜の溶媒を除去した後、高圧水銀ランプにより、積算露光量600mJ/cm、照射時間20秒で硬化させて膜厚200nmの下層膜を各々作製した。光ラジカル重合開始剤、架橋剤及び有機溶媒については次のものを用いた。
ラジカル重合開始剤:BASF社製 IRGACURE184
架橋剤:
(1)三和ケミカル社製 ニカラックMX270(ニカラック)
(2)三菱ガス化学製 ジアリルビスフェノールA型シアネート(DABPA-CN)
(3)小西化学工業製 ジアリルビスフェノールA(BPA-CA)
(4)小西化学工業製 ベンゾオキサジン(BF-BXZ)
(5)日本化薬製 ビフェニルアラルキル型エポキシ樹脂(NC-3000-L)
有機溶媒:プロピレングリコールモノメチルエーテルアセテートアセテート(PGMEA)
上記架橋剤の構造を下記式で示す。
Figure 0007194356000454
(DABPA-CN)
Figure 0007194356000455
(BPA-CA)
Figure 0007194356000456
(BF-BXZ)
Figure 0007194356000457
(NC-3000-L)
(上記式中、nは1~4の整数である。)
[エッチング耐性]
下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表1及び表8および表9に示す。
(エッチング試験条件)
エッチング装置:サムコインターナショナル社製 RIE-10NR
出力:50W
圧力:20Pa
時間:2min
エッチングガス
Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
エッチング耐性の評価は、以下の手順で行った。
まず、実施例1-1において用いる化合物(UaXBisN-1)に代えてノボラック(群栄化学社製 PSM4357)を用いること以外は、実施例1-1と同様の条件で、ノボラックの下層膜を作製した。そして、このノボラックの下層膜を対象として、上記のエッチング試験を行い、そのときのエッチングレートを測定した。
次に、実施例1-1及び比較例1の下層膜を対象として、上記エッチング試験を同様に行い、そのときのエッチングレートを測定した。そして、ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。
[評価基準]
A:ノボラックの下層膜に比べてエッチングレートが、-10%未満
B:ノボラックの下層膜に比べてエッチングレートが、-10%~+5%
C:ノボラックの下層膜に比べてエッチングレートが、+5%超
Figure 0007194356000458
Figure 0007194356000459
(実施例45~48)
次に、UaXBisN-1、UaE-XBisN-1、UaBisF-1、又はUaE-BisF-1を含むリソグラフィー用下層膜形成材料の各溶液を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚70nmの下層膜を形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。なお、ArFレジスト溶液としては、下記式(11)の化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。
式(11)の化合物は、2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下した。このようにして得られる生成樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて得た。
Figure 0007194356000460
(11)
上記式(11)中、「40」、「40」、「20」とあるのは、各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。
次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。
得られた55nmL/S(1:1)及び80nmL/S(1:1)のレジストパターンの形状及び欠陥を(株)日立製作所製電子顕微鏡(S-4800)を用いて観察した。現像後のレジストパターンの形状については、パターン倒れがなく、矩形性が良好なものを「良好」とし、それ以外を「不良」として評価した。また、上記観察の結果、パターン倒れが無く、矩形性が良好な最小の線幅を“解像性”として評価の指標とした。さらに、良好なパターン形状を描画可能な最小の電子線エネルギー量を“感度”として、評価の指標とした。その結果を、表10に示す。
(比較例2)
下層膜の形成を行わないこと以外は、実施例45と同様にして、フォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得た。結果を表10に示す。
Figure 0007194356000461
表10から明らかなように、本実施形態の化合物であるUaXBisN-1、UaE-XBisN-1、UaBisF-1、UaE-BisF-1を用いた実施例では、耐熱性、溶解度及びエッチング耐性のいずれの点でも良好であることが確認された。一方、CR-1(フェノール変性ジメチルナフタレンホルムアルデヒド樹脂)を用いた比較例1では、エッチング耐性が不良であった。
また、実施例45~48では、現像後のレジストパターン形状が良好であり、欠陥も見られないことが確認された。下層膜の形成を省略した比較例2に比して、解像性及び感度ともに有意に優れていることが確認された。
さらに、現像後のレジストパターン形状の相違から、実施例45~48において用いたリソグラフィー用下層膜形成材料は、レジスト材料との密着性が良いことが示された。
<実施例49~52>
実施例1-1~2-2で得られたリソグラフィー用下層膜形成材料の溶液を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚80nmの下層膜を形成した。この下層膜上に、珪素含有中間層材料を塗布し、200℃で60秒間ベークすることにより、膜厚35nmの中間層膜を形成した。さらに、この中間層膜上に、上記ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、珪素含有中間層材料としては、特開2007-226170号公報<合成例1>に記載の珪素原子含有ポリマーを用いた。
次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層をマスク露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、55nmL/S(1:1)のポジ型のレジストパターンを得た。
その後、サムコインターナショナル社製 RIE-10NRを用いて、得られたレジストパターンをマスクにして珪素含有中間層膜(SOG)のドライエッチング加工を行い、続いて、得られた珪素含有中間層膜パターンをマスクにした下層膜のドライエッチング加工と、得られた下層膜パターンをマスクにしたSiO膜のドライエッチング加工とを順次行った。
各々のエッチング条件は、下記に示すとおりである。
レジストパターンのレジスト中間層膜へのエッチング条件
出力:50W
圧力:20Pa
時間:1min
エッチングガス
Arガス流量:CF4ガス流量:O2ガス流量=50:8:2(sccm)
レジスト中間膜パターンのレジスト下層膜へのエッチング条件
出力:50W
圧力:20Pa
時間:2min
エッチングガス
Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
レジスト下層膜パターンのSiO 膜へのエッチング条件
出力:50W
圧力:20Pa
時間:2min
エッチングガス
Arガス流量:C12ガス流量:Cガス流量:O2ガス流量
=50:4:3:1(sccm)
[評価]
上記のようにして得られたパターン断面(エッチング後のSiO膜の形状)を、(株)日立製作所製電子顕微鏡(S-4800)を用いて観察したところ、本実施形態の下層膜を用いた実施例は、多層レジスト加工におけるエッチング後のSiO膜の形状は矩形であり、欠陥も認められず良好であることが確認された。
[実施例53~56]
前記合成実施例で合成した各化合物を用いて、下記表11に示す配合で光学部品形成組成物を調製した。なお、表11中の光学部品形成組成物の各成分のうち、酸発生剤、架橋剤、酸拡散抑制剤、及び溶媒については、以下のものを用いた。
酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
有機溶媒:プロピレングリコールモノメチルエーテルアセテートアセテート(PGMEA)
[膜形成の評価]
均一状態の光学部品形成組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中でプレベーク(prebake:PB)して、厚さ1μmの光学部品形成膜を形成した。調製した光学部品形成組成物について、膜形成が良好な場合には「A」、形成した膜に欠陥がある場合には「C」と評価した。
[屈折率及び透過率の評価]
均一な光学部品形成組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中でPBして、厚さ1μmの膜を形成した。その膜につき、ジェー・エー・ウーラム製多入射角分光エリプソメーターVASEにて、25℃における屈折率(λ=589.3nm)を測定した。調製した膜について、屈折率が1.6以上の場合には「A」、1.55以上1.6未満の場合には「B」、1.55未満の場合には「C」と評価した。また透過率(λ=632.8nm)が90%以上の場合には「A」、90%未満の場合には「C」と評価した。
Figure 0007194356000462
[実施例57~60]
前記合成実施例で合成した各化合物を用いて、下記表12に示す配合でレジスト組成物を調製した。なお、表12中のレジスト組成物の各成分のうち、ラジカル発生剤、ラジカル拡散抑制剤、及び溶媒については、以下のものを用いた。
ラジカル発生剤:BASF社製 IRGACURE184
ラジカル拡散制御剤:BASF社製 IRGACURE1010
有機溶媒:プロピレングリコールモノメチルエーテルアセテートアセテート(PGMEA)
[評価方法]
(1)レジスト組成物の保存安定性及び薄膜形成
レジスト組成物の保存安定性は、レジスト組成物を作成後、23℃、50%RHにて3日間静置し、析出の有無を目視にて観察することにより評価した。3日間静置後のレジスト組成物において、均一溶液であり析出がない場合にはA、析出がある場合はCと評価した。また、均一状態のレジスト組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ40nmのレジスト膜を形成した。作成したレジスト組成物について、薄膜形成が良好な場合にはA、形成した膜に欠陥がある場合にはCと評価した。
(2)レジストパターンのパターン評価
均一なレジスト組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ60nmのレジスト膜を形成した。得られたレジスト膜に対して、電子線描画装置(ELS-7500、(株)エリオニクス社製)を用いて、50nm、40nm及び30nm間隔の1:1のラインアンドスペース設定の電子線を照射した。当該照射後に、レジスト膜を、それぞれ所定の温度で、90秒間加熱し、PGMEに60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄、乾燥して、ネガ型のレジストパターンを形成した。形成されたレジストパターンについて、ラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800)により観察し、レジスト組成物の電子線照射による反応性を評価した。
感度は、パターンを得るために必要な単位面積当たりの最小のエネルギー量で示し、以下に従って評価した。
A:50μC/cm未満でパターンが得られた場合
C:50μC/cm以上でパターンが得られた場合
パターン形成は、得られたパターン形状をSEM(走査型電子顕微鏡:Scanning Electron Microscope)にて観察し、以下に従って評価した。
A:矩形なパターンが得られた場合
B:ほぼ矩形なパターンが得られた場合
C:矩形でないパターンが得られた場合
Figure 0007194356000463
上述したとおり、本発明は、上記実施形態及び実施例に限定されるものではなく、その要旨を逸脱しない範囲内において適宜変更を加えることが可能である。
本実施形態の化合物及び樹脂は、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であり、本実施形態のレジスト組成物は良好なレジストパターン形状を与える。
また、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるフォトレジスト下層膜を形成するために有用な化合物、樹脂及びリソグラフィー用膜形成組成物を実現することができる。そして、このリソグラフィー用膜形成組成物は、耐熱性が高く、溶媒溶解性も高い、特定構造を有する化合物又は樹脂を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れたレジスト及び下層膜を形成することができる。さらには、下層膜を形成した場合、レジスト層との密着性にも優れるので、優れたレジストパターンを形成することができる。
さらには屈折率が高く、また低温~高温処理によって着色が抑制されることから、各種光学部品形成組成物としても有用である。
したがって、本発明は、例えば、電気用絶縁材料、レジスト用樹脂、半導体用封止樹脂、プリント配線板用接着剤、電気機器・電子機器・産業機器等に搭載される電気用積層板、電気機器・電子機器・産業機器等に搭載されるプリプレグのマトリックス樹脂、ビルドアップ積層板材料、繊維強化プラスチック用樹脂、液晶表示パネルの封止用樹脂、塗料、各種コーティング剤、接着剤、半導体用のコーティング剤、半導体用のレジスト用樹脂、下層膜形成用樹脂、フィルム状、シート状で使われるほか、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路等の光学部品等において、広く且つ有効に利用可能である。
特に、本発明はリソグラフィー用レジスト、リソグラフィー用下層膜及び多層レジスト用下層膜及び光学部品の分野において、特に有効に利用可能である。
本出願は、2016年7月21日に日本国特許庁へ出願された日本特許出願(特願2016-143661号)に基づくものであり、それらの内容はここに参照として取り込まれる。
本発明は、リソグラフィー用レジスト、リソグラフィー用下層膜及び多層レジスト用下層膜及び光学部品の分野における産業上利用可能性を有する。

Claims (27)

  1. 下記式(1)で表される化合物であって、下記式(α1)で表される化合物を除く、化合物。
    Figure 0007194356000464

    (式(1)中、R0は、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基であり、
    1は、炭素数1~60のn価の基又は単結合であり、
    2~R5は、各々独立して、炭素数1~30のアルキル基、炭素数6~30のアリール基、炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が下記式(0-1)で表される基で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、-O-、-C(=O)-又は-C(=O)-O-を含んでいてもよく、ここで、R2~R5の少なくとも1つは前記式(0-1)で表される基を含み、
    2及びm3は、各々独立して、0~8の整数であり、
    4及びm5は、各々独立して、0~9の整数であり、
    但し、m2、m3、m4及びm5は同時に0になることはなく、
    nは1~4の整数であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
    2~p5は、各々独立して0~2の整数であ。)
    Figure 0007194356000465

    (式(0-1)中、Rxは、水素原子又はメチル基である。)
    Figure 0007194356000466
  2. 下記式(2)で表される、化合物。
    Figure 0007194356000467

    (式(2)中、R0Aは、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基であり、
    1Aは、炭素数1~60のnA価の基又は単結合であり、
    2Aは、各々独立して、炭素数1~30のアルキル基、炭素数6~30のアリール基、炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が下記式(0-1)で表される基で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、-O-、-C(=O)-又は-C(=O)-O-を含んでいてもよく、ここで、R2Aの少なくとも1つは前記式(0-1)で表される基を含み、
    Aは、1~4の整数であり、ここで、nAが2以上の整数の場合、nA個の[ ]内の構造式は同一であっても異なっていてもよく、
    Aは、酸素原子、硫黄原子又は無架橋であることを示し、
    2Aは、各々独立して、0~7の整数であり、但し、少なくとも1つのm2Aは1~7の整数であり、
    Aは、各々独立して、1である。)
    Figure 0007194356000468

    (式(0-1)中、R x は、水素原子又はメチル基である。)
  3. 前記式(1)で表される化合物が下記式(1-1)で表される化合物である、請求項1に記載の化合物。
    Figure 0007194356000469

    (式(1-1)中、R0、R1、R4、R5、n、p2~p5、m4及びm5は、前記式(1)におけるものと同義であり、
    6~R7は、各々独立して、炭素数1~30のアルキル基、炭素数6~30のアリール基、炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基であり、
    10~R11は、各々独立して、水素原子又は下記式(0-2)で表される基であり、
    ここで、R10~R11の少なくとも1つは下記式(0-2)で表される基であり、
    6及びm7は、各々独立して、0~7の整数であり、
    但し、m4、m5、m6及びm7は同時に0になることはない。)
    Figure 0007194356000470

    (式(0-2)中、Rxは、前記式(0-1)におけるものと同義であり、sは、0~3
    0の整数である。)
  4. 前記式(1-1)で表される化合物が下記式(1-2)で表される化合物である、請求項3に記載の化合物。
    Figure 0007194356000471

    (式(1-2)中、R0、R1、R6、R7、R10、R11、n、p2~p5、m6及びm7は、前記式(1-1)におけるものと同義であり、
    8~R9は、前記式(1-1)における6~R7と同義であり、
    12~R13は、前記式(1-1)における10~R11と同義であり、
    8及びm9は、各々独立して、0~8の整数であり、
    但し、m6、m7、m8及びm9は同時に0になることはない。)
  5. 前記式(2)で表される化合物が下記式(2-1)で表される化合物である、請求項2に記載の化合物。
    Figure 0007194356000472

    (式(2-1)中、R0A、R1A、nA、qA及びXAは、前記式(2)におけるものと同義であり、
    3Aは、各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基であり、
    4Aは、各々独立して、水素原子又は下記式(0-2)で表される基であり、
    ここで、R4Aの少なくとも1つは下記式(0-2)で表される基であり、
    6Aは、各々独立して、0~5の整数である。)
    Figure 0007194356000473

    (式(0-2)中、Rxは、前記式(0-1)におけるものと同義であり、sは、0~3
    0の整数である。)
  6. 請求項1~5のいずれか1項に記載の化合物をモノマーとして得られる、樹脂。
  7. 下記式(3)で表される構造を有する、請求項6に記載の樹脂。
    Figure 0007194356000474

    (式(3)中、Lは、炭素数1~30のアルキレン基、炭素数6~30のアリーレン基、炭素数1~30のアルコキシレン基又は単結合であり、前記アルキレン基、前記アリーレン基、前記アルコキシレン基は、-O-、-C(=O)-又は-C(=O)-O-を含んでいてもよく、
    0は、前記式(1)におけるR 0 と同義であり、
    1は、炭素数1~60のn価の基又は単結合であり、
    2~R5は、各々独立して、炭素数1~30のアルキル基、炭素数6~30のアリール基、炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が前記式(0-1)で表される基で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、-O-、-C(=O)-又は-C(=O)-O-を含んでいてもよく、ここで、R2~R5の少なくとも1つは前記式(0-1)で表される基を含み、
    2及びm3は、各々独立して、0~8の整数であり、
    4及びm5は、各々独立して、0~9の整数であり、
    但し、m2、m3、m4及びm5は同時に0になることはなく、
    nは前記式(1)におけるnと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
    2~p5は、各々独立して、0~2の整数である。)
  8. 下記式(4)で表される構造を有する、請求項6に記載の樹脂。
    Figure 0007194356000475

    (式(4)中、Lは、炭素数1~30のアルキレン基、炭素数6~30のアリーレン基、炭素数1~30のアルコキシレン基又は単結合であり、前記アルキレン基、前記アリーレン基、前記アルコキシレン基は、-O-、-C(=O)-又は-C(=O)-O-を含んでいてもよく、
    0Aは、前記式(2)におけるR 0A と同義であり、
    1Aは、炭素数1~30のnA価の基又は単結合であり、
    2Aは、各々独立して、炭素数1~30のアルキル基、炭素数6~30のアリール基、炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が前記式(0-1)で表される基で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、-O-、-C(=O)-又は-C(=O)-O-を含んでいてもよく、ここで、R2Aの少なくとも1つは前記式(0-1)で表される基を含み、
    Aは、前記式(2)におけるn A と同義であり、ここで、nAが2以上の整数の場合、nA個の[ ]内の構造式は同一であっても異なっていてもよく、
    Aは、酸素原子、硫黄原子又は無架橋であることを示し、
    2Aは、各々独立して、0~7の整数であり、但し、少なくとも1つのm2Aは1~6の整数であり、
    Aは、各々独立して、である。)
  9. 請求項1~5のいずれか一項に記載の化合物及び請求項6~8のいずれか一項に記載の樹脂からなる群より選ばれる1種以上を含有する、組成物。
  10. 溶媒をさらに含有する、請求項9に記載の組成物。
  11. 酸発生剤をさらに含有する、請求項9又は10に記載の組成物。
  12. 架橋剤をさらに含有する、請求項9~11のいずれか一項に記載の組成物。
  13. 前記架橋剤は、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物及びアジド化合物からなる群より選ばれる少なくとも1種である、請求項12に記載の組成物。
  14. 前記架橋剤は、少なくとも1つのアリル基を有する、請求項12又は13に記載の組成物。
  15. 前記架橋剤の含有割合が、請求項1~5のいずれか一項に記載の化合物及び請求項6~8のいずれか一項に記載の樹脂からなる群より選ばれる1種以上を含有する組成物の合計質量を100質量部とした場合に、0.1~100質量部である、請求項12~14のいずれか一項に記載の組成物。
  16. 架橋促進剤をさらに含有する、請求項12~15のいずれか一項に記載の組成物。
  17. 前記架橋促進剤は、アミン類、イミダゾール類、有機ホスフィン類、及びルイス酸からなる群より選ばれる少なくとも1種である、請求項16に記載の組成物。
  18. 前記架橋促進剤の含有割合が、請求項1~のいずれか一項に記載の化合物及び請求項のいずれか一項に記載の樹脂からなる群より選ばれる1種以上を含有する組成物の合計質量を100質量部とした場合に、0.1~5質量部である、請求項16又は17に記載の組成物。
  19. ラジカル重合開始剤をさらに含有する、請求項9~18のいずれか一項に記載の組成物。
  20. 前記ラジカル重合開始剤は、ケトン系光重合開始剤、有機過酸化物系重合開始剤及びアゾ系重合開始剤からなる群より選ばれる少なくとも1種である、請求項19に記載の組成物。
  21. 前記ラジカル重合開始剤の含有割合が、請求項1~のいずれか一項に記載の化合物及び請求項のいずれか一項に記載の樹脂からなる群より選ばれる1種以上を含有する組成物の合計質量を100質量部とした場合に、0.05~25質量部である、請求項19又は20に記載の組成物。
  22. リソグラフィー用膜形成に用いられる、請求項9~21のいずれか一項に記載の組成物。
  23. レジスト永久膜形成に用いられる、請求項9~21のいずれか一項に記載の組成物。
  24. 光学部品形成に用いられる、請求項9~21のいずれか一項に記載の組成物。
  25. 基板上に、請求項22に記載の組成物を用いてフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。
  26. 基板上に、請求項22に記載の組成物を用いて下層膜を形成し、前記下層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。
  27. 基板上に、請求項22に記載の組成物を用いて下層膜を形成し、前記下層膜上に、レジスト中間層膜材料を用いて中間層膜を形成し、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成し、その後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることにより基板にパターンを形成する工程を含む、回路パターン形成方法。
JP2018528898A 2016-07-21 2017-07-21 化合物、樹脂及び組成物、並びにレジストパターン形成方法及び回路パターン形成方法 Active JP7194356B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016143661 2016-07-21
JP2016143661 2016-07-21
PCT/JP2017/026512 WO2018016634A1 (ja) 2016-07-21 2017-07-21 化合物、樹脂及び組成物、並びにレジストパターン形成方法及び回路パターン形成方法

Publications (2)

Publication Number Publication Date
JPWO2018016634A1 JPWO2018016634A1 (ja) 2019-05-09
JP7194356B2 true JP7194356B2 (ja) 2022-12-22

Family

ID=60993087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018528898A Active JP7194356B2 (ja) 2016-07-21 2017-07-21 化合物、樹脂及び組成物、並びにレジストパターン形成方法及び回路パターン形成方法

Country Status (5)

Country Link
JP (1) JP7194356B2 (ja)
KR (1) KR20190034149A (ja)
CN (1) CN109803950A (ja)
TW (1) TW201817721A (ja)
WO (1) WO2018016634A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7360630B2 (ja) * 2018-02-28 2023-10-13 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びそれを用いたリソグラフィー用膜形成材料
TW202019864A (zh) * 2018-07-31 2020-06-01 日商三菱瓦斯化學股份有限公司 光學零件形成用組成物及光學零件,以及化合物及樹脂
US11971659B2 (en) * 2018-10-08 2024-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Photoresist composition and method of forming photoresist pattern
JP7405140B2 (ja) * 2019-04-25 2023-12-26 Jsr株式会社 感光性樹脂組成物
CN112079862A (zh) * 2020-10-29 2020-12-15 江苏创拓新材料有限公司 一种碳酸脂类液晶中间体及其制备方法和应用
KR102374293B1 (ko) * 2021-08-23 2022-03-17 영창케미칼 주식회사 패턴 프로파일 및 해상도 개선용 화학증폭형 포지티브 포토레지스트 조성물

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285648A (ja) 2006-12-25 2008-11-27 Osaka Gas Co Ltd フルオレン骨格を有するウレタン(メタ)アクリレート
WO2008149766A1 (ja) 2007-05-30 2008-12-11 Toagosei Co., Ltd. 活性エネルギー線硬化型組成物、コーティング組成物、コーティング部材及び光学材料
JP2009229720A (ja) 2008-03-21 2009-10-08 Fujifilm Corp 感光性樹脂組成物、フォトスペーサー及びその形成方法、保護膜、着色パターン、表示装置用基板、並びに表示装置
JP2010039459A (ja) 2008-07-08 2010-02-18 Hitachi Chem Co Ltd 感光性樹脂組成物、並びにこれを用いた感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法
US20100197876A1 (en) 2009-02-03 2010-08-05 Samsung Electronics Co., Ltd. Photocurable compound
JP2012047832A (ja) 2010-08-24 2012-03-08 Hitachi Chem Co Ltd 感光性樹脂組成物、感光性フィルム、リブパターンの形成方法、中空構造の形成方法及び電子部品
WO2013024778A1 (ja) 2011-08-12 2013-02-21 三菱瓦斯化学株式会社 レジスト組成物、レジストパターン形成方法、それに用いるポリフェノール化合物及びそれから誘導され得るアルコール化合物
WO2013047523A1 (ja) 2011-09-26 2013-04-04 富士フイルム株式会社 バリア性積層体および新規な重合性化合物
WO2016104214A1 (ja) 2014-12-25 2016-06-30 三菱瓦斯化学株式会社 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法及び精製方法
WO2017038643A1 (ja) 2015-08-31 2017-03-09 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びその製造方法、並びにレジストパターン形成方法
WO2017038645A1 (ja) 2015-08-31 2017-03-09 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びその製造方法、パターン形成方法、樹脂、並びに精製方法
WO2017038979A1 (ja) 2015-09-03 2017-03-09 三菱瓦斯化学株式会社 化合物及びその製造方法、並びに、組成物、光学部品形成用組成物、リソグラフィー用膜形成組成物、レジスト組成物、レジストパターンの形成方法、感放射線性組成物、アモルファス膜の製造方法、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法、レジストパターン形成方法、回路パターン形成方法、及び、精製方法
WO2018016640A1 (ja) 2016-07-21 2018-01-25 三菱瓦斯化学株式会社 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
WO2018016614A1 (ja) 2016-07-21 2018-01-25 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びパターン形成方法
WO2018016615A1 (ja) 2016-07-21 2018-01-25 三菱瓦斯化学株式会社 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
WO2018016648A1 (ja) 2016-07-21 2018-01-25 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びパターン形成方法
JP6848869B2 (ja) 2015-09-10 2021-03-24 三菱瓦斯化学株式会社 化合物、樹脂、レジスト組成物又は感放射線性組成物、レジストパターン形成方法、アモルファス膜の製造方法、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、回路パターンの形成方法、及び、精製方法
JP6853957B2 (ja) 2015-07-23 2021-04-07 三菱瓦斯化学株式会社 新規(メタ)アクリロイル化合物及びその製造方法
JP6861950B2 (ja) 2015-07-23 2021-04-21 三菱瓦斯化学株式会社 新規化合物及びその製造方法
JP6877696B2 (ja) 2015-12-25 2021-05-26 三菱瓦斯化学株式会社 化合物、樹脂、組成物、レジストパターン形成方法、及び、回路パターン形成方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3223104A1 (de) * 1982-06-21 1983-12-22 Hoechst Ag, 6230 Frankfurt Photopolymerisierbares gemisch und damit hergestelltes photopolymerisierbares kopiermaterial
JP3774668B2 (ja) 2001-02-07 2006-05-17 東京エレクトロン株式会社 シリコン窒化膜形成装置の洗浄前処理方法
JP3914493B2 (ja) 2002-11-27 2007-05-16 東京応化工業株式会社 多層レジストプロセス用下層膜形成材料およびこれを用いた配線形成方法
EP1592051A4 (en) 2003-01-24 2012-02-22 Tokyo Electron Ltd CHEMICAL VAPOR DEPOSITION METHOD FOR FORMING SILICON NITRIDE FILM ON A SUBSTRATE
JP3981030B2 (ja) 2003-03-07 2007-09-26 信越化学工業株式会社 レジスト下層膜材料ならびにパターン形成方法
JP4388429B2 (ja) 2004-02-04 2009-12-24 信越化学工業株式会社 レジスト下層膜材料ならびにパターン形成方法
EP1739485B1 (en) 2004-04-15 2016-08-31 Mitsubishi Gas Chemical Company, Inc. Resist composition
TWI494697B (zh) * 2004-12-24 2015-08-01 Mitsubishi Gas Chemical Co 光阻用化合物
JP4781280B2 (ja) 2006-01-25 2011-09-28 信越化学工業株式会社 反射防止膜材料、基板、及びパターン形成方法
JP4638380B2 (ja) 2006-01-27 2011-02-23 信越化学工業株式会社 反射防止膜材料、反射防止膜を有する基板及びパターン形成方法
JP4858136B2 (ja) 2006-12-06 2012-01-18 三菱瓦斯化学株式会社 感放射線性レジスト組成物
JP5446118B2 (ja) 2007-04-23 2014-03-19 三菱瓦斯化学株式会社 感放射線性組成物
KR100964642B1 (ko) * 2008-02-22 2010-06-21 에스화인켐 주식회사 고굴절, 고탄성의 프리즘 시트와 이를 위한 조성물 및 그제조 방법
JP2010138393A (ja) 2008-11-13 2010-06-24 Nippon Kayaku Co Ltd 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
KR101907481B1 (ko) 2011-08-12 2018-10-12 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 리소그래피용 하층막 형성재료, 리소그래피용 하층막 및 패턴형성방법
JP2015174877A (ja) 2014-03-13 2015-10-05 日産化学工業株式会社 特定の硬化促進触媒を含む樹脂組成物

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285648A (ja) 2006-12-25 2008-11-27 Osaka Gas Co Ltd フルオレン骨格を有するウレタン(メタ)アクリレート
WO2008149766A1 (ja) 2007-05-30 2008-12-11 Toagosei Co., Ltd. 活性エネルギー線硬化型組成物、コーティング組成物、コーティング部材及び光学材料
JP2009229720A (ja) 2008-03-21 2009-10-08 Fujifilm Corp 感光性樹脂組成物、フォトスペーサー及びその形成方法、保護膜、着色パターン、表示装置用基板、並びに表示装置
JP2010039459A (ja) 2008-07-08 2010-02-18 Hitachi Chem Co Ltd 感光性樹脂組成物、並びにこれを用いた感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法
US20100197876A1 (en) 2009-02-03 2010-08-05 Samsung Electronics Co., Ltd. Photocurable compound
JP2012047832A (ja) 2010-08-24 2012-03-08 Hitachi Chem Co Ltd 感光性樹脂組成物、感光性フィルム、リブパターンの形成方法、中空構造の形成方法及び電子部品
WO2013024778A1 (ja) 2011-08-12 2013-02-21 三菱瓦斯化学株式会社 レジスト組成物、レジストパターン形成方法、それに用いるポリフェノール化合物及びそれから誘導され得るアルコール化合物
WO2013047523A1 (ja) 2011-09-26 2013-04-04 富士フイルム株式会社 バリア性積層体および新規な重合性化合物
WO2016104214A1 (ja) 2014-12-25 2016-06-30 三菱瓦斯化学株式会社 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法及び精製方法
JP6853957B2 (ja) 2015-07-23 2021-04-07 三菱瓦斯化学株式会社 新規(メタ)アクリロイル化合物及びその製造方法
JP6861950B2 (ja) 2015-07-23 2021-04-21 三菱瓦斯化学株式会社 新規化合物及びその製造方法
WO2017038645A1 (ja) 2015-08-31 2017-03-09 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びその製造方法、パターン形成方法、樹脂、並びに精製方法
WO2017038643A1 (ja) 2015-08-31 2017-03-09 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びその製造方法、並びにレジストパターン形成方法
WO2017038979A1 (ja) 2015-09-03 2017-03-09 三菱瓦斯化学株式会社 化合物及びその製造方法、並びに、組成物、光学部品形成用組成物、リソグラフィー用膜形成組成物、レジスト組成物、レジストパターンの形成方法、感放射線性組成物、アモルファス膜の製造方法、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法、レジストパターン形成方法、回路パターン形成方法、及び、精製方法
JP6848869B2 (ja) 2015-09-10 2021-03-24 三菱瓦斯化学株式会社 化合物、樹脂、レジスト組成物又は感放射線性組成物、レジストパターン形成方法、アモルファス膜の製造方法、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、回路パターンの形成方法、及び、精製方法
JP6877696B2 (ja) 2015-12-25 2021-05-26 三菱瓦斯化学株式会社 化合物、樹脂、組成物、レジストパターン形成方法、及び、回路パターン形成方法
WO2018016640A1 (ja) 2016-07-21 2018-01-25 三菱瓦斯化学株式会社 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
WO2018016614A1 (ja) 2016-07-21 2018-01-25 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びパターン形成方法
WO2018016615A1 (ja) 2016-07-21 2018-01-25 三菱瓦斯化学株式会社 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
WO2018016648A1 (ja) 2016-07-21 2018-01-25 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びパターン形成方法

Also Published As

Publication number Publication date
WO2018016634A1 (ja) 2018-01-25
CN109803950A (zh) 2019-05-24
TW201817721A (zh) 2018-05-16
JPWO2018016634A1 (ja) 2019-05-09
KR20190034149A (ko) 2019-04-01

Similar Documents

Publication Publication Date Title
JP7283515B2 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JP7194355B2 (ja) 化合物、樹脂、組成物及びパターン形成方法
JP7069529B2 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JP7194356B2 (ja) 化合物、樹脂及び組成物、並びにレジストパターン形成方法及び回路パターン形成方法
JP7069530B2 (ja) 化合物、樹脂、組成物及びパターン形成方法
JP7290114B2 (ja) 化合物、樹脂、組成物及びパターン形成方法
JP7205716B2 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JP7452947B2 (ja) 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法
JP7205715B2 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JP7061271B2 (ja) 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法
WO2018135498A1 (ja) 化合物、樹脂、組成物及びパターン形成方法
JPWO2018056279A1 (ja) 化合物、樹脂、組成物、並びにレジストパターン形成方法及びパターン形成方法
JP7385827B2 (ja) 化合物、樹脂、組成物、レジストパターン形成方法、回路パターン形成方法及び樹脂の精製方法
JP7445382B2 (ja) 化合物、樹脂、組成物及びパターン形成方法
JP7139622B2 (ja) 化合物、樹脂、組成物及びパターン形成方法
JP7145415B2 (ja) 化合物、樹脂、組成物、パターン形成方法及び精製方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220720

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221124

R151 Written notification of patent or utility model registration

Ref document number: 7194356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151