WO2018016634A1 - 化合物、樹脂及び組成物、並びにレジストパターン形成方法及び回路パターン形成方法 - Google Patents

化合物、樹脂及び組成物、並びにレジストパターン形成方法及び回路パターン形成方法 Download PDF

Info

Publication number
WO2018016634A1
WO2018016634A1 PCT/JP2017/026512 JP2017026512W WO2018016634A1 WO 2018016634 A1 WO2018016634 A1 WO 2018016634A1 JP 2017026512 W JP2017026512 W JP 2017026512W WO 2018016634 A1 WO2018016634 A1 WO 2018016634A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
carbon atoms
compound
integer
Prior art date
Application number
PCT/JP2017/026512
Other languages
English (en)
French (fr)
Inventor
越後 雅敏
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201780045311.1A priority Critical patent/CN109803950A/zh
Priority to KR1020187035675A priority patent/KR20190034149A/ko
Priority to JP2018528898A priority patent/JP7194356B2/ja
Publication of WO2018016634A1 publication Critical patent/WO2018016634A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/16Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/40Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings
    • C07C271/42Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/48Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/40Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings
    • C07C271/42Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/54Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F120/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F20/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers

Definitions

  • the present invention relates to a compound having a specific structure, a resin, and a composition containing these.
  • the present invention also relates to a pattern forming method (resist pattern forming method and circuit pattern forming method) using the composition.
  • the molecular weight is as large as about 10,000 to 100,000, and the molecular weight distribution is wide, resulting in roughness on the pattern surface, making it difficult to control the pattern size, and limiting the miniaturization.
  • various low molecular weight resist materials have been proposed so far in order to provide resist patterns with higher resolution. Since the low molecular weight resist material has a small molecular size, it is expected to provide a resist pattern with high resolution and low roughness.
  • an alkali development type negative radiation sensitive composition for example, see Patent Document 1 and Patent Document 2 using a low molecular weight polynuclear polyphenol compound as a main component
  • a low molecular weight resist material having high heat resistance As candidates, an alkali development negative radiation-sensitive composition using a low molecular weight cyclic polyphenol compound as a main component (see, for example, Patent Document 3 and Non-Patent Document 1) has also been proposed.
  • Non-Patent Document 2 a polyphenol compound as a base compound for a resist material can impart high heat resistance despite its low molecular weight, and is useful for improving the resolution and roughness of a resist pattern (for example, Non-Patent Document 2). reference).
  • the inventors of the present invention provide a resist composition containing a compound having a specific structure and an organic solvent as a material that is excellent in etching resistance and is soluble in a solvent and applicable to a wet process (see, for example, Patent Document 4). is suggesting.
  • a terminal layer is removed by applying a predetermined energy as a resist underlayer film for lithography having a dry etching rate selection ratio close to that of a resist.
  • a material for forming a lower layer film for a multilayer resist process which contains at least a resin component having a substituent that generates a sulfonic acid residue and a solvent (see, for example, Patent Document 5).
  • resist underlayer film materials containing a polymer having a specific repeating unit have been proposed as a material for realizing a resist underlayer film for lithography having a lower dry etching rate selectivity than resist (for example, Patent Documents). 6). Furthermore, in order to realize a resist underlayer film for lithography having a low dry etching rate selection ratio compared with a semiconductor substrate, a repeating unit of acenaphthylenes and a repeating unit having a substituted or unsubstituted hydroxy group are copolymerized. A resist underlayer film material containing a polymer is proposed (see, for example, Patent Document 7).
  • an amorphous carbon underlayer film formed by CVD using methane gas, ethane gas, acetylene gas or the like as a raw material is well known.
  • a resist underlayer film material capable of forming a resist underlayer film by a wet process such as spin coating or screen printing is required.
  • the present inventors have a composition for forming an underlayer film for lithography containing a compound having a specific structure and an organic solvent as a material having excellent etching resistance, high heat resistance, soluble in a solvent and applicable to a wet process.
  • the thing (for example, refer patent document 8) is proposed.
  • a silicon nitride film formation method for example, see Patent Document 9
  • a silicon nitride film CVD formation method for example, Patent Document 10.
  • an intermediate layer material for a three-layer process a material containing a silsesquioxane-based silicon compound is known (see, for example, Patent Documents 11 and 12).
  • compositions for optical members have been proposed in the past. However, none of them has a combination of heat resistance, transparency and refractive index at a high level, and development of new materials is required.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and the purpose thereof is a photoresist and an underlayer film for photoresist, which are applicable to a wet process, have excellent heat resistance, and have excellent solubility and etching resistance. It is in providing the compound, resin, and composition which are useful in order to form. Another object of the present invention is to provide a resist film, a resist underlayer film, a resist permanent film, and a pattern forming method using the composition. Furthermore, it is providing the composition for optical members.
  • the present invention is as follows. [1] The compound represented by following formula (0).
  • (0) (In Formula (0), R Y is a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms, R Z is an N-valent group having 1 to 60 carbon atoms or a single bond, R T each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent.
  • An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group, a hydroxyl group or a hydroxyl group Are substituted with a group represented by the following formula (0-1), and the alkyl group, the aryl group, the alkenyl group, and the alkoxy group each have an ether bond, a ketone bond, or an ester bond.
  • RT includes a group represented by the following formula (0-1)
  • X represents an oxygen atom, a sulfur atom or no bridge
  • m is each independently an integer of 0 to 9, wherein at least one of m is an integer of 1 to 9, N is an integer of 1 to 4, and when N is an integer of 2 or more, the structural formulas in N [] may be the same or different
  • Each r is independently an integer of 0-2.
  • R X represents a hydrogen atom or a methyl group.
  • R 0 has the same meaning as R Y
  • R 1 is an n-valent group having 1 to 60 carbon atoms or a single bond
  • R 2 to R 5 are each independently an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent.
  • the hydrogen atom is substituted with a group represented by the formula (0-1)
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group each have an ether bond, a ketone bond, or an ester bond.
  • at least one of R 2A includes a group represented by the formula (0-1)
  • n A has the same meaning as N above.
  • n A is an integer of 2 or more
  • the structural formulas in n A [] may be the same or different
  • X A represents an oxygen atom, a sulfur atom, or no bridge
  • m 2A is each independently an integer of 0 to 7, provided that at least one m 2A is an integer of 1 to 7
  • q A is each independently 0 or 1.
  • R 0 , R 1 , R 4 , R 5 , n, p 2 to p 5 , m 4 and m 5 have the same meanings as in the formula (1)
  • R 6 to R 7 are each independently an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent.
  • An alkenyl group having 2 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, or a thiol group, which may have R 10 to R 11 are each independently a hydrogen atom or a group represented by the following formula (0-2);
  • R 10 to R 11 is a group represented by the following formula (0-2)
  • m 6 and m 7 are each independently an integer of 0 to 7, However, m 4 , m 5 , m 6 and m 7 are not 0 at the same time.
  • R 8 to R 9 have the same meanings as R 6 to R 7
  • R 12 to R 13 have the same meanings as R 10 to R 11
  • m 8 and m 9 are each independently an integer of 0 to 8, However, m 6 , m 7 , m 8 and m 9 are not 0 at the same time.
  • R 0A , R 1A , n A , q A and X A are as defined in the formula (2);
  • Each R 3A is independently a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may have a substituent, and 6 to 30 carbon atoms which may have a substituent.
  • R 4A is each independently a hydrogen atom or a group represented by the following formula (0-2);
  • at least one of R 4A is a group represented by the following formula (0-2)
  • m 6A is each independently an integer of 0 to 5.
  • (0-2) In formula (0-2), R X has the same meaning as in formula (0-1), and s is an integer of 0 to 30.
  • [7] A resin obtained by using the compound according to [1] as a monomer.
  • the alkylene group, the arylene group and the alkoxylene group may contain an ether bond, a ketone bond or an ester bond
  • R 0 has the same meaning as R Y
  • R 1 is an n-valent group having 1 to 60 carbon atoms or a single bond
  • R 2 to R 5 are each independently an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent.
  • the alkylene group, the arylene group and the alkoxylene group may contain an ether bond, a ketone bond or an ester bond
  • R 0A has the same meaning as R Y
  • R 1A is an n A valent group having 1 to 30 carbon atoms or a single bond
  • R 2A each independently has an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent.
  • the hydrogen atom is substituted with a group represented by the formula (0-1)
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group each have an ether bond, a ketone bond, or an ester bond.
  • at least one of R 2A includes a group represented by the formula (0-1)
  • n A has the same meaning as N above.
  • n A is an integer of 2 or more, the structural formulas in n A [] may be the same or different, X A represents an oxygen atom, a sulfur atom, or no bridge, m 2A is each independently an integer of 0 to 7, provided that at least one m 2A is an integer of 1 to 6; q A is each independently 0 or 1.
  • a composition comprising at least one selected from the group consisting of the compound according to any one of [1] to [6] and the resin according to any one of [7] to [9].
  • the composition according to [10] further comprising a solvent.
  • the crosslinking agent is at least one selected from the group consisting of phenol compounds, epoxy compounds, cyanate compounds, amino compounds, benzoxazine compounds, melamine compounds, guanamine compounds, glycoluril compounds, urea compounds, isocyanate compounds, and azide compounds.
  • the composition according to [17], wherein the crosslinking accelerator is at least one selected from the group consisting of amines, imidazoles, organic phosphines, and Lewis acids.
  • the content ratio of the crosslinking accelerator contains at least one selected from the group consisting of the compound according to any one of [1] to [6] and the resin according to any one of [7] to [9].
  • the radical polymerization initiator is at least one selected from the group consisting of ketone photopolymerization initiators, organic peroxide polymerization initiators, and azo polymerization initiators, and any one of [10] to [20] A composition according to 1.
  • the content ratio of the radical polymerization initiator contains at least one selected from the group consisting of the compound according to any one of [1] to [6] and the resin according to any one of [7] to [9].
  • a method for forming a resist pattern comprising: forming a photoresist layer on a substrate using the composition described in [23]; and irradiating a predetermined region of the photoresist layer with radiation and developing.
  • a lower layer film is formed on the substrate using the composition described in [23], and at least one photoresist layer is formed on the lower layer film, and then radiation is applied to a predetermined region of the photoresist layer.
  • a resist pattern forming method including a step of irradiating and developing.
  • a lower layer film is formed using the composition described in [23], an intermediate layer film is formed on the lower layer film using a resist intermediate layer film material, and at least on the intermediate layer film,
  • a predetermined region of the photoresist layer is irradiated with radiation, developed to form a resist pattern, and then the intermediate layer film is etched using the resist pattern as a mask,
  • a circuit pattern forming method comprising: etching the lower layer film using the obtained intermediate layer film pattern as an etching mask; and etching the substrate using the obtained lower layer film pattern as an etching mask to form a pattern on the substrate.
  • the compound and resin according to the present invention are highly soluble in a safe solvent, have good heat resistance and etching resistance, and the composition according to the present invention gives a good resist pattern shape.
  • the present embodiment a mode for carrying out the present invention (hereinafter also referred to as “the present embodiment”) will be described.
  • the following embodiment is an illustration for demonstrating this invention, and this invention is not limited only to the embodiment.
  • the compound of this embodiment is a compound represented by the formula (0) described later, or a resin obtained using the compound as a monomer.
  • the compound and resin according to the present invention can be applied to a wet process and is useful for forming a photoresist underlayer film having excellent heat resistance and etching resistance.
  • this film-forming composition for lithography uses a compound or resin having a specific structure that has high heat resistance and high solvent solubility, deterioration of the film during high-temperature baking is suppressed, oxygen plasma etching, etc. It is possible to form a resist and an underlayer film that are also excellent in etching resistance to.
  • the adhesion with the resist layer is also excellent, so that an excellent resist pattern can be formed.
  • the compound and resin in the present embodiment are excellent in sensitivity and resolution when used in a photosensitive material, and while maintaining high heat resistance, further, general-purpose organic solvents, other compounds, and resin components , And a resist permanent film excellent in compatibility with the additive. Furthermore, since the refractive index is high and coloring is suppressed by a wide range of heat treatment from low temperature to high temperature, it is also useful as various optical forming compositions.
  • R Y is a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms
  • R Z is an N-valent group having 1 to 60 carbon atoms or a single bond
  • R T each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent.
  • An optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, a thiol group, a hydroxyl group or a hydroxyl group Are substituted with a group represented by the following formula (0-1), and the alkyl group, the aryl group, the alkenyl group, and the alkoxy group each have an ether bond, a ketone bond, or an ester bond.
  • RT includes a group represented by the following formula (0-1)
  • X represents an oxygen atom, a sulfur atom or no bridge
  • m is each independently an integer of 0 to 9, wherein at least one of m is an integer of 1 to 9, N is an integer of 1 to 4, and when N is an integer of 2 or more, the structural formulas in N [] may be the same or different
  • Each r is independently an integer of 0-2.
  • R X represents a hydrogen atom or a methyl group.
  • the group containing a group represented by the formula (0-1) is a group having a group represented by the formula (0-1).
  • R Y is a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms.
  • alkyl group a linear, branched or cyclic alkyl group can be used.
  • R Y is a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, excellent heat resistance and solvent solubility are imparted. Can do.
  • R z is an N-valent group having 1 to 60 carbon atoms or a single bond, and each aromatic ring is bonded through this R z .
  • N is an integer of 1 to 4, and when N is an integer of 2 or more, the structural formulas in N [] may be the same or different.
  • N-valent group examples include those having a linear hydrocarbon group, a branched hydrocarbon group, or an alicyclic hydrocarbon group.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the N-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 60 carbon atoms.
  • R T each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent.
  • the hydrogen atom is substituted with a group represented by the above formula (0-1)
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group each have an ether bond, a ketone bond, or an ester bond.
  • the alkyl group, alkenyl group and alkoxy group may be linear, branched or cyclic groups.
  • the group in which the hydrogen atom of the hydroxyl group is substituted with a vinylphenylmethyl group is a group having a vinylphenylmethyl group, for example, a vinylphenylmethyl group, a vinylphenylmethylmethyl group, a vinylphenylmethylphenyl group, or the like. Can be mentioned.
  • X represents an oxygen atom, a sulfur atom or no bridge, and when X is an oxygen atom or a sulfur atom, it tends to develop high heat resistance, and is more preferably an oxygen atom.
  • X is preferably non-crosslinked from the viewpoint of solubility.
  • M is each independently an integer of 0 to 9, and at least one of m is an integer of 1 to 9.
  • Each r is independently an integer of 0-2.
  • the numerical range of m described above is determined according to the ring structure determined by r.
  • the compound represented by the above formula (0) has a relatively low molecular weight, but has high heat resistance due to the rigidity of its structure, and therefore can be used under high temperature baking conditions. Moreover, it has tertiary carbon or quaternary carbon in the molecule, the crystallinity is suppressed, and it is suitably used as a film forming composition for lithography that can be used for manufacturing a film for lithography.
  • the resist formation composition for lithography containing the compound represented by Formula (0) can give a favorable resist pattern shape. .
  • the film has a relatively low molecular weight and low viscosity, even a substrate having a step (particularly, a fine space or a hole pattern) can be uniformly filled to every corner of the step and the film can be flattened.
  • the composition for forming an underlayer film for lithography containing the compound represented by the formula (0) has good embedding and planarization characteristics.
  • the compound represented by the formula (0) is a compound having a relatively high carbon concentration, high etching resistance can be imparted.
  • the composition containing the compound represented by the formula (0) has a high aromatic density, the refractive index is high, and coloring is suppressed by a wide range of heat treatment from low temperature to high temperature. It is also useful as a forming composition. Among them, a compound having a quaternary carbon is preferable from the viewpoint of suppressing oxidative decomposition to suppress coloring of the compound, high heat resistance, and improving solvent solubility.
  • Optical parts are used in the form of films and sheets, as well as plastic lenses (prism lenses, lenticular lenses, micro lenses, Fresnel lenses, viewing angle control lenses, contrast enhancement lenses, etc.), retardation films, electromagnetic wave shielding films, prisms It is useful as an optical fiber, a solder resist for flexible printed wiring, a plating resist, an interlayer insulating film for multilayer printed wiring boards, and a photosensitive optical waveguide.
  • the compound represented by the formula (0) in the present embodiment is preferably a compound represented by the following formula (1). Since the compound of the present embodiment is a compound represented by the following formula (1), it tends to have higher heat resistance and higher solvent solubility.
  • R 0 has the same meaning as R Y described above, and is a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms.
  • R 0 is a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms
  • the heat resistance is relatively high and the solvent solubility tends to be improved.
  • R 0 is an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms from the viewpoint of suppressing oxidative decomposition and suppressing coloring of the compound, and improving heat resistance and solvent solubility. To preferred.
  • R 1 is an n-valent group having 1 to 60 carbon atoms or a single bond, and each aromatic ring is bonded through R 1 .
  • R 2 to R 5 are each independently an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent.
  • n has the same meaning as N above, and is an integer of 1 to 4.
  • n is an integer of 2 or more, the structural formulas in the n [] may be the same or different.
  • p 2 to p 5 are each independently an integer of 0 to 2.
  • the alkyl group, alkenyl group and alkoxy group may be linear, branched or cyclic groups.
  • Examples of the n-valent group include those having a linear hydrocarbon group, a branched hydrocarbon group, and an alicyclic hydrocarbon group.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the n-valent group may be an aromatic group having 6 to 60 carbon atoms.
  • the n-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 60 carbon atoms.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the compound represented by the above formula (1) has a relatively low molecular weight, but has high heat resistance due to the rigidity of its structure, and therefore can be used under high temperature baking conditions. Moreover, it has tertiary carbon or quaternary carbon in the molecule, the crystallinity is suppressed, and it is suitably used as a film forming composition for lithography that can be used for manufacturing a film for lithography.
  • the resist formation composition for lithography containing the compound represented by said Formula (1) may give a favorable resist pattern shape. it can.
  • the film has a relatively low molecular weight and low viscosity, even a substrate having a step (particularly, a fine space or a hole pattern) can be uniformly filled to every corner of the step and the film can be flattened.
  • the composition for forming a lower layer film for lithography using the same has good embedding and planarization characteristics.
  • it is a compound having a relatively high carbon concentration, high etching resistance can be imparted.
  • the aromatic density is high, the refractive index is high, and coloring is suppressed by a wide range of heat treatment from low temperature to high temperature, so that it is useful as a composition for forming various optical parts.
  • a compound having a quaternary carbon is preferable from the viewpoint of suppressing oxidative decomposition to suppress coloring of the compound, high heat resistance, and improving solvent solubility.
  • Optical parts are used in the form of films and sheets, as well as plastic lenses (prism lenses, lenticular lenses, micro lenses, Fresnel lenses, viewing angle control lenses, contrast enhancement lenses, etc.), retardation films, electromagnetic wave shielding films, prisms It is useful as an optical fiber, a solder resist for flexible printed wiring, a plating resist, an interlayer insulating film for multilayer printed wiring boards, and a photosensitive optical waveguide.
  • the compound represented by the above formula (1) is preferably a compound represented by the following formula (1-1) from the viewpoint of easy crosslinking and solubility in an organic solvent. (1-1)
  • R 0 , R 1 , R 4 , R 5 , n, p 2 to p 5 , m 4 and m 5 are as defined in the above formula (1)
  • R 6 to R 7 are each independently an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent.
  • An alkenyl group having 2 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, a carboxylic acid group, or a thiol group, which may have R 10 to R 11 are each independently a hydrogen atom or a group represented by the following formula (0-2);
  • R 10 to R 11 is a group represented by the following formula (0-2)
  • m 6 and m 7 are each independently an integer of 0 to 7, However, m 4 , m 5 , m 6 and m 7 are not 0 at the same time.
  • R X has the same meaning as in formula (0-1) above, and s is an integer of 0 to 30.
  • the compound represented by the above formula (1-1) is preferably a compound represented by the following formula (1-2) from the viewpoint of further crosslinking and solubility in an organic solvent. .
  • R 0 , R 1 , R 6 , R 7 , R 10 , R 11 , n, p 2 to p 5 , m 6 and m 7 are as defined in the above formula (1-1), R 8 to R 9 have the same meanings as R 6 to R 7 above, R 12 to R 13 have the same meanings as R 10 to R 11 above, m 8 and m 9 are each independently an integer of 0 to 8. However, m 6 , m 7 , m 8 and m 9 are not 0 at the same time.
  • the compound represented by the above formula (1-1) is preferably a compound represented by the following formula (1a) from the viewpoint of raw material supply.
  • R 0 to R 5 , m 2 to m 5 and n have the same meaning as described in the above formula (1).
  • the compound represented by the above formula (1a) is more preferably a compound represented by the following formula (1b) from the viewpoint of solubility in an organic solvent.
  • R 0 , R 1 , R 4 , R 5 , R 10 , R 11 , m 4 , m 5 , and n are as defined in the above formula (1), and R 6 , R 7 , R 10 , R 11 , m 6 and m 7 have the same meanings as described in the above formula (1-1).
  • the compound represented by the formula (1a) is more preferably a compound represented by the following formula (1b ′) from the viewpoint of reactivity.
  • R 0 , R 1 , R 4 , R 5 , m 4 , m 5 , and n are as defined in the above formula (1), and R 6 , R 7 , R 10 , R 11 , m 6 and m 7 have the same meanings as described in the above formula (1-1).
  • the compound represented by the above formula (1b) is more preferably a compound represented by the following formula (1c) from the viewpoint of solubility in an organic solvent.
  • R 0 , R 1 , R 6 to R 13 , m 6 to m 9 , and n are as defined in the above formula (1-2).
  • the compound represented by the formula (1b ′) is more preferably a compound represented by the following formula (1c ′) from the viewpoint of reactivity.
  • R 0 , R 1 , R 6 to R 13 , m 6 to m 9 , and n are as defined in the formula (1-2).
  • X is the same as those described in the above formula (0)
  • R T ' has the same meaning as R T described by the above formula (0)
  • m each independently 1-6 Is an integer.
  • X is the same as those described in the above formula (0)
  • R Y ', R Z' are as defined R Y, R Z described by the above formula (0).
  • at least one of OR 4A includes a group represented by the following formula (0-1).
  • R 2 , R 3 , R 4 , and R 5 have the same meaning as described in the above formula (1).
  • m 2 and m 3 are integers from 0 to 6
  • m 4 and m 5 are integers from 0 to 7.
  • at least one selected from R 2 , R 3 , R 4 and R 5 includes a group represented by the following formula (0-1), and m 2 , m 3 , m 4 and m 5 are simultaneously 0 and None become.
  • R X represents a hydrogen atom or a methyl group.
  • R 10 , R 11 , R 12 , and R 13 have the same meanings as described in the above formula (1-2), and at least one of R 10 to R 13 is represented by the following formula (0-2). It is a group represented.
  • R X has the same meaning as in formula (0-1), and s is an integer of 0 to 30.
  • the compound represented by the formula (1) is particularly preferably a compound represented by the following formulas (BiF-1) to (BiF-10) from the viewpoint of further solubility in an organic solvent.
  • R 10 , R 11 , R 12 , and R 13 have the same meanings as described in the above formula (1-2), and at least one of R 10 to R 13 is represented by the following formula (0-2). It is a group represented.
  • R X has the same meaning as in formula (0-1), and s is an integer of 0 to 30.
  • R 0 , R 1 and n are as defined in the above formula (1-1), and R 10 ′ and R 11 ′ are R 10 and R described in the above formula (1-1).
  • 11 and R 4 ′ and R 5 ′ each independently represents an alkyl group having 1 to 30 carbon atoms which may have a substituent, and 6 to 6 carbon atoms which may have a substituent.
  • aryl groups an optionally substituted alkenyl group having 2 to 30 carbon atoms, an optionally substituted alkoxy group having 1 to 30 carbon atoms, a halogen atom, a nitro group, an amino group, A carboxylic acid group, a thiol group, a hydroxyl group or a group in which a hydrogen atom of the hydroxyl group is substituted by the following formula (0-1), the alkyl group, the aryl group, the alkenyl group, and the alkoxy group are an ether bond, a ketone bond or may contain an ester bond, R 10 'and R 1 at least one of the 'comprises radicals substituted by the following formula (0-2).
  • n 4 ′ and m 5 ′ are integers of 0 to 8
  • m 10 ′ and m 11 ′ are integers of 1 to 9
  • m 4 ′ + m 10 ′ and m 4 ′ + m 11 ′ are independent of each other. It is an integer from 1 to 9.
  • R X has the same meaning as in formula (0-1), and s is an integer of 0 to 30.
  • R 0 for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group, phenyl group, naphthyl Group, anthracene group, pyrenyl group, biphenyl group and heptacene group.
  • R 4 ′ and R 5 ′ include, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group , Cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl Group, naphthyl group, anthracene group, pyrenyl group, biphenyl group, heptacene group, vinyl group,
  • R 0 , R 4 ′ and R 5 ′ includes an isomer.
  • the butyl group includes an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • R 10 to R 13 have the same meanings as described in the formula (1-2),
  • R 16 represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms, carbon number A bivalent aryl group having 6 to 30 carbon atoms or a divalent alkenyl group having 2 to 30 carbon atoms.
  • R 16 examples include methylene group, ethylene group, propene group, butene group, pentene group, hexene group, heptene group, octene group, nonene group, decene group, undecene group, dodecene group, triacontene group, cyclopropene group.
  • Cyclobutene group cyclopentene group, cyclohexene group, cycloheptene group, cyclooctene group, cyclononene group, cyclodecene group, cycloundecene group, cyclododecene group, cyclotriacontene group, divalent norbornyl group, divalent adamantyl group, divalent Phenyl group, divalent naphthyl group, divalent anthracene group, divalent pyrene group, divalent biphenyl group, divalent heptacene group, divalent vinyl group, divalent allyl group, divalent tria A contenyl group is mentioned.
  • R 16 includes isomers.
  • the butyl group includes an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • R 10 to R 13 have the same meanings as described in the above formula (1-2), and R 14 each independently represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms.
  • m 14 is an integer of 0 to 5;
  • 14 ′ is an integer of 0 to 4, and m 14 is an integer of 0 to 5.
  • R 14 examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a triacontyl group, a cyclopropyl group, Cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group, naphthyl group, Anthracene group, pyrenyl group, bipheny
  • R 14 includes an isomer.
  • the butyl group includes an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • R 0 , R 4 ′ , R 5 ′ , m 4 ′ , m 5 ′ , m 10 ′ and m 11 ′ are as defined above, and R 1 ′ is a group having 1 to 60 carbon atoms. is there.
  • R 10 to R 13 have the same meanings as described in the above formula (1-2), and R 14 each independently represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms.
  • m 14 is an integer of 0 to 5
  • 14 ′ is an integer from 0 to 4
  • m 14 ′′ is an integer from 0 to 3.
  • R 14 examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a triacontyl group, a cyclopropyl group, Cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group, naphthyl group, Anthracene group, pyrenyl group, bipheny
  • R 14 includes an isomer.
  • the butyl group includes an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • R 10 to R 13 have the same meanings as described in the formula (1-2),
  • R 15 represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a halogen atom, and a thiol group.
  • R 15 for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group, cyclopropyl group, Cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group, naphthyl group, Anthracene group, pyrenyl group, biphenyl group, heptacene group, vinyl group, allyl group, triaconty
  • R 15 includes an isomer.
  • the butyl group includes an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • R 10 to R 13 have the same meanings as described in the formula (1-2).
  • the compound represented by the formula (0) is more preferably a compound listed below from the viewpoint of availability of raw materials.
  • R 10 to R 13 have the same meanings as described in the formula (1-2).
  • the compound represented by the formula (0) is preferably a compound having the following structure from the viewpoint of etching resistance.
  • R 0A has the same meaning as R Y in the formula (0)
  • R 1A ′ has the same meaning as R Z in the formula (0)
  • R 10 to R 13 have the same formulas (1) -2) The same meaning as described in 2).
  • R 10 to R 13 have the same meanings as described in the formula (1-2).
  • R 14 each independently represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an alkenyl group having 2 to 30 carbon atoms, or 1 to 30 carbon atoms.
  • An alkoxy group, a halogen atom, and a thiol group, and m 14 is an integer of 0 to 4.
  • R 14 examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a triacontyl group, a cyclopropyl group, Cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group, naphthyl group, Anthracene group, heptacene group, vinyl group
  • R 14 includes an isomer.
  • the butyl group includes an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • R 10 to R 13 have the same meanings as described in the formula (1-2),
  • R 15 represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a halogen atom, and a thiol group.
  • R 15 for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group, cyclopropyl group, Cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group, naphthyl group, Anthracene group, heptacene group, vinyl group, allyl group, triacontenyl group, methoxy group, ethyl
  • R 15 includes an isomer.
  • the butyl group includes an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • R 10 to R 13 have the same meanings as described in the formula (1-2),
  • R 16 represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms, carbon number A bivalent aryl group having 6 to 30 carbon atoms or a divalent alkenyl group having 2 to 30 carbon atoms.
  • R 16 examples include methylene group, ethylene group, propene group, butene group, pentene group, hexene group, heptene group, octene group, nonene group, decene group, undecene group, dodecene group, triacontene group, cyclopropene group.
  • Cyclobutene group cyclopentene group, cyclohexene group, cycloheptene group, cyclooctene group, cyclononene group, cyclodecene group, cycloundecene group, cyclododecene group, cyclotriacontene group, divalent norbornyl group, divalent adamantyl group, divalent A phenyl group, a divalent naphthyl group, a divalent anthracene group, a divalent heptacene group, a divalent vinyl group, a divalent allyl group, and a divalent triacontenyl group.
  • R 16 includes isomers.
  • the butyl group includes an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • R 10 ⁇ R 13 have the same meanings as those described by the formula (1-2)
  • R 14 are each independently C 1 -C 30 linear, alkyl branched or cyclic Group, an aryl group having 6 to 30 carbon atoms, or an alkenyl group having 2 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a halogen atom, and a thiol group
  • m 14 ′ is an integer of 0 to 4.
  • R 14 examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a triacontyl group, a cyclopropyl group, Cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group, naphthyl group, Anthracene group, heptacene group, vinyl group
  • R 14 includes an isomer.
  • the butyl group includes an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • R 10 to R 13 have the same meanings as described in the above formula (1-2), and R 14 each independently represents a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms.
  • R 14 examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a triacontyl group, a cyclopropyl group, Cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group, naphthyl group, Anthracene group, heptacene group, vinyl group
  • R 14 includes an isomer.
  • the butyl group includes an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • R 10 to R 13 have the same meanings as described in the formula (1-2).
  • compounds having a dibenzoxanthene skeleton are more preferable from the viewpoint of heat resistance.
  • the compound represented by the formula (0) is more preferably a compound listed below from the viewpoint of availability of raw materials.
  • R 10 to R 13 have the same meanings as described in the formula (1-2).
  • compounds having a dibenzoxanthene skeleton are more preferable from the viewpoint of heat resistance.
  • the compound represented by the above formula (0) is preferably a compound having the following structure from the viewpoint of raw material availability.
  • R 0A has the same meaning as R Y in the formula (0)
  • R 1A ′ has the same meaning as R Z in the formula (0)
  • R 10 to R 13 have the same formulas (1) -2) The same meaning as described in 2).
  • the compounds listed above are more preferably compounds having a xanthene skeleton from the viewpoint of heat resistance.
  • Examples of the compound represented by the above formula (0) further include compounds represented by the following formula.
  • R 10 to R 13 have the same meanings as those described in the above formula (1-2), and R 14 , R 15 , R 16 , m 14 , and m 14 ′ have the same meanings as described in the above formulas. It is.
  • the compound represented by the formula (1) used in the present embodiment can be appropriately synthesized by applying a known technique, and the synthesis technique is not particularly limited.
  • a polyphenol compound is obtained by subjecting a biphenol, binaphthol or bianthracenol and a corresponding aldehyde or ketone to a polycondensation reaction under an acid catalyst under normal pressure, and subsequently, at least one of the polyphenol compounds. It can be obtained by introducing a group represented by the following formula (0-1A) into two phenolic hydroxyl groups. It can also be obtained by introducing a group represented by the following formula (0-1B) and introducing a group represented by the following formula (0-1A) into the hydroxy group. Moreover, it can also carry out under pressure as needed.
  • R X represents a hydrogen atom or a methyl group.
  • R W is C 1 -C 30 straight, an alkylene group branched or cyclic, s is an integer of 0 to 30.
  • biphenols examples include, but are not limited to, biphenol, methyl biphenol, methoxy binaphthol, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, it is more preferable to use biphenol from the viewpoint of stable supply of raw materials.
  • binaphthols examples include, but are not limited to, binaphthol, methyl binaphthol, methoxy binaphthol, and the like. These can be used alone or in combination of two or more. Among these, it is more preferable to use binaphthol in terms of increasing the carbon atom concentration and improving heat resistance.
  • aldehydes examples include formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, biphenylaldehyde, Examples include naphthaldehyde, anthracene carbaldehyde, phenanthrene carbaldehyde, pyrene carbaldehyde, furfural, and the like, but are not limited thereto.
  • benzaldehyde phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, cyclohexylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbaldehyde, phenanthrenecarbaldehyde, pyrenecarboaldehyde It is preferable to use aldehyde or furfural in terms of giving high heat resistance.
  • ketones examples include acetone, methyl ethyl ketone, cyclobutanone, cyclopentanone, cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, adamantanone, fluorenone, benzofluorenone, acenaphthenequinone, acenaphthenone, anthraquinone, acetophenone, diacetylbenzene.
  • the acid catalyst used in the above reaction can be appropriately selected from known ones and is not particularly limited.
  • inorganic acids and organic acids are widely known.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid; oxalic acid, malonic acid, succinic acid, Adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid,
  • organic acids such as naphthalenedisulfonic acid
  • Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride
  • solid acids such as silicotungstic acid, phosphotungstic acid
  • an organic acid and a solid acid are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferably used from the viewpoint of production such as availability and ease of handling.
  • an acid catalyst 1 type can be used individually or in combination of 2 or more types. The amount of the acid catalyst used can be appropriately set according to the raw material to be used, the type of catalyst to be used, and further the reaction conditions, and is not particularly limited. It is preferable that it is a mass part.
  • a reaction solvent may be used.
  • the reaction solvent is not particularly limited as long as the reaction of aldehydes or ketones to be used with biphenols, binaphthols or bianthracenediol proceeds, and may be appropriately selected from known ones. it can.
  • Examples of the reaction solvent include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, or a mixed solvent thereof.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the amount of these reaction solvents used can be appropriately set according to the raw materials used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material. The range of parts is preferred.
  • the reaction temperature in the above reaction can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
  • a higher reaction temperature is preferable, and specifically, a range of 60 to 200 ° C. is preferable.
  • the reaction method can be appropriately selected from known methods, and is not particularly limited. However, biphenols, binaphthols or bianthracenediol, aldehydes or ketones, a method of charging a catalyst at once, biphenols And a method in which binaphthols, bianthracenediol, aldehydes or ketones are dropped in the presence of a catalyst.
  • the obtained compound can be isolated according to a conventional method, and is not particularly limited. For example, in order to remove unreacted raw materials, catalysts, etc. existing in the system, a general method such as raising the temperature of the reaction vessel to 130 to 230 ° C. and removing volatile components at about 1 to 50 mmHg is adopted. As a result, the target compound can be isolated.
  • reaction conditions 1.0 mol to excess amount of biphenols, binaphthols or bianthracenediol and 0.001 to 1 mol of an acid catalyst are used at normal pressure with respect to 1 mol of aldehydes or ketones. And reaction at 50 to 150 ° C. for about 20 minutes to 100 hours.
  • the target product can be isolated by a known method.
  • the reaction solution is concentrated, pure water is added to precipitate the reaction product, cooled to room temperature, filtered and separated, and the resulting solid is filtered and dried, followed by column chromatography.
  • the compound represented by the above formula (1), which is the target product can be obtained by separating and purifying from the by-product, and performing solvent distillation, filtration and drying.
  • a method for introducing a group represented by the above formula (0-1A) into at least one phenolic hydroxyl group of a polyphenol compound is known.
  • a group represented by the formula (0-1A) can be introduced into at least one phenolic hydroxyl group of the above compound as follows.
  • a compound for introducing the group represented by the formula (0-1A) is synthesized by a known method or can be easily obtained. Examples thereof include 2-isonatoethyl methacrylate and 2-isonatoethyl acrylate. These are not particularly limited.
  • the above compound is dissolved or suspended in an aprotic solvent such as acetone, tetrahydrofuran (THF), propylene glycol monomethyl ether acetate or the like. Subsequently, the reaction is carried out at 20 to 150 ° C. for 6 to 72 hours at normal pressure in the presence of a base catalyst such as sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide and the like. The reaction solution is neutralized with an acid and added to distilled water to precipitate a white solid, and then the separated solid is washed with distilled water, or the solvent is evaporated to dryness, and washed with distilled water as necessary. By drying, a compound in which the hydrogen atom of the hydroxyl group is substituted with the group represented by the above formula (0-1A) can be obtained.
  • an aprotic solvent such as acetone, tetrahydrofuran (THF), propylene glycol monomethyl ether acetate or the like.
  • THF
  • the timing for introducing the group substituted with the group represented by the above formula (0-1A) may be not only after the condensation reaction of binaphthols with aldehydes or ketones but also before the condensation reaction. . Moreover, you may carry out after manufacturing resin mentioned later.
  • a group represented by the above formula (0-1B) is introduced into at least one phenolic hydroxyl group of a polyphenol compound, and a group represented by the formula (0-1A) is introduced into the hydroxy group. It is known. For example, as described below, a group represented by the formula (0-1B) is introduced into at least one phenolic hydroxyl group of the above compound, and a group represented by the formula (0-1A) is added to the hydroxy group. Can be introduced.
  • a compound for introducing a group represented by the formula (0-1B) can be synthesized or easily obtained by a known method.
  • chloroethanol, bromoethanol, 2-chloroethyl acetate, 2-bromoethyl acetate examples include 2-iodoethyl acetate, ethylene oxide, propylene oxide, butylene oxide, ethylene carbonate, propylene carbonate, and butylene carbonate, but are not particularly limited thereto.
  • the above compound is dissolved or suspended in an aprotic solvent such as acetone, tetrahydrofuran (THF), propylene glycol monomethyl ether acetate or the like.
  • an aprotic solvent such as acetone, tetrahydrofuran (THF), propylene glycol monomethyl ether acetate or the like.
  • the reaction is carried out at 20 to 150 ° C. for 6 to 72 hours at normal pressure in the presence of a base catalyst such as sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide and the like.
  • the reaction solution is neutralized with an acid and added to distilled water to precipitate a white solid, and then the separated solid is washed with distilled water, or the solvent is evaporated to dryness, and washed with distilled water as necessary.
  • a compound in which the hydrogen atom of the hydroxyl group is substituted with the group represented by the formula (0-1B) can be obtained.
  • a hydroxyalkyl group is introduced by adding an alkylene carbonate to cause a decarboxylation reaction. Thereafter, the above compound is dissolved or suspended in an aprotic solvent such as acetone, tetrahydrofuran (THF), propylene glycol monomethyl ether acetate or the like. Subsequently, the reaction is carried out at 20 to 150 ° C. for 6 to 72 hours at normal pressure in the presence of a base catalyst such as sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide and the like.
  • a base catalyst such as sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide and the like.
  • reaction solution is neutralized with an acid and added to distilled water to precipitate a white solid, and then the separated solid is washed with distilled water, or the solvent is evaporated to dryness, and washed with distilled water as necessary.
  • a compound in which the hydrogen atom of the hydroxy group is substituted with a group substituted with a group represented by the formula (0-1A) can be obtained.
  • the group substituted with the group represented by the formula (0-1A) reacts in the presence of a radical or an acid / alkali, and the acid, alkali, or organic used in the coating solvent or developer. Solubility in solvent changes.
  • the group substituted with the group represented by the above formula (0-1A) causes a chain reaction in the presence of a radical or an acid / alkali in order to enable pattern formation with higher sensitivity and higher resolution. It preferably has properties.
  • the compound represented by the above formula (1) can be used as it is as a film forming composition for lithography or a composition used for forming an optical component (hereinafter also simply referred to as “composition”).
  • a resin obtained using the compound represented by the above formula (1) as a monomer can also be used as a composition.
  • the resin is obtained, for example, by reacting a compound represented by the above formula (1) with a compound having a crosslinking reactivity.
  • Examples of the resin obtained using the compound represented by the above formula (1) as a monomer include those having a structure represented by the following formula (3). That is, the composition of the present embodiment may contain a resin having a structure represented by the following formula (3).
  • L has an optionally substituted alkylene group having 1 to 30 carbon atoms, an optionally substituted arylene group having 6 to 30 carbon atoms, and a substituent.
  • the alkylene group, the arylene group, and the alkoxylene group may have an ether bond, a ketone bond, or an ester bond.
  • the alkylene group and alkoxylene group may be a linear, branched or cyclic group.
  • R 0 is synonymous with R Y above;
  • R 1 is an n-valent group having 1 to 60 carbon atoms or a single bond,
  • R 2 to R 5 are each independently an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent.
  • R 2 to R 5 includes a group represented by the above formula (0-1)
  • m 2 and m 3 are each independently an integer of 0 to 8
  • m 4 and m 5 are each independently an integer of 0 to 9
  • m 2 , m 3 , m 4 and m 5 are not 0 at the same time
  • n is synonymous with the above N.
  • n is an integer of 2 or more
  • the structural formulas in n [] may be the same or different
  • p 2 to p 5 have the same meanings as r above.
  • the resin of the present embodiment can be obtained by reacting the compound represented by the above formula (1) with a compound having crosslinking reactivity.
  • a known compound can be used without particular limitation as long as the compound represented by the above formula (1) can be oligomerized or polymerized. Specific examples thereof include, but are not limited to, aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, imino compounds, isocyanates, unsaturated hydrocarbon group-containing compounds, and the like.
  • the resin having the structure represented by the above formula (3) include, for example, a condensation reaction of the compound represented by the above formula (1) with an aldehyde and / or a ketone having a crosslinking reactivity, etc. And a novolak resin.
  • aldehyde for example, formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde
  • examples thereof include, but are not limited to, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbaldehyde, phenanthrenecarbaldehyde, pyrenecarbaldehyde, and furfural.
  • ketones include the above ketones. Among these, formaldehyde is more preferable. In addition, these aldehydes and / or ketones can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the aldehyde and / or ketone used is not particularly limited, but is preferably 0.2 to 5 mol, more preferably 1 mol with respect to 1 mol of the compound represented by the formula (1). 0.5 to 2 moles.
  • a catalyst may be used.
  • the acid catalyst used here can be appropriately selected from known ones and is not particularly limited.
  • As such an acid catalyst inorganic acids and organic acids are widely known.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid; oxalic acid, malonic acid, succinic acid, Adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid,
  • organic acids such as naphthalenedisulfonic acid
  • Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride
  • solid acids such as silicotungstic acid, phosphotungstic acid, silicomolybdic acid, and phosphomolybdic acid.
  • an organic acid and a solid acid are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferable from the viewpoint of production such as availability and ease of handling.
  • an acid catalyst 1 type can be used individually or in combination of 2 or more types.
  • the amount of the acid catalyst used can be appropriately set according to the raw material to be used, the type of catalyst to be used, and further the reaction conditions, and is not particularly limited. It is preferable that it is a mass part.
  • aldehydes are not necessarily required.
  • reaction solvent in the condensation reaction between the compound represented by the above formula (1) and the aldehyde and / or ketone, a reaction solvent can also be used.
  • the reaction solvent in this polycondensation can be appropriately selected from known solvents and is not particularly limited. Examples thereof include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, and mixed solvents thereof. Can be mentioned.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the amount of these solvents used can be appropriately set according to the raw materials used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw materials. It is preferable that it is the range of these.
  • the reaction temperature can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
  • the reaction method can be appropriately selected from known methods, and is not particularly limited.
  • reaction method may be a method in which the compound represented by the above formula (1), the aldehyde and / or ketone, and a catalyst are charged together, The method of dripping the compound represented by the said Formula (1), an aldehyde, and / or ketones in catalyst presence is mentioned.
  • the obtained compound can be isolated according to a conventional method, and is not particularly limited.
  • a general method such as raising the temperature of the reaction vessel to 130 to 230 ° C. and removing volatile components at about 1 to 50 mmHg is adopted.
  • the novolak resin as the target product can be isolated.
  • the resin having the structure represented by the above formula (3) may be a homopolymer of the compound represented by the above formula (1), but is a copolymer with other phenols. May be.
  • the copolymerizable phenols include phenol, cresol, dimethylphenol, trimethylphenol, butylphenol, phenylphenol, diphenylphenol, naphthylphenol, resorcinol, methylresorcinol, catechol, butylcatechol, methoxyphenol, methoxyphenol, Although propylphenol, pyrogallol, thymol, etc. are mentioned, it is not specifically limited to these.
  • the resin having the structure represented by the above formula (3) may be copolymerized with a polymerizable monomer other than the above-described phenols.
  • the copolymerization monomer include naphthol, methylnaphthol, methoxynaphthol, dihydroxynaphthalene, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene.
  • the resin having the structure represented by the above formula (2) is a binary or more (for example, 2-4 quaternary) copolymer of the compound represented by the above formula (1) and the above-described phenols. Even if it is a binary or more (for example, 2-4 quaternary) copolymer of the compound represented by the above formula (1) and the above-mentioned copolymerization monomer, it is represented by the above formula (1). It may be a ternary or more (for example, ternary to quaternary) copolymer of the above compound, the above-mentioned phenols, and the above-mentioned copolymerization monomer.
  • the molecular weight of the resin having the structure represented by the above formula (3) is not particularly limited, but the polystyrene equivalent weight average molecular weight (Mw) is preferably 500 to 30,000, more preferably 750 to 20,000. Further, from the viewpoint of increasing the crosslinking efficiency and suppressing the volatile components in the baking, the resin having the structure represented by the above formula (3) has a dispersity (weight average molecular weight Mw / number average molecular weight Mn) of 1.2. It is preferably within the range of ⁇ 7. In addition, said Mw and Mn can be calculated
  • the resin having the structure represented by the above formula (3) is preferably highly soluble in a solvent from the viewpoint of easier application of a wet process. More specifically, when 1-methoxy-2-propanol (PGME) and / or propylene glycol monomethyl ether acetate (PGMEA) is used as a solvent, the solubility in the solvent is preferably 10% by mass or more.
  • the solubility in PGM and / or PGMEA is defined as “resin mass ⁇ (resin mass + solvent mass) ⁇ 100 (mass%)”.
  • the solubility of the resin in PGMEA is “10 mass% or more”, and when it is not dissolved, it is “less than 10 mass%”.
  • the compound represented by the formula (0) in the present embodiment is preferably a compound represented by the following formula (2). Since the compound of the present embodiment is a compound represented by the following formula (2), it tends to have high heat resistance and high solvent solubility.
  • R 0A is a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms.
  • R 1A is an n A valent group having 1 to 60 carbon atoms or a single bond,
  • R 2A each independently has an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent.
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond.
  • R 2A includes a group represented by the above formula (0-1).
  • n A is an integer of 1 to 4.
  • n A when n A is an integer of 2 or more, the structural formulas in n A [] may be the same or different.
  • X A each independently represents an oxygen atom, a sulfur atom, or no bridge.
  • X A in terms of solubility, it is preferable that the non-crosslinked.
  • m 2A is each independently an integer of 0 to 6. However, at least one m 2A is an integer of 1 to 6.
  • q A is each independently 0 or 1.
  • Examples of the n-valent group include those having a linear hydrocarbon group, a branched hydrocarbon group, or an alicyclic hydrocarbon group.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the n-valent group may have an aromatic group having 6 to 60 carbon atoms.
  • the n-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 60 carbon atoms.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the n-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 30 carbon atoms.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the compound represented by the above formula (2) has a relatively low molecular weight, but has high heat resistance due to the rigidity of its structure, and therefore can be used under high temperature baking conditions. Moreover, it has tertiary carbon or quaternary carbon in the molecule, the crystallinity is suppressed, and it is suitably used as a film forming composition for lithography that can be used for manufacturing a film for lithography.
  • the resist formation composition for lithography containing the compound represented by said Formula (2) can give a favorable resist pattern shape. .
  • the film has a relatively low molecular weight and low viscosity, even a substrate having a step (particularly, a fine space or a hole pattern) can be uniformly filled to every corner of the step and the film can be flattened.
  • the composition for forming a lower layer film for lithography using the same has good embedding and planarization characteristics.
  • it is a compound having a relatively high carbon concentration, high etching resistance can be imparted.
  • the aromatic density is high, the refractive index is high, and coloring is suppressed by a wide range of heat treatment from low temperature to high temperature, so that it is useful as a composition for forming various optical parts.
  • a compound having a quaternary carbon is preferable from the viewpoint of suppressing oxidative decomposition, suppressing coloring of the compound, high heat resistance, and improving solvent solubility.
  • Optical parts are used in the form of films and sheets, as well as plastic lenses (prism lenses, lenticular lenses, micro lenses, Fresnel lenses, viewing angle control lenses, contrast enhancement lenses, etc.), retardation films, electromagnetic wave shielding films, prisms It is useful as an optical fiber, a solder resist for flexible printed wiring, a plating resist, an interlayer insulating film for multilayer printed wiring boards, and a photosensitive optical waveguide.
  • the compound represented by the above formula (2) is preferably a compound represented by the following formula (2-1) from the viewpoint of easy crosslinking and solubility in an organic solvent. (2-1)
  • R 0A , R 1A , n A , q A and X A have the same meaning as in the above formula (2).
  • Each R 3A is independently a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may have a substituent, and 6 to 30 carbon atoms which may have a substituent.
  • Aryl groups optionally substituted alkenyl groups having 2 to 30 carbon atoms, halogen atoms, nitro groups, amino groups, carboxylic acid groups, and thiol groups, which are the same in the same naphthalene ring or benzene ring. It may or may not be.
  • R 4A is each independently a hydrogen atom or a group represented by the following formula (0-2); Here, at least one of R 4A is a group represented by the following formula (0-2), m 6A is each independently an integer of 0 to 5. (0-2) (In formula (0-2), R X has the same meaning as in formula (0-1), and s is an integer of 0 to 30.)
  • R 4A is an acid dissociable group.
  • R 4A At least one of is a hydrogen atom.
  • the compound represented by the above formula (2-1) is preferably a compound represented by the following formula (2a) from the viewpoint of raw material supply.
  • the compound represented by the formula (2-1) is more preferably a compound represented by the following formula (2b) from the viewpoint of solubility in an organic solvent.
  • X A , R 0A , R 1A , R 3A , R 4A , m 6A and n A are as defined in the above formula (2-1).
  • the compound represented by the above formula (2-1) is more preferably a compound represented by the following formula (2c) from the viewpoint of solubility in an organic solvent.
  • the compound represented by the above formula (2) has the following formulas (BisN-1) to (BisN-4), (XBisN-1) to (XBisN-3), ( A compound represented by (BiN-1) to (BiN-4) or (XBiN-1) to (XBiN-3) is particularly preferable.
  • the compound represented by the formula (2) used in the present embodiment can be appropriately synthesized by applying a known technique, and the synthesis technique is not particularly limited.
  • a polyphenol compound is obtained by polycondensation reaction of phenols, naphthols and corresponding aldehydes or ketones under an acid catalyst under normal pressure, and then at least one phenolic hydroxyl group of the polyphenol compound. It can be obtained by introducing a group represented by the following formula (0-1A). Alternatively, it can be obtained by introducing a group represented by the following formula (0-1B) and introducing a group represented by the formula (0-1A) into the hydroxy group. Moreover, it can also carry out under pressure as needed.
  • R X represents a hydrogen atom or a methyl group.
  • R W is C 1 -C 30 straight, an alkylene group branched or cyclic, s is an integer of 0 to 30.
  • the naphthols are not particularly limited and include, for example, naphthol, methyl naphthol, methoxy naphthol, naphthalene diol, and the like. It is more preferable to use naphthalene diol because a xanthene structure can be easily formed.
  • the phenols are not particularly limited, and examples thereof include phenol, methylphenol, methoxybenzene, catechol, resorcinol, hydroquinone, and trimethylhydroquinone.
  • aldehydes examples include formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, biphenylaldehyde, Examples include naphthaldehyde, anthracene carbaldehyde, phenanthrene carbaldehyde, pyrene carbaldehyde, furfural, and the like, but are not limited thereto.
  • benzaldehyde phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, cyclohexylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbaldehyde, phenanthrenecarbaldehyde, pyrenecarboaldehyde It is preferable to use aldehyde or furfural in terms of giving high heat resistance.
  • ketones examples include acetone, methyl ethyl ketone, cyclobutanone, cyclopentanone, cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, adamantanone, fluorenone, benzofluorenone, acenaphthenequinone, acenaphthenone, anthraquinone, acetophenone, diacetylbenzene.
  • Triacetylbenzene Triacetylbenzene, acetonaphthone, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, diphenylcarbonylbiphenyl, benzophenone, diphenylcarbonylbenzene, triphenylcarbonylbenzene, benzonaphthone, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, diphenylcarbonylbiphenyl, etc. Is particularly limited to There. These can be used alone or in combination of two or more.
  • ketones it is preferable to use a ketone having an aromatic ring because it has both high heat resistance and high etching resistance.
  • the acid catalyst used in the above reaction can be appropriately selected from known ones and is not particularly limited. It does not specifically limit as an acid catalyst, It can select suitably from a well-known inorganic acid and organic acid.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid; oxalic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalene
  • Organic acids such as sulfonic acid and naphthalenedisulfonic acid
  • Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride
  • solid acids such as silicotungstic acid, phosphotungstic acid, silicomolybdic acid, and phosphomolybdic acid It is done. It is preferable to use hydrochloric acid
  • a reaction solvent may be used.
  • the reaction solvent is not particularly limited as long as the reaction between the aldehyde or ketone to be used and naphthol proceeds, but for example, water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane or a mixed solvent thereof is used. Can do.
  • the amount of the solvent is not particularly limited and is, for example, in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material.
  • the reaction temperature is not particularly limited and can be appropriately selected according to the reactivity of the reaction raw material, but is preferably in the range of 10 to 200 ° C. In order to synthesize the polyphenol compound with good selectivity, a lower temperature is more effective and a range of 10 to 60 ° C. is more preferable.
  • the production method of the polyphenol compound is not particularly limited, but for example, naphthols, etc., aldehydes or ketones, a method of charging a catalyst in a lump, or a method of dropping naphthols, aldehydes or ketones in the presence of a catalyst There is.
  • the temperature of the reaction vessel can be raised to 130-230 ° C. and volatile matter can be removed at about 1-50 mmHg. .
  • the amount of the raw material for producing the polyphenol compound is not particularly limited. For example, 2 mol to an excess amount of naphthols and 0.001 to 1 mol of acid catalyst with respect to 1 mol of aldehydes or ketones.
  • the reaction proceeds at normal pressure and at 20 to 60 ° C. for about 20 minutes to 100 hours.
  • the target product is isolated by a known method after the completion of the reaction.
  • the method for isolating the target product is not particularly limited.
  • the reaction solution is concentrated, pure water is added to precipitate the reaction product, the solution is cooled to room temperature, filtered, and separated to obtain a solid product. After filtering and drying, a method of separating and purifying from by-products by column chromatography, evaporating the solvent, filtering and drying to obtain the target compound can be mentioned.
  • a method for introducing a group represented by the formula (0-1A) into at least one phenolic hydroxyl group of a polyphenol compound is known.
  • a group represented by the formula (0-1A) can be introduced into at least one phenolic hydroxyl group of the above compound as follows.
  • the compound for introducing the group represented by the formula (0-1A) can be synthesized or easily obtained by a known method, and examples thereof include 2-isocyanatoethyl methacrylate and 2-isocyanatoethyl acrylate. There is no particular limitation to the above.
  • the above compound is dissolved or suspended in an aprotic solvent such as acetone, tetrahydrofuran (THF), propylene glycol monomethyl ether acetate or the like.
  • an aprotic solvent such as acetone, tetrahydrofuran (THF), propylene glycol monomethyl ether acetate or the like.
  • the reaction is carried out at 20 to 150 ° C. for 6 to 72 hours at normal pressure in the presence of a base catalyst such as sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide and the like.
  • the reaction solution is neutralized with an acid and added to distilled water to precipitate a white solid, and then the separated solid is washed with distilled water, or the solvent is evaporated to dryness, and washed with distilled water as necessary.
  • a compound in which the hydrogen atom of the hydroxyl group is substituted with the group represented by the formula (0-1A) can be obtained.
  • the timing for introducing the group substituted with the group represented by the formula (0-1A) may be not only after the condensation reaction of binaphthols with aldehydes or ketones, but also before the condensation reaction. Moreover, you may carry out after manufacturing resin mentioned later.
  • a group represented by the formula (0-1B) is introduced into at least one phenolic hydroxyl group of the above compound, and a group represented by the formula (0-1A) is added to the hydroxy group. Can be introduced.
  • a compound for introducing a group represented by the formula (0-1B) can be synthesized or easily obtained by a known method.
  • chloroethanol, bromoethanol, 2-chloroethyl acetate, 2-bromoethyl acetate examples include 2-iodoethyl acetate, ethylene oxide, propylene oxide, butylene oxide, ethylene carbonate, propylene carbonate, and butylene carbonate, but are not particularly limited.
  • the above compound is dissolved or suspended in an aprotic solvent such as acetone, tetrahydrofuran (THF), propylene glycol monomethyl ether acetate or the like.
  • an aprotic solvent such as acetone, tetrahydrofuran (THF), propylene glycol monomethyl ether acetate or the like.
  • the reaction is carried out at 20 to 150 ° C. for 6 to 72 hours at normal pressure in the presence of a base catalyst such as sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide and the like.
  • the reaction solution is neutralized with an acid and added to distilled water to precipitate a white solid, and then the separated solid is washed with distilled water, or the solvent is evaporated to dryness, and washed with distilled water as necessary.
  • a compound in which the hydrogen atom of the hydroxyl group is substituted with the group represented by the formula (0-1B) can be obtained.
  • a hydroxyalkyl group is introduced by adding an alkylene carbonate to cause a decarboxylation reaction.
  • the above compound is dissolved or suspended in an aprotic solvent such as acetone, tetrahydrofuran (THF), propylene glycol monomethyl ether acetate or the like.
  • an aprotic solvent such as acetone, tetrahydrofuran (THF), propylene glycol monomethyl ether acetate or the like.
  • the reaction is carried out at 20 to 150 ° C. for 6 to 72 hours at normal pressure in the presence of a base catalyst such as sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide and the like.
  • the reaction solution is neutralized with an acid and added to distilled water to precipitate a white solid, and then the separated solid is washed with distilled water, or the solvent is evaporated to dryness, and washed with distilled water as necessary.
  • a compound in which the hydrogen atom of the hydroxy group is substituted with a group substituted with a group represented by the formula (0-1A) can be obtained.
  • the group substituted with the group represented by the formula (0-1A) reacts in the presence of a radical or an acid / alkali, and the acid, alkali, or organic used in the coating solvent or developer. Solubility in solvent changes.
  • the group substituted with the group represented by the above formula (0-1A) causes a chain reaction in the presence of a radical or an acid / alkali in order to enable pattern formation with higher sensitivity and higher resolution. It preferably has properties.
  • the compound represented by the above formula (2) can be used as it is as a film forming composition for lithography or a composition used for forming an optical component.
  • a resin obtained using the compound represented by the above formula (2) as a monomer can be used as a composition.
  • the resin can be used, for example, as a resin obtained by reacting a compound represented by the above formula (2) with a compound having a crosslinking reactivity.
  • the resin obtained using the compound represented by the above formula (2) as a monomer examples include those having a structure represented by the following formula (4). That is, the film forming composition for lithography of the present embodiment may contain a resin having a structure represented by the following formula (4).
  • L has an optionally substituted alkylene group having 1 to 30 carbon atoms, an optionally substituted arylene group having 6 to 30 carbon atoms, and a substituent.
  • the alkylene group, the arylene group, and the alkoxylene group may have an ether bond, a ketone bond, or an ester bond.
  • the alkylene group and alkoxylene group may be a linear, branched or cyclic group.
  • R 0A has the same meaning as R Y described above, R 1A is an n A valent group having 1 to 30 carbon atoms or a single bond, R 2A each independently has an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, or a substituent.
  • the hydrogen atom is substituted with a group represented by the above formula (0-1)
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group each have an ether bond, a ketone bond, or an ester bond.
  • at least one of R 2A includes a group represented by the above formula (0-1)
  • n A has the same meaning as N above.
  • n A is an integer of 2 or more
  • the structural formulas in n A [] may be the same or different
  • X A represents an oxygen atom, a sulfur atom, or no bridge
  • m 2A is each independently an integer of 0 to 7, provided that at least one m 2A is an integer of 1 to 6
  • q A is each independently 0 or 1.
  • the resin of the present embodiment can be obtained by reacting the compound represented by the above formula (2) with a compound having crosslinking reactivity.
  • a known compound can be used without particular limitation as long as the compound represented by the above formula (2) can be oligomerized or polymerized.
  • Specific examples thereof include, but are not limited to, aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, imino compounds, isocyanates, unsaturated hydrocarbon group-containing compounds, and the like.
  • the resin having the structure represented by the above formula (4) include, for example, a condensation reaction of the compound represented by the above formula (2) with an aldehyde and / or a ketone having a crosslinking reactivity, etc. And a novolak resin.
  • aldehyde for example, formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde
  • examples thereof include, but are not limited to, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbaldehyde, phenanthrenecarbaldehyde, pyrenecarbaldehyde, and furfural.
  • ketones include the above ketones. Among these, formaldehyde is more preferable. In addition, these aldehydes and / or ketones can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the aldehyde and / or ketone used is not particularly limited, but is preferably 0.2 to 5 mol, more preferably 1 mol with respect to 1 mol of the compound represented by the formula (2). 0.5 to 2 moles.
  • an acid catalyst can be used.
  • the acid catalyst used here can be appropriately selected from known ones and is not particularly limited.
  • As such an acid catalyst inorganic acids and organic acids are widely known.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid; oxalic acid, malonic acid, succinic acid, Adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid,
  • organic acids such as naphthalenedisulfonic acid
  • Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride
  • solid acids such as silicotungstic acid, phosphotungstic acid, silicomolybdic acid, and phosphomolybdic acid.
  • an organic acid or a solid acid is preferable from the viewpoint of manufacturing, and hydrochloric acid or sulfuric acid is preferable from the viewpoint of manufacturing such as availability and ease of handling.
  • an acid catalyst 1 type can be used individually or in combination of 2 or more types.
  • the amount of the acid catalyst used can be appropriately set according to the raw material to be used, the type of catalyst to be used, and further the reaction conditions, and is not particularly limited. It is preferable that it is a mass part.
  • aldehydes are not necessarily required.
  • reaction solvent in the condensation reaction between the compound represented by the above formula (2) and the aldehyde and / or ketone, a reaction solvent can also be used.
  • the reaction solvent in this polycondensation can be appropriately selected from known solvents and is not particularly limited. Examples thereof include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, and mixed solvents thereof. Can be mentioned.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the amount of these solvents used can be appropriately set according to the raw materials used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw materials. It is preferable that it is the range of these.
  • the reaction temperature can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
  • the reaction method can be appropriately selected from known methods and is not particularly limited.
  • reaction method may be a method in which the compound represented by the above formula (2), the aldehyde and / or ketone, and a catalyst are charged together, The method of dripping the compound represented by the said Formula (2), an aldehyde, and / or ketones in catalyst presence is mentioned.
  • the obtained compound can be isolated according to a conventional method, and is not particularly limited.
  • a general method is adopted such as raising the temperature of the reaction vessel to 130-230 ° C. and removing volatile components at about 1-50 mmHg.
  • the novolak resin as the target product can be isolated.
  • the resin having the structure represented by the above formula (4) may be a homopolymer of the compound represented by the above formula (2), but is a copolymer with other phenols. May be.
  • the copolymerizable phenols include phenol, cresol, dimethylphenol, trimethylphenol, butylphenol, phenylphenol, diphenylphenol, naphthylphenol, resorcinol, methylresorcinol, catechol, butylcatechol, methoxyphenol, methoxyphenol, Although propylphenol, pyrogallol, thymol, etc. are mentioned, it is not specifically limited to these.
  • the resin having the structure represented by the above formula (4) may be copolymerized with a polymerizable monomer in addition to the above-described other phenols.
  • the copolymerization monomer include naphthol, methylnaphthol, methoxynaphthol, dihydroxynaphthalene, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene.
  • the resin having the structure represented by the above formula (4) is a binary or more (for example, 2-4 quaternary) copolymer of the compound represented by the above formula (2) and the above-described phenols. Even if it is a binary or more (for example, 2-4 quaternary) copolymer of the compound represented by the above formula (2) and the above-mentioned copolymerization monomer, it is represented by the above formula (2). It may be a ternary or more (for example, ternary to quaternary) copolymer of the above compound, the above-mentioned phenols, and the above-mentioned copolymerization monomer.
  • the molecular weight of the resin having the structure represented by the above formula (4) is not particularly limited, but the polystyrene equivalent weight average molecular weight (Mw) is preferably from 500 to 30,000, more preferably from 750 to 20,000. Further, from the viewpoint of increasing the crosslinking efficiency and suppressing the volatile components in the baking, the resin having the structure represented by the above formula (4) has a dispersity (weight average molecular weight Mw / number average molecular weight Mn) of 1.2. It is preferably within the range of ⁇ 7. In addition, said Mw and Mn can be calculated
  • the resin having the structure represented by the above formula (4) is preferably one having high solubility in a solvent from the viewpoint of easier application of a wet process. More specifically, when 1-methoxy-2-propanol (PGME) and / or propylene glycol monomethyl ether acetate (PGMEA) is used as a solvent, the solubility in the solvent is preferably 10% by mass or more.
  • the solubility in PGM and / or PGMEA is defined as “resin mass ⁇ (resin mass + solvent mass) ⁇ 100 (mass%)”.
  • the solubility of the resin in PGMEA is “10 mass% or more”, and when it is not dissolved, it is “less than 10 mass%”.
  • the compound and / or resin purification method of the present embodiment is represented by the compound represented by the above formula (1), the resin obtained by using the compound represented by the above formula (1) as a monomer, and the above formula (2). And a step of obtaining a solution (S) by dissolving in a solvent one or more selected from a compound obtained by using a compound represented by formula (2) and a compound represented by the above formula (2) as a monomer, and the obtained solution (S) and acidity A solvent used in the step of obtaining the solution (S) is optionally mixed with water.
  • the step of extracting the impurities in the compound and / or the resin Does not contain organic solvents.
  • the resin is a resin obtained by a reaction between the compound represented by the formula (1) and / or the compound represented by the formula (2) and a compound having a crosslinking reaction. Is preferred. According to the purification method of the present embodiment, the content of various metals that can be contained as impurities in the compound or resin having the specific structure described above can be reduced.
  • the compound and / or the resin is dissolved in an organic solvent that is arbitrarily immiscible with water to obtain a solution (S), and the solution (S) is further obtained.
  • the extraction treatment can be performed in contact with an acidic aqueous solution. Thereby, after transferring the metal content contained in the solution (S) to the aqueous phase, the organic phase and the aqueous phase can be separated to obtain a compound and / or resin having a reduced metal content.
  • the compound and / or resin used in the purification method of the present embodiment may be used alone or in combination of two or more.
  • the said compound and resin may contain various surfactant, various crosslinking agents, various acid generators, various stabilizers, etc.
  • the solvent that is not arbitrarily miscible with water used in the present embodiment is not particularly limited, but an organic solvent that can be safely applied to a semiconductor manufacturing process is preferable. Specifically, the solubility in water at room temperature is 30%.
  • the organic solvent is less than, more preferably less than 20%, and even more preferably less than 10%.
  • the amount of the organic solvent used is preferably 1 to 100 times by mass with respect to the total amount of the compound to be used and the resin.
  • ethers such as diethyl ether and diisopropyl ether
  • esters such as ethyl acetate, n-butyl acetate, and isoamyl acetate, methyl ethyl ketone, and methyl isobutyl.
  • Ketones such as ketone, ethyl isobutyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 2-pentanone; ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl Glycol ether acetates such as ether acetate; Aliphatic hydrocarbons such as n-hexane and n-heptane; Aromatic hydrocarbons such as toluene and xylene Methylene chloride, halogenated hydrocarbons such as chloroform and the like.
  • toluene, 2-heptanone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, ethyl acetate and the like are preferable, methyl isobutyl ketone, ethyl acetate, cyclohexanone, propylene glycol monomethyl ether acetate are more preferable, More preferred are methyl isobutyl ketone and ethyl acetate. Methyl isobutyl ketone, ethyl acetate, etc.
  • solvents are removed when the solvent is industrially distilled off or dried because the above compound and the resin containing the compound as a constituent component have a relatively high saturation solubility and a relatively low boiling point. It is possible to reduce the load in the process.
  • These solvents can be used alone or in combination of two or more.
  • the acidic aqueous solution used in the purification method of the present embodiment is appropriately selected from aqueous solutions in which generally known organic compounds or inorganic compounds are dissolved in water.
  • the acidic aqueous solution is not limited to the following. Examples include organic acid aqueous solutions in which organic acids such as fumaric acid, maleic acid, tartaric acid, citric acid, methanesulfonic acid, phenolsulfonic acid, p-toluenesulfonic acid, and trifluoroacetic acid are dissolved in water. These acidic aqueous solutions can be used alone or in combination of two or more.
  • one or more mineral acid aqueous solutions selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, or acetic acid, propionic acid, succinic acid, malonic acid, succinic acid, fumaric acid, maleic acid,
  • One or more organic acid aqueous solutions selected from the group consisting of tartaric acid, citric acid, methanesulfonic acid, phenolsulfonic acid, p-toluenesulfonic acid and trifluoroacetic acid are preferred, and sulfuric acid, nitric acid, acetic acid, oxalic acid,
  • An aqueous solution of carboxylic acid such as tartaric acid and citric acid is more preferable, an aqueous solution of sulfuric acid, succinic acid, tartaric acid and citric acid is more preferable, and an aqueous solution of succinic acid is more preferable.
  • the pH of the acidic aqueous solution used in the purification method of the present embodiment is not particularly limited, but it is preferable to adjust the acidity of the aqueous solution in consideration of the effects on the above-mentioned compounds and resins.
  • the pH of the acidic aqueous solution is preferably about 0 to 5, more preferably about 0 to 3.
  • the amount of acidic aqueous solution used in the purification method of the present embodiment is not particularly limited, but from the viewpoint of reducing the number of extractions for metal removal and securing the operability in consideration of the total liquid amount, It is preferable to adjust the amount used. From the above viewpoint, the amount of the acidic aqueous solution used is preferably 10 to 200% by mass, and more preferably 20 to 100% by mass with respect to 100% by mass of the solution (S).
  • the metal component can be extracted from the compound or the resin in the solution (S) by bringing the acidic aqueous solution into contact with the solution (S).
  • the solution (S) further includes an organic solvent arbitrarily mixed with water.
  • the solution (S) contains an organic solvent that is arbitrarily miscible with water, the amount of the compound and / or resin charged can be increased, the liquid separation property is improved, and purification is performed with high pot efficiency. There is a tendency to be able to.
  • the method for adding an organic solvent arbitrarily mixed with water is not particularly limited. For example, any of a method of adding to a solution containing an organic solvent in advance, a method of adding to water or an acidic aqueous solution in advance, and a method of adding after bringing a solution containing an organic solvent into contact with water or an acidic aqueous solution may be used. Among these, the method of adding to the solution containing an organic solvent in advance is preferable from the viewpoint of the workability of the operation and the ease of management of the charged amount.
  • the organic solvent arbitrarily mixed with water used in the purification method of the present embodiment is not particularly limited, but an organic solvent that can be safely applied to a semiconductor manufacturing process is preferable.
  • the amount of the organic solvent arbitrarily mixed with water is not particularly limited as long as the solution phase and the aqueous phase are separated from each other, but is 0.1 to 100 times by mass with respect to the total amount of the compound and the resin to be used. It is preferably 0.1 to 50 times by mass, more preferably 0.1 to 20 times by mass.
  • organic solvent arbitrarily mixed with water used in the purification method of the present embodiment include, but are not limited to, ethers such as tetrahydrofuran and 1,3-dioxolane; alcohols such as methanol, ethanol and isopropanol Ketones such as acetone and N-methylpyrrolidone; aliphatic hydrocarbons such as glycol ethers such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether (PGME) and propylene glycol monoethyl ether Can be mentioned.
  • ethers such as tetrahydrofuran and 1,3-dioxolane
  • alcohols such as methanol, ethanol and isopropanol Ketones such as acetone and N-methylpyrrolidone
  • aliphatic hydrocarbons such as glycol ethers such as ethylene glycol monoethyl ether, ethylene glycol monobutyl
  • N-methylpyrrolidone, propylene glycol monomethyl ether and the like are preferable, and N-methylpyrrolidone and propylene glycol monomethyl ether are more preferable.
  • These solvents can be used alone or in combination of two or more.
  • the temperature at the time of the extraction treatment is usually 20 to 90 ° C, preferably 30 to 80 ° C.
  • the extraction operation is performed, for example, by mixing the mixture well by stirring or the like and then allowing it to stand. Thereby, the metal part contained in solution (S) transfers to an aqueous phase. Moreover, the acidity of a solution falls by this operation and the quality change of a compound and / or resin can be suppressed.
  • the solution phase is recovered by decantation or the like.
  • the standing time is not particularly limited, but it is preferable to adjust the standing time from the viewpoint of improving the separation between the solvent-containing solution phase and the aqueous phase.
  • the time for standing is 1 minute or longer, preferably 10 minutes or longer, more preferably 30 minutes or longer.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times.
  • the solution phase containing the compound or the resin is further brought into contact with water to extract impurities in the compound or the resin (second extraction step). )
  • the solution phase containing the compound and / or resin and solvent extracted and recovered from the aqueous solution is further subjected to extraction treatment with water. It is preferable.
  • the extraction treatment with water is not particularly limited. For example, after the solution phase and water are mixed well by stirring or the like, the obtained mixed solution can be left still. Since the mixed solution after standing is separated into a solution phase containing a compound and / or a resin and a solvent and an aqueous phase, the solution phase can be recovered by decantation or the like.
  • the water used here is preferably water having a low metal content, for example, ion-exchanged water, in accordance with the purpose of the present embodiment.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times. Further, the use ratio of both in the extraction process, conditions such as temperature and time are not particularly limited, but they may be the same as those in the contact process with the acidic aqueous solution.
  • the water that can be mixed into the solution containing the compound and / or resin and solvent thus obtained can be easily removed by performing an operation such as vacuum distillation. Further, if necessary, a solvent can be added to the above solution to adjust the concentration of the compound and / or resin to an arbitrary concentration.
  • the method for isolating the compound and / or resin from the solution containing the obtained compound and / or resin and solvent is not particularly limited, and known methods such as removal under reduced pressure, separation by reprecipitation, and combinations thereof. Can be done. If necessary, known processes such as a concentration operation, a filtration operation, a centrifugal separation operation, and a drying operation can be performed.
  • composition of the present embodiment includes a compound represented by the above formula (1), a resin obtained using the compound represented by the above formula (1) as a monomer, a compound represented by the above formula (2), and the above formula ( 1 or more types chosen from the group which consists of resin obtained by using the compound represented by 2) as a monomer are contained.
  • the composition of this embodiment can be a film-forming composition for lithography or an optical component-forming composition.
  • the film forming composition for lithography for chemical amplification resist application in the present embodiment (hereinafter also referred to as “resist composition”) is represented by the compound represented by the above formula (1) and the above formula (1).
  • the composition (resist composition) of this embodiment further contains a solvent.
  • the solvent include, but are not limited to, ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-propyl ether acetate, and ethylene glycol mono-n-butyl ether acetate.
  • Ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate, propylene glycol mono-n-propyl ether acetate, propylene glycol mono -Propylene glycol such as n-butyl ether acetate Monoalkyl ether acetates; propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether (PGME) and propylene glycol monoethyl ether; methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate, n-amyl lactate, etc.
  • PGMEA propylene glycol monomethyl ether acetate
  • PGMEA propylene glycol monoethyl ether acetate
  • Lactate esters aliphatic carboxylic acid esters such as methyl acetate, ethyl acetate, n-propyl acetate, n-butyl acetate, n-amyl acetate, n-hexyl acetate, methyl propionate, ethyl propionate; Methyl propionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl 3-methoxy-2-methylpropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl A
  • Other esters such as tate, butyl 3-methoxy-3-methylpropionate, butyl 3-methoxy-3-methylbutyrate, methyl acetoacetate, methyl pyruvate, ethyl pyruvate; aromatic hydrocarbons such as toluene, xylene Ketones such as 2-h
  • the solvent used in this embodiment is preferably a safe solvent, more preferably at least one selected from PGMEA, PGME, CHN, CPN, 2-heptanone, anisole, butyl acetate, ethyl propionate and ethyl lactate.
  • a seed more preferably at least one selected from PGMEA, PGME and CHN.
  • the amount of the solid component and the amount of the solvent are not particularly limited, but 1 to 80% by weight of the solid component and 20 to 99% of the solvent with respect to 100% by weight of the total amount of the solid component and the solvent.
  • the solid component is preferably 1 to 50% by mass, more preferably 1 to 50% by mass of the solid component and 50 to 99% by mass of the solvent, further preferably 2 to 40% by mass of the solid component and 60 to 98% by mass of the solvent, and particularly preferably solid
  • the component is 2 to 10% by mass and the solvent is 90 to 98% by mass.
  • composition (resist composition) of the present embodiment is selected from the group consisting of an acid generator (C), a crosslinking agent (G), an acid diffusion controller (E), and other components (F) as other solid components. You may further contain at least 1 type chosen.
  • a solid component means components other than a solvent.
  • the acid generator (C), the crosslinking agent (G), the acid diffusion controller (E) and other components (F), known ones can be used, and are not particularly limited. Those described in Japanese Patent No. / 024778 are preferable.
  • the content of the compound and / or resin used as the resist base material is not particularly limited, but the total mass of the solid component (resist base material, acid generator (C), crosslinking agent (G ), Acid diffusion controller (E) and other components (F) and the like, and the total amount of solid components including the optionally used components, the same shall apply hereinafter)).
  • the amount is preferably 55 to 90% by mass, more preferably 60 to 80% by mass, and particularly preferably 60 to 70% by mass.
  • the content of the compound and / or resin used as the resist base is in the above range, the resolution is further improved and the line edge roughness (LER) tends to be further reduced.
  • the said content is a total amount of both components.
  • another component (F) may be called arbitrary component (F).
  • a resist base material hereinafter also referred to as “component (A)”
  • an acid generator C
  • a crosslinking agent G
  • an acid diffusion controller E
  • an optional component The content of F (component (A) / acid generator (C) / crosslinking agent (G) / acid diffusion controller (E) / optional component (F)) is mass% based on solids, Preferably 50 to 99.4 / 0.001 to 49 / 0.5 to 49 / 0.001 to 49/0 to 49, More preferably 55 to 90/1 to 40 / 0.5 to 40 / 0.01 to 10/0 to 5, More preferably 60 to 80/3 to 30/1 to 30 / 0.01 to 5/0 to 1, Particularly preferred is 60 to 70/10 to 25/2 to 20 / 0.01 to 3/0.
  • the blending ratio of each component is selected from each range so that the sum is 100% by mass. When the blending ratio of each component is within the above range, the performance such as sensitivity, resolution, develop
  • the resist composition of this embodiment is usually prepared by dissolving each component in a solvent at the time of use to make a uniform solution, and then filtering with a filter having a pore size of about 0.2 ⁇ m, if necessary.
  • the resist composition of the present embodiment can contain other resins other than the resin of the present embodiment as long as the object of the present invention is not impaired.
  • Other resins are not particularly limited.
  • novolak resins polyvinylphenols, polyacrylic acid, polyvinyl alcohol, styrene-maleic anhydride resins, and acrylic acid, vinyl alcohol, or vinylphenol as monomer units. Examples thereof include polymers or derivatives thereof.
  • the content of other resins is not particularly limited and is appropriately adjusted according to the type of component (A) to be used, but is preferably 30 parts by mass or less with respect to 100 parts by mass of component (A). More preferably, it is 10 mass parts or less, More preferably, it is 5 mass parts or less, Most preferably, it is 0 mass part.
  • An amorphous film can be formed by spin coating using the resist composition of the present embodiment.
  • the resist composition of this embodiment can be applied to a general semiconductor manufacturing process.
  • the type of resin obtained using these as monomers and / or the type of developer used either a positive resist pattern or a negative resist pattern is used. Can be made separately.
  • the dissolution rate of the amorphous film formed by spin-coating the resist composition of the present embodiment with respect to the developer at 23 ° C. is preferably 5 ⁇ / sec or less, and 0.05 to 5 ⁇ / It is more preferable that it is sec, and it is more preferable that it is 0.0005 to 5 cm / sec.
  • the dissolution rate is 5 kg / sec or less, the resist is insoluble in the developer and can be a resist. Further, when the dissolution rate is 0.0005 K / sec or more, the resolution tends to be improved.
  • the dissolution rate of the amorphous film formed by spin-coating the resist composition of the present embodiment in a developing solution at 23 ° C. is preferably 10 ⁇ / sec or more.
  • the dissolution rate is 10 ⁇ / sec or more, it is easily dissolved in a developer and more suitable for a resist.
  • the dissolution rate is 10 ⁇ / sec or more, the resolution may be improved. This is presumably because the compound represented by the above formula (1) and / or the micro surface portion of the resin containing the compound as a constituent component dissolves and LER is reduced. There is also an effect of reducing defects.
  • the dissolution rate can be determined by immersing the amorphous film in a developing solution at 23 ° C. for a predetermined time, and measuring the film thickness before and after the immersion by a known method such as visual observation, an ellipsometer, or a QCM method.
  • a portion exposed to radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray of an amorphous film formed by spin-coating the resist composition of this embodiment is applied to a developer at 23 ° C.
  • the dissolution rate is preferably 10 ⁇ / sec or more.
  • the dissolution rate is 10 ⁇ / sec or more, it is easily dissolved in a developer and more suitable for a resist.
  • the dissolution rate is 10 ⁇ / sec or more, the resolution may be improved. This is presumably because the compound represented by the above formulas (1) and (2) and / or the micro surface portion of the resin containing the compound as a constituent component dissolves to reduce LER. There is also an effect of reducing defects.
  • the amorphous film formed by spin-coating the resist composition of the present embodiment is exposed to a developer at 23 ° C. at a portion exposed by radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray.
  • the dissolution rate is preferably 5 ⁇ / sec or less, more preferably 0.05 to 5 ⁇ / sec, and further preferably 0.0005 to 5 ⁇ / sec.
  • the dissolution rate is 5 kg / sec or less, the resist is insoluble in the developer and can be a resist.
  • the dissolution rate is 0.0005 kg / sec or more, the resolution may be improved.
  • the component (A) contained in the film forming composition for lithography for non-chemically amplified resist application of the present embodiment is a diazonaphthoquinone photoactive compound (B) described later.
  • a positive resist base material that is easily soluble in a developer by irradiating g-line, h-line, i-line, KrF excimer laser, ArF excimer laser, extreme ultraviolet light, electron beam or X-ray. Useful as.
  • the component (A) contained in the radiation-sensitive composition of the present embodiment is a compound having a relatively low molecular weight, the roughness of the obtained resist pattern is very small.
  • at least one selected from the group consisting of R 0 to R 5 is preferably a group containing an iodine atom.
  • R 0A , R 1A and R 2A are preferable. It is preferable that at least one selected from the group consisting of is a group containing an iodine atom.
  • the radiation-sensitive composition is resistant to radiation such as electron beams, extreme ultraviolet rays (EUV), and X-rays. It is preferable because the absorption capacity can be increased, and as a result, the sensitivity can be increased.
  • EUV extreme ultraviolet rays
  • the glass transition temperature of the component (A) contained in the radiation-sensitive composition of the present embodiment is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, further preferably 140 ° C. or higher, and particularly preferably 150 ° C. or higher.
  • the upper limit of the glass transition temperature of a component (A) is not specifically limited, For example, it is 400 degreeC.
  • the semiconductor lithography process has heat resistance capable of maintaining the pattern shape and tends to improve performance such as high resolution.
  • the crystallization calorific value obtained by differential scanning calorimetry analysis of the glass transition temperature of the component (A) contained in the radiation-sensitive composition of the present embodiment is preferably less than 20 J / g.
  • (crystallization temperature) ⁇ glass transition temperature is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, still more preferably 100 ° C. or higher, and particularly preferably 130 ° C. or higher.
  • crystallization heat generation amount is less than 20 J / g, or (crystallization temperature) ⁇ (glass transition temperature) is within the above range, an amorphous film can be easily formed by spin-coating the radiation-sensitive composition, and The film formability required for the resist can be maintained for a long time, and the resolution tends to be improved.
  • the crystallization heat generation amount, the crystallization temperature, and the glass transition temperature can be obtained by differential scanning calorimetry using DSC / TA-50WS manufactured by Shimadzu Corporation.
  • About 10 mg of a sample is put into an aluminum non-sealed container and heated to a melting point or higher at a temperature rising rate of 20 ° C./min in a nitrogen gas stream (50 mL / min).
  • the temperature is raised again to the melting point or higher at a temperature rising rate of 20 ° C./min in a nitrogen gas stream (30 mL / min). Further, after rapid cooling, the temperature is increased again to 400 ° C.
  • the temperature at the midpoint of the step difference of the baseline that has changed in a step shape is the glass transition temperature (Tg), and the temperature of the exothermic peak that appears thereafter is the crystallization temperature.
  • Tg glass transition temperature
  • the calorific value is obtained from the area of the region surrounded by the exothermic peak and the baseline, and is defined as the crystallization calorific value.
  • the component (A) contained in the radiation-sensitive composition of the present embodiment is 100 or less, preferably 120 ° C. or less, more preferably 130 ° C. or less, further preferably 140 ° C. or less, and particularly preferably 150 ° C. or less under normal pressure. It is preferable that sublimability is low. Low sublimation means that, in thermogravimetric analysis, the weight loss when held at a predetermined temperature for 10 minutes is 10% or less, preferably 5% or less, more preferably 3% or less, even more preferably 1% or less, particularly preferably Indicates 0.1% or less. Since the sublimation property is low, it is possible to prevent exposure apparatus from being contaminated by outgas during exposure. In addition, a good pattern shape can be obtained with low roughness.
  • Component (A) contained in the radiation-sensitive composition of the present embodiment is propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), cyclohexanone (CHN), cyclopentanone (CPN), 2-heptanone Selected from the group consisting of anisole, butyl acetate, ethyl propionate and ethyl lactate and having the highest solubility in component (A) at 23 ° C., preferably 1% by mass or more, more preferably Dissolves in an amount of 5 mass% or more, more preferably 10 mass% or more.
  • it is selected from the group consisting of PGMEA, PGME, and CHN, and (A) a solvent having the highest solubility in the resist base material at 23 ° C., 20 mass% or more, and particularly preferably PGMEA On the other hand, 20 mass% or more dissolves at 23 ° C.
  • the diazonaphthoquinone photoactive compound (B) to be contained in the radiation-sensitive composition of the present embodiment is a diazonaphthoquinone substance containing a polymeric and non-polymeric diazonaphthoquinone photoactive compound, and in general in a positive resist composition, As long as it is used as a photosensitive component (photosensitive agent), one type or two or more types can be arbitrarily selected and used without any limitation.
  • Component (B) is a compound obtained by reacting naphthoquinone diazide sulfonic acid chloride, benzoquinone diazide sulfonic acid chloride, etc., with a low molecular compound or polymer compound having a functional group capable of condensation reaction with these acid chlorides.
  • the functional group capable of condensing with acid chloride is not particularly limited, and examples thereof include a hydroxyl group and an amino group, and a hydroxyl group is particularly preferable.
  • the compound capable of condensing with an acid chloride containing a hydroxyl group is not particularly limited.
  • hydroquinone, resorcin, 2,4-dihydroxybenzophenone, 2,3,4-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, 2,4,4'-trihydroxybenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 2,2', 3,4,6'- Hydroxybenzophenones such as pentahydroxybenzophenone, hydroxyphenylalkanes such as bis (2,4-dihydroxyphenyl) methane, bis (2,3,4-trihydroxyphenyl) methane, bis (2,4-dihydroxyphenyl) propane 4,4 ', 3 ", 4" -tetrahydroxy -3, 5, 3 ', 5'-tetramethyltriphenylmethane, 4, 4', 2 ", 3", 4 "-pentahydroxy-3, 5, 3 ', 5'-tetramethyltriphenylmethane, etc.
  • acid chlorides such as naphthoquinone diazide sulfonic acid chloride and benzoquinone diazide sulfonic acid chloride include 1,2-naphthoquinone diazide-5-sulfonyl chloride, 1,2-naphthoquinone diazide-4-sulfonyl chloride, and the like. Can be mentioned.
  • the radiation-sensitive composition of the present embodiment is prepared, for example, by dissolving each component in a solvent at the time of use to obtain a uniform solution, and then filtering, for example, with a filter having a pore size of about 0.2 ⁇ m as necessary. It is preferred that
  • the radiation sensitive composition of this embodiment can form an amorphous film by spin coating. Moreover, the radiation sensitive composition of this embodiment can be applied to a general semiconductor manufacturing process. Depending on the type of developer used, either a positive resist pattern or a negative resist pattern can be created.
  • the dissolution rate of the amorphous film formed by spin-coating the radiation-sensitive composition of this embodiment at 23 ° C. with respect to the developing solution is preferably 5 ⁇ / sec or less, and 0.05 to More preferably, it is 5 ⁇ / sec, and further preferably 0.0005 to 5 ⁇ / sec.
  • the dissolution rate is 5 kg / sec or less, the resist is insoluble in the developer and can be a resist. Further, when the dissolution rate is 0.0005 K / sec or more, the resolution tends to be improved.
  • the dissolution rate of the amorphous film formed by spin-coating the radiation-sensitive composition of the present embodiment in a developing solution at 23 ° C. is preferably 10 ⁇ / sec or more.
  • the dissolution rate is 10 ⁇ / sec or more, it is easily dissolved in a developer and more suitable for a resist.
  • the dissolution rate is 10 ⁇ / sec or more, the resolution may be improved. This is presumably because the compound represented by the above formulas (1) and (2) and / or the micro surface portion of the resin containing the compound as a constituent component dissolves to reduce LER. There is also an effect of reducing defects.
  • the dissolution rate can be determined by immersing the amorphous film in a developing solution at 23 ° C. for a predetermined time, and measuring the film thickness before and after the immersion by a known method such as visual observation, an ellipsometer, or a QCM method.
  • the amorphous film formed by spin-coating the radiation-sensitive composition of this embodiment is irradiated with radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray, or 20 to
  • the dissolution rate of the exposed portion after heating at 500 ° C. in the developer at 23 ° C. is preferably 10 ⁇ / sec or more, more preferably from 10 to 10000 ⁇ / sec, and from 100 to 1000 ⁇ / sec. More preferably it is.
  • the dissolution rate is 10 ⁇ / sec or more, it is easily dissolved in a developer and more suitable for a resist.
  • the dissolution rate is 10000 kg / sec or less, the resolution may be improved. This is presumably because the compound represented by the above formulas (1) and (2) and / or the micro surface portion of the resin containing the compound as a constituent component dissolves to reduce LER. There is also a tendency to reduce defects.
  • the amorphous film formed by spin-coating the radiation-sensitive composition of the present embodiment is irradiated with radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray, or 20 to
  • the dissolution rate of the exposed portion after heating at 500 ° C. with respect to the developer at 23 ° C. is preferably 5 K / sec or less, more preferably from 0.05 to 5 K / sec, more preferably from 0.0005 to More preferably, it is 5 kg / sec.
  • the dissolution rate is 5 kg / sec or less, the resist is insoluble in the developer and can be a resist. Further, when the dissolution rate is 0.0005 kg / sec or more, the resolution may be improved.
  • the content of the component (A) is arbitrarily selected from the total weight of the solid component (component (A), diazonaphthoquinone photoactive compound (B), and other components (D)).
  • the total of the solid components to be used is preferably 1 to 99% by mass, more preferably 5 to 95% by mass, still more preferably 10 to 90% by mass, and particularly preferably 25 to 75% by mass. %.
  • the radiation-sensitive composition of the present embodiment tends to obtain a pattern with high sensitivity and small roughness.
  • the content of the diazonaphthoquinone photoactive compound (B) is the total weight of the solid component (component (A), diazonaphthoquinone photoactive compound (B) and other components (D), etc.)
  • the total of solid components optionally used in the following, the same shall apply hereinafter) is preferably 1 to 99% by mass, more preferably 5 to 95% by mass, still more preferably 10 to 90% by mass, and particularly preferably. 25 to 75% by mass.
  • the radiation-sensitive composition of the present embodiment tends to obtain a highly sensitive and small roughness pattern.
  • an acid generator, a cross-linkage, and a component other than the component (A) and the diazonaphthoquinone photoactive compound (B) are included as necessary, as long as the object of the present invention is not impaired.
  • Agent acid diffusion controller, dissolution accelerator, dissolution controller, sensitizer, surfactant, organic carboxylic acid or phosphorus oxo acid or derivative thereof, heat and / or photocuring catalyst, polymerization inhibitor, flame retardant, Fillers, coupling agents, thermosetting resins, photocurable resins, dyes, pigments, thickeners, lubricants, antifoaming agents, leveling agents, UV absorbers, surfactants, colorants, nonionic surfactants 1 type, or 2 or more types can be added.
  • another component (D) may be called arbitrary component (D).
  • the blending ratio of each component is mass% based on the solid component, Preferably 1 to 99/99 to 1/0 to 98, More preferably 5 to 95/95 to 5/0 to 49, More preferably, 10 to 90/90 to 10/0 to 10, Even more preferably, 20-80 / 80-20 / 0-5, Even more preferably, it is 25 to 75/75 to 25/0.
  • the blending ratio of each component is selected from each range so that the sum is 100% by mass.
  • the radiation-sensitive composition of this embodiment tends to be excellent in performance such as sensitivity and resolution in addition to roughness when the blending ratio of each component is in the above range.
  • the radiation-sensitive composition of the present embodiment may contain other resins other than the present embodiment as long as the object of the present invention is not impaired.
  • Other resins include novolak resins, polyvinylphenols, polyacrylic acid, polyvinyl alcohol, styrene-maleic anhydride resins, and polymers containing acrylic acid, vinyl alcohol, or vinylphenol as monomer units, or derivatives thereof. Etc.
  • the blending amount of these resins is appropriately adjusted according to the type of component (A) used, but is preferably 30 parts by mass or less, more preferably 10 parts per 100 parts by mass of component (A). It is not more than part by mass, more preferably not more than 5 parts by mass, particularly preferably 0 part by mass.
  • a photoresist layer is formed on a substrate using the above-described resist composition or radiation-sensitive composition of the present embodiment, and then radiation is applied to a predetermined region of the photoresist layer. And developing.
  • the method includes a step of forming a resist film on the substrate, a step of exposing the formed resist film, and a step of developing the resist film to form a resist pattern.
  • the resist pattern in this embodiment can also be formed as an upper layer resist in a multilayer process.
  • the method for forming the resist pattern is not particularly limited, and examples thereof include the following methods.
  • a resist film is formed by applying the resist composition or radiation-sensitive composition of the present embodiment on a conventionally known substrate by a coating means such as spin coating, cast coating, or roll coating.
  • the conventionally known substrate is not particularly limited, and examples thereof include a substrate for electronic components and a substrate on which a predetermined wiring pattern is formed. More specifically, a silicon substrate, a metal substrate such as copper, chromium, iron, and aluminum, a glass substrate, and the like can be given. Examples of the wiring pattern material include copper, aluminum, nickel, and gold. Further, if necessary, an inorganic and / or organic film may be provided on the substrate.
  • inorganic BARC inorganic antireflection film
  • organic BARC organic antireflection film
  • Surface treatment with hexamethylene disilazane or the like may be performed on the substrate.
  • the substrate coated with the resist composition or radiation-sensitive composition is heated.
  • the heating conditions vary depending on the composition of the resist composition or radiation-sensitive composition, but are preferably 20 to 250 ° C, more preferably 20 to 150 ° C. Heating is preferred because the adhesion of the resist to the substrate tends to be improved.
  • the resist film is exposed to a desired pattern with any radiation selected from the group consisting of visible light, ultraviolet light, excimer laser, electron beam, extreme ultraviolet light (EUV), X-ray, and ion beam.
  • the exposure conditions and the like are appropriately selected according to the composition of the resist composition or the radiation sensitive composition.
  • heating is preferably performed after radiation irradiation.
  • the heating conditions vary depending on the composition of the resist composition or the radiation-sensitive composition, but are preferably 20 to 250 ° C, more preferably 20 to 150 ° C.
  • a predetermined resist pattern is formed by developing the exposed resist film with a developer.
  • a solubility parameter SP is used for the compound obtained by using the compound represented by the formula (1) or (2) or the compound represented by the formula (1) or (2) as a monomer. It is preferable to select a solvent having a close value), and polar solvents such as ketone solvents, ester solvents, alcohol solvents, amide solvents, ether solvents, etc., hydrocarbon solvents or alkaline aqueous solutions can be used.
  • ketone solvent examples include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, acetone, 4-heptanone, 1-hexanone, 2-hexanone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, phenylacetone, methyl ethyl ketone.
  • ester solvents include methyl acetate, butyl acetate, ethyl acetate, isopropyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3 -Ethoxypropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl formate, ethyl formate, butyl formate, propyl formate, ethyl lactate, butyl lactate, propyl lactate and the like.
  • the alcohol solvent examples include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol (2-propanol), n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isobutyl alcohol, n-hexyl alcohol, Alcohols such as 4-methyl-2-pentanol, n-heptyl alcohol, n-octyl alcohol, n-decanol, glycol solvents such as ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol monomethyl ether, propylene glycol monomethyl Ether, ethylene glycol monoethyl ether, propylene glycol monoethyl ether, diethylene glycol monomethyl ether, triethylene Glycol monoethyl ether, glycol monoethyl ether and methoxymethyl butanol.
  • Alcohols such as 4-methyl-2-pentanol, n-heptyl alcohol, n-oc
  • ether solvent examples include dioxane, tetrahydrofuran and the like in addition to the glycol ether solvent.
  • amide solvents include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, hexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone and the like. Can be mentioned.
  • hydrocarbon solvent examples include aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents such as pentane, hexane, octane and decane.
  • the water content of the developer as a whole is preferably less than 70% by mass, more preferably less than 50% by mass, and less than 30% by mass. More preferably, it is more preferably less than 10% by mass, and even more preferably substantially free of moisture. That is, the content of the organic solvent with respect to the developer is preferably 30% by mass or more and 100% by mass or less, more preferably 50% by mass or more and 100% by mass or less, based on the total amount of the developer. It is more preferable that the content is not less than 100% by mass and not more than 100% by mass, still more preferably not less than 90% by mass and not more than 100% by mass, and still more preferably not less than 95% by mass and not more than 100% by mass.
  • alkaline aqueous solution examples include alkaline compounds such as mono-, di- or trialkylamines, mono-, di- or trialkanolamines, heterocyclic amines, tetramethylammonium hydroxide (TMAH), and choline. Can be mentioned.
  • alkaline compounds such as mono-, di- or trialkylamines, mono-, di- or trialkanolamines, heterocyclic amines, tetramethylammonium hydroxide (TMAH), and choline. Can be mentioned.
  • a developing solution containing at least one solvent selected from a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent, and an ether solvent is used. It is preferable for improving the resist performance.
  • the vapor pressure of the developer is preferably 5 kPa or less, more preferably 3 kPa or less, and particularly preferably 2 kPa or less at 20 ° C.
  • the vapor pressure of the developing solution is 5 kPa or less, evaporation of the developing solution on the substrate or in the developing cup is suppressed, temperature uniformity within the wafer surface is improved, and as a result, dimensional uniformity within the wafer surface is achieved. It tends to improve.
  • Examples of specific developers having a vapor pressure of 5 kPa or less at 20 ° C. include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 4-heptanone, 2-hexanone, diisobutylketone, cyclohexanone, methyl Ketone solvents such as cyclohexanone, phenylacetone, methyl isobutyl ketone; butyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3-ethoxypro Pionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, butyl formate, propyl formate, ethyl lactate, butyl lactate, milk Ester solvent
  • Glycol ether solvents such as tetrahydrofuran; amide solvents of N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide; aromatic hydrocarbon solvents such as toluene and xylene; Aliphatic hydrocarbon solvents such as octane and decane are listed.
  • Specific examples of the developer having a vapor pressure of 2 kPa or less at 20 ° C., which is a particularly preferable range, include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 4-heptanone, 2-hexanone, diisobutyl.
  • Ketone solvents such as ketone, cyclohexanone, methylcyclohexanone, phenylacetone; butyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3-ethoxy Ester solvents such as propionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, ethyl lactate, butyl lactate, propyl lactate Alcohol solvents such as n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isobutyl alcohol, n-hexyl alcohol, 4-methyl-2-pentanol, n-heptyl alcohol, n-octyl alcohol and n-decanol Glycol solvents
  • the surfactant is not particularly limited, and for example, ionic or nonionic fluorine-based and / or silicon-based surfactants can be used.
  • fluorine and / or silicon surfactants include, for example, JP-A-62-36663, JP-A-61-226746, JP-A-61-226745, JP-A-62-170950.
  • it is a nonionic surfactant.
  • it is more preferable to use a fluorochemical surfactant or a silicon-type surfactant.
  • the amount of the surfactant used is usually 0.001 to 5% by mass, preferably 0.005 to 2% by mass, and more preferably 0.01 to 0.5% by mass with respect to the total amount of the developer.
  • a development method for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle) Method), a method of spraying the developer on the substrate surface (spray method), a method of continuously applying the developer while scanning the developer application nozzle at a constant speed on a substrate rotating at a constant speed (dynamic dispensing method) ) Etc.
  • the time for developing the pattern is not particularly limited, but is preferably 10 seconds to 90 seconds.
  • a step of stopping development may be performed while substituting with another solvent.
  • the rinsing liquid used in the rinsing step after development is not particularly limited as long as the resist pattern cured by crosslinking is not dissolved, and a solution or water containing a general organic solvent can be used.
  • a rinsing liquid containing at least one organic solvent selected from hydrocarbon solvents, ketone solvents, ester solvents, alcohol solvents, amide solvents and ether solvents.
  • a cleaning step is performed using a rinse solution containing at least one organic solvent selected from the group consisting of ketone solvents, ester solvents, alcohol solvents, and amide solvents.
  • a washing step is performed using a rinse solution containing an alcohol solvent or an ester solvent. Even more preferably, after the development, a step of washing with a rinsing solution containing a monohydric alcohol is performed. Particularly preferably, after the development, a washing step is performed using a rinsing liquid containing a monohydric alcohol having 5 or more carbon atoms.
  • the time for rinsing the pattern is not particularly limited, but is preferably 10 seconds to 90 seconds.
  • examples of the monohydric alcohol used in the rinsing step after development include linear, branched, and cyclic monohydric alcohols, and specifically, 1-butanol, 2-butanol, 3-methyl- 1-butanol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 1-hexanol, 4-methyl-2-pentanol, 1-heptanol, 1-octanol, 2-hexanol, cyclopentanol, 2- Heptanol, 2-octanol, 3-hexanol, 3-heptanol, 3-octanol, 4-octanol and the like can be used.
  • Particularly preferable monohydric alcohols having 5 or more carbon atoms include 1-hexanol, 2-hexanol, 4 -Methyl-2-pentanol, 1-pentanol, 3-methyl-1-butanol, etc. It is.
  • a plurality of the above components may be mixed, or may be used by mixing with an organic solvent other than the above.
  • the water content in the rinsing liquid is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 3% by mass or less. By setting the water content to 10% by mass or less, better development characteristics tend to be obtained.
  • the vapor pressure of the rinsing liquid used after development is preferably 0.05 kPa or more and 5 kPa or less at 20 ° C., more preferably 0.1 kPa or more and 5 kPa or less, and 0.12 kPa or more and 3 kPa or less. Is more preferable.
  • An appropriate amount of a surfactant can be added to the rinse solution.
  • the developed wafer is cleaned using a rinsing solution containing the organic solvent.
  • the method of the cleaning treatment is not particularly limited. For example, a method of continuously applying the rinse liquid onto the substrate rotating at a constant speed (rotary coating method), or immersing the substrate in a tank filled with the rinse liquid for a certain period of time. A method (dip method), a method of spraying a rinsing liquid on the substrate surface (spray method), etc. can be applied. Among these methods, cleaning is performed by a spin coating method, and the substrate is rotated at a rotational speed of 2000 to 4000 rpm after cleaning. It is preferable to remove the rinse liquid from the substrate.
  • the pattern wiring board is obtained by etching.
  • the etching can be performed by a known method such as dry etching using plasma gas and wet etching using an alkali solution, a cupric chloride solution, a ferric chloride solution, or the like.
  • Plating can be performed after forming the resist pattern.
  • Examples of the plating method include copper plating, solder plating, nickel plating, and gold plating.
  • the residual resist pattern after etching can be stripped with an organic solvent.
  • organic solvent include PGMEA (propylene glycol monomethyl ether acetate), PGME (propylene glycol monomethyl ether), EL (ethyl lactate) and the like.
  • peeling method include a dipping method and a spray method.
  • the wiring board on which the resist pattern is formed may be a multilayer wiring board or may have a small diameter through hole.
  • the wiring substrate obtained in this embodiment can also be formed by a method of depositing a metal in a vacuum after forming a resist pattern and then dissolving the resist pattern with a solution, that is, a lift-off method.
  • a film forming composition for lithography for use in an underlayer film of the present embodiment (hereinafter also referred to as “underlayer film forming material”) is a compound represented by the above formula (1), and a compound represented by the above formula (1) as a monomer. And at least one substance selected from the group consisting of a resin obtained using the compound represented by formula (2) and the compound represented by formula (2) as a monomer.
  • the substance is preferably 1 to 100% by mass, more preferably 10 to 100% by mass, and more preferably 50 to 100% by mass in the lower layer film-forming material from the viewpoints of coatability and quality stability. % Is more preferable, and 100% by mass is particularly preferable.
  • the underlayer film forming material of this embodiment can be applied to a wet process and has excellent heat resistance and etching resistance. Furthermore, since the lower layer film forming material of the present embodiment uses the above-mentioned substances, it is possible to form a lower layer film that suppresses deterioration of the film during high-temperature baking and has excellent etching resistance against oxygen plasma etching and the like. Furthermore, since the lower layer film forming material of this embodiment is also excellent in adhesion to the resist layer, an excellent resist pattern can be obtained. In addition, the lower layer film forming material of the present embodiment may include a known lower layer film forming material for lithography and the like as long as the effects of the present invention are not impaired.
  • the lower layer film forming material of the present embodiment may contain a solvent.
  • a solvent used for the lower layer film forming material of the present embodiment a known one can be appropriately used as long as it can dissolve at least the above-described substances.
  • the solvent include, but are not limited to, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cellosolv solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate; ethyl lactate and methyl acetate Ester solvents such as ethyl acetate, butyl acetate, isoamyl acetate, ethyl lactate, methyl methoxypropionate, methyl hydroxyisobutyrate; alcohol solvents such as methanol, ethanol, isopropanol, 1-ethoxy-2-propanol; toluene, xylene And aromatic hydrocarbons such as anisole. These solvents can be used alone or in combination of two or more.
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and
  • cyclohexanone propylene glycol monomethyl ether
  • propylene glycol monomethyl ether acetate propylene glycol monomethyl ether acetate
  • ethyl lactate propylene glycol monomethyl ether acetate
  • ethyl lactate propylene glycol monomethyl ether acetate
  • ethyl lactate propylene glycol monomethyl ether acetate
  • ethyl lactate propylene glycol monomethyl ether acetate
  • ethyl lactate methyl hydroxyisobutyrate
  • anisole anisole
  • the content of the solvent is not particularly limited, but from the viewpoint of solubility and film formation, it is preferably 100 to 10000 parts by mass, preferably 200 to 5000 parts by mass with respect to 100 parts by mass of the lower layer film-forming material. More preferred is 200 to 1000 parts by mass.
  • the lower layer film-forming material of the present embodiment may contain a crosslinking agent as necessary from the viewpoint of suppressing intermixing.
  • a crosslinking agent which can be used in this embodiment is not specifically limited, For example, the thing of international publication 2013/024779 can be used.
  • phenol compound known compounds can be used.
  • phenols include phenols, alkylphenols such as cresols and xylenols, polyhydric phenols such as hydroquinone, polycyclic phenols such as naphthols and naphthalenediols, and bisphenols such as bisphenol A and bisphenol F.
  • polyfunctional phenol compounds such as phenol novolac and phenol aralkyl resin.
  • aralkyl type phenol resins are preferable from the viewpoint of heat resistance and solubility.
  • epoxy compound known compounds can be used and selected from those having two or more epoxy groups in one molecule.
  • D Xylide epoxidation of co-condensation resin of dicyclopentadiene and phenol, epoxidation of phenol aralkyl resin synthesized from phenol and paraxylylene dichloride, biphenyl synthesized from phenol and bischloromethylbiphenyl, etc.
  • examples thereof include epoxidized products of aralkyl type phenol resins, and epoxidized products of naphthol aralkyl resins synthesized from naphthols and paraxylylene dichloride.
  • These epoxy resins may be used independently and may use 2 or more types together. Among these, from the viewpoint of heat resistance and solubility, a solid epoxy resin at room temperature such as an epoxy resin obtained from phenol aralkyl resins and biphenyl aralkyl resins is preferable.
  • the cyanate compound is not particularly limited as long as it is a compound having two or more cyanate groups in one molecule, and a known one can be used.
  • a preferred cyanate compound one having a structure in which a hydroxyl group of a compound having two or more hydroxyl groups in one molecule is substituted with a cyanate group can be mentioned.
  • the cyanate compound preferably has an aromatic group, and a cyanate compound having a structure in which the cyanate group is directly connected to the aromatic group can be suitably used.
  • cyanate compounds include bisphenol A, bisphenol F, bisphenol M, bisphenol P, bisphenol E, phenol novolac resin, cresol novolac resin, dicyclopentadiene novolac resin, tetramethylbisphenol F, bisphenol A novolac resin, bromine.
  • Bisphenol A brominated phenol novolak resin, trifunctional phenol, tetrafunctional phenol, naphthalene type phenol, biphenyl type phenol, phenol aralkyl resin, biphenyl aralkyl resin, naphthol aralkyl resin, dicyclopentadiene aralkyl resin, alicyclic phenol, phosphorus
  • cyanate compounds may be used alone or in combination of two or more.
  • the cyanate compound described above may be in any form of a monomer, an oligomer, and a resin.
  • amino compound examples include m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3 , 3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl Sulfide, 3,3′-diaminodiphenyl sulfide, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene
  • Alicyclic amines such as heptane, 3 (4), 8 (9) -bis (aminomethyl) tricyclo [5.2.1.02,6] decane, 1,3-bisaminomethylcyclohexane, isophoronediamine , Ethylenediamine, hexamethylenediamine, Kuta diamine, decamethylene diamine, diethylene triamine, aliphatic amines such as triethylenetetramine, and the like.
  • benzoxazine compound examples include Pd-type benzoxazine obtained from bifunctional diamines and monofunctional phenols, and Fa-type benzoxazine obtained from monofunctional diamines and bifunctional phenols. It is done.
  • the melamine compound examples include hexamethylol melamine, hexamethoxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are methoxymethylated or a mixture thereof, hexamethoxyethyl melamine, hexaacyloxymethyl.
  • examples thereof include compounds in which 1 to 6 methylol groups of melamine and hexamethylolmelamine are acyloxymethylated, or a mixture thereof.
  • the guanamine compound include, for example, tetramethylolguanamine, tetramethoxymethylguanamine, a compound in which 1 to 4 methylol groups of tetramethylolguanamine are methoxymethylated, or a mixture thereof, tetramethoxyethylguanamine, tetraacyloxyguanamine And compounds in which 1 to 4 methylol groups of tetramethylolguanamine are acyloxymethylated, or a mixture thereof.
  • glycoluril compound examples include, for example, tetramethylol glycoluril, tetramethoxyglycoluril, tetramethoxymethylglycoluril, a compound in which 1 to 4 methylol groups of tetramethylolglycoluril are methoxymethylated, or a mixture thereof, Examples thereof include compounds in which 1 to 4 methylol groups of tetramethylol glycoluril are acyloxymethylated, or mixtures thereof.
  • urea compound examples include tetramethylol urea, tetramethoxymethyl urea, a compound in which 1 to 4 methylol groups of tetramethylol urea are methoxymethylated or a mixture thereof, tetramethoxyethyl urea, and the like.
  • a crosslinking agent having at least one allyl group may be used from the viewpoint of improving the crosslinkability.
  • Specific examples of the crosslinking agent having at least one allyl group include 2,2-bis (3-allyl-4-hydroxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2 -Bis (3-allyl-4-hydroxyphenyl) propane, bis (3-allyl-4-hydroxyphenyl) sulfone, bis (3-allyl-4-hydroxyphenyl) sulfide, bis (3-allyl-4-hydroxyphenyl) ) Allylphenols such as ether, 2,2-bis (3-allyl-4-cyanatophenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3 -Allyl-4-cyanatophenyl) propane, bis (3-allyl-4-cyanatosiphenyl) sulfone, bis (3-allyl-4-cyanatophenyl) sulfide, bis (3- Examples
  • the content of the crosslinking agent in the lower layer film-forming material is not particularly limited, but is preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the lower layer film-forming material, and 5 to 50 parts by weight. Is more preferably 10 to 40 parts by mass.
  • Crosslinking accelerator In the lower layer film forming material of the present embodiment, a crosslinking accelerator for accelerating the crosslinking and curing reaction can be used as necessary.
  • the crosslinking accelerator is not particularly limited as long as it promotes crosslinking and curing reaction, and examples thereof include amines, imidazoles, organic phosphines, and Lewis acids. These crosslinking accelerators can be used alone or in combination of two or more. Among these, imidazoles or organic phosphines are preferable, and imidazoles are more preferable from the viewpoint of lowering the crosslinking temperature.
  • crosslinking accelerator examples include, but are not limited to, for example, 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylamino).
  • Tertiary amines such as methyl) phenol, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, 2,4,5- Imidazoles such as triphenylimidazole, organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, phenylphosphine, tetraphenylphosphonium tetraphenylborate, teto Tetraphenyl such as phenylphosphonium / ethyltriphenylborate, tetrabutylphosphonium / tetrabutylborate, etc., 2-ethyl-4-methylimidazole / tetraphenylborate, N-methylmorpholine /
  • the blending amount of the crosslinking accelerator is usually preferably 0.1 to 10 parts by mass when the entire lower layer film-forming material is 100 parts by mass, and more preferably easy to control and economical. From the viewpoint, it is 0.1 to 5 parts by mass, and more preferably 0.1 to 3 parts by mass.
  • a radical polymerization initiator in the lower layer film forming material of the present embodiment, can be blended as necessary.
  • the radical polymerization initiator may be a photopolymerization initiator that initiates radical polymerization with light or a thermal polymerization initiator that initiates radical polymerization with heat.
  • Such a radical polymerization initiator is not particularly limited, and those conventionally used can be appropriately employed.
  • 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile 1-[(1-cyano-1-methylethyl) azo] formamide, 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-methylpropionamidine) dihydrochloride, 2,2′-azobis (2-methyl-N-phenylpropionamidine) dihydrochloride, 2,2′-azobis [N- (4-chlorophenyl) -2-methylpropionamidine] Dihydride chloride, 2,2'-azobis [N- (4-hydrophenyl) -2-methylpropionamidine] dihydrochloride 2,2′-azobis [2-methyl-N- (phenylmethyl) propionamidine] dihydrochloride, 2,2′-azo
  • the content of the radical polymerization initiator may be a stoichiometrically required amount, but is preferably 0.05 to 25 parts by mass when the lower layer film forming material is 100 parts by mass. More preferably, the content is 0.1 to 10 parts by mass.
  • the content of the radical polymerization initiator is 0.05 parts by mass or more, there is a tendency that curing can be prevented from being insufficient.
  • the content of the radical polymerization initiator is 25 parts by mass or less. In such a case, the long-term storage stability of the lower layer film-forming material at room temperature tends to be prevented from being impaired.
  • the lower layer film-forming material of the present embodiment may contain an acid generator as required from the viewpoint of further promoting the crosslinking reaction by heat.
  • an acid generator those that generate an acid by thermal decomposition and those that generate an acid by light irradiation are known, and any of them can be used. For example, those described in International Publication No. 2013/024779 can be used.
  • the content of the acid generator is not particularly limited, but is preferably 0.1 to 50 parts by weight, more preferably 100 parts by weight of the lower layer film forming material. 0.5 to 40 parts by mass.
  • the lower layer film-forming material of the present embodiment may contain a basic compound from the viewpoint of improving storage stability.
  • the basic compound serves as a quencher for the acid to prevent the acid generated in a trace amount from the acid generator from causing the crosslinking reaction to proceed.
  • a basic compound is not particularly limited, and examples thereof include those described in International Publication No. 2013/024779.
  • the content of the basic compound is not particularly limited, but is preferably 0.001 to 2 parts by mass, more preferably 100 parts by mass of the lower layer film forming material. 0.01 to 1 part by mass.
  • the lower layer film forming material in the present embodiment may contain other resins and / or compounds for the purpose of imparting curability by heat or light and controlling the absorbance.
  • other resins and / or compounds include naphthol resins, xylene resins, naphthol-modified resins, phenol-modified resins of naphthalene resins, polyhydroxystyrene, dicyclopentadiene resins, (meth) acrylates, dimethacrylates, trimethacrylates, tetra Resins containing no heteroaromatic ring such as methacrylate, vinylnaphthalene, polyacenaphthylene, etc., biphenyl rings such as phenanthrenequinone, fluorene, etc., heterocycles having heteroatoms such as thiophene, indene, etc .; rosin resins; Examples thereof include resins or compounds containing an alicyclic structure such as cycl
  • the lower layer film-forming material in the present embodiment may contain a known additive.
  • the known additives include, but are not limited to, for example, heat and / or photocuring catalysts, polymerization inhibitors, flame retardants, fillers, coupling agents, thermosetting resins, photocurable resins, dyes, Examples thereof include pigments, thickeners, lubricants, antifoaming agents, leveling agents, ultraviolet absorbers, surfactants, colorants, and nonionic surfactants.
  • the lower layer film for lithography in this embodiment is formed from the lower layer film forming material.
  • a lower layer film is formed on a substrate using the above composition, and at least one photoresist layer is formed on the lower layer film.
  • a step of performing development by irradiating a predetermined region with radiation More specifically, a step (A-1) of forming a lower layer film on the substrate using the lower layer film forming material of the present embodiment, and a step of forming at least one photoresist layer on the lower layer film ( A-2) and a step (A-3) of performing development by irradiating a predetermined region of the photoresist layer with radiation after the step (A-2).
  • an interlayer film is formed on a substrate using the above composition, an interlayer film is formed on the lower film using a resist interlayer film material, and the interlayer layer is formed.
  • a step of forming at least one photoresist layer on the film, a step of irradiating a predetermined region of the photoresist layer with radiation and developing to form a resist pattern, and the intermediate layer film using the resist pattern as a mask Etching the lower layer film using the obtained intermediate layer film pattern as an etching mask and etching the substrate using the obtained lower layer film pattern as an etching mask to form a pattern on the substrate.
  • a step (B-1) of forming a lower layer film on the substrate using the lower layer film forming material of the present embodiment, and a resist intermediate layer material containing silicon atoms on the lower layer film are used.
  • a step (B-4) of irradiating a predetermined region of the photoresist layer and developing to form a resist pattern and after the step (B-4), the intermediate layer film using the resist pattern as a mask Etching the lower layer film using the obtained intermediate layer film pattern as an etching mask, and etching the substrate using the obtained lower layer film pattern as an etching mask to form a pattern on the substrate (B-5)
  • the formation method of the lower layer film for lithography in the present embodiment is not particularly limited as long as it is formed from the lower layer film forming material of the present embodiment, and a known method can be applied.
  • a known method such as spin coating or screen printing or a printing method
  • the organic solvent is volatilized and removed, and then the known method is used.
  • the lower layer film for lithography of this embodiment can be formed by crosslinking and curing. Examples of the crosslinking method include methods such as thermosetting and photocuring.
  • the baking temperature is not particularly limited, but is preferably in the range of 80 to 450 ° C., more preferably 200 to 400 ° C.
  • the baking time is not particularly limited, but is preferably within the range of 10 to 300 seconds.
  • the thickness of the lower layer film can be appropriately selected according to the required performance, and is not particularly limited, but is usually preferably about 30 to 20000 nm, and more preferably 50 to 15000 nm.
  • a silicon-containing resist layer is formed thereon, or a single-layer resist made of ordinary hydrocarbons.
  • a silicon-containing intermediate layer is formed thereon, and further thereon. It is preferable to produce a single-layer resist layer that does not contain silicon. In this case, a well-known thing can be used as a photoresist material for forming this resist layer.
  • a silicon-containing resist layer or a single layer resist made of ordinary hydrocarbon can be formed on the lower layer film.
  • a silicon-containing intermediate layer can be formed on the lower layer film, and a single-layer resist layer not containing silicon can be formed on the silicon-containing intermediate layer.
  • the photoresist material for forming the resist layer can be appropriately selected from known materials and is not particularly limited.
  • a silicon-containing resist material for a two-layer process from the viewpoint of oxygen gas etching resistance, a silicon atom-containing polymer such as a polysilsesquioxane derivative or a vinylsilane derivative is used as a base polymer, and an organic solvent, an acid generator, If necessary, a positive photoresist material containing a basic compound or the like is preferably used.
  • a silicon atom-containing polymer a known polymer used in this type of resist material can be used.
  • a polysilsesquioxane-based intermediate layer is preferably used as the silicon-containing intermediate layer for the three-layer process.
  • the intermediate layer By giving the intermediate layer an effect as an antireflection film, reflection tends to be effectively suppressed.
  • the k value increases and the substrate reflection tends to increase, but the reflection is suppressed in the intermediate layer.
  • the substrate reflection can be reduced to 0.5% or less.
  • the intermediate layer having such an antireflection effect is not limited to the following, but for 193 nm exposure, a polysilsesquioxy crosslinked with acid or heat into which a light absorbing group having a phenyl group or a silicon-silicon bond is introduced. Sun is preferably used.
  • an intermediate layer formed by a Chemical-Vapor-deposition (CVD) method can be used.
  • the intermediate layer having a high effect as an antireflection film produced by the CVD method is not limited to the following, but for example, a SiON film is known.
  • the formation of the intermediate layer by a wet process such as spin coating or screen printing has a simpler and more cost-effective advantage than the CVD method.
  • the upper layer resist in the three-layer process may be either a positive type or a negative type, and the same one as a commonly used single layer resist can be used.
  • the lower layer film in this embodiment can also be used as an antireflection film for a normal single layer resist or a base material for suppressing pattern collapse. Since the lower layer film of this embodiment is excellent in etching resistance for the base processing, it can be expected to function as a hard mask for the base processing.
  • a wet process such as spin coating or screen printing is preferably used as in the case of forming the lower layer film.
  • prebaking is usually performed, but this prebaking is preferably performed at 80 to 180 ° C. for 10 to 300 seconds.
  • a resist pattern can be obtained by performing exposure, post-exposure baking (PEB), and development.
  • the thickness of the resist film is not particularly limited, but is generally preferably 30 to 500 nm, more preferably 50 to 400 nm.
  • the exposure light may be appropriately selected and used according to the photoresist material to be used.
  • high energy rays having a wavelength of 300 nm or less, specifically, 248 nm, 193 nm, 157 nm excimer laser, 3 to 20 nm soft X-ray, electron beam, X-ray and the like can be mentioned.
  • the resist pattern formed by the above method is one in which pattern collapse is suppressed by the lower layer film in this embodiment. Therefore, by using the lower layer film in the present embodiment, a finer pattern can be obtained, and the exposure amount necessary for obtaining the resist pattern can be reduced.
  • gas etching is preferably used as the etching of the lower layer film in the two-layer process.
  • gas etching etching using oxygen gas is suitable.
  • an inert gas such as He or Ar, or CO, CO 2 , NH 3 , SO 2 , N 2 , NO 2 , or H 2 gas.
  • gas etching can be performed only with CO, CO 2 , NH 3 , N 2 , NO 2 , and H 2 gas without using oxygen gas.
  • the latter gas is preferably used for side wall protection for preventing undercut of the pattern side wall.
  • gas etching is also preferably used for etching the intermediate layer in the three-layer process.
  • the gas etching the same one as described in the above two-layer process can be applied.
  • the processing of the intermediate layer in the three-layer process is preferably performed using a fluorocarbon gas and a resist pattern as a mask.
  • the lower layer film can be processed by, for example, oxygen gas etching using the intermediate layer pattern as a mask.
  • a silicon oxide film, a silicon nitride film, or a silicon oxynitride film is formed by a CVD method, an ALD method, or the like.
  • the method for forming the nitride film is not limited to the following, but for example, a method described in Japanese Patent Application Laid-Open No. 2002-334869 (Patent Document 6) and WO 2004/066377 (Patent Document 7) can be used.
  • a photoresist film can be formed directly on such an intermediate film, but an organic antireflection film (BARC) is formed on the intermediate film by spin coating, and a photoresist film is formed thereon. May be.
  • BARC organic antireflection film
  • an intermediate layer based on polysilsesquioxane is also preferably used.
  • the resist intermediate layer film By providing the resist intermediate layer film with an effect as an antireflection film, reflection tends to be effectively suppressed.
  • Specific materials of the polysilsesquioxane-based intermediate layer are not limited to the following, but are described, for example, in JP-A-2007-226170 (Patent Document 8) and JP-A-2007-226204 (Patent Document 9). Can be used.
  • Etching of the next substrate can also be performed by a conventional method.
  • the substrate is SiO 2 or SiN
  • Etching mainly with gas can be performed.
  • the substrate is etched with a chlorofluorocarbon gas, the silicon-containing resist of the two-layer resist process and the silicon-containing intermediate layer of the three-layer process are peeled off simultaneously with the substrate processing.
  • the silicon-containing resist layer or the silicon-containing intermediate layer is separately peeled, and generally, dry etching peeling with a chlorofluorocarbon-based gas is performed after the substrate is processed. .
  • the lower layer film in this embodiment is characterized by excellent etching resistance of these substrates.
  • a known substrate can be appropriately selected and used, and is not particularly limited. Examples thereof include Si, ⁇ -Si, p-Si, SiO 2 , SiN, SiON, W, TiN, and Al. .
  • the substrate may be a laminate having a film to be processed (substrate to be processed) on a base material (support). Examples of such processed films include various low-k films such as Si, SiO 2 , SiON, SiN, p-Si, ⁇ -Si, W, W-Si, Al, Cu, and Al-Si, and their stopper films. In general, a material different from the base material (support) is used.
  • the thickness of the substrate or film to be processed is not particularly limited, but it is usually preferably about 50 to 10,000 nm, and more preferably 75 to 5000 nm.
  • the resist permanent film formed by applying the composition in the present embodiment is suitable as a permanent film remaining in the final product after forming a resist pattern as necessary.
  • the permanent film include a solder resist, a package material, an underfill material, a package adhesive layer such as a circuit element, an adhesive layer between an integrated circuit element and a circuit board, and a thin film display protective film for a thin display. Examples include a liquid crystal color filter protective film, a black matrix, and a spacer.
  • the permanent film made of the composition according to the present embodiment has excellent heat resistance and moisture resistance, and also has a very excellent advantage of less contamination due to sublimation components.
  • a display material is a material having high sensitivity, high heat resistance, and moisture absorption reliability with little deterioration in image quality due to important contamination.
  • composition in this embodiment is used for resist permanent film applications, in addition to the curing agent, if necessary, various additions such as other resins, surfactants and dyes, fillers, crosslinking agents, dissolution accelerators, etc.
  • a composition for a resist permanent film can be obtained by adding an agent and dissolving in an organic solvent.
  • the film forming composition for lithography and the composition for resist permanent film in the present embodiment can be prepared by blending the above components and mixing them using a stirrer or the like. Further, when the resist underlayer film composition or resist permanent film composition in the present embodiment contains a filler or a pigment, it is dispersed or mixed using a dispersing device such as a dissolver, a homogenizer, or a three roll mill. Can be prepared.
  • a dispersing device such as a dissolver, a homogenizer, or a three roll mill.
  • Carbon concentration and oxygen concentration Carbon concentration and oxygen concentration (mass%) were measured by organic elemental analysis using the following apparatus. Apparatus: CHN coder MT-6 (manufactured by Yanaco Analytical Co., Ltd.)
  • the molecular weight of the compound was measured by LC-MS analysis using Acquity UPLC / MALDI-Synapt HDMS manufactured by Water. Moreover, the gel permeation chromatography (GPC) analysis was performed on the following conditions, and the polystyrene conversion weight average molecular weight (Mw), number average molecular weight (Mn), and dispersity (Mw / Mn) were calculated
  • Apparatus Shodex GPC-101 (manufactured by Showa Denko KK) Column: KF-80M x 3 Eluent: THF 1mL / min Temperature: 40 ° C
  • reaction solution was concentrated and 50 g of heptane was added to precipitate the reaction product. After cooling to room temperature, the solution was filtered and separated. The solid obtained by filtration was dried and then subjected to separation and purification by column chromatography to obtain 5.8 g of the target compound represented by the following formula (BisF-1). The following peaks were found by 400 MHz- 1 H-NMR, and confirmed to have a chemical structure of the following formula (BisF-1).
  • the molecular weight of the obtained compound by the above method As a result of measuring the molecular weight of the obtained compound by the above method, it was 776.
  • the thermal decomposition temperature was 390 ° C.
  • the glass transition point was 72 ° C.
  • the melting point was 224 ° C., confirming that it had high heat resistance.
  • the thermal decomposition temperature was 372 ° C.
  • the glass transition point was 70 ° C.
  • the melting point was 210 ° C., confirming that it had high heat resistance.
  • the obtained resin (R1-XBisN-1) had Mn: 1975, Mw: 3650, and Mw / Mn: 1.84.
  • the obtained resin (R2-XBisN-1) had Mn: 1610, Mw: 2567, and Mw / Mn: 1.59.
  • the obtained resin (E-R1-XBisN-1) was Mn: 2176, Mw: 3540, and Mw / Mn: 1.62.
  • the obtained resin (UaR1-XBisN-1) had Mn: 2130, Mw: 3590, and Mw / Mn: 1.55.
  • the obtained resin (UaE-R1-XBisN-1) had Mn: 2371, Mw: 4240, and Mw / Mn: 1.79.
  • the obtained resin (E-R2-XBisN-1) was Mn: 2516, Mw: 3960, and Mw / Mn: 1.62.
  • Synthesis Example 24-1 Synthesis of UaR2-XBisN-1 In place of the above formula (R1-XBisN-1) obtained in Synthesis Example 23, the above formula (R2-XBisN-1) obtained in Synthesis Example 24 was used. The reaction was carried out in the same manner as in Synthesis Example 23-1 except that 33.2 g of the compound represented by the formula (1) was used to obtain 40.1 g of a resin represented by (UaR2-XBisN-1) as a brown solid.
  • the obtained resin (UaR2-XBisN-1) had Mn: 2446, Mw: 4510, and Mw / Mn: 1.84.
  • the obtained resin (UaE-R2-XBisN-1) had Mn: 2679, Mw: 4830, and Mw / Mn: 1.80.
  • ethylbenzene (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) as a diluent solvent was added to the reaction solution, and after standing, the lower aqueous phase was removed. Further, neutralization and washing with water were performed, and ethylbenzene and unreacted 1,5-dimethylnaphthalene were distilled off under reduced pressure to obtain 1.25 kg of a light brown solid dimethylnaphthalene formaldehyde resin. The molecular weight of the obtained dimethylnaphthalene formaldehyde was Mn: 562.
  • a four-necked flask with an internal volume of 0.5 L equipped with a Dimroth condenser, a thermometer, and a stirring blade was prepared.
  • This four-necked flask was charged with 100 g (0.51 mol) of the dimethylnaphthalene formaldehyde resin obtained as described above and 0.05 g of paratoluenesulfonic acid under a nitrogen stream, and the temperature was raised to 190 ° C. Stir after heating for hours. Thereafter, 52.0 g (0.36 mol) of 1-naphthol was further added, and the temperature was further raised to 220 ° C. to react for 2 hours.
  • the obtained resin (CR-1) was Mn: 885, Mw: 2220, and Mw / Mn: 4.17.
  • Examples 1-1 to 24-2, Comparative Example 1 A solubility test was conducted using the compounds or resins described in Synthesis Examples 1-1 to 24-2 and CR-1 described in Synthesis Comparative Example 1. The results are shown in Table 8. Moreover, the lower layer film forming material for lithography of the composition shown in Table 8 was prepared, respectively. Next, these lower-layer film forming materials for lithography were spin-coated on a silicon substrate, and then baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to prepare 200 nm-thick underlayer films. The following were used about the acid generator, the crosslinking agent, and the organic solvent.
  • Acid generator Ditertiary butyl diphenyliodonium nonafluoromethanesulfonate (DTDDPI) manufactured by Midori Chemical Co., Ltd.
  • Cross-linking agent Nikalac MX270 (Nikalac) manufactured by Sanwa Chemical Co., Ltd.
  • Organic solvent Propylene glycol monomethyl ether acetate acetate (PGMEA)
  • Radical polymerization initiator IRGACURE184 manufactured by BASF Cross-linking agent: (1) Sanka Chemical Co., Ltd. Nicarak MX270 (Nicarak) (2) Diallyl bisphenol A cyanate (DABPA-CN) manufactured by Mitsubishi Gas Chemical (3) Diallyl bisphenol A (BPA-CA) manufactured by Konishi Chemical Industries (4) Benzoxazine (BF-BXZ) manufactured by Konishi Chemical Industries (5) Nippon Kayaku Biphenyl Aralkyl Epoxy Resin (NC-3000-L) Organic solvent: Propylene glycol monomethyl ether acetate acetate (PGMEA)
  • the structure of the crosslinking agent is shown by the following formula.
  • n is an integer of 1 to 4.
  • Etching device RIE-10NR manufactured by Samco International Output: 50W Pressure: 20Pa Time: 2min Etching gas
  • Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate 50: 5: 5 (sccm)
  • Etching resistance was evaluated according to the following procedure. First, a novolac underlayer film was prepared under the same conditions as in Example 1-1 except that novolak (PSM4357 manufactured by Gunei Chemical Co., Ltd.) was used instead of the compound (UaXBisN-1) used in Example 1-1. did. Then, the above-described etching test was performed on this novolac lower layer film, and the etching rate at that time was measured. Next, the above-described etching test was similarly performed on the lower layer films of Example 1-1 and Comparative Example 1, and the etching rate at that time was measured. Then, the etching resistance was evaluated according to the following evaluation criteria based on the etching rate of the novolak underlayer film.
  • novolak PSM4357 manufactured by Gunei Chemical Co., Ltd.
  • each solution of an underlayer film forming material for lithography containing UaXBisN-1, UaE-XBisN-1, UaBisF-1, or UaE-BisF-1 is applied onto a 300 nm-thick SiO 2 substrate, and 240 ° C. was baked for 60 seconds at 400 ° C. for 120 seconds to form a lower layer film having a thickness of 70 nm.
  • an ArF resist solution was applied and baked at 130 ° C. for 60 seconds to form a 140 nm-thick photoresist layer.
  • the compound of the formula (11) is 4.15 g of 2-methyl-2-methacryloyloxyadamantane, 3.00 g of methacryloyloxy- ⁇ -butyrolactone, 2.08 g of 3-hydroxy-1-adamantyl methacrylate, azobisisobutyronitrile. 0.38 g was dissolved in 80 mL of tetrahydrofuran to obtain a reaction solution. This reaction solution was polymerized for 22 hours under a nitrogen atmosphere while maintaining the reaction temperature at 63 ° C., and then the reaction solution was dropped into 400 mL of n-hexane. The product resin thus obtained was coagulated and purified, and the resulting white powder was filtered and obtained by drying overnight at 40 ° C. under reduced pressure.
  • the photoresist layer was exposed using an electron beam drawing apparatus (ELIONX, ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), and 2.38 mass% tetramethylammonium hydroxide (A positive resist pattern was obtained by developing with an aqueous solution of TMAH for 60 seconds.
  • ELIONX electron beam drawing apparatus
  • ELS-7500 ELS-7500, 50 keV
  • PEB baked at 115 ° C. for 90 seconds
  • TMAH 2.38 mass% tetramethylammonium hydroxide
  • the shapes and defects of the obtained 55 nm L / S (1: 1) and 80 nm L / S (1: 1) resist patterns were observed using an electron microscope (S-4800) manufactured by Hitachi, Ltd.
  • S-4800 electron microscope
  • the resist pattern was evaluated as “good” when the pattern was not collapsed and the rectangularity was good, and “bad”.
  • the minimum line width with no pattern collapse and good rectangularity was used as an evaluation index as “resolution”.
  • the minimum electron beam energy amount capable of drawing a good pattern shape was set as “sensitivity” and used as an evaluation index. The results are shown in Table 10.
  • Examples 49 to 52> The solution of the material for forming a lower layer film for lithography obtained in Examples 1-1 to 2-2 is applied on a SiO 2 substrate having a film thickness of 300 nm and baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds. Thus, a lower layer film having a thickness of 80 nm was formed. On this lower layer film, a silicon-containing intermediate layer material was applied and baked at 200 ° C. for 60 seconds to form an intermediate layer film having a thickness of 35 nm. Further, the ArF resist solution was applied on the intermediate layer film and baked at 130 ° C. for 60 seconds to form a 150 nm-thick photoresist layer. As the silicon-containing intermediate layer material, a silicon atom-containing polymer described in JP-A-2007-226170 ⁇ Synthesis Example 1> was used.
  • the photoresist layer was subjected to mask exposure using an electron beam lithography apparatus (ELIONX, ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), and 2.38 mass% tetramethylammonium hydroxide.
  • ELIONX electron beam lithography apparatus
  • PEB baked at 115 ° C. for 90 seconds
  • TMAH tetramethylammonium hydroxide
  • Etching condition output to resist intermediate layer film of resist pattern 50W Pressure: 20Pa Time: 1 min Etching gas
  • Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate 50: 8: 2 (sccm)
  • Etching condition output to SiO 2 film of resist underlayer film pattern 50W Pressure: 20Pa Time: 2min Etching gas
  • Ar gas flow rate: C 5 F 12 gas flow rate: C 2 F 6 gas flow rate: O 2 gas flow rate 50: 4: 3: 1 (sccm)
  • an optical component-forming composition was prepared with the formulation shown in Table 11 below.
  • the following were used for the acid generator, the crosslinking agent, the acid diffusion inhibitor, and the solvent.
  • Acid generator Ditertiary butyl diphenyliodonium nonafluoromethanesulfonate (DTDDPI) manufactured by Midori Chemical Co., Ltd.
  • Cross-linking agent Nikalac MX270 (Nikalac) manufactured by Sanwa Chemical Co., Ltd.
  • Organic solvent Propylene glycol monomethyl ether acetate acetate (PGMEA)
  • optical component-forming composition in a uniform state was spin-coated on a clean silicon wafer and then pre-baked (PB) in an oven at 110 ° C. to form an optical component-forming film having a thickness of 1 ⁇ m.
  • PB pre-baked
  • the prepared optical component-forming composition was evaluated as “A” when the film formation was good and “C” when the formed film had defects.
  • a resist composition was prepared with the formulation shown in Table 12 below. Of the components of the resist composition in Table 12, the following were used for the radical generator, radical diffusion inhibitor, and solvent.
  • Radical generator IRGACURE184 manufactured by BASF Radical diffusion control agent: IRGACURE1010 manufactured by BASF Organic solvent: Propylene glycol monomethyl ether acetate acetate (PGMEA)
  • the line and space was observed with a scanning electron microscope (S-4800, manufactured by Hitachi High-Technology Corporation), and the reactivity of the resist composition by electron beam irradiation was evaluated.
  • Sensitivity was expressed as the minimum amount of energy per unit area necessary for obtaining a pattern, and was evaluated according to the following.
  • the obtained pattern shape is transferred to an SEM (Scanning Electron Microscope). And evaluated according to the following.
  • C When a non-rectangular pattern is obtained
  • the compound and resin of the present embodiment are highly soluble in a safe solvent, have good heat resistance and etching resistance, and the resist composition of the present embodiment gives a good resist pattern shape.
  • a wet process can be applied, and a compound, a resin, and a film forming composition for lithography useful for forming a photoresist underlayer film having excellent heat resistance and etching resistance can be realized.
  • this film-forming composition for lithography uses a compound or resin having a specific structure that has high heat resistance and high solvent solubility, deterioration of the film during high-temperature baking is suppressed, oxygen plasma etching, etc. It is possible to form a resist and an underlayer film that are also excellent in etching resistance to. Furthermore, when the lower layer film is formed, the adhesion with the resist layer is also excellent, so that an excellent resist pattern can be formed.
  • the refractive index is high and the coloring is suppressed by low-temperature to high-temperature treatment, it is useful as a composition for forming various optical parts.
  • the present invention provides, for example, an electrical insulating material, a resist resin, a semiconductor sealing resin, an adhesive for a printed wiring board, an electrical laminate mounted on an electrical device / electronic device / industrial device, etc. ⁇
  • resist resin for semiconductors resin for forming lower layer film, film and sheet, plastic lens (prism lens, lenticular lens, micro lens, Fresnel lens, viewing angle control lens, contrast enhancement lens, etc.) , Retardation film, electromagnetic shielding film, prism, optical fiber, flexible
  • the present invention can be used particularly effectively in the fields of lithography resists, lithography lower layers, multilayer resist lower layers, and optical components.
  • the present invention has industrial applicability in the fields of lithography resist, lithography underlayer film, multilayer resist underlayer film and optical components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

下記式(0)で表される、化合物。(0)(式(0)中、Rは、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基であり、Rは、炭素数1~60のN価の基又は単結合であり、Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が下記式(0-1)で表される基で置換された基であり、当該アルキル基、当該アリール基、当該アルケニル基、当該アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、Rの少なくとも1つは下記式(0-1)で表される基を含み、Xは、酸素原子、硫黄原子又は無架橋であることを示し、mは、各々独立して0~9の整数であり、ここで、mの少なくとも1つは1~9の整数であり、Nは、1~4の整数であり、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよく、rは、各々独立して0~2の整数である。)(0-1)(式(0-1)中、Rは、水素原子又はメチル基である。)

Description

化合物、樹脂及び組成物、並びにレジストパターン形成方法及び回路パターン形成方法
 本発明は、特定の構造を有する化合物、樹脂及びこれらを含有する組成物に関する。また、該組成物を用いるパターン形成方法(レジストパターン形成方法及び回路パターン形成方法)に関する。
 半導体デバイスの製造において、フォトレジスト材料を用いたリソグラフィーによる微細加工が行われているが、近年、LSIの高集積化と高速度化に伴い、パターンルールによる更なる微細化が求められている。また、レジストパターン形成の際に使用するリソグラフィー用の光源は、KrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)へと短波長化されており、極端紫外光(EUV、13.5nm)の導入も見込まれている。
 しかしながら、従来の高分子系レジスト材料を用いるリソグラフィーでは、その分子量が1万~10万程度と大きく、分子量分布も広いため、パターン表面にラフネスが生じパターン寸法の制御が困難となり、微細化に限界がある。
 そこで、これまでに、より解像性の高いレジストパターンを与えるために、種々の低分子量レジスト材料が提案されている。低分子量レジスト材料は分子サイズが小さいことから、解像性が高く、ラフネスが小さいレジストパターンを与えることが期待される。
 現在、このような低分子系レジスト材料として、様々なものが知られている。例えば、低分子量多核ポリフェノール化合物を主成分として用いるアルカリ現像型のネガ型感放射線性組成物(例えば、特許文献1及び特許文献2参照)が提案されており、高耐熱性を有する低分子量レジスト材料の候補として、低分子量環状ポリフェノール化合物を主成分として用いるアルカリ現像型のネガ型感放射線性組成物(例えば、特許文献3及び非特許文献1参照)も提案されている。また、レジスト材料のベース化合物として、ポリフェノール化合物が、低分子量ながら高耐熱性を付与でき、レジストパターンの解像性やラフネスの改善に有用であることが知られている(例えば、非特許文献2参照)。
 本発明者らは、エッチング耐性に優れるとともに、溶媒に可溶で湿式プロセスが適用可能な材料として、特定の構造の化合物及び有機溶媒を含有するレジスト組成物(例えば、特許文献4を参照)を提案している。
 また、レジストパターンの微細化が進むと、解像度の問題若しくは現像後にレジストパターンが倒れるといった問題が生じてくるため、レジストの薄膜化が望まれるようになる。ところが、単にレジストの薄膜化を行うと、基板加工に十分なレジストパターンの膜厚を得ることが難しくなる。そのため、レジストパターンだけではなく、レジストと加工する半導体基板との間にレジスト下層膜を作製し、このレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要になっている。
 現在、このようなプロセス用のレジスト下層膜として、種々のものが知られている。例えば、従来のエッチング速度の速いレジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、所定のエネルギーが印加されることにより末端基が脱離してスルホン酸残基を生じる置換基を少なくとも有する樹脂成分と溶媒とを含有する多層レジストプロセス用下層膜形成材料が提案されている(例えば、特許文献5参照)。また、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、特定の繰り返し単位を有する重合体を含むレジスト下層膜材料が提案されている(例えば、特許文献6参照)。さらに、半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、アセナフチレン類の繰り返し単位と、置換又は非置換のヒドロキシ基を有する繰り返し単位とを共重合してなる重合体を含むレジスト下層膜材料が提案されている(例えば、特許文献7参照)。
 一方、この種のレジスト下層膜において高いエッチング耐性を持つ材料としては、メタンガス、エタンガス、アセチレンガス等を原料に用いたCVDによって形成されたアモルファスカーボン下層膜がよく知られている。しかしながら、プロセス上の観点から、スピンコート法やスクリーン印刷等の湿式プロセスでレジスト下層膜を形成できるレジスト下層膜材料が求められている。
 また、本発明者らは、エッチング耐性に優れるとともに、耐熱性が高く、溶媒に可溶で湿式プロセスが適用可能な材料として、特定の構造の化合物及び有機溶媒を含有するリソグラフィー用下層膜形成組成物(例えば、特許文献8参照)を提案している。
 なお、3層プロセスにおけるレジスト下層膜の形成において用いられる中間層の形成方法に関しては、例えば、シリコン窒化膜の形成方法(例えば、特許文献9参照)や、シリコン窒化膜のCVD形成方法(例えば、特許文献10参照)が知られている。また、3層プロセス用の中間層材料としては、シルセスキオキサンベースの珪素化合物を含む材料が知られている(例えば、特許文献11及び12参照)。
 さらに光学部品形成組成物として、様々なものが提案されている。例えば、アクリル系樹脂が挙げられる(例えば、特許文献13~14参照)。
特開2005-326838号公報 特開2008-145539号公報 特開2009-173623号公報 国際公開第2013/024778号 特開2004-177668号公報 特開2004-271838号公報 特開2005-250434号公報 国際公開第2013/024779号 特開2002-334869号公報 国際公開第2004/066377号 特開2007-226170号公報 特開2007-226204号公報 特開2010-138393号公報 特開2015-174877号公報
T.Nakayama,M.Nomura,K.Haga,M.Ueda:Bull.Chem.Soc.Jpn.,71,2979(1998) 岡崎信次、他22名「フォトレジスト材料開発の新展開」株式会社シーエムシー出版、2009年9月、p.211-259
 上述したように、従来数多くのレジスト用途向けリソグラフィー用膜形成組成物及び下層膜用途向けリソグラフィー用膜形成組成物が提案されているが、スピンコート法やスクリーン印刷等の湿式プロセスが適用可能な高い溶媒溶解性を有するのみならず、耐熱性及びエッチング耐性を高い次元で両立させたものはなく、新たな材料の開発が求められている。また、アルカリ現像性、光感度及び解像度に優れるレジスト永久膜を得るのに好適な新たな材料の開発も求められている。
 さらに、従来数多くの光学部材向け組成物が提案されているが、耐熱性、透明性及び屈折率を高い次元で両立させたものはなく、新たな材料の開発が求められている。
 本発明は、上記従来技術の課題を鑑みてなされたものであり、その目的は、湿式プロセスが適用可能であり、耐熱性に優れ、溶解性及びエッチング耐性に優れるフォトレジスト及びフォトレジスト用下層膜を形成するために有用な、化合物、樹脂及び組成物を提供することにある。また、該組成物を用いたレジスト膜、レジスト下層膜、レジスト永久膜、パターン形成方法を提供することにある。さらには、光学部材向け組成物を提供することにある。
 本発明者らは、上記従来技術の課題を解決するために鋭意検討を重ねた結果、特定構造を有する化合物又は樹脂を用いることにより、上記従来技術の課題を解決できることを見出し、本発明を完成するに到った。
 すなわち、本発明は、つぎのとおりである。
[1]
 下記式(0)で表される、化合物。
Figure JPOXMLDOC01-appb-C000012
(0)
(式(0)中、Rは、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基であり、
は、炭素数1~60のN価の基又は単結合であり、
は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が下記式(0-1)で表される基で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、Rの少なくとも1つは下記式(0-1)で表される基を含み、
Xは、酸素原子、硫黄原子又は無架橋であることを示し、
mは、各々独立して0~9の整数であり、ここで、mの少なくとも1つは1~9の整数であり、
Nは、1~4の整数であり、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよく、
rは、各々独立して0~2の整数である。)
Figure JPOXMLDOC01-appb-C000013
(0-1)
(式(0-1)中、Rは、水素原子又はメチル基である。)
[2]
 前記式(0)で表される化合物が下記式(1)で表される化合物である、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000014
(1)
(式(1)中、Rは、前記Rと同義であり、
は、炭素数1~60のn価の基又は単結合であり、
~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が前記式(0-1)で表される基で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R~Rの少なくとも1つは前記式(0-1)で表される基を含み、
及びmは、各々独立して、0~8の整数であり、
及びmは、各々独立して、0~9の整数であり、
但し、m、m、m及びmは同時に0になることはなく、
nは前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
~pは、前記rと同義である。)
[3]
 前記式(0)で表される化合物が下記式(2)で表される化合物である、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000015
(2)
(式(2)中、R0Aは、前記Rと同義であり、
1Aは、炭素数1~60のn価の基又は単結合であり、
2Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が前記式(0-1)で表される基で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2Aの少なくとも1つは前記式(0-1)で表される基を含み、
は、前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
は、酸素原子、硫黄原子又は無架橋であることを示し、
2Aは、各々独立して、0~7の整数であり、但し、少なくとも1つのm2Aは1~7の整数であり、
は、各々独立して、0又は1である。)
[4]
 前記式(1)で表される化合物が下記式(1-1)で表される化合物である、[2]に記載の化合物。
Figure JPOXMLDOC01-appb-C000016
(1-1)
(式(1-1)中、R、R、R、R、n、p~p、m及びmは、前記式(1)におけるものと同義であり、
~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基であり、
10~R11は、各々独立して、水素原子又は下記式(0-2)で表される基であり、
ここで、R10~R11の少なくとも1つは下記式(0-2)で表される基であり、
及びmは、各々独立して、0~7の整数であり、
但し、m、m、m及びmは同時に0になることはない。)
Figure JPOXMLDOC01-appb-C000017
(0-2)
(式(0-2)中、Rは、前記式(0-1)におけるものと同義であり、sは、0~30の整数である。)
[5]
 前記式(1-1)で表される化合物が下記式(1-2)で表される化合物である、[4]に記載の化合物。
Figure JPOXMLDOC01-appb-C000018
(1-2)
(式(1-2)中、R、R、R、R、R10、R11、n、p~p、m及びmは、前記式(1-1)におけるものと同義であり、
~Rは、前記R~Rと同義であり、
12~R13は、前記R10~R11と同義であり、
及びmは、各々独立して、0~8の整数であり、
但し、m、m、m及びmは同時に0になることはない。)
[6]
 前記式(2)で表される化合物が下記式(2-1)で表される化合物である、[3]に記載の化合物。
Figure JPOXMLDOC01-appb-C000019
(2-1)
(式(2-1)中、R0A、R1A、n、q及びX、は、前記式(2)におけるものと同義であり、
3Aは、各々独立して、置換基を有していてもよい炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基であり、
4Aは、各々独立して、水素原子又は下記式(0-2)で表される基であり、
ここで、R4Aの少なくとも1つは下記式(0-2)で表される基であり、
6Aは、各々独立して、0~5の整数である。)
Figure JPOXMLDOC01-appb-C000020
(0-2)
(式(0-2)中、Rは、前記式(0-1)におけるものと同義であり、sは、0~30の整数である。)
[7]
 [1]に記載の化合物をモノマーとして得られる、樹脂。
[8]
 下記式(3)で表される構造を有する、[7]に記載の樹脂。
Figure JPOXMLDOC01-appb-C000021
(3)
(式(3)中、Lは、置換基を有していてもよい炭素数1~30のアルキレン基、置換基を有していてもよい炭素数6~30のアリーレン基、置換基を有していてもよい炭素数1~30のアルコキシレン基又は単結合であり、前記アルキレン基、前記アリーレン基、前記アルコキシレン基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
は、前記Rと同義であり、
は、炭素数1~60のn価の基又は単結合であり、
~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が前記式(0-1)で表される基で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R~Rの少なくとも1つは前記式(0-1)で表される基を含み、
及びmは、各々独立して、0~8の整数であり、
及びmは、各々独立して、0~9の整数であり、
但し、m、m、m及びmは同時に0になることはなく、
nは前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
~pは、前記rと同義である。)
[9]
 下記式(4)で表される構造を有する、[7]に記載の樹脂。
Figure JPOXMLDOC01-appb-C000022
(4)
(式(4)中、Lは、置換基を有していてもよい炭素数1~30のアルキレン基、置換基を有していてもよい炭素数6~30のアリーレン基、置換基を有していてもよい炭素数1~30のアルコキシレン基又は単結合であり、前記アルキレン基、前記アリーレン基、前記アルコキシレン基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
0Aは、前記Rと同義であり、
1Aは、炭素数1~30のn価の基又は単結合であり、
2Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が前記式(0-1)で表される基で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2Aの少なくとも1つは前記式(0-1)で表される基を含み、
は、上記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
は、酸素原子、硫黄原子又は無架橋であることを示し、
2Aは、各々独立して、0~7の整数であり、但し、少なくとも1つのm2Aは1~6の整数であり、
は、各々独立して、0又は1である。)
[10]
 [1]~[6]のいずれかに記載の化合物及び[7]~[9]のいずれかに記載の樹脂からなる群より選ばれる1種以上を含有する、組成物。
[11]
 溶媒をさらに含有する、[10]に記載の組成物。
[12]
 酸発生剤をさらに含有する、[10]又は[11]に記載の組成物。
[13]
 架橋剤をさらに含有する、[10]~[12]のいずれかに記載の組成物。
[14]
 前記架橋剤は、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物及びアジド化合物からなる群より選ばれる少なくとも1種である、[13]に記載の組成物。
[15]
 前記架橋剤は、少なくとも1つのアリル基を有する、[13]又は[14]に記載の組成物。
[16]
 前記架橋剤の含有割合が、[1]~[6]のいずれかに記載の化合物及び[7]~[9]のいずれかに記載の樹脂からなる群より選ばれる1種以上を含有する組成物の合計質量を100質量部とした場合に、0.1~100質量部である、[13]~[15]のいずれかに記載の組成物。
[17]
 架橋促進剤をさらに含有する、[13]~[16]のいずれかに記載の組成物。
[18]
 前記架橋促進剤は、アミン類、イミダゾール類、有機ホスフィン類、及びルイス酸からなる群より選ばれる少なくとも1種である、[17]に記載の組成物。
[19]
 前記架橋促進剤の含有割合が、[1]~[6]のいずれかに記載の化合物及び[7]~[9]のいずれかに記載の樹脂からなる群より選ばれる1種以上を含有する組成物の合計質量を100質量部とした場合に、0.1~5質量部である、[17]又は[18]に記載の組成物。
[20]
 ラジカル重合開始剤をさらに含有する、[10]~[19]のいずれかに記載の組成物。
[21]
 前記ラジカル重合開始剤は、ケトン系光重合開始剤、有機過酸化物系重合開始剤及びアゾ系重合開始剤からなる群より選ばれる少なくとも1種である、[10]~[20]のいずれかに記載の組成物。
[22]
 前記ラジカル重合開始剤の含有割合が、[1]~[6]のいずれかに記載の化合物及び[7]~[9]のいずれかに記載の樹脂からなる群より選ばれる1種以上を含有する組成物の合計質量を100質量部とした場合に、0.05~25質量部である、[10]~[21]のいずれかに記載の組成物。
[23]
 リソグラフィー用膜形成に用いられる、[10]~[22]のいずれかに記載の組成物。
[24]
 レジスト永久膜形成に用いられる、[10]~[22]のいずれかに記載の組成物。
[25]
 光学部品形成に用いられる、[10>~[22]のいずれかに記載の組成物。
[26]
 基板上に、[23]に記載の組成物を用いてフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。
[27]
 基板上に、[23]に記載の組成物を用いて下層膜を形成し、前記下層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。
[28]
 基板上に、[23]に記載の組成物を用いて下層膜を形成し、前記下層膜上に、レジスト中間層膜材料を用いて中間層膜を形成し、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成し、その後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることにより基板にパターンを形成する工程を含む、回路パターン形成方法。
 本発明に係る化合物及び樹脂は、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であり、本発明に係る組成物は、良好なレジストパターン形状を与える。
 以下、本発明を実施するための形態(以下、「本実施形態」ともいう。)について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
 本実施形態の化合物は後述の式(0)で表される化合物、又は、当該化合物をモノマーとして得られる樹脂である。本発明に係る化合物及び樹脂は、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるフォトレジスト下層膜を形成するために有用である。そして、このリソグラフィー用膜形成組成物は、耐熱性が高く、溶媒溶解性も高い、特定構造を有する化合物又は樹脂を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れたレジスト及び下層膜を形成することができる。加えて、下層膜を形成した場合、レジスト層との密着性にも優れるので、優れたレジストパターンを形成することができる。また、本実施形態における化合物及び樹脂は、感光性材料に用いた際の感度や解像度に優れるものであり、耐熱性の高さを維持しつつ、更に、汎用有機溶剤や他の化合物、樹脂成分、および添加剤との相溶性に優れるレジスト永久膜を形成するために有用である。
 さらには、屈折率が高く、また低温から高温までの広範囲の熱処理によって着色が抑制されることから、各種光学形成組成物としても有用である。
[式(0)で表される化合物]
 本実施形態の化合物は、下記式(0)で表される。
Figure JPOXMLDOC01-appb-C000023
(0)
(式(0)中、Rは、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基であり、
は、炭素数1~60のN価の基又は単結合であり、
は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が下記式(0-1)で表される基で置換された基であり、上記アルキル基、上記アリール基、上記アルケニル基、上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、Rの少なくとも1つは下記式(0-1)で表される基を含み、
Xは、酸素原子、硫黄原子又は無架橋であることを示し、
mは、各々独立して0~9の整数であり、ここで、mの少なくとも1つは1~9の整数であり、
Nは、1~4の整数であり、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよく、
rは、各々独立して0~2の整数である。)
Figure JPOXMLDOC01-appb-C000024
(0-1)
(式(0-1)中、Rは、水素原子又はメチル基である。)
 式(0-1)で表される基を含む基とは、式(0-1)で表される基を有する基であり、例えば、式(0-1)で表される基、式(0-1)で表される基で置換されたメトキシ基、式(0-1)で表される基で置換されたエトキシ基、式(0-1)で表される基で置換されたプロポキシ基、式(0-1)で表される基で置換されたエトキシエトキシ基、式(0-1)で表される基で置換されたプロポキシプロポキシ基、及び式(0-1)で表される基で置換されたフェニルオキシ基が挙げられる。
 Rは、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基である。アルキル基は、直鎖状、分岐状若しくは環状のアルキル基を用いることができる。Rが、水素原子、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基又は炭素数6~30のアリール基であることにより、優れた耐熱性及び溶媒溶解性を付与することができる。
 Rは炭素数1~60のN価の基又は単結合であり、このRを介して各々の芳香環が結合している。Nは、1~4の整数であり、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよい。なお、上記N価の基とは、N=1のときには、炭素数1~60のアルキル基、N=2のときには、炭素数1~30のアルキレン基、N=3のときには、炭素数2~60のアルカンプロパイル基、N=4のときには、炭素数3~60のアルカンテトライル基のことを示す。上記N価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基を有するもの等が挙げられる。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、上記N価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~60の芳香族基を有していてもよい。
 Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が上記式(0-1)で表される基で置換された基であり、上記アルキル基、上記アリール基、上記アルケニル基、上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、Rの少なくとも1つは水酸基の水素原子がアリルオキシアルキル基、アクリルオキシアルキル基及びアクリルオキシアルキル基から選ばれる1つの基で置換された基を含む。なお、上記アルキル基、アルケニル基及びアルコキシ基は、直鎖状、分岐状若しくは環状の基であってもよい。
 ここで、水酸基の水素原子がビニルフェニルメチル基で置換された基とは、ビニルフェニルメチル基を有する基であり、例えば、ビニルフェニルメチル基、ビニルフェニルメチルメチル基、ビニルフェニルメチルフェニル基等が挙げられる。
 Xは、酸素原子、硫黄原子又は無架橋であることを示し、Xが酸素原子又は硫黄原子である場合、高い耐熱性を発現する傾向にあるため好ましく、酸素原子であることがより好ましい。Xは、溶解性の観点からは、無架橋であることが好ましい。また、mは、各々独立して0~9の整数であり、mの少なくとも1つは1~9の整数である。
 式(0)中、ナフタレン構造で示される部位は、r=0の場合には単環構造であり、r=1の場合には二環構造であり、r=2の場合には三環構造となる。rは、各々独立して0~2の整数である。上述のmは、rで決定される環構造に応じてその数値範囲が決定される。
 上記式(0)で表される化合物は、比較的に低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、分子中に3級炭素又は4級炭素を有しており、結晶性が抑制され、リソグラフィー用膜製造に使用できるリソグラフィー用膜形成組成物として好適に使用される。
 また、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であるため、式(0)で表される化合物を含むリソグラフィー用レジスト形成組成物は、良好なレジストパターン形状を与えることができる。
 さらに、比較的に低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させつつ、膜の平坦性を高めることが容易であり、その結果、式(0)で表される化合物を含むリソグラフィー用下層膜形成組成物は、埋め込み及び平坦化特性が良好である。また、式(0)で表される化合物は比較的に高い炭素濃度を有する化合物であることから、高いエッチング耐性をも付与することができる。
 さらにまた、式(0)で表される化合物を含む組成物は、芳香族密度が高いため屈折率が高く、また低温から高温までの広範囲の熱処理によって着色が抑制されることから、各種光学部品形成組成物としても有用である。中でも4級炭素を有する化合物が、酸化分解を抑制して化合物の着色を抑え、耐熱性が高く、溶媒溶解性を向上させる観点から好ましい。光学部品は、フィルム状、シート状で使われるほか、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路として有用である。
[式(1)で表される化合物]
 本実施形態における式(0)で表される化合物は、下記式(1)で表される化合物であることが好ましい。本実施形態の化合物は、下記式(1)で表される化合物であることにより、耐熱性がより高く、溶媒溶解性もより高い傾向にある。
Figure JPOXMLDOC01-appb-C000025
(1)
 上記(1)式中、Rは、上記Rと同義であり、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基である。Rが、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基であることにより、耐熱性が比較的高く、溶媒溶解性が向上する傾向にある。また、Rは、炭素数1~30のアルキル基又は炭素数6~30のアリール基であることが、酸化分解を抑制して化合物の着色を抑え、耐熱性及び溶媒溶解性を向上させる観点から好ましい。
 Rは、炭素数1~60のn価の基又は単結合であり、このRを介して各々の芳香環が結合している。
 R~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が上記式(0-1)で表される基で置換された基であり、上記アルキル基、上記アリール基、上記アルケニル基、上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R~Rの少なくとも1つは上記式(0-1)で表される基を含む。
 m及びmは、各々独立して、0~8の整数であり、m及びmは、各々独立して、0~9の整数である。但し、m、m、m及びmは同時に0になることはない。
 nは上記Nと同義であり、1~4の整数である。ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよい。
 p~pは各々独立して0~2の整数である。
 なお、上記アルキル基、アルケニル基及びアルコキシ基は、直鎖状、分岐状若しくは環状の基であってもよい。
 なお、上記n価の基とは、n=1のときには、炭素数1~60のアルキル基、n=2のときには、炭素数1~60のアルキレン基、n=3のときには、炭素数2~60のアルカンプロパイル基、n=4のときには、炭素数3~60のアルカンテトライル基のことを示す。上記n価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基、及び脂環式炭化水素基を有するものが挙げられる。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、上記n価の基は、炭素数6~60の芳香族基であってもよい。
 また、上記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~60の芳香族基を有していてもよい。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
 上記式(1)で表される化合物は、比較的に低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、分子中に3級炭素又は4級炭素を有しており、結晶性が抑制され、リソグラフィー用膜製造に使用できるリソグラフィー用膜形成組成物として好適に使用される。
 また、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であるため、上記式(1)で表される化合物を含むリソグラフィー用レジスト形成組成物は、良好なレジストパターン形状を与えることができる。
 さらに、比較的に低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させつつ、膜の平坦性を高めることが容易であり、その結果、これを用いたリソグラフィー用下層膜形成組成物は、埋め込み及び平坦化特性が良好である。また、比較的に高い炭素濃度を有する化合物であることから、高いエッチング耐性をも付与することができる。
 さらにまた、芳香族密度が高いため屈折率が高く、また低温から高温までの広範囲の熱処理によって着色が抑制されることから、各種光学部品形成組成物としても有用である。中でも4級炭素を有する化合物が、酸化分解を抑制して化合物の着色を抑え、耐熱性が高く、溶媒溶解性を向上させる観点から好ましい。光学部品は、フィルム状、シート状で使われるほか、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路として有用である。
 上記式(1)で表される化合物は、架橋のし易さと有機溶媒への溶解性の観点から、下記式(1-1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000026
(1-1)
 式(1-1)中、
、R、R、R、n、p~p、m及びmは、上記式(1)におけるものと同義であり、
~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基であり、
10~R11は、各々独立して、水素原子又は下記式(0-2)で表される基であり、
ここで、R10~R11の少なくとも1つは下記式(0-2)で表される基であり、
及びmは、各々独立して0~7の整数であり、
但し、m、m、m及びmは同時に0になることはない。
Figure JPOXMLDOC01-appb-C000027
(0-2)
(式(0-2)中、Rは、上記式(0-1)におけるものと同義であり、sは、0~30の整数である。)
 また、上記式(1-1)で表される化合物は、更なる架橋のし易さと有機溶媒への溶解性の観点から、下記式(1-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000028
(1-2)
 式(1-2)中、
、R、R、R、R10、R11、n、p~p、m及びmは、上記式(1-1)におけるものと同義であり、
~Rは、上記R~Rと同義であり、
12~R13は、上記R10~R11と同義であり、
及びmは、各々独立して、0~8の整数である。但し、m、m、m及びmは同時に0になることはない。
 さらに、上記式(1-1)で表される化合物は、原料の供給性の観点から、下記式(1a)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000029
(1a)
 上記式(1a)中、R~R、m~m及びnは、上記式(1)で説明したものと同義である。
 上記式(1a)で表される化合物は、有機溶媒への溶解性の観点から、下記式(1b)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000030
(1b)
 上記式(1b)中、R、R、R、R、R10、R11、m、m、nは上記式(1)で説明したものと同義であり、R、R、R10、R11、m、mは上記式(1-1)で説明したものと同義である。
 前記式(1a)で表される化合物は、反応性の観点から、下記式(1b’)で表される化合物であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000031
(1b’)
 上記式(1b)中、R、R、R、R、m、m、nは上記式(1)で説明したものと同義であり、R、R、R10、R11、m、mは上記式(1-1)で説明したものと同義である。
 上記式(1b)で表される化合物は、有機溶媒への溶解性の観点から、下記式(1c)で表される化合物であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000032
(1c)
 上記式(1c)中、R、R、R~R13、m~m、nは上記式(1-2)で説明したものと同義である。
 前記式(1b’)で表される化合物は、反応性の観点から、下記式(1c’)で表される化合物であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000033
(1c’)
 前記式(1c’)中、R、R、R~R13、m~m、nは前記式(1-2)で説明したものと同義である。
 上記式(0)で表される化合物の具体例を以下に例示するが、式(0)で表される化合物は、ここで列挙した具体例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
 上記式中、Xは、上記式(0)で説明したものと同義であり、RT’は上記式(0)で説明したRTと同義であり、mは各々独立して、1~6の整数である。
 上記式(0)で表される化合物の具体例を、さらに以下に例示するが、式(0)で表される化合物は、ここで列挙した具体例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
 上記式中、Xは、上記式(0)で説明したものと同義であり、RY’、Z’は上記式(0)で説明したRY、Zと同義である。さらに、OR4Aの少なくとも1つは下記式(0-1)で表される基を含む。
Figure JPOXMLDOC01-appb-C000076
(0-1)
 以下に、上記式(1)で表される化合物の具体例を例示するが、式(1)で表される化合物は、ここで列挙した化合物には限定されない。
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
 前記化合物中、R、R、R、Rは上記式(1)で説明したものと同義である。m及びmは0~6の整数でありm及びmは0~7の整数である。
 但し、R、R、R、Rから選ばれる少なくとも1つは下記式(0-1)で表される基を含み、m、m、m、mが同時に0となることはない。
Figure JPOXMLDOC01-appb-C000091
(0-1)
(式(0-1)中、Rは、水素原子又はメチル基である。)
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
 前記式中、R10、R11、R12、R13は上記式(1-2)で説明したものと同義であり、R10~R13の少なくとも1つは下記式(0-2)で表される基である。
Figure JPOXMLDOC01-appb-C000105
(0-2)
(式(0-2)中、Rは、前記式(0-1)におけるものと同義であり、sは、0~30の整数である。)
 前記式(1)で表される化合物は、さらなる有機溶媒への溶解性の観点から、下記式(BiF-1)~(BiF-10)で表される化合物であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000106
(BiF-1)
Figure JPOXMLDOC01-appb-C000107
(BiF-2)
Figure JPOXMLDOC01-appb-C000108
(BiF-3)
Figure JPOXMLDOC01-appb-C000109
(BiF-4)
Figure JPOXMLDOC01-appb-C000110
(BiF-5)
Figure JPOXMLDOC01-appb-C000111
(BiF-6)
Figure JPOXMLDOC01-appb-C000112
(BiF-7)
Figure JPOXMLDOC01-appb-C000113
(BiF-8)
Figure JPOXMLDOC01-appb-C000114
(BiF-9)
Figure JPOXMLDOC01-appb-C000115
(BiF-10)
 前記式中、R10、R11、R12、R13は上記式(1-2)で説明したものと同義であり、R10~R13の少なくとも1つは下記式(0-2)で表される基である。
Figure JPOXMLDOC01-appb-C000116
(0-2)
(式(0-2)中、Rは、前記式(0-1)におけるものと同義であり、sは、0~30の整数である。)
 以下、上記式(0)で表される化合物の具体例をさらに例示するが、式(0)で表される化合物は、ここで列挙した具体例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000117
 前記式中、R、R、nは上記式(1-1)で説明したものと同義であり、R10’及びR11’は上記式(1-1)で説明したR10及びR11と同義であり、R4’及びR5’は各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が下記式(0-1)で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、エーテル結合、ケトン結合またはエステル結合を含んでいてもよく、R10’及びR11’の少なくとも1つは下記式(0-2)で置換された基を含む。m4’及びm5’は、0~8の整数であり、m10’及びm11’は1~9の整数であり、m4’+m10’及びm4’+m11’は各々独立して1~9の整数である。
Figure JPOXMLDOC01-appb-C000118
(0-2)
(式(0-2)中、Rは、前記式(0-1)におけるものと同義であり、sは、0~30の整数である。)
 Rとしては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基が挙げられる。
 R4’及びR5’としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
 前記R、R4’、R5’の各例示は、異性体を含む。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
Figure JPOXMLDOC01-appb-C000119
 前記式中、R10~R13は前記式(1-2)で説明したものと同義であり、R16は、炭素数1~30の直鎖状、分岐状若しくは環状のアルキレン基、炭素数6~30の2価のアリール基、又は炭素数2~30の2価のアルケニル基である。
 R16としては、例えば、メチレン基、エチレン基、プロペン基、ブテン基、ペンテン基、ヘキセン基、ヘプテン基、オクテン基、ノネン基、デセン基、ウンデセン基、ドデセン基、トリアコンテン基、シクロプロペン基、シクロブテン基、シクロペンテン基、シクロヘキセン基、シクロヘプテン基、シクロオクテン基、シクロノネン基、シクロデセン基、シクロウンデセン基、シクロドデセン基、シクロトリアコンテン基、2価のノルボルニル基、2価のアダマンチル基、2価のフェニル基、2価のナフチル基、2価のアントラセン基、2価のピレン基、2価のビフェニル基、2価のヘプタセン基、2価のビニル基、2価のアリル基、2価のトリアコンテニル基が挙げられる。
 前記R16の各例示は、異性体を含む。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
 前記式中、R10~R13は前記式(1-2)で説明したものと同義であり、R14は各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、又は炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基であり、m14は0~5の整数であり、m14’は0~4の整数であり、m14は0~5の整数である。
 R14としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
 前記R14の各例示は、異性体を含む。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
Figure JPOXMLDOC01-appb-C000125
 前記式中、R、R4’、R5’、m4’、m5’、m10’、m11’は前記と同義であり、R1’は、炭素数1~60の基である。
Figure JPOXMLDOC01-appb-C000126
 前記式中、R10~R13は前記式(1-2)で説明したものと同義であり、R14は各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、又は炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基であり、m14は0~5の整数であり、m14’は0~4の整数であり、m14’’は0~3の整数である。
 R14としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
 前記R14の各例示は、異性体を含む。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
Figure JPOXMLDOC01-appb-C000127
 前記式中、R10~R13は前記式(1-2)で説明したものと同義であり、R15は、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、又は炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基である。
 R15としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
 前記R15の各例示は、異性体を含む。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
 前記式中、R10~R13は前記式(1-2)で説明したものと同義である。
 前記式(0)で表される化合物は、原料の入手性の観点から、更に好ましくは以下に列挙される化合物である。
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000189
Figure JPOXMLDOC01-appb-C000190
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000210
 前記式中、R10~R13は前記式(1-2)で説明したものと同義である。
 さらに前記式(0)で表される化合物は、エッチング耐性の観点から、以下の構造を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000211
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000213
 前記式中、R0Aは前記式(0)中のRと同義であり、R1A’は前記式(0)中のRと同義であり、R10~R13は、前記式(1-2)で説明したものと同義である。
Figure JPOXMLDOC01-appb-C000214
Figure JPOXMLDOC01-appb-C000215
 前記式中、R10~R13は、前記式(1-2)で説明したものと同義である。R14は各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、又は炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基であり、m14は0~4の整数である。
 R14としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
 前記R14の各例示は、異性体を含む。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
Figure JPOXMLDOC01-appb-C000216
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000218
Figure JPOXMLDOC01-appb-C000219
Figure JPOXMLDOC01-appb-C000220
 前記式中、R10~R13は前記式(1-2)で説明したものと同義であり、R15は、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、又は炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基である。
 R15としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
 前記R15の各例示は、異性体を含む。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
Figure JPOXMLDOC01-appb-C000221
Figure JPOXMLDOC01-appb-C000222
Figure JPOXMLDOC01-appb-C000223
 前記式中、R10~R13は前記式(1-2)で説明したものと同義であり、R16は、炭素数1~30の直鎖状、分岐状若しくは環状のアルキレン基、炭素数6~30の2価のアリール基、又は炭素数2~30の2価のアルケニル基である。
 R16としては、例えば、メチレン基、エチレン基、プロペン基、ブテン基、ペンテン基、ヘキセン基、ヘプテン基、オクテン基、ノネン基、デセン基、ウンデセン基、ドデセン基、トリアコンテン基、シクロプロペン基、シクロブテン基、シクロペンテン基、シクロヘキセン基、シクロヘプテン基、シクロオクテン基、シクロノネン基、シクロデセン基、シクロウンデセン基、シクロドデセン基、シクロトリアコンテン基、2価のノルボニル基、2価のアダマンチル基、2価のフェニル基、2価のナフチル基、2価のアントラセン基、2価のヘプタセン基、2価のビニル基、2価のアリル基、2価のトリアコンテニル基が挙げられる。
 前記R16の各例示は、異性体を含む。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
Figure JPOXMLDOC01-appb-C000224
Figure JPOXMLDOC01-appb-C000225
Figure JPOXMLDOC01-appb-C000226
Figure JPOXMLDOC01-appb-C000227
Figure JPOXMLDOC01-appb-C000228
Figure JPOXMLDOC01-appb-C000229
Figure JPOXMLDOC01-appb-C000230
 前記式中、R10~R13は前記式(1-2)で説明したものと同義であり、R14は各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、又は炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基であり、m14’は0~4の整数である。
 R14としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
 前記R14の各例示は、異性体を含む。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
Figure JPOXMLDOC01-appb-C000231
Figure JPOXMLDOC01-appb-C000232
 前記式中、R10~R13は前記式(1-2)で説明したものと同義であり、R14は各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~30のアリール基、又は炭素数2~30のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基であり、m14は0~5の整数である。
 R14としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
 前記R14の各例示は、異性体を含む。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
Figure JPOXMLDOC01-appb-C000233
Figure JPOXMLDOC01-appb-C000234
Figure JPOXMLDOC01-appb-C000235
Figure JPOXMLDOC01-appb-C000236
Figure JPOXMLDOC01-appb-C000237
Figure JPOXMLDOC01-appb-C000238
Figure JPOXMLDOC01-appb-C000239
Figure JPOXMLDOC01-appb-C000240
Figure JPOXMLDOC01-appb-C000241
Figure JPOXMLDOC01-appb-C000242
Figure JPOXMLDOC01-appb-C000243
Figure JPOXMLDOC01-appb-C000244
 前記式中、R10~R13は前記式(1-2)で説明したものと同義である。
 上記に列挙した化合物の中でも、耐熱性の観点から、ジベンゾキサンテン骨格を有する化合物がより好ましい。
 式(0)で表される化合物は、原料の入手性の観点から、更に好ましくは以下に列挙される化合物である。
Figure JPOXMLDOC01-appb-C000245
Figure JPOXMLDOC01-appb-C000246
Figure JPOXMLDOC01-appb-C000247
Figure JPOXMLDOC01-appb-C000248
Figure JPOXMLDOC01-appb-C000249
Figure JPOXMLDOC01-appb-C000250
Figure JPOXMLDOC01-appb-C000251
Figure JPOXMLDOC01-appb-C000252
Figure JPOXMLDOC01-appb-C000253
Figure JPOXMLDOC01-appb-C000254
Figure JPOXMLDOC01-appb-C000255
Figure JPOXMLDOC01-appb-C000256
Figure JPOXMLDOC01-appb-C000257
Figure JPOXMLDOC01-appb-C000258
Figure JPOXMLDOC01-appb-C000259
Figure JPOXMLDOC01-appb-C000260
Figure JPOXMLDOC01-appb-C000261
Figure JPOXMLDOC01-appb-C000262
Figure JPOXMLDOC01-appb-C000263
Figure JPOXMLDOC01-appb-C000264
Figure JPOXMLDOC01-appb-C000265
Figure JPOXMLDOC01-appb-C000266
Figure JPOXMLDOC01-appb-C000267
Figure JPOXMLDOC01-appb-C000268
Figure JPOXMLDOC01-appb-C000269
Figure JPOXMLDOC01-appb-C000270
Figure JPOXMLDOC01-appb-C000271
Figure JPOXMLDOC01-appb-C000272
Figure JPOXMLDOC01-appb-C000273
Figure JPOXMLDOC01-appb-C000274
Figure JPOXMLDOC01-appb-C000275
Figure JPOXMLDOC01-appb-C000276
Figure JPOXMLDOC01-appb-C000277
 前記式中、R10~R13は前記式(1-2)で説明したものと同義である。
 上記で列挙した化合物の中でも、耐熱性の観点から、ジベンゾキサンテン骨格を有する化合物がより好ましい。
 上記式(0)で表される化合物は、原料入手性の観点から、以下の構造を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000278
Figure JPOXMLDOC01-appb-C000279
 前記式中、R0Aは前記式(0)中のRと同義であり、R1A’は前記式(0)中のRと同義であり、R10~R13は、前記式(1-2)で説明したものと同義である。
 前記で列挙した化合物は、耐熱性の観点から、キサンテン骨格を有する化合物であることがより好ましい。
 上記式(0)で表される化合物としては、さらに、以下の式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000280
Figure JPOXMLDOC01-appb-C000281
Figure JPOXMLDOC01-appb-C000283
Figure JPOXMLDOC01-appb-C000284
Figure JPOXMLDOC01-appb-C000285
Figure JPOXMLDOC01-appb-C000286
Figure JPOXMLDOC01-appb-C000287
Figure JPOXMLDOC01-appb-C000288
Figure JPOXMLDOC01-appb-C000289
Figure JPOXMLDOC01-appb-C000290
Figure JPOXMLDOC01-appb-C000291
Figure JPOXMLDOC01-appb-C000292
Figure JPOXMLDOC01-appb-C000293
Figure JPOXMLDOC01-appb-C000294
Figure JPOXMLDOC01-appb-C000295
Figure JPOXMLDOC01-appb-C000296
Figure JPOXMLDOC01-appb-C000297
Figure JPOXMLDOC01-appb-C000298
Figure JPOXMLDOC01-appb-C000299
Figure JPOXMLDOC01-appb-C000300
Figure JPOXMLDOC01-appb-C000301
Figure JPOXMLDOC01-appb-C000302
Figure JPOXMLDOC01-appb-C000303
Figure JPOXMLDOC01-appb-C000304
Figure JPOXMLDOC01-appb-C000305
Figure JPOXMLDOC01-appb-C000306
Figure JPOXMLDOC01-appb-C000307
Figure JPOXMLDOC01-appb-C000308
Figure JPOXMLDOC01-appb-C000309
Figure JPOXMLDOC01-appb-C000310
Figure JPOXMLDOC01-appb-C000311
Figure JPOXMLDOC01-appb-C000312
Figure JPOXMLDOC01-appb-C000313
Figure JPOXMLDOC01-appb-C000314
Figure JPOXMLDOC01-appb-C000315
Figure JPOXMLDOC01-appb-C000316
Figure JPOXMLDOC01-appb-C000317
Figure JPOXMLDOC01-appb-C000319
Figure JPOXMLDOC01-appb-C000320
Figure JPOXMLDOC01-appb-C000321
Figure JPOXMLDOC01-appb-C000322
Figure JPOXMLDOC01-appb-C000323
Figure JPOXMLDOC01-appb-C000324
Figure JPOXMLDOC01-appb-C000325
Figure JPOXMLDOC01-appb-C000326
Figure JPOXMLDOC01-appb-C000327
Figure JPOXMLDOC01-appb-C000328
Figure JPOXMLDOC01-appb-C000329
Figure JPOXMLDOC01-appb-C000330
Figure JPOXMLDOC01-appb-C000331
Figure JPOXMLDOC01-appb-C000332
Figure JPOXMLDOC01-appb-C000333
Figure JPOXMLDOC01-appb-C000334
Figure JPOXMLDOC01-appb-C000335
Figure JPOXMLDOC01-appb-C000336
Figure JPOXMLDOC01-appb-C000337
Figure JPOXMLDOC01-appb-C000338
Figure JPOXMLDOC01-appb-C000339
Figure JPOXMLDOC01-appb-C000340
Figure JPOXMLDOC01-appb-C000341
Figure JPOXMLDOC01-appb-C000342
Figure JPOXMLDOC01-appb-C000343
 前記式中、R10~R13は前記式(1-2)で説明したものと同義であり、R14、R15、R16、m14、m14‘は前記式で説明したものと同義である。
[式(1)で表される化合物の製造方法]
 本実施形態で使用される式(1)で表される化合物は、公知の手法を応用して適宜合成することができ、その合成手法は特に限定されない。
 例えば、常圧下、ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するアルデヒド類又はケトン類とを酸触媒下にて重縮合反応させることによりポリフェノール化合物を得て、続いて、ポリフェノール化合物の少なくとも1つのフェノール性水酸基に、下記式(0-1A)で表される基を導入することにより得られる。
 また、下記式(0-1B)で表される基を導入して、そのヒドロキシ基に下記式(0-1A)で表される基を導入することによっても得られる。また、必要に応じて、加圧下で行うこともできる。
Figure JPOXMLDOC01-appb-C000344
(0-1A)
(式(0-1A)中、Rは、水素原子又はメチル基である。)
Figure JPOXMLDOC01-appb-C000345
(0-1B)
(式(0-1B)中、Rは、炭素数1~30の直鎖状、分岐状若しくは環状のアルキレン基であり、sは、0~30の整数である。)
 上記ビフェノール類としては、例えば、ビフェノール、メチルビフェノール、メトキシビナフトール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらの中でも、ビフェノールを用いることが原料の安定供給性の点でより好ましい。
 上記ビナフトール類としては、例えば、ビナフトール、メチルビナフトール、メトキシビナフトール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらの中でも、ビナフトールを用いることが、炭素原子濃度を上げ、耐熱性を向上させる点でより好ましい。
 上記アルデヒド類としては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらの中でも、ベンズアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラールを用いることが、高い耐熱性を与える点で好ましく、ベンズアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラールを用いることが、エッチング耐性が高く、より好ましい。
 上記ケトン類としては、例えば、アセトン、メチルエチルケトン、シクロブタノン、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらの中でも、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることが、高い耐熱性を与える点で好ましく、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることが、エッチング耐性が高く、より好ましい。
 アルデヒド類又はケトン類として、芳香環を有するアルデヒド又は芳香族を有するケトンを用いることが、高い耐熱性及び高いエッチング耐性を兼備する点で好ましい。
 上記反応に用いる酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸;ケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらの中でも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることが好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。
 上記反応の際には、反応溶媒を用いてもよい。反応溶媒としては、用いるアルデヒド類又はケトン類と、ビフェノール類、ビナフトール類又はビアントラセンジオールとの反応が進行するものであれば、特に限定されず、公知のものの中から適宜選択して用いることができる。反応溶媒としては、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル又はこれらの混合溶媒等が挙げられる。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
 また、これらの反応溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、上記反応における反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。
 ポリフェノール化合物を得るためには、反応温度は高い方が好ましく、具体的には60~200℃の範囲が好ましい。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、ビフェノール類、ビナフトール類又はビアントラセンジオール、アルデヒド類又はケトン類、触媒を一括で仕込む方法や、ビフェノール類、ビナフトール類又はビアントラセンジオールやアルデヒド類又はケトン類を触媒存在下で滴下していく方法が挙げられる。重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物である化合物を単離することができる。
 好ましい反応条件としては、アルデヒド類又はケトン類1モルに対し、ビフェノール類、ビナフトール類又はビアントラセンジオールを1.0モル~過剰量、及び酸触媒を0.001~1モル使用し、常圧で、50~150℃で20分~100時間程度反応させることが挙げられる。
 反応終了後、公知の方法により目的物を単離することができる。例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離させ、得られた固形物を濾過し、乾燥させた後、カラムクロマトグラフにより、副生成物と分離精製し、溶媒留去、濾過、乾燥を行って目的物である上記式(1)で表される化合物を得ることができる。
 ポリフェノール化合物の少なくとも1つのフェノール性水酸基に上記式(0-1A)で表される基を導入する方法は公知である。例えば、以下のようにして、上記化合物の少なくとも1つのフェノール性水酸基に式(0-1A)で表される基を導入することができる。式(0-1A)で表される基を導入するための化合物は、公知の方法で合成し又は容易に入手でき、例えば、2-イソナトエチルメタクリレート、2-イソナトエチルアクリレートが挙げられるがこれらに特に限定はされない。
 例えば、アセトン、テトラヒドロフラン(THF)、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に上記化合物を溶解又は懸濁させる。続いて、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキサイド、ナトリウムエトキサイド等の塩基触媒の存在下、常圧で、20~150℃、6~72時間反応させる。反応液を酸で中和し、蒸留水に加え白色固体を析出させた後、分離した固体を蒸留水で洗浄し、又は溶媒を蒸発乾固させて、必要に応じて蒸留水で洗浄し、乾燥することにより、水酸基の水素原子が上記式(0-1A)で表される基に置換された化合物を得ることができる。
 なお、上記式(0-1A)で表される基で置換された基を導入するタイミングについては、ビナフトール類とアルデヒド類又はケトン類との縮合反応後のみならず、縮合反応の前段階でもよい。また、後述する樹脂の製造を行った後に行ってもよい。
 また、ポリフェノール化合物の少なくとも1つのフェノール性水酸基に、上記式(0-1B)で表される基を導入して、そのヒドロキシ基に式(0-1A)で表される基を導入する方法も公知である。
 例えば、以下のようにして、上記化合物の少なくとも1つのフェノール性水酸基に式(0-1B)で表される基を導入して、そのヒドロキシ基に式(0-1A)で表される基を導入することができる。
 式(0-1B)で表される基を導入するための化合物は、公知の方法で合成又は容易に入手でき、例えば、クロロエタノール、ブロモエタノール、酢酸-2-クロロエチル、酢酸-2-ブロモエチル、酢酸-2-ヨードエチル、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートが挙げられるがこれらに特に限定はされない。
 例えば、アセトン、テトラヒドロフラン(THF)、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に上記化合物を溶解又は懸濁させる。続いて、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキサイド、ナトリウムエトキサイド等の塩基触媒の存在下、常圧で、20~150℃、6~72時間反応させる。反応液を酸で中和し、蒸留水に加え白色固体を析出させた後、分離した固体を蒸留水で洗浄し、又は溶媒を蒸発乾固させて、必要に応じて蒸留水で洗浄し、乾燥することにより、水酸基の水素原子が式(0-1B)で表される基に置換された化合物を得ることができる。
 酢酸-2-クロロエチル、酢酸-2-ブロモエチル、酢酸-2-ヨードエチルを使用する場合、アセトキシエチル基が導入された後、脱アシル反応を生じることにより、ヒドロキシエチル基が導入される。
 エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートを使用する場合、アルキレンカーボネートを付加させ、脱炭酸反応が生じることにより、ヒドロキシアルキル基が導入される。
 その後、アセトン、テトラヒドロフラン(THF)、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に上記化合物を溶解又は懸濁させる。続いて、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキサイド、ナトリウムエトキサイド等の塩基触媒の存在下、常圧で、20~150℃、6~72時間反応させる。反応液を酸で中和し、蒸留水に加え白色固体を析出させた後、分離した固体を蒸留水で洗浄し、又は溶媒を蒸発乾固させて、必要に応じて蒸留水で洗浄し、乾燥することにより、ヒドロキシ基の水素原子が式(0-1A)で表される基で置換された基に置換された化合物を得ることができる。
 本実施形態において、式(0-1A)で表される基で置換された基とは、ラジカル又は酸/アルカリの存在下で反応し、塗布溶媒や現像液に使用される酸、アルカリ又は有機溶媒に対する溶解性が変化する。上記式(0-1A)で表される基で置換された基は、更に高感度・高解像度なパターン形成を可能にするために、ラジカル又は酸/アルカリの存在下で連鎖的に反応を起こす性質を有することが好ましい。
[式(1)で表される化合物をモノマーとして得られる樹脂]
 上記式(1)で表される化合物は、リソグラフィー用膜形成組成物や光学部品形成に用いられる組成物(以下、単に「組成物」ともいう。)として、そのまま使用することができる。また、上記式(1)で表される化合物をモノマーとして得られる樹脂を、組成物として使用することもできる。樹脂は、例えば、上記式(1)で表される化合物と架橋反応性のある化合物とを反応させて得られる。
 上記式(1)で表される化合物をモノマーとして得られる樹脂としては、例えば、以下の式(3)で表される構造を有するものが挙げられる。すなわち、本実施形態の組成物は、下記式(3)で表される構造を有する樹脂を含有するものであってもよい。
Figure JPOXMLDOC01-appb-C000346
(3)
 式(3)中、Lは、置換基を有していてもよい炭素数1~30のアルキレン基、置換基を有していてもよい炭素数6~30のアリーレン基、置換基を有していてもよい炭素数1~30のアルコキシレン基又は単結合であり、上記アルキレン基、上記アリーレン基、上記アルコキシレン基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよい。また、前記アルキレン基、アルコキシレン基は、直鎖状、分岐状若しくは環状の基であってもよい。
 Rは、上記Rと同義であり、
は、炭素数1~60のn価の基又は単結合であり、
~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、上記アルキル基、上記アリール基、上記アルケニル基、上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R~Rの少なくとも1つは上記式(0-1)で表される基を含み、
及びmは、各々独立して、0~8の整数であり、
及びmは、各々独立して、0~9の整数であり、
但し、m、m、m及びmは同時に0になることはなく、
nは上記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
~pは、上記rと同義である。
[式(1)で表される化合物をモノマーとして得られる樹脂の製造方法]
 本実施形態の樹脂は、上記式(1)で表される化合物を架橋反応性のある化合物と反応させることにより得られる。架橋反応性のある化合物としては、上記式(1)で表される化合物をオリゴマー化又はポリマー化し得るものである限り、公知のものを特に制限なく使用することができる。その具体例としては、例えば、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート、不飽和炭化水素基含有化合物等が挙げられるが、これらに特に限定されない。
 上記式(3)で表される構造を有する樹脂の具体例としては、例えば、上記式(1)で表される化合物を架橋反応性のある化合物であるアルデヒド及び/又はケトンとの縮合反応等によってノボラック化した樹脂が挙げられる。
 ここで、上記式(1)で表される化合物をノボラック化する際に用いるアルデヒドとしては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。ケトンとしては、上記ケトン類が挙げられる。これらの中でも、ホルムアルデヒドがより好ましい。なお、これらのアルデヒド及び/又はケトン類は、1種を単独で又は2種以上を組み合わせて用いることができる。また、上記アルデヒド及び/又はケトン類の使用量は、特に限定されないが、上記式(1)で表される化合物1モルに対して、0.2~5モルであることが好ましく、より好ましくは0.5~2モルである。
 上記式(1)で表される化合物とアルデヒド及び/又はケトンとの縮合反応において、触媒を用いることもできる。ここで使用する酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸;ケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらの中でも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸が好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。
 また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。但し、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、5-ビニルノルボルナ-2-エン、α-ピネン、β-ピネン、リモネン等の非共役二重結合を有する化合物との共重合反応の場合は、必ずしもアルデヒド類は必要ない。
 上記式(1)で表される化合物とアルデヒド及び/又はケトンとの縮合反応において、反応溶媒を用いることもできる。この重縮合における反応溶媒としては、公知のものの中から適宜選択して用いることができ、特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒等が挙げられる。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
 また、これらの溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、上記式(1)で表される化合物、アルデヒド及び/又はケトン類、触媒を一括で仕込む方法や、上記式(1)で表される化合物やアルデヒド及び/又はケトン類を触媒存在下で滴下していく方法が挙げられる。
 重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物であるノボラック化した樹脂を単離することができる。
 ここで、上記式(3)で表される構造を有する樹脂は、上記式(1)で表される化合物の単独重合体であってもよいが、他のフェノール類との共重合体であってもよい。ここで共重合可能なフェノール類としては、例えば、フェノール、クレゾール、ジメチルフェノール、トリメチルフェノール、ブチルフェノール、フェニルフェノール、ジフェニルフェノール、ナフチルフェノール、レゾルシノール、メチルレゾルシノール、カテコール、ブチルカテコール、メトキシフェノール、メトキシフェノール、プロピルフェノール、ピロガロール、チモール等が挙げるが、これらに特に限定されない。
 また、上記式(3)で表される構造を有する樹脂は、上述した他のフェノール類以外に、重合可能なモノマーと共重合させたものであってもよい。かかる共重合モノマーとしては、例えば、ナフトール、メチルナフトール、メトキシナフトール、ジヒドロキシナフタレン、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルナエン、ピネン、リモネン等が挙げられるが、これらに特に限定されない。なお、上記式(2)で表される構造を有する樹脂は、上記式(1)で表される化合物と上述したフェノール類との2元以上の(例えば、2~4元系)共重合体であっても、上記式(1)で表される化合物と上述した共重合モノマーとの2元以上(例えば、2~4元系)共重合体であっても、上記式(1)で表される化合物と上述したフェノール類と上述した共重合モノマーとの3元以上の(例えば、3~4元系)共重合体であっても構わない。
 なお、上記式(3)で表される構造を有する樹脂の分子量は、特に限定されないが、ポリスチレン換算の重量平均分子量(Mw)が500~30,000であることが好ましく、より好ましくは750~20,000である。また、架橋効率を高めるとともにベーク中の揮発成分を抑制する観点から、上記式(3)で表される構造を有する樹脂は、分散度(重量平均分子量Mw/数平均分子量Mn)が1.2~7の範囲内であることが好ましい。なお、上記Mw及びMnは、後述する実施例に記載の方法により求めることができる。
 上記式(3)で表される構造を有する樹脂は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、1-メトキシ-2-プロパノール(PGME)及び/又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、当該溶媒に対する溶解度が10質量%以上であることが好ましい。ここで、PGME及び/又はPGMEAに対する溶解度は、「樹脂の質量÷(樹脂の質量+溶媒の質量)×100(質量%)」と定義される。例えば、上記樹脂10gがPGMEA90gに対して溶解する場合は、上記樹脂のPGMEAに対する溶解度は、「10質量%以上」となり、溶解しない場合は、「10質量%未満」となる。
[式(2)で表される化合物]
 本実施形態における式(0)で表される化合物は、下記式(2)で表される化合物であることが好ましい。本実施形態の化合物は、下記式(2)で表される化合物であることにより、耐熱性が高く、溶媒溶解性も高い傾向にある。
Figure JPOXMLDOC01-appb-C000347
(2)
 式(2)中、R0Aは、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基である。
 R1Aは、炭素数1~60のn価の基又は単結合であり、
2Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子がビニルフェニルメチル基で置換された基であり、上記アルキル基、上記アリール基、上記アルケニル基、上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2Aの少なくとも1つは上記式(0-1)で表される基を含む。
 nは1~4の整数であり、ここで、式(2)中、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよい。
 Xは、各々独立して、酸素原子、硫黄原子又は無架橋であることを示す。ここで、Xが酸素原子又は硫黄原子である場合、高い耐熱性を発現する傾向にあるため好ましく、酸素原子であることがより好ましい。Xは、溶解性の観点からは、無架橋であることが好ましい。
 m2Aは、各々独立して、0~6の整数である。但し、少なくとも1つのm2Aは1~6の整数である。
 qは、各々独立して、0又は1である。
 なお、上記n価の基とは、n=1のときには、炭素数1~60のアルキル基、n=2のときには、炭素数1~30のアルキレン基、n=3のときには、炭素数2~60のアルカンプロパイル基、n=4のときには、炭素数3~60のアルカンテトライル基のことを示す。上記n価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基を有するもの等が挙げられる。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、上記n価の基は、炭素数6~60の芳香族基を有していてもよい。
 また、上記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~60の芳香族基を有していてもよい。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
 また、上記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30の芳香族基を有していてもよい。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
 上記式(2)で表される化合物は、比較的に低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、分子中に3級炭素又は4級炭素を有しており、結晶性が抑制され、リソグラフィー用膜製造に使用できるリソグラフィー用膜形成組成物として好適に使用される。
 また、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であるため、上記式(2)で表される化合物を含むリソグラフィー用レジスト形成組成物は良好なレジストパターン形状を与えることができる。
 さらに、比較的に低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させつつ、膜の平坦性を高めることが容易であり、その結果、これを用いたリソグラフィー用下層膜形成組成物は埋め込み及び平坦化特性が良好である。また、比較的に高い炭素濃度を有する化合物であることから、高いエッチング耐性をも付与することができる。
 さらにまた、芳香族密度が高いため屈折率が高く、また低温から高温までの広範囲の熱処理によって着色が抑制されることから、各種光学部品形成組成物としても有用である。中でも4級炭素を有する化合物が、酸化分解を抑制し化合物の着色を抑え、耐熱性が高く、溶媒溶解性を向上させる観点から好ましい。光学部品は、フィルム状、シート状で使われるほか、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路として有用である。
 上記式(2)で表される化合物は、架橋のし易さと有機溶媒への溶解性の観点から、下記式(2-1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000348
(2-1)
 式(2-1)中、R0A、R1A、n、q及びXは、上記式(2)におけるものと同義である。
 R3Aは、各々独立して、置換基を有していてもよい炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基であり、同一のナフタレン環又はベンゼン環において同一であっても異なっていてもよい。
4Aは、各々独立して、水素原子又は下記式(0-2)で表される基であり、
ここで、R4Aの少なくとも1つは下記式(0-2)で表される基であり、
6Aは、各々独立して、0~5の整数である。
Figure JPOXMLDOC01-appb-C000349
(0-2)
(式(0-2)中、Rは、前記式(0-1)におけるものと同義であり、sは、0~30の整数である。)
 上記式(2-1)で表される化合物をアルカリ現像ポジ型レジスト用又は有機現像ネガ型レジスト用リソグラフィー用膜形成組成物として使用する際は、R4Aの少なくとも1つは酸解離性基である。一方、式(2-1)で表される化合物をアルカリ現像ネガ型レジスト用リソグラフィー用膜形成組成物、下層膜用リソグラフィー用膜形成組成物又は光学部品形成組成物として使用する際は、R4Aの少なくとも1つは水素原子である。
 また、上記式(2-1)で表される化合物は、原料の供給性の観点から、下記式(2a)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000350
(2a)
 上記式(2a)中、X、R0A~R2A、m2A及びnは、上記式(2)で説明したものと同義である。
 また、上記式(2-1)で表される化合物は、有機溶媒への溶解性の観点から、下記式(2b)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000351
(2b)
 上記式(2b)中、X、R0A、R1A、R3A、R4A、m6A及びnは、上記式(2-1)で説明したものと同義である。
 また、上記式(2-1)で表される化合物は、有機溶媒への溶解性の観点から、下記式(2c)で表される化合物であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000352
(2c)
 上記式(2c)中、X、R0A、R1A、R3A、R4A、m6A及びnは、上記式(2-1)で説明したものと同義である。
 上記式(2)で表される化合物は、さらなる有機溶媒への溶解性の観点から、下記式(BisN-1)~(BisN-4)、(XBisN-1)~(XBisN-3)、(BiN-1)~(BiN-4)又は(XBiN-1)~(XBiN-3)で表される化合物であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000353
(BisN-1)
Figure JPOXMLDOC01-appb-C000354
(BisN-2)
Figure JPOXMLDOC01-appb-C000355
(BisN-3)
Figure JPOXMLDOC01-appb-C000356
(BisN-4)
Figure JPOXMLDOC01-appb-C000357
(XBisN-1)
Figure JPOXMLDOC01-appb-C000358
(XBisN-2)
Figure JPOXMLDOC01-appb-C000359
(XBisN-3)
Figure JPOXMLDOC01-appb-C000360
(BiN-1)
Figure JPOXMLDOC01-appb-C000361
(BiN-2)
Figure JPOXMLDOC01-appb-C000362
(BiN-3)
Figure JPOXMLDOC01-appb-C000363
(BiN-4)
Figure JPOXMLDOC01-appb-C000364
(XBiN-1)
Figure JPOXMLDOC01-appb-C000365
(XBiN-2)
Figure JPOXMLDOC01-appb-C000366
(XBiN-3)
[式(2)で表される化合物の製造方法]
 本実施形態で使用される式(2)で表される化合物は、公知の手法を応用して適宜合成することができ、その合成手法は特に限定されない。
 例えば、常圧下、フェノール類、ナフトール類と、対応するアルデヒド類又はケトン類とを酸触媒下にて重縮合反応させることによりポリフェノール化合物を得て、続いて、ポリフェノール化合物の少なくとも1つのフェノール性水酸基に、下記式(0-1A)で表される基を導入することにより得られる。
 または、下記式(0-1B)で表される基を導入して、そのヒドロキシ基に式(0-1A)で示される基を導入することにより得られる。また、必要に応じて、加圧下で行うこともできる。
Figure JPOXMLDOC01-appb-C000367
(0-1A)
(式(0-1A)中、Rは、水素原子又はメチル基である。)
Figure JPOXMLDOC01-appb-C000368
(0-1B)
(式(0-1B)中、Rは、炭素数1~30の直鎖状、分岐状若しくは環状のアルキレン基であり、sは、0~30の整数である。)
 上記ナフトール類としては、特に限定されず、例えば、ナフトール、メチルナフトール、メトキシナフトール、ナフタレンジオール等が挙げられ、ナフタレンジオールを用いることがキサンテン構造を容易に作ることができる点でより好ましい。
 上記フェノール類としては、特に限定されず、例えば、フェノール、メチルフェノール、メトキシベンゼン、カテコール、レゾルシノール、ハイドロキノン、トリメチルハイドロキノン等が挙げられる。
 上記アルデヒド類としては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらの中でも、ベンズアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラールを用いることが、高い耐熱性を与える点で好ましく、ベンズアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラールを用いることが、エッチング耐性が高く、より好ましい。
 上記ケトン類としては、例えば、アセトン、メチルエチルケトン、シクロブタノン、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらの中でも、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることが、高い耐熱性を与える点で好ましく、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることが、エッチング耐性が高く、より好ましい。
 ケトン類として、芳香環を有するケトンを用いることが、高い耐熱性及び高いエッチング耐性を兼備する点から好ましい。
 上記反応に用いる酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。酸触媒としては、特に限定されず、周知の無機酸、有機酸より適宜選択することができる。例えば、塩酸、硫酸、リン酸、臭化水素酸、ふっ酸等の無機酸;シュウ酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸;ケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸が挙げられる。入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることが好ましい。また酸触媒については、1種類又は2種類以上を用いることができる。
 上記反応の際には、反応溶媒を用いてもよい。反応溶媒としては、用いるアルデヒド類又はケトン類とナフトール類等との反応が進行すれば特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒を用いることができる。上記溶媒の量は、特に限定されず、例えば、反応原料100質量部に対して0~2000質量部の範囲である。
 上記ポリフェノール化合物を製造する際、反応温度は、特に限定されず、反応原料の反応性に応じて適宜選択することができるが、10~200℃の範囲であることが好ましい。上記ポリフェノール化合物を選択性良く合成するには、温度が低い方が、効果が高く10~60℃の範囲がより好ましい。
 上記ポリフェノール化合物の製造方法は、特に限定されないが、例えば、ナフトール類等、アルデヒド類又はケトン類、触媒を一括で仕込む方法や、触媒存在下ナフトール類やアルデヒド類又はケトン類を滴下していく方法がある。重縮合反応終了後、系内に存在する未反応原料、触媒等を除去するために、反応釜の温度を130~230℃ にまで上昇させ、1~50mmHg程度で揮発分を除去することもできる。
 上記ポリフェノール化合物を製造する際の原料の量は、特に限定されないが、例えば、アルデヒド類又はケトン類1モルに対し、ナフトール類等を2モル~過剰量、及び酸触媒を0.001~1モル使用し、常圧で、20~60℃で20分~100時間程度反応させることにより進行する。
 上記ポリフェノール化合物を製造する際、上記反応終了後、公知の方法により目的物を単離する。目的物の単離方法は、特に限定されず、例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離、得られた固形物を濾過し、乾燥させた後、カラムクロマトにより、副生成物と分離精製し、溶媒留去、濾過、乾燥を行って目的化合物を得る方法が挙げられる。
 ポリフェノール化合物の少なくとも1つのフェノール性水酸基に式(0-1A)で表される基を導入する方法は公知である。例えば、以下のようにして、上記化合物の少なくとも1つのフェノール性水酸基に式(0-1A)で表される基を導入することができる。式(0-1A)で表される基を導入するための化合物は、公知の方法で合成又は容易に入手でき、例えば、2-イソシアナトエチルメタクリレート、2-イソシアナトエチルアクリレートが挙げられるがこれらに特に限定はされない。
 例えば、アセトン、テトラヒドロフラン(THF)、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に上記化合物を溶解又は懸濁させる。続いて、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキサイド、ナトリウムエトキサイド等の塩基触媒の存在下、常圧で、20~150℃、6~72時間反応させる。反応液を酸で中和し、蒸留水に加え白色固体を析出させた後、分離した固体を蒸留水で洗浄し、又は溶媒を蒸発乾固させて、必要に応じて蒸留水で洗浄し、乾燥することにより、水酸基の水素原子が式(0-1A)で表される基に置換された化合物を得ることができる。
 なお、式(0-1A)で表される基で置換された基を導入するタイミングについては、ビナフトール類とアルデヒド類又はケトン類との縮合反応後のみならず、縮合反応の前段階でもよい。また、後述する樹脂の製造を行った後に行ってもよい。
 また、ポリフェノール化合物の少なくとも1つのフェノール性水酸基に、式(0-1B)で表される基を導入して、そのヒドロキシ基に式(0-1A)で表される基を導入する方法も公知である。
 例えば、以下のようにして、上記化合物の少なくとも1つのフェノール性水酸基に式(0-1B)で表される基を導入して、そのヒドロキシ基に式(0-1A)で表される基を導入することができる。
 式(0-1B)で表される基を導入するための化合物は、公知の方法で合成又は容易に入手でき、例えば、クロロエタノール、ブロモエタノール、酢酸-2-クロロエチル、酢酸-2-ブロモエチル、酢酸-2-ヨードエチル、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートが挙げられるが特に限定はされない。
 例えば、アセトン、テトラヒドロフラン(THF)、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に上記化合物を溶解又は懸濁させる。続いて、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキサイド、ナトリウムエトキサイド等の塩基触媒の存在下、常圧で、20~150℃、6~72時間反応させる。反応液を酸で中和し、蒸留水に加え白色固体を析出させた後、分離した固体を蒸留水で洗浄し、又は溶媒を蒸発乾固させて、必要に応じて蒸留水で洗浄し、乾燥することにより、水酸基の水素原子が式(0-1B)で表される基に置換された化合物を得ることができる。
 酢酸-2-クロロエチル、酢酸-2-ブロモエチル、酢酸-2-ヨードエチルを使用する場合、アセトキシエチル基が導入された後、脱アシル反応を生じることにより、ヒドロキシエチル基が導入される。
 エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートを使用する場合、アルキレンカーボネートを付加させ、脱炭酸反応が生じることにより、ヒドロキシアルキル基が導入される。
 その後、アセトン、テトラヒドロフラン(THF)、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に上記化合物を溶解又は懸濁させる。続いて、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキサイド、ナトリウムエトキサイド等の塩基触媒の存在下、常圧で、20~150℃、6~72時間反応させる。反応液を酸で中和し、蒸留水に加え白色固体を析出させた後、分離した固体を蒸留水で洗浄し、又は溶媒を蒸発乾固させて、必要に応じて蒸留水で洗浄し、乾燥することにより、ヒドロキシ基の水素原子が式(0-1A)で表される基で置換された基に置換された化合物を得ることができる。
 本実施形態において、式(0-1A)で表される基で置換された基とは、ラジカル又は酸/アルカリの存在下で反応し、塗布溶媒や現像液に使用される酸、アルカリ又は有機溶媒に対する溶解性が変化する。上記式(0-1A)で表される基で置換された基は、更に高感度・高解像度なパターン形成を可能にするために、ラジカル又は酸/アルカリの存在下で連鎖的に反応を起こす性質を有することが好ましい。
[式(2)で表される化合物をモノマーとして得られる樹脂の製造方法]
 上記式(2)で表される化合物は、リソグラフィー用膜形成組成物や光学部品形成に用いられる組成物として、そのまま使用することができる。また、上記式(2)で表される化合物をモノマーとして得られる樹脂を、組成物として使用することができる。樹脂は、例えば、上記式(2)で表される化合物と架橋反応性のある化合物とを反応させて得られる樹脂としても使用することができる。
 上記式(2)で表される化合物をモノマーとして得られる樹脂としては、例えば、以下の式(4)で表される構造を有するものが挙げられる。すなわち、本実施形態のリソグラフィー用膜形成組成物は、下記式(4)に表される構造を有する樹脂を含有するものであってもよい。
Figure JPOXMLDOC01-appb-C000369
(4)
 式(4)中、Lは、置換基を有していてもよい炭素数1~30のアルキレン基、置換基を有していてもよい炭素数6~30のアリーレン基、置換基を有していてもよい炭素数1~30のアルコキシレン基又は単結合であり、上記アルキレン基、上記アリーレン基、上記アルコキシレン基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよい。また、前記アルキレン基、アルコキシレン基は、直鎖状、分岐状若しくは環状の基であってもよい。
 R0Aは、上記Rと同義であり、
1Aは、炭素数1~30のn価の基又は単結合であり、
2Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が上記式(0-1)で表される基で置換された基であり、上記アルキル基、上記アリール基、上記アルケニル基、上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2Aの少なくとも1つは上記式(0-1)で表される基を含み、
は、上記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
は、酸素原子、硫黄原子又は無架橋であることを示し、
2Aは、各々独立して、0~7の整数であり、但し、少なくとも1つのm2Aは1~6の整数であり、
は、各々独立して、0又は1である。
[式(2)で表される化合物をモノマーとして得られる樹脂の製造方法]
 本実施形態の樹脂は、上記式(2)で表される化合物を架橋反応性のある化合物と反応させることにより得られる。
 架橋反応性のある化合物としては、上記式(2)で表される化合物をオリゴマー化又はポリマー化し得るものである限り、公知のものを特に制限なく使用することができる。その具体例としては、例えば、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート、不飽和炭化水素基含有化合物等が挙げられるが、これらに特に限定されない。
 上記式(4)で表される構造を有する樹脂の具体例としては、例えば、上記式(2)で表される化合物を架橋反応性のある化合物であるアルデヒド及び/又はケトンとの縮合反応等によってノボラック化した樹脂が挙げられる。
 ここで、上記式(2)で表される化合物をノボラック化する際に用いるアルデヒドとしては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。ケトンとしては、上記ケトン類が挙げられる。これらの中でも、ホルムアルデヒドがより好ましい。なお、これらのアルデヒド及び/又はケトン類は、1種を単独で又は2種以上を組み合わせて用いることができる。また、上記アルデヒド及び/又はケトン類の使用量は、特に限定されないが、上記式(2)で表される化合物1モルに対して、0.2~5モルであることが好ましく、より好ましくは0.5~2モルである。
 上記式(2)で表される化合物とアルデヒド及び/又はケトンとの縮合反応において、酸触媒を用いることもできる。ここで使用する酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸;ケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらのなかでも、製造上の観点から、有機酸又は固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸が好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。
 また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。但し、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、5-ビニルノルボルナ-2-エン、α-ピネン、β-ピネン、リモネン等の非共役二重結合を有する化合物との共重合反応の場合は、必ずしもアルデヒド類は必要ない。
 上記式(2)で表される化合物とアルデヒド及び/又はケトンとの縮合反応において、反応溶媒を用いることもできる。この重縮合における反応溶媒としては、公知のものの中から適宜選択して用いることができ、特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒等が挙げられる。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
 また、これらの溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、上記式(2)で表される化合物、アルデヒド及び/又はケトン類、触媒を一括で仕込む方法や、上記式(2)で表される化合物やアルデヒド及び/又はケトン類を触媒存在下で滴下していく方法が挙げられる。
 重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃ にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物であるノボラック化した樹脂を単離することができる。
 ここで、上記式(4)で表される構造を有する樹脂は、上記式(2)で表される化合物の単独重合体であってもよいが、他のフェノール類との共重合体であってもよい。ここで共重合可能なフェノール類としては、例えば、フェノール、クレゾール、ジメチルフェノール、トリメチルフェノール、ブチルフェノール、フェニルフェノール、ジフェニルフェノール、ナフチルフェノール、レゾルシノール、メチルレゾルシノール、カテコール、ブチルカテコール、メトキシフェノール、メトキシフェノール、プロピルフェノール、ピロガロール、チモール等が挙げるが、これらに特に限定されない。
 また、上記式(4)で表される構造を有する樹脂は、上述した他のフェノール類以外に、重合可能なモノマーと共重合させたものであってもよい。かかる共重合モノマーとしては、例えば、ナフトール、メチルナフトール、メトキシナフトール、ジヒドロキシナフタレン、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルナエン、ピネン、リモネン等が挙げられるが、これらに特に限定されない。なお、上記式(4)で表される構造を有する樹脂は、上記式(2)で表される化合物と上述したフェノール類との2元以上の(例えば、2~4元系)共重合体であっても、上記式(2)で表される化合物と上述した共重合モノマーとの2元以上(例えば、2~4元系)共重合体であっても、上記式(2)で表される化合物と上述したフェノール類と上述した共重合モノマーとの3元以上の(例えば、3~4元系)共重合体であっても構わない。
 なお、上記式(4)で表される構造を有する樹脂の分子量は、特に限定されないが、ポリスチレン換算の重量平均分子量(Mw)が500~30,000であることが好ましく、より好ましくは750~20,000である。また、架橋効率を高めるとともにベーク中の揮発成分を抑制する観点から、上記式(4)で表される構造を有する樹脂は、分散度(重量平均分子量Mw/数平均分子量Mn)が1.2~7の範囲内であることが好ましい。なお、上記Mw及びMnは、後述する実施例に記載の方法により求めることができる。
 上記式(4)で表される構造を有する樹脂は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、1-メトキシ-2-プロパノール(PGME)及び/又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、当該溶媒に対する溶解度が10質量%以上であることが好ましい。ここで、PGME及び/又はPGMEAに対する溶解度は、「樹脂の質量÷(樹脂の質量+溶媒の質量)×100(質量%)」と定義される。例えば、上記樹脂10gがPGMEA90gに対して溶解する場合は、上記樹脂のPGMEAに対する溶解度は、「10質量%以上」となり、溶解しない場合は、「10質量%未満」となる。
[化合物及び/又は樹脂の精製方法]
 本実施形態の化合物及び/又は樹脂の精製方法は、上記式(1)で表される化合物、上記式(1)で表される化合物をモノマーとして得られる樹脂、上記式(2)で表される化合物及び上記式(2)で表される化合物をモノマーとして得られる樹脂から選ばれる1種以上を、溶媒に溶解させて溶液(S)を得る工程と、得られた溶液(S)と酸性の水溶液とを接触させて、上記化合物及び/又は上記樹脂中の不純物を抽出する工程(第一抽出工程)とを含み、上記溶液(S)を得る工程で用いる溶媒が、水と任意に混和しない有機溶媒を含む。
 当該第一抽出工程において、上記樹脂は、上記式(1)で表される化合物及び/又は式(2)で表される化合物と架橋反応性のある化合物との反応によって得られる樹脂であることが好ましい。本実施形態の精製方法によれば、上述した特定の構造を有する化合物又は樹脂に不純物として含まれ得る種々の金属の含有量を低減することができる。
 より詳細には、本実施形態の精製方法においては、上記化合物及び/又は上記樹脂を、水と任意に混和しない有機溶媒に溶解させて溶液(S)を得て、さらにその溶液(S)を酸性水溶液と接触させて抽出処理を行うことができる。これにより、上記溶液(S)に含まれる金属分を水相に移行させた後、有機相と水相とを分離して金属含有量の低減された化合物及び/又は樹脂を得ることができる。
 本実施形態の精製方法で使用する、化合物及び/又は樹脂は単独で使用してもよいが、2種以上混合して用いることもできる。また、上記化合物や樹脂は、各種界面活性剤、各種架橋剤、各種酸発生剤、各種安定剤等を含有していてもよい。
 本実施形態で使用される水と任意に混和しない溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましく、具体的には、室温下における水への溶解度が30%未満、より好ましくは20%未満、さらに好ましくは10%未満である有機溶媒である。当該有機溶媒の使用量は、使用する化合物と樹脂の合計量に対して、1~100質量倍であることが好ましい。
 水と任意に混和しない溶媒の具体例としては、以下に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル等のエーテル類、酢酸エチル、酢酸n-ブチル、酢酸イソアミル等のエステル類、メチルエチルケトン、メチルイソブチルケトン、エチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、2-ペンタノン等のケトン類;エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート類;n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類等が挙げられる。これらの中でも、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル等が好ましく、メチルイソブチルケトン、酢酸エチル、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテートがより好ましく、メチルイソブチルケトン、酢酸エチルがよりさらに好ましい。メチルイソブチルケトン、酢酸エチル等は、上記化合物及び該化合物を構成成分として含む樹脂の飽和溶解度が比較的高く、沸点が比較的低いことから、工業的に溶媒を留去する場合や乾燥により除去する工程での負荷を低減することが可能となる。これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
 本実施形態の精製方法で使用される酸性の水溶液としては、一般に知られる有機系化合物若しくは無機系化合物を水に溶解させた水溶液の中から適宜選択される。酸性水溶液としては、以下に限定されないが、例えば、塩酸、硫酸、硝酸、リン酸等の鉱酸を水に溶解させた鉱酸水溶液、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸、トリフルオロ酢酸等の有機酸を水に溶解させた有機酸水溶液が挙げられる。これら酸性の水溶液は、それぞれ単独で用いることもできるし、また2種以上を組み合わせて用いることもできる。これら酸性の水溶液の中でも、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上の鉱酸水溶液、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上の有機酸水溶液であることが好ましく、硫酸、硝酸、及び酢酸、蓚酸、酒石酸、クエン酸等のカルボン酸の水溶液がより好ましく、硫酸、蓚酸、酒石酸、クエン酸の水溶液がさらに好ましく、蓚酸の水溶液がよりさらに好ましい。蓚酸、酒石酸、クエン酸等の多価カルボン酸は金属イオンに配位し、キレート効果が生じるために、より効果的に金属を除去できる傾向にあるものと考えられる。また、ここで用いる水は、本実施の形態の精製方法の目的に沿って、金属含有量の少ない水、例えばイオン交換水等を用いることが好ましい。
 本実施形態の精製方法で使用する酸性の水溶液のpHは特に限定されないが、上記化合物や樹脂への影響を考慮し、水溶液の酸性度を調整することが好ましい。酸性水溶液のpHは、好ましくは0~5程度であり、より好ましくはpH0~3程度である。
 本実施形態の精製方法で使用する酸性の水溶液の使用量は特に限定されないが、金属除去のための抽出回数を低減する観点及び全体の液量を考慮して操作性を確保する観点から、当該使用量を調整することが好ましい。上記観点から、酸性の水溶液の使用量は、上記溶液(S)100質量%に対して、好ましくは10~200質量%であり、より好ましくは20~100質量%である。
 本実施形態の精製方法においては、上記酸性の水溶液と、上記溶液(S)とを接触させることにより、溶液(S)中の上記化合物又は上記樹脂から金属分を抽出することができる。
 本実施形態の精製方法においては、上記溶液(S)が、さらに水と任意に混和する有機溶媒をさらに含むことが好ましい。溶液(S)が水と任意に混和する有機溶媒を含む場合、上記化合物及び/又は樹脂の仕込み量を増加させることができ、また、分液性が向上し、高い釜効率で精製を行うことができる傾向にある。水と任意に混和する有機溶媒を加える方法は特に限定されない。例えば、予め有機溶媒を含む溶液に加える方法、予め水又は酸性の水溶液に加える方法、有機溶媒を含む溶液と水又は酸性の水溶液とを接触させた後に加える方法のいずれでもよい。これらの中でも、予め有機溶媒を含む溶液に加える方法が操作の作業性や仕込み量の管理のし易さの点で好ましい。
 本実施形態の精製方法で使用される水と任意に混和する有機溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましい。水と任意に混和する有機溶媒の使用量は、溶液相と水相とが分離する範囲であれば特に限定されないが、使用する化合物と樹脂の合計量に対して、0.1~100質量倍であることが好ましく、0.1~50質量倍であることがより好ましく、0.1~20質量倍であることがさらに好ましい。
 本実施形態の精製方法において使用される水と任意に混和する有機溶媒の具体例としては、以下に限定されないが、テトラヒドロフラン、1,3-ジオキソラン等のエーテル類;メタノール、エタノール、イソプロパノール等のアルコール類;アセトン、N-メチルピロリドン等のケトン類;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル等のグリコールエーテル類等の脂肪族炭化水素類が挙げられる。これらの中でも、N-メチルピロリドン、プロピレングリコールモノメチルエーテル等が好ましく、N-メチルピロリドン、プロピレングリコールモノメチルエーテルがより好ましい。これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
 抽出処理を行う際の温度は通常、20~90℃であり、好ましくは30~80℃の範囲である。抽出操作は、例えば、撹拌等により、よく混合させたあと、静置することにより行われる。これにより、溶液(S)中に含まれていた金属分が水相に移行する。また、本操作により、溶液の酸性度が低下し、化合物及び/又は樹脂の変質を抑制することができる。
 上記混合溶液は静置により、化合物及び/又は樹脂と溶媒とを含む溶液相と、水相とに分離するので、デカンテーション等により、溶液相を回収する。静置する時間は特に限定されないが、溶媒を含む溶液相と水相との分離をより良好にする観点から、当該静置する時間を調整することが好ましい。通常、静置する時間は1分以上であり、好ましくは10分以上であり、より好ましくは30分以上である。また、抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。
 本実施形態の精製方法において、上記第一抽出工程後、上記化合物又は上記樹脂を含む溶液相を、さらに水に接触させて、上記化合物又は上記樹脂中の不純物を抽出する工程(第二抽出工程)を含むことが好ましい。具体的には、例えば、酸性の水溶液を用いて上記抽出処理を行った後に、該水溶液から抽出され、回収された化合物及び/又は樹脂と溶媒を含む溶液相を、さらに水による抽出処理に供することが好ましい。上記の水による抽出処理は、特に限定されないが、例えば、上記溶液相と水とを、撹拌等により、よく混合させたあと、得られた混合溶液を、静置することにより行うことができる。当該静置後の混合溶液は、化合物及び/又は樹脂と溶媒とを含む溶液相と、水相とに分離するのでデカンテーション等により、溶液相を回収することができる。
 また、ここで用いる水は、本実施の形態の目的に沿って、金属含有量の少ない水、例えば、イオン交換水等であることが好ましい。抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。また、抽出処理における両者の使用割合や、温度、時間等の条件は特に限定されないが、先の酸性の水溶液との接触処理の場合と同様で構わない。
 こうして得られた化合物及び/又は樹脂と溶媒とを含む溶液に混入しうる水分については、減圧蒸留等の操作を施すことにより容易に除去できる。また、必要により上記溶液に溶媒を加え、化合物及び/又は樹脂の濃度を任意の濃度に調整することができる。
 得られた化合物及び/又は樹脂と溶媒とを含む溶液から、化合物及び/又は樹脂を単離する方法は、特に限定されず、減圧除去、再沈殿による分離、及びそれらの組み合わせ等、公知の方法で行うことができる。必要に応じて、濃縮操作、ろ過操作、遠心分離操作、乾燥操作等の公知の処理を行うことができる。
[組成物]
 本実施形態の組成物は、上記式(1)で表される化合物、上記式(1)で表される化合物をモノマーとして得られる樹脂、上記式(2)で表される化合物及び上記式(2)で表される化合物をモノマーとして得られる樹脂からなる群より選ばれる1種以上を含有する。また、本実施形態の組成物は、リソグラフィー用膜形成組成物や光学部品形成組成物であることができる。
[化学増幅型レジスト用途向けリソグラフィー用膜形成組成物]
 本実施形態における化学増幅型レジスト用途向けリソグラフィー用膜形成組成物(以下、「レジスト組成物」ともいう。)は、上記式(1)で表される化合物、上記式(1)で表される化合物をモノマーとして得られる樹脂、上記式(2)で表される化合物及び上記式(2)で表される化合物をモノマーとして得られる樹脂からなる群より選ばれる1種以上をレジスト基材として含有する。
 また、本実施形態の組成物(レジスト組成物)は、溶媒をさらに含有することが好ましい。溶媒としては、特に限定されないが、例えば、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-プロピルエーテルアセテート、エチレングリコールモノ-n-ブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のエチレングリコールモノアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノ-n-プロピルエーテルアセテート、プロピレングリコールモノ-n-ブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル等のプロピレングリコールモノアルキルエーテル類;乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸n-アミル等の乳酸エステル類;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、酢酸n-アミル、酢酸n-ヘキシル、プロピオン酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシ-2-メチルプロピオン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メトキシ-3-メチルプロピオン酸ブチル、3-メトキシ-3-メチル酪酸ブチル、アセト酢酸メチル、ピルビン酸メチル、ピルビン酸エチル等の他のエステル類;トルエン、キシレン等の芳香族炭化水素類;2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロペンタノン(CPN)、シクロヘキサノン(CHN)等のケトン類;N,N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;γ-ラクトン等のラクトン類等を挙げることができるが、これらに特に限定はされない。これらの溶媒は、単独で又は2種以上を使用することができる。
 本実施形態で使用される溶媒は、安全溶媒であることが好ましく、より好ましくは、PGMEA、PGME、CHN、CPN、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル及び乳酸エチルから選ばれる少なくとも1種であり、さらに好ましくはPGMEA、PGME及びCHNから選ばれる少なくとも一種である。
 本実施形態において、固形成分の量と溶媒との量は、特に限定されないが、固形成分の量と溶媒との合計質量100質量%に対して、固形成分1~80質量%及び溶媒20~99質量%であることが好ましく、より好ましくは固形成分1~50質量%及び溶媒50~99質量%、さらに好ましくは固形成分2~40質量%及び溶媒60~98質量%であり、特に好ましくは固形成分2~10質量%及び溶媒90~98質量%である。
 本実施形態の組成物(レジスト組成物)は、他の固形成分として、酸発生剤(C)、架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)からなる群より選ばれる少なくとも一種をさらに含有してもよい。なお、本明細書において固形成分とは溶媒以外の成分をいう。
 ここで、酸発生剤(C)、架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)については公知のものが使用でき、特に限定されないが、例えば、国際公開第2013/024778号に記載されているものが好ましい。
[各成分の配合割合]
 本実施形態のレジスト組成物において、レジスト基材として用いる化合物及び/又は樹脂の含有量は、特に限定されないが、固形成分の全質量(レジスト基材、酸発生剤(C)、架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)等の任意に使用される成分を含む固形成分の総和、以下同様。)の50~99.4質量%であることが好ましく、より好ましくは55~90質量%、さらに好ましくは60~80質量%、特に好ましくは60~70質量%である。レジスト基材として用いる化合物及び/又は樹脂の含有量が上記範囲である場合、解像度が一層向上し、ラインエッジラフネス(LER)が一層小さくなる傾向にある。
 なお、レジスト基材として化合物と樹脂の両方を含有する場合、上記含有量は、両成分の合計量である。
[その他の成分(F)]
 本実施形態のレジスト組成物には、本発明の目的を阻害しない範囲で、必要に応じて、レジスト基材、酸発生剤(C)、架橋剤(G)及び酸拡散制御剤(E)以外の成分として、溶解促進剤、溶解制御剤、増感剤、界面活性剤、有機カルボン酸又はリンのオキソ酸若しくはその誘導体、熱及び/又は光硬化触媒、重合禁止剤、難燃剤、充填剤、カップリング剤、熱硬化性樹脂、光硬化性樹脂、染料、顔料、増粘剤、滑剤、消泡剤、レベリング剤、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等の各種添加剤を1種又は2種以上添加することができる。なお、本明細書において、その他の成分(F)を任意成分(F)ということがある。
 本実施形態のレジスト組成物において、レジスト基材(以下、「成分(A)」ともいう。)、酸発生剤(C)、架橋剤(G)、酸拡散制御剤(E)、任意成分(F)の含有量(成分(A)/酸発生剤(C)/架橋剤(G)/酸拡散制御剤(E)/任意成分(F))は、固形物基準の質量%で、
好ましくは50~99.4/0.001~49/0.5~49/0.001~49/0~49、
より好ましくは55~90/1~40/0.5~40/0.01~10/0~5、
さらに好ましくは60~80/3~30/1~30/0.01~5/0~1、
特に好ましくは60~70/10~25/2~20/0.01~3/0、である。
 各成分の配合割合は、その総和が100質量%になるように各範囲から選ばれる。各成分の配合割合が上記範囲である場合、感度、解像度、現像性等の性能に優れる傾向にある。
 本実施形態のレジスト組成物は、通常は、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば、孔径0.2μm程度のフィルター等でろ過することにより調製される。
 本実施形態のレジスト組成物は、本発明の目的を阻害しない範囲で、本実施形態の樹脂以外のその他の樹脂を含むことができる。その他の樹脂としては、特に限定されず、例えば、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン-無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体あるいはこれらの誘導体等が挙げられる。その他の樹脂の含有量は、特に限定されず、使用する成分(A)の種類に応じて適宜調節されるが、成分(A)100質量部に対して、30質量部以下であることが好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下、特に好ましくは0質量部である。
[レジスト組成物の物性等]
 本実施形態のレジスト組成物を用いて、スピンコートによりアモルファス膜を形成することができる。また、本実施形態のレジスト組成物は、一般的な半導体製造プロセスに適用することができる。上記式(1)及び/又は式(2)で表される化合物、これらをモノマーとして得られる樹脂の種類及び/又は用いる現像液の種類によって、ポジ型レジストパターン及びネガ型レジストパターンのいずれかを作り分けることができる。
 ポジ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、5Å/sec以下であることが好ましく、0.05~5Å/secであることがより好ましく、0.0005~5Å/secであることがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、溶解速度が0.0005Å/sec以上であると、解像性が向上する傾向にある。これは、上記式(1)で表される化合物及び/又は該化合物を構成成分として含む樹脂の露光前後の溶解性の変化により、現像液に溶解する露光部と、現像液に溶解しない未露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
 ネガ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、上記式(1)で表される化合物及び/又は該化合物を構成成分として含む樹脂のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
 上記溶解速度は、23℃にて、アモルファス膜を所定時間現像液に浸漬させ、その浸漬前後の膜厚を、目視、エリプソメーター又はQCM法等の公知の方法によって測定し決定できる。
 ポジ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、上記式(1)及び(2)で表される化合物及び/又は該化合物を構成成分として含む樹脂のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
 ネガ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における現像液に対する溶解速度は、5Å/sec以下が好ましく、0.05~5Å/secがより好ましく、0.0005~5Å/secがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、上記式(1)で表される化合物及び/又は該化合物を構成成分として含む樹脂の露光前後の溶解性の変化により、現像液に溶解する未露光部と、現像液に溶解しない露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
[非化学増幅型レジスト用途向けリソグラフィー用膜形成組成物]
 本実施形態の非化学増幅型レジスト用途向けリソグラフィー用膜形成組成物(以下、「感放射線性組成物」ともいう。)に含有させる成分(A)は、後述するジアゾナフトキノン光活性化合物(B)と併用し、g線、h線、i線、KrFエキシマレーザー、ArFエキシマレーザー、極端紫外線、電子線又はX線を照射することにより、現像液に易溶な化合物となるポジ型レジスト用基材として有用である。g線、h線、i線、KrFエキシマレーザー、ArFエキシマレーザー、極端紫外線、電子線又はX線により、成分(A)の性質は大きくは変化しないが、現像液に難溶なジアゾナフトキノン光活性化合物(B)が易溶な化合物に変化することで、現像工程によってレジストパターンを作り得る。
 本実施形態の感放射線性組成物に含有させる成分(A)は、比較的低分子量の化合物であることから、得られたレジストパターンのラフネスは非常に小さい。また、上記式(1)中、R~Rからなる群より選択される少なくとも1つがヨウ素原子を含む基であることが好ましく、上記式(2)中、R0A、R1A及びR2Aからなる群より選択される少なくとも1つがヨウ素原子を含む基であることが好ましい。本実施形態の感放射線性組成物は、このような好ましい態様であるヨウ素原子を含む基を有する成分(A)を適用した場合は、電子線、極端紫外線(EUV)、X線等の放射線に対する吸収能を増加させ、その結果、感度を高めることが可能となり好ましい。
 本実施形態の感放射線性組成物に含有させる成分(A)のガラス転移温度は、好ましくは100℃以上、より好ましくは120℃以上、さらに好ましくは140℃以上、特に好ましくは150℃以上である。成分(A)のガラス転移温度の上限値は、特に限定されないが、例えば、400℃である。成分(A)のガラス転移温度が上記範囲内であることにより、半導体リソグラフィープロセスにおいて、パターン形状を維持しうる耐熱性を有し、高解像度等の性能が向上する傾向にある。
 本実施形態の感放射線性組成物に含有させる成分(A)のガラス転移温度の示差走査熱量分析により求めた結晶化発熱量は20J/g未満であるのが好ましい。また、(結晶化温度)-(ガラス転移温度)は好ましくは70℃以上、より好ましくは80℃以上、さらに好ましくは100℃以上、特に好ましくは130℃以上である。結晶化発熱量が20J/g未満、又は(結晶化温度)-(ガラス転移温度)が上記範囲内であると、感放射線性組成物をスピンコートすることにより、アモルファス膜を形成しやすく、かつレジストに必要な成膜性が長期に渡り保持でき、解像性を向上することができる傾向にある。
 本実施形態において、上記結晶化発熱量、結晶化温度及びガラス転移温度は、島津製作所製DSC/TA-50WSを用いた示差走査熱量分析により求めることができる。試料約10mgをアルミニウム製非密封容器に入れ、窒素ガス気流中(50mL/分)昇温速度20℃/分で融点以上まで昇温する。急冷後、再び窒素ガス気流中(30mL/分)昇温速度20℃/分で融点以上まで昇温する。さらに急冷後、再び窒素ガス気流中(30mL/分)昇温速度20℃/分で400℃まで昇温する。ステップ状に変化したベースラインの段差の中点(比熱が半分に変化したところ)の温度をガラス転移温度(Tg)、その後に現れる発熱ピークの温度を結晶化温度とする。発熱ピークとベースラインに囲まれた領域の面積から発熱量を求め、結晶化発熱量とする。
 本実施形態の感放射線性組成物に含有させる成分(A)は、常圧下、100以下、好ましくは120℃以下、より好ましくは130℃以下、さらに好ましくは140℃以下、特に好ましくは150℃以下において、昇華性が低いことが好ましい。昇華性が低いとは、熱重量分析において、所定温度で10分保持した際の重量減少が10%以下、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1%以下、特に好ましくは0.1%以下であることを示す。昇華性が低いことにより、露光時のアウトガスによる露光装置の汚染を防止することができる。また低ラフネスで良好なパターン形状を得ることができる。
 本実施形態の感放射線性組成物に含有させる成分(A)は、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン(CHN)、シクロペンタノン(CPN)、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル及び乳酸エチルからなる群より選ばれ、かつ、成分(A)に対して最も高い溶解能を示す溶媒に、23℃で、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上溶解する。特に好ましくは、PGMEA、PGME、CHNからなる群より選ばれ、かつ、(A)レジスト基材に対して最も高い溶解能を示す溶媒に、23℃で、20質量%以上、特に好ましくはPGMEAに対して、23℃で、20質量%以上溶解する。上記条件を満たしていることにより、実生産における半導体製造工程での使用が容易となる。
[ジアゾナフトキノン光活性化合物(B)]
 本実施形態の感放射線性組成物に含有させるジアゾナフトキノン光活性化合物(B)は、ポリマー性及び非ポリマー性ジアゾナフトキノン光活性化合物を含む、ジアゾナフトキノン物質であり、一般にポジ型レジスト組成物において、感光性成分(感光剤)として用いられているものであれば特に制限なく、1種又は2種以上を任意に選択して用いることができる。
 成分(B)としては、ナフトキノンジアジドスルホン酸クロライドやベンゾキノンジアジドスルホン酸クロライド等と、これら酸クロライドと縮合反応可能な官能基を有する低分子化合物又は高分子化合物とを反応させることによって得られた化合物が好ましいものである。ここで、酸クロライドと縮合可能な官能基としては、特に限定されないが、例えば、水酸基、アミノ基等が挙げられるが、特に水酸基が好適である。水酸基を含む酸クロライドと縮合可能な化合物としては、特に限定されないが、例えばハイドロキノン、レゾルシン、2、4-ジヒドロキシベンゾフェノン、2、3、4-トリヒドロキシベンゾフェノン、2、4、6-トリヒドロキシベンゾフェノン、2、4、4’-トリヒドロキシベンゾフェノン、2、3、4、4’-テトラヒドロキシベンゾフェノン、2、2’、4、4’-テトラヒドロキシベンゾフェノン、2、2’、3、4、6’-ペンタヒドロキシベンゾフェノン等のヒドロキシベンゾフェノン類、ビス(2、4-ジヒドロキシフェニル)メタン、ビス(2、3、4-トリヒドロキシフェニル)メタン、ビス(2、4-ジヒドロキシフェニル)プロパン等のヒドロキシフェニルアルカン類、4、4’、3”、4”-テトラヒドロキシ-3、5、3’、5’-テトラメチルトリフェニルメタン、4、4’、2”、3”、4”-ペンタヒドロキシ-3、5、3’、5’-テトラメチルトリフェニルメタン等のヒドロキシトリフェニルメタン類等を挙げることができる。
 また、ナフトキノンジアジドスルホン酸クロライドやベンゾキノンジアジドスルホン酸クロライド等の酸クロライドとしては、例えば、1、2-ナフトキノンジアジド-5-スルフォニルクロライド、1、2-ナフトキノンジアジド-4-スルフォニルクロライド等が好ましいものとして挙げられる。
 本実施形態の感放射線性組成物は、例えば、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば、孔径0.2μm程度のフィルター等でろ過することにより調製されることが好ましい。
[感放射線性組成物の特性]
 本実施形態の感放射線性組成物は、スピンコートによりアモルファス膜を形成することができる。また本実施形態の感放射線性組成物は、一般的な半導体製造プロセスに適用することができる。用いる現像液の種類によって、ポジ型レジストパターン及びネガ型レジストパターンのいずれかを作り分けることができる。
 ポジ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、5Å/sec以下であることが好ましく、0.05~5Å/secであることがより好ましく、0.0005~5Å/secであることがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、溶解速度が0.0005Å/sec以上であると、解像性が向上する傾向にある。これは、上記式(1)及び(2)で表される化合物及び/又は該化合物を構成成分として含む樹脂の露光前後の溶解性の変化により、現像液に溶解する露光部と、現像液に溶解しない未露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
 ネガ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、上記式(1)及び(2)で表される化合物及び/又は該化合物を構成成分として含む樹脂のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
 上記溶解速度は、23℃にて、アモルファス膜を所定時間現像液に浸漬させ、その浸漬前後の膜厚を、目視、エリプソメーター又はQCM法等の公知の方法によって測定し決定できる。
 ポジ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により照射した後、又は、20~500℃で加熱した後の露光した部分の、23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましく、10~10000Å/secであることがより好ましく、100~1000Å/secであることがさらに好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10000Å/sec以下の溶解速度を有すると、解像性が向上する場合もある。これは、上記式(1)及び(2)で表される化合物及び/又は該化合物を構成成分として含む樹脂のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある傾向にある。
 ネガ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により照射した後、又は、20~500℃で加熱した後の露光した部分の、23℃における現像液に対する溶解速度は、5Å/sec以下であることが好ましく、0.05~5Å/secであることがより好ましく、0.0005~5Å/secであることがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、溶解速度が0.0005Å/sec以上であると、解像性が向上する場合もある。これは、上記式(1)及び(2)で表される化合物及び/又は該化合物を構成成分として含む樹脂の露光前後の溶解性の変化により、現像液に溶解する未露光部と、現像液に溶解しない露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある傾向にある。
[各成分の配合割合]
 本実施形態の感放射線性組成物において、成分(A)の含有量は、固形成分全重量(成分(A)、ジアゾナフトキノン光活性化合物(B)及びその他の成分(D)等の任意に使用される固形成分の総和、以下同様。)に対して、好ましくは1~99質量%であり、より好ましくは5~95質量%、さらに好ましくは10~90質量%、特に好ましくは25~75質量%である。本実施形態の感放射線性組成物は、成分(A)の含有量が上記範囲内であると、高感度でラフネスの小さなパターンを得ることができる傾向にある。
 本実施形態の感放射線性組成物において、ジアゾナフトキノン光活性化合物(B)の含有量は、固形成分全重量(成分(A)、ジアゾナフトキノン光活性化合物(B)及びその他の成分(D)等の任意に使用される固形成分の総和、以下同様。)に対して、好ましくは1~99質量%であり、より好ましくは5~95質量%、さらに好ましくは10~90質量%、特に好ましくは25~75質量%である。本実施の形態の感放射線性組成物は、ジアゾナフトキノン光活性化合物(B)の含有量が上記範囲内であると、高感度でラフネスの小さなパターンを得ることができる傾向にある。
[その他の成分(D)]
 本実施形態の感放射線性組成物には、本発明の目的を阻害しない範囲で、必要に応じて、成分(A)及びジアゾナフトキノン光活性化合物(B)以外の成分として、酸発生剤、架橋剤、酸拡散制御剤、溶解促進剤、溶解制御剤、増感剤、界面活性剤、有機カルボン酸又はリンのオキソ酸若しくはその誘導体、熱及び/又は光硬化触媒、重合禁止剤、難燃剤、充填剤、カップリング剤、熱硬化性樹脂、光硬化性樹脂、染料、顔料、増粘剤、滑剤、消泡剤、レベリング剤、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等の各種添加剤を1種又は2種以上添加することができる。なお、本明細書において、その他の成分(D)を任意成分(D)ということがある。
 本実施形態の感放射線性組成物において、各成分の配合割合(成分(A)/ジアゾナフトキノン光活性化合物(B)/任意成分(D))は、固形成分基準の質量%で、
好ましくは1~99/99~1/0~98、
より好ましくは5~95/95~5/0~49、
さらに好ましくは10~90/90~10/0~10、
よりさらに好ましくは20~80/80~20/0~5、
さらにより好ましくは25~75/75~25/0、である。
各成分の配合割合は、その総和が100質量%になるように各範囲から選ばれる。本実施形態の感放射線性組成物は、各成分の配合割合を上記範囲にすると、ラフネスに加え、感度、解像度等の性能に優れる傾向にある。
 本実施形態の感放射線性組成物は、本発明の目的を阻害しない範囲で、本実施形態以外のその他の樹脂を含んでもよい。その他の樹脂としては、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン-無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体あるいはこれらの誘導体等が挙げられる。これらの樹脂の配合量は、使用する成分(A)の種類に応じて適宜調節されるが、成分(A)100質量部に対して、30質量部以下であることが好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下、特に好ましくは0質量部である。
[レジストパターンの形成方法]
 本実施形態によるレジストパターンの形成方法は、上述した本実施形態のレジスト組成物又は感放射線性組成物を用いて基板上にフォトレジスト層を形成した後、上記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む。具体的には、基板上にレジスト膜を形成する工程と、形成されたレジスト膜を露光する工程と、上記レジスト膜を現像してレジストパターンを形成する工程とを備える。本実施形態におけるレジストパターンは多層プロセスにおける上層レジストとして形成することもできる。
 レジストパターンを形成する方法としては、特に限定されないが、例えば、以下の方法が挙げられる。まず、従来公知の基板上に上記本実施形態のレジスト組成物又は感放射線性組成物を、回転塗布、流延塗布、ロール塗布等の塗布手段によって塗布することによりレジスト膜を形成する。従来公知の基板とは、特に限定されず、例えば、電子部品用の基板や、これに所定の配線パターンが形成されたもの等が挙げられる。より具体的には、シリコンウェハー、銅、クロム、鉄、アルミニウム等の金属製の基板や、ガラス基板等が挙げられる。配線パターンの材料としては、例えば銅、アルミニウム、ニッケル、金等が挙げられる。また、必要に応じて、前述基板上に無機系及び/又は有機系の膜が設けられたものであってもよい。無機系の膜としては、無機反射防止膜(無機BARC)が挙げられる。有機系の膜としては、有機反射防止膜(有機BARC)が挙げられる。基板上ではヘキサメチレンジシラザン等による表面処理を行ってもよい。
 次に、必要に応じて、レジスト組成物又は感放射線性組成物を塗布した基板を加熱する。加熱条件は、レジスト組成物又は感放射線組成物の配合組成等により変わるが、20~250℃であることが好ましく、より好ましくは20~150℃である。加熱することによって、レジストの基板に対する密着性が向上する傾向にあり好ましい。次いで、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線、及びイオンビームからなる群から選ばれるいずれかの放射線により、レジスト膜を所望のパターンに露光する。露光条件等は、レジスト組成物又は感放射線性組成物の配合組成等に応じて適宜選定される。本実施形態においては、露光における高精度の微細パターンを安定して形成するために、放射線照射後に加熱するのが好ましい。加熱条件は、レジスト組成物又は感放射線性組成物の配合組成等により変わるが、20~250℃であることが好ましく、より好ましくは20~150℃である。
 次いで、露光されたレジスト膜を現像液で現像することにより、所定のレジストパターンを形成する。上記現像液としては、使用する式(1)若しくは式(2)で表される化合物又は式(1)若しくは式(2)で表される化合物をモノマーとして得られる樹脂に対して溶解度パラメーター(SP値)の近い溶剤を選択することが好ましく、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤等の極性溶剤、炭化水素系溶剤又はアルカリ水溶液を用いることができる。
 ケトン系溶剤としては、例えば、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、アセトン、4-ヘプタノン、1-ヘキサノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、イソホロン、プロピレンカーボネート等が挙げられる。
 エステル系溶剤としては、例えば、酢酸メチル、酢酸ブチル、酢酸エチル、酢酸イソプロピル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル等が挙げられる。
 アルコール系溶剤としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール(2-プロパノール)、n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソブチルアルコール、n-ヘキシルアルコール、4-メチル-2-ペンタノール、n-ヘプチルアルコール、n-オクチルアルコール、n-デカノール等のアルコールや、エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤や、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール等のグリコールエーテル系溶剤等が挙げられる。
 エーテル系溶剤としては、例えば、上記グリコールエーテル系溶剤の他、ジオキサン、テトラヒドロフラン等が挙げられる。
 アミド系溶剤としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド、1,3-ジメチル-2-イミダゾリジノン等が挙げられる。
 炭化水素系溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素系溶剤、ペンタン、ヘキサン、オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
 上記の溶剤は、複数混合してもよいし、性能を有する範囲内で、上記以外の溶剤や水と混合し使用してもよい。但し、本発明の効果を十二分に奏するためには、現像液全体としての含水率が70質量%未満であることが好ましく、50質量%未満であることがより好ましく、30質量%未満であることがさらに好ましく、10質量%未満であることがよりさらに好ましく、実質的に水分を含有しないことがさらにより好ましい。すなわち、現像液に対する有機溶剤の含有量は、現像液の全量に対して、30質量%以上100質量%以下であることが好ましく、50質量%以上100質量%以下であることがより好ましく、70質量%以上100質量%以下であることがさらに好ましく、90質量%以上100質量%以下であることがよりさらに好ましく、95質量%以上100質量%以下であることがさらにより好ましい。
 アルカリ水溶液としては、例えば、モノ-、ジ-あるいはトリアルキルアミン類、モノ-、ジ-あるいはトリアルカノールアミン類、複素環式アミン類、テトラメチルアンモニウムヒドロキシド(TMAH)、コリン等のアルカリ性化合物が挙げられる。
 特に、現像液としては、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤から選択される少なくとも1種類の溶剤を含有する現像液が、レジストパターンの解像性やラフネス等のレジスト性能を改善するため好ましい。
 現像液の蒸気圧は、20℃において、5kPa以下であることが好ましく、3kPa以下であることがさらに好ましく、2kPa以下であることが特に好ましい。現像液の蒸気圧が5kPa以下であることにより、現像液の基板上あるいは現像カップ内での蒸発が抑制され、ウェハ面内の温度均一性が向上し、結果としてウェハ面内の寸法均一性が良化する傾向にある。
 20℃において5kPa以下の蒸気圧を有する具体的な現像液の例としては、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、4-ヘプタノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルイソブチルケトン等のケトン系溶剤;酢酸ブチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル等のエステル系溶剤;n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソブチルアルコール、n-ヘキシルアルコール、4-メチル-2-ペンタノール、n-ヘプチルアルコール、n-オクチルアルコール、n-デカノール等のアルコール系溶剤;エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤や;エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール等のグリコールエーテル系溶剤;テトラヒドロフラン等のエーテル系溶剤;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドのアミド系溶剤;トルエン、キシレン等の芳香族炭化水素系溶剤;オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
 特に好ましい範囲である20℃において2kPa以下の蒸気圧を有する具体的な現像液の例としては、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、4-ヘプタノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン等のケトン系溶剤;酢酸ブチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸エチル、乳酸ブチル、乳酸プロピル等のエステル系溶剤;n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソブチルアルコール、n-ヘキシルアルコール、4-メチル-2-ペンタノール、n-ヘプチルアルコール、n-オクチルアルコール、n-デカノール等のアルコール系溶剤;エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤;エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール等のグリコールエーテル系溶剤;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドのアミド系溶剤;キシレン等の芳香族炭化水素系溶剤;オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
 現像液には、必要に応じて界面活性剤を適当量添加することができる。界面活性剤としては特に限定されないが、例えば、イオン性や非イオン性のフッ素系及び/又はシリコン系界面活性剤等を用いることができる。これらのフッ素及び/又はシリコン系界面活性剤として、例えば、特開昭62-36663号公報、特開昭61-226746号公報、特開昭61-226745号公報、特開昭62-170950号公報、特開昭63-34540号公報、特開平7-230165号公報、特開平8-62834号公報、特開平9-54432号公報、特開平9-5988号公報、米国特許第5405720号明細書、同5360692号明細書、同5529881号明細書、同5296330号明細書、同5436098号明細書、同5576143号明細書、同5294511号明細書、同5824451号明細書記載の界面活性剤を挙げることができ、好ましくは、非イオン性の界面活性剤である。非イオン性の界面活性剤としては特に限定されないが、フッ素系界面活性剤又はシリコン系界面活性剤を用いることがさらに好ましい。
 界面活性剤の使用量は現像液の全量に対して、通常0.001~5質量%、好ましくは0.005~2質量%、さらに好ましくは0.01~0.5質量%である。
 現像方法としては、例えば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出しつづける方法(ダイナミックディスペンス法)等を適用することができる。パターンの現像を行なう時間には特に制限はないが、好ましくは10秒~90秒である。
 また、現像を行う工程の後に、他の溶媒に置換しながら、現像を停止する工程を実施してもよい。
 現像の後には、有機溶剤を含むリンス液を用いて洗浄する工程を含むことが好ましい。
 現像後のリンス工程に用いるリンス液としては、架橋により硬化したレジストパターンを溶解しなければ特に制限はなく、一般的な有機溶剤を含む溶液又は水を使用することができる。上記リンス液としては、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤から選択される少なくとも1種類の有機溶剤を含有するリンス液を用いることが好ましい。より好ましくは、現像の後に、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有するリンス液を用いて洗浄する工程を行う。さらにより好ましくは、現像の後に、アルコール系溶剤又はエステル系溶剤を含有するリンス液を用いて洗浄する工程を行う。さらにより好ましくは、現像の後に、1価アルコールを含有するリンス液を用いて洗浄する工程を行う。特に好ましくは、現像の後に、炭素数5以上の1価アルコールを含有するリンス液を用いて洗浄する工程を行う。パターンのリンスを行なう時間には特に制限はないが、好ましくは10秒~90秒である。
 ここで、現像後のリンス工程で用いられる1価アルコールとしては、直鎖状、分岐状、環状の1価アルコールが挙げられ、具体的には、1-ブタノール、2-ブタノール、3-メチル-1-ブタノール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、1-ヘキサノール、4-メチル-2-ペンタノール、1-ヘプタノール、1-オクタノール、2-ヘキサノール、シクロペンタノール、2-ヘプタノール、2-オクタノール、3-ヘキサノール、3-ヘプタノール、3-オクタノール、4-オクタノール等を用いることができ、特に好ましい炭素数5以上の1価アルコールとしては、1-ヘキサノール、2-ヘキサノール、4-メチル-2-ペンタノール、1-ペンタノール、3-メチル-1-ブタノール等が挙げられる。
 上記各成分は、複数混合してもよいし、上記以外の有機溶剤と混合し使用してもよい。
 リンス液中の含水率は、10質量%以下であることが好ましく、より好ましくは5質量%以下、特に好ましくは3質量%以下である。含水率を10質量%以下にすることで、より良好な現像特性を得ることができる傾向にある。
 現像後に用いるリンス液の蒸気圧は、20℃において0.05kPa以上、5kPa以下であることが好ましく、0.1kPa以上、5kPa以下であることがより好ましく、0.12kPa以上、3kPa以下であることがさらに好ましい。リンス液の蒸気圧を0.05kPa以上、5kPa以下にすることにより、ウェハ面内の温度均一性がより向上し、さらにはリンス液の浸透に起因した膨潤がより抑制され、ウェハ面内の寸法均一性がより良化する傾向にある。
 リンス液には、界面活性剤を適当量添加して使用することもできる。
 リンス工程においては、現像を行ったウェハを上記の有機溶剤を含むリンス液を用いて洗浄処理する。洗浄処理の方法は特に限定されないが、たとえば、一定速度で回転している基板上にリンス液を塗出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面にリンス液を噴霧する方法(スプレー法)等を適用することができ、この中でも回転塗布方法で洗浄処理を行い、洗浄後に基板を2000rpm~4000rpmの回転数で回転させ、リンス液を基板上から除去することが好ましい。
 レジストパターンを形成した後、エッチングすることによりパターン配線基板が得られる。エッチングの方法はプラズマガスを使用するドライエッチング及びアルカリ溶液、塩化第二銅溶液、塩化第二鉄溶液等によるウェットエッチング等の公知の方法で行うことができる。
 レジストパターンを形成した後、めっきを行うことも出来る。上記めっき法としては、例えば、銅めっき、はんだめっき、ニッケルめっき、金めっき等が挙げられる。
 エッチング後の残存レジストパターンは有機溶剤で剥離することができる。上記有機溶剤として、PGMEA(プロピレングリコールモノメチルエーテルアセテート),PGME(プロピレングリコールモノメチルエーテル),EL(乳酸エチル)等が挙げられる。上記剥離方法としては、例えば、浸漬方法、スプレイ方式等が挙げられる。また、レジストパターンが形成された配線基板は、多層配線基板でもよく、小径スルーホールを有していてもよい。
 本実施形態において得られる配線基板は、レジストパターン形成後、金属を真空中で蒸着し、その後レジストパターンを溶液で溶かす方法、すなわちリフトオフ法により形成することもできる。
[下層膜用途向けリソグラフィー用膜形成組成物]
 本実施形態の下層膜用途向けリソグラフィー用膜形成組成物(以下、「下層膜形成材料」ともいう。)は、上記式(1)表される化合物、上記式(1)表される化合物をモノマーとして得られる樹脂、式(2)で表される化合物及び式(2)で表される化合物をモノマーとして得られる樹脂からなる群より選ばれる少なくとも1種の物質を含有する。本実施形態において上記物質は塗布性及び品質安定性の点から、下層膜形成材料中、1~100質量%であることが好ましく、10~100質量%であることがより好ましく、50~100質量%であることがさらに好ましく、100質量%であることが特に好ましい。
 本実施形態の下層膜形成材料は、湿式プロセスへの適用が可能であり、耐熱性及びエッチング耐性に優れる。さらに、本実施形態の下層膜形成材料は上記物質を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れた下層膜を形成することができる。さらに、本実施形態の下層膜形成材料はレジスト層との密着性にも優れるので、優れたレジストパターンを得ることができる。なお、本実施形態の下層膜形成材料は、本発明の効果が損なわれない範囲において、既に知られているリソグラフィー用下層膜形成材料等を含んでいてもよい。
[溶媒]
 本実施形態の下層膜形成材料は、溶媒を含有してもよい。本実施形態の下層膜形成材料に用いられる溶媒としては、上述した物質が少なくとも溶解するものであれば、公知のものを適宜用いることができる。
 溶媒の具体例としては、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のセロソルブ系溶媒;乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒;メタノール、エタノール、イソプロパノール、1-エトキシ-2-プロパノール等のアルコール系溶媒;トルエン、キシレン、アニソール等の芳香族系炭化水素等が挙げられる。これらの溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
 上記溶媒の中で、安全性の点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、ヒドロキシイソ酪酸メチル、アニソールが特に好ましい。
 溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、上記下層膜形成材料100質量部に対して、100~10000質量部であることが好ましく、200~5000質量部であることがより好ましく、200~1000質量部であることがさらに好ましい。
[架橋剤]
 本実施形態の下層膜形成材料は、インターミキシングを抑制する等の観点から、必要に応じて架橋剤を含有していてもよい。本実施形態で使用可能な架橋剤は特に限定されないが、例えば、国際公開第2013/024779号に記載のものを用いることができる。
 本実施形態において使用可能な架橋剤の具体例としては、例えば、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、アクリレート化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物、アジド化合物等が挙げられるが、これらに特に限定されない。これらの架橋剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。これらの中でもベンゾオキサジン化合物、エポキシ化合物又はシアネート化合物が好ましく、エッチング耐性向上の観点から、ベンゾオキサジン化合物がより好ましい。
 前記フェノール化合物としては、公知のものが使用できる。例えば、フェノール類としては、フェノールの他、クレゾール類、キシレノール類等のアルキルフェノール類、ヒドロキノン等の多価フェノール類、ナフトール類、ナフタレンジオール類等の多環フェノール類、ビスフェノールA、ビスフェノールF等のビスフェノール類、あるいはフェノールノボラック、フェノールアラルキル樹脂等の多官能性フェノール化合物等が挙げられる。中でも、耐熱性及び溶解性の点から、アラルキル型フェノール樹脂が好ましい。
 前記エポキシ化合物としては、公知のものが使用でき、1分子中にエポキシ基を2個以上有するもの中から選択される。例えば、ビスフェノールA、ビスフェノールF、3,3',5,5’-テトラメチル-ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、2,2' -ビフェノール、3,3',5,5’-テトラメチル-4,4’-ジヒドロキシビフェノール、レゾルシン、ナフタレンジオール類等の2価のフェノール類のエポキシ化物、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、トリス(2,3-エポキシプロピル)イソシアヌレート、トリメチロールメタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリエチロールエタントリグリシジルエーテル、フェノールノボラック、o-クレゾールノボラック等の3価以上のフェノール類のエポキシ化物、ジシクロペンタジエンとフェノール類の共縮合樹脂のエポキシ化物、フェノール類とパラキシリレンジクロライド等から合成されるフェノールアラルキル樹脂類のエポキシ化物、フェノール類とビスクロロメチルビフェニル等から合成されるビフェニルアラルキル型フェノール樹脂のエポキシ化物、ナフトール類とパラキシリレンジクロライド等から合成されるナフトールアラルキル樹脂類のエポキシ化物等が挙げられる。これらのエポキシ樹脂は、単独で用いてもよく、2種以上を併用してもよい。中でも、耐熱性と溶解性の観点から、フェノールアラルキル樹脂類、ビフェニルアラルキル樹脂類から得られるエポキシ樹脂等の常温で固体状エポキシ樹脂が好ましい。
 前記シアネート化合物としては、1分子中に2個以上のシアネート基を有する化合物であれば特に制限なく、公知のものを使用することができる。本実施形態において、好ましいシアネート化合物としては、1分子中に2個以上の水酸基を有する化合物の水酸基をシアネート基に置換した構造のものが挙げられる。また、シアネート化合物は、芳香族基を有するものが好ましく、シアネート基が芳香族基に直結した構造のものを好適に使用することができる。このようなシアネート化合物としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールM、ビスフェノールP、ビスフェノールE、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエンノボラック樹脂、テトラメチルビスフェノールF、ビスフェノールAノボラック樹脂、臭素化ビスフェノールA、臭素化フェノールノボラック樹脂、3官能フェノール、4官能フェノール、ナフタレン型フェノール、ビフェニル型フェノール、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂、ジシクロペンタジエンアラルキル樹脂、脂環式フェノール、リン含有フェノール等の水酸基をシアネート基に置換した構造のものが挙げられる。これらのシアネート化合物は、単独でまたは2種以上を適宜組み合わせて使用してもよい。また、上記したシアネート化合物は、モノマー、オリゴマー及び樹脂のいずれの形態であってもよい。
 前記アミノ化合物としては、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4'-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン、O-トリジン、m-トリジン、4,4’-ジアミノベンズアニリド、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4-アミノフェニル-4-アミノベンゾエート、2-(4-アミノフェニル)-6-アミノベンゾオキサゾール等が例示される。さらに、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4'-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル等の芳香族アミン類、ジアミノシクロヘキサン、ジアミノジシクロヘキシルメタン、ジメチルージアミノジシクロヘキシルメタン、テトラメチルージアミノジシクロヘキシルメタン、ジアミノジシクロヘキシルプロパン、ジアミノビシクロ[2.2.1]ヘプタン、ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、3(4),8(9)-ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン、1,3-ビスアミノメチルシクロヘキサン、イソホロンジアミン等の脂環式アミン類、エチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族アミン類等が挙げられる。
 前記ベンゾオキサジン化合物としては、二官能性ジアミン類と単官能フェノール類から得られるP-d型ベンゾオキサジン、単官能性ジアミン類と二官能性フェノール類から得られるF-a型ベンゾオキサジン等が挙げられる。
 前記メラミン化合物の具体例としては、例えば、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1~6個のメチロール基がメトキシメチル化した化合物又はその混合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1~6個がアシロキシメチル化した化合物又はその混合物などが挙げられる。
 前記グアナミン化合物の具体例としては、例えば、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がアシロキシメチル化した化合物又はその混合物などが挙げられる。
 前記グリコールウリル化合物の具体例としては、例えば、テトラメチロールグリコールウリル、テトラメトキシグリコールウリル、テトラメトキシメチルグリコールウリル、テトラメチロールグリコールウリルのメチロール基の1~4個がメトキシメチル化した化合物又はその混合物、テトラメチロールグリコールウリルのメチロール基の1~4個がアシロキシメチル化した化合物又はその混合物などが挙げられる。
 前記ウレア化合物の具体例としては、例えば、テトラメチロールウレア、テトラメトキシメチルウレア、テトラメチロールウレアの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルウレアなどが挙げられる。
 また、本実施形態においては、架橋性向上の観点から、少なくとも1つのアリル基を有する架橋剤を用いてもよい。少なくとも1つのアリル基を有する架橋剤の具体例としては、2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、ビス(3-アリル-4-ヒドロキシフェニル)スルホン、ビス(3-アリル-4-ヒドロキシフェニル)スルフィド、ビス(3-アリル-4-ヒドロキシフェニル)エ-テル等のアリルフェノール類、2,2-ビス(3-アリル-4-シアナトフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-シアナトフェニル)プロパン、ビス(3-アリル-4-シアナトシフェニル)スルホン、ビス(3-アリル-4-シアナトフェニル)スルフィド、ビス(3-アリル-4-シアナトフェニル)エ-テル等のアリルシアネート類、ジアリルフタレート、ジアリルイソフタレート、ジアリルテレフタレート、トリアリルイソシアヌレート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールアリルエーテル等が挙げられるが、これら例示されたものに限定されるものではない。これらは単独でも、2種類以上の混合物であってもよい。これらの中でも、ビスマレイミド化合物及び/又は付加重合型マレイミド樹脂との相溶性に優れるという観点から、2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、ビス(3-アリル-4-ヒドロキシフェニル)スルホン、ビス(3-アリル-4-ヒドロキシフェニル)スルフィド、ビス(3-アリル-4-ヒドロキシフェニル)エ-テル等のアリルフェノール類が好ましい。
 下層膜形成材料中の架橋剤の含有量は、特に限定されないが、下層膜形成材料100質量部に対して、0.1~100質量部であることが好ましく、5~50質量部であることがより好ましく、さらに好ましくは10~40質量部である。架橋剤の含有量を上記範囲にすることで、レジスト層とのミキシング現象の発生が抑制される傾向にあり、また、反射防止効果が高められ、架橋後の膜形成性が高められる傾向にある。
[架橋促進剤]
 本実施形態の下層膜形成材料には、必要に応じて架橋、硬化反応を促進させるための架橋促進剤を用いることができる。
 前記架橋促進剤としては、架橋、硬化反応を促進させるものであれば、特に限定されないが、例えば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等が挙げられる。これらの架橋促進剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。これらの中でもイミダゾール類又は有機ホスフィン類が好ましく、架橋温度の低温化の観点から、イミダゾール類がより好ましい。
 前記架橋促進剤としては、以下に限定されないが、例えば、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの三級アミン、2-メチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-へプタデシルイミダゾール、2,4,5-トリフェニルイミダゾールなどのイミダゾール類、トリブチルホスフィン、メチルジフェニルホスフイン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィンなどの有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレートなどのテトラ置換ホスホニウム・テトラ置換ボレート、2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレートなどのテトラフェニルボロン塩などが挙げられる。
 架橋促進剤の配合量としては、通常、下層膜形成材料全体を100質量部とした場合に、好ましくは0.1~10質量部であり、より好ましくは、制御のし易さ及び経済性の観点から0.1~5質量部であり、さらに好ましくは0.1~3質量部である。
[ラジカル重合開始剤]
 本実施形態の下層膜形成材料には、必要に応じてラジカル重合開始剤を配合することができる。ラジカル重合開始剤としては、光によりラジカル重合を開始させる光重合開始剤であってもよいし、熱によりラジカル重合を開始させる熱重合開始剤であってもよい。
 このようなラジカル重合開始剤としては、特に制限されず、従来用いられているものを適宜採用することができる。例えば、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジメチルケタール、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチルプロパン-1-オン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のケトン系光重合開始剤、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセテートパーオキサイド、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、1,1-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、イソブチリルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシン酸パーオキサイド、m-トルオイルベンゾイルパーオキサイド、ベンゾイルパーオキサイド、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジ-2-エトキシヘキシルパーオキシジカーボネート、ジ-3-メトキシブチルパーオキシジカーボネート、ジ-s-ブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、α,α’-ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノオエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサノエート、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシマレート、t-ブチルパーオキシ-3,5,5-トリメトルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシアセテート、t-ブチルパーオキシ-m-トルイルベンゾエート、t-ブチルパーオキシベンゾエート、ビス(t-ブチルパーオキシ)イソフタレート、2,5-ジメチル-2,5-ビス(m-トルイルパーオキシ)ヘキサン、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアリルモノカーボネート、t-ブチルトリメチルシリルパーオキサイド、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,3-ジメチル-2,3-ジフェニルブタン等の有機過酸化物系重合開始剤が挙げられる。
 また、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス(2-メチル-N-フェニルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[N-(4-クロロフェニル)-2-メチルプロピオンアミジン]ジヒドリドクロリド、2,2’-アゾビス[N-(4-ヒドロフェニル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(フェニルメチル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(2-プロペニル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[N-(2-ヒドロキシエチル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(5-ヒドロキシ-3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド]、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)エチル]プロピオンアミド]、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(2-メチルプロピオンアミド)、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス(2-メチルプロパン)、ジメチル-2,2-アゾビス(2-メチルプロピオネート)、4,4’-アゾビス(4-シアノペンタン酸)、2,2’-アゾビス[2-(ヒドロキシメチル)プロピオニトリル]等のアゾ系重合開始剤も挙げられる。本実施形態におけるラジカル重合開始剤としては、これらのうちの1種を単独で用いても2種以上を組み合わせて用いてもよく、他の公知の重合開始剤をさらに組み合わせて用いてもよい。
 前記ラジカル重合開始剤の含有量としては、化学量論的に必要な量であればよいが、前記下層膜形成材料を100質量部とした場合に0.05~25質量部であることが好ましく、0.1~10質量部であることがより好ましい。ラジカル重合開始剤の含有量が0.05質量部以上である場合には、硬化が不十分となることを防ぐことができる傾向にあり、他方、ラジカル重合開始剤の含有量が25質量部以下である場合には、下層膜形成材料の室温での長期保存安定性が損なわれることを防ぐことができる傾向にある。
[酸発生剤]
 本実施形態の下層膜形成材料は、熱による架橋反応をさらに促進させる等の観点から、必要に応じて酸発生剤を含有していてもよい。酸発生剤としては、熱分解によって酸を発生するもの、光照射によって酸を発生するもの等が知られているが、いずれのものも使用することができる。例えば、国際公開第2013/024779号に記載のものを用いることができる。
 本実施形態の下層膜形成材料において、酸発生剤の含有量は、特に限定されないが、下層膜形成材料100質量部に対して、0.1~50質量部であることが好ましく、より好ましくは0.5~40質量部である。上記の好ましい範囲にすることで、酸発生量が多くなって架橋反応が高められる傾向にあり、また、レジスト層とのミキシング現象の発生が抑制される傾向にある。
[塩基性化合物]
 さらに、本実施形態の下層膜形成材料は、保存安定性を向上させる等の観点から、塩基性化合物を含有していてもよい。
 塩基性化合物は、酸発生剤より微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。このような塩基性化合物としては、特に限定されないが、例えば、国際公開第2013/024779号に記載のものが挙げられる。
 本実施形態における下層膜形成材料において、塩基性化合物の含有量は、特に限定されないが、下層膜形成材料100質量部に対して、0.001~2質量部であることが好ましく、より好ましくは0.01~1質量部である。上記の好ましい範囲にすることで、架橋反応を過度に損なうことなく保存安定性が高められる傾向にある。
[その他の添加剤]
 また、本実施形態における下層膜形成材料は、熱や光による硬化性の付与や吸光度をコントロールする目的で、他の樹脂及び/又は化合物を含有していてもよい。このような他の樹脂及び/又は化合物としては、ナフトール樹脂、キシレン樹脂ナフトール変性樹脂、ナフタレン樹脂のフェノール変性樹脂、ポリヒドロキシスチレン、ジシクロペンタジエン樹脂、(メタ)アクリレート、ジメタクリレート、トリメタクリレート、テトラメタクリレート、ビニルナフタレン、ポリアセナフチレン等のナフタレン環、フェナントレンキノン、フルオレン等のビフェニル環、チオフェン、インデン等のヘテロ原子を有する複素環を含む樹脂や芳香族環を含まない樹脂;ロジン系樹脂、シクロデキストリン、アダマンタン(ポリ)オール、トリシクロデカン(ポリ)オール及びそれらの誘導体等の脂環構造を含む樹脂又は化合物等が挙げられるが、これらに特に限定されない。さらに、本実施形態における下層膜形成材料は、公知の添加剤を含有していてもよい。上記公知の添加剤としては、以下に限定されないが、例えば、熱及び/又は光硬化触媒、重合禁止剤、難燃剤、充填剤、カップリング剤、熱硬化性樹脂、光硬化性樹脂、染料、顔料、増粘剤、滑剤、消泡剤、レベリング剤、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等が挙げられる。
[リソグラフィー用下層膜及び多層レジストパターンの形成方法]
 本実施形態におけるリソグラフィー用下層膜は、上記下層膜形成材料から形成される。
 また、本実施形態のレジストパターン形成方法は、上記組成物を用いて基板上に下層膜を形成し、該下層膜上に、少なくとも1層のフォトレジスト層を形成した後、該フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む。より詳しくは、基板上に、本実施形態の下層膜形成材料を用いて下層膜を形成する工程(A-1)と、上記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A-2)と、上記(A-2)工程の後、上記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程(A-3)と、を有する。
 さらに、本実施形態の回路パターン形成方法は、上記組成物を用いて基板上に下層膜を形成し、該下層膜上にレジスト中間層膜材料を用いて中間層膜を形成し、該中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程、当該フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程、当該レジストパターンをマスクとして上記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして上記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることにより基板にパターンを形成する工程、を含む。
 より詳しくは、基板上に、本実施形態の下層膜形成材料を用いて下層膜を形成する工程(B-1)と、上記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程(B-2)と、上記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B-3)と、上記工程(B-3)の後、上記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(B-4)と、上記工程(B-4)の後、上記レジストパターンをマスクとして上記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして上記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B-5)と、を有する。
 本実施形態におけるリソグラフィー用下層膜は、本実施形態の下層膜形成材料から形成されるものであれば、その形成方法は特に限定されず、公知の手法を適用することができる。例えば、本実施形態の下層膜材料をスピンコートやスクリーン印刷等の公知の塗布法或いは印刷法等で基板上に付与した後、有機溶媒を揮発させるなどして除去し、次いで、公知の方法で架橋、硬化させて、本実施形態のリソグラフィー用下層膜を形成することができる。架橋方法としては、熱硬化、光硬化等の手法が挙げられる。
 下層膜の形成時には、上層レジストとのミキシング現象の発生を抑制するとともに架橋反応を促進させるために、ベークを施すことが好ましい。この場合、ベーク温度は、特に限定されないが、80~450℃の範囲内であることが好ましく、より好ましくは200~400℃である。また、ベーク時間も、特に限定されないが、10~300秒の範囲内であることが好ましい。なお、下層膜の厚さは、要求性能に応じて適宜選定することができ、特に限定されないが、通常、30~20000nm程度であることが好ましく、より好ましくは50~15000nmである。
 下層膜を作製した後、2層プロセスの場合はその上に珪素含有レジスト層、或いは通常の炭化水素からなる単層レジスト、3層プロセスの場合はその上に珪素含有中間層、さらにその上に珪素を含まない単層レジスト層を作製することが好ましい。この場合、このレジスト層を形成するためのフォトレジスト材料としては公知のものを使用することができる。
 基板上に下層膜を作製した後、2層プロセスの場合はその下層膜上に珪素含有レジスト層あるいは通常の炭化水素からなる単層レジストを作製することができる。3層プロセスの場合はその下層膜上に珪素含有中間層、さらにその珪素含有中間層上に珪素を含まない単層レジスト層を作製することができる。これらの場合において、レジスト層を形成するためのフォトレジスト材料は、公知のものから適宜選択して使用することができ、特に限定されない。
 2層プロセス用の珪素含有レジスト材料としては、酸素ガスエッチング耐性の観点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーを使用し、さらに有機溶媒、酸発生剤、必要により塩基性化合物等を含むポジ型のフォトレジスト材料が好ましく用いられる。ここで珪素原子含有ポリマーとしては、この種のレジスト材料において用いられている公知のポリマーを使用することができる。
 3層プロセス用の珪素含有中間層としてはポリシルセスキオキサンベースの中間層が好ましく用いられる。中間層に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。例えば、193nm露光用プロセスにおいて、下層膜として芳香族基を多く含み基板エッチング耐性が高い材料を用いると、k値が高くなり、基板反射が高くなる傾向にあるが、中間層で反射を抑えることによって、基板反射を0.5%以下にすることができる。このような反射防止効果がある中間層としては、以下に限定されないが、193nm露光用としてはフェニル基又は珪素-珪素結合を有する吸光基を導入された、酸或いは熱で架橋するポリシルセスキオキサンが好ましく用いられる。
 また、Chemical Vapour Deposition(CVD)法で形成した中間層を用いることもできる。CVD法で作製した反射防止膜としての効果が高い中間層としては、以下に限定されないが、例えば、SiON膜が知られている。一般的には、CVD法よりスピンコート法やスクリーン印刷等の湿式プロセスによる中間層の形成の方が、簡便でコスト的なメリットがある。なお、3層プロセスにおける上層レジストは、ポジ型でもネガ型でもどちらでもよく、また、通常用いられている単層レジストと同じものを用いることができる。
 さらに、本実施形態における下層膜は、通常の単層レジスト用の反射防止膜或いはパターン倒れ抑制のための下地材として用いることもできる。本実施形態の下層膜は、下地加工のためのエッチング耐性に優れるため、下地加工のためのハードマスクとしての機能も期待できる。
 上記フォトレジスト材料によりレジスト層を形成する場合においては、上記下層膜を形成する場合と同様に、スピンコート法やスクリーン印刷等の湿式プロセスが好ましく用いられる。また、レジスト材料をスピンコート法等で塗布した後、通常、プリベークが行われるが、このプリベークは、80~180℃で10~300秒の範囲で行うことが好ましい。その後、常法にしたがい、露光を行い、ポストエクスポジュアーベーク(PEB)、現像を行うことで、レジストパターンを得ることができる。なお、レジスト膜の厚さは特に制限されないが、一般的には、30~500nmが好ましく、より好ましくは50~400nmである。
 また、露光光は、使用するフォトレジスト材料に応じて適宜選択して用いればよい。一般的には、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3~20nmの軟X線、電子ビーム、X線等を挙げることができる。
 上記の方法により形成されるレジストパターンは、本実施形態における下層膜によってパターン倒れが抑制されたものとなる。そのため、本実施形態における下層膜を用いることで、より微細なパターンを得ることができ、また、そのレジストパターンを得るために必要な露光量を低下させ得る。
 次に、得られたレジストパターンをマスクにしてエッチングを行う。2層プロセスにおける下層膜のエッチングとしては、ガスエッチングが好ましく用いられる。ガスエッチングとしては、酸素ガスを用いたエッチングが好適である。酸素ガスに加えて、He、Ar等の不活性ガスや、CO、CO2、NH3、SO2、N2、NO2、H2ガスを加えることも可能である。また、酸素ガスを用いずに、CO、CO2、NH3、N2、NO2、H2ガスだけでガスエッチングを行うこともできる。特に後者のガスは、パターン側壁のアンダーカット防止のための側壁保護のために好ましく用いられる。
 一方、3層プロセスにおける中間層のエッチングにおいても、ガスエッチングが好ましく用いられる。ガスエッチングとしては、上記の2層プロセスにおいて説明したものと同様のものが適用可能である。とりわけ、3層プロセスにおける中間層の加工は、フロン系のガスを用いてレジストパターンをマスクにして行うことが好ましい。その後、上述したように中間層パターンをマスクにして、例えば酸素ガスエッチングを行うことで、下層膜の加工を行うことができる。
 ここで、中間層として無機ハードマスク中間層膜を形成する場合は、CVD法やALD法等で、珪素酸化膜、珪素窒化膜、珪素酸化窒化膜(SiON膜)が形成される。窒化膜の形成方法としては、以下に限定されないが、例えば、特開2002-334869号公報(特許文献6)、WO2004/066377(特許文献7)に記載された方法を用いることができる。このような中間層膜の上に直接フォトレジスト膜を形成することができるが、中間層膜の上に有機反射防止膜(BARC)をスピンコートで形成して、その上にフォトレジスト膜を形成してもよい。
 中間層として、ポリシルセスキオキサンベースの中間層も好ましく用いられる。レジスト中間層膜に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。ポリシルセスキオキサンベースの中間層の具体的な材料については、以下に限定されないが、例えば、特開2007-226170号(特許文献8)、特開2007-226204号(特許文献9)に記載されたものを用いることができる。
 また、次の基板のエッチングも、常法によって行うことができ、例えば、基板がSiO2、SiNであればフロン系ガスを主体としたエッチング、p-SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行うことができる。基板をフロン系ガスでエッチングする場合、2層レジストプロセスの珪素含有レジストと3層プロセスの珪素含有中間層は、基板加工と同時に剥離される。一方、塩素系或いは臭素系ガスで基板をエッチングした場合は、珪素含有レジスト層又は珪素含有中間層の剥離が別途行われ、一般的には、基板加工後にフロン系ガスによるドライエッチング剥離が行われる。
 本実施形態における下層膜は、これら基板のエッチング耐性に優れる特徴がある。なお、基板は、公知のものを適宜選択して使用することができ、特に限定されないが、Si、α-Si、p-Si、SiO、SiN、SiON、W、TiN、Al等が挙げられる。また、基板は、基材(支持体)上に被加工膜(被加工基板)を有する積層体であってもよい。このような被加工膜としては、Si、SiO、SiON、SiN、p-Si、α-Si、W、W-Si、Al、Cu、Al-Si等種々のLow-k膜及びそのストッパー膜等が挙げられ、通常、基材(支持体)とは異なる材質のものが用いられる。なお、加工対象となる基板或いは被加工膜の厚さは、特に限定されないが、通常、50~10,000nm程度であることが好ましく、より好ましくは75~5000nmである。
 本実施形態における組成物を塗布してなるレジスト永久膜は、必要に応じてレジストパターンを形成した後、最終製品にも残存する永久膜として好適である。永久膜の具体例としては、半導体デバイス関連では、ソルダーレジスト、パッケージ材、アンダーフィル材、回路素子等のパッケージ接着層や集積回路素子と回路基板の接着層、薄型ディスプレー関連では、薄膜トランジスタ保護膜、液晶カラーフィルター保護膜、ブラックマトリクス、スペーサーなどが挙げられる。特に、本実施形態における組成物からなる永久膜は、耐熱性や耐湿性に優れている上に昇華成分による汚染性が少ないという非常に優れた利点も有する。特に表示材料において、重要な汚染による画質劣化の少ない高感度、高耐熱、吸湿信頼性を兼ね備えた材料となる。
 本実施形態における組成物をレジスト永久膜用途に用いる場合には、硬化剤の他、更に必要に応じてその他の樹脂、界面活性剤や染料、充填剤、架橋剤、溶解促進剤などの各種添加剤を加え、有機溶剤に溶解することにより、レジスト永久膜用組成物とすることができる。
 本実施形態におけるリソグラフィー用膜形成組成物やレジスト永久膜用組成物は上記各成分を配合し、攪拌機等を用いて混合することにより調製できる。また、本実施形態におけるレジスト下層膜用組成物やレジスト永久膜用組成物が充填剤や顔料を含有する場合には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散あるいは混合して調製することができる。
 以下、本実施形態を合成例及び実施例によりさらに詳細に説明するが、本実施形態は、これらの例によってなんら限定されるものではない。
(炭素濃度及び酸素濃度)
 下記装置を用いて有機元素分析により炭素濃度及び酸素濃度(質量%)を測定した。
 装置:CHNコーダーMT-6(ヤナコ分析工業(株)製)
(分子量)
 化合物の分子量は、LC-MS分析により、Water社製Acquity UPLC/MALDI-Synapt HDMSを用いて測定した。
 また、以下の条件でゲル浸透クロマトグラフィー(GPC)分析を行い、ポリスチレン換算の重量平均分子量(Mw)、数平均分子量(Mn)、及び分散度(Mw/Mn)を求めた。
 装置:Shodex GPC-101型(昭和電工(株)製)
 カラム:KF-80M×3
 溶離液:THF 1mL/min
 温度:40℃
(溶解性)
 23℃にて、化合物をプロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン(CHN)、乳酸エチル(EL)、メチルアミルケトン(MAK)又はテトラメチルウレア(TMU)に対して3質量%溶液になるよう攪拌して溶解させた後、1週間後の結果を以下の基準で評価した。
 評価A:目視にていずれかの溶媒で析出物がないことを確認した。
 評価C:目視にていずれかの溶媒で析出物があることを確認した。
[化合物の構造]
 化合物の構造は、Bruker社製「Advance600II spectrometer」を用いて、以下の条件で、1H-NMR測定を行い、確認した。
  周波数:400MHz
  溶媒:d6-DMSO
  内部標準:TMS
  測定温度:23℃
<合成例1> XBisN-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に2,6-ナフタレンジオール(シグマ-アルドリッチ社製試薬)3.20g(20mmol)と4-ビフェニルカルボキシアルデヒド(三菱瓦斯化学社製)1.82g(10mmol)とを30mLメチルイソブチルケトンに仕込み、95%の硫酸5mLを加えて、反応液を100℃で6時間撹拌して反応を行った。次に反応液を濃縮し、純水50gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(XBisN-1)で表される目的化合物が3.05g得られた。400MHz-H-NMRにより下記式(XBisN-1)の化学構造を有することを確認した。
 H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.7(2H,O-H)、7.2~8.5(19H,Ph-H)、6.6(1H,C-H)
 尚、2,6-ナフタレンジオールの置換位置が1位であることは、3位と4位のプロトンのシグナルがダブレットであることから確認した。
Figure JPOXMLDOC01-appb-C000370
(XBisN-1)
<合成例1A> E-XBisN-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に上記式(XBisN-1)で表される化合物10g(21mmol)と炭酸カリウム14.8g(107mmol)とを50mLジメチルホルムアミドに仕込み、酢酸-2-クロロエチル6.56g(54mmol)を加えて、反応液を90℃で12時間撹拌して反応を行った。次に反応液を氷浴で冷却し結晶を析出させ、濾過を行って分離した。続いて攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に上記結晶40g、メタノール40g、THF100g及び24%水酸化ナトリウム水溶液を仕込み、反応液を還流下で4時間撹拌して反応を行った。その後、氷浴で冷却し、反応液を濃縮し析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(E-XBisN-1)で表される目的化合物が5.9g得られた。400MHz-H-NMRにより下記式(E-XBisN-1)の化学構造を有することを確認した。
 H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)8.6(2H,O-H)、7.2~7.8(19H,Ph-H)、6.7(1H,C-H)、4.0(4H,-O-CH-)、3.8(4H,-CH-OH)
Figure JPOXMLDOC01-appb-C000371
(E-XBisN-1)
<合成例2> BisF-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積200mLの容器を準備した。この容器に、4,4-ビフェノール(東京化成社製試薬)30g(161mmol)と、4-ビフェニルアルデヒド(三菱瓦斯化学社製)15g(82mmol)と、酢酸ブチル100mLとを仕込み、p-トルエンスルホン酸(関東化学社製試薬)3.9g(21mmol)を加えて、反応液を調製した。この反応液を90℃で3時間撹拌して反応を行った。次に、反応液を濃縮し、ヘプタン50gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。濾過により得られた固形物を乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式(BisF-1)で表される目的化合物5.8gを得た。400MHz-H-NMRにより以下のピークが見出され、下記式(BisF-1)の化学構造を有することを確認した。
 H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.4(4H,O-H)、6.8~7.8(22H,Ph-H)、6.2(1H,C-H)
 また、得られた化合物について、上記方法により分子量を測定した結果、536であった。
Figure JPOXMLDOC01-appb-C000372
(BisF-1)
<合成例2A> E-BisF-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に上記式(BisF-1)で表される化合物11.2g(21mmol)と炭酸カリウム14.8g(107mmol)とを50mLジメチルホルムアミドに仕込み、酢酸-2-クロロエチル6.56g(54mmol)を加えて、反応液を90℃で12時間撹拌して反応を行った。次に反応液を氷浴で冷却し結晶を析出させ、濾過を行って分離した。続いて攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に上記結晶40g、メタノール40g、THF100g及び24%水酸化ナトリウム水溶液を仕込み、反応液を還流下で4時間撹拌して反応を行った。その後、氷浴で冷却し、反応液を濃縮し析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(E-BisF-1)で表される目的化合物が5.9g得られた。400MHz-H-NMRにより、下記式(E-BisF-1)の化学構造を有することを確認した。
 H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)8.6(4H,O-H)、6.8~7.8(22H,Ph-H)、6.2(1H,C-H)、4.0(8H,-O-CH-)、3.8(8H,-CH-OH)
 また、得られた化合物について、上記方法により分子量を測定した結果、712であった。
Figure JPOXMLDOC01-appb-C000373
(E-BisF-1)
<合成実施例1-1> UaXBisN-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に上記式(XBisN-1)で表される化合物10.0g(21mmol)、2-イソシアナトエチルメタクリレート6.1g、トリエチルアミン0.5g、p-メトキシフェノール0.05gとを50mLメチルイソブチルケトンに仕込み、80℃に加温して撹拌した状態で、24時間撹拌して反応を行った。50℃まで冷却し、反応液を純水中に滴下して析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(UaXBisN-1)で表される目的化合物が3.0g得られた。400MHz-H-NMRにより、下記式(UaXBisN-1)の化学構造を有することを確認した。
 H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)
7.2~7.8(19H,Ph-H)、6.8(2H、NH)、6.7(1H,C-H)、6.5(4H,=CH)、3.1~4.6(8H,-O-CH-CH-N-)、2.0(6H,-CH
 また、得られた化合物について、上記方法により分子量を測定した結果、776であった。
 熱分解温度は370℃、ガラス転移点は90℃、融点は200℃であり、高耐熱性が確認できた。
Figure JPOXMLDOC01-appb-C000374
(UaXBisN-1)
<合成実施例1-2> UaE-XBisN-1の合成
 上記式(XBisN-1)で表される化合物の代わりに、上記式(E-XBisN-1)で表される化合物を用いた以外、合成実施例1と同様に反応させ、下記式(UaE-XBisN-1)で表される目的化合物が3.2g得られた。400MHz-H-NMRにより、下記式(UaE-XBisN-1)の化学構造を有することを確認した。
 H-NMR:(d-DMSO、内部標準TMS)
7.2~7.8(19H,Ph-H)、6.8(2H、NH)、6.7(1H,C-H)、6.5(4H,=CH)、3.1~4.6(16H,-O-CH-CH-O-、-O-CH-CH-N-)、2.0(6H,-CH
 また、得られた化合物について、上記方法により分子量を測定した結果、864であった。
 熱分解温度は360℃、ガラス転移点は85℃、融点は195℃であり、高耐熱性が確認できた。
Figure JPOXMLDOC01-appb-C000375
(UaE-XBisN-1)
<合成実施例2-1> UaBisF-1の合成
上記式(XBisN-1)で表される化合物の代わりに、上記式(BisF-1)で表される化合物を用いた以外、合成実施例1-1と同様に反応させ、下記式(UaBisF-1)で表される目的化合物が2.5g得られた。400MHz-H-NMRにより、下記式(UaBisF-1)の化学構造を有することを確認した。
 H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)6.8~7.8(22H,Ph-H)、6.5(8H,=CH)、6.2(1H,C-H)、4.1~4.7(16H,-O-CH-CH-N-)、2.0(12H,-CH) また、得られた化合物について、上記方法により分子量を測定した結果、1156であった。
 熱分解温度は365℃、ガラス転移点は65℃、融点は185℃であり、高耐熱性が確認できた。
Figure JPOXMLDOC01-appb-C000376
(UaBisF-1)
<合成実施例2-2> UaE-BisF-1の合成
 上記式(XBisN-1)で表される化合物の代わりに、上記式(E-BisF-1)で表される化合物を用いた以外、合成実施例1-2と同様に反応させ、下記式(UaE-BisF-1)で表される目的化合物が2.6g得られた。400MHz-H-NMRにより、下記式(UaE-BisF-1)の化学構造を有することを確認した。
 H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)6.8~7.8(22H,Ph-H)、6.5(8H,=CH)、6.2(1H,C-H)、4.1~4.7(32H,-O-CH-CH-O-、-O-CH-CH-N-)、2.0(12H,-CH
 また、得られた化合物について、上記方法により分子量を測定した結果、1133であった。
 熱分解温度は355℃、ガラス転移点は60℃、融点は175℃であり、高耐熱性が確認できた。
Figure JPOXMLDOC01-appb-C000377
(UaE-BisF-1)
<合成例3> BiN-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積300mLの容器において、2-ナフトール(シグマ-アルドリッチ社製試薬)10g(69.0mmol)を120℃で溶融後、硫酸0.27gを仕込み、4-アセチルビフェニル(シグマ-アルドリッチ社製試薬)2.7g(13.8mmol)を加えて、内容物を120℃で6時間撹拌して反応を行って反応液を得た。次に反応液にN-メチル-2-ピロリドン(関東化学株式会社製)100mL、純水50mLを加えたあと、酢酸エチルにより抽出した。次に純水を加えて中性になるまで分液後、濃縮を行って溶液を得た。
 得られた溶液を、カラムクロマトによる分離後、下記式(BiN-1)で表される目的化合物(BiN-1)が1.0g得られた。
 得られた化合物(BiN-1)について、上述の方法により分子量を測定した結果、466であった。
 得られた化合物(BiN-1)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(BiN-1)の化学構造を有することを確認した。
δ(ppm)9.69(2H,O-H)、7.01~7.67(21H,Ph-H)、2.28(3H,C-H)
Figure JPOXMLDOC01-appb-C000378
(BiN-1)
<合成例3A> E-BiN-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に上記式で示される化合物(BisN-1)10.5g(21mmol)と炭酸カリウム14.8g(107mmol)とを50mLジメチルホルムアミドに仕込み、酢酸-2-クロロエチル6.56g(54mmol)を加えて、反応液を90℃で12時間撹拌して反応を行った。次に反応液を氷浴で冷却し結晶を析出させ、濾過を行って分離した。続いて攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に前記結晶40g、メタノール40g、THF100g及び24%水酸化ナトリウム水溶液を仕込み、反応液を還流下で5時間撹拌して反応を行った。その後、氷浴で冷却し、反応液を濃縮し析出した固形物を濾過し、乾燥させた後、カラムクロマトグラフによる分離精製を行い、下記式で示される目的化合物を4.6g得た。400MHz-H-NMRにより下記式の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)8.6(2H,O-H)、7.2~7.8(19H,Ph-H)、6.7(1H,C-H)、4.0(4H,-O-CH-)、3.8(4H,-CH-OH)
Figure JPOXMLDOC01-appb-C000379
(E-BiN-1)
<合成実施例3-1> UaBiN-1の合成
 上記式(XBisN-1)で表される化合物の代わりに、上記式(BiN-1)で表される化合物を用いたこと以外は合成実施例1-1と同様に反応させ、下記式(UaBiN-1)で表される目的化合物3.5gを得た。
 400MHz-H-NMRにより、下記式(UaBiN-1)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)7.2~7.8(21H,Ph-H)、6.8(2H、NH)、6.7(1H,C-H)、6.5(4H,=CH)、3.1~4.6(16H,-O-CH-CH-O-、-O-CH-CH-N-)、2.3(3H,-CH3)、2.0(6H,-CH
Figure JPOXMLDOC01-appb-C000380
(UaBiN-1)
 得られた化合物について、前記方法により分子量を測定した結果、776であった。
 熱分解温度は390℃、ガラス転移点は72℃、融点は224℃であり、高耐熱性を有することが確認できた。
<合成実施例3-2> UaE-BiN-1の合成
 上記式(XBisN-1)で表される化合物の代わりに、上記式(E-BiN-1)で表される化合物を用いたこと以外、合成実施例1-2と同様に反応させ、下記式(UaE-BiN-1)で表される目的化合物3.9gを得た。
 400MHz-H-NMRにより、下記式(UaE-BiN-1)の化学構造を有することを確認した。
 H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)7.2~7.8(21H,Ph-H)、6.8(2H、NH)、6.7(1H,C-H)、6.5(4H,=CH)、3.1~4.6(16H,-O-CH-CH-O-、-O-CH-CH-N-)、2.3(3H,-CH3)、2.0(6H,-CH
Figure JPOXMLDOC01-appb-C000381
(UaE-BiN-1)
 得られた化合物について、前記方法により分子量を測定した結果、864であった。
 熱分解温度は362℃、ガラス転移点は70℃、融点は226℃であり、高耐熱性を有することが確認できた。
<合成例4> BiP-1の合成
 2-ナフトールの代わりに、o-フェニルフェノールを使用する以外は合成例1と同様に反応させ、下記式(BiP-1)で表される目的化合物が1.0g得られた。
 得られた化合物(BiP-1)について、上述の方法により分子量を測定した結果、466であった。
 得られた化合物(BiP-1)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(BiP-1)の化学構造を有することを確認した。
 δ(ppm)9.67(2H,O-H)、6.98~7.60(25H,Ph-H)、2.25(3H,C-H)
Figure JPOXMLDOC01-appb-C000382
(BiP-1)
<合成例4A> E-BiP-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に上記式(BiP-1)で表される化合物11.2g(21mmol)と炭酸カリウム14.8g(107mmol)とを50mLジメチルホルムアミドに仕込み、酢酸-2-クロロエチル6.56g(54mmol)を加えて、反応液を90℃で12時間撹拌して反応を行った。次に反応液を氷浴で冷却し結晶を析出させ、濾過を行って分離した。続いて攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に前記結晶40g、メタノール40g、THF100g及び24%水酸化ナトリウム水溶液を仕込み、反応液を還流下で4時間撹拌して反応を行った。その後、氷浴で冷却し、反応液を濃縮し析出した固形物を濾過し、乾燥させた後、カラムクロマトグラフによる分離精製を行い、下記式(E-BisF-1)で表される目的化合物5.9gを得た。
 400MHz-H-NMRにより、下記式(E-BiP-1)の化学構造を有することを確認した。
 H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)8.6(4H,O-H)、6.8~7.6(25H,Ph-H)、4.0(4H,-O-CH-)、3.8(4H,-CH-OH)、2.2(3H,C-H)
 得られた化合物について、前記方法により分子量を測定した結果、606であった。
Figure JPOXMLDOC01-appb-C000383
(E-BiP-1)
<合成実施例4-1> UaBiP-1の合成
上記式(XBisN-1)で表される化合物の代わりに、上記式(BiP-1)で表される化合物を用いたこと以外は合成実施例1-2と同様に反応させ、下記式(UaBiP-1)で表される目的化合物6.6gを得た。
 400MHz-H-NMRにより、下記式(UaBiP-1)の化学構造を有することを確認した。
 H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)6.8~7.8(25H,Ph-H)、6.5(4H,=CH)、4.1~4.7(8H,-O-CH-CH-N-)、2.3(3H,-CH3)、2.0(6H,-CH
 熱分解温度は371℃、ガラス転移点は84℃、融点は232℃であり、高耐熱性を有することが確認できた。
Figure JPOXMLDOC01-appb-C000384
(UaBiP-1)
 得られた化合物について、前記方法により分子量を測定した結果、828であった。
<合成実施例4-2> UaE-BiP-1の合成
 上記式(XBisN-1)で表される化合物の代わりに、上記式(E-BiP-1)で表される化合物を用いたこと以外、合成実施例1-2と同様に反応させ、下記式(UaE-BiP-1)で表される目的化合物4.6gを得た。
 400MHz-H-NMRにより、下記式(UaE-BiP-1)の化学構造を有することを確認した。
 H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)6.8~7.8(25H,Ph-H)、6.8(2H、NH)、6.5(4H,=CH)、3.1~4.6(16H,-O-CH-CH-O-、-O-CH-CH-N-)、2.3(3H,-CH)2.0(6H,-CH
Figure JPOXMLDOC01-appb-C000385
(UaE-BiP-1)
 得られた化合物について、前記方法により分子量を測定した結果、916であった。
 熱分解温度は372℃、ガラス転移点は70℃、融点は210℃であり、高耐熱性を有することが確認できた。
(合成例5~17)
 合成例3の原料である2-ナフトール(原料1)及び4-アセチルビフェニル(原料2)を表1のように変更し、その他は合成例3と同様に行い、各目的物を得た。
 各目的化合物は、H-NMRで同定した(表2)。
Figure JPOXMLDOC01-appb-T000386
Figure JPOXMLDOC01-appb-T000387
Figure JPOXMLDOC01-appb-C000388
(BiN-2)
Figure JPOXMLDOC01-appb-C000389
(BiN-3)
Figure JPOXMLDOC01-appb-C000390
(BiN-4)
Figure JPOXMLDOC01-appb-C000391
(XBiN-1)
Figure JPOXMLDOC01-appb-C000392
(XBiN-2)
Figure JPOXMLDOC01-appb-C000393
(XBiN-3)
Figure JPOXMLDOC01-appb-C000394
(BiP-2)
Figure JPOXMLDOC01-appb-C000395
(BiP-3)
Figure JPOXMLDOC01-appb-C000396
(BiP-4)
Figure JPOXMLDOC01-appb-C000397
(P-1)
Figure JPOXMLDOC01-appb-C000398
(P-2)
Figure JPOXMLDOC01-appb-C000399
(P-3)
Figure JPOXMLDOC01-appb-C000400
(P-4)
(合成例18~20)
 合成実施例1の原料である4-ビフェニルアルデヒド(原料2)を表3のように変更し、その他は合成実施例3と同様に行い、各目的化合物を得た。
 各目的化合物は、1H-NMRで同定した(表4)。
Figure JPOXMLDOC01-appb-T000401
Figure JPOXMLDOC01-appb-T000402
Figure JPOXMLDOC01-appb-C000403
(XBisN-2)
Figure JPOXMLDOC01-appb-C000404
(XBisN-3)
Figure JPOXMLDOC01-appb-C000405
(XBisN-4)
(合成例21~22)
 合成例3の原料である2-ナフトール(原料1)及び4-アセチルビフェニル(原料2)を表5のように変更し、水1.5mL、ドデシルメルカプタン73mg(0.35mmol)、37%塩酸2.3g(22mmol)を加え、反応温度を55℃に変更し、その他は合成実施例3と同様に行い、各目的化合物を得た。
 各目的化合物は、1H-NMRで同定した(表6)。
Figure JPOXMLDOC01-appb-T000406
Figure JPOXMLDOC01-appb-T000407
Figure JPOXMLDOC01-appb-C000408
(P-5)
Figure JPOXMLDOC01-appb-C000409
(P-6)
(合成例5A~22A)
 合成例3Aの原料である前記式(BiN-1)で表される化合物を表7のように変更し、その他は合成例3Aと同様の条件にて合成を行い、それぞれ、目的化合物を得た。各目的化合物の構造は400MHz-H-NMR(d-DMSO、内部標準TMS)およびLC-MSで分子量を確認することにより、同定した。
(合成実施例5-1~22-1)
 合成実施例3-1の原料である前記式(E-BiN-1)で表される化合物を表7のように変更し、その他は合成実施例3-1と同様の条件にて合成を行い、それぞれ、目的化合物を得た。各目的化合物の構造は400MHz-H-NMR(d-DMSO、内部標準TMS)およびLC-MSで分子量を確認することにより、同定した。
(合成実施例5-2~22-2)
 合成実施例3-2の原料である前記式(E-BiN-1)で表される化合物を表7のように変更し、その他は合成実施例3-2と同様の条件にて合成を行い、それぞれ、各目的化合物を得た。各目的化合物の構造は400MHz-H-NMR(d-DMSO、内部標準TMS)およびLC-MSで分子量を確認することにより、同定した。
Figure JPOXMLDOC01-appb-T000410
Figure JPOXMLDOC01-appb-C000411
(E-BiN-2)
Figure JPOXMLDOC01-appb-C000412
(UaBiN-2)
Figure JPOXMLDOC01-appb-C000413
(UaE-BiN-2)
Figure JPOXMLDOC01-appb-C000414
(E-BiN-3)
Figure JPOXMLDOC01-appb-C000415
(UaBiN-3)
Figure JPOXMLDOC01-appb-C000416
(UaE-BiN-3)
Figure JPOXMLDOC01-appb-C000417
(E-BiN-4)
Figure JPOXMLDOC01-appb-C000418
(UaBiN-4)
Figure JPOXMLDOC01-appb-C000419
(UaE-BiN-4)
Figure JPOXMLDOC01-appb-C000420
(E-BiP-2)
Figure JPOXMLDOC01-appb-C000421
(UaBiP-2)
Figure JPOXMLDOC01-appb-C000422
(UaE-BiP-2)
Figure JPOXMLDOC01-appb-C000423
(E-BiP-3)
Figure JPOXMLDOC01-appb-C000424
(UaBiP-3)
Figure JPOXMLDOC01-appb-C000425
(UaE-BiP-3)
Figure JPOXMLDOC01-appb-C000426
(E-BiP-4)
Figure JPOXMLDOC01-appb-C000427
(UaBiP-4)
Figure JPOXMLDOC01-appb-C000428
(UaE-BiP-4)
Figure JPOXMLDOC01-appb-C000429
(E-P-1)
Figure JPOXMLDOC01-appb-C000430
(UaP-1)
Figure JPOXMLDOC01-appb-C000431
(UaE-P-1)
Figure JPOXMLDOC01-appb-C000432
(E-P-2)
Figure JPOXMLDOC01-appb-C000433
(UaP-2)
Figure JPOXMLDOC01-appb-C000434
(UaE-P-2)
Figure JPOXMLDOC01-appb-C000435
(E-BisN-1)
Figure JPOXMLDOC01-appb-C000436
(UaBisN-1)
Figure JPOXMLDOC01-appb-C000437
(UaE-BisN-1)
Figure JPOXMLDOC01-appb-C000438
(E-XBiN-2)
Figure JPOXMLDOC01-appb-C000439
(UaXBiN-2)
Figure JPOXMLDOC01-appb-C000440
(UaE-XBiN-2)
Figure JPOXMLDOC01-appb-C000441
(E-XBiN-3)
Figure JPOXMLDOC01-appb-C000442
(UaXBiN-3)
Figure JPOXMLDOC01-appb-C000443
(UaE-XBiN-3)
Figure JPOXMLDOC01-appb-C000444
(E-P-3)
Figure JPOXMLDOC01-appb-C000445
(UaP-3)
Figure JPOXMLDOC01-appb-C000446
(UaE-P-3)
Figure JPOXMLDOC01-appb-C000447
(E-P-4)
Figure JPOXMLDOC01-appb-C000448
(UaP-4)
Figure JPOXMLDOC01-appb-C000449
(UaE-P-4)
Figure JPOXMLDOC01-appb-C000450
(E-XBisN-2)
Figure JPOXMLDOC01-appb-C000451
(UaXBisN-2)
Figure JPOXMLDOC01-appb-C000452
(UaE-XBisN-2)
Figure JPOXMLDOC01-appb-C000453
(E-XBisN-3)
Figure JPOXMLDOC01-appb-C000454
(UaXBisN-3)
Figure JPOXMLDOC01-appb-C000455
(UaE-XBisN-3)
Figure JPOXMLDOC01-appb-C000456
(E-XBisN-4)
Figure JPOXMLDOC01-appb-C000457
(UaXBisN-4)
Figure JPOXMLDOC01-appb-C000458
(UaE-XBisN-4)
Figure JPOXMLDOC01-appb-C000459
(E-P-5)
Figure JPOXMLDOC01-appb-C000460
(UaP-5)
Figure JPOXMLDOC01-appb-C000461
(UaE-P-5)
Figure JPOXMLDOC01-appb-C000462
(E-P-6)
Figure JPOXMLDOC01-appb-C000463
(UaP-6)
Figure JPOXMLDOC01-appb-C000464
(UaE-P-6)
(合成例23)樹脂(R1-XBisN-1)の合成
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積1Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、合成例1で得られた化合物(XBisN-1)を32.6g(70mmol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液21.0g(ホルムアルデヒドとして280mmol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてオルソキシレン(和光純薬工業(株)製試薬特級)180.0gを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、オルソキシレンを減圧下で留去することにより、褐色固体の樹脂(R1-XBisN-1)34.1gを得た。
 得られた樹脂(R1-XBisN-1)は、Mn:1975、Mw:3650、Mw/Mn:1.84であった。
(合成例24)樹脂(R2-XBisN-1)の合成
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積1Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、合成例1で得られた化合物(XBisN-1)を32.6g(70mmol、三菱ガス化学(株)製)、4-ビフェニルアルデヒド50.9g(280mmol、三菱ガス化学(株)製)、アニソール(関東化学(株)製)100mL及びシュウ酸二水和物(関東化学(株)製)10mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてオルソキシレン(和光純薬工業(株)製試薬特級)180.0gを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、有機相の溶媒および未反応の4-ビフェニルアルデヒドを減圧下で留去することにより、褐色固体の樹脂(R2-XBisN-1)34.7gを得た。
 得られた樹脂(R2-XBisN-1)は、Mn:1610、Mw:2567、Mw/Mn:1.59であった。
<合成例23A> E-R1-XBisN-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積500mlの容器に合成例23で得られた樹脂(R1-XBisN-1)30gと炭酸カリウム29.6g(214mmol)とを100mlジメチルホルムアミドに仕込み、酢酸-2-クロロエチル13.12g(108mmol)を加えて、反応液を90℃で12時間撹拌して反応を行った。次に反応液を氷浴で冷却し結晶を析出させ、濾過を行って分離した。続いて攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に前記結晶40g、メタノール80g、THF100g及び24%水酸化ナトリウム水溶液を仕込み、反応液を還流下で4時間撹拌して反応を行った。その後、氷浴で冷却し、反応液を濃縮し析出した固形物を濾過し、乾燥させることにより、褐色固体の樹脂(E-R1-XBisN-1)26.5gを得た。
 得られた樹脂(E-R1-XBisN-1)は、Mn:2176、Mw:3540、Mw/Mn:1.62であった。
<合成実施例23-1> UaR1-XBisN-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に上記式(R1-XBisN-1)で表される樹脂20.0g、2-イソシアナトエチルメタクリレート12.2g、トリエチルアミン1.0g、p-メトキシフェノール0.1gを100mLメチルイソブチルケトンに仕込み、80℃に加温して撹拌した状態で、24時間撹拌して反応を行った。50℃まで冷却し、反応液を純水中に滴下して析出した固形物を濾過し、乾燥させた後、褐色固体の(UaR1-XBisN-1)で表される樹脂23.6gを得た。
 得られた樹脂(UaR1-XBisN-1)は、Mn:2130、Mw:3590、Mw/Mn:1.55であった。
<合成実施例23-2> UaE-R1-XBisN-1の合成
 合成例23で得られた上記式(R1-XBisN-1)で表される樹脂の代わりに、合成例23Aで得られた上記式(E-R1-XBisN-1)を用いたこと以外は合成実施例23-1と同様に反応させ、褐色固体の(UaE-R1-XBisN-1)で表される樹脂25.0gを得た。
 得られた樹脂(UaE-R1-XBisN-1)は、Mn:2371、Mw:4240、Mw/Mn:1.79であった。
<合成例24A> E-R2-XBisN-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に上述の樹脂(R2-XBisN-1)30gと炭酸カリウム29.6g(214mmol)とを100mLジメチルホルムアミドに仕込み、酢酸-2-クロロエチル13.12g(108mmol)を加えて、反応液を90℃で12時間撹拌して反応を行った。次に反応液を氷浴で冷却し結晶を析出させ、濾過を行って分離した。続いて攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に前記結晶40g、メタノール80g、THF100g及び24%水酸化ナトリウム水溶液を仕込み、反応液を還流下で4時間撹拌して反応を行った。その後、氷浴で冷却し、反応液を濃縮し析出した固形物を濾過し、乾燥させることにより、褐色固体の樹脂(E-R2-XBisN-1)22.3gを得た。
 得られた樹脂(E-R2-XBisN-1)は、Mn:2516、Mw:3960、Mw/Mn:1.62であった。
<合成実施例24-1> UaR2-XBisN-1の合成
 合成例23で得られた上記式(R1-XBisN-1)の代わりに、合成例24で得られた上記式(R2-XBisN-1)で表される化合物33.2gを使用した以外は合成実施例23-1と同様に反応させ、褐色固体の(UaR2-XBisN-1)で表される樹脂40.1gを得た。
 得られた樹脂(UaR2-XBisN-1)は、Mn:2446、Mw:4510、Mw/Mn:1.84であった。
<合成実施例24-2> UaE-R2-XBisN-1の合成
 合成例23で得られた上記式(R1-XBisN-1)で表される樹脂の代わりに、合成例24Aで得られた上記式(E-R2-XBisN-1)を用いたこと以外は合成実施例23-1と同様に反応させ、褐色固体の(UaE-R2-XBisN-1)で表される樹脂29.0gを得た。
 得られた樹脂(UaE-R2-XBisN-1)は、Mn:2679、Mw:4830、Mw/Mn:1.80であった。
(合成比較例1)
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、1,5-ジメチルナフタレン1.09kg(7mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業(株)製試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5-ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。得られたジメチルナフタレンホルムアルデヒドの分子量は、Mn:562、であった。
 続いて、ジムロート冷却管、温度計及び攪拌翼を備えた内容積0.5Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流下で、上記のようにして得られたジメチルナフタレンホルムアルデヒド樹脂100g(0.51mol)とパラトルエンスルホン酸0.05gとを仕込み、190℃まで昇温させて2時間加熱した後、攪拌した。その後さらに、1-ナフトール52.0g(0.36mol)を加え、さらに220℃まで昇温させて2時間反応させた。溶剤希釈後、中和及び水洗を行い、溶剤を減圧下で除去することにより、黒褐色固体の変性樹脂(CR-1)126.1gを得た。得られた樹脂(CR-1)は、Mn:885、Mw:2220、Mw/Mn:4.17であった。
(実施例1-1~24-2、比較例1)
 上記合成実施例1-1~24-2に記載の化合物あるいは樹脂、合成比較例1に記載のCR-1を用いて溶解度試験を行った。結果を表8に示す。
 また、表8に示す組成のリソグラフィー用下層膜形成材料を各々調製した。
 次に、これらのリソグラフィー用下層膜形成材料をシリコン基板上に回転塗布し、その後、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を各々作製した。酸発生剤、架橋剤及び有機溶媒については以下のものを用いた。
 酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
 架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
 有機溶媒:プロピレングリコールモノメチルエーテルアセテートアセテート(PGMEA)
(実施例25~44)
 また、下記表9に示す組成のリソグラフィー用下層膜形成材料を各々調製した。次に、これらのリソグラフィー用下層膜形成材料をシリコン基板上に回転塗布し、その後、その後、110℃で60秒間ベークして塗膜の溶媒を除去した後、高圧水銀ランプにより、積算露光量600mJ/cm、照射時間20秒で硬化させて膜厚200nmの下層膜を各々作製した。光ラジカル重合開始剤、架橋剤及び有機溶媒については次のものを用いた。
 ラジカル重合開始剤:BASF社製 IRGACURE184
 架橋剤:
(1)三和ケミカル社製 ニカラックMX270(ニカラック)
(2)三菱ガス化学製 ジアリルビスフェノールA型シアネート(DABPA-CN)
(3)小西化学工業製 ジアリルビスフェノールA(BPA-CA)
(4)小西化学工業製 ベンゾオキサジン(BF-BXZ)
(5)日本化薬製 ビフェニルアラルキル型エポキシ樹脂(NC-3000-L)
 有機溶媒:プロピレングリコールモノメチルエーテルアセテートアセテート(PGMEA)
 上記架橋剤の構造を下記式で示す。
Figure JPOXMLDOC01-appb-C000465
(DABPA-CN)
Figure JPOXMLDOC01-appb-C000466
(BPA-CA)
Figure JPOXMLDOC01-appb-C000467
(BF-BXZ)
Figure JPOXMLDOC01-appb-C000468
(NC-3000-L)
(上記式中、nは1~4の整数である。)
[エッチング耐性]
 下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表1及び表8および表9に示す。
(エッチング試験条件)
 エッチング装置:サムコインターナショナル社製 RIE-10NR
 出力:50W
 圧力:20Pa
 時間:2min
 エッチングガス
 Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
 エッチング耐性の評価は、以下の手順で行った。
 まず、実施例1-1において用いる化合物(UaXBisN-1)に代えてノボラック(群栄化学社製 PSM4357)を用いること以外は、実施例1-1と同様の条件で、ノボラックの下層膜を作製した。そして、このノボラックの下層膜を対象として、上記のエッチング試験を行い、そのときのエッチングレートを測定した。
 次に、実施例1-1及び比較例1の下層膜を対象として、上記エッチング試験を同様に行い、そのときのエッチングレートを測定した。そして、ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。
[評価基準]
 A:ノボラックの下層膜に比べてエッチングレートが、-10%未満
 B:ノボラックの下層膜に比べてエッチングレートが、-10%~+5%
 C:ノボラックの下層膜に比べてエッチングレートが、+5%超
Figure JPOXMLDOC01-appb-T000469
Figure JPOXMLDOC01-appb-T000470
(実施例45~48)
 次に、UaXBisN-1、UaE-XBisN-1、UaBisF-1、又はUaE-BisF-1を含むリソグラフィー用下層膜形成材料の各溶液を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚70nmの下層膜を形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。なお、ArFレジスト溶液としては、下記式(11)の化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。
 式(11)の化合物は、2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下した。このようにして得られる生成樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて得た。
Figure JPOXMLDOC01-appb-C000471
(11)
 上記式(11)中、「40」、「40」、「20」とあるのは、各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。
得られた55nmL/S(1:1)及び80nmL/S(1:1)のレジストパターンの形状及び欠陥を(株)日立製作所製電子顕微鏡(S-4800)を用いて観察した。現像後のレジストパターンの形状については、パターン倒れがなく、矩形性が良好なものを「良好」とし、それ以外を「不良」として評価した。また、上記観察の結果、パターン倒れが無く、矩形性が良好な最小の線幅を“解像性”として評価の指標とした。さらに、良好なパターン形状を描画可能な最小の電子線エネルギー量を“感度”として、評価の指標とした。その結果を、表10に示す。
(比較例2)
 下層膜の形成を行わないこと以外は、実施例45と同様にして、フォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得た。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000472
 表10から明らかなように、本実施形態の化合物であるUaXBisN-1、UaE-XBisN-1、UaBisF-1、UaE-BisF-1を用いた実施例では、耐熱性、溶解度及びエッチング耐性のいずれの点でも良好であることが確認された。一方、CR-1(フェノール変性ジメチルナフタレンホルムアルデヒド樹脂)を用いた比較例1では、エッチング耐性が不良であった。
 また、実施例45~48では、現像後のレジストパターン形状が良好であり、欠陥も見られないことが確認された。下層膜の形成を省略した比較例2に比して、解像性及び感度ともに有意に優れていることが確認された。
 さらに、現像後のレジストパターン形状の相違から、実施例45~48において用いたリソグラフィー用下層膜形成材料は、レジスト材料との密着性が良いことが示された。
<実施例49~52>
 実施例1-1~2-2で得られたリソグラフィー用下層膜形成材料の溶液を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚80nmの下層膜を形成した。この下層膜上に、珪素含有中間層材料を塗布し、200℃で60秒間ベークすることにより、膜厚35nmの中間層膜を形成した。さらに、この中間層膜上に、上記ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、珪素含有中間層材料としては、特開2007-226170号公報<合成例1>に記載の珪素原子含有ポリマーを用いた。
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層をマスク露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、55nmL/S(1:1)のポジ型のレジストパターンを得た。
 その後、サムコインターナショナル社製 RIE-10NRを用いて、得られたレジストパターンをマスクにして珪素含有中間層膜(SOG)のドライエッチング加工を行い、続いて、得られた珪素含有中間層膜パターンをマスクにした下層膜のドライエッチング加工と、得られた下層膜パターンをマスクにしたSiO膜のドライエッチング加工とを順次行った。
 各々のエッチング条件は、下記に示すとおりである。
 レジストパターンのレジスト中間層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:1min
   エッチングガス
   Arガス流量:CF4ガス流量:O2ガス流量=50:8:2(sccm)
 レジスト中間膜パターンのレジスト下層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
 レジスト下層膜パターンのSiO 膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:C12ガス流量:Cガス流量:O2ガス流量
          =50:4:3:1(sccm)
[評価]
 上記のようにして得られたパターン断面(エッチング後のSiO膜の形状)を、(株)日立製作所製電子顕微鏡(S-4800)を用いて観察したところ、本実施形態の下層膜を用いた実施例は、多層レジスト加工におけるエッチング後のSiO膜の形状は矩形であり、欠陥も認められず良好であることが確認された。
[実施例53~56]
 前記合成実施例で合成した各化合物を用いて、下記表11に示す配合で光学部品形成組成物を調製した。なお、表11中の光学部品形成組成物の各成分のうち、酸発生剤、架橋剤、酸拡散抑制剤、及び溶媒については、以下のものを用いた。
 酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
 架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
 有機溶媒:プロピレングリコールモノメチルエーテルアセテートアセテート(PGMEA)
[膜形成の評価]
 均一状態の光学部品形成組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中でプレベーク(prebake:PB)して、厚さ1μmの光学部品形成膜を形成した。調製した光学部品形成組成物について、膜形成が良好な場合には「A」、形成した膜に欠陥がある場合には「C」と評価した。
[屈折率及び透過率の評価]
 均一な光学部品形成組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中でPBして、厚さ1μmの膜を形成した。その膜につき、ジェー・エー・ウーラム製多入射角分光エリプソメーターVASEにて、25℃における屈折率(λ=589.3nm)を測定した。調製した膜について、屈折率が1.6以上の場合には「A」、1.55以上1.6未満の場合には「B」、1.55未満の場合には「C」と評価した。また透過率(λ=632.8nm)が90%以上の場合には「A」、90%未満の場合には「C」と評価した。
Figure JPOXMLDOC01-appb-T000473
[実施例57~60]
 前記合成実施例で合成した各化合物を用いて、下記表12に示す配合でレジスト組成物を調製した。なお、表12中のレジスト組成物の各成分のうち、ラジカル発生剤、ラジカル拡散抑制剤、及び溶媒については、以下のものを用いた。
 ラジカル発生剤:BASF社製 IRGACURE184
 ラジカル拡散制御剤:BASF社製 IRGACURE1010
有機溶媒:プロピレングリコールモノメチルエーテルアセテートアセテート(PGMEA)
[評価方法]
(1)レジスト組成物の保存安定性及び薄膜形成
 レジスト組成物の保存安定性は、レジスト組成物を作成後、23℃、50%RHにて3日間静置し、析出の有無を目視にて観察することにより評価した。3日間静置後のレジスト組成物において、均一溶液であり析出がない場合にはA、析出がある場合はCと評価した。また、均一状態のレジスト組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ40nmのレジスト膜を形成した。作成したレジスト組成物について、薄膜形成が良好な場合にはA、形成した膜に欠陥がある場合にはCと評価した。
(2)レジストパターンのパターン評価
 均一なレジスト組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ60nmのレジスト膜を形成した。得られたレジスト膜に対して、電子線描画装置(ELS-7500、(株)エリオニクス社製)を用いて、50nm、40nm及び30nm間隔の1:1のラインアンドスペース設定の電子線を照射した。当該照射後に、レジスト膜を、それぞれ所定の温度で、90秒間加熱し、PGMEに60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄、乾燥して、ネガ型のレジストパターンを形成した。形成されたレジストパターンについて、ラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800)により観察し、レジスト組成物の電子線照射による反応性を評価した。
 感度は、パターンを得るために必要な単位面積当たりの最小のエネルギー量で示し、以下に従って評価した。
 A:50μC/cm未満でパターンが得られた場合
 C:50μC/cm以上でパターンが得られた場合
 パターン形成は、得られたパターン形状をSEM(走査型電子顕微鏡:Scanning Electron Microscope)にて観察し、以下に従って評価した。
 A:矩形なパターンが得られた場合
 B:ほぼ矩形なパターンが得られた場合
 C:矩形でないパターンが得られた場合
Figure JPOXMLDOC01-appb-T000474
 上述したとおり、本発明は、上記実施形態及び実施例に限定されるものではなく、その要旨を逸脱しない範囲内において適宜変更を加えることが可能である。
 本実施形態の化合物及び樹脂は、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であり、本実施形態のレジスト組成物は良好なレジストパターン形状を与える。
 また、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるフォトレジスト下層膜を形成するために有用な化合物、樹脂及びリソグラフィー用膜形成組成物を実現することができる。そして、このリソグラフィー用膜形成組成物は、耐熱性が高く、溶媒溶解性も高い、特定構造を有する化合物又は樹脂を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れたレジスト及び下層膜を形成することができる。さらには、下層膜を形成した場合、レジスト層との密着性にも優れるので、優れたレジストパターンを形成することができる。
 さらには屈折率が高く、また低温~高温処理によって着色が抑制されることから、各種光学部品形成組成物としても有用である。
 したがって、本発明は、例えば、電気用絶縁材料、レジスト用樹脂、半導体用封止樹脂、プリント配線板用接着剤、電気機器・電子機器・産業機器等に搭載される電気用積層板、電気機器・電子機器・産業機器等に搭載されるプリプレグのマトリックス樹脂、ビルドアップ積層板材料、繊維強化プラスチック用樹脂、液晶表示パネルの封止用樹脂、塗料、各種コーティング剤、接着剤、半導体用のコーティング剤、半導体用のレジスト用樹脂、下層膜形成用樹脂、フィルム状、シート状で使われるほか、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路等の光学部品等において、広く且つ有効に利用可能である。
 特に、本発明はリソグラフィー用レジスト、リソグラフィー用下層膜及び多層レジスト用下層膜及び光学部品の分野において、特に有効に利用可能である。
 本出願は、2016年7月21日に日本国特許庁へ出願された日本特許出願(特願2016-143661号)に基づくものであり、それらの内容はここに参照として取り込まれる。
 本発明は、リソグラフィー用レジスト、リソグラフィー用下層膜及び多層レジスト用下層膜及び光学部品の分野における産業上利用可能性を有する。

Claims (28)

  1.  下記式(0)で表される、化合物。
    Figure JPOXMLDOC01-appb-C000001
    (0)
    (式(0)中、Rは、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基であり、
    は、炭素数1~60のN価の基又は単結合であり、
    は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が下記式(0-1)で表される基で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、Rの少なくとも1つは下記式(0-1)で表される基を含み、
    Xは、酸素原子、硫黄原子又は無架橋であることを示し、
    mは、各々独立して0~9の整数であり、ここで、mの少なくとも1つは1~9の整数であり、
    Nは、1~4の整数であり、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよく、
    rは、各々独立して0~2の整数である。)
    Figure JPOXMLDOC01-appb-C000002
    (0-1)
    (式(0-1)中、Rは、水素原子又はメチル基である。)
  2.  前記式(0)で表される化合物が下記式(1)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    (1)
    (式(1)中、Rは、前記Rと同義であり、
    は、炭素数1~60のn価の基又は単結合であり、
    ~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が前記式(0-1)で表される基で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R~Rの少なくとも1つは前記式(0-1)で表される基を含み、
    及びmは、各々独立して、0~8の整数であり、
    及びmは、各々独立して、0~9の整数であり、
    但し、m、m、m及びmは同時に0になることはなく、
    nは前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
    ~pは、前記rと同義である。)
  3.  前記式(0)で表される化合物が下記式(2)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    (2)
    (式(2)中、R0Aは、前記Rと同義であり、
    1Aは、炭素数1~60のn価の基又は単結合であり、
    2Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が前記式(0-1)で表される基で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2Aの少なくとも1つは前記式(0-1)で表される基を含み、
    は、前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
    は、酸素原子、硫黄原子又は無架橋であることを示し、
    2Aは、各々独立して、0~7の整数であり、但し、少なくとも1つのm2Aは1~7の整数であり、
    は、各々独立して、0又は1である。)
  4.  前記式(1)で表される化合物が下記式(1-1)で表される化合物である、請求項2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005
    (1-1)
    (式(1-1)中、R、R、R、R、n、p~p、m及びmは、前記式(1)におけるものと同義であり、
    ~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基であり、
    10~R11は、各々独立して、水素原子又は下記式(0-2)で表される基であり、
    ここで、R10~R11の少なくとも1つは下記式(0-2)で表される基であり、
    及びmは、各々独立して、0~7の整数であり、
    但し、m、m、m及びmは同時に0になることはない。)
    Figure JPOXMLDOC01-appb-C000006
    (0-2)
    (式(0-2)中、Rは、前記式(0-1)におけるものと同義であり、sは、0~30の整数である。)
  5.  前記式(1-1)で表される化合物が下記式(1-2)で表される化合物である、請求項4に記載の化合物。
    Figure JPOXMLDOC01-appb-C000007
    (1-2)
    (式(1-2)中、R、R、R、R、R10、R11、n、p~p、m及びmは、前記式(1-1)におけるものと同義であり、
    ~Rは、前記R~Rと同義であり、
    12~R13は、前記R10~R11と同義であり、
    及びmは、各々独立して、0~8の整数であり、
    但し、m、m、m及びmは同時に0になることはない。)
  6.  前記式(2)で表される化合物が下記式(2-1)で表される化合物である、請求項3に記載の化合物。
    Figure JPOXMLDOC01-appb-C000008
    (2-1)
    (式(2-1)中、R0A、R1A、n、q及びX、は、前記式(2)におけるものと同義であり、
    3Aは、各々独立して、置換基を有していてもよい炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基であり、
    4Aは、各々独立して、水素原子又は下記式(0-2)で表される基であり、
    ここで、R4Aの少なくとも1つは下記式(0-2)で表される基であり、
    6Aは、各々独立して、0~5の整数である。)
    Figure JPOXMLDOC01-appb-C000009
    (0-2)
    (式(0-2)中、Rは、前記式(0-1)におけるものと同義であり、sは、0~30の整数である。)
  7.  請求項1に記載の化合物をモノマーとして得られる、樹脂。
  8.  下記式(3)で表される構造を有する、請求項7に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000010
    (3)
    (式(3)中、Lは、置換基を有していてもよい炭素数1~30のアルキレン基、置換基を有していてもよい炭素数6~30のアリーレン基、置換基を有していてもよい炭素数1~30のアルコキシレン基又は単結合であり、前記アルキレン基、前記アリーレン基、前記アルコキシレン基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
    は、前記Rと同義であり、
    は、炭素数1~60のn価の基又は単結合であり、
    ~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が前記式(0-1)で表される基で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R~Rの少なくとも1つは前記式(0-1)で表される基を含み、
    及びmは、各々独立して、0~8の整数であり、
    及びmは、各々独立して、0~9の整数であり、
    但し、m、m、m及びmは同時に0になることはなく、
    nは前記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
    ~pは、前記rと同義である。)
  9.  下記式(4)で表される構造を有する、請求項7に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000011
    (4)
    (式(4)中、Lは、置換基を有していてもよい炭素数1~30のアルキレン基、置換基を有していてもよい炭素数6~30のアリーレン基、置換基を有していてもよい炭素数1~30のアルコキシレン基又は単結合であり、前記アルキレン基、前記アリーレン基、前記アルコキシレン基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
    0Aは、前記Rと同義であり、
    1Aは、炭素数1~30のn価の基又は単結合であり、
    2Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基、水酸基又は水酸基の水素原子が前記式(0-1)で表される基で置換された基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、R2Aの少なくとも1つは前記式(0-1)で表される基を含み、
    は、上記Nと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
    は、酸素原子、硫黄原子又は無架橋であることを示し、
    2Aは、各々独立して、0~7の整数であり、但し、少なくとも1つのm2Aは1~6の整数であり、
    は、各々独立して、0又は1である。)
  10.  請求項1~6のいずれか一項に記載の化合物及び請求項7~9のいずれか一項に記載の樹脂からなる群より選ばれる1種以上を含有する、組成物。
  11.  溶媒をさらに含有する、請求項10に記載の組成物。
  12.  酸発生剤をさらに含有する、請求項10又は11に記載の組成物。
  13.  架橋剤をさらに含有する、請求項10~12のいずれか一項に記載の組成物。
  14.  前記架橋剤は、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物及びアジド化合物からなる群より選ばれる少なくとも1種である、請求項13に記載の組成物。
  15.  前記架橋剤は、少なくとも1つのアリル基を有する、請求項13又は14に記載の組成物。
  16.  前記架橋剤の含有割合が、請求項1~6のいずれか一項に記載の化合物及び請求項7~9のいずれか一項に記載の樹脂からなる群より選ばれる1種以上を含有する組成物の合計質量を100質量部とした場合に、0.1~100質量部である、請求項13~15のいずれか一項に記載の組成物。
  17.  架橋促進剤をさらに含有する、請求項13~16のいずれか一項に記載の組成物。
  18.  前記架橋促進剤は、アミン類、イミダゾール類、有機ホスフィン類、及びルイス酸からなる群より選ばれる少なくとも1種である、請求項17に記載の組成物。
  19.  前記架橋促進剤の含有割合が、請求項1~6のいずれか一項に記載の化合物及び請求項7~9のいずれか一項に記載の樹脂からなる群より選ばれる1種以上を含有する組成物の合計質量を100質量部とした場合に、0.1~5質量部である、請求項17又は18に記載の組成物。
  20.  ラジカル重合開始剤をさらに含有する、請求項10~19のいずれか一項に記載の組成物。
  21.  前記ラジカル重合開始剤は、ケトン系光重合開始剤、有機過酸化物系重合開始剤及びアゾ系重合開始剤からなる群より選ばれる少なくとも1種である、請求項10~20のいずれか一項に記載の組成物。
  22.  前記ラジカル重合開始剤の含有割合が、請求項1~6のいずれか一項に記載の化合物及び請求項7~9のいずれか一項に記載の樹脂からなる群より選ばれる1種以上を含有する組成物の合計質量を100質量部とした場合に、0.05~25質量部である、請求項10~21のいずれか一項に記載の組成物。
  23.  リソグラフィー用膜形成に用いられる、請求項10~22のいずれか一項に記載の組成物。
  24.  レジスト永久膜形成に用いられる、請求項10~22のいずれか一項に記載の組成物。
  25.  光学部品形成に用いられる、請求項10~13のいずれか一項に記載の組成物。
  26.  基板上に、請求項23に記載の組成物を用いてフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。
  27.  基板上に、請求項23に記載の組成物を用いて下層膜を形成し、前記下層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。
  28.  基板上に、請求項23に記載の組成物を用いて下層膜を形成し、前記下層膜上に、レジスト中間層膜材料を用いて中間層膜を形成し、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成し、その後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることにより基板にパターンを形成する工程を含む、回路パターン形成方法。
PCT/JP2017/026512 2016-07-21 2017-07-21 化合物、樹脂及び組成物、並びにレジストパターン形成方法及び回路パターン形成方法 WO2018016634A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780045311.1A CN109803950A (zh) 2016-07-21 2017-07-21 化合物、树脂和组合物、以及抗蚀图案形成方法和电路图案形成方法
KR1020187035675A KR20190034149A (ko) 2016-07-21 2017-07-21 화합물, 수지 및 조성물, 그리고 레지스트패턴 형성방법 및 회로패턴 형성방법
JP2018528898A JP7194356B2 (ja) 2016-07-21 2017-07-21 化合物、樹脂及び組成物、並びにレジストパターン形成方法及び回路パターン形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-143661 2016-07-21
JP2016143661 2016-07-21

Publications (1)

Publication Number Publication Date
WO2018016634A1 true WO2018016634A1 (ja) 2018-01-25

Family

ID=60993087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026512 WO2018016634A1 (ja) 2016-07-21 2017-07-21 化合物、樹脂及び組成物、並びにレジストパターン形成方法及び回路パターン形成方法

Country Status (5)

Country Link
JP (1) JP7194356B2 (ja)
KR (1) KR20190034149A (ja)
CN (1) CN109803950A (ja)
TW (1) TW201817721A (ja)
WO (1) WO2018016634A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167359A1 (ja) * 2018-02-28 2019-09-06 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びそれを用いたリソグラフィー用膜形成材料
WO2020027206A1 (ja) * 2018-07-31 2020-02-06 三菱瓦斯化学株式会社 光学部品形成用組成物及び光学部品、並びに、化合物及び樹脂

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11971659B2 (en) 2018-10-08 2024-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Photoresist composition and method of forming photoresist pattern
CN112079862A (zh) * 2020-10-29 2020-12-15 江苏创拓新材料有限公司 一种碳酸脂类液晶中间体及其制备方法和应用
KR102374293B1 (ko) * 2021-08-23 2022-03-17 영창케미칼 주식회사 패턴 프로파일 및 해상도 개선용 화학증폭형 포지티브 포토레지스트 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285648A (ja) * 2006-12-25 2008-11-27 Osaka Gas Co Ltd フルオレン骨格を有するウレタン(メタ)アクリレート
KR20090090866A (ko) * 2008-02-22 2009-08-26 윤중호 고굴절, 고탄성의 프리즘 시트와 이를 위한 조성물 및 그제조 방법
JP2009229720A (ja) * 2008-03-21 2009-10-08 Fujifilm Corp 感光性樹脂組成物、フォトスペーサー及びその形成方法、保護膜、着色パターン、表示装置用基板、並びに表示装置
US20100197876A1 (en) * 2009-02-03 2010-08-05 Samsung Electronics Co., Ltd. Photocurable compound
JP2012047832A (ja) * 2010-08-24 2012-03-08 Hitachi Chem Co Ltd 感光性樹脂組成物、感光性フィルム、リブパターンの形成方法、中空構造の形成方法及び電子部品

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3223104A1 (de) * 1982-06-21 1983-12-22 Hoechst Ag, 6230 Frankfurt Photopolymerisierbares gemisch und damit hergestelltes photopolymerisierbares kopiermaterial
JP3774668B2 (ja) 2001-02-07 2006-05-17 東京エレクトロン株式会社 シリコン窒化膜形成装置の洗浄前処理方法
JP3914493B2 (ja) 2002-11-27 2007-05-16 東京応化工業株式会社 多層レジストプロセス用下層膜形成材料およびこれを用いた配線形成方法
JP4382750B2 (ja) 2003-01-24 2009-12-16 東京エレクトロン株式会社 被処理基板上にシリコン窒化膜を形成するcvd方法
JP3981030B2 (ja) 2003-03-07 2007-09-26 信越化学工業株式会社 レジスト下層膜材料ならびにパターン形成方法
JP4388429B2 (ja) 2004-02-04 2009-12-24 信越化学工業株式会社 レジスト下層膜材料ならびにパターン形成方法
EP1739485B1 (en) 2004-04-15 2016-08-31 Mitsubishi Gas Chemical Company, Inc. Resist composition
TWI495632B (zh) * 2004-12-24 2015-08-11 Mitsubishi Gas Chemical Co 光阻用化合物
JP4781280B2 (ja) 2006-01-25 2011-09-28 信越化学工業株式会社 反射防止膜材料、基板、及びパターン形成方法
JP4638380B2 (ja) 2006-01-27 2011-02-23 信越化学工業株式会社 反射防止膜材料、反射防止膜を有する基板及びパターン形成方法
JP4858136B2 (ja) 2006-12-06 2012-01-18 三菱瓦斯化学株式会社 感放射線性レジスト組成物
JP5446118B2 (ja) 2007-04-23 2014-03-19 三菱瓦斯化学株式会社 感放射線性組成物
TW200906873A (en) 2007-05-30 2009-02-16 Toagosei Co Ltd Active energy ray curable composition, coating composition, coating member, and optical material
JP5251523B2 (ja) 2008-07-08 2013-07-31 日立化成株式会社 感光性樹脂組成物、並びにこれを用いた感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法
JP2010138393A (ja) 2008-11-13 2010-06-24 Nippon Kayaku Co Ltd 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
KR20140079359A (ko) 2011-08-12 2014-06-26 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 레지스트 조성물, 레지스트 패턴 형성방법, 이에 이용되는 폴리페놀 화합물 및 이로부터 유도될 수 있는 알코올 화합물
WO2013024779A1 (ja) 2011-08-12 2013-02-21 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法
CN103906624B (zh) 2011-09-26 2016-02-10 富士胶片株式会社 屏障积层体与其制造方法与其用途、屏障装置的制造方法、可聚合化合物与可聚合组合物
JP2015174877A (ja) 2014-03-13 2015-10-05 日産化学工業株式会社 特定の硬化促進触媒を含む樹脂組成物
JP7026439B2 (ja) 2014-12-25 2022-02-28 三菱瓦斯化学株式会社 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法及び精製方法
EP3326997A4 (en) 2015-07-23 2019-04-03 Mitsubishi Gas Chemical Company, Inc. NEW (METH) ACRYLOL COMPOUND AND METHOD OF MANUFACTURING THEREOF
KR20180030847A (ko) 2015-07-23 2018-03-26 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 신규 화합물 및 그 제조방법
US11143962B2 (en) 2015-08-31 2021-10-12 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, pattern forming method, resin, and purification method
WO2017038643A1 (ja) 2015-08-31 2017-03-09 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びその製造方法、並びにレジストパターン形成方法
KR20180051533A (ko) 2015-09-03 2018-05-16 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 화합물 및 그 제조방법, 그리고, 조성물, 광학부품 형성용 조성물, 리소그래피용 막형성 조성물, 레지스트 조성물, 레지스트 패턴의 형성방법, 감방사선성 조성물, 아몰퍼스막의 제조방법, 리소그래피용 하층막 형성재료, 리소그래피용 하층막 형성용 조성물, 리소그래피용 하층막의 제조방법, 레지스트 패턴 형성방법, 회로패턴 형성방법, 및, 정제방법
US11243467B2 (en) 2015-09-10 2022-02-08 Mitsubishi Gas Chemical Company, Inc. Compound, resin, resist composition or radiation-sensitive composition, resist pattern formation method, method for producing amorphous film, underlayer film forming material for lithography, composition for underlayer film formation for lithography, method for forming circuit pattern, and purification method
WO2017111165A1 (ja) 2015-12-25 2017-06-29 三菱瓦斯化学株式会社 化合物、樹脂、組成物、レジストパターン形成方法、及び、回路パターン形成方法
JP7069529B2 (ja) 2016-07-21 2022-05-18 三菱瓦斯化学株式会社 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
CN109415286A (zh) 2016-07-21 2019-03-01 三菱瓦斯化学株式会社 化合物、树脂、组合物和图案形成方法
KR20190032379A (ko) 2016-07-21 2019-03-27 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 화합물, 수지, 조성물 및 패턴 형성방법
WO2018016640A1 (ja) 2016-07-21 2018-01-25 三菱瓦斯化学株式会社 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285648A (ja) * 2006-12-25 2008-11-27 Osaka Gas Co Ltd フルオレン骨格を有するウレタン(メタ)アクリレート
KR20090090866A (ko) * 2008-02-22 2009-08-26 윤중호 고굴절, 고탄성의 프리즘 시트와 이를 위한 조성물 및 그제조 방법
JP2009229720A (ja) * 2008-03-21 2009-10-08 Fujifilm Corp 感光性樹脂組成物、フォトスペーサー及びその形成方法、保護膜、着色パターン、表示装置用基板、並びに表示装置
US20100197876A1 (en) * 2009-02-03 2010-08-05 Samsung Electronics Co., Ltd. Photocurable compound
JP2012047832A (ja) * 2010-08-24 2012-03-08 Hitachi Chem Co Ltd 感光性樹脂組成物、感光性フィルム、リブパターンの形成方法、中空構造の形成方法及び電子部品

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167359A1 (ja) * 2018-02-28 2019-09-06 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びそれを用いたリソグラフィー用膜形成材料
JPWO2019167359A1 (ja) * 2018-02-28 2021-02-18 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びそれを用いたリソグラフィー用膜形成材料
JP7360630B2 (ja) 2018-02-28 2023-10-13 三菱瓦斯化学株式会社 化合物、樹脂、組成物及びそれを用いたリソグラフィー用膜形成材料
WO2020027206A1 (ja) * 2018-07-31 2020-02-06 三菱瓦斯化学株式会社 光学部品形成用組成物及び光学部品、並びに、化合物及び樹脂
JPWO2020027206A1 (ja) * 2018-07-31 2021-08-12 三菱瓦斯化学株式会社 光学部品形成用組成物及び光学部品、並びに、化合物及び樹脂

Also Published As

Publication number Publication date
TW201817721A (zh) 2018-05-16
KR20190034149A (ko) 2019-04-01
JPWO2018016634A1 (ja) 2019-05-09
CN109803950A (zh) 2019-05-24
JP7194356B2 (ja) 2022-12-22

Similar Documents

Publication Publication Date Title
JP7283515B2 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JP7194355B2 (ja) 化合物、樹脂、組成物及びパターン形成方法
JP7069529B2 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JP7069530B2 (ja) 化合物、樹脂、組成物及びパターン形成方法
JP7194356B2 (ja) 化合物、樹脂及び組成物、並びにレジストパターン形成方法及び回路パターン形成方法
JP7205716B2 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JPWO2019142897A1 (ja) 化合物、樹脂、組成物及びパターン形成方法
JP2022130463A (ja) 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法
JP7205715B2 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JP7083455B2 (ja) 化合物、樹脂、組成物及びパターン形成方法
JP7061271B2 (ja) 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法
WO2018056279A1 (ja) 化合物、樹脂、組成物、並びにレジストパターン形成方法及びパターン形成方法
JP7385827B2 (ja) 化合物、樹脂、組成物、レジストパターン形成方法、回路パターン形成方法及び樹脂の精製方法
JP7445382B2 (ja) 化合物、樹脂、組成物及びパターン形成方法
JP7139622B2 (ja) 化合物、樹脂、組成物及びパターン形成方法
WO2018097215A1 (ja) 化合物、樹脂、組成物、パターン形成方法及び精製方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018528898

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831150

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187035675

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17831150

Country of ref document: EP

Kind code of ref document: A1