WO2018097215A1 - 化合物、樹脂、組成物、パターン形成方法及び精製方法 - Google Patents

化合物、樹脂、組成物、パターン形成方法及び精製方法 Download PDF

Info

Publication number
WO2018097215A1
WO2018097215A1 PCT/JP2017/042114 JP2017042114W WO2018097215A1 WO 2018097215 A1 WO2018097215 A1 WO 2018097215A1 JP 2017042114 W JP2017042114 W JP 2017042114W WO 2018097215 A1 WO2018097215 A1 WO 2018097215A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
group
compound
film
resist
Prior art date
Application number
PCT/JP2017/042114
Other languages
English (en)
French (fr)
Inventor
三樹 泰
牧野嶋 高史
越後 雅敏
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2018552955A priority Critical patent/JP7145415B2/ja
Publication of WO2018097215A1 publication Critical patent/WO2018097215A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers

Definitions

  • the present invention relates to a compound having a specific structure, a resin, a composition containing these, a pattern forming method using the composition, and a method for purifying a substance.
  • the light source for lithography used for resist pattern formation is shortened from KrF excimer laser (248 nm) to ArF excimer laser (193 nm).
  • KrF excimer laser 248 nm
  • ArF excimer laser (193 nm)
  • a resist underlayer film for lithography having a dry etching rate selection ratio close to that of a resist can be used.
  • a material for forming such a resist underlayer film for lithography it contains a resin component having at least a substituent that generates a sulfonic acid residue when a predetermined energy is applied and a solvent, and a solvent.
  • An underlayer film forming material for a multilayer resist process has been proposed (see, for example, Patent Document 1).
  • a resist underlayer film for lithography having a smaller dry etching rate selection ratio than that of the resist can be used.
  • a resist underlayer film material containing a polymer having a specific repeating unit has been proposed (for example, see Patent Document 2).
  • a resist underlayer film for lithography having a small dry etching rate selection ratio compared to a semiconductor substrate can also be mentioned.
  • a resist underlayer film material containing a polymer obtained by copolymerizing a repeating unit of acenaphthylenes and a repeating unit having a substituted or unsubstituted hydroxy group has been proposed (see, for example, Patent Document 3).
  • a chemical vapor deposition thin film forming method (chemical vapor deposition, hereinafter referred to as “CVD”) using methane gas, ethane gas, acetylene gas or the like as a raw material is used.
  • CVD chemical vapor deposition thin film forming method
  • methane gas, ethane gas, acetylene gas or the like as a raw material.
  • the formed amorphous carbon underlayer film is well known.
  • a resist underlayer film material capable of forming a resist underlayer film by a wet process such as spin coating or screen printing is required.
  • the formation method of the intermediate layer used in the formation of the resist underlayer film in the three-layer process for example, a silicon nitride film formation method (for example, see Patent Document 4) or a silicon nitride film CVD formation method (for example, , See Patent Document 5).
  • a silicon nitride film formation method for example, see Patent Document 4
  • a silicon nitride film CVD formation method for example, See Patent Document 5
  • an intermediate layer material for a three-layer process a material containing a silsesquioxane-based silicon compound is known (see, for example, Patent Documents 6 and 7).
  • the present inventors have proposed a composition for forming a lower layer film for lithography containing a specific compound or resin (for example, see Patent Document 8).
  • compositions for optical members have been proposed. However, none of them has a combination of heat resistance, transparency and refractive index at a high level, and the development of new materials is required.
  • an object of the present invention is to provide a compound, a resin, and a composition that are excellent in solvent solubility and can be applied to a wet process, and are useful for forming a film for lithography that is excellent in heat resistance and etching resistance.
  • Another object of the present invention is to provide a pattern forming method using the composition.
  • R Y is a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms
  • R Z is an m-valent group having 3 to 60 carbon atoms including a cyclic alkyl group having 3 to 30 carbon atoms
  • R T is each independently a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may have a substituent, and 6 to 30 carbon atoms which may have a substituent.
  • Aryl groups optionally substituted alkenyl groups having 2 to 30 carbon atoms, optionally substituted alkoxy groups having 1 to 30 carbon atoms, halogen atoms, nitro groups, amino groups, carboxyls A group, a thiol group, a group in which a hydrogen atom of a hydroxyl group is substituted with an acid dissociable group, or a hydroxyl group, and the alkyl group, the aryl group, the alkenyl group, and the alkoxy group have an ether bond, a ketone bond, or an ester bond.
  • RT is a hydroxyl group
  • n is each independently an integer of 0 to 8, wherein at least one of n is an integer of 1 to 8;
  • m is an integer of 1 to 4,
  • k is each independently an integer of 0-2.
  • R Y , R Z , m and k have the same meaning as described in the above formula (A).
  • Each R 3A is independently a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may have a substituent, and 6 to 30 carbon atoms which may have a substituent.
  • R 4A is each independently a hydrogen atom or an acid dissociable group, Here, at least one of R 4A is a hydrogen atom, m 6A is each independently an integer of 0 to 7. ) [3]
  • R Z has the same meaning as described in formula (A).
  • [4] The compound according to [3], wherein the compound represented by the formula (1 ′) is a compound represented by the following formula (2).
  • [5] The compound according to [4], wherein the compound represented by the formula (2) is a compound represented by the following formula (2-1) or the formula (2-2).
  • [6] A resin having a structural unit derived from the compound according to any one of [1] to [5].
  • a composition comprising at least one selected from the group consisting of the compound according to any one of [1] to [5] and the resin according to [6].
  • a composition for forming an optical part comprising at least one selected from the group consisting of the compound according to any one of [1] to [5] and the resin according to [6].
  • a film-forming composition for lithography comprising at least one selected from the group consisting of the compound according to any one of [1] to [5] and the resin according to [6].
  • a resist composition comprising at least one selected from the group consisting of the compound according to any one of [1] to [5] and the resin according to [6].
  • the resist composition according to [10] further including a solvent.
  • a method for producing an amorphous film comprising a step of forming an amorphous film on a substrate using the radiation-sensitive composition according to any one of [15] to [17].
  • a resist pattern forming method including a step of developing the exposed resist film to form a resist pattern.
  • a material for forming an underlayer film for lithography comprising at least one selected from the group consisting of the compound according to any one of [1] to [5] and the resin according to [6].
  • the acidic aqueous solution is a mineral acid aqueous solution or an organic acid aqueous solution
  • the mineral acid aqueous solution is a mineral acid aqueous solution in which at least one selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid is dissolved in water
  • the organic acid aqueous solution is a group consisting of acetic acid, propionic acid, succinic acid, malonic acid, succinic acid, fumaric acid, maleic acid, tartaric acid, citric acid, methanesulfonic acid, phenolsulfonic acid, p-toluenesulfonic acid and trifluoroacetic acid.
  • the purification method according to [27] above which is an organic acid aqueous solution in which at least one selected from the above is dissolved in water.
  • the solvent immiscible with water is one or more solvents selected from the group consisting of toluene, 2-heptanone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, and ethyl acetate. [27] or the purification method according to [28].
  • the solution phase containing the compound and / or the resin is further brought into contact with water to include a second extraction step of extracting impurities in the compound and / or the resin, [27]
  • the purification method according to any one of [29].
  • a compound, resin and composition useful for forming a film for lithography which is excellent in solvent solubility and can be applied to a wet process and has excellent heat resistance and etching resistance.
  • this embodiment is an illustration for demonstrating this invention, and this invention is not limited only to the embodiment.
  • the compound of the present embodiment is a compound represented by the following formula (A).
  • R Y is a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms
  • R Z is an m-valent group having 3 to 60 carbon atoms including a cyclic alkyl group having 3 to 30 carbon atoms
  • R T is each independently a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may have a substituent, and 6 to 30 carbon atoms which may have a substituent.
  • Aryl groups optionally substituted alkenyl groups having 2 to 30 carbon atoms, optionally substituted alkoxy groups having 1 to 30 carbon atoms, halogen atoms, nitro groups, amino groups, carboxyls A group, a thiol group, a group in which a hydrogen atom of a hydroxyl group is substituted with an acid dissociable group, or a hydroxyl group, and the alkyl group, the aryl group, the alkenyl group, and the alkoxy group have an ether bond, a ketone bond, or an ester bond.
  • RT is a hydroxyl group
  • n is each independently an integer of 0 to 8, wherein at least one of n is an integer of 1 to 8;
  • m is an integer of 1 to 4,
  • k is each independently an integer of 0-2.
  • R Z in the above formula (A) is an m-valent group having 3 to 60 carbon atoms including a cyclic alkyl group having 3 to 30 carbon atoms.
  • the m-valent group is a linear, branched or cyclic alkyl group having 3 to 60 carbon atoms which may have a substituent containing a cyclic alkyl group having 3 to 30 carbon atoms. Having a substituent containing a cyclic alkyl group having 3 to 60 carbon atoms, a linear, branched or cyclic alkylene group having 3 to 60 carbon atoms, and a cyclic alkyl group having 3 to 30 carbon atoms.
  • a monovalent aromatic group having 9 to 60 carbon atoms which may have a substituent containing a cyclic, branched or cyclic alkanetetrayl group, or a cyclic alkyl group having 3 to 30 carbon atoms, or 3 to 30 carbon atoms Of 9 to 60 carbon atoms which may have a substituent containing a cyclic alkyl group of An aromatic group, a trivalent aromatic group having 9 to 60 carbon atoms which may have a substituent containing a cyclic alkyl group having 3 to 30 carbon atoms, and a substituent containing a cyclic alkyl group having 3 to 30 carbon atoms.
  • the cyclic alkyl group containing a cyclic alkyl group having 3 to 30 carbon atoms includes a bridged alicyclic alkyl group containing a cyclic alkyl group having 3 to 30 carbon atoms.
  • the m-valent group may have a double bond, a heteroatom, or an aromatic group having 6 to 30 carbon atoms.
  • a bridged alicyclic alkyl group is also included.
  • the compound of the present embodiment has high heat resistance because R Z in the above formula (A) is an m-valent group having 3 to 60 carbon atoms including a cyclic alkyl group having 3 to 30 carbon atoms as described above. Moreover, a good resist pattern shape can be imparted, and furthermore, the etching resistance is also excellent.
  • the m-valent group is a linear, branched or cyclic alkyl group having 3 to 60 carbon atoms which may have a substituent containing a cyclic alkyl group having 3 to 30 carbon atoms.
  • a valent aromatic group is preferred.
  • the monovalent group having 3 to 60 carbon atoms which may have a substituent containing a cyclic alkyl group having 3 to 30 carbon atoms is not particularly limited, and examples thereof include a cyclopropyl group, a cyclobutyl group, and a cyclopentyl group.
  • the divalent group having 3 to 60 carbon atoms which may have a substituent containing a cyclic alkyl group having 3 to 30 carbon atoms is not particularly limited, and examples thereof include a cyclopropylene group, a cyclobutylene group, Pentylene group, cyclohexylene group, cycloheptylene group, cyclooctylene group, cyclononylene group, cyclodecylene group, cyclooctadecylene group, adamantylene group, cyclohexylphenylene group, cyclopropyldimethylene group, cyclohexyldimethylene group, adamantyldimethylene Groups and the like.
  • the trivalent group having 3 to 60 carbon atoms which may have a substituent containing a cyclic alkyl group having 3 to 30 carbon atoms is not particularly limited, and examples thereof include a cyclopropanetriyl group and a cyclobutanetriyl group.
  • the tetravalent group having 3 to 60 carbon atoms that may have a substituent containing a cyclic alkyl group having 3 to 30 carbon atoms is not particularly limited, and examples thereof include a cyclopropanetetrayl group, cyclobutanetetrayl group, and the like.
  • cyclopentanetetrayl group cyclohexanetetrayl group, cycloheptanetetrayl group, cyclooctanetetrayl group, cyclononanetetrayl group, cyclodecanetetrayl group, cyclooctadecanetetrayl group, cyclohexylbenzenetetrayl group, cyclo Examples thereof include a propanetetramethylene group, a cyclohexanetetramethylene group, an adamantanetetramethylene group, and a cyclohexylbenzenetetramethylene group.
  • a cyclohexylphenyl group a propylcyclohexylphenyl group, a cyclohexylnaphthyl group, a bicyclohexyl group, and a cyclohexanedimethyl group are preferable from the viewpoint of heat resistance.
  • a cyclohexylphenyl group is preferable from the viewpoint of availability of raw materials.
  • R Y in the above formula (A) is a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms.
  • R Y in the above formula (A) is each independently a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms which may have a substituent.
  • the alkyl group and the aryl group may contain an ether bond, a ketone bond or an ester bond.
  • R T in the above formula (A) is each independently a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms which may have a substituent.
  • at least one of RT is a hydroxyl group.
  • N is each independently an integer of 0 to 8, wherein at least one of n is an integer of 1 to 8, m is an integer of 1 to 4, and k is each independently And an integer of 0-2.
  • an acid-dissociable group refers to a characteristic group that is cleaved in the presence of an acid to cause a change such as an alkali-soluble group.
  • the alkali-soluble group include a phenolic hydroxyl group, a carboxyl group, a sulfonic acid group, and a hexafluoroisopropanol group.
  • a phenolic hydroxyl group and a carboxyl group are preferable, and a phenolic hydroxyl group is particularly preferable.
  • the acid dissociable group may be appropriately selected from those proposed for hydroxystyrene resins, (meth) acrylic resins and the like used in chemically amplified resist compositions for KrF and ArF. it can. Although not limited, for example, an acid dissociable group described in JP 2012-136520 A is used.
  • the compound of this embodiment Since the compound of this embodiment has the above structure, it has high heat resistance and high solvent solubility. Moreover, it is preferable that the compound of this embodiment is a compound represented by following formula (1) from the viewpoint of the solubility to a solvent, and heat resistance.
  • R Z , R Y , m and k have the same meanings as described in the formula (A).
  • Each R 3A is independently a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may have a substituent, and 6 to 30 carbon atoms which may have a substituent.
  • R 4A is each independently a hydrogen atom or an acid dissociable group,
  • at least one of R 4A is a hydrogen atom
  • m 6A is each independently an integer of 0 to 7.
  • the compound represented by the formula (1) is preferably a compound represented by the following formula (1 ′).
  • R Z has the same meaning as described in formula (A).
  • the compound represented by (1 ′) is preferably a compound represented by the following formula (2).
  • R T ′ has the same meaning as R T described in the formula (A), and m is each independently an integer of 1-6.
  • R T ′ has the same meaning as R T described in the formula (A), and m is each independently an integer of 1-6.
  • R Z ′ has the same meaning as R Z described in the formula (A). Furthermore, each R 4A is independently a hydrogen atom or an acid dissociable group, and at least one of the OR 4A is a hydroxyl group.
  • R T ′ is a cyclic alkyl group having 3 to 30 carbon atoms.
  • each R 4A is independently a hydrogen atom or an acid dissociable group, at least one of the OR 4A is a hydroxyl group, and m is an integer of 1 to 5.
  • R T ′ is a cyclic alkyl group having 3 to 30 carbon atoms.
  • each R 4A is independently a hydrogen atom or an acid dissociable group, at least one of the OR 4A is a hydroxyl group, and m is an integer of 1 to 9.
  • R T ′ is a cyclic alkyl group having 3 to 30 carbon atoms.
  • each R 4A is independently a hydrogen atom or an acid dissociable group, at least one of the OR 4A is a hydroxyl group, and m is an integer of 1 to 7.
  • R T ′ is a cyclic alkyl group having 3 to 30 carbon atoms.
  • each R 4A is independently a hydrogen atom or an acid dissociable group, at least one of the OR 4A is a hydroxyl group, and m is an integer of 1 to 9.
  • R T ′ is a cyclic alkyl group having 3 to 30 carbon atoms.
  • each R 4A is independently a hydrogen atom or an acid dissociable group, at least one of the OR 4A is a hydroxyl group, and m is an integer of 1 to 7.
  • R T ′ is a cyclic alkyl group having 3 to 30 carbon atoms.
  • each R 4A is independently a hydrogen atom or an acid dissociable group, at least one of the OR 4A is a hydroxyl group, and m is an integer of 1 to 4.
  • R T ′ is a cyclic alkyl group having 3 to 30 carbon atoms.
  • each R 4A is independently a hydrogen atom or an acid dissociable group, at least one of the OR 4A is a hydroxyl group, and m is an integer of 1-6.
  • R T ′ is a cyclic alkyl group having 3 to 30 carbon atoms.
  • each R 4A is independently a hydrogen atom or an acid dissociable group, at least one of the OR 4A is a hydroxyl group, and m is an integer of 1-8.
  • R T ′ is a cyclic alkyl group having 3 to 30 carbon atoms.
  • each R 4A is independently a hydrogen atom or an acid dissociable group, at least one of the OR 4A is a hydroxyl group, and m is an integer of 1-8.
  • R T ′ is a cyclic alkyl group having 3 to 30 carbon atoms.
  • each R 4A is independently a hydrogen atom or an acid dissociable group, at least one of the OR 4A is a hydroxyl group, and m is an integer of 1 to 3.
  • the compound represented by the formula (A) is preferably a compound having the following structure from the viewpoint of etching resistance.
  • R 0A has the same meaning as R Y explained in the formula (A)
  • R 1A ′ has the same meaning as R Z explained in the formula (A)
  • R 10 and R 11 are the same as those in the formula. It is synonymous with R 4A described in (1).
  • R 0A has the same meaning as R Y explained in the formula (A)
  • R 1A ′ has the same meaning as R Z explained in the formula (A)
  • R 10 and R 11 are the same as those in the formula. It is synonymous with R 4A described in (1).
  • R 14 is a cyclic alkyl group having 3 to 30 carbon atoms, and m 14 is each independently an integer of 0 to 5.
  • R 10 and R 11 have the same meaning as R 4A described in formula (1), and R 15 is a cyclic alkyl group having 3 to 30 carbon atoms.
  • R 10 and R 11 have the same meaning as R 4A described in formula (1), and R 16 is a group containing a cyclic alkyl group having 3 to 30 carbon atoms.
  • R 10 and R 11 are synonymous with R 4A described in formula (1), and R 14 is a cyclic alkyl group having 3 to 30 carbon atoms.
  • m 14 ′ is each independently an integer of 0 to 4. However, at least one m 14 ′ is an integer of 1 to 4.
  • R 10 and R 11 are synonymous with R 4A described in formula (1), and R 14 is a cyclic alkyl group having 3 to 30 carbon atoms.
  • m 14 ′ is an integer of 1 to 4.
  • R 10 and R 11 are synonymous with R 4A described in formula (1), and R 14 is a cyclic alkyl group having 3 to 30 carbon atoms.
  • m 14 ′ is each independently an integer of 0 to 4. However, at least one m 14 ′ is an integer of 1 to 4.
  • R 10 and R 11 are synonymous with R 4A described in the formula (1), and R 14 is a cyclic alkyl group having 3 to 30 carbon atoms.
  • m 14 ′ each independently represents an integer of 1 to 4.
  • R 10 and R 11 have the same meaning as R 4A described in the formula (1).
  • the compound represented by the above formula is preferably a compound having a dibenzoxanthene skeleton from the viewpoint of heat resistance.
  • the compound represented by the formula (A) is preferably a compound having the following structure from the viewpoint of raw material availability.
  • R 0A has the same meaning as R Y explained in the formula (A)
  • R 1A ′ has the same meaning as R Z explained in the formula (A)
  • R 10 , R 11 and R 13 are , which has the same meaning as R 4A described in Formula (1).
  • the compound represented by the formula is preferably a compound having a xanthene skeleton from the viewpoint of heat resistance.
  • R 10 , R 11 and R 13 have the same meaning as R 4A described in the formula (1), and R 14 , R 15 , R 16 , m 14 and m 14 ′ have the same meaning as described above.
  • the compound represented by the formula (A) of the present embodiment can be appropriately synthesized by applying a known technique, and the synthesis technique is not particularly limited.
  • a compound represented by the above general formula (A) is obtained by polycondensation reaction of naphthols with aldehydes or ketones corresponding to the desired compound structure under an acid catalyst under normal pressure. be able to. Moreover, it can also carry out under pressure as needed.
  • naphthols examples include, but are not particularly limited to, naphthol, methyl naphthol, methoxynaphthalene, naphthalene diol, naphthalene triol, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, it is more preferable to use naphthalenediol and naphthalenetriol from the viewpoint that a xanthene structure can be easily formed.
  • aldehydes examples include cyclopropyl aldehyde, cyclobutyraldehyde, cyclohexyl aldehyde, cyclodecyl aldehyde, cycloundecyl aldehyde, cyclopropyl benzaldehyde, cyclobutyl benzaldehyde, cyclohexyl benzaldehyde, cyclodecyl benzaldehyde, cycloundecyl benzaldehyde and the like. However, it is not particularly limited to these. These can be used individually by 1 type or in combination of 2 or more types.
  • cyclohexylbenzaldehyde cyclodecylbenzaldehyde, cycloundecylbenzaldehyde and the like from the viewpoint of providing high heat resistance.
  • ketones include, but are not limited to, cyclobutanone, cyclopentanone, cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, cycloundecanone, adamantanone, and the like. These can be used alone or in combination of two or more. Among these, it is preferable to use cyclohexanone or cycloundecanone from the viewpoint of giving high heat resistance.
  • the acid catalyst used in the above reaction can be appropriately selected from known ones and is not particularly limited.
  • inorganic acids and organic acids are widely known.
  • Specific examples of the acid catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid; oxalic acid, malonic acid, succinic acid, adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid.
  • Organic acids such as acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, naphthalene disulfonic acid; zinc chloride, aluminum chloride Lewis acids such as iron chloride and boron trifluoride; solid acids such as silicotungstic acid, phosphotungstic acid, silicomolybdic acid, and phosphomolybdic acid, but are not particularly limited thereto.
  • an organic acid and a solid acid are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferably used from the viewpoint of production such as availability and ease of handling.
  • an acid catalyst 1 type can be used individually or in combination of 2 or more types.
  • the amount of the acid catalyst used can be appropriately set according to the raw material used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0.01 to 100 per 100 parts by mass of the reactive raw material. It is preferable that it is a mass part.
  • a reaction solvent may be used.
  • the reaction solvent is not particularly limited as long as the reaction between aldehydes or ketones to be used and phenols proceeds, and can be appropriately selected from known ones.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the usage-amount of these solvent can be suitably set according to the raw material to be used, the kind of acid catalyst to be used, and also reaction conditions.
  • the amount of the solvent used is not particularly limited, but is preferably in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material.
  • the reaction temperature in the above reaction can be appropriately selected according to the reactivity of the reaction raw materials.
  • the reaction temperature is not particularly limited, but is usually preferably in the range of 10 to 200 ° C.
  • the reaction temperature is preferably higher, specifically in the range of 60 to 200 ° C. Is preferred.
  • the reaction method can be appropriately selected from known methods, and is not particularly limited.
  • phenols, aldehydes or ketones a method in which an acid catalyst is charged at once, phenols, aldehydes or ketones are used. Can be added dropwise in the presence of an acid catalyst.
  • the obtained compound can be isolated according to a conventional method, and is not particularly limited. For example, in order to remove unreacted raw materials, acid catalysts, etc. present in the system, a general method such as raising the temperature of the reaction vessel to 130-230 ° C. and removing volatile matter at about 1-50 mmHg, etc. By taking it, the target compound can be obtained.
  • reaction conditions 1 mol to excess of phenols and 0.001 to 1 mol of an acid catalyst are used with respect to 1 mol of aldehyde or ketone, and 20 minutes at 50 to 200 ° C. at normal pressure. It proceeds by reacting for about 100 hours.
  • the target product can be isolated by a known method.
  • the reaction solution is concentrated, pure water is added to precipitate the reaction product, cooled to room temperature, filtered and separated, and the solid obtained by filtration is dried, followed by column chromatography.
  • the compound having a structure represented by the above general formula (A), which is the target product, can be obtained by separating and purifying from the by-product and performing solvent distillation, filtration and drying.
  • the molecular weight of the compound having the structure represented by the general formula (A) is not particularly limited, but the polystyrene equivalent weight average molecular weight (Mw) is preferably 350 to 30,000, more preferably 500. ⁇ 20,000. Further, from the viewpoint of increasing the crosslinking efficiency and suppressing the volatile components in the baking, the compound having the structure represented by the general formula (A) has a dispersity (weight average molecular weight Mw / number average molecular weight Mn) of 1. Those within the range of 1 to 7 are preferred. In addition, said Mw and Mn can be measured by the method as described in the Example mentioned later.
  • the compound having the structure represented by the general formula (A) described above is preferably highly soluble in a solvent from the viewpoint of easier application of a wet process. More specifically, when these compounds and / or resins use 1-methoxy-2-propanol (PGME) and / or propylene glycol monomethyl ether acetate (PGMEA) as a solvent, the solubility in the solvent is 10% by mass or more. It is preferable that Here, the solubility in PGM and / or PGMEA is defined as “resin mass ⁇ (resin mass + solvent mass) ⁇ 100 (mass%)”.
  • 10 g of the compound represented by the general formula (A) is evaluated to be dissolved in 90 g of PGMEA when the solubility of the compound represented by the general formula (A) in PGMEA is “10% by mass or more”. Yes, it is evaluated that it does not dissolve when the solubility is “less than 10% by mass”.
  • the resin of the present embodiment is a resin having a structural unit derived from the compound represented by the above formula (A) (hereinafter also referred to as “the compound of the present embodiment”).
  • the compound represented by the above formula (A) can be used as it is as a film-forming composition for lithography. Moreover, it can be used also as resin which has a structural unit derived from the compound represented by the said Formula (A).
  • the resin having a structural unit derived from the compound represented by the formula (A) is represented by a resin having a structural unit derived from the compound represented by the formula (1) and the formula (1 ′).
  • a resin having a structural unit derived from the compound represented by formula (2) and a resin having a structural unit derived from the compound represented by formula (2). It can be read as “compound represented by 1)”, “compound represented by formula (1 ′)”, and “compound represented by formula (2)”.
  • the resin of the present embodiment is obtained, for example, by reacting a compound represented by the above formula (A) with a compound having a crosslinking reaction.
  • a known compound can be used without particular limitation as long as the compound represented by the above formula (A) can be oligomerized or polymerized.
  • Specific examples thereof include, but are not limited to, aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, imino compounds, isocyanates, unsaturated hydrocarbon group-containing compounds, and the like.
  • the resin in the present embodiment include a resin obtained by novolacizing the compound represented by the above formula (A) by a condensation reaction with an aldehyde that is a compound having a crosslinking reactivity.
  • aldehyde for example, formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde
  • examples thereof include, but are not limited to, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbaldehyde, phenanthrenecarbaldehyde, pyrenecarbaldehyde, and furfural.
  • aldehydes can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the aldehyde used is not particularly limited, but is preferably 0.2 to 5 mol, more preferably 0.5 to 2 mol, relative to 1 mol of the compound represented by the formula (A). is there.
  • an acid catalyst In the condensation reaction between the compound represented by the above formula (A) and the aldehyde, an acid catalyst may be used.
  • the acid catalyst used here can be appropriately selected from known ones and is not particularly limited.
  • As such an acid catalyst inorganic acids, organic acids, Lewis acids, and solid acids are widely known.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, and hydrofluoric acid; oxalic acid, Malonic acid, succinic acid, adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfone Acids, organic acids such as naphthalene sulfonic acid and naphthalene disulfonic acid; Lewis acids such as zinc chloride, aluminum chloride, iron chloride and boron trifluoride; or silicotungstic acid, phosphotungstic acid, silicomolybdic acid or phosphomolybdic acid Solid acids and the like can be mentioned, but are not particularly limited thereto.
  • organic acids and solid acids are preferred from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferred from the viewpoint of production such as availability and ease of handling.
  • hydrochloric acid or sulfuric acid is preferred from the viewpoint of production such as availability and ease of handling.
  • 1 type can be used individually or in combination of 2 or more types.
  • the amount of the acid catalyst used can be appropriately set according to the raw material used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0.01 to 100 per 100 parts by mass of the reactive raw material. It is preferable that it is a mass part.
  • indene hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, norbornadiene, 5-vinylnorborna-2-ene,
  • aldehydes are not necessarily required.
  • a reaction solvent may be used.
  • the reaction solvent in this polycondensation can be appropriately selected from known solvents and is not particularly limited. Examples thereof include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, and mixed solvents thereof. Illustrated.
  • a reaction solvent can be used individually by 1 type or in combination of 2 or more types.
  • the amount of these reaction solvents used can be appropriately set according to the raw material used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material. The range of parts is preferred.
  • the reaction temperature can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
  • reaction method can select and use a well-known method suitably, although it does not specifically limit,
  • the method of charging the compound represented by the said Formula (A), aldehydes, and a catalyst collectively, said Formula (A) There is a method in which a compound or an aldehyde represented by (2) is dropped in the presence of a catalyst.
  • the obtained resin can be isolated according to a conventional method, and is not particularly limited.
  • a general method is adopted such as raising the temperature of the reaction vessel to 130-230 ° C. and removing volatile matter at about 1-50 mmHg.
  • a novolak resin as the target product can be obtained.
  • the resin in the present embodiment may be a homopolymer of the compound represented by the above formula (A), or may be a copolymer with other phenols.
  • the copolymerizable phenols include phenol, cresol, dimethylphenol, trimethylphenol, butylphenol, phenylphenol, diphenylphenol, naphthylphenol, resorcinol, methylresorcinol, catechol, butylcatechol, methoxyphenol, methoxyphenol, Although propylphenol, pyrogallol, thymol, etc. are mentioned, it is not specifically limited to these.
  • the resin in the present embodiment may be copolymerized with a polymerizable monomer other than the above-described phenols.
  • the copolymerization monomer include naphthol, methylnaphthol, methoxynaphthol, dihydroxynaphthalene, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene. , Norbornadiene, vinylnorbornaene, pinene, limonene and the like, but are not particularly limited thereto.
  • the resin in this embodiment may be a copolymer of two or more (for example, a quaternary system) of the compound represented by the above formula (A) and the above-described phenols. Even if it is a binary or more (for example, 2-4 quaternary) copolymer of the compound represented by A) and the above-mentioned copolymerization monomer, the compound represented by the above formula (A) and the above-mentioned phenols Further, it may be a ternary or more (for example, ternary to quaternary) copolymer of the above-mentioned copolymerization monomer.
  • the molecular weight of the resin in the present embodiment is not particularly limited, but the polystyrene-equivalent weight average molecular weight (Mw) is preferably 500 to 30,000, more preferably 750 to 20,000. Further, from the viewpoint of increasing the crosslinking efficiency and suppressing the volatile components in the baking, the resin in this embodiment has a dispersity (weight average molecular weight Mw / number average molecular weight Mn) in the range of 1.2 to 7. preferable. In addition, said Mn can be calculated
  • composition contains 1 or more types of substances chosen from the group which consists of resin which has a compound represented by the said Formula (A), and the structural unit derived from this compound. Moreover, the composition of this embodiment may contain both the compound of this embodiment and the resin of this embodiment.
  • “one or more selected from the group consisting of a compound represented by the above formula (A) and a resin having a structural unit derived from the compound” is referred to as “the compound and / or resin of this embodiment” or “component. (A) ".
  • composition for optical component formation contains one or more selected from the group consisting of a compound represented by the above formula (A) and a resin having a structural unit derived from the compound. Moreover, the composition for optical component formation of this embodiment may contain both the compound of this embodiment and the resin of this embodiment.
  • the “optical component” means a film-like or sheet-like component, a plastic lens (a prism lens, a lenticular lens, a micro lens, a Fresnel lens, a viewing angle control lens, a contrast improving lens, etc.), a retardation film, An electromagnetic shielding film, a prism, an optical fiber, a solder resist for flexible printed wiring, a plating resist, an interlayer insulating film for multilayer printed wiring boards, and a photosensitive optical waveguide.
  • a plastic lens a prism lens, a lenticular lens, a micro lens, a Fresnel lens, a viewing angle control lens, a contrast improving lens, etc.
  • a retardation film An electromagnetic shielding film, a prism, an optical fiber, a solder resist for flexible printed wiring, a plating resist, an interlayer insulating film for multilayer printed wiring boards, and a photosensitive optical waveguide.
  • the compounds and resins of this embodiment are useful for these optical component forming
  • the film-forming composition for lithography of the present embodiment contains one or more substances selected from the group consisting of a compound represented by the above formula (A) and a resin having a structural unit derived from the compound. Moreover, the film forming composition for lithography of this embodiment may contain both the compound of this embodiment and the resin of this embodiment.
  • the resist composition of the present embodiment contains one or more substances selected from the group consisting of a compound represented by the above formula (A) and a resin having a structural unit derived from the compound. Moreover, the resist composition of this embodiment may contain both the compound of this embodiment and the resin of this embodiment.
  • the resist composition of the present embodiment preferably contains a solvent.
  • the solvent include, but are not limited to, ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-propyl ether acetate, and ethylene glycol mono-n-butyl ether acetate.
  • Ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate, propylene glycol mono-n-propyl ether acetate, propylene glycol mono -Propylene glycol such as n-butyl ether acetate Cole monoalkyl ether acetates; propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether (PGME) and propylene glycol monoethyl ether; methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate, n-amyl lactate, etc.
  • PGMEA propylene glycol monomethyl ether acetate
  • PGMEA propylene glycol monoethyl ether acetate
  • Lactate esters aliphatic carboxylic acid esters such as methyl acetate, ethyl acetate, n-propyl acetate, n-butyl acetate, n-amyl acetate, n-hexyl acetate, methyl propionate, ethyl propionate; Methyl propionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl 3-methoxy-2-methylpropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyrate Other esters such as acetate, butyl 3-methoxy-3-methylpropionate, butyl 3-methoxy-3-methylbutyrate, methyl acetoacetate, methyl pyruvate and ethyl pyruvate; aromatic hydrocarbons such as toluene and xylene Ketones such as 2-heptan
  • the solvent used in this embodiment is preferably a safe solvent, more preferably at least one selected from PGMEA, PGME, CHN, CPN, 2-heptanone, anisole, butyl acetate, ethyl propionate and ethyl lactate.
  • a seed more preferably at least one selected from PGMEA, PGME and CHN.
  • the amount of the solid component and the amount of the solvent are not particularly limited, but 1 to 80% by weight of the solid component and 20 to 99% by weight of the solvent with respect to 100% by weight of the total amount of the solid component and the solvent. %, More preferably 1 to 50% by weight of the solid component and 50 to 99% by weight of the solvent, further preferably 2 to 40% by weight of the solid component and 60 to 98% by weight of the solvent, particularly preferably the solid component. 2 to 10% by mass and solvent 90 to 98% by mass.
  • the resist composition of the present embodiment contains other components such as a crosslinking agent, an acid generator, and an organic solvent as necessary, in addition to the compound having the structure represented by the general formula (A). Also good.
  • these optional components will be described.
  • acid generator (C) In the resist composition of this embodiment, acid is generated directly or indirectly by irradiation with radiation selected from visible light, ultraviolet light, excimer laser, electron beam, extreme ultraviolet light (EUV), X-ray and ion beam. It is preferable to include one or more acid generators (C). Although an acid generator (C) is not specifically limited, For example, the thing as described in international publication 2013/024778 can be used. The acid generator (C) can be used alone or in combination of two or more.
  • the amount of the acid generator (C) used is preferably 0.001 to 49% by mass, more preferably 1 to 40% by mass, still more preferably 3 to 30% by mass, and more preferably 10 to 25% by mass based on the total weight of the solid components. Particularly preferred. By using within the above range, a pattern profile with high sensitivity and low edge roughness can be obtained.
  • the acid generation method is not limited as long as the acid is generated in the system. If an excimer laser is used instead of ultraviolet rays such as g-line and i-line, finer processing is possible, and if high-energy rays are used electron beams, extreme ultraviolet rays, X-rays, ion beams, further fine processing is possible. Is possible.
  • the acid crosslinking agent (G) is a compound capable of crosslinking the component (A) in the molecule or between molecules in the presence of the acid generated from the acid generator (C).
  • Examples of such an acid crosslinking agent (G) include a compound having one or more groups capable of crosslinking the component (A) (hereinafter referred to as “crosslinkable group”).
  • Such a crosslinkable group is not particularly limited.
  • hydroxy (C1-C6 alkyl group), C1-C6 alkoxy (C1-C6 alkyl group), acetoxy (C1-C6 alkyl group) and the like An alkyl group or a group derived therefrom;
  • a carbonyl group such as formyl group or carboxy (C1-C6 alkyl group) or a group derived therefrom;
  • glycidyl group-containing groups such as glycidyl ether groups, glycidyl ester groups, glycidylamino groups;
  • benzyloxymethyl groups C1-C6 allyloxy (C1-C, such as
  • the acid crosslinking agent (G) having a crosslinkable group is not particularly limited, and for example, those described in International Publication No. 2013/024778 can be used.
  • the acid crosslinking agent (G) can be used alone or in combination of two or more.
  • the amount of the acid crosslinking agent (G) used is preferably 0.5 to 49% by mass, more preferably 0.5 to 40% by mass, and still more preferably 1 to 30% by mass, based on the total weight of the solid component. 2 to 20% by mass is particularly preferable.
  • the blending ratio of the acid cross-linking agent (G) is 0.5% by mass or more, the effect of suppressing the solubility of the resist film in an alkaline developer is improved, the remaining film ratio is decreased, pattern swelling and meandering are caused. It is preferable because it can be prevented from occurring.
  • it is 50% by mass or less it is preferable because a decrease in heat resistance as a resist can be suppressed.
  • the acid diffusion controller (E) has an action of controlling the diffusion of the acid generated from the acid generator by irradiation in the resist film to prevent an undesirable chemical reaction in the unexposed area. May be blended in the resist composition.
  • an acid diffusion controller (E) By using such an acid diffusion controller (E), the storage stability of the resist composition is improved. In addition, the resolution is improved, and a change in the line width of the resist pattern due to fluctuations in the holding time before irradiation and the holding time after irradiation can be suppressed, and the process stability is extremely excellent.
  • the acid diffusion controller (E) is not particularly limited, and examples thereof include radiolytic decomposable basic compounds such as nitrogen atom-containing basic compounds, basic sulfonium compounds, and basic iodonium compounds.
  • the acid diffusion control agent (E) is not particularly limited, and for example, those described in International Publication No. 2013/024778 can be used.
  • the acid diffusion controller (E) can be used alone or in combination of two or more.
  • the blending amount of the acid diffusion controller (E) is preferably 0.001 to 49% by mass, more preferably 0.01 to 10% by mass, still more preferably 0.01 to 5% by mass, based on the total weight of the solid component. 0.01 to 3% by mass is particularly preferable. Within the above range, it is possible to prevent degradation in resolution, pattern shape, dimensional fidelity, and the like. Furthermore, even if the holding time from electron beam irradiation to heating after radiation irradiation becomes longer, the shape of the pattern upper layer portion does not deteriorate. Moreover, the fall of a sensitivity, the developability of an unexposed part, etc. can be prevented as a compounding quantity is 10 mass% or less.
  • the storage stability of the resist composition is improved and the resolution is improved, and also due to fluctuations in the holding time before irradiation and the holding time after irradiation. Changes in the line width of the resist pattern can be suppressed, and the process stability is extremely excellent.
  • a dissolution accelerator for the resist composition of the present embodiment, a dissolution controller, a sensitizer, a surfactant, an organic carboxylic acid, or an oxo acid of phosphorus or a derivative thereof, as necessary. 1 type, or 2 or more types can be added.
  • the low-molecular-weight dissolution accelerator increases the solubility of the compound represented by the formula (A) in the developing solution when it is too low, and appropriately increases the dissolution rate of the compound during development. It can be used as needed.
  • the dissolution accelerator include low molecular weight phenolic compounds, and examples thereof include bisphenols and tris (hydroxyphenyl) methane. These dissolution promoters can be used alone or in admixture of two or more.
  • the blending amount of the dissolution accelerator is appropriately adjusted according to the type of the compound used, but is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, and more preferably 0 to 1% by mass based on the total weight of the solid component. Is more preferable, and 0% by mass is particularly preferable.
  • the dissolution control agent is a component having an action of appropriately reducing the dissolution rate during development by controlling the solubility when the solubility of the compound represented by the formula (A) in the developer is too high.
  • a dissolution control agent those that do not chemically change in steps such as baking of resist film, irradiation with radiation, and development are preferable.
  • dissolution control agent for example, aromatic hydrocarbons, such as phenanthrene, anthracene, and acenaphthene; Ketones, such as acetophenone, benzophenone, and phenyl naphthyl ketone; Methyl phenyl sulfone, diphenyl sulfone, dinaphthyl sulfone, etc. Examples include sulfones.
  • These dissolution control agents can be used alone or in combination of two or more.
  • the blending amount of the dissolution control agent is appropriately adjusted according to the type of the compound used, but is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, and more preferably 0 to 1% by mass based on the total weight of the solid components. Is more preferable, and 0% by mass is particularly preferable.
  • the sensitizer absorbs the energy of the irradiated radiation and transmits the energy to the acid generator (C), thereby increasing the amount of acid generated and improving the apparent sensitivity of the resist. It is a component to be made.
  • Examples of such sensitizers include, but are not limited to, benzophenones, biacetyls, pyrenes, phenothiazines, and fluorenes. These sensitizers can be used alone or in combination of two or more.
  • the blending amount of the sensitizer is appropriately adjusted according to the type of the compound used, but is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, and more preferably 0 to 1% by mass based on the total weight of the solid components. More preferred is 0% by mass.
  • the surfactant is a component having an action of improving the coating property and striation of the resist composition of the present embodiment, the developing property of the resist, and the like.
  • a surfactant may be any of an anionic surfactant, a cationic surfactant, a nonionic surfactant, or an amphoteric surfactant.
  • a preferred surfactant is a nonionic surfactant.
  • the nonionic surfactant has a good affinity with the solvent used in the production of the resist composition and is more effective. Examples of nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, polyethylene glycol higher fatty acid diesters, and the like, but are not particularly limited.
  • F top made by Gemco
  • MegaFac made by Dainippon Ink and Chemicals
  • Florard made by Sumitomo 3M
  • Surflon As mentioned above, Asahi Glass Co., Ltd., Pepol (manufactured by Toho Chemical Co., Ltd.), KP (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow (manufactured by Kyoeisha Yushi Chemical Co., Ltd.) and the like can be mentioned.
  • the blending amount of the surfactant is appropriately adjusted according to the kind of the compound used, but is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, and more preferably 0 to 1% by mass based on the total weight of the solid component. Is more preferable, and 0% by mass is particularly preferable.
  • Organic carboxylic acid or phosphorus oxo acid or derivative thereof An organic carboxylic acid or an oxo acid of phosphorus or a derivative thereof can be further added as an optional component for the purpose of preventing sensitivity deterioration or improving the resist pattern shape, retention stability, and the like.
  • the organic carboxylic acid or phosphorus oxo acid or derivative thereof may be used in combination with an acid diffusion controller or may be used alone.
  • the organic carboxylic acid for example, malonic acid, citric acid, malic acid, succinic acid, benzoic acid, salicylic acid and the like are suitable.
  • Phosphorus oxoacids or derivatives thereof include phosphoric acid, phosphoric acid di-n-butyl ester, phosphoric acid such as diphenyl phosphate, or derivatives thereof such as phosphonic acid, phosphonic acid dimethyl ester, phosphonic acid di- Derivatives such as phosphonic acids such as n-butyl ester, phenylphosphonic acid, phosphonic acid diphenyl ester, phosphonic acid dibenzyl ester, or their esters, phosphinic acids such as phosphinic acid, phenylphosphinic acid, and derivatives thereof. Of these, phosphonic acid is particularly preferred.
  • Organic carboxylic acids or phosphorus oxo acids or derivatives thereof may be used alone or in combination of two or more.
  • the amount of the organic carboxylic acid or phosphorus oxo acid or derivative thereof is appropriately adjusted depending on the type of the compound used, but is preferably 0 to 49% by mass, preferably 0 to 5% by mass based on the total weight of the solid component. More preferably, 0 to 1% by mass is further preferable, and 0% by mass is particularly preferable.
  • additives other than the above-mentioned additives dissolution accelerators, dissolution control agents, sensitizers, surfactants, organic carboxylic acids or phosphorus oxo acids or derivatives thereof
  • 2 or more types can be mix
  • additives include dyes, pigments, and adhesion aids.
  • an adhesion assistant because the adhesion to the substrate can be improved.
  • the other additive is not particularly limited, but examples thereof include an antihalation agent, a storage stabilizer, an antifoaming agent, a shape improving agent, and the like, specifically, 4-hydroxy-4′-methylchalcone and the like. Can do.
  • the total amount of the optional component (F) is 0 to 99% by mass, preferably 0 to 49% by mass, more preferably 0 to 10% by mass, based on the total weight of the solid component. Is more preferably 5 to 5% by mass, further preferably 0 to 1% by mass, and particularly preferably 0% by mass.
  • the content of the compound and / or resin of this embodiment is not particularly limited, but the total mass of the solid component (compound represented by formula (A), represented by formula (A)). Resins containing the above compound as a constituent, acid generator (C), acid crosslinking agent (G), acid diffusion controller (E), and other components (F) (also referred to as “optional component (F)”), etc.
  • the total amount of solid components including the components optionally used in the following, the same shall apply hereinafter)) is preferably 50 to 99.4% by mass, more preferably 55 to 90% by mass, still more preferably 60 to 80% by mass, Particularly preferred is 60 to 70% by mass.
  • the resolution is further improved and the line edge roughness (LER) is further reduced.
  • the said content is the total amount of the compound and resin of this embodiment.
  • the compound and / or resin (component (A)), acid generator (C), acid crosslinking agent (G), acid diffusion controller (E), optional component (of the present embodiment)
  • the content ratio of (F) is 100 mass of the solid content of the resist composition.
  • the blending ratio of the components is selected from each range so that the sum is 100% by mass.
  • the performance such as sensitivity, resolution and developability is excellent.
  • Solid content refers to a component excluding the solvent
  • solid content of 100% by mass refers to 100% by mass of the component excluding the solvent.
  • the resist composition of this embodiment is usually prepared by dissolving each component in a solvent at the time of use to make a uniform solution, and then filtering with a filter having a pore size of about 0.2 ⁇ m, for example, as necessary.
  • the resist composition of the present embodiment can contain other resins than the resin of the present embodiment as necessary.
  • the resin is not particularly limited, and for example, a novolac resin, polyvinylphenols, polyacrylic acid, polyvinyl alcohol, styrene-maleic anhydride resin, and a polymer containing acrylic acid, vinyl alcohol, or vinylphenol as monomer units. A combination or a derivative thereof may be used.
  • the content of the resin is not particularly limited and is appropriately adjusted according to the type of the component (A) to be used, but is preferably 30 parts by mass or less, more preferably 100 parts by mass of the component (A). It is 10 mass parts or less, More preferably, it is 5 mass parts or less, Most preferably, it is 0 mass part.
  • the resist composition of this embodiment can form an amorphous film by spin coating. Further, it can be applied to a general semiconductor manufacturing process. Depending on the type of developer used, either a positive resist pattern or a negative resist pattern can be created.
  • the dissolution rate of the amorphous film formed by spin-coating the resist composition of this embodiment with respect to the developer at 23 ° C. is preferably 5 ⁇ / sec or less, more preferably 0.05 to 5 ⁇ / sec. Preferably, 0.0005 to 5 cm / sec is more preferable.
  • the dissolution rate is 5 kg / sec or less, the resist is insoluble in the developer and can be a resist.
  • the dissolution rate is 0.0005 kg / sec or more, the resolution may be improved.
  • the dissolution rate of the amorphous film formed by spin-coating the resist composition of the present embodiment in a developing solution at 23 ° C. is preferably 10 ⁇ / sec or more.
  • the dissolution rate is 10 ⁇ / sec or more, it is easily dissolved in a developer and more suitable for a resist.
  • the dissolution rate is 10 ⁇ / sec or more, the resolution may be improved. This is presumed to be because the micro surface portion of the component (A) is dissolved and LER is reduced. There is also an effect of reducing defects.
  • the dissolution rate is determined by immersing an amorphous film in a developer for a predetermined time at 23 ° C., and measuring the film thickness before and after the immersion by a known method such as visual observation, ellipsometer, or quartz crystal microbalance (QCM method). Can be determined.
  • a portion exposed to radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray of an amorphous film formed by spin-coating the resist composition of this embodiment is applied to a developer at 23 ° C.
  • the dissolution rate is preferably 10 ⁇ / sec or more. When the dissolution rate is 10 ⁇ / sec or more, it is easily dissolved in a developer and more suitable for a resist. Further, when the dissolution rate is 10 ⁇ / sec or more, the resolution may be improved. This is presumed to be because the micro surface portion of the component (A) is dissolved and LER is reduced. There is also an effect of reducing defects.
  • the amorphous film formed by spin-coating the resist composition of this embodiment is exposed to a developing solution at 23 ° C. at a portion exposed by radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray.
  • the dissolution rate is preferably 5 ⁇ / sec or less, more preferably 0.05 to 5 ⁇ / sec, and further preferably 0.0005 to 5 ⁇ / sec.
  • the dissolution rate is 5 kg / sec or less, the resist is insoluble in the developer and can be a resist.
  • the dissolution rate is 0.0005 kg / sec or more, the resolution may be improved.
  • the radiation-sensitive composition of the present embodiment includes a radiation-sensitive composition containing the compound of the present embodiment and / or the resin of the present embodiment (component (A)), the diazonaphthoquinone photoactive compound (B), and a solvent.
  • the content of the solvent is 20 to 99% by mass with respect to 100% by mass of the total amount of the radiation-sensitive composition, and the content of components other than the solvent is the radiation-sensitive composition. 1 to 80% by mass relative to 100% by mass of the total amount of the composition.
  • the component (A) contained in the radiation-sensitive composition of the present embodiment is used in combination with a diazonaphthoquinone photoactive compound (B) described later, g-line, h-line, i-line, KrF excimer laser, ArF excimer laser, extreme It is useful as a positive resist substrate that becomes a compound that is easily soluble in a developer by irradiation with ultraviolet rays, electron beams, or X-rays.
  • the component (A) contained in the radiation-sensitive composition of the present embodiment is a compound having a relatively low molecular weight as shown in the above formula (A), the roughness of the obtained resist pattern is very small.
  • the glass transition temperature of the component (A) contained in the radiation-sensitive composition of the present embodiment is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, further preferably 140 ° C. or higher, and particularly preferably 150 ° C. or higher.
  • the upper limit of the glass transition temperature of a component (A) is not specifically limited, For example, it is 400 degreeC.
  • the semiconductor lithography process has heat resistance capable of maintaining the pattern shape, and performance such as high resolution is improved.
  • the crystallization calorific value obtained by differential scanning calorimetry analysis of the glass transition temperature of the component (A) contained in the radiation-sensitive composition of the present embodiment is preferably less than 20 J / g.
  • (crystallization temperature) ⁇ glass transition temperature is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, further preferably 100 ° C. or higher, and particularly preferably 130 ° C. or higher.
  • crystallization heat generation amount is less than 20 J / g, or (crystallization temperature) ⁇ (glass transition temperature) is within the above range, an amorphous film can be easily formed by spin-coating the radiation-sensitive composition, and The film formability required for the resist can be maintained for a long time, and the resolution can be improved.
  • the crystallization heat generation amount, the crystallization temperature, and the glass transition temperature can be obtained by differential scanning calorimetry using DSC / TA-50WS manufactured by Shimadzu Corporation.
  • About 10 mg of a sample is put into an aluminum non-sealed container and heated to a melting point or higher at a temperature rising rate of 20 ° C./min in a nitrogen gas stream (50 mL / min).
  • the temperature is raised again to the melting point or higher at a temperature rising rate of 20 ° C./min in a nitrogen gas stream (30 mL / min). Further, after rapid cooling, the temperature is increased again to 400 ° C.
  • the temperature at the midpoint of the step difference of the baseline that has changed in a step shape is the glass transition temperature (Tg), and the temperature of the exothermic peak that appears thereafter is the crystallization temperature.
  • Tg glass transition temperature
  • the calorific value is obtained from the area of the region surrounded by the exothermic peak and the baseline, and is defined as the crystallization calorific value.
  • the component (A) contained in the radiation-sensitive composition of the present embodiment is 100 or less, preferably 120 ° C. or less, more preferably 130 ° C. or less, further preferably 140 ° C. or less, and particularly preferably 150 ° C. or less under normal pressure. It is preferable that sublimability is low. Low sublimation means that, in thermogravimetric analysis, the weight loss when held at a predetermined temperature for 10 minutes is 10% or less, preferably 5% or less, more preferably 3% or less, even more preferably 1% or less, particularly preferably Indicates 0.1% or less. Since the sublimation property is low, it is possible to prevent exposure apparatus from being contaminated by outgas during exposure. In addition, a good pattern shape can be obtained with low roughness.
  • Component (A) contained in the radiation-sensitive composition of the present embodiment is propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), cyclohexanone (CHN), cyclopentanone (CPN), 2-heptanone , Anisole, butyl acetate, ethyl propionate and ethyl lactate, and a solvent exhibiting the highest solubility in component (A) at 23 ° C., preferably 1% by mass or more, more preferably 5% by mass % Or more, more preferably 10% by mass or more, and even more preferably, a solvent selected from PGMEA, PGME, and CHN and having the highest solubility for component (A) at 23 ° C., 20 It dissolves in an amount of at least 20% by mass, and particularly preferably 20% by mass or less at 23 ° C. with respect to PGMEA Dissolve.
  • the semiconductor manufacturing process can be used in actual production.
  • the diazonaphthoquinone photoactive compound (B) to be contained in the radiation-sensitive composition of the present embodiment is a diazonaphthoquinone substance containing a polymeric and non-polymeric diazonaphthoquinone photoactive compound, and in general in a positive resist composition, As long as it is used as a photosensitive component (photosensitive agent), one type or two or more types can be arbitrarily selected and used without any limitation.
  • a photosensitizer it was obtained by reacting naphthoquinone diazide sulfonic acid chloride, benzoquinone diazide sulfonic acid chloride, etc. with a low molecular compound or a high molecular compound having a functional group capable of condensation reaction with these acid chlorides.
  • Compounds are preferred.
  • the functional group capable of condensing with acid chloride is not particularly limited, and examples thereof include a hydroxyl group and an amino group, and a hydroxyl group is particularly preferable.
  • the compound capable of condensing with an acid chloride containing a hydroxyl group is not particularly limited.
  • hydroquinone, resorcin, 2,4-dihydroxybenzophenone, 2,3,4-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, 2,4,4′-trihydroxybenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2,2 ′, 3,4,6′- Hydroxybenzophenones such as pentahydroxybenzophenone, hydroxyphenylalkanes such as bis (2,4-dihydroxyphenyl) methane, bis (2,3,4-trihydroxyphenyl) methane, bis (2,4-dihydroxyphenyl) propane 4,4 ', 3 ", 4" -tetrahydroxy ⁇ 3,5,3 ′, 5′-tetramethyltriphenylmethane, 4,4 ′, 2 ′′, 3 ′′, 4 ′′ -pentahydroxy-3,5,3 ′, 5′-tetramethyltriphenylme
  • acid chlorides such as naphthoquinone diazide sulfonic acid chloride and benzoquinone diazide sulfonic acid chloride, for example, 1,2-naphthoquinone diazide-5-sulfonyl chloride, 1,2-naphthoquinone diazide-4-sulfonyl chloride and the like are preferable.
  • 1,2-naphthoquinone diazide-5-sulfonyl chloride 1,2-naphthoquinone diazide-4-sulfonyl chloride and the like are preferable.
  • 1,2-naphthoquinone diazide-5-sulfonyl chloride 1,2-naphthoquinone diazide-4-sulfonyl chloride and the like are preferable.
  • the radiation-sensitive composition of the present embodiment is prepared by, for example, dissolving each component in a solvent at the time of use to obtain a uniform solution, and then filtering by, for example, a filter having a pore size of about 0.2 ⁇ m as necessary. It is preferred that
  • Solvents that can be used in the radiation-sensitive composition of the present embodiment are not particularly limited.
  • propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, cyclohexanone, cyclopentanone, 2-heptanone, anisole, butyl acetate , Ethyl propionate, and ethyl lactate are preferable.
  • the solvent may be used alone or in combination of two or more.
  • the content of the solvent is 20 to 99% by mass, preferably 50 to 99% by mass, more preferably 60 to 98% by mass, particularly 100% by mass of the radiation-sensitive composition.
  • the content is 90 to 98% by mass.
  • the content of components (solid components) other than the solvent is 1 to 80% by mass, preferably 1 to 50% by mass, more preferably 100% by mass based on the total amount of the radiation-sensitive composition.
  • the content is 2 to 40% by mass, particularly preferably 2 to 10% by mass.
  • the radiation sensitive composition of this embodiment can form an amorphous film by spin coating. Further, it can be applied to a general semiconductor manufacturing process. Depending on the type of developer used, either a positive resist pattern or a negative resist pattern can be created.
  • the dissolution rate of the amorphous film formed by spin-coating the radiation-sensitive composition of the present embodiment in a developing solution at 23 ° C. is preferably 5 ⁇ / sec or less, and 0.05 to 5 ⁇ / sec. Is more preferable, and 0.0005 to 5 kg / sec is further more preferable.
  • the dissolution rate is 5 kg / sec or less, the resist is insoluble in the developer and can be a resist.
  • the dissolution rate is 0.0005 kg / sec or more, the resolution may be improved.
  • the dissolution rate of the amorphous film formed by spin-coating the radiation-sensitive composition of the present embodiment in a developer at 23 ° C. is preferably 10 ⁇ / sec or more.
  • the dissolution rate is 10 ⁇ / sec or more, it is easily dissolved in a developer and more suitable for a resist.
  • the dissolution rate is 10 ⁇ / sec or more, the resolution may be improved. This is presumed to be because the micro surface portion of the component (A) is dissolved and LER is reduced. There is also an effect of reducing defects.
  • the dissolution rate can be determined by immersing the amorphous film in a developing solution at 23 ° C. for a predetermined time, and measuring the film thickness before and after the immersion by a known method such as visual observation, an ellipsometer, or a QCM method.
  • the amorphous film formed by spin-coating the radiation-sensitive composition of this embodiment is irradiated with radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray, or 20 to
  • the dissolution rate of the exposed portion after heating at 500 ° C. in the developer at 23 ° C. is preferably 10 ⁇ / sec or more, more preferably 10 to 10000 ⁇ / sec, and even more preferably 100 to 1000 ⁇ / sec.
  • the dissolution rate is 10 ⁇ / sec or more, it is easily dissolved in a developer and more suitable for a resist.
  • the dissolution rate is 10000 kg / sec or less, the resolution may be improved.
  • the amorphous film formed by spin-coating the radiation-sensitive composition of the present embodiment is irradiated with radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray, or 20 to
  • the dissolution rate of the exposed portion after heating at 500 ° C. in the developer at 23 ° C. is preferably 5 ⁇ / sec or less, more preferably 0.05 to 5 ⁇ / sec, and even more preferably 0.0005 to 5 ⁇ / sec. .
  • the resist When the dissolution rate is 5 kg / sec or less, the resist is insoluble in the developer and can be a resist. In addition, when the dissolution rate is 0.0005 kg / sec or more, the resolution may be improved. This is presumably because the contrast of the interface between the unexposed portion that dissolves in the developer and the exposed portion that does not dissolve in the developer increases due to the change in solubility of the component (A) before and after exposure. Further, there is an effect of reducing LER and reducing defects.
  • the content of the component (A) is arbitrarily selected from the total weight of the solid component (component (A), diazonaphthoquinone photoactive compound (B), and other components (D)).
  • the total of the solid components to be used is preferably 1 to 99% by mass, more preferably 5 to 95% by mass, still more preferably 10 to 90% by mass, and particularly preferably 25 to 75% by mass. %.
  • the radiation-sensitive composition of this embodiment can obtain a pattern with high sensitivity and small roughness.
  • the content of the diazonaphthoquinone photoactive compound (B) is the total weight of the solid component (component (A), diazonaphthoquinone photoactive compound (B) and other components (D), etc.).
  • the total of solid components optionally used in the following, the same shall apply hereinafter) is preferably 1 to 99% by mass, more preferably 5 to 95% by mass, still more preferably 10 to 90% by mass, and particularly preferably. 25 to 75% by mass.
  • the radiation-sensitive composition of this embodiment can obtain a highly sensitive and small roughness pattern.
  • One kind or two or more kinds of various additives such as a dissolution accelerator, a dissolution control agent, a sensitizer, a surfactant, an organic carboxylic acid or an oxo acid of phosphorus or a derivative thereof can be added.
  • another component (D) may be called arbitrary component (D).
  • Content ratio ((A) / (B) / () of component (A), diazonaphthoquinone photoactive compound (B) and other optional component (D) optionally contained in the radiation-sensitive composition D)) is preferably 1 to 99% by mass / 99 to 1% by mass / 0 to 98% by mass, more preferably 5 to 95% by mass with respect to 100% by mass of the solid content of the radiation-sensitive composition. / 95-5% by mass / 0-49% by mass, more preferably 10-90% by mass / 90-10% by mass / 0-10% by mass, particularly preferably 20-80% by mass / 80-20%. % By mass / 0-5% by mass, most preferably 25-75% by mass / 75-25% by mass / 0% by mass.
  • the blending ratio of each component is selected from each range so that the total is 100% by mass.
  • the radiation sensitive composition of this embodiment is excellent in performance, such as sensitivity and resolution, in addition to roughness, when the blending ratio of each component is in the above range.
  • the radiation sensitive composition of the present embodiment may contain a resin other than the present embodiment.
  • resins include novolak resins, polyvinylphenols, polyacrylic acid, polyvinyl alcohol, styrene-maleic anhydride resins, and polymers containing acrylic acid, vinyl alcohol, or vinyl phenol as monomer units, or these resins. Derivatives and the like.
  • the compounding quantity of these resin is suitably adjusted according to the kind of component (A) to be used, 30 mass parts or less are preferable with respect to 100 mass parts of components (A), More preferably, 10 mass parts or less More preferably, it is 5 parts by mass or less, and particularly preferably 0 part by mass.
  • the manufacturing method of the amorphous film of this embodiment includes the process of forming an amorphous film on a board
  • a resist pattern forming method using the radiation-sensitive composition of the present embodiment includes a step of forming a resist film on a substrate using the radiation-sensitive composition, and at least a part of the formed resist film. A step of exposing, and a step of developing the exposed resist film to form a resist pattern. In detail, the same operation as the resist pattern forming method using the resist composition described below can be performed.
  • a resist pattern forming method using the resist composition of the present embodiment includes a step of forming a resist film on a substrate using the resist composition of the present embodiment described above, and at least a part of the formed resist film. A step of exposing, and a step of developing the exposed resist film to form a resist pattern.
  • the resist pattern in this embodiment can also be formed as an upper layer resist in a multilayer process.
  • the method for forming the resist pattern is not particularly limited, and examples thereof include the following methods.
  • a resist film is formed by applying the resist composition of the present embodiment on a conventionally known substrate by a coating means such as spin coating, cast coating, roll coating or the like.
  • the conventionally known substrate is not particularly limited, and examples thereof include a substrate for electronic components and a substrate on which a predetermined wiring pattern is formed. More specifically, although not particularly limited, for example, a silicon substrate, a metal substrate such as copper, chromium, iron, and aluminum, a glass substrate, and the like can be given.
  • the material for the wiring pattern is not particularly limited, and examples thereof include copper, aluminum, nickel, and gold. If necessary, an inorganic and / or organic film may be provided on the substrate.
  • the inorganic film is not particularly limited, and examples thereof include an inorganic antireflection film (inorganic BARC). Although it does not specifically limit as an organic film
  • the coated substrate is heated as necessary.
  • the heating conditions vary depending on the composition of the resist composition, but are preferably 20 to 250 ° C., more preferably 20 to 150 ° C. Heating may improve the adhesion of the resist to the substrate, which is preferable.
  • the resist film is exposed to a desired pattern with any radiation selected from the group consisting of visible light, ultraviolet light, excimer laser, electron beam, extreme ultraviolet light (EUV), X-ray, and ion beam.
  • the exposure conditions and the like are appropriately selected according to the composition of the resist composition.
  • heating is preferably performed after radiation irradiation.
  • a predetermined resist pattern is formed by developing the exposed resist film with a developer.
  • a solvent having a solubility parameter (SP value) close to that of the component (A) used it is preferable to select a solvent having a solubility parameter (SP value) close to that of the component (A) used, and a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent, an ether solvent.
  • SP value solubility parameter
  • polar solvents such as hydrocarbon solvents or aqueous alkali solutions can be used.
  • the ketone solvent is not particularly limited.
  • the ester solvent is not particularly limited.
  • the alcohol solvent is not particularly limited.
  • the ether solvent is not particularly limited, and examples thereof include dioxane, tetrahydrofuran and the like in addition to the glycol ether solvent.
  • the amide solvent is not particularly limited.
  • N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, hexamethylphosphoric triamide, 1,3-dimethyl-2- Imidazolidinone can be used.
  • the hydrocarbon solvent is not particularly limited, and examples thereof include aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents such as pentane, hexane, octane and decane.
  • the water content of the developer as a whole is less than 70% by mass, preferably less than 50% by mass, and more preferably less than 30% by mass.
  • it is more preferably less than 10% by mass, and it is particularly preferable that it contains substantially no water.
  • the content of the organic solvent with respect to the developer is 30% by mass to 100% by mass, preferably 50% by mass to 100% by mass, and preferably 70% by mass to 100% by mass with respect to the total amount of the developer. More preferably, it is 90 mass% or less, More preferably, it is 90 mass% or more and 100 mass% or less, It is especially preferable that it is 95 mass% or more and 100 mass% or less.
  • the alkaline aqueous solution is not particularly limited, and examples thereof include mono-, di- or trialkylamines, mono-, di- or trialkanolamines, heterocyclic amines, tetramethylammonium hydroxide (TMAH), choline. And alkaline compounds such as
  • the developer is a developer containing at least one solvent selected from ketone solvents, ester solvents, alcohol solvents, amide solvents and ether solvents, such as resist pattern resolution and roughness. It is preferable for improving the resist performance.
  • the vapor pressure of the developer is preferably 5 kPa or less, more preferably 3 kPa or less, and particularly preferably 2 kPa or less at 20 ° C.
  • vapor pressure of 5 kPa or less examples include, but are not limited to, 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 4-heptanone, 2-hexanone, diisobutyl ketone, cyclohexanone, methylcyclohexanone Ketone solvents such as phenylacetone and methyl isobutyl ketone; butyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3-ethoxypropio Nate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, butyl formate, propyl formate, ethyl lactate, butyl lactate, lactic acid Ester solvent
  • Coal ether solvents such as tetrahydrofuran; N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide amide solvents; toluene, xylene and other aromatic hydrocarbon solvents, Aliphatic hydrocarbon solvents such as octane and decane are listed.
  • Specific examples having a vapor pressure of 2 kPa or less, which is a particularly preferable range, include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 4-heptanone, 2-hexanone, diisobutyl ketone, cyclohexanone, and methylcyclohexanone.
  • Ketone solvents such as phenylacetone; butyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3-ethoxypropionate, 3- Ester solvents such as methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, ethyl lactate, butyl lactate and propyl lactate; n-butyl alcohol alcohol solvents such as sec-butyl alcohol, tert-butyl alcohol, isobutyl alcohol, n-hexyl alcohol, 4-methyl-2-pentanol, n-heptyl alcohol, n-octyl alcohol, n-decanol; ethylene glycol, diethylene glycol Glycol solvents such as triethylene glycol; glycol, di
  • the surfactant is not particularly limited, and for example, ionic or nonionic fluorine-based and / or silicon-based surfactants can be used.
  • fluorine and / or silicon surfactants include, for example, JP-A-62-36663, JP-A-61-226746, JP-A-61-226745, JP-A-62-170950.
  • Nonionic surfactant it is a nonionic surfactant.
  • a fluorochemical surfactant or a silicon-type surfactant is more preferable to use.
  • the amount of the surfactant used is usually 0.001 to 5% by mass, preferably 0.005 to 2% by mass, and more preferably 0.01 to 0.5% by mass with respect to the total amount of the developer.
  • the development method is not particularly limited.
  • the substrate is immersed in a tank filled with a developer for a certain period of time (dip method), and the developer is raised on the surface of the substrate by surface tension and left stationary for a certain period of time.
  • Development method (paddle method), spraying developer solution onto the substrate surface (spray method), developing solution is continuously applied to the substrate rotating at a constant speed while scanning the developer application nozzle at a constant speed.
  • a method (dynamic dispensing method) or the like can be applied.
  • the time for developing the pattern is not particularly limited, but is preferably 10 seconds to 90 seconds.
  • a step of stopping development may be performed while substituting with another solvent.
  • the rinsing liquid used in the rinsing step after development is not particularly limited as long as the resist pattern cured by crosslinking is not dissolved, and a solution or water containing a general organic solvent can be used.
  • a rinsing liquid containing at least one organic solvent selected from hydrocarbon solvents, ketone solvents, ester solvents, alcohol solvents, amide solvents and ether solvents.
  • a cleaning step is performed using a rinse solution containing at least one organic solvent selected from the group consisting of ketone solvents, ester solvents, alcohol solvents, and amide solvents.
  • a washing step is performed using a rinse solution containing an alcohol solvent or an ester solvent. Even more preferably, after the development, a step of washing with a rinsing solution containing a monohydric alcohol is performed. Particularly preferably, after the development, a washing step is performed using a rinsing liquid containing a monohydric alcohol having 5 or more carbon atoms.
  • the time for rinsing the pattern is not particularly limited, but is preferably 10 seconds to 90 seconds.
  • examples of the monohydric alcohol used in the rinsing step after development include linear, branched, and cyclic monohydric alcohols. Specific examples thereof include, but are not particularly limited to, for example, 1-butanol, 2 -Butanol, 3-methyl-1-butanol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 1-hexanol, 4-methyl-2-pentanol, 1-heptanol, 1-octanol, 2-hexanol , Cyclopentanol, 2-heptanol, 2-octanol, 3-hexanol, 3-heptanol, 3-octanol, 4-octanol and the like, and particularly preferable monohydric alcohols having 5 or more carbon atoms include 1- Hexanol, 2-hexanol, 4-methyl-2-pentanol, 1-pentanol, 3- Such as chill-1-butanol.
  • a plurality of the above components may be mixed, or may be used by mixing with an organic solvent other than the above.
  • the water content in the rinse liquid is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 3% by mass or less. By setting the water content to 10% by mass or less, better development characteristics can be obtained.
  • the vapor pressure of the rinsing liquid used after development is preferably 0.05 kPa or more and 5 kPa or less at 20 ° C., more preferably 0.1 kPa or more and 5 kPa or less, and most preferably 0.12 kPa or more and 3 kPa or less.
  • An appropriate amount of a surfactant can be added to the rinse solution.
  • the developed wafer is cleaned using a rinsing solution containing the organic solvent.
  • the method of the cleaning treatment is not particularly limited.
  • a method of continuously applying the rinse liquid onto the substrate rotating at a constant speed (rotary coating method), or immersing the substrate in a tank filled with the rinse liquid for a certain period of time.
  • a method (dip method), a method of spraying a rinsing liquid onto the substrate surface (spray method), etc. can be applied.
  • a cleaning process is performed by a spin coating method, and after cleaning, the substrate is rotated at a speed of 2000 rpm to 4000 rpm. It is preferable to rotate and remove the rinse liquid from the substrate.
  • the pattern wiring board is obtained by etching.
  • the etching can be performed by a known method such as dry etching using plasma gas and wet etching using an alkali solution, a cupric chloride solution, a ferric chloride solution, or the like.
  • Plating can be performed after forming the resist pattern.
  • Examples of the plating method include copper plating, solder plating, nickel plating, and gold plating.
  • the residual resist pattern after etching can be peeled off with an organic solvent.
  • organic solvent For example, PGMEA (propylene glycol monomethyl ether acetate), PGME (propylene glycol monomethyl ether), EL (ethyl lactate) etc. are mentioned.
  • peeling method For example, the immersion method, a spray system, etc. are mentioned.
  • the wiring board on which the resist pattern is formed may be a multilayer wiring board or may have a small diameter through hole.
  • the wiring substrate obtained in this embodiment can also be formed by a method of depositing a metal in a vacuum after forming a resist pattern and then dissolving the resist pattern with a solution, that is, a lift-off method.
  • the material for forming a lower layer film for lithography of this embodiment contains the compound of this embodiment and / or the resin of this embodiment.
  • the compound of this embodiment and / or the resin of this embodiment is preferably 1 to 100% by mass, and preferably 10 to 100% by mass, in the lower layer film-forming material for lithography, from the viewpoint of applicability and quality stability. More preferably, it is 50 to 100% by mass, further preferably 100% by mass.
  • the material for forming a lower layer film for lithography according to the present embodiment can be applied to a wet process and has excellent heat resistance and etching resistance. Furthermore, since the material for forming an underlayer film for lithography of the present embodiment uses the above substances, the deterioration of the film during high-temperature baking is suppressed, and an underlayer film having excellent etching resistance against oxygen plasma etching or the like can be formed. it can. Furthermore, since the lower layer film forming material for lithography of this embodiment is excellent in adhesion to the resist layer, an excellent resist pattern can be obtained. Note that the lower layer film forming material for lithography of the present embodiment may include a known lower layer film forming material for lithography and the like as long as the effects of the present invention are not impaired.
  • composition for forming underlayer film for lithography contains the above-mentioned material for forming a lower layer film for lithography and a solvent.
  • solvent used in the composition for forming an underlayer film for lithography of the present embodiment, a known one can be used as appropriate as long as the above-described component (A) is at least dissolved.
  • the solvent include, but are not limited to, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cellosolv solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate; ethyl lactate and methyl acetate Ester solvents such as ethyl acetate, butyl acetate, isoamyl acetate, ethyl lactate, methyl methoxypropionate, methyl hydroxyisobutyrate; alcohol solvents such as methanol, ethanol, isopropanol, 1-ethoxy-2-propanol; toluene, xylene And aromatic hydrocarbons such as anisole. These solvents can be used alone or in combination of two or more.
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and
  • cyclohexanone, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, methyl hydroxyisobutyrate and anisole are particularly preferred from the viewpoint of safety.
  • the content of the solvent is not particularly limited, but from the viewpoint of solubility and film formation, it is preferably 100 to 10,000 parts by mass with respect to 100 parts by mass of the lower layer film-forming material, and 200 to 5, The amount is more preferably 000 parts by mass, and even more preferably 200 to 1,000 parts by mass.
  • the composition for forming a lower layer film for lithography of the present embodiment may contain a crosslinking agent as necessary from the viewpoint of suppressing intermixing.
  • a crosslinking agent which can be used by this embodiment, for example, the thing of international publication 2013/024779 can be used.
  • the crosslinking agent can be used alone or in combination of two or more.
  • crosslinking agent examples include, for example, phenol compounds, epoxy compounds, cyanate compounds, amino compounds, benzoxazine compounds, acrylate compounds, melamine compounds, guanamine compounds, glycoluril compounds, urea compounds, isocyanates. Examples thereof include, but are not limited to, compounds and azide compounds.
  • crosslinking agents can be used alone or in combination of two or more. Among these, a benzoxazine compound, an epoxy compound, or a cyanate compound is preferable, and a benzoxazine compound is more preferable from the viewpoint of improving etching resistance.
  • the phenol compound known compounds can be used.
  • the phenols are not particularly limited, but other than phenol, alkylphenols such as cresols and xylenols, polyhydric phenols such as hydroquinone, polycyclic phenols such as naphthols and naphthalenediols, bisphenol A, Examples thereof include bisphenols such as bisphenol F, or polyfunctional phenol compounds such as phenol novolac and phenol aralkyl resins.
  • aralkyl type phenol resins are preferable from the viewpoint of heat resistance and solubility.
  • epoxy compound known compounds can be used and selected from those having two or more epoxy groups in one molecule.
  • the cyanate compound is not particularly limited as long as it is a compound having two or more cyanate groups in one molecule, and a known one can be used.
  • a preferred cyanate compound one having a structure in which a hydroxyl group of a compound having two or more hydroxyl groups in one molecule is substituted with a cyanate group can be mentioned.
  • the cyanate compound preferably has an aromatic group, and a cyanate compound having a structure in which the cyanate group is directly connected to the aromatic group can be suitably used.
  • a cyanate compound is not particularly limited.
  • cyanate compounds may be used alone or in combination of two or more. Further, the cyanate compound described above may be in any form of a monomer, an oligomer and a resin.
  • the amino compound is not particularly limited.
  • the benzoxazine compound is not particularly limited.
  • Pd-type benzoxazine obtained from bifunctional diamines and monofunctional phenols
  • F— obtained from monofunctional diamines and bifunctional phenols.
  • examples include a-type benzoxazine.
  • the melamine compound include, but are not limited to, for example, hexamethylol melamine, hexamethoxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are methoxymethylated, or a mixture thereof, hexamethoxyethyl melamine , Hexaacyloxymethyl melamine, compounds in which 1 to 6 methylol groups of hexamethylol melamine are acyloxymethylated, or a mixture thereof.
  • guanamine compound examples include, but are not limited to, for example, tetramethylolguanamine, tetramethoxymethylguanamine, a compound in which 1 to 4 methylol groups of tetramethylolguanamine are methoxymethylated, or a mixture thereof, tetramethoxyethylguanamine , Tetraacyloxyguanamine, a compound in which 1 to 4 methylol groups of tetramethylolguanamine are acyloxymethylated, or a mixture thereof.
  • glycoluril compound examples are not particularly limited.
  • 1 to 4 methylol groups of tetramethylolglycoluril, tetramethoxyglycoluril, tetramethoxymethylglycoluril, tetramethylolglycoluril are methoxymethylated.
  • examples thereof include a compound or a mixture thereof, a compound in which 1 to 4 methylol groups of tetramethylol glycoluril are acyloxymethylated, or a mixture thereof.
  • urea compound examples include, but are not limited to, for example, tetramethylol urea, tetramethoxymethyl urea, a compound in which 1 to 4 methylol groups of tetramethylol urea are methoxymethylated, or a mixture thereof, tetramethoxyethyl urea Etc.
  • a crosslinking agent having at least one allyl group may be used from the viewpoint of improving the crosslinkability.
  • the crosslinking agent having at least one allyl group include, for example, 2,2-bis (3-allyl-4-hydroxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2 , 2-bis (3-allyl-4-hydroxyphenyl) propane, bis (3-allyl-4-hydroxyphenyl) sulfone, bis (3-allyl-4-hydroxyphenyl) sulfide, bis (3-allyl-4-) Allylphenols such as hydroxyphenyl) ether, 2,2-bis (3-allyl-4-cyanatophenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3-allyl-4-cyanatophenyl) propane, bis (3-allyl-4-cyanatosiphenyl) sulfone, bis (3-allyl-4-cyanatophenyl) sulfide, bi And ally
  • the content of the crosslinking agent is not particularly limited, but is preferably 5 to 50 parts by weight, more preferably 100 parts by weight of the lower layer film forming material. Is 10 to 40 parts by mass.
  • Crosslinking accelerator In the composition for forming a lower layer film for lithography of the present embodiment, a crosslinking accelerator for accelerating the crosslinking and curing reaction can be used as necessary.
  • the crosslinking accelerator is not particularly limited as long as it promotes crosslinking and curing reaction, and examples thereof include amines, imidazoles, organic phosphines, and Lewis acids. These crosslinking accelerators can be used alone or in combination of two or more. Among these, imidazoles or organic phosphines are preferable, and imidazoles are more preferable from the viewpoint of lowering the crosslinking temperature.
  • crosslinking accelerator examples include, but are not limited to, for example, 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylamino).
  • Tertiary amines such as methyl) phenol, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, 2,4,5- Imidazoles such as triphenylimidazole, organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, phenylphosphine, tetraphenylphosphonium tetraphenylborate, teto Tetraphenyl such as phenylphosphonium / ethyltriphenylborate, tetrabutylphosphonium / tetrabutylborate, etc., 2-ethyl-4-methylimidazole / tetraphenylborate, N-methylmorpholine /
  • the content of the crosslinking accelerator is usually preferably 0.1 to 10 parts by mass, more preferably 100 parts by mass when the total mass of the composition is 100 parts by mass. From the viewpoint of ease and economy, it is 0.1 to 5 parts by mass, and more preferably 0.1 to 3 parts by mass.
  • a radical polymerization initiator in the composition for forming a lower layer film for lithography of the present embodiment, can be blended as necessary.
  • the radical polymerization initiator may be a photopolymerization initiator that initiates radical polymerization with light or a thermal polymerization initiator that initiates radical polymerization with heat.
  • the radical polymerization initiator can be, for example, at least one selected from the group consisting of ketone photopolymerization initiators, organic peroxide polymerization initiators, and azo polymerization initiators.
  • Such a radical polymerization initiator is not particularly limited, and those conventionally used can be appropriately employed.
  • 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile 1-[(1-cyano-1-methylethyl) azo] formamide, 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-methylpropionamidine) dihydrochloride, 2,2′-azobis (2-methyl-N-phenylpropionamidine) dihydrochloride, 2,2′-azobis [N- (4-chlorophenyl) -2-methylpropionamidine] Dihydride chloride, 2,2'-azobis [N- (4-hydrophenyl) -2-methylpropionamidine] dihydrochloride 2,2′-azobis [2-methyl-N- (phenylmethyl) propionamidine] dihydrochloride, 2,2′-azo
  • the content of the radical polymerization initiator may be a stoichiometrically required amount, but when the total mass of the composition containing the above-described compound or resin (component (A)) is 100 parts by mass.
  • the amount is preferably 0.05 to 25 parts by mass, and more preferably 0.1 to 10 parts by mass.
  • the content of the radical polymerization initiator is 0.05 parts by mass or more, there is a tendency that curing can be prevented from being insufficient.
  • the content of the radical polymerization initiator is 25 parts by mass or less. In such a case, the long-term storage stability at room temperature of the composition for forming a lower layer film for lithography tends to be prevented from being impaired.
  • the composition for forming a lower layer film for lithography of the present embodiment may contain an acid generator as necessary from the viewpoint of further promoting a crosslinking reaction by heat.
  • an acid generator those that generate an acid by thermal decomposition and those that generate an acid by light irradiation are known, and any of them can be used.
  • an acid generator Although it does not specifically limit as an acid generator, for example, the thing as described in international publication 2013/024779 can be used. In addition, in this embodiment, an acid generator can be used individually or in combination of 2 or more types.
  • the content of the acid generator is not particularly limited, but is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the lower layer film forming material. More preferably, it is 0.5 to 40 parts by mass.
  • composition for forming a lower layer film for lithography of the present embodiment may contain a basic compound from the viewpoint of improving storage stability.
  • the basic compound serves as a quencher for the acid to prevent the acid generated in a trace amount from the acid generator from causing the crosslinking reaction to proceed.
  • Examples of such basic compounds include primary, secondary or tertiary aliphatic amines, hybrid amines, aromatic amines, heterocyclic amines, nitrogen-containing compounds having a carboxy group, A nitrogen-containing compound having a sulfonyl group, a nitrogen-containing compound having a hydroxyl group, a nitrogen-containing compound having a hydroxyphenyl group, an alcoholic nitrogen-containing compound, an amide derivative, an imide derivative, and the like are exemplified, but not limited thereto.
  • the basic compound used in the present embodiment is not particularly limited, but for example, those described in International Publication No. 2013/024779 can be used.
  • a basic compound can be used individually or in combination of 2 or more types.
  • the content of the basic compound is not particularly limited, but is preferably 0.001 to 2 parts by mass with respect to 100 parts by mass of the lower layer film forming material. More preferably, it is 0.01 to 1 part by mass.
  • the composition for forming a lower layer film for lithography of the present embodiment may contain other resins and / or compounds for the purpose of imparting thermosetting properties and controlling absorbance.
  • other resins and / or compounds include naphthol resins, xylene resins, naphthol modified resins, phenol modified resins of naphthalene resins, polyhydroxystyrene, dicyclopentadiene resins, (meth) acrylates, dimethacrylates, and trimethacrylates.
  • composition for forming a lower layer film for lithography of the present embodiment may contain a known additive.
  • the known additives include, but are not limited to, ultraviolet absorbers, surfactants, colorants, nonionic surfactants, and the like.
  • the formation method of the lower layer film for lithography of the present embodiment includes a step of forming the lower layer film on the substrate using the composition for forming the lower layer film for lithography of the present embodiment.
  • the resist pattern forming method using the composition for forming a lower layer film for lithography of the present embodiment is a process for forming an underlayer film on a substrate using the composition for forming a lower layer film for lithography of the present embodiment (A-1 ), Forming at least one photoresist layer on the lower layer film (A-2), and irradiating a predetermined region of the photoresist layer with radiation and developing to form a resist pattern (A-3).
  • the circuit pattern forming method using the composition for forming a lower layer film for lithography according to the present embodiment is a process for forming a lower layer film on a substrate using the composition for forming a lower layer film for lithography according to the present embodiment (B-1 And (B-2) forming an intermediate layer film on the lower layer film using a resist intermediate layer material containing silicon atoms, and at least one photoresist layer on the intermediate layer film
  • B-1 And (B-2) forming an intermediate layer film on the lower layer film using a resist intermediate layer material containing silicon atoms, and at least one photoresist layer on the intermediate layer film
  • the intermediate layer film is etched by using the resist pattern as a mask to form an intermediate layer film pattern, and the obtained intermediate layer film pattern is etched.
  • the formation method of the underlayer film for lithography of the present embodiment is not particularly limited as long as it is formed from the composition for forming an underlayer film for lithography of the present embodiment, and a known method can be applied.
  • a known method can be applied.
  • the composition for forming a lower layer film for lithography of the present embodiment on a substrate by a known coating method such as spin coating or screen printing or a printing method, the organic solvent is volatilized and removed.
  • a lower layer film can be formed.
  • the baking temperature is not particularly limited, but is preferably in the range of 80 to 450 ° C., more preferably 200 to 400 ° C.
  • the baking time is not particularly limited, but is preferably within the range of 10 to 300 seconds.
  • the thickness of the lower layer film can be appropriately selected according to the required performance and is not particularly limited, but is usually preferably about 30 to 20,000 nm, more preferably 50 to 15,000 nm. It is preferable.
  • a silicon-containing resist layer thereon or a single-layer resist made of ordinary hydrocarbons in the case of a three-layer process, a silicon-containing intermediate layer is further formed thereon It is preferable to produce a single-layer resist layer that does not contain silicon. In this case, a well-known thing can be used as a photoresist material for forming this resist layer.
  • a silicon-containing resist layer or a single layer resist made of ordinary hydrocarbon can be formed on the lower layer film.
  • a silicon-containing intermediate layer can be formed on the lower layer film, and a single-layer resist layer not containing silicon can be formed on the silicon-containing intermediate layer.
  • the photoresist material for forming the resist layer can be appropriately selected from known materials and is not particularly limited.
  • a silicon-containing resist material for a two-layer process from the viewpoint of oxygen gas etching resistance, a silicon atom-containing polymer such as a polysilsesquioxane derivative or a vinylsilane derivative is used as a base polymer, and an organic solvent, an acid generator, If necessary, a positive photoresist material containing a basic compound or the like is preferably used.
  • a silicon atom-containing polymer a known polymer used in this type of resist material can be used.
  • a polysilsesquioxane-based intermediate layer is preferably used as the silicon-containing intermediate layer for the three-layer process.
  • the intermediate layer By giving the intermediate layer an effect as an antireflection film, reflection tends to be effectively suppressed.
  • the k value increases and the substrate reflection tends to increase, but the reflection is suppressed in the intermediate layer.
  • the substrate reflection can be reduced to 0.5% or less.
  • the intermediate layer having such an antireflection effect is not limited to the following, but for 193 nm exposure, a polysilsesquioxy crosslinked with acid or heat into which a light absorbing group having a phenyl group or a silicon-silicon bond is introduced. Sun is preferably used.
  • an intermediate layer formed by a chemical vapor deposition (CVD) method can also be used.
  • the intermediate layer having a high effect as an antireflection film produced by the CVD method is not limited to the following, but for example, a SiON film is known.
  • the formation of the intermediate layer by a wet process such as spin coating or screen printing has a simpler and more cost-effective advantage than the CVD method.
  • the upper layer resist in the three-layer process may be either a positive type or a negative type, and the same one as a commonly used single layer resist can be used.
  • the lower layer film in this embodiment can also be used as an antireflection film for a normal single layer resist or a base material for suppressing pattern collapse. Since the lower layer film of this embodiment is excellent in etching resistance for the base processing, it can be expected to function as a hard mask for the base processing.
  • a wet process such as spin coating or screen printing is preferably used as in the case of forming the lower layer film.
  • prebaking is usually performed, but this prebaking is preferably performed at 80 to 180 ° C. for 10 to 300 seconds.
  • a resist pattern can be obtained by performing exposure, post-exposure baking (PEB), and development.
  • the thickness of the resist film is not particularly limited, but is generally preferably 30 to 500 nm, more preferably 50 to 400 nm.
  • the exposure light may be appropriately selected and used according to the photoresist material to be used.
  • high energy rays having a wavelength of 300 nm or less, specifically, 248 nm, 193 nm, 157 nm excimer laser, 3 to 20 nm soft X-ray, electron beam, X-ray and the like can be mentioned.
  • the resist pattern formed by the above method is one in which pattern collapse is suppressed by the lower layer film in this embodiment. Therefore, by using the lower layer film in the present embodiment, a finer pattern can be obtained, and the exposure amount necessary for obtaining the resist pattern can be reduced.
  • gas etching is preferably used as the etching of the lower layer film in the two-layer process.
  • gas etching etching using oxygen gas is suitable.
  • an inert gas such as He or Ar, or CO, CO 2 , NH 3 , SO 2 , N 2 , NO 2 or H 2 gas may be added.
  • gas etching can be performed only with CO, CO 2 , NH 3 , N 2 , NO 2, and H 2 gas without using oxygen gas.
  • the latter gas is preferably used for side wall protection for preventing undercut of the pattern side wall.
  • gas etching is also preferably used for etching the intermediate layer in the three-layer process.
  • the gas etching the same one as described in the above two-layer process can be applied.
  • the processing of the intermediate layer in the three-layer process is preferably performed using a fluorocarbon gas and a resist pattern as a mask.
  • the lower layer film can be processed by, for example, oxygen gas etching using the intermediate layer pattern as a mask.
  • a silicon oxide film, a silicon nitride film, or a silicon oxynitride film is formed by a CVD method, an atomic layer deposition (ALD) method, or the like.
  • the method for forming the nitride film is not limited to the following, but for example, the method described in Japanese Patent Application Laid-Open No. 2002-334869 (Patent Document 4) and International Publication No. 2004/066377 (Patent Document 5) may be used. it can.
  • a photoresist film can be formed directly on such an intermediate film, but an organic antireflection film (BARC) is formed on the intermediate film by spin coating, and a photoresist film is formed thereon. May be.
  • BARC organic antireflection film
  • an intermediate layer based on polysilsesquioxane is also preferably used.
  • the resist intermediate layer film By providing the resist intermediate layer film with an effect as an antireflection film, reflection tends to be effectively suppressed.
  • Specific materials of the polysilsesquioxane-based intermediate layer are not limited to the following, but are, for example, JP 2007-226170 A (Patent Document 6), JP 2007-226204 A (Patent Document 7). Can be used.
  • Etching of the next substrate can also be performed by a conventional method.
  • the substrate is SiO 2 or SiN
  • etching mainly using a chlorofluorocarbon gas if p-Si, Al, or W is chlorine or bromine, Etching mainly with gas can be performed.
  • the substrate is etched with a chlorofluorocarbon gas, the silicon-containing resist of the two-layer resist process and the silicon-containing intermediate layer of the three-layer process are peeled off simultaneously with the substrate processing.
  • the silicon-containing resist layer or the silicon-containing intermediate layer is separately peeled, and generally, dry etching peeling with a chlorofluorocarbon-based gas is performed after the substrate is processed. .
  • the lower layer film in this embodiment is characterized by excellent etching resistance of these substrates.
  • a known substrate can be appropriately selected and used, and is not particularly limited. Examples thereof include Si, ⁇ -Si, p-Si, SiO 2 , SiN, SiON, W, TiN, and Al. .
  • the substrate may be a laminate having a film to be processed (substrate to be processed) on a base material (support). Examples of such processed films include various low-k films such as Si, SiO 2 , SiON, SiN, p-Si, ⁇ -Si, W, W-Si, Al, Cu, and Al-Si, and their stopper films. In general, a material different from the base material (support) is used.
  • the thickness of the substrate or film to be processed is not particularly limited, but it is usually preferably about 50 to 1,000,000 nm, more preferably 75 to 500,000 nm.
  • the resist permanent film which can produce a resist permanent film using the said composition is a permanent film which remains also in the final product after forming a resist pattern as needed. It is suitable as.
  • Specific examples of the permanent film are not particularly limited.
  • a solder resist, a package material, an underfill material, a package adhesive layer such as a circuit element, an integrated circuit element and an adhesive layer of a circuit board, a thin display In relation, a thin film transistor protective film, a liquid crystal color filter protective film, a black matrix, a spacer, and the like can be given.
  • the permanent film made of the above composition has excellent heat resistance and moisture resistance, and also has a very excellent advantage of less contamination due to sublimation components.
  • a display material is a material having high sensitivity, high heat resistance, and moisture absorption reliability with little image quality deterioration due to important contamination.
  • composition When the composition is used for a resist permanent film, other additives such as other resins, surfactants and dyes, fillers, cross-linking agents, and dissolution accelerators are added in addition to the curing agent. By dissolving in an organic solvent, a resist permanent film composition can be obtained.
  • the film forming composition for lithography and the composition for resist permanent film can be prepared by blending the above components and mixing them using a stirrer or the like. Further, when the resist underlayer film composition or resist permanent film composition contains a filler or a pigment, it is adjusted by dispersing or mixing using a dispersing device such as a dissolver, a homogenizer, or a three-roll mill. I can do it.
  • a dispersing device such as a dissolver, a homogenizer, or a three-roll mill. I can do it.
  • the method of purifying the compound and / or resin of the present embodiment includes a step of dissolving the compound of the present embodiment and / or the resin of the present embodiment in a solvent to obtain a solution (S), and the obtained solution (S).
  • a solvent used in the step of obtaining the solution (S) is an organic solvent that is not miscible with water. including.
  • the resin is preferably a resin obtained by a reaction between the compound represented by the formula (A) and a compound having crosslinking reactivity. According to the purification method of the present embodiment, the content of various metals that can be contained as impurities in the compound or resin having the specific structure described above can be reduced.
  • the compound and / or the resin is dissolved in an organic solvent immiscible with water to obtain a solution (S), and the solution (S) is further converted into an acidic aqueous solution.
  • the extraction process can be carried out in contact with. Thereby, after the metal component contained in the solution (S) containing the compound and / or resin of the present embodiment was transferred to the aqueous phase, the organic phase and the aqueous phase were separated to reduce the metal content.
  • the compound and / or resin of this embodiment can be obtained.
  • the compound and / or resin of the present embodiment used in the purification method of the present embodiment may be used alone or in combination of two or more.
  • the compound and / or resin of this embodiment may contain various surfactants, various crosslinking agents, various acid generators, various stabilizers, and the like.
  • the solvent immiscible with water used in this embodiment is not particularly limited, but an organic solvent that can be safely applied to a semiconductor manufacturing process is preferable. Specifically, the solubility in water at room temperature is less than 30%. An organic solvent is preferred, more preferably less than 20%, particularly preferably less than 10%. The amount of the organic solvent used is preferably 1 to 100 times by mass with respect to the compound and / or resin of the present embodiment to be used.
  • solvent immiscible with water examples include, but are not limited to, ethers such as diethyl ether and diisopropyl ether; esters such as ethyl acetate, n-butyl acetate and isoamyl acetate; methyl ethyl ketone, methyl isobutyl ketone, Ketones such as ethyl isobutyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 2-pentanone; ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate
  • Glycol ether acetates such as; aliphatic hydrocarbons such as n-hexane and n-heptane; aromatic hydrocarbons such as toluene and xylene
  • toluene, 2-heptanone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, ethyl acetate and the like are preferable, methyl isobutyl ketone, ethyl acetate, cyclohexanone, propylene glycol monomethyl ether acetate are more preferable, More preferred are methyl isobutyl ketone and ethyl acetate.
  • Methyl isobutyl ketone, ethyl acetate, etc. have a relatively high saturation solubility and a relatively low boiling point of the compound and resin of the present embodiment, and therefore the load in the process of removing the solvent industrially or by drying. Can be reduced.
  • These solvents can be used alone or in combination of two or more.
  • the acidic aqueous solution used in the purification method of the present embodiment is not particularly limited, and examples thereof include a mineral acid aqueous solution in which an inorganic compound is dissolved in water or an organic acid aqueous solution in which an organic compound is dissolved in water. It is done. Although it does not specifically limit as a mineral acid aqueous solution, for example, the mineral acid aqueous solution which dissolved one or more types of mineral acids, such as hydrochloric acid, a sulfuric acid, nitric acid, phosphoric acid, in water is mentioned. Further, the organic acid aqueous solution is not particularly limited.
  • acetic acid, propionic acid, succinic acid, malonic acid, succinic acid, fumaric acid, maleic acid, tartaric acid, citric acid, methanesulfonic acid, phenolsulfonic acid, p-toluene For example, acetic acid, propionic acid, succinic acid, malonic acid, succinic acid, fumaric acid, maleic acid, tartaric acid, citric acid, methanesulfonic acid, phenolsulfonic acid, p-toluene.
  • An organic acid aqueous solution in which one or more organic acids such as sulfonic acid and trifluoroacetic acid are dissolved in water is exemplified. These acidic aqueous solutions can be used alone or in combination of two or more.
  • one or more mineral acid aqueous solutions selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, or acetic acid, propionic acid, succinic acid, malonic acid, succinic acid, fumaric acid, maleic acid,
  • One or more organic acid aqueous solutions selected from the group consisting of tartaric acid, citric acid, methanesulfonic acid, phenolsulfonic acid, p-toluenesulfonic acid and trifluoroacetic acid are preferred, and sulfuric acid, nitric acid, acetic acid, oxalic acid,
  • An aqueous solution of carboxylic acid such as tartaric acid and citric acid is more preferable, an aqueous solution of sulfuric acid, succinic acid, tartaric acid and citric acid is more preferable, and an aqueous solution of succinic acid is more preferable.
  • the pH of the acidic aqueous solution used in the purification method of the present embodiment is not particularly limited, but it is preferable to adjust the acidity of the aqueous solution in consideration of the influence on the compound and / or resin of the present embodiment.
  • the pH range is about 0 to 5, preferably about pH 0 to 3.
  • the amount of acidic aqueous solution used in the purification method of the present embodiment is not particularly limited, but from the viewpoint of reducing the number of extractions for metal removal and securing the operability in consideration of the total liquid amount, It is preferable to adjust the amount used. From the above viewpoint, the amount of the acidic aqueous solution to be used is preferably 10 to 200% by mass, more preferably 20 to 100% by mass with respect to 100% by mass of the solution (S).
  • the acidic aqueous solution as described above is brought into contact with the solution (S) containing the compound and / or resin of the present embodiment and a solvent immiscible with water.
  • a metal component can be extracted from the compound or the resin in (S).
  • the solution (S) further contains an organic solvent miscible with water.
  • an organic solvent miscible with water is included, the amount of the compound and / or resin of the present embodiment can be increased, the liquid separation property is improved, and purification can be performed with high pot efficiency. is there.
  • a method for adding an organic solvent miscible with water is not particularly limited. For example, any of a method of adding to a solution containing an organic solvent in advance, a method of adding to water or an acidic aqueous solution in advance, and a method of adding after bringing a solution containing an organic solvent into contact with water or an acidic aqueous solution may be used. Among these, the method of adding to the solution containing an organic solvent in advance is preferable from the viewpoint of the workability of operation and the ease of management of the amount charged.
  • the organic solvent miscible with water used in the purification method of the present embodiment is not particularly limited, but an organic solvent that can be safely applied to a semiconductor manufacturing process is preferable.
  • the amount of the organic solvent miscible with water is not particularly limited as long as the solution phase and the aqueous phase are separated from each other, but is 0.1 to 100 times the mass of the compound and / or resin of the present embodiment. It is preferably 0.1 to 50 times by mass, more preferably 0.1 to 20 times by mass.
  • organic solvent miscible with water used in the purification method of this embodiment include, but are not limited to, ethers such as tetrahydrofuran and 1,3-dioxolane; alcohols such as methanol, ethanol, and isopropanol Ketones such as acetone and N-methylpyrrolidone; aliphatic hydrocarbons such as glycol ethers such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether (PGME) and propylene glycol monoethyl ether Can be mentioned.
  • ethers such as tetrahydrofuran and 1,3-dioxolane
  • alcohols such as methanol, ethanol, and isopropanol Ketones such as acetone and N-methylpyrrolidone
  • aliphatic hydrocarbons such as glycol ethers such as ethylene glycol monoethyl ether, ethylene glycol monobutyl
  • N-methylpyrrolidone, propylene glycol monomethyl ether and the like are preferable, and N-methylpyrrolidone and propylene glycol monomethyl ether are more preferable.
  • These solvents can be used alone or in combination of two or more.
  • the temperature at the time of the extraction treatment is usually 20 to 90 ° C, preferably 30 to 80 ° C.
  • the extraction operation is performed, for example, by mixing the mixture well by stirring or the like and then allowing it to stand. Thereby, the metal content contained in the solution containing the compound and / or resin of the present embodiment and the organic solvent is transferred to the aqueous phase. Moreover, the acidity of a solution falls by this operation and the quality change of the compound and / or resin of this embodiment can be suppressed.
  • the mixed solution is allowed to stand to separate into a solution phase containing the compound and / or resin and solvent of the present embodiment and an aqueous phase, so that the compound and / or resin and solvent of the present embodiment are separated by decantation or the like.
  • the containing solution phase is recovered.
  • the standing time is not particularly limited, but it is preferable to adjust the standing time from the viewpoint of improving the separation between the solvent-containing solution phase and the aqueous phase.
  • the time for standing is 1 minute or longer, preferably 10 minutes or longer, more preferably 30 minutes or longer.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times.
  • the solution phase containing the compound or the resin is further brought into contact with water to extract impurities in the compound or the resin (second extraction step). )
  • the solution phase containing the compound and / or resin and solvent of the present embodiment extracted and recovered from the aqueous solution is further added with water. It is preferable to use for an extraction process.
  • the extraction treatment with water is not particularly limited. For example, after the solution phase and water are mixed well by stirring or the like, the obtained mixed solution can be left still.
  • the mixed solution after standing is separated into a solution phase containing the compound and / or resin and solvent of the present embodiment and an aqueous phase, the compound and / or resin and solvent of the present embodiment by decantation or the like.
  • the solution phase containing can be recovered.
  • the water used here is preferably water having a low metal content, for example, ion-exchanged water, in accordance with the purpose of the present embodiment.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times. Further, the use ratio of both in the extraction process, conditions such as temperature and time are not particularly limited, but they may be the same as those in the contact process with the acidic aqueous solution.
  • the water that can be mixed in the solution containing the compound and / or resin and solvent of the present embodiment thus obtained can be easily removed by performing an operation such as vacuum distillation. Further, if necessary, a solvent can be added to the above solution to adjust the concentration of the compound and / or resin of the present embodiment to an arbitrary concentration.
  • the method for isolating the compound and / or resin of the present embodiment from the obtained solution containing the compound and / or resin of the present embodiment and a solvent is not particularly limited, and removal by reduced pressure, separation by reprecipitation, and It can carry out by well-known methods, such as those combinations. If necessary, known processes such as a concentration operation, a filtration operation, a centrifugal separation operation, and a drying operation can be performed.
  • the evaluation method of the compound is as follows. ⁇ Measurement of thermal decomposition temperature> Using an EXSTAR6000DSC apparatus manufactured by SII Nanotechnology Inc., about 5 mg of a sample was placed in an aluminum non-sealed container and heated to 500 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen gas (30 ml / min) air stream. At that time, the temperature at which the reduced portion appears in the baseline was defined as the thermal decomposition temperature.
  • reaction solution is cooled to 40 ° C.
  • 10 ml of hexane is added dropwise and cooled to 10 ° C. to precipitate the reaction product, filtered, washed with hexane, and then subjected to separation and purification by column chromatography.
  • 0.6 g of the target compound (BisN-1) represented by the following formula was obtained.
  • the following peaks were found by 400 MHz- 1 H-NMR, and confirmed to have a chemical structure of the following formula.
  • reaction solution is cooled to 40 ° C.
  • 10 ml of hexane is added dropwise and cooled to 10 ° C. to precipitate the reaction product, filtered, washed with hexane, and then subjected to separation and purification by column chromatography.
  • 0.4 g of the target compound (BisN-2) represented by the following formula was obtained.
  • the following peaks were found by 400 MHz- 1 H-NMR, and confirmed to have a chemical structure of the following formula.
  • the obtained resin (R1-BisN-1) was Mn: 1875, Mw: 3610, and Mw / Mn: 1.93.
  • the obtained resin (R2-BisN-1) had Mn: 1610, Mw: 2567, and Mw / Mn: 1.59.
  • ethylbenzene (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) as a diluent solvent was added to the reaction solution, and after standing, the lower aqueous phase was removed. Further, neutralization and washing with water were carried out, and ethylbenzene and unreacted 1,5-dimethylnaphthalene were distilled off under reduced pressure to obtain 1.25 kg of a light brown solid dimethylnaphthalene formaldehyde resin.
  • ethylbenzene special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.
  • a four-necked flask with an internal volume of 0.5 L equipped with a Dimroth condenser, a thermometer, and a stirring blade was prepared.
  • This four-necked flask was charged with 100 g (0.51 mol) of the dimethylnaphthalene formaldehyde resin obtained as described above and 0.05 g of paratoluenesulfonic acid under a nitrogen stream, and the temperature was raised to 190 ° C. Stir after heating for hours. Thereafter, 52.0 g (0.36 mol) of 1-naphthol was further added, and the temperature was further raised to 220 ° C. to react for 2 hours. After the solvent was diluted, neutralization and water washing were performed, and the solvent was removed under reduced pressure to obtain 126.1 g of a dark brown solid modified resin (CR-1).
  • CR-1 dark brown solid modified resin
  • Table 1 shows the results of evaluating the solubility in propylene glycol monomethyl ether acetate (PGMEA) using BisN-1, BisN-2, R1-BisN-1 and R2-BisN-1.
  • a resist composition was prepared with the formulation shown in Table 2. Of the components of the resist composition in Table 2, the following were used for the acid generator (C), the acid diffusion controller (E), and the solvent.
  • Acid generator (C) P-1 Triphenylbenzenesulfonium trifluoromethanesulfonate (Midori Chemical Co., Ltd.)
  • Acid diffusion controller (E) Q-1 Trioctylamine (Tokyo Chemical Industry Co., Ltd.)
  • Solvent S-1 Propylene glycol monomethyl ether (Tokyo Chemical Industry Co., Ltd.)
  • a uniform resist composition was spin-coated on a clean silicon wafer and then pre-exposure bake (PB) in an oven at 110 ° C. to form a resist film having a thickness of 60 nm.
  • the obtained resist film was irradiated with an electron beam with a line and space setting of 1: 1 at 50 nm intervals using an electron beam drawing apparatus (ELS-7500, manufactured by Elionix Co., Ltd.). After the irradiation, the resist films were each heated at a predetermined temperature for 90 seconds, and developed by being immersed in a TMAH 2.38 mass% alkali developer for 60 seconds.
  • the resist film was washed with ultrapure water for 30 seconds and dried to form a positive resist pattern.
  • the line and space was observed with a scanning electron microscope (S-4800, manufactured by Hitachi High-Technology Corporation), and the reactivity of the resist composition by electron beam irradiation was evaluated.
  • Example 3 and Example 4 have good heat resistance, but the compound used in Comparative Example 2 was confirmed to be inferior in heat resistance.
  • Example 3 and Example 4 As for the resist pattern evaluation, in Example 3 and Example 4, a good resist pattern was obtained by irradiation with an electron beam with a line and space setting of 1: 1 at 50 nm intervals. On the other hand, in Comparative Example 2, a good resist pattern could not be obtained.
  • a compound satisfying the requirements of the present invention has higher heat resistance and can impart a good resist pattern shape as compared with the comparative compound (CR-1). As long as the above-described requirements of the present invention are satisfied, the same effect is exhibited for compounds other than the compounds described in the examples.
  • B-1 Naphthoquinonediazide photosensitizer of chemical structural formula (G) (4NT-300, Toyo Gosei Co., Ltd.) The following were used as the solvent.
  • S-1 Propylene glycol monomethyl ether (Tokyo Chemical Industry Co., Ltd.)
  • the radiation-sensitive composition obtained above was spin-coated on a clean silicon wafer, followed by pre-exposure baking (PB) in an oven at 110 ° C. to form a resist film having a thickness of 200 nm.
  • the resist film was exposed to ultraviolet rays using an ultraviolet exposure device (Mikasa Mask Aligner MA-10).
  • an ultraviolet exposure device Moikasa Mask Aligner MA-10.
  • the resist film was heated at 110 ° C. for 90 seconds and immersed in TMAH 2.38 mass% alkaline developer for 60 seconds for development. Thereafter, the resist film was washed with ultrapure water for 30 seconds and dried to form a 5 ⁇ m positive resist pattern.
  • the obtained line and space was observed with a scanning electron microscope (S-4800, manufactured by Hitachi High-Technology Corporation).
  • S-4800 manufactured by Hitachi High-Technology Corporation.
  • the line edge roughness was good when the pattern irregularities were less than 50 nm.
  • Example 5 When using the radiation sensitive composition in Example 5 and Example 6, a good resist pattern with a resolution of 5 ⁇ m could be obtained. Also, the roughness of the pattern was small and good.
  • Example 5 As described above, it was found that in Example 5 and Example 6, it was possible to form a resist pattern having a small roughness and a good shape as compared with Comparative Example 3. As long as the above-described requirements of the present invention are satisfied, radiation-sensitive compositions other than those described in the examples also exhibit the same effect.
  • the thermal decomposition temperature is 150 ° C. or higher (Evaluation A), and since it has high heat resistance, it can be used even under high temperature baking conditions.
  • composition for forming underlayer film for lithography A composition for forming a lower layer film for lithography was prepared so as to have the composition shown in Table 4. Next, these compositions for forming a lower layer film for lithography were spin-coated on a silicon substrate, and then baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to prepare respective 200 nm-thick lower layer films. . The following were used about the acid generator, the crosslinking agent, and the organic solvent.
  • Acid generator Ditertiary butyl diphenyliodonium nonafluoromethanesulfonate (DTDPI) manufactured by Midori Chemical Co., Ltd.
  • Cross-linking agent Nikalac MX270 (Nikalac) manufactured by Sanwa Chemical Co., Ltd.
  • Organic solvent Propylene glycol monomethyl ether acetate (PGMEA)
  • PSM4357 manufactured by Gunei Chemical Co., Ltd.
  • Etching device RIE-10NR manufactured by Samco International Output: 50W Pressure: 20Pa Time: 2min Etching gas
  • Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate 50: 5: 5 (sccm)
  • Etching resistance was evaluated according to the following procedure. First, a novolak underlayer film was prepared under the above conditions except that novolak (PSM4357 manufactured by Gunei Chemical Co., Ltd.) was used. Then, the above-described etching test was performed on this novolac lower layer film, and the etching rate at that time was measured.
  • novolak PSM4357 manufactured by Gunei Chemical Co., Ltd.
  • the etching resistance was evaluated according to the following evaluation criteria based on the etching rate of the novolak underlayer film.
  • evaluation criteria A: Etching rate is less than -10% compared to the novolac lower layer film
  • Examples 11 to 14, 11A to 14A, Comparative Example 5 the composition for forming a lower layer film for lithography used in Examples 7 to 10, Examples 7A to 10A and Comparative Example 4 was applied onto a 60 nm line and space SiO 2 substrate having a film thickness of 80 nm, and 240 ° C. was then baked for 60 seconds to form a 90 nm lower layer film.
  • the embedding property was evaluated by the following procedure. A cross section of the film obtained under the above conditions was cut out and observed with an electron microscope to evaluate the embedding property.
  • Example 15 the composition for forming a lower layer film for lithography used in Example 7 was applied on a SiO 2 substrate having a film thickness of 300 nm, and baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds. An underlayer film of 85 nm was formed. On this lower layer film, an ArF resist solution was applied and baked at 130 ° C. for 60 seconds to form a 140 nm-thick photoresist layer.
  • the compound of the following formula (16) was prepared as follows. That is, 4.15 g of 2-methyl-2-methacryloyloxyadamantane, 3.00 g of methacryloyloxy- ⁇ -butyrolactone, 2.08 g of 3-hydroxy-1-adamantyl methacrylate, 0.38 g of azobisisobutyronitrile, The reaction solution was dissolved in 80 mL. This reaction solution was polymerized for 22 hours under a nitrogen atmosphere while maintaining the reaction temperature at 63 ° C., and then the reaction solution was dropped into 400 mL of n-hexane. The product resin thus obtained was coagulated and purified, and the resulting white powder was filtered and dried overnight at 40 ° C. under reduced pressure to obtain a compound represented by the following formula (16). (In the formula (16), 40, 40 and 20 indicate the ratio of each structural unit, not a block copolymer.)
  • the photoresist layer was exposed using an electron beam drawing apparatus (ELIONX, ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), and 2.38 mass% tetramethylammonium hydroxide (A positive resist pattern was obtained by developing with an aqueous solution of TMAH for 60 seconds.
  • ELIONX electron beam drawing apparatus
  • ELS-7500 ELS-7500, 50 keV
  • PEB baked at 115 ° C. for 90 seconds
  • TMAH 2.38 mass% tetramethylammonium hydroxide
  • Example 15 and Comparative Example 6 For each of Example 15 and Comparative Example 6, the shapes of the obtained resist patterns of 45 nm L / S (1: 1) and 80 nm L / S (1: 1) were analyzed using an electron microscope (S-4800) manufactured by Hitachi, Ltd. Was observed. As for the shape of the resist pattern after development, the resist pattern was not collapsed and the rectangular shape was good, and the resist pattern was evaluated as bad. As a result of the observation, the minimum line width with no pattern collapse and good rectangularity was used as an evaluation index as the resolution. Furthermore, the minimum amount of electron beam energy that can draw a good pattern shape is used as an evaluation index as sensitivity. The results are shown in Table 6.
  • Example 15 As is clear from Table 6, it was confirmed that the lower layer film in Example 15 was significantly superior in both resolution and sensitivity as compared with Comparative Example 6. In addition, it was confirmed that the resist pattern shape after development did not collapse and the rectangularity was good. Furthermore, from the difference in the resist pattern shape after development, it was shown that the lower layer film forming material for lithography in Example 15 had good adhesion to the resist material.
  • Example 16 The composition for forming a lower layer film for lithography used in Example 7 was applied onto a 300 nm thick SiO 2 substrate and baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds, thereby forming a lower layer having a thickness of 90 nm. A film was formed. On this lower layer film, a silicon-containing intermediate layer material was applied and baked at 200 ° C. for 60 seconds to form an intermediate layer film having a thickness of 35 nm. Further, the ArF resist solution was applied on this intermediate layer film and baked at 130 ° C. for 60 seconds to form a 150 nm-thick photoresist layer. As the silicon-containing intermediate layer material, a silicon atom-containing polymer described in JP-A-2007-226170 ⁇ Synthesis Example 1> was used.
  • the photoresist layer was subjected to mask exposure using an electron beam lithography apparatus (ELIONX, ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), and 2.38 mass% tetramethylammonium hydroxide.
  • ELIONX electron beam lithography apparatus
  • PEB baked at 115 ° C. for 90 seconds
  • TMAH aqueous solution of
  • the silicon-containing intermediate layer film (SOG) was dry-etched using the obtained resist pattern as a mask, and then the obtained silicon-containing intermediate layer film pattern was A dry etching process for the lower layer film using the mask and a dry etching process for the SiO 2 film using the obtained lower layer film pattern as a mask were sequentially performed.
  • the present invention is a compound that can be used as a component of a photoresist, a resin raw material for a material for electric / electronic parts, a curable resin raw material such as a photo-curable resin, a resin raw material for a structural material, or a resin curing agent.
  • a curable resin raw material such as a photo-curable resin
  • a resin raw material for a structural material or a resin curing agent.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Pyrane Compounds (AREA)

Abstract

本発明は、特定の構造を有する化合物、該化合物に由来する構成単位を有する樹脂、該化合物及び/又は該樹脂を含有する各種組成物、並びに該組成物を用いた各種方法である。

Description

化合物、樹脂、組成物、パターン形成方法及び精製方法
本発明は、特定構造を有する化合物、樹脂、これらを含有する組成物、該組成物を用いるパターン形成方法、及び物質の精製方法に関する。
 半導体デバイスの製造において、フォトレジスト材料を用いたリソグラフィーによる微細加工が行われているが、近年、LSIの高集積化と高速度化に伴い、パターンルールによる更なる微細化が求められている。現在の汎用技術として用いられている光露光を用いたリソグラフィーにおいては、光源の波長に由来する本質的な解像度の限界に近づきつつある。
 レジストパターン形成の際に使用するリソグラフィー用の光源は、KrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)へと短波長化されている。しかしながら、レジストパターンの微細化が進むにつれ、解像度の問題又は現像後にレジストパターンが倒れるといった問題が生じてくるため、レジストの薄膜化が望まれるようになる。このような要望に対して、単にレジストの薄膜化を行うのみでは、基板加工に十分なレジストパターンの膜厚を得ることが難しくなる。そのため、レジストパターンだけではなく、レジストと加工する半導体基板との間にレジスト下層膜を作成し、このレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要になってくる。
 現在、このようなプロセス用のレジスト下層膜として、種々のものが知られている。例えば、従来のエッチング速度の速いレジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を挙げることができる。このようなリソグラフィー用レジスト下層膜を形成するための材料として、所定のエネルギーが印加されることにより末端基が脱離してスルホン酸残基を生じる置換基を少なくとも有する樹脂成分と溶媒とを含有する多層レジストプロセス用下層膜形成材料が提案されている(例えば、特許文献1参照。)。また、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜も挙げることができる。このようなリソグラフィー用レジスト下層膜を形成するための材料として、特定の繰り返し単位を有する重合体を含むレジスト下層膜材料が提案されている(例えば、特許文献2参照。)。さらに、半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜も挙げることができる。このようなリソグラフィー用レジスト下層膜を形成するための材料として、アセナフチレン類の繰り返し単位と、置換又は非置換のヒドロキシ基を有する繰り返し単位とを共重合してなる重合体を含むレジスト下層膜材料が提案されている(例えば、特許文献3参照。)。
 一方、この種のレジスト下層膜において高いエッチング耐性を持つ材料としては、メタンガス、エタンガス、アセチレンガスなどを原料に用いた化学蒸着薄膜成膜法(Chemical Vapour Deposition、以下「CVD」とも記す。)により形成されたアモルファスカーボン下層膜がよく知られている。しかしながら、プロセス上の観点から、スピンコート法やスクリーン印刷等の湿式プロセスでレジスト下層膜を形成できるレジスト下層膜材料が求められている。
また最近は複雑な形状の被加工層に対し、リソグラフィー用レジスト下層膜を形成する要求があり、埋め込み性や膜表面の平坦化性に優れた下層膜を形成できるレジスト下層膜材料が求められている。
 なお、3層プロセスにおけるレジスト下層膜の形成において用いられる中間層の形成方法に関しては、例えば、シリコン窒化膜の形成方法(例えば、特許文献4参照。)や、シリコン窒化膜のCVD形成方法(例えば、特許文献5参照。)が知られている。また、3層プロセス用の中間層材料としては、シルセスキオキサンベースの珪素化合物を含む材料が知られている(例えば、特許文献6及び7参照。)。
本発明者らは、特定の化合物又は樹脂を含むリソグラフィー用下層膜形成組成物を提案している(例えば、特許文献8参照。)。
 光学部品形成組成物としても様々なものが提案されており、例えば、アクリル系樹脂(例えば、特許文献9~10参照。)や、アリル基で誘導された特定の構造を有するポリフェノール(例えば、特許文献11参照。)が提案されている。
特開2004-177668号公報 特開2004-271838号公報 特開2005-250434号公報 特開2002-334869号公報 国際公開第2004/066377号 特開2007-226170号公報 特開2007-226204号公報 国際公開第2013/024779号 特開2010-138393号公報 特開2015-174877号公報 国際公開第2014/123005号
 上述したように、従来数多くのリソグラフィー用下層膜形成材料が提案されているが、スピンコート法やスクリーン印刷等の湿式プロセスが適用可能な高い溶媒溶解性、耐熱性及びエッチング耐性を高い水準で両立させたものはなく、新たな材料の開発が求められている。
 また、従来、数多くの光学部材向け組成物が提案されているが、耐熱性、透明性及び屈折率を高い次元で両立させたものはなく、新たな材料の開発が求められている。
 本発明は、上記の課題を鑑みてなされたものである。すなわち、本発明の目的は、溶媒溶解性に優れ湿式プロセスへの適用が可能であり、耐熱性及びエッチング耐性に優れるリソグラフィー用膜形成に有用な化合物、樹脂及び組成物を提供することにある。また、該組成物を用いたパターン形成方法を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、特定の構造を有する化合物を用いることにより、上記課題を解決できることを見出し、本発明を完成するに到った。
 すなわち、本発明は次のとおりである。
[1]下記式(A)で表される化合物。
Figure JPOXMLDOC01-appb-C000007
(式(A)中、Rは、水素原子、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基又は炭素数6~30のアリール基であり、
は、炭素数3~30の環状アルキル基を含む炭素数3~60のm価の基であり、
は、各々独立して、置換基を有していてもよい炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、チオール基、水酸基の水素原子が酸解離性基で置換された基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
ここで、Rの少なくとも1つは水酸基であり、
nは、各々独立して、0~8の整数であり、ここで、nの少なくとも1つは1~8の整数であり、
mは、1~4の整数であり、
kは、各々独立して、0~2の整数である。)
[2]前記式(A)で表される化合物が、下記式(1)で表される化合物である、前記[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000008
(式(1)中、R、R、m及びkは、上記式(A)で説明したものと同義である。
3Aは、各々独立して、置換基を有していてもよい炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基又はチオール基であり、
4Aは、各々独立して、水素原子又は酸解離性基であり、
ここで、R4Aの少なくとも1つは水素原子であり、
6Aは、各々独立して、0~7の整数である。)
[3]前記式(1)で表される化合物が、下記式(1’)で表される化合物である、前記[2]に記載の化合物。
Figure JPOXMLDOC01-appb-C000009
(式(1’)中、Rは、前記式(A)で説明したものと同義である。)
[4]前記式(1’)で表される化合物が、下記式(2)で表される化合物である、前記[3]に記載の化合物。
Figure JPOXMLDOC01-appb-C000010
[5]前記式(2)で表される化合物が、下記式(2-1)又は式(2-2)で表される化合物である、前記[4]に記載の化合物。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
[6]前記[1]~[5]のいずれか1項に記載の化合物に由来する構成単位を有する、樹脂。
[7]前記[1]~[5]のいずれか1項に記載の化合物及び前記[6]に記載の樹脂からなる群より選ばれる1種類以上を含有する、組成物。
[8]前記[1]~[5]のいずれか1項に記載の化合物及び前記[6]に記載の樹脂からなる群より選ばれる1種類以上を含有する、光学部品形成用組成物。
[9]前記[1]~[5]のいずれか1項に記載の化合物及び前記[6]に記載の樹脂からなる群より選ばれる1種類以上を含有する、リソグラフィー用膜形成組成物。
[10]前記[1]~[5]のいずれか1項に記載の化合物及び前記[6]に記載の樹脂からなる群より選ばれる1種類以上を含有する、レジスト組成物。
[11]溶媒をさらに含有する、前記[10]に記載のレジスト組成物。
[12]酸発生剤をさらに含有する、前記[10]又は[11]に記載のレジスト組成物。
[13]酸拡散制御剤をさらに含有する、前記[10]~[12]のいずれか1項に記載のレジスト組成物。
[14]前記[10]~[13]のいずれか1項に記載のレジスト組成物を用いて、基板上にレジスト膜を形成する工程と、
 形成された前記レジスト膜の少なくとも一部を露光する工程と、
 露光した前記レジスト膜を現像してレジストパターンを形成する工程と、を含む、レジストパターン形成方法。
[15]前記[1]~[5]のいずれか1項に記載の化合物及び前記[6]に記載の樹脂からなる群より選ばれる1種類以上である成分(A)と、
 ジアゾナフトキノン光活性化合物(B)と、
 溶媒と、を含有する感放射線性組成物であって、
 前記溶媒の含有量が、前記感放射線性組成物の総量100質量%に対して20~99質量%であり、
 前記溶媒以外の成分の含有量が、前記感放射線性組成物の総量100質量%に対して1~80質量%である、感放射線性組成物。
[16]前記成分(A)と、前記ジアゾナフトキノン光活性化合物(B)と、前記感放射線性組成物に任意に含まれ得るその他の任意成分(D)と、の含有量比((A)/(B)/(D))が、前記感放射線性組成物の固形分100質量%に対して、1~99質量%/99~1質量%/0~98質量%である、前記[15]に記載の感放射線性組成物。
[17]スピンコートによりアモルファス膜を形成することができる、前記[15]又は[16]に記載の感放射線性組成物。
[18]前記[15]~[17]のいずれか1項に記載の感放射線性組成物を用いて、基板上にアモルファス膜を形成する工程を含む、アモルファス膜の製造方法。
[19]前記[15]~[17]のいずれか1項に記載の感放射線性組成物を用いて、基板上にレジスト膜を形成する工程と、
 形成された前記レジスト膜の少なくとも一部を露光する工程と、
 露光した前記レジスト膜を現像して、レジストパターンを形成する工程を含む、レジストパターン形成方法。
[20]前記[1]~[5]のいずれか1項に記載の化合物及び前記[6]に記載の樹脂からなる群より選ばれる1種類以上を含有する、リソグラフィー用下層膜形成材料。
[21]前記[20]に記載のリソグラフィー用下層膜形成材料と、
 溶媒と、を含有する、リソグラフィー用下層膜形成用組成物。
[22]酸発生剤をさらに含有する、前記[21]に記載のリソグラフィー用下層膜形成用組成物。
[23]架橋剤をさらに含有する、前記[21]又は[22]に記載のリソグラフィー用下層膜形成用組成物。
[24]前記[21]~[23]のいずれか1項に記載のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程を含む、リソグラフィー用下層膜の製造方法。
[25]前記[21]~[23]のいずれか1項に記載のリソグラフィー用下層膜形成用組成物を用いて、基板上に、下層膜を形成する工程と、
 前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程と、
 前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程と、を有する、レジストパターン形成方法。
[26]前記[21]~[23]のいずれか1項に記載のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程と、
 前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程と、
 前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程と、
 前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程と、
 前記レジストパターンをマスクとして前記中間層膜をエッチングして、中間層膜パターンを形成する工程と、
 前記中間層膜パターンをエッチングマスクとして前記下層膜をエッチングして、下層膜パターンを形成する工程と、
 前記下層膜パターンをエッチングマスクとして前記基板をエッチングして、前記基板にパターンを形成する工程と、を有する、回路パターン形成方法。
[27]前記[1]~[5]のいずれか1項に記載の化合物及び前記[6]に記載の樹脂からなる群より選ばれる1種類以上を、溶媒に溶解させて溶液(S)を得る工程と、
 得られた溶液(S)と酸性の水溶液とを接触させて、前記化合物及び/又は前記樹脂中の不純物を抽出する第一抽出工程とを含み、
 前記溶液(S)を得る工程で用いる溶媒が、水と混和しない溶媒を含む、精製方法。
[28]前記酸性の水溶液が、鉱酸水溶液又は有機酸水溶液であり、
 前記鉱酸水溶液が、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上を水に溶解させた鉱酸水溶液であり、
 前記有機酸水溶液が、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上を水に溶解させた有機酸水溶液である、前記[27]に記載の精製方法。
[29]前記水と混和しない溶媒が、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート及び酢酸エチルからなる群より選ばれる1種以上の溶媒である、前記[27]又は[28]に記載の精製方法。
[30]前記第一抽出工程後、前記化合物及び/又は前記樹脂を含む溶液相を、さらに水に接触させて、前記化合物及び/又は前記樹脂中の不純物を抽出する第二抽出工程含む、前記[27]~[29]のいずれか1項に記載の精製方法。
 本発明によれば、溶媒溶解性に優れ湿式プロセスへの適用が可能であり、耐熱性及びエッチング耐性に優れるリソグラフィー用膜形成に有用な化合物、樹脂及び組成物を提供することができる。
 以下、本発明の実施の形態(以下、単に「本実施形態」とも記す)について説明する。なお、以下の実施の形態は本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
[式(A)で表される化合物]
 本実施形態の化合物は、下記式(A)で表される化合物である。
Figure JPOXMLDOC01-appb-C000013
(式(A)中、Rは、水素原子、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基又は炭素数6~30のアリール基であり、
は、炭素数3~30の環状アルキル基を含む炭素数3~60のm価の基であり、
は、各々独立して、置換基を有していてもよい炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、チオール基、水酸基の水素原子が酸解離性基で置換された基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
ここで、Rの少なくとも1つは水酸基であり、
nは、各々独立して0~8の整数であり、ここで、nの少なくとも1つは1~8の整数であり、
mは、1~4の整数であり、
kは、各々独立して0~2の整数である。)
 上記式(A)におけるRは、炭素数3~30の環状アルキル基を含む炭素数3~60のm価の基である。上記m価の基とは、炭素数3~30の環状アルキル基を含む置換基を有していてもよい炭素数3~60の直鎖状、分岐状若しくは環状のアルキル基、炭素数3~30の環状アルキル基を含む置換基を有していてもよい炭素数3~60の直鎖状、分岐状若しくは環状のアルキレン基、炭素数3~30の環状アルキル基を含む置換基を有していてもよい炭素数3~60の直鎖状、分岐状若しくは環状のアルカントリイル基、3~30の環状アルキル基を含む置換基を有していてもよい炭素数3~60の直鎖状、分岐状若しくは環状のアルカンテトライル基、炭素数3~30の環状アルキル基を含む置換基を有していてもよい炭素数9~60の一価の芳香族基、炭素数3~30の環状アルキル基を含む置換基を有していてもよい炭素数9~60の二価の芳香族基、炭素数3~30の環状アルキル基を含む置換基を有していてもよい炭素数9~60の三価の芳香族基、3~30の環状アルキル基を含む置換基を有していてもよい炭素数9~60の四価の芳香族基のことを表す。
ここで、炭素数3~30の環状アルキル基を含む環状アルキル基については、炭素数3~30の環状アルキル基を含む有橋脂環式アルキル基も含まれる。また、上記m価の基は、二重結合、ヘテロ原子若又は炭素数6~30の芳香族基を有していてもよい。
環状アルキル基については、有橋脂環式アルキル基も含まれる。
本実施形態の化合物は、上記式(A)におけるRが上記のような炭素数3~30の環状アルキル基を含む炭素数3~60のm価の基であることにより、耐熱性が高く、また良好なレジストパターン形状を付与でき、さらにはエッチング耐性にも優れる。
 上記m価の基としては、平坦性の観点から、炭素数3~30の環状アルキル基を含む置換基を有していてもよい炭素数3~60の直鎖状、分岐状若しくは環状のアルキル基、炭素数3~30の環状アルキル基を含む置換基を有していてもよい炭素数3~60の直鎖状、分岐状若しくは環状のアルキレン基、炭素数3~30の環状アルキル基を含む置換基を有していてもよい炭素数9~60の一価の芳香族基、炭素数3~30の環状アルキル基を含む置換基を有していてもよい炭素数9~60の二価の芳香族基であることが好ましい。
 上記炭素数3~30の環状アルキル基を含む置換基を有していてもよい炭素数3~60の1価の基としては、特に限定されないが、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロオクタデシレル基、アダマンチル基、シクロヘキシルフェニル基、シクロヘキシルナフチル基、メチルシクロヘキシルフェニル基、エチルシクロヘキシルフェニル基、プロピルシクロヘキシルフェニル基、ペンチルシクロヘキシルフェニル基、、シクロプロピルメチル基、シクロヘキシルメチル基、アダマンチルメチル基等が挙げられる。
 上記炭素数3~30の環状アルキル基を含む置換基を有していてもよい炭素数3~60の2価の基としては、特に限定されないが、例えば、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基、シクロオクタデシレン基、アダマンチレン基、シクロヘキシルフェニレン基、シクロプロピルジメチレン基、シクロヘキシルジメチレン基、アダマンチルジメチレン基等が挙げられる。
 上記炭素数3~30の環状アルキル基を含む置換基を有していてもよい炭素数3~60の3価の基としては、特に限定されないが、例えば、シクロプロパントリイル基、シクロブタントリイル基、シクロペンタントリイル基、シクロヘキサントリイル基、シクロヘプタントリイル基、シクロオクタントリイル基、シクロノナントリイル基、シクロデカントリイル基、シクロオクタデカントリイル基、シクロヘキシルベンゼントリイル基等が挙げられる。
 上記炭素数3~30の環状アルキル基を含む置換基を有していてもよい炭素数3~60の4価の基としては、特に限定されないが、例えば、シクロプロパンテトライル基、シクロブタンテトライル基、シクロペンタンテトライル基、シクロヘキサンテトライル基、シクロヘプタンテトライル基、シクロオクタンテトライル基、シクロノナンテトライル基、シクロデカンテトライル基、シクロオクタデカンテトライル基、シクロヘキシルベンゼンテトライル基、シクロプロパンテトラメチレン基、シクロヘキサンテトラメチレン基、アダマンタンテトラメチレン基、シクロヘキシルベンゼンテトラメチレン基等が挙げられる。
 これらのうち、耐熱性の観点から、シクロヘキシルフェニル基、プロピルシクロヘキシルフェニル基、シクロヘキシルナフチル基、ビシクロヘキシル基、シクロヘキサンジメチル基が好ましい。これらの中でも特に原料の入手性の観点から、シクロヘキシルフェニル基が好ましい。
 上記式(A)におけるRは、水素原子、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基又は炭素数6~30のアリール基である。
 上記式(A)におけるRは、各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、置換基を有していてもよい炭素数6~30のアリール基であり、前記アルキル基、前記アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよい。
 上記式(A)におけるRは、各々独立して、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、チオール基、水酸基の水素原子が酸解離性基で置換された基及び水酸基からなる郡より選択される置換基である。ここで、Rの少なくとも1つは水酸基である。また、nは、各々独立して0~8の整数であり、ここで、nの少なくとも1つは1~8の整数であり、mは、1~4の整数であり、kは、各々独立して、0~2の整数である。
本明細書において酸解離性基とは、酸の存在下で開裂して、アルカリ可溶性基等の変化を生じる特性基をいう。アルカリ可溶性基としては、フェノール性水酸基、カルボキシル基、スルホン酸基、ヘキサフルオロイソプロパノール基などが挙げられ、フェノール性水酸基及びカルボキシル基が好ましく、フェノール性水酸基が特に好ましい。前記酸解離性基としては、KrFやArF用の化学増幅型レジスト組成物に用いられるヒドロキシスチレン系樹脂、(メタ)アクリル酸系樹脂等において提案されているもののなかから適宜選択して用いることができる。限定されないが、例えば特開2012-136520号公報に記載の酸解離性基が使用される。
本実施形態の化合物は、上記のような構造を有するため、耐熱性が高く、溶媒溶解性も高い。また、本実施形態の化合物は、下記式(1)で表される化合物であることが溶媒への溶解性、耐熱性の観点から好ましい。
Figure JPOXMLDOC01-appb-C000014
(式(1)中、R、R、m及びkは、前記式(A)で説明したものと同義である。
3Aは、各々独立して、置換基を有していてもよい炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基又はチオール基であり、
4Aは、各々独立して、水素原子又は酸解離性基であり、
ここで、R4Aの少なくとも1つは水素原子であり、
6Aは、各々独立して、0~7の整数である。)
 また、溶媒への溶解性、耐熱性の点から、本実施形態において、前記式(1)で表される化合物が、下記式(1’)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
(式(1’)中、Rは、前記式(A)で説明したものと同義である。)
 さらに、耐熱性、有機溶媒への溶解性の観点から、本実施形態において、(1’)で表される化合物が、下記式(2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 さらに、耐熱性、有機溶媒への溶解性の観点から、本実施形態において、前記式(2)で表される化合物の具体例を以下に例示するが、ここに列挙した限りではない。また、下記式(2-1)又は式(2-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 前記式(A)で表される化合物の具体例を以下に例示するが、式(A)で表される化合物は、ここで列挙した具体例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 前記式中、RT’は前記式(A)で説明したRと同義であり、mは各々独立して、1~6の整数である。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 前記式中、RT’は前記式(A)で説明したRと同義であり、mは各々独立して、1~6の整数である。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 前記式中、RZ’は前記式(A)で説明したRと同義である。さらに、R4Aは、各々独立して、水素原子又は酸解離性基であり、OR4Aの少なくとも1つは水酸基である。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 前記式中、RT’は炭素数3~30の環状アルキル基である。さらに、R4Aは、各々独立して、水素原子又は酸解離性基であり、OR4Aの少なくとも1つは水酸基であり、mは、1~5の整数である。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 前記式中、RT’は炭素数3~30の環状アルキル基である。さらに、R4Aは、各々独立して、水素原子又は酸解離性基であり、OR4Aの少なくとも1つは水酸基であり、mは、1~9の整数である。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 前記式中、RT’は炭素数3~30の環状アルキル基である。さらに、R4Aは、各々独立して、水素原子又は酸解離性基であり、OR4Aの少なくとも1つは水酸基であり、mは、1~7の整数である。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
 前記式中、RT’は炭素数3~30の環状アルキル基である。さらに、R4Aは、各々独立して、水素原子又は酸解離性基であり、OR4Aの少なくとも1つは水酸基であり、mは、1~9の整数である。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
 前記式中、RT’は炭素数3~30の環状アルキル基である。さらに、R4Aは、各々独立して、水素原子又は酸解離性基であり、OR4Aの少なくとも1つは水酸基であり、mは、1~7の整数である。
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
 前記式中、RT’は炭素数3~30の環状アルキル基である。さらに、R4Aは、各々独立して、水素原子又は酸解離性基であり、OR4Aの少なくとも1つは水酸基であり、mは、1~4の整数である。
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
 前記式中、RT’は炭素数3~30の環状アルキル基である。さらに、R4Aは、各々独立して、水素原子又は酸解離性基であり、OR4Aの少なくとも1つは水酸基であり、mは、1~6の整数である。
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
 前記式中、RT’は炭素数3~30の環状アルキル基である。さらに、R4Aは、各々独立して、水素原子又は酸解離性基であり、OR4Aの少なくとも1つは水酸基であり、mは、1~8の整数である。
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
 前記式中、RT’は炭素数3~30の環状アルキル基である。さらに、R4Aは、各々独立して、水素原子又は酸解離性基であり、OR4Aの少なくとも1つは水酸基であり、mは、1~8の整数である。
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
 前記式中、RT’は炭素数3~30の環状アルキル基である。さらに、R4Aは、各々独立して、水素原子又は酸解離性基であり、OR4Aの少なくとも1つは水酸基であり、mは、1~3の整数である。
 さらに前記式(A)で表される化合物は、エッチング耐性の観点から以下の構造を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
 前記式中、R0Aは前記式(A)で説明したRと同義であり、R1A’は前記式(A)で説明したRと同義であり、R10及びR11は、前記式(1)で説明したR4Aと同義である。
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
 前記式中、R0Aは前記式(A)で説明したRと同義であり、R1A’は前記式(A)で説明したRと同義であり、R10及びR11は、前記式(1)で説明したR4Aと同義である。R14は炭素数3~30の環状のアルキル基であり、m14は各々独立して0~5の整数である。
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
 前記式中、R10及びR11は前記式(1)で説明したR4Aと同義であり、R15は、炭素数3~30環状のアルキル基である。
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
 前記式中、R10及びR11は前記式(1)で説明したR4Aと同義であり、R16は、炭素数3~30の環状のアルキル基を含む基である。
Figure JPOXMLDOC01-appb-C000091
前記式中、R10及びR11は前記式(1)で説明したR4Aと同義であり、R14は炭素数3~30の環状のアルキル基である。m14’は各々独立して0~4の整数である。但し、少なくともひとつのm14’は1~4の整数である。
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
前記式中、R10及びR11は前記式(1)で説明したR4Aと同義であり、R14は炭素数3~30の環状のアルキル基である。m14’は1~4の整数である。
Figure JPOXMLDOC01-appb-C000094
前記式中、R10及びR11は前記式(1)で説明したR4Aと同義であり、R14は炭素数3~30の環状のアルキル基である。m14’は各々独立して0~4の整数である。但し、少なくともひとつのm14’は1~4の整数である。
Figure JPOXMLDOC01-appb-C000095
 前記式中、R10及びR11は、前記式(1)で説明したR4Aと同義であり、R14は炭素数3~30の環状のアルキル基である。m14’は各々独立して1~4の整数である。
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
 前記式中、R10及びR11は前記式(1)で説明したR4Aと同義である。前記式で表される化合物としては、耐熱性の観点からジベンゾキサンテン骨格を有する化合物が好ましい。
 前記式(A)で表される化合物は、原料入手性の観点から以下の構造を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
 前記式中、R0Aは前記式(A)で説明したRと同義であり、R1A’は前記式(A)で説明したRと同義であり、R10、R11及びR13は、前記式(1)で説明したR4Aと同義である。前記式で表される化合物は、耐熱性の観点からキサンテン骨格を有する化合物が好ましい。
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
 前記式中、R10、R11及びR13は前記式(1)で説明したR4Aと同義であり、R14、R15、R16、m14、m14’は前記と同義である。
[式(A)で表される化合物の製造方法]
 本実施形態の式(A)で表される化合物は、公知の手法を応用して適宜合成することができ、その合成手法は特に限定されない。例えば、常圧下、ナフトール類と、所望とする化合物の構造に対応するアルデヒド類又はケトン類とを酸触媒下にて重縮合反応させることによって、上記一般式(A)で表される化合物を得ることができる。また、必要に応じて、加圧下で行うこともできる。
 前記ナフトール類としては、例えば、ナフトール、メチルナフトール、メトキシナフタレン、ナフタレンジオール、ナフタレントリオール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、ナフタレンジオール、ナフタレントリオールを用いることがキサンテン構造を容易に作ることができる観点からより好ましい。
 前記アルデヒド類としては、例えば、シクロプロピルアルデヒド、シクロブチルアルデヒド、シクロヘキシルアルデヒド、シクロデシルアルデヒド、シクロウンデシルアルデヒド、シクロプロピルベンズアルデヒド、シクロブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、シクロデシルベンズアルデヒド、シクロウンデシルベンズアルデヒド等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、シクロヘキシルベンズアルデヒド、シクロデシルベンズアルデヒド、シクロウンデシルベンズアルデヒド等を用いることが、高い耐熱性を与える観点から好ましい。
 前記ケトン類としては、例えば、シクロブタノン、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、シクロウンデカノン、アダマンタノン等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、シクロヘキサノン、シクロウンデカノンを用いることが、高い耐熱性を与える観点から好ましい。
 上記反応に用いる酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られている。上記酸触媒の具体例としては、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸;ケイタングステン酸、リンタングステン酸、ケイモリブデン酸、リンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらのなかでも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることが好ましい。なお、酸触媒については、1種を単独で、又は2種以上を組み合わせて用いることができる。また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。
 上記反応の際には、反応溶媒を用いてもよい。反応溶媒としては、用いるアルデヒド類或いはケトン類とフェノール類との反応が進行するものであれば、特に限定されず、公知のものの中から適宜選択して用いることができるが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル又はこれらの混合溶媒等が例示される。なお、溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。また、これらの溶媒の使用量は、使用する原料及び使用する酸触媒の種類、さらには反応条件などに応じて適宜設定できる。上記溶媒の使用量としては、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、上記反応における反応温度は、反応原料の反応性に応じて適宜選択することができる。上記反応温度としては、特に限定されないが、通常10~200℃の範囲であることが好ましい。本実施形態の一般式(A)で表される構造を有する化合物として、キサンテン構造或いはチオキサンテン構造を形成するためには、反応温度は高い方が好ましく、具体的には60~200℃の範囲が好ましい。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、フェノール類、アルデヒド類或いはケトン類、酸触媒を一括で仕込む方法や、フェノール類やアルデヒド類或いはケトン類を酸触媒存在下で滴下していく方法がある。重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や酸触媒等を除去するために、反応釜の温度を130~230℃ にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物である化合物を得ることができる。
 好ましい反応条件としては、アルデヒド類或いはケトン類1モルに対し、フェノール類を1モル~過剰量、及び酸触媒を0.001~1モル使用し、常圧で、50~200℃で20分~100時間程度反応させることにより進行する。
 反応終了後、公知の方法により目的物を単離することができる。例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離させ、濾過により得られた固形物を乾燥させた後、カラムクロマトにより、副生成物と分離精製し、溶媒留去、濾過、乾燥を行って目的物である上記一般式(A)で表される構造を有する化合物を得ることができる。
 なお、上記一般式(A)で表される構造を有する化合物の分子量は、特に限定されないが、ポリスチレン換算の重量平均分子量(Mw)が350~30,000であることが好ましく、より好ましくは500~20,000である。また、架橋効率を高めるとともにベーク中の揮発成分を抑制する観点から、上記一般式(A)で表される構造を有する化合物は、分散度(重量平均分子量Mw/数平均分子量Mn)が1.1~7の範囲内のものが好ましい。なお、上記Mw及びMnは、後述する実施例に記載の方法により測定することができる。
 上述した一般式(A)で表される構造を有する化合物は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、これら化合物及び/又は樹脂は、1-メトキシ-2-プロパノール(PGME)及び/又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、当該溶媒に対する溶解度が10質量%以上であることが好ましい。ここで、PGME及び/又はPGMEAに対する溶解度は、「樹脂の質量÷(樹脂の質量+溶媒の質量)×100(質量%)」と定義される。例えば、上記一般式(A)で示される化合物10gがPGMEA90gに対して溶解すると評価されるのは、一般式(A)で示される化合物のPGMEAに対する溶解度が「10質量%以上」となる場合であり、溶解しないと評価されるのは、当該溶解度が「10質量%未満」となる場合である。
[式(A)で表される化合物に由来する構成単位を有する樹脂]
 本実施形態の樹脂は、上記式(A)で表される化合物(以下、「本実施形態の化合物」ともいう。)に由来する構成単位を有する樹脂である。上記式(A)で表される化合物は、リソグラフィー用膜形成組成物等として、そのまま使用することができる。また、上記式(A)で表される化合物に由来する構成単位を有する樹脂としても使用することができる。なお、式(A)で表される化合物に由来する構造単位を有する樹脂には、式(1)で表される化合物に由来する構成単位を有する樹脂、及び、式(1’)で表される化合物に由来する構成単位を有する樹脂、式(2)で表される化合物に由来する構成単位を有する樹脂が含まれ、以下、「式(A)で表される化合物」は、「式(1)で表される化合物」、「式(1’)で表される化合物」、「式(2)で表される化合物」と読み替えることできるものとする。
[式(A)で表される化合物に由来する構成単位を有する樹脂の製造方法]
 本実施形態の樹脂は、例えば、上記式(A)で表される化合物と架橋反応性のある化合物とを反応させることによって得られる。
 架橋反応性のある化合物としては、上記式(A)で表される化合物をオリゴマー化又はポリマー化し得るものである限り、公知のものを特に制限なく使用することができる。その具体例としては、例えば、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート、不飽和炭化水素基含有化合物等が挙げられるが、これらに特に限定されない。
 本実施形態における樹脂の具体例としては、例えば、上記式(A)で表される化合物を架橋反応性のある化合物であるアルデヒドとの縮合反応等によってノボラック化した樹脂が挙げられる。
 ここで、上記式(A)で表される化合物をノボラック化する際に用いるアルデヒドとしては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。これらの中でも、ホルムアルデヒドがより好ましい。なお、これらのアルデヒド類は、1種を単独で又は2種以上を組み合わせて用いることができる。また、上記アルデヒド類の使用量は、特に限定されないが、上記式(A)で表される化合物1モルに対して、0.2~5モルが好ましく、より好ましくは0.5~2モルである。
 上記式(A)で表される化合物とアルデヒドとの縮合反応において、酸触媒を用いることもできる。ここで使用する酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸、有機酸、ルイス酸、固体酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸;或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらのなかでも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸が好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。
 また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。
 但し、架橋反応性のある化合物としてインデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、5-ビニルノルボルナ-2-エン、α-ピネン、β-ピネン、リモネンなどの非共役二重結合を有する化合物との共重合反応の場合は、必ずしもアルデヒド類は必要ない。
上記式(A)で表される化合物とアルデヒドとの縮合反応において、反応溶媒を用いることもできる。この重縮合における反応溶媒としては、公知のものの中から適宜選択して用いることができ、特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒等が例示される。なお、反応溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
 また、これらの反応溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、上記式(A)で表される化合物、アルデヒド類、触媒を一括で仕込む方法や、上記式(A)で表される化合物やアルデヒド類を触媒存在下で滴下していく方法がある。
 重縮合反応終了後、得られた樹脂の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃ にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物であるノボラック化した樹脂を得ることができる。
 ここで、本実施形態における樹脂は、上記式(A)で表される化合物の単独重合体であってもよいが、他のフェノール類との共重合体であってもよい。ここで共重合可能なフェノール類としては、例えば、フェノール、クレゾール、ジメチルフェノール、トリメチルフェノール、ブチルフェノール、フェニルフェノール、ジフェニルフェノール、ナフチルフェノール、レゾルシノール、メチルレゾルシノール、カテコール、ブチルカテコール、メトキシフェノール、メトキシフェノール、プロピルフェノール、ピロガロール、チモール等が挙げるが、これらに特に限定されない。
 また、本実施形態における樹脂は上述した他のフェノール類以外に、重合可能なモノマーと共重合させたものであってもよい。かかる共重合モノマーとしては、例えば、ナフトール、メチルナフトール、メトキシナフトール、ジヒドロキシナフタレン、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルナエン、ピネン、リモネン等が挙げられるが、これらに特に限定されない。なお、本実施形態における樹脂は、上記式(A)で表される化合物と上述したフェノール類との2元以上の(例えば、2~4元系)共重合体であっても、上記式(A)で表される化合物と上述した共重合モノマーとの2元以上(例えば、2~4元系)共重合体であっても、上記式(A)で表される化合物と上述したフェノール類と上述した共重合モノマーとの3元以上の(例えば、3~4元系)共重合体であってもよい。
 なお、本実施形態における樹脂の分子量は、特に限定されないが、ポリスチレン換算の重量平均分子量(Mw)が500~30,000であることが好ましく、より好ましくは750~20,000である。また、架橋効率を高めるとともにベーク中の揮発成分を抑制する観点から、本実施形態における樹脂は、分散度(重量平均分子量Mw/数平均分子量Mn)が1.2~7の範囲内のものが好ましい。なお、上記Mnは、後述する実施例に記載の方法により求めることができる。
[組成物]
 本実施形態の組成物は、前記式(A)で表される化合物及び該化合物に由来する構成単位を有する樹脂からなる群より選ばれる1種以上の物質を含有する。また、本実施形態の組成物は、本実施形態の化合物と本実施形態の樹脂の両方を含有してもよい。以下、「上記式(A)で表される化合物及び該化合物に由来する構成単位を有する樹脂からなる群より選ばれる1種以上」を、「本実施形態の化合物及び/又は樹脂」又は「成分(A)」ともいう。
[光学部品形成用組成物]
 本実施形態の光学部品形成用組成物は、上記式(A)で表される化合物及び該化合物に由来する構成単位を有する樹脂からなる群より選ばれる1種以上を含有する。また、本実施形態の光学部品形成用組成物は、本実施形態の化合物と本実施形態の樹脂の両方を含有してもよい。ここで、「光学部品」とは、フィルム状、シート状の部品の他、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路をいう。本実施形態の化合物及び樹脂はこれら光学部品形成用途に有用である。
[リソグラフィー用膜形成組成物]
 本実施形態のリソグラフィー用膜形成組成物は、上記式(A)で表される化合物及び該化合物に由来する構成単位を有する樹脂からなる群より選ばれる1種以上の物質を含有する。また、本実施形態のリソグラフィー用膜形成組成物は本実施形態の化合物と本実施形態の樹脂の両方を含有してもよい。
[レジスト組成物]
 本実施形態のレジスト組成物は、上記式(A)で表される化合物及び該化合物に由来する構成単位を有する樹脂からなる群より選ばれる1種以上の物質を含有する。また、本実施形態のレジスト組成物は、本実施形態の化合物と本実施形態の樹脂の両方を含有してもよい。
 また、本実施形態のレジスト組成物は、溶媒を含有することが好ましい。溶媒としては、特に限定されないが、例えば、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-プロピルエーテルアセテート、エチレングリコールモノ-n-ブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエチレングリコールモノアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノ-n-プロピルエーテルアセテート、プロピレングリコールモノ-n-ブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテルなどのプロピレングリコールモノアルキルエーテル類;乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸n-アミル等の乳酸エステル類;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、酢酸n-アミル、酢酸n-ヘキシル、プロピオン酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシ-2-メチルプロピオン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メトキシ-3-メチルプロピオン酸ブチル、3-メトキシ-3-メチル酪酸ブチル、アセト酢酸メチル、ピルビン酸メチル、ピルビン酸エチル等の他のエステル類;トルエン、キシレン等の芳香族炭化水素類;2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロペンタノン(CPN)、シクロヘキサノン(CHN)等のケトン類;N,N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;γ-ラクトン等のラクトン類等を挙げることができるが、特に限定はされない。これらの溶媒は、単独で又は2種以上を使用することができる。
 本実施形態で使用される溶媒は、安全溶媒であることが好ましく、より好ましくは、PGMEA、PGME、CHN、CPN、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル及び乳酸エチルから選ばれる少なくとも1種であり、さらに好ましくはPGMEA、PGME及びCHNから選ばれる少なくとも一種である。
 本実施形態において固形成分の量と溶媒との量は、特に限定されないが、固形成分の量と溶媒との合計質量100質量%に対して、固形成分1~80質量%及び溶媒20~99質量%であることが好ましく、より好ましくは固形成分1~50質量%及び溶媒50~99質量%、さらに好ましくは固形成分2~40質量%及び溶媒60~98質量%であり、特に好ましくは固形成分2~10質量%及び溶媒90~98質量%である。
[他の成分]
 本実施形態のレジスト組成物は、上述した一般式(A)で表される構造を有する化合物以外に、必要に応じて、架橋剤、酸発生剤、有機溶媒等の他の成分を含んでいてもよい。以下、これらの任意成分について説明する。
[酸発生剤(C)]
 本実施形態のレジスト組成物において、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線及びイオンビームから選ばれるいずれかの放射線の照射により直接的又は間接的に酸を発生する酸発生剤(C)を一種以上含むことが好ましい。酸発生剤(C)は、特に限定されないが、例えば、国際公開第2013/024778号に記載のものを用いることができる。酸発生剤(C)は、単独で又は2種以上を使用することができる。
 酸発生剤(C)の使用量は、固形成分全重量の0.001~49質量%が好ましく、1~40質量%がより好ましく、3~30質量%がさらに好ましく、10~25質量%が特に好ましい。上記範囲内で使用することにより、高感度でかつ低エッジラフネスのパターンプロファイルが得られる。本実施形態では、系内に酸が発生すれば、酸の発生方法は限定されない。g線、i線などの紫外線の代わりにエキシマレーザーを使用すれば、より微細加工が可能であるし、また高エネルギー線として電子線、極端紫外線、X線、イオンビームを使用すればさらに微細加工が可能である。
[酸架橋剤(G)]
 本実施形態において、酸架橋剤(G)を一種以上含むことが好ましい。酸架橋剤(G)とは、酸発生剤(C)から発生した酸の存在下で、成分(A)を分子内又は分子間架橋し得る化合物である。このような酸架橋剤(G)としては、例えば成分(A)を架橋し得る1種以上の基(以下、「架橋性基」という。)を有する化合物を挙げることができる。
 このような架橋性基としては、特に限定されないが、例えば(i)ヒドロキシ(C1-C6アルキル基)、C1-C6アルコキシ(C1-C6アルキル基)、アセトキシ(C1-C6アルキル基)等のヒドロキシアルキル基又はそれらから誘導される基;(ii)ホルミル基、カルボキシ(C1-C6アルキル基)等のカルボニル基又はそれらから誘導される基;(iii)ジメチルアミノメチル基、ジエチルアミノメチル基、ジメチロールアミノメチル基、ジエチロールアミノメチル基、モルホリノメチル基等の含窒素基含有基;(iv)グリシジルエーテル基、グリシジルエステル基、グリシジルアミノ基等のグリシジル基含有基;(v)ベンジルオキシメチル基、ベンゾイルオキシメチル基等の、C1-C6アリルオキシ(C1-C6アルキル基)、C1-C6アラルキルオキシ(C1-C6アルキル基)等の芳香族基から誘導される基;(vi)ビニル基、イソプロペニル基等の重合性多重結合含有基等を挙げることができる。本実施形態における酸架橋剤(G)の架橋性基としては、ヒドロキシアルキル基、及びアルコキシアルキル基等が好ましく、特にアルコキシメチル基が好ましい。
 上記架橋性基を有する酸架橋剤(G)としては、特に限定されないが、例えば、国際公開第2013/024778号に記載のものを用いることができる。酸架橋剤(G)は単独で又は2種以上を使用することができる。
 本実施形態において酸架橋剤(G)の使用量は、固形成分全重量の0.5~49質量%が好ましく、0.5~40質量%がより好ましく、1~30質量%がさらに好ましく、2~20質量%が特に好ましい。上記酸架橋剤(G)の配合割合を0.5質量%以上とすると、レジスト膜のアルカリ現像液に対する溶解性の抑制効果を向上させ、残膜率が低下したり、パターンの膨潤や蛇行が生じたりするのを抑制することができるので好ましく、一方、50質量%以下とすると、レジストとしての耐熱性の低下を抑制できることから好ましい。
[酸拡散制御剤(E)]
 本実施形態においては、放射線照射により酸発生剤から生じた酸のレジスト膜中における拡散を制御して、未露光領域での好ましくない化学反応を阻止する作用等を有する酸拡散制御剤(E)をレジスト組成物に配合してもよい。この様な酸拡散制御剤(E)を使用することにより、レジスト組成物の貯蔵安定性が向上する。また解像度が向上するとともに、放射線照射前の引き置き時間、放射線照射後の引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れたものとなる。このような酸拡散制御剤(E)としては、特に限定されないが、例えば、窒素原子含有塩基性化合物、塩基性スルホニウム化合物、塩基性ヨードニウム化合物等の放射線分解性塩基性化合物が挙げられる。
 上記酸拡散制御剤(E)としては、特に限定されないが、例えば、国際公開第2013/024778号に記載のものを用いることができる。酸拡散制御剤(E)は、単独で又は2種以上を使用することができる。
 酸拡散制御剤(E)の配合量は、固形成分全重量の0.001~49質量%が好ましく、0.01~10質量%がより好ましく、0.01~5質量%がさらに好ましく、0.01~3質量%が特に好ましい。上記範囲内であると、解像度の低下、パターン形状、寸法忠実度等の劣化を防止することができる。さらに、電子線照射から放射線照射後加熱までの引き置き時間が長くなっても、パターン上層部の形状が劣化することがない。また、配合量が10質量%以下であると、感度、未露光部の現像性等の低下を防ぐことができる。またこの様な酸拡散制御剤を使用することにより、レジスト組成物の貯蔵安定性が向上し、また解像度が向上するとともに、放射線照射前の引き置き時間、放射線照射後の引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れたものとなる。
[その他の成分(F)]
 本実施形態のレジスト組成物には、その他の成分(F)として、必要に応じて、溶解促進剤、溶解制御剤、増感剤、界面活性剤及び有機カルボン酸又はリンのオキソ酸若しくはその誘導体等の各種添加剤を1種又は2種以上添加することができる。
[溶解促進剤]
 低分子量溶解促進剤は、式(A)で表される化合物の現像液に対する溶解性が低すぎる場合に、その溶解性を高めて、現像時の上記化合物の溶解速度を適度に増大させる作用を有する成分であり、必要に応じて、使用することができる。上記溶解促進剤としては、例えば、低分子量のフェノール性化合物を挙げることができ、例えば、ビスフェノール類、トリス(ヒドロキシフェニル)メタン等を挙げることができる。これらの溶解促進剤は、単独で又は2種以上を混合して使用することができる。
 溶解促進剤の配合量は、使用する上記化合物の種類に応じて適宜調節されるが、固形成分全重量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%がさらに好ましく、0質量%が特に好ましい。
[溶解制御剤]
 溶解制御剤は、式(A)で表される化合物の現像液に対する溶解性が高すぎる場合に、その溶解性を制御して現像時の溶解速度を適度に減少させる作用を有する成分である。このような溶解制御剤としては、レジスト被膜の焼成、放射線照射、現像等の工程において化学変化しないものが好ましい。
 溶解制御剤としては、特に限定されないが、例えば、フェナントレン、アントラセン、アセナフテン等の芳香族炭化水素類;アセトフェノン、ベンゾフェノン、フェニルナフチルケトン等のケトン類;メチルフェニルスルホン、ジフェニルスルホン、ジナフチルスルホン等のスルホン類等を挙げることができる。これらの溶解制御剤は、単独で又は2種以上を使用することができる。
 溶解制御剤の配合量は、使用する上記化合物の種類に応じて適宜調節されるが、固形成分全重量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%がさらに好ましく、0質量%が特に好ましい。
[増感剤]
 増感剤は、照射された放射線のエネルギーを吸収して、そのエネルギーを酸発生剤(C)に伝達し、それにより酸の生成量を増加する作用を有し、レジストの見掛けの感度を向上させる成分である。このような増感剤としては、例えば、ベンゾフェノン類、ビアセチル類、ピレン類、フェノチアジン類、フルオレン類等を挙げることができるが、特に限定はされない。これらの増感剤は、単独で又は2種以上を使用することができる。
 増感剤の配合量は使用する上記化合物の種類に応じて適宜調節されるが、固形成分全重量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%がさらに好ましく、0質量%が特に好ましい。
[界面活性剤]
 界面活性剤は本実施形態のレジスト組成物の塗布性やストリエーション、レジストの現像性等を改良する作用を有する成分である。このような界面活性剤はアニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤あるいは両性界面活性剤のいずれでもよい。好ましい界面活性剤はノニオン系界面活性剤である。ノニオン系界面活性剤は、レジスト組成物の製造に用いる溶媒との親和性がよく、より効果がある。ノニオン系界面活性剤の例としては、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリエチレングリコールの高級脂肪酸ジエステル類等が挙げられるが、特に限定されない。市販品としては、特に限定されないが、以下商品名で、例えば、エフトップ(ジェムコ社製)、メガファック(大日本インキ化学工業社製)、フロラード(住友スリーエム社製)、アサヒガード、サーフロン(以上、旭硝子社製)、ペポール(東邦化学工業社製)、KP(信越化学工業社製)、ポリフロー(共栄社油脂化学工業社製)等を挙げることができる。
 界面活性剤の配合量は、使用する上記化合物の種類に応じて適宜調節されるが、固形成分全重量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%がさらに好ましく、0質量%が特に好ましい。
[有機カルボン酸又はリンのオキソ酸若しくはその誘導体]
 感度劣化防止又はレジストパターン形状、引き置き安定性等の向上の目的で、さらに任意の成分として、有機カルボン酸又はリンのオキソ酸若しくはその誘導体を含有させることができる。なお、有機カルボン酸又はリンのオキソ酸若しくはその誘導体は、酸拡散制御剤と併用することもできるし、単独で用いてもよい。有機カルボン酸としては、例えば、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸などが好適である。リンのオキソ酸若しくはその誘導体としては、リン酸、リン酸ジ-n-ブチルエステル、リン酸ジフェニルエステルなどのリン酸又はそれらのエステルなどの誘導体、ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸ジ-n-ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステル等のホスホン酸又はそれらのエステルなどの誘導体、ホスフィン酸、フェニルホスフィン酸などのホスフィン酸及びそれらのエステルなどの誘導体が挙げられ、これらの中で特にホスホン酸が好ましい。
 有機カルボン酸又はリンのオキソ酸若しくはその誘導体は、単独で又は2種以上を使用することができる。有機カルボン酸又はリンのオキソ酸若しくはその誘導体の配合量は、使用する上記化合物の種類に応じて適宜調節されるが、固形成分全重量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%がさらに好ましく、0質量%が特に好ましい。
[上述した添加剤(溶解促進剤、溶解制御剤、増感剤、界面活性剤及び有機カルボン酸又はリンのオキソ酸若しくはその誘導体等)以外のその他添加剤]
 さらに、本実施形態のレジスト組成物には、必要に応じて、上記溶解制御剤、増感剤、、界面活性剤、及び有機カルボン酸又はリンのオキソ酸若しくはその誘導体以外の添加剤を1種又は2種以上配合することができる。そのような添加剤としては、例えば、染料、顔料、及び接着助剤等が挙げられる。例えば、染料又は顔料を配合すると、露光部の潜像を可視化させて、露光時のハレーションの影響を緩和できるので好ましい。また、接着助剤を配合すると、基板との接着性を改善することができるので好ましい。さらに、他の添加剤としては、特に限定されないが、例えば、ハレーション防止剤、保存安定剤、消泡剤、形状改良剤等、具体的には4-ヒドロキシ-4’-メチルカルコン等を挙げることができる。
 本実施形態のレジスト組成物において、任意成分(F)の合計量は、固形成分全重量の0~99質量%であり、0~49質量%が好ましく、0~10質量%がより好ましく、0~5質量%がさらに好ましく、0~1質量%がさらに好ましく、0質量%が特に好ましい。
[レジスト組成物における各成分の配合割合]
 本実施形態のレジスト組成物において、本実施形態の化合物及び/又は樹脂の含有量は、特に限定されないが、固形成分の全質量(式(A)で表される化合物、式(A)で表される化合物を構成成分として含む樹脂、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)(「任意成分(F)」とも記す)などの任意に使用される成分を含む固形成分の総和、以下同様。)の50~99.4質量%であることが好ましく、より好ましくは55~90質量%、さらに好ましくは60~80質量%、特に好ましくは60~70質量%である。上記含有量の場合、解像度が一層向上し、ラインエッジラフネス(LER)が一層小さくなる。なお、本実施形態の化合物及び樹脂との両方を含有する場合、上記含有量は、本実施形態の化合物及び樹脂の合計量である。
 本実施形態のレジスト組成物において、本実施形態の化合物及び/又は樹脂(成分(A))、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)、任意成分(F)の含有量比(成分(A)/酸発生剤(C)/酸架橋剤(G)/酸拡散制御剤(E)/任意成分(F))は、レジスト組成物の固形分100質量%に対して、好ましくは50~99.4質量%/0.001~49質量%/0.5~49質量%/0.001~49質量%/0~49質量%であり、より好ましくは55~90質量%/1~40質量%/0.5~40質量%/0.01~10質量%/0~5質量%であり、さらに好ましくは60~80質量%/3~30質量%/1~30質量%/0.01~5質量%/0~1質量%であり、特に好ましくは60~70質量%/10~25質量%/2~20質量%/0.01~3質量%/0質量%、である。成分の配合割合は、その総和が100質量%になるように各範囲から選ばれる。上記配合にすると、感度、解像度、現像性等の性能に優れる。なお、「固形分」とは、溶媒を除いた成分をいい、「固形分100質量%」とは、溶媒を除いた成分を100質量%とすることをいう。
 本実施形態のレジスト組成物は、通常は、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば、孔径0.2μm程度のフィルター等でろ過することにより調製される。
 本実施形態のレジスト組成物は、必要に応じて、本実施形態の樹脂以外の他の樹脂を含むことができる。当該樹脂は、特に限定されず、例えば、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン-無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体あるいはこれらの誘導体などが挙げられる。上記樹脂の含有量は、特に限定されず、使用する成分(A)の種類に応じて適宜調節されるが、成分(A)100質量部に対して、30質量部以下が好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下、特に好ましくは0質量部である。
[レジスト組成物の物性等]
 本実施形態のレジスト組成物は、スピンコートによりアモルファス膜を形成することができる。また、一般的な半導体製造プロセスに適用することができる。用いる現像液の種類によって、ポジ型レジストパターン及びネガ型レジストパターンのいずれかを作り分けることができる。
 ポジ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、5Å/sec以下が好ましく、0.05~5Å/secがより好ましく、0.0005~5Å/secがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)の露光前後の溶解性の変化により、現像液に溶解する露光部と、現像液に溶解しない未露光部との界面のコントラストが大きくなるからと推測される。また、LERの低減、ディフェクトの低減効果がある。
 ネガ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
 上記溶解速度は、23℃にて、アモルファス膜を所定時間現像液に浸漬させ、その浸漬前後の膜厚を、目視、エリプソメーター又は水晶振動微量天秤法(QCM法)等の公知の方法によって測定し決定できる。
 ポジ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
 ネガ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における現像液に対する溶解速度は、5Å/sec以下が好ましく、0.05~5Å/secがより好ましく、0.0005~5Å/secがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)の露光前後の溶解性の変化により、現像液に溶解する未露光部と、現像液に溶解しない露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
[感放射線性組成物]
 本実施形態の感放射線性組成物は、本実施形態の化合物及び/又は本実施形態の樹脂(成分(A))と、ジアゾナフトキノン光活性化合物(B)と、溶媒と、を含有する感放射線性組成物であって、前記溶媒の含有量が、前記感放射線性組成物の総量100質量%に対して、20~99質量%であり、前記溶媒以外の成分の含有量が、前記感放射線性組成物の総量100質量%に対して、1~80質量%である。
 本実施形態の感放射線性組成物に含有させる成分(A)は、後述するジアゾナフトキノン光活性化合物(B)と併用し、g線、h線、i線、KrFエキシマレーザー、ArFエキシマレーザー、極端紫外線、電子線又はX線を照射することにより、現像液に易溶な化合物となるポジ型レジスト用基材として有用である。g線、h線、i線、KrFエキシマレーザー、ArFエキシマレーザー、極端紫外線、電子線又はX線により、成分(A)の性質は大きくは変化しないが、現像液に難溶なジアゾナフトキノン光活性化合物(B)が易溶な化合物に変化することで、現像工程によってレジストパターンを作り得る。
 本実施形態の感放射線性組成物に含有させる成分(A)は、上記式(A)に示すとおり、比較的低分子量の化合物であることから、得られたレジストパターンのラフネスは非常に小さい。
 本実施形態の感放射線性組成物に含有させる成分(A)のガラス転移温度は、好ましくは100℃以上、より好ましくは120℃以上、さらに好ましくは140℃以上、特に好ましくは150℃以上である。成分(A)のガラス転移温度の上限値は、特に限定されないが、例えば、400℃である。成分(A)のガラス転移温度が上記範囲内であることにより、半導体リソグラフィープロセスにおいて、パターン形状を維持しうる耐熱性を有し、高解像度などの性能が向上する。
 本実施形態の感放射線性組成物に含有させる成分(A)のガラス転移温度の示差走査熱量分析により求めた結晶化発熱量は20J/g未満であるのが好ましい。また、(結晶化温度)-(ガラス転移温度)は好ましくは70℃以上、より好ましくは80℃以上、さらに好ましくは100℃以上、特に好ましくは130℃以上である。結晶化発熱量が20J/g未満、又は(結晶化温度)-(ガラス転移温度)が上記範囲内であると、感放射線性組成物をスピンコートすることにより、アモルファス膜を形成しやすく、かつレジストに必要な成膜性が長期に渡り保持でき、解像性を向上することができる。
 本実施形態において、上記結晶化発熱量、結晶化温度及びガラス転移温度は、島津製作所製DSC/TA-50WSを用いた示差走査熱量分析により求めることができる。試料約10mgをアルミニウム製非密封容器に入れ、窒素ガス気流中(50mL/分)昇温速度20℃/分で融点以上まで昇温する。急冷後、再び窒素ガス気流中(30mL/分)昇温速度20℃/分で融点以上まで昇温する。さらに急冷後、再び窒素ガス気流中(30mL/分)昇温速度20℃/分で400℃まで昇温する。ステップ状に変化したベースラインの段差の中点(比熱が半分に変化したところ)の温度をガラス転移温度(Tg)、その後に現れる発熱ピークの温度を結晶化温度とする。発熱ピークとベースラインに囲まれた領域の面積から発熱量を求め、結晶化発熱量とする。
 本実施形態の感放射線性組成物に含有させる成分(A)は、常圧下、100以下、好ましくは120℃以下、より好ましくは130℃以下、さらに好ましくは140℃以下、特に好ましくは150℃以下において、昇華性が低いことが好ましい。昇華性が低いとは、熱重量分析において、所定温度で10分保持した際の重量減少が10%以下、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1%以下、特に好ましくは0.1%以下であることを示す。昇華性が低いことにより、露光時のアウトガスによる露光装置の汚染を防止することができる。また低ラフネスで良好なパターン形状を得ることができる。
 本実施形態の感放射線性組成物に含有させる成分(A)は、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン(CHN)、シクロペンタノン(CPN)、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル及び乳酸エチルから選ばれ、かつ、成分(A)に対して最も高い溶解能を示す溶媒に、23℃で、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上溶解し、よりさらに好ましくは、PGMEA、PGME、CHNから選ばれ、かつ、成分(A)に対して最も高い溶解能を示す溶媒に、23℃で、20質量%以上溶解し、特に好ましくはPGMEAに対して、23℃で、20質量%以上溶解する。上記条件を満たしていることにより、実生産における半導体製造工程での使用が可能となる。
[ジアゾナフトキノン光活性化合物(B)]
 本実施形態の感放射線性組成物に含有させるジアゾナフトキノン光活性化合物(B)は、ポリマー性及び非ポリマー性ジアゾナフトキノン光活性化合物を含む、ジアゾナフトキノン物質であり、一般にポジ型レジスト組成物において、感光性成分(感光剤)として用いられているものであれば特に制限なく、1種又は2種以上任意に選択して用いることができる。
 このような感光剤としては、ナフトキノンジアジドスルホン酸クロライドやベンゾキノンジアジドスルホン酸クロライド等と、これら酸クロライドと縮合反応可能な官能基を有する低分子化合物又は高分子化合物とを反応させることによって得られた化合物が好ましいものである。ここで、酸クロライドと縮合可能な官能基としては、特に限定されないが、例えば、水酸基、アミノ基等が挙げられるが、特に水酸基が好適である。水酸基を含む酸クロライドと縮合可能な化合物としては、特に限定されないが、例えばハイドロキノン、レゾルシン、2,4-ジヒドロキシベンゾフェノン、2,3,4-トリヒドロキシベンゾフェノン、2,4,6-トリヒドロキシベンゾフェノン、2,4,4’-トリヒドロキシベンゾフェノン、2,3,4,4’-テトラヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’,3,4,6’-ペンタヒドロキシベンゾフェノン等のヒドロキシベンゾフェノン類、ビス(2,4-ジヒドロキシフェニル)メタン、ビス(2,3,4-トリヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)プロパン等のヒドロキシフェニルアルカン類、4,4’,3”,4”-テトラヒドロキシ-3,5,3’,5’-テトラメチルトリフェニルメタン、4,4’,2”,3”,4”-ペンタヒドロキシ-3,5,3’,5’-テトラメチルトリフェニルメタン等のヒドロキシトリフェニルメタン類などを挙げることができる。
 また、ナフトキノンジアジドスルホン酸クロライドやベンゾキノンジアジドスルホン酸クロライドなどの酸クロライドとしては、例えば、1,2-ナフトキノンジアジド-5-スルフォニルクロライド、1,2-ナフトキノンジアジド-4-スルフォニルクロライドなどが好ましいものとして挙げられる。
 本実施形態の感放射線性組成物は、例えば、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば、孔径0.2μm程度のフィルター等でろ過することにより調製されることが好ましい。
[溶媒]
 本実施形態の感放射線性組成物に用いることにできる溶媒としては、特に限定されないが、例えば、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル、及び乳酸エチルが挙げられる。このなかでもプロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、シクロヘキサノンが好ましい、溶媒は、1種単独で用いても2種以上を併用してもよい。
 溶媒の含有量は、感放射線性組成物の総量100質量%に対して、20~99質量%であり、好ましくは50~99質量%であり、より好ましくは60~98質量%であり、特に好ましくは90~98質量%である。
 また、溶媒以外の成分(固形成分)の含有量は、感放射線性組成物の総量100質量%に対して、1~80質量%であり、好ましくは1~50質量%であり、より好ましくは2~40質量%であり、特に好ましくは2~10質量%である。
[感放射線性組成物の特性]
 本実施形態の感放射線性組成物は、スピンコートによりアモルファス膜を形成することができる。また、一般的な半導体製造プロセスに適用することができる。用いる現像液の種類によって、ポジ型レジストパターン及びネガ型レジストパターンのいずれかを作り分けることができる。
 ポジ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、5Å/sec以下が好ましく、0.05~5Å/secがより好ましく、0.0005~5Å/secがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)の露光前後の溶解性の変化により、現像液に溶解する露光部と、現像液に溶解しない未露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
 ネガ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
 上記溶解速度は、23℃にて、アモルファス膜を所定時間現像液に浸漬させ、その浸漬前後の膜厚を、目視、エリプソメーター又はQCM法等の公知の方法によって測定し決定できる。
 ポジ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により照射した後、又は、20~500℃で加熱した後の露光した部分の、23℃における現像液に対する溶解速度は、10Å/sec以上が好ましく、10~10000Å/secがより好ましく、100~1000Å/secがさらに好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10000Å/sec以下の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
 ネガ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により照射した後、又は、20~500℃で加熱した後の露光した部分の、23℃における現像液に対する溶解速度は、5Å/sec以下が好ましく、0.05~5Å/secがより好ましく、0.0005~5Å/secがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)の露光前後の溶解性の変化により、現像液に溶解する未露光部と、現像液に溶解しない露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
[感放射線性組成物における各成分の配合割合]
 本実施形態の感放射線性組成物において、成分(A)の含有量は、固形成分全重量(成分(A)、ジアゾナフトキノン光活性化合物(B)及びその他の成分(D)などの任意に使用される固形成分の総和、以下同様。)に対して、好ましくは1~99質量%であり、より好ましくは5~95質量%、さらに好ましくは10~90質量%、特に好ましくは25~75質量%である。本実施形態の感放射線性組成物は、成分(A)の含有量が上記範囲内であると、高感度でラフネスの小さなパターンを得ることができる。
 本実施形態の感放射線性組成物において、ジアゾナフトキノン光活性化合物(B)の含有量は、固形成分全重量(成分(A)、ジアゾナフトキノン光活性化合物(B)及びその他の成分(D)などの任意に使用される固形成分の総和、以下同様。)に対して、好ましくは1~99質量%であり、より好ましくは5~95質量%、さらに好ましくは10~90質量%、特に好ましくは25~75質量%である。本実施形態の感放射線性組成物は、ジアゾナフトキノン光活性化合物(B)の含有量が上記範囲内であると、高感度でラフネスの小さなパターンを得ることができる。
[その他の成分(D)]
 本実施形態の感放射線性組成物には、必要に応じて、成分(A)及びジアゾナフトキノン光活性化合物(B)以外の成分として、上述の酸発生剤、酸架橋剤、酸拡散制御剤、溶解促進剤、溶解制御剤、増感剤、界面活性剤、有機カルボン酸又はリンのオキソ酸若しくはその誘導体等の各種添加剤を1種又は2種以上添加することができる。なお、本明細書において、その他の成分(D)を任意成分(D)ということがある。
 成分(A)と、ジアゾナフトキノン光活性化合物(B)と、感放射線性組成物に任意に含まれ得るその他の任意成分(D)と、の含有量比((A)/(B)/(D))は、感放射線性組成物の固形分100質量%に対して、好ましくは1~99質量%/99~1質量%/0~98質量%であり、より好ましくは5~95質量%/95~5質量%/0~49質量%であり、さらに好ましくは10~90質量%/90~10質量%/0~10質量%であり、特に好ましくは20~80質量%/80~20質量%/0~5質量%であり、最も好ましくは25~75質量%/75~25質量%/0質量%である。
 各成分の配合割合は、その総和が100質量%になるように各範囲から選ばれる。本実施形態の感放射線性組成物は、各成分の配合割合を上記範囲にすると、ラフネスに加え、感度、解像度等の性能に優れる。
 本実施形態の感放射線性組成物は本実施形態以外の樹脂を含んでもよい。このような樹脂としては、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン-無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体あるいはこれらの誘導体などが挙げられる。これらの樹脂の配合量は、使用する成分(A)の種類に応じて適宜調節されるが、成分(A)100質量部に対して、30質量部以下が好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下、特に好ましくは0質量部である。
[アモルファス膜の製造方法]
 本実施形態のアモルファス膜の製造方法は、上記感放射線性組成物を用いて、基板上にアモルファス膜を形成する工程を含む。
[感放射線性組成物を用いたレジストパターン形成方法]
 本実施形態の感放射線性組成物を用いたレジストパターン形成方法は、上記感放射線性組成物を用いて、基板上にレジスト膜を形成する工程と、形成された前記レジスト膜の少なくとも一部を露光する工程と、露光した前記レジスト膜を現像してレジストパターンを形成する工程と、を含む。なお、詳細には以下の、レジスト組成物を用いたレジストパターン形成方法と同様の操作とすることができる。
[レジスト組成物を用いたレジストパターンの形成方法]
 本実施形態のレジスト組成物を用いたレジストパターンの形成方法は、上述した本実施形態のレジスト組成物を用いて基板上にレジスト膜を形成する工程と、形成されたレジスト膜の少なくとも一部を露光する工程と、露光した前記レジスト膜を現像してレジストパターンを形成する工程とを備える。本実施形態におけるレジストパターンは多層プロセスにおける上層レジストとして形成することもできる。
 レジストパターンを形成する方法としては、特に限定されないが、例えば、以下の方法が挙げられる。まず、従来公知の基板上に上記本実施形態のレジスト組成物を、回転塗布、流延塗布、ロール塗布等の塗布手段によって塗布することによりレジスト膜を形成する。従来公知の基板とは、特に限定されず、例えば、電子部品用の基板や、これに所定の配線パターンが形成されたもの等を例表することができる。より具体的には、特に限定されないが、例えば、シリコンウェハー、銅、クロム、鉄、アルミニウム等の金属製の基板や、ガラス基板等が挙げられる。配線パターンの材料としては、特に限定されないが、例えば、銅、アルミニウム、ニッケル、金等が挙げられる。また必要に応じて、前述基板上に無機系及び/又は有機系の膜が設けられたものであってもよい。無機系の膜としては、特に限定されないが、例えば、無機反射防止膜(無機BARC)が挙げられる。有機系の膜としては、特に限定されないが、例えば、有機反射防止膜(有機BARC)が挙げられる。ヘキサメチレンジシラザン等による表面処理を行ってもよい。
 次に、必要に応じて、塗布した基板を加熱する。加熱条件は、レジスト組成物の配合組成等により変わるが、20~250℃が好ましく、より好ましくは20~150℃である。加熱することによって、レジストの基板に対する密着性が向上する場合があり好ましい。次いで、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線、及びイオンビームからなる群から選ばれるいずれかの放射線により、レジスト膜を所望のパターンに露光する。露光条件等は、レジスト組成物の配合組成等に応じて適宜選定される。本実施形態においては、露光における高精度の微細パターンを安定して形成するために、放射線照射後に加熱するのが好ましい。
 次いで、露光されたレジスト膜を現像液で現像することにより、所定のレジストパターンを形成する。上記現像液としては、使用する成分(A)に対して溶解度パラメーター(SP値)の近い溶剤を選択することが好ましく、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤等の極性溶剤、炭化水素系溶剤又はアルカリ水溶液を用いることができる。
 ケトン系溶剤としては、特に限定されないが、例えば、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、アセトン、4-ヘプタノン、1-ヘキサノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、イソホロン、プロピレンカーボネート等を挙げることができる。
 エステル系溶剤としては、特に限定されないが、例えば、酢酸メチル、酢酸ブチル、酢酸エチル、酢酸イソプロピル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル等を挙げることができる。
 アルコール系溶剤としては、特に限定されないが、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール(2-プロパノール)、n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソブチルアルコール、n-ヘキシルアルコール、4-メチル-2-ペンタノール、n-ヘプチルアルコール、n-オクチルアルコール、n-デカノール等のアルコールや、エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤や、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール等のグリコールエーテル系溶剤等を挙げることができる。
 エーテル系溶剤としては、特に限定されないが、例えば、上記グリコールエーテル系溶剤の他、ジオキサン、テトラヒドロフラン等が挙げられる。
 アミド系溶剤としては、特に限定されないが、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド、1,3-ジメチル-2-イミダゾリジノン等が使用できる。
 炭化水素系溶剤としては、特に限定されないが、例えば、トルエン、キシレン等の芳香族炭化水素系溶剤、ペンタン、ヘキサン、オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
 上記の溶剤は、複数混合してもよいし、性能を有する範囲内で、上記以外の溶剤や水と混合し使用してもよい。但し、本発明の効果を十二分に奏するためには、現像液全体としての含水率が70質量%未満であり、50質量%未満であることが好ましく、30質量%未満であることがより好ましく、10質量%未満であることがさらに好ましく、実質的に水分を含有しないことが特に好ましい。すなわち、現像液に対する有機溶剤の含有量は、現像液の全量に対して、30質量%以上100質量%以下であり、50質量%以上100質量%以下であることが好ましく、70質量%以上100質量%以下であることがより好ましく、90質量%以上100質量%以下であることがさらに好ましく、95質量%以上100質量%以下であることが特に好ましい。
 アルカリ水溶液としては、特に限定されないが、例えば、モノ-、ジ-あるいはトリアルキルアミン類、モノ-、ジ-あるいはトリアルカノールアミン類、複素環式アミン類、テトラメチルアンモニウムヒドロキシド(TMAH)、コリン等のアルカリ性化合物が挙げられる。
 特に、現像液は、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤から選択される少なくとも1種類の溶剤を含有する現像液が、レジストパターンの解像性やラフネス等のレジスト性能を改善するため好ましい。
 現像液の蒸気圧は、20℃において、5kPa以下が好ましく、3kPa以下がさらに好ましく、2kPa以下が特に好ましい。現像液の蒸気圧を5kPa以下にすることにより、現像液の基板上あるいは現像カップ内での蒸発が抑制され、ウェハ面内の温度均一性が向上し、結果としてウェハ面内の寸法均一性が良化する。
 5kPa以下の蒸気圧を有する具体的な例としては、特に限定されないが、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、4-ヘプタノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルイソブチルケトン等のケトン系溶剤;酢酸ブチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル等のエステル系溶剤;n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソブチルアルコール、n-ヘキシルアルコール、4-メチル-2-ペンタノール、n-ヘプチルアルコール、n-オクチルアルコール、n-デカノール等のアルコール系溶剤;エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤;エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール等のグリコールエーテル系溶剤;テトラヒドロフラン等のエーテル系溶剤;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドのアミド系溶剤;トルエン、キシレン等の芳香族炭化水素系溶剤、オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
 特に好ましい範囲である2kPa以下の蒸気圧を有する具体的な例としては、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、4-ヘプタノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン等のケトン系溶剤;酢酸ブチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸エチル、乳酸ブチル、乳酸プロピル等のエステル系溶剤;n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソブチルアルコール、n-ヘキシルアルコール、4-メチル-2-ペンタノール、n-ヘプチルアルコール、n-オクチルアルコール、n-デカノール等のアルコール系溶剤;エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤;エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール等のグリコールエーテル系溶剤;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドのアミド系溶剤;キシレン等の芳香族炭化水素系溶剤;オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
 現像液には、必要に応じて界面活性剤を適当量添加することができる。
界面活性剤としては特に限定されないが、例えば、イオン性や非イオン性のフッ素系及び/又はシリコン系界面活性剤等を用いることができる。これらのフッ素及び/又はシリコン系界面活性剤として、例えば、特開昭62-36663号公報、特開昭61-226746号公報、特開昭61-226745号公報、特開昭62-170950号公報、特開昭63-34540号公報、特開平7-230165号公報、特開平8-62834号公報、特開平9-54432号公報、特開平9-5988号公報、米国特許第5405720号明細書、同5360692号明細書、同5529881号明細書、同5296330号明細書、同5436098号明細書、同5576143号明細書、同5294511号明細書、同5824451号明細書記載の界面活性剤を挙げることができ、好ましくは、非イオン性の界面活性剤である。非イオン性の界面活性剤としては特に限定されないが、フッ素系界面活性剤又はシリコン系界面活性剤を用いることがさらに好ましい。
 界面活性剤の使用量は現像液の全量に対して、通常0.001~5質量%、好ましくは0.005~2質量%、さらに好ましくは0.01~0.5質量%である。
 現像方法としては、特に限定されないが、例えば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出しつづける方法(ダイナミックディスペンス法)などを適用することができる。パターンの現像を行なう時間には特に制限はないが、好ましくは10秒~90秒である。
 また、現像を行う工程の後に、他の溶媒に置換しながら、現像を停止する工程を実施してもよい。
 現像の後には、有機溶剤を含むリンス液を用いて洗浄する工程を含むことが好ましい。
 現像後のリンス工程に用いるリンス液としては、架橋により硬化したレジストパターンを溶解しなければ特に制限はなく、一般的な有機溶剤を含む溶液又は水を使用することができる。上記リンス液としては、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤から選択される少なくとも1種類の有機溶剤を含有するリンス液を用いることが好ましい。より好ましくは、現像の後に、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有するリンス液を用いて洗浄する工程を行う。さらにより好ましくは、現像の後に、アルコール系溶剤又はエステル系溶剤を含有するリンス液を用いて洗浄する工程を行う。さらにより好ましくは、現像の後に、1価アルコールを含有するリンス液を用いて洗浄する工程を行う。特に好ましくは、現像の後に、炭素数5以上の1価アルコールを含有するリンス液を用いて洗浄する工程を行う。パターンのリンスを行なう時間には特に制限はないが、好ましくは10秒~90秒である。
 ここで、現像後のリンス工程で用いられる1価アルコールとしては、直鎖状、分岐状、環状の1価アルコールが挙げられ、具体的には、特に限定されないが、例えば、1-ブタノール、2-ブタノール、3-メチル-1-ブタノール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、1-ヘキサノール、4-メチル-2-ペンタノール、1-ヘプタノール、1-オクタノール、2-ヘキサノール、シクロペンタノール、2-ヘプタノール、2-オクタノール、3-ヘキサノール、3-ヘプタノール、3-オクタノール、4-オクタノールなどを用いることができ、特に好ましい炭素数5以上の1価アルコールとしては、1-ヘキサノール、2-ヘキサノール、4-メチル-2-ペンタノール、1-ペンタノール、3-メチル-1-ブタノールなどを用いることができる。
 上記各成分は、複数混合してもよいし、上記以外の有機溶剤と混合し使用してもよい。
 リンス液中の含水率は、10質量%以下が好ましく、より好ましくは5質量%以下、特に好ましくは3質量%以下である。含水率を10質量%以下にすることで、より良好な現像特性を得ることができる。
 現像後に用いるリンス液の蒸気圧は、20℃において0.05kPa以上、5kPa以下が好ましく、0.1kPa以上、5kPa以下がさらに好ましく、0.12kPa以上、3kPa以下が最も好ましい。リンス液の蒸気圧を0.05kPa以上、5kPa以下にすることにより、ウェハ面内の温度均一性がより向上し、さらにはリンス液の浸透に起因した膨潤がより抑制され、ウェハ面内の寸法均一性がより良化する。
 リンス液には、界面活性剤を適当量添加して使用することもできる。
 リンス工程においては、現像を行ったウェハを上記の有機溶剤を含むリンス液を用いて洗浄処理する。洗浄処理の方法は特に限定されないが、たとえば、一定速度で回転している基板上にリンス液を塗出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面にリンス液を噴霧する方法(スプレー法)、などを適用することができ、この中でも回転塗布方法で洗浄処理を行い、洗浄後に基板を2000rpm~4000rpmの回転数で回転させ、リンス液を基板上から除去することが好ましい。
 レジストパターンを形成した後、エッチングすることによりパターン配線基板が得られる。エッチングの方法はプラズマガスを使用するドライエッチング及びアルカリ溶液、塩化第二銅溶液、塩化第二鉄溶液等によるウェットエッチングなど公知の方法で行うことが出来る。
 レジストパターンを形成した後、めっきを行うことも出来る。上記めっき法としては、例えば、銅めっき、はんだめっき、ニッケルめっき、金めっきなどがある。
 エッチング後の残存レジストパターンは有機溶剤で剥離することが出来る。上記有機溶剤として、特に限定されないが、例えば、PGMEA(プロピレングリコールモノメチルエーテルアセテート)、PGME(プロピレングリコールモノメチルエーテル)、EL(乳酸エチル)等が挙げられる。上記剥離方法としては、特に限定されないが、例えば、浸漬方法、スプレイ方式等が挙げられる。また、レジストパターンが形成された配線基板は、多層配線基板でもよく、小径スルーホールを有していてもよい。
 本実施形態において得られる配線基板は、レジストパターン形成後、金属を真空中で蒸着し、その後レジストパターンを溶液で溶かす方法、すなわちリフトオフ法により形成することもできる。
[リソグラフィー用下層膜形成材料]
 本実施形態のリソグラフィー用下層膜形成材料は、本実施形態の化合物及び/又は本実施形態の樹脂を含有する。本実施形態の化合物及び/又は本実施形態の樹脂は塗布性及び品質安定性の点から、リソグラフィー用下層膜形成材料中、1~100質量%であることが好ましく、10~100質量%であることがより好ましく、50~100質量%であることがさらに好ましく、100質量%であることが特に好ましい。
 本実施形態のリソグラフィー用下層膜形成材料は、湿式プロセスへの適用が可能であり、耐熱性及びエッチング耐性に優れる。さらに、本実施形態のリソグラフィー用下層膜形成材料は上記物質を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れた下層膜を形成することができる。さらに、本実施形態のリソグラフィー用下層膜形成材料はレジスト層との密着性にも優れるので、優れたレジストパターンを得ることができる。なお、本実施形態のリソグラフィー用下層膜形成材料は、本発明の効果が損なわれない範囲において、既に知られているリソグラフィー用下層膜形成材料等を含んでいてもよい。
[リソグラフィー用下層膜形成用組成物]
 本実施形態のリソグラフィー用下層膜形成用組成物は、上記リソグラフィー用下層膜形成材料と溶媒とを含有する。
[溶媒]
 本実施形態のリソグラフィー用下層膜形成用組成物において用いられる溶媒としては、上述した成分(A)が少なくとも溶解するものであれば、公知のものを適宜用いることができる。
溶媒の具体例としては、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のセロソルブ系溶媒;乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒;メタノール、エタノール、イソプロパノール、1-エトキシ-2-プロパノール等のアルコール系溶媒;トルエン、キシレン、アニソール等の芳香族系炭化水素等が挙げられる。これらの溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
 上記溶媒の中で、安全性の点からシクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、ヒドロキシイソ酪酸メチル、アニソールが特に好ましい。
 溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、上記下層膜形成材料100質量部に対して、100~10,000質量部であることが好ましく、200~5,000質量部であることがより好ましく、200~1,000質量部であることがさらに好ましい。
[架橋剤]
 本実施形態のリソグラフィー用下層膜形成用組成物は、インターミキシングを抑制する等の観点から、必要に応じて架橋剤を含有していてもよい。本実施形態で使用可能な架橋剤としては、特に限定されないが、例えば、国際公開第2013/024779号に記載のものを用いることができる。なお、本実施形態において、架橋剤は、単独で又は2種以上を使用することができる。
 本実施形態で使用可能な架橋剤の具体例としては、例えば、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、アクリレート化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物、アジド化合物等が挙げられるが、これらに特に限定されない。これらの架橋剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。これらの中でもベンゾオキサジン化合物、エポキシ化合物又はシアネート化合物が好ましく、エッチング耐性向上の観点から、ベンゾオキサジン化合物がより好ましい。
 前記フェノール化合物としては、公知のものが使用できる。例えば、フェノール類としては、特に限定されないが、フェノールの他、クレゾール類、キシレノール類等のアルキルフェノール類、ヒドロキノン等の多価フェノール類、ナフトール類、ナフタレンジオール類等の多環フェノール類、ビスフェノールA、ビスフェノールF等のビスフェノール類、あるいはフェノールノボラック、フェノールアラルキル樹脂等の多官能性フェノール化合物等が挙げられる。中でも、耐熱性及び溶解性の点から、アラルキル型フェノール樹脂が好ましい。
 前記エポキシ化合物としては、公知のものが使用でき、1分子中にエポキシ基を2個以上有するもの中から選択される。特に限定されないが、例えば、ビスフェノールA、ビスフェノールF、3,3’,5,5’-テトラメチル-ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシビフェノール、レゾルシン、ナフタレンジオール類等の2価のフェノール類のエポキシ化物、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、トリス(2,3-エポキシプロピル)イソシアヌレート、トリメチロールメタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリエチロールエタントリグリシジルエーテル、フェノールノボラック、o-クレゾールノボラック等の3価以上のフェノール類のエポキシ化物、ジシクロペンタジエンとフェノール類の共縮合樹脂のエポキシ化物、フェノール類とパラキシリレンジクロライド等から合成されるフェノールアラルキル樹脂類のエポキシ化物、フェノール類とビスクロロメチルビフェニル等から合成されるビフェニルアラルキル型フェノール樹脂のエポキシ化物、ナフトール類とパラキシリレンジクロライド等から合成されるナフトールアラルキル樹脂類のエポキシ化物等が挙げられる。これらのエポキシ樹脂は、単独でもよいし、2種以上を併用してもよい。好ましくは、耐熱性と溶解性という点から、フェノールアラルキル樹脂類、ビフェニルアラルキル樹脂類から得られるエポキシ樹脂等の常温で固体状エポキシ樹脂である。
 前記シアネート化合物としては、1分子中に2個以上のシアネート基を有する化合物であれば特に制限なく、公知のものを使用することができる。本実施形態において、好ましいシアネート化合物としては、1分子中に2個以上の水酸基を有する化合物の水酸基をシアネート基に置換した構造のものが挙げられる。また、シアネート化合物は、芳香族基を有するものが好ましく、シアネート基が芳香族基に直結した構造のものを好適に使用することができる。このようなシアネート化合物としては、特に限定されないが、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールM、ビスフェノールP、ビスフェノールE、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエンノボラック樹脂、テトラメチルビスフェノールF、ビスフェノールAノボラック樹脂、臭素化ビスフェノールA、臭素化フェノールノボラック樹脂、3官能フェノール、4官能フェノール、ナフタレン型フェノール、ビフェニル型フェノール、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂、ジシクロペンタジエンアラルキル樹脂、脂環式フェノール、リン含有フェノール等の水酸基をシアネート基に置換した構造のものが挙げられる。これらのシアネート化合物は、単独で又は2種以上を適宜組み合わせて使用してもよい。また、前記したシアネート化合物は、モノマー、オリゴマー及び樹脂のいずれの形態であってもよい。
 前記アミノ化合物としては、特に限定されないが、例えば、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン、O-トリジン、m-トリジン、4,4’-ジアミノベンズアニリド、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4-アミノフェニル-4-アミノベンゾエート、2-(4-アミノフェニル)-6-アミノベンゾオキサゾール等が例示される。さらに、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル等の芳香族アミン類、ジアミノシクロヘキサン、ジアミノジシクロヘキシルメタン、ジメチルージアミノジシクロヘキシルメタン、テトラメチルージアミノジシクロヘキシルメタン、ジアミノジシクロヘキシルプロパン、ジアミノビシクロ[2.2.1]ヘプタン、ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、3(4),8(9)-ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン、1,3-ビスアミノメチルシクロヘキサン、イソホロンジアミン等の脂環式アミン類、エチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族アミン類等が挙げられる。
 前記ベンゾオキサジン化合物としては、特に限定されないが、例えば、二官能性ジアミン類と単官能フェノール類から得られるP-d型ベンゾオキサジン、単官能性ジアミン類と二官能性フェノール類から得られるF-a型ベンゾオキサジン等が挙げられる。
 前記メラミン化合物の具体例としては、特に限定されないが、例えば、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1~6個のメチロール基がメトキシメチル化した化合物又はその混合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1~6個がアシロキシメチル化した化合物又はその混合物などが挙げられる。
 前記グアナミン化合物の具体例としては、特に限定されないが、例えば、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がアシロキシメチル化した化合物又はその混合物などが挙げられる。
 前記グリコールウリル化合物の具体例としては、特に限定されないが、例えば、テトラメチロールグリコールウリル、テトラメトキシグリコールウリル、テトラメトキシメチルグリコールウリル、テトラメチロールグリコールウリルのメチロール基の1~4個がメトキシメチル化した化合物又はその混合物、テトラメチロールグリコールウリルのメチロール基の1~4個がアシロキシメチル化した化合物又はその混合物などが挙げられる。
 前記ウレア化合物の具体例としては、特に限定されないが、例えば、テトラメチロールウレア、テトラメトキシメチルウレア、テトラメチロールウレアの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルウレアなどが挙げられる。
 また、本実施形態において、架橋性向上の観点から、少なくとも1つのアリル基を有する架橋剤を用いてもよい。少なくとも1つのアリル基を有する架橋剤の具体例としては、例えば、2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、ビス(3-アリル-4-ヒドロキシフェニル)スルホン、ビス(3-アリル-4-ヒドロキシフェニル)スルフィド、ビス(3-アリル-4-ヒドロキシフェニル)エ-テル等のアリルフェノール類、2,2-ビス(3-アリル-4-シアナトフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-シアナトフェニル)プロパン、ビス(3-アリル-4-シアナトシフェニル)スルホン、ビス(3-アリル-4-シアナトフェニル)スルフィド、ビス(3-アリル-4-シアナトフェニル)エ-テル等のアリルシアネート類、ジアリルフタレート、ジアリルイソフタレート、ジアリルテレフタレート、トリアリルイソシアヌレート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールアリルエーテル等が挙げられるが、これら例示されたものに限定されるものではない。これらは単独でも、2種類以上の混合物であってもよい。これらの中でも、2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、ビス(3-アリル-4-ヒドロキシフェニル)スルホン、ビス(3-アリル-4-ヒドロキシフェニル)スルフィド、ビス(3-アリル-4-ヒドロキシフェニル)エ-テル等のアリルフェノール類が好ましい。
 本実施形態のリソグラフィー用下層膜形成用組成物において、架橋剤の含有量は、特に限定されないが、下層膜形成材料100質量部に対して、5~50質量部であることが好ましく、より好ましくは10~40質量部である。上記の好ましい範囲にすることで、レジスト層とのミキシング現象の発生が抑制される傾向にあり、また、反射防止効果が高められ、架橋後の膜形成性が高められる傾向にある。
[架橋促進剤]
 本実施形態のリソグラフィー用下層膜形成用組成物には、必要に応じて架橋、硬化反応を促進させるための架橋促進剤を用いることができる。
 前記架橋促進剤としては、架橋、硬化反応を促進させるものであれば、特に限定されないが、例えば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等が挙げられる。これらの架橋促進剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。これらの中でもイミダゾール類又は有機ホスフィン類が好ましく、架橋温度の低温化の観点から、イミダゾール類がより好ましい。
 前記架橋促進剤としては、以下に限定されないが、例えば、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの三級アミン、2-メチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-へプタデシルイミダゾール、2,4,5-トリフェニルイミダゾールなどのイミダゾール類、トリブチルホスフィン、メチルジフェニルホスフイン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィンなどの有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレートなどのテトラ置換ホスホニウム・テトラ置換ボレート、2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレートなどのテトラフェニルボロン塩などが挙げられる。
 架橋促進剤の含有量としては、通常、組成物の合計質量100質量部とした場合に100質量部とした場合に、好ましくは0.1~10質量部であり、より好ましくは、制御のし易さ及び経済性の観点から0.1~5質量部であり、さらに好ましくは0.1~3質量部である。
[ラジカル重合開始剤]
 本実施形態のリソグラフィー用下層膜形成用組成物には、必要に応じてラジカル重合開始剤を配合することができる。ラジカル重合開始剤としては、光によりラジカル重合を開始させる光重合開始剤であってもよいし、熱によりラジカル重合を開始させる熱重合開始剤であってもよい。ラジカル重合開始剤としては、例えば、ケトン系光重合開始剤、有機過酸化物系重合開始剤及びアゾ系重合開始剤からなる群より選ばれる少なくとも1種とすることができる。
 このようなラジカル重合開始剤としては、特に制限されず、従来用いられているものを適宜採用することができる。例えば、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジメチルケタール、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチルプロパン-1-オン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のケトン系光重合開始剤、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセテートパーオキサイド、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、1,1-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、イソブチリルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシン酸パーオキサイド、m-トルオイルベンゾイルパーオキサイド、ベンゾイルパーオキサイド、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジ-2-エトキシヘキシルパーオキシジカーボネート、ジ-3-メトキシブチルパーオキシジカーボネート、ジ-s-ブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、α,α’-ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノオエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサノエート、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシマレート、t-ブチルパーオキシ-3,5,5-トリメトルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシアセテート、t-ブチルパーオキシ-m-トルイルベンゾエート、t-ブチルパーオキシベンゾエート、ビス(t-ブチルパーオキシ)イソフタレート、2,5-ジメチル-2,5-ビス(m-トルイルパーオキシ)ヘキサン、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアリルモノカーボネート、t-ブチルトリメチルシリルパーオキサイド、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,3-ジメチル-2,3-ジフェニルブタン等の有機過酸化物系重合開始剤が挙げられる。
 また、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス(2-メチル-N-フェニルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[N-(4-クロロフェニル)-2-メチルプロピオンアミジン]ジヒドリドクロリド、2,2’-アゾビス[N-(4-ヒドロフェニル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(フェニルメチル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(2-プロペニル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[N-(2-ヒドロキシエチル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2´-アゾビス[2-(4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(5-ヒドロキシ-3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド]、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)エチル]プロピオンアミド]、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(2-メチルプロピオンアミド)、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス(2-メチルプロパン)、ジメチル-2,2-アゾビス(2-メチルプロピオネート)、4,4’-アゾビス(4-シアノペンタン酸)、2,2’-アゾビス[2-(ヒドロキシメチル)プロピオニトリル]等のアゾ系重合開始剤も挙げられる。本実施形態に用いるラジカル重合開始剤としては、これらのうちの1種を単独で用いても2種以上を組み合わせて用いてもよく、他の公知の重合開始剤をさらに組み合わせて用いてもよい。
 前記ラジカル重合開始剤の含有量としては、化学量論的に必要な量であればよいが、上述の化合物乃至樹脂(成分(A))を含む組成物の合計質量100質量部とした場合に0.05~25質量部であることが好ましく、0.1~10質量部であることがより好ましい。ラジカル重合開始剤の含有量が0.05質量部以上である場合には、硬化が不十分となることを防ぐことができる傾向にあり、他方、ラジカル重合開始剤の含有量が25質量部以下である場合には、リソグラフィー用下層膜形成用組成物の室温での長期保存安定性が損なわれることを防ぐことができる傾向にある。
[酸発生剤]
 本実施形態のリソグラフィー用下層膜形成用組成物は、熱による架橋反応をさらに促進させるなどの観点から、必要に応じて酸発生剤を含有していてもよい。酸発生剤としては、熱分解によって酸を発生するもの、光照射によって酸を発生するものなどが知られているが、いずれのものも使用することができる。
 酸発生剤としては、特に限定されないが、例えば、国際公開第2013/024779号に記載のものを用いることができる。なお、本実施形態において、酸発生剤は、単独で又は2種以上を組み合わせて使用することができる。
 本実施形態のリソグラフィー用下層膜形成用組成物において、酸発生剤の含有量は、特に限定されないが、下層膜形成材料100質量部に対して、0.1~50質量部であることが好ましく、より好ましくは0.5~40質量部である。上記の好ましい範囲にすることで、酸発生量が多くなって架橋反応が高められる傾向にあり、また、レジスト層とのミキシング現象の発生が抑制される傾向にある。
[塩基性化合物]
 さらに、本実施形態のリソグラフィー用下層膜形成用組成物は、保存安定性を向上させる等の観点から、塩基性化合物を含有していてもよい。
 塩基性化合物は、酸発生剤より微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。このような塩基性化合物としては、例えば、第一級、第二級又は第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられるが、これらに特に限定されない。
 本実施形態において用いられる塩基性化合物としては、特に限定されないが、例えば、国際公開第2013/024779号に記載のものを用いることができる。なお、本実施形態において、塩基性化合物は、単独で又は2種以上を組み合わせて使用することができる。
 本実施形態のリソグラフィー用下層膜形成用組成物において、塩基性化合物の含有量は、特に限定されないが、下層膜形成材料100質量部に対して、0.001~2質量部であることが好ましく、より好ましくは0.01~1質量部である。上記の好ましい範囲にすることで、架橋反応を過度に損なうことなく保存安定性が高められる傾向にある。
[その他の添加剤]
 また、本実施形態のリソグラフィー用下層膜形成用組成物は、熱硬化性の付与や吸光度をコントロールする目的で、他の樹脂及び/又は化合物を含有していてもよい。このような他の樹脂及び/又は化合物としては、例えば、ナフトール樹脂、キシレン樹脂ナフトール変性樹脂、ナフタレン樹脂のフェノール変性樹脂、ポリヒドロキシスチレン、ジシクロペンタジエン樹脂、(メタ)アクリレート、ジメタクリレート、トリメタクリレート、テトラメタクリレート、ビニルナフタレン、ポリアセナフチレンなどのナフタレン環、フェナントレンキノン、フルオレンなどのビフェニル環、チオフェン、インデンなどのヘテロ原子を有する複素環を含む樹脂や芳香族環を含まない樹脂;ロジン系樹脂、シクロデキストリン、アダマンタン(ポリ)オール、トリシクロデカン(ポリ)オール及びそれらの誘導体等の脂環構造を含む樹脂又は化合物等が挙げられるが、これらに特に限定されない。さらに、本実施形態のリソグラフィー用下層膜形成用組成物は、公知の添加剤を含有していてもよい。上記公知の添加剤としては、以下に限定されないが、例えば、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等が挙げられる。
[リソグラフィー用下層膜の形成方法]
 本実施形態のリソグラフィー用下層膜の形成方法は、本実施形態のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程を含む。
[リソグラフィー用下層膜形成用組成物を用いたレジストパターン形成方法]
 本実施形態のリソグラフィー用下層膜形成用組成物を用いたレジストパターン形成方法は、本実施形態のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程(A-1)と、前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A-2)と、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(A-3)と、を有する。
[リソグラフィー用下層膜形成用組成物を用いた回路パターン形成方法]
 本実施形態のリソグラフィー用下層膜形成用組成物を用いた回路パターン形成方法は、本実施形態のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程(B-1)と、前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程(B-2)と、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B-3)と、前記工程(B-3)の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(B-4)と、前記工程(B-4)の後、前記レジストパターンをマスクとして前記中間層膜をエッチングして、中間層膜パターンを形成する工程(B-5)と、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングして、下層膜パターンを形成する工程(B-6)と、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B-7)と、を有する。
 本実施形態のリソグラフィー用下層膜は、本実施形態のリソグラフィー用下層膜形成用組成物から形成されるものであれば、その形成方法は特に限定されず、公知の手法を適用することができる。例えば、本実施形態のリソグラフィー用下層膜形成用組成物をスピンコートやスクリーン印刷等の公知の塗布法或いは印刷法などで基板上に付与した後、有機溶媒を揮発させるなどして除去することで、下層膜を形成することができる。
 下層膜の形成時には、上層レジストとのミキシング現象の発生を抑制するとともに架橋反応を促進させるために、ベークをすることが好ましい。この場合、ベーク温度は、特に限定されないが、80~450℃の範囲内であることが好ましく、より好ましくは200~400℃である。また、ベーク時間も、特に限定されないが、10~300秒の範囲内であることが好ましい。なお、下層膜の厚さは、要求性能に応じて適宜選定することができ、特に限定されないが、通常、30~20,000nm程度であることが好ましく、より好ましくは50~15,000nmとすることが好ましい。
 下層膜を作製した後、2層プロセスの場合はその上に珪素含有レジスト層、或いは通常の炭化水素からなる単層レジスト、3層プロセスの場合はその上に珪素含有中間層、さらにその上に珪素を含まない単層レジスト層を作製することが好ましい。この場合、このレジスト層を形成するためのフォトレジスト材料としては公知のものを使用することができる。
 基板上に下層膜を作製した後、2層プロセスの場合はその下層膜上に珪素含有レジスト層あるいは通常の炭化水素からなる単層レジストを作製することができる。3層プロセスの場合はその下層膜上に珪素含有中間層、さらにその珪素含有中間層上に珪素を含まない単層レジスト層を作製することができる。これらの場合において、レジスト層を形成するためのフォトレジスト材料は、公知のものから適宜選択して使用することができ、特に限定されない。
 2層プロセス用の珪素含有レジスト材料としては、酸素ガスエッチング耐性の観点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーを使用し、さらに有機溶媒、酸発生剤、必要により塩基性化合物等を含むポジ型のフォトレジスト材料が好ましく用いられる。ここで珪素原子含有ポリマーとしては、この種のレジスト材料において用いられている公知のポリマーを使用することができる。
 3層プロセス用の珪素含有中間層としてはポリシルセスキオキサンベースの中間層が好ましく用いられる。中間層に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。例えば、193nm露光用プロセスにおいて、下層膜として芳香族基を多く含み基板エッチング耐性が高い材料を用いると、k値が高くなり、基板反射が高くなる傾向にあるが、中間層で反射を抑えることによって、基板反射を0.5%以下にすることができる。このような反射防止効果がある中間層としては、以下に限定されないが、193nm露光用としてはフェニル基又は珪素-珪素結合を有する吸光基を導入された、酸或いは熱で架橋するポリシルセスキオキサンが好ましく用いられる。
 また、Chemical Vapour Deposition(CVD)法で形成した中間層を用いることもできる。CVD法で作製した反射防止膜としての効果が高い中間層としては、以下に限定されないが、例えば、SiON膜が知られている。一般的には、CVD法よりスピンコート法やスクリーン印刷等の湿式プロセスによる中間層の形成の方が、簡便でコスト的なメリットがある。なお、3層プロセスにおける上層レジストは、ポジ型でもネガ型でもどちらでもよく、また、通常用いられている単層レジストと同じものを用いることができる。
 さらに、本実施形態における下層膜は、通常の単層レジスト用の反射防止膜或いはパターン倒れ抑制のための下地材として用いることもできる。本実施形態の下層膜は、下地加工のためのエッチング耐性に優れるため、下地加工のためのハードマスクとしての機能も期待できる。
 上記フォトレジスト材料によりレジスト層を形成する場合においては、上記下層膜を形成する場合と同様に、スピンコート法やスクリーン印刷等の湿式プロセスが好ましく用いられる。また、レジスト材料をスピンコート法などで塗布した後、通常、プリベークが行われるが、このプリベークは、80~180℃で10~300秒の範囲で行うことが好ましい。その後、常法にしたがい、露光を行い、ポストエクスポジュアーベーク(PEB)、現像を行うことで、レジストパターンを得ることができる。なお、レジスト膜の厚さは特に制限されないが、一般的には、30~500nmが好ましく、より好ましくは50~400nmである。
 また、露光光は、使用するフォトレジスト材料に応じて適宜選択して用いればよい。一般的には、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3~20nmの軟X線、電子ビーム、X線等を挙げることができる。
 上記の方法により形成されるレジストパターンは、本実施形態における下層膜によってパターン倒れが抑制されたものとなる。そのため、本実施形態における下層膜を用いることで、より微細なパターンを得ることができ、また、そのレジストパターンを得るために必要な露光量を低下させ得る。
 次に、得られたレジストパターンをマスクにしてエッチングを行う。2層プロセスにおける下層膜のエッチングとしては、ガスエッチングが好ましく用いられる。ガスエッチングとしては、酸素ガスを用いたエッチングが好適である。酸素ガスに加えて、He、Arなどの不活性ガスや、CO、CO、NH、SO、N、NO2、ガスを加えることも可能である。また、酸素ガスを用いずに、CO、CO、NH、N、NO2、ガスだけでガスエッチングを行うこともできる。特に後者のガスは、パターン側壁のアンダーカット防止のための側壁保護のために好ましく用いられる。
 一方、3層プロセスにおける中間層のエッチングにおいても、ガスエッチングが好ましく用いられる。ガスエッチングとしては、上記の2層プロセスにおいて説明したものと同様のものが適用可能である。とりわけ、3層プロセスにおける中間層の加工は、フロン系のガスを用いてレジストパターンをマスクにして行うことが好ましい。その後、上述したように中間層パターンをマスクにして、例えば酸素ガスエッチングを行うことで、下層膜の加工を行うことができる。
 ここで、中間層として無機ハードマスク中間層膜を形成する場合は、CVD法や原子層堆積(ALD)法等で、珪素酸化膜、珪素窒化膜、珪素酸化窒化膜(SiON膜)が形成される。窒化膜の形成方法としては、以下に限定されないが、例えば、特開2002-334869号公報(特許文献4)、国際公開第2004/066377号(特許文献5)に記載された方法を用いることができる。このような中間層膜の上に直接フォトレジスト膜を形成することができるが、中間層膜の上に有機反射防止膜(BARC)をスピンコートで形成して、その上にフォトレジスト膜を形成してもよい。
 中間層として、ポリシルセスキオキサンベースの中間層も好ましく用いられる。レジスト中間層膜に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。ポリシルセスキオキサンベースの中間層の具体的な材料については、以下に限定されないが、例えば、特開2007-226170号公報(特許文献6)、特開2007-226204号公報(特許文献7)に記載されたものを用いることができる。
 また、次の基板のエッチングも、常法によって行うことができ、例えば、基板がSiO、SiNであればフロン系ガスを主体としたエッチング、p-SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行うことができる。基板をフロン系ガスでエッチングする場合、2層レジストプロセスの珪素含有レジストと3層プロセスの珪素含有中間層は、基板加工と同時に剥離される。一方、塩素系或いは臭素系ガスで基板をエッチングした場合は、珪素含有レジスト層又は珪素含有中間層の剥離が別途行われ、一般的には、基板加工後にフロン系ガスによるドライエッチング剥離が行われる。
 本実施形態における下層膜は、これら基板のエッチング耐性に優れる特徴がある。なお、基板は、公知のものを適宜選択して使用することができ、特に限定されないが、Si、α-Si、p-Si、SiO、SiN、SiON、W、TiN、Al等が挙げられる。また、基板は、基材(支持体)上に被加工膜(被加工基板)を有する積層体であってもよい。このような被加工膜としては、Si、SiO、SiON、SiN、p-Si、α-Si、W、W-Si、Al、Cu、Al-Si等種々のLow-k膜及びそのストッパー膜等が挙げられ、通常、基材(支持体)とは異なる材質のものが用いられる。なお、加工対象となる基板或いは被加工膜の厚さは、特に限定されないが、通常、50~1,000,000nm程度であることが好ましく、より好ましくは75~500,000nmである。
[レジスト永久膜]
 なお、前記組成物を用いてレジスト永久膜を作製することもできる、前記組成物を塗布してなるレジスト永久膜は、必要に応じてレジストパターンを形成した後、最終製品にも残存する永久膜として好適である。永久膜の具体例としては、特に限定されないが、例えば、半導体デバイス関係では、ソルダーレジスト、パッケージ材、アンダーフィル材、回路素子等のパッケージ接着層や集積回路素子と回路基板の接着層、薄型ディスプレー関連では、薄膜トランジスタ保護膜、液晶カラーフィルター保護膜、ブラックマトリクス、スペーサーなどが挙げられる。特に、前記組成物からなる永久膜は、耐熱性や耐湿性に優れている上に昇華成分による汚染性が少ないという非常に優れた利点も有する。特に表示材料において、重要な汚染による画質劣化の少ない高感度、高耐熱、吸湿信頼性を兼ね備えた材料となる。
 前記組成物をレジスト永久膜用途に用いる場合には、硬化剤の他、更に必要に応じてその他の樹脂、界面活性剤や染料、充填剤、架橋剤、溶解促進剤などの各種添加剤を加え、有機溶剤に溶解することにより、レジスト永久膜用組成物とすることができる。
 前記リソグラフィー用膜形成組成物やレジスト永久膜用組成物は前記各成分を配合し、攪拌機等を用いて混合することにより調整できる。また、前記レジスト下層膜用組成物やレジスト永久膜用組成物が充填剤や顔料を含有する場合には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散あるいは混合して調整することが出来る。
[化合物及び/又は樹脂の精製方法]
 本実施形態の化合物及び/又は樹脂の精製方法は、本実施形態の化合物及び/又は本実施形態の樹脂を、溶媒に溶解させて溶液(S)を得る工程と、得られた溶液(S)と酸性の水溶液とを接触させて、前記化合物及び/又は前記樹脂中の不純物を抽出する第一抽出工程とを含み、前記溶液(S)を得る工程で用いる溶媒が、水と混和しない有機溶媒を含む。
 当該第一抽出工程において、上記樹脂は、上記式(A)で表される化合物と架橋反応性のある化合物との反応によって得られる樹脂であることが好ましい。本実施の形態の精製方法によれば、上述した特定の構造を有する化合物又は樹脂に不純物として含まれうる種々の金属の含有量を低減することができる。
 より詳細には、本実施形態の精製方法においては、上記化合物及び/又は上記樹脂を、水と混和しない有機溶媒に溶解させて溶液(S)を得て、さらにその溶液(S)を酸性水溶液と接触させて抽出処理を行うことができる。これにより、本実施形態の化合物及び/又は樹脂を含む溶液(S)に含まれる金属分を水相に移行させたのち、有機相と水相とを分離して金属含有量の低減された、本実施形態の化合物及び/又は樹脂を得ることができる。
 本実施形態の精製方法で使用する本実施形態の化合物及び/又は樹脂は単独でもよいが、2種以上混合することもできる。また、本実施形態の化合物及び/又は樹脂は、各種界面活性剤、各種架橋剤、各種酸発生剤、各種安定剤等を含有していてもよい。
 本実施形態で使用される水と混和しない溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましく、具体的には、室温下における水への溶解度が30%未満である有機溶媒であり、より好ましくは20%未満であり、特に好ましくは10%未満である有機溶媒が好ましい。当該有機溶媒の使用量は、使用する本実施形態の化合物及び/又は樹脂に対して、1~100質量倍であることが好ましい。
 水と混和しない溶媒の具体例としては、以下に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル等のエーテル類;酢酸エチル、酢酸n‐ブチル、酢酸イソアミル等のエステル類;メチルエチルケトン、メチルイソブチルケトン、エチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2‐ヘプタノン、2-ペンタノン等のケトン類;エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート類;n‐ヘキサン、n‐ヘプタン等の脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類等が挙げられる。これらの中でも、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル等が好ましく、メチルイソブチルケトン、酢酸エチル、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテートがより好ましく、メチルイソブチルケトン、酢酸エチルがよりさらに好ましい。メチルイソブチルケトン、酢酸エチル等は、本実施形態の化合物及び樹脂の飽和溶解度が比較的高く、沸点が比較的低いことから、工業的に溶媒を留去する場合や乾燥により除去する工程での負荷を低減することが可能となる。これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
 本実施形態の精製方法で使用される酸性の水溶液としては、特に限定されないが、例えば、無機系化合物を水に溶解させた鉱酸水溶液又は有機系化合物を水に溶解させた有機酸水溶液が挙げられる。鉱酸水溶液としては、特に限定されないが、例えば、塩酸、硫酸、硝酸、リン酸等の鉱酸を1種類以上水に溶解させた鉱酸水溶液が挙げられる。また、有機酸水溶液としては、特に限定されないが、例えば、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸、トリフルオロ酢酸等の有機酸を1種類以上水に溶解させた有機酸水溶液が挙げられる。これら酸性の水溶液は、それぞれ単独で用いることもできるし、また2種以上を組み合わせて用いることもできる。これら酸性の水溶液の中でも、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上の鉱酸水溶液、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上の有機酸水溶液であることが好ましく、硫酸、硝酸、及び酢酸、蓚酸、酒石酸、クエン酸等のカルボン酸の水溶液がより好ましく、硫酸、蓚酸、酒石酸、クエン酸の水溶液がさらに好ましく、蓚酸の水溶液がよりさらに好ましい。蓚酸、酒石酸、クエン酸等の多価カルボン酸は金属イオンに配位し、キレート効果が生じるために、より効果的に金属を除去できる傾向にあるものと考えられる。また、ここで用いる水は、本実施の形態の精製方法の目的に沿って、金属含有量の少ない水、例えばイオン交換水等を用いることが好ましい。
 本実施形態の精製方法で使用する酸性の水溶液のpHは特に限定されないが、本実施形態の化合物及び/又は樹脂への影響を考慮し、水溶液の酸性度を調整することが好ましい。通常、pH範囲は0~5程度であり、好ましくはpH0~3程度である。
 本実施形態の精製方法で使用する酸性の水溶液の使用量は特に限定されないが、金属除去のための抽出回数を低減する観点及び全体の液量を考慮して操作性を確保する観点から、当該使用量を調整することが好ましい。上記観点から、酸性の水溶液の使用量は、前記溶液(S)100質量%に対して、好ましくは10~200質量%であり、より好ましくは20~100質量%である。
 本実施形態の精製方法においては、上記のような酸性の水溶液と、本実施形態の化合物及び/又は樹脂と、及び水と混和しない溶媒を含む溶液(S)と、を接触させることにより、溶液(S)中の前記化合物又は前記樹脂から金属分を抽出することができる。
 本実施形態の精製方法においては、前記溶液(S)が、さらに水と混和する有機溶媒を含むことが好ましい。水と混和する有機溶媒を含む場合、本実施形態の化合物及び/又は樹脂の仕込み量を増加させることができ、また、分液性が向上し、高い釜効率で精製を行うことができる傾向にある。水と混和する有機溶媒を加える方法は特に限定されない。例えば、予め有機溶媒を含む溶液に加える方法、予め水又は酸性の水溶液に加える方法、有機溶媒を含む溶液と水又は酸性の水溶液とを接触させた後に加える方法のいずれでもよい。これらの中でも、予め有機溶媒を含む溶液に加える方法が操作の作業性や仕込み量の管理のし易さの点で好ましい。
 本実施形態の精製方法で使用される水と混和する有機溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましい。水と混和する有機溶媒の使用量は、溶液相と水相とが分離する範囲であれば特に限定されないが、本実施形態の化合物及び/又は樹脂に対して、0.1~100質量倍であることが好ましく、0.1~50質量倍であることがより好ましく、0.1~20質量倍であることがさらに好ましい。
 本実施形態の精製方法において使用される水と混和する有機溶媒の具体例としては、以下に限定されないが、例えば、テトラヒドロフラン、1,3-ジオキソラン等のエーテル類;メタノール、エタノール、イソプロパノール等のアルコール類;アセトン、N-メチルピロリドン等のケトン類;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル等のグリコールエーテル類等の脂肪族炭化水素類が挙げられる。これらの中でも、N-メチルピロリドン、プロピレングリコールモノメチルエーテル等が好ましく、N-メチルピロリドン、プロピレングリコールモノメチルエーテルがより好ましい。これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
 抽出処理を行う際の温度は通常、20~90℃であり、好ましくは30~80℃の範囲である。抽出操作は、例えば、撹拌等により、よく混合させたあと、静置することにより行われる。これにより、本実施形態の化合物及び/又は樹脂と有機溶媒を含む溶液に含まれていた金属分が水相に移行する。また、本操作により、溶液の酸性度が低下し、本実施形態の化合物及び/又は樹脂の変質を抑制することができる。
 前記混合溶液は静置により、本実施形態の化合物及び/又は樹脂と溶媒を含む溶液相と、水相とに分離するので、デカンテーション等により本実施形態の化合物及び/又は樹脂と溶媒とを含む溶液相を回収する。静置する時間は特に限定されないが、溶媒を含む溶液相と水相との分離をより良好にする観点から、当該静置する時間を調整することが好ましい。通常、静置する時間は1分以上であり、好ましくは10分以上であり、より好ましくは30分以上である。また、抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。
 本実施形態の精製方法は、前記第一抽出工程後、前記化合物又は前記樹脂を含む溶液相を、さらに水に接触させて、前記化合物又は前記樹脂中の不純物を抽出する工程(第二抽出工程)を含むことが好ましい。具体的には、例えば、酸性の水溶液を用いて上記抽出処理を行った後に、該水溶液から抽出され、回収された本実施形態の化合物及び/又は樹脂と溶媒を含む溶液相を、さらに水による抽出処理に供することが好ましい。上記の水による抽出処理は、特に限定されないが、例えば、上記溶液相と水とを、撹拌等により、よく混合させたあと、得られた混合溶液を、静置することにより行うことができる。当該静置後の混合溶液は、本実施形態の化合物及び/又は樹脂と溶媒とを含む溶液相と、水相とに分離するのでデカンテーション等により本実施形態の化合物及び/又は樹脂と溶媒とを含む溶液相を回収することができる。
 また、ここで用いる水は、本実施形態の目的に沿って、金属含有量の少ない水、例えば、イオン交換水等であることが好ましい。抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。また、抽出処理における両者の使用割合や、温度、時間等の条件は特に限定されないが、先の酸性の水溶液との接触処理の場合と同様で構わない。
 こうして得られた本実施形態の化合物及び/又は樹脂と溶媒とを含む溶液に混入しうる水分については、減圧蒸留等の操作を施すことにより容易に除去できる。また、必要により上記溶液に溶媒を加え、本実施形態の化合物及び/又は樹脂の濃度を任意の濃度に調整することができる。
 得られた本実施形態の化合物及び/又は樹脂と溶媒とを含む溶液から、本実施形態の化合物及び/又は樹脂を単離する方法は、特に限定されず、減圧除去、再沈殿による分離、及びそれらの組み合わせ等、公知の方法で行うことができる。必要に応じて、濃縮操作、ろ過操作、遠心分離操作、乾燥操作等の公知の処理を行うことができる。
 以下、実施例を挙げて、本発明の実施の形態をさらに具体的に説明する。但し、本実施形態は、これらの実施例に特に限定はされない。
 化合物の評価方法は次の通りである。
<熱分解温度の測定>
 エスアイアイ・ナノテクノロジー社製EXSTAR6000DSC装置を使用し、試料約5mgをアルミニウム製非密封容器に入れ、窒素ガス(30ml/min)気流中昇温速度10℃/minで500℃まで昇温した。その際、ベースラインに減少部分が現れる温度を熱分解温度とした。
<耐熱性能の試験方法>
 エスアイアイ・ナノテクノロジー社製EXSTAR6000DSC装置を使用し、試料約5mgをアルミニウム製非密封容器に入れ、窒素ガス(30ml/min)気流中昇温速度10℃/minで500℃まで昇温した。その際、ベースラインに減少部分が現れる温度を熱分解温度(Tg)とし、以下の基準で耐熱性を評価した。
 評価A:熱分解温度が≧150℃
 評価C:熱分解温度が<150℃
<溶解性>
23℃にて、化合物のプロピレングリコールモノメチルエーテルアセテート(PGMEA)に対する溶解量を以下の基準で評価した。
 評価A:30質量%以上
 評価C:30質量%未満
(合成例1) BisN-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積100mlの容器を準備した。この容器に、2,7-ジヒドロキシナフタレン(シグマ-アルドリッチ社製試薬)1.52g(9.5mmol)と、4-シクロヘキシルベンズアルデヒド(三菱瓦斯化学社製)0.9g(4.7mmol)と、1,4-ジオキサン30mlとを仕込み、p-トルエンスルホン酸0.4g(2.3mmol)を加えて、反応液を調製した。この反応液を90℃で3.5時間撹拌して反応を行った。次に、反応液を40℃に冷却し、ヘキサン10mlを滴下し10℃まで冷却して反応生成物を析出させ、濾過した後、ヘキサンで洗浄した後、カラムクロマトによる分離精製を行うことにより、下記式で示される目的化合物(BisN-1)0.6gを得た。
 なお、400MHz-H-NMRにより以下のピークが見出され、下記式の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.2(2H,O-H)、6.8~7.8(14H,Ph-H)、1.4~2.7(11H,cHx-H)、5.3(1H,C-H)
Figure JPOXMLDOC01-appb-C000123
(合成例2) BisN-2の合成
 攪拌機、冷却管及びビュレットを備えた内容積100mlの容器を準備した。この容器に、2,6-ジヒドロキシナフタレン(シグマ-アルドリッチ社製試薬)1.52g(9.5mmol)と、4-シクロヘキシルベンズアルデヒド(三菱瓦斯化学社製)0.9g(4.7mmol)と、1,4-ジオキサン30mlとを仕込み、p-トルエンスルホン酸0.4g(2.3mmol)を加えて、反応液を調製した。この反応液を90℃で3.5時間撹拌して反応を行った。次に、反応液を40℃に冷却し、ヘキサン10mlを滴下し10℃まで冷却して反応生成物を析出させ、濾過した後、ヘキサンで洗浄した後、カラムクロマトによる分離精製を行うことにより、下記式で示される目的化合物(BisN-2)0.4gを得た。
なお、400MHz-H-NMRにより以下のピークが見出され、下記式の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.2(2H,O-H)、6.7~7.8(14H,Ph-H)、1.4~2.7(11H,cHx-H)、5.3(1H,C-H)
Figure JPOXMLDOC01-appb-C000124
(合成例3)樹脂(R1-BisN-1)の合成
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積1Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、合成例1で得られた化合物(BisN-1)を33.2g(70mmol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液21.0g(ホルムアルデヒドとして280mmol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてオルソキシレン(和光純薬工業(株)製試薬特級)180.0gを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、オルソキシレンを減圧下で留去することにより、褐色固体の樹脂(R1-BisN-1)31.7gを得た。
 得られた樹脂(R1-BisN-1)は、Mn:1875、Mw:3610、Mw/Mn:1.93であった。
(合成例4)樹脂(R2-BisN-1)の合成
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積1Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、合成例1で得られた化合物(BisN-1)を33.2g(70mmol、三菱ガス化学(株)製)、4-ビフェニルアルデヒド50.9g(280mmol、三菱ガス化学(株)製)、アニソール(関東化学(株)製)100mL及びシュウ酸二水和物(関東化学(株)製)10mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてオルソキシレン(和光純薬工業(株)製試薬特級)180.0gを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、有機相の溶媒及び未反応の4-ビフェニルアルデヒドを減圧下で留去することにより、褐色固体の樹脂(R2-BisN-1)37.5gを得た。
 得られた樹脂(R2-BisN-1)は、Mn:1610、Mw:2567、Mw/Mn:1.59であった。
[比較例1]
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、1,5-ジメチルナフタレン1.09kg(7mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業(株)製試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5-ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。
 続いて、ジムロート冷却管、温度計及び攪拌翼を備えた内容積0.5Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流下で、上記のようにして得られたジメチルナフタレンホルムアルデヒド樹脂100g(0.51mol)とパラトルエンスルホン酸0.05gとを仕込み、190℃まで昇温させて2時間加熱した後、攪拌した。その後さらに、1-ナフトール52.0g(0.36mol)を加え、さらに220℃まで昇温させて2時間反応させた。溶剤希釈後、中和及び水洗を行い、溶剤を減圧下で除去することにより、黒褐色固体の変性樹脂(CR-1)126.1gを得た。
[実施例1-1~2-2]
BisN-1、BisN-2、R1-BisN-1及びR2-BisN-1を用いて、プロピレングリコールモノメチルエーテルアセテート(PGMEA)に対する溶解性を評価した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000125
表1から明らかなように、実施例1-1~2-2で用いた化合物は、溶媒への溶解性に優れることが確認できた。
[実施例3~4、比較例2]
(耐熱性及びレジスト性能)
 BisN-1、BisN-2及びCR-1を用いて、耐熱性試験及びレジスト性能評価を行った結果を表2に示す。
(レジスト組成物の調製)
 上記で合成した各化合物を用いて、表2に示す配合でレジスト組成物を調製した。なお、表2中のレジスト組成物の各成分のうち、酸発生剤(C)、酸拡散制御剤(E)及び溶媒については、以下のものを用いた。
酸発生剤(C)
 P-1:トリフェニルベンゼンスルホニウム トリフルオロメタンスルホネート(みどり化学(株))
酸拡散制御剤(E)
 Q-1:トリオクチルアミン(東京化成工業(株))
溶媒
 S-1:プロピレングリコールモノメチルエーテル(東京化成工業(株))
(レジスト組成物のレジスト性能の評価方法)
 均一なレジスト組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ60nmのレジスト膜を形成した。得られたレジスト膜に対して、電子線描画装置(ELS-7500、(株)エリオニクス社製)を用いて、50nm間隔の1:1のラインアンドスペース設定の電子線を照射した。当該照射後に、レジスト膜を、それぞれ所定の温度で、90秒間加熱し、TMAH2.38質量%アルカリ現像液に60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄、乾燥して、ポジ型のレジストパターンを形成した。形成されたレジストパターンについて、ラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800)により観察し、レジスト組成物の電子線照射による反応性を評価した。
Figure JPOXMLDOC01-appb-T000126
表2から明らかなように、実施例3及び実施例4で用いた化合物は、耐熱性が良好であるが、比較例2で用いた化合物は、耐熱性が劣ることが確認できた。
 また、レジストパターン評価については、実施例3及び実施例4では50nm間隔の1:1のラインアンドスペース設定の電子線を照射により、良好なレジストパターンを得た。一方、比較例2では良好なレジストパターンを得ることはできなかった。
 このように本発明の要件を満たす化合物は比較化合物(CR-1)に比べて、耐熱性が高く、また良好なレジストパターン形状を付与できる。前記した本発明の要件を満たす限り、実施例に記載した化合物以外の化合物についても同様の効果を示す。
[実施例5~6、比較例3]
(感放射線性組成物の調製)
 表3記載の成分を調合し、均一溶液としたのち、得られた均一溶液を、孔径0.1μmのテフロン(登録商標)製メンブランフィルターで濾過して、感放射線性組成物を調製した。調製した各々の感放射線性組成物について以下の評価を行った。
Figure JPOXMLDOC01-appb-T000127
 なお、比較例3におけるレジスト基材として、つぎのものを用いた。
 PHS-1:ポリヒドロキシスチレン Mw=8000(シグマ-アルドリッチ社)
 光活性化合物(B)として、つぎのものを用いた。
 B-1:化学構造式(G)のナフトキノンジアジド系感光剤(4NT-300、東洋合成工業(株))
 溶媒として、つぎのものを用いた。
 S-1:プロピレングリコールモノメチルエーテル(東京化成工業(株))
Figure JPOXMLDOC01-appb-C000128
(感放射線性組成物のレジスト性能の評価)
 上記で得られた感放射線性組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ200nmのレジスト膜を形成した。該レジスト膜に対して、紫外線露光装置(ミカサ製マスクアライナMA-10)を用いて紫外線を露光した。紫外線ランプは超高圧水銀ランプ(相対強度比はg線:h線:i線:j線=100:80:90:60)を使用した。照射後に、レジスト膜を、110℃で90秒間加熱し、TMAH2.38質量%アルカリ現像液に60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄し、乾燥して、5μmのポジ型のレジストパターンを形成した。
 形成されたレジストパターンにおいて、得られたラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800)により観察した。ラインエッジラフネスはパターンの凹凸が50nm未満を良好とした。
 実施例5及び実施例6における感放射線性組成物を用いた場合は、解像度5μmの良好なレジストパターンを得ることができた。また、そのパターンのラフネスも小さく良好であった。
 一方、比較例3における感放射線性組成物を用いた場合は、解像度5μmの良好なレジストパターンを得ることができた。しかしながら、そのパターンのラフネスは大きく不良であった。
 上記のように、実施例5及び実施例6では、比較例3に比べて、ラフネスが小さく、かつ良好な形状のレジストパターンを形成することができることがわかった。上記した本発明の要件を満たす限り、実施例に記載した以外の感放射線性組成物も同様の効果を示す。
 合成例1及び合成例2で得られた化合物は、比較的に低分子量で低粘度であり、また、ガラス転移温度がいずれも150℃以下と低いことから、これを用いたリソグラフィー用下層膜形成材料は埋め込み特性や膜表面の平坦性が比較的に有利に高められ得る。また、熱分解温度はいずれも150℃以上(評価A)であり、高い耐熱性を有するので、高温ベーク条件でも使用することができる。
[実施例7~10、実施例7A~10A、比較例4]
(リソグラフィー用下層膜形成用組成物の調製)
 表4に示す組成となるように、リソグラフィー用下層膜形成用組成物を調製した。次に、これらのリソグラフィー用下層膜形成用組成物をシリコン基板上に回転塗布し、その後、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を各々作製した。酸発生剤、架橋剤及び有機溶媒については以下のものを用いた。
 酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
 架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
 有機溶媒:プロピレングリコールモノメチルエーテルアセテート(PGMEA)
 ノボラック:群栄化学社製 PSM4357
 次に、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表3に示す。
[エッチング試験]
 エッチング装置:サムコインターナショナル社製 RIE-10NR
 出力:50W
 圧力:20Pa
 時間:2min
 エッチングガス
 Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
(エッチング耐性の評価)
 エッチング耐性の評価は、以下の手順で行った。まず、ノボラック(群栄化学社製 PSM4357)を用いること以外は、上記条件で、ノボラックの下層膜を作製した。そして、このノボラックの下層膜を対象として、上記のエッチング試験を行い、そのときのエッチングレートを測定した。
 次に、実施例7~10、実施例7A~10A、及び比較例4の下層膜を、ノボラックの下層膜と同様の条件で作製し、上記エッチング試験を同様に行い、そのときのエッチングレートを測定した。
 そして、ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。
 [評価基準]
 A:ノボラックの下層膜に比べてエッチングレートが、-10%未満
 B:ノボラックの下層膜に比べてエッチングレートが、-10%~+5%
 C:ノボラックの下層膜に比べてエッチングレートが、+5%超
Figure JPOXMLDOC01-appb-T000129
 実施例7~10、実施例7A~10Aでは、ノボラックの下層膜に比べて優れたエッチングレートが発揮されることがわかった。一方、比較例4では、ノボラックの下層膜に比べてエッチングレートが劣ることがわかった。
[実施例11~14、11A~14A、比較例5]
次に、実施例7~10、実施例7A~10A及び比較例4で用いたリソグラフィー用下層膜形成用組成物を膜厚80nmの60nmラインアンドスペースのSiO基板上に塗布して、240℃で60秒間ベークすることにより90nm下層膜を形成した。
(埋め込み性の評価)
 埋め込み性の評価は、以下の手順で行った。上記条件で得られた膜の断面を切り出し、電子線顕微鏡にて観察し埋め込み性を評価した。
 [評価基準]
 A:60nmラインアンドスペースのSiO基板の凹凸部分に欠陥無く下層膜が埋め込まれている。
 C:60nmラインアンドスペースのSiO基板の凹凸部分に欠陥があり下層膜が埋め込まれていない。
Figure JPOXMLDOC01-appb-T000130
 実施例11~14、実施例11A~14Aでは、ノボラックの下層膜に比べて埋め込み性が良好であることがわかった。
[実施例15]
 次に、実施例7で用いたリソグラフィー用下層膜形成用組成物を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚85nmの下層膜を形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。
 なお、ArFレジスト溶液としては、下記式(16)の化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。
 下記式(16)の化合物は、次のように調製した。すなわち、2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下した。このようにして得られる生成樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて下記式(16)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000131
(式(16)中、40、40、20とあるのは、各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。)
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。
[比較例6]
 下層膜の形成を行わないこと以外は、実施例15と同様にしてフォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得た。
[評価]
 実施例15及び比較例6のそれぞれについて、得られた45nmL/S(1:1)及び80nmL/S(1:1)のレジストパターンの形状を(株)日立製作所製電子顕微鏡(S-4800)を用いて観察した。現像後のレジストパターンの形状については、パターン倒れがなく、矩形性が良好なものを良好とし、そうでないものを不良として評価した。また、当該観察の結果、パターン倒れが無く、矩形性が良好な最小の線幅を解像性として評価の指標とした。さらに、良好なパターン形状を描画可能な最小の電子線エネルギー量を感度として、評価の指標とした。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000132
 表6から明らかなように、実施例15における下層膜は、比較例6に比して、解像性及び感度ともに有意に優れていることが確認された。また、現像後のレジストパターン形状もパターン倒れがなく、矩形性が良好であることが確認された。さらに、現像後のレジストパターン形状の相違から、実施例15におけるリソグラフィー用下層膜形成材料は、レジスト材料との密着性がよいことが示された。
[実施例16]
 実施例7で用いたリソグラフィー用下層膜形成用組成物を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚90nmの下層膜を形成した。この下層膜上に、珪素含有中間層材料を塗布し、200℃で60秒間ベークすることにより、膜厚35nmの中間層膜を形成した。さらに、この中間層膜上に、前記ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、珪素含有中間層材料としては、特開2007-226170号公報<合成例1>に記載の珪素原子含有ポリマーを用いた。
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層をマスク露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、45nmL/S(1:1)のポジ型のレジストパターンを得た。
 その後、サムコインターナショナル社製 RIE-10NRを用いて、得られたレジストパターンをマスクにして珪素含有中間層膜(SOG)のドライエッチング加工を行い、続いて、得られた珪素含有中間層膜パターンをマスクにした下層膜のドライエッチング加工と、得られた下層膜パターンをマスクにしたSiO膜のドライエッチング加工とを順次行った。
 各々のエッチング条件は、下記に示すとおりである。
 レジストパターンのレジスト中間層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:1min
   エッチングガス
   Arガス流量:CFガス流量:Oガス流量=50:8:2(sccm)
 レジスト中間膜パターンのレジスト下層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
 レジスト下層膜パターンのSiO 膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:C12ガス流量:Cガス流量:Oガス流量
          =50:4:3:1(sccm)
[評価]
 上記のようにして得られた実施例16のパターン断面(エッチング後のSiO膜の形状)を、(株)日立製作所製電子顕微鏡(S-4800)を用いて観察したところ、本発明の下層膜を用いた実施例は、多層レジスト加工におけるエッチング後のSiO膜の形状は矩形であり、欠陥も認められず良好であることが確認された。
 本発明は、フォトレジストの成分や、電気・電子部品用材料の樹脂原料、光硬化性樹脂等の硬化性樹脂原料、構造用材料の樹脂原料、又は樹脂硬化剤等に用いることのできる化合物として、産業上の利用可能性を有する。
 
 

Claims (30)

  1.  下記式(A)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(A)中、Rは、水素原子、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基又は炭素数6~30のアリール基であり、
    は、炭素数3~30の環状アルキル基を含む炭素数3~60のm価の基であり、
    は、各々独立して、置換基を有していてもよい炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、チオール基、水酸基の水素原子が酸解離性基で置換された基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
    ここで、Rの少なくとも1つは水酸基であり、
    nは、各々独立して、0~8の整数であり、ここで、nの少なくとも1つは1~8の整数であり、
    mは、1~4の整数であり、
    kは、各々独立して、0~2の整数である。)
  2.  前記式(A)で表される化合物が、下記式(1)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、R、R、m及びkは、上記式(A)で説明したものと同義である。
    3Aは、各々独立して、置換基を有していてもよい炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基又はチオール基であり、
    4Aは、各々独立して、水素原子又は酸解離性基であり、
    ここで、R4Aの少なくとも1つは水素原子であり、
    6Aは、各々独立して、0~7の整数である。)
  3.  前記式(1)で表される化合物が、下記式(1’)で表される化合物である、請求項2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式(1’)中、Rは、前記式(A)で説明したものと同義である。)
  4.  前記式(1’)で表される化合物が、下記式(2)で表される化合物である、請求項3に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
  5.  前記式(2)で表される化合物が、下記式(2-1)又は式(2-2)で表される化合物である、請求項4に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
  6.  請求項1~5のいずれか1項に記載の化合物に由来する構成単位を有する、樹脂。
  7.  請求項1~5のいずれか1項に記載の化合物及び請求項6に記載の樹脂からなる群より選ばれる1種類以上を含有する、組成物。
  8.  請求項1~5のいずれか1項に記載の化合物及び請求項6に記載の樹脂からなる群より選ばれる1種類以上を含有する、光学部品形成用組成物。
  9.  請求項1~5のいずれか1項に記載の化合物及び請求項6に記載の樹脂からなる群より選ばれる1種類以上を含有する、リソグラフィー用膜形成組成物。
  10.  請求項1~5のいずれか1項に記載の化合物及び請求項6に記載の樹脂からなる群より選ばれる1種類以上を含有する、レジスト組成物。
  11.  溶媒をさらに含有する、請求項10に記載のレジスト組成物。
  12. 酸発生剤をさらに含有する、請求項10又は11に記載のレジスト組成物。
  13.  酸拡散制御剤をさらに含有する、請求項10~12のいずれか1項に記載のレジスト組成物。
  14.  請求項10~13のいずれか1項に記載のレジスト組成物を用いて、基板上にレジスト膜を形成する工程と、
     形成された前記レジスト膜の少なくとも一部を露光する工程と、
     露光した前記レジスト膜を現像してレジストパターンを形成する工程と、を含む、レジストパターン形成方法。
  15.  請求項1~5のいずれか1項に記載の化合物及び請求項6に記載の樹脂からなる群より選ばれる1種類以上である成分(A)と、
     ジアゾナフトキノン光活性化合物(B)と、
     溶媒と、を含有する感放射線性組成物であって、
     前記溶媒の含有量が、前記感放射線性組成物の総量100質量%に対して20~99質量%であり、
     前記溶媒以外の成分の含有量が、前記感放射線性組成物の総量100質量%に対して1~80質量%である、感放射線性組成物。
  16.  前記成分(A)と、前記ジアゾナフトキノン光活性化合物(B)と、前記感放射線性組成物に任意に含まれ得るその他の任意成分(D)と、の含有量比((A)/(B)/(D))が、前記感放射線性組成物の固形分100質量%に対して、1~99質量%/99~1質量%/0~98質量%である、請求項15に記載の感放射線性組成物。
  17.  スピンコートによりアモルファス膜を形成することができる、請求項15又は16に記載の感放射線性組成物。
  18.  請求項15~17のいずれか1項に記載の感放射線性組成物を用いて、基板上にアモルファス膜を形成する工程を含む、アモルファス膜の製造方法。
  19.  請求項15~17のいずれか1項に記載の感放射線性組成物を用いて、基板上にレジスト膜を形成する工程と、
     形成された前記レジスト膜の少なくとも一部を露光する工程と、
     露光した前記レジスト膜を現像して、レジストパターンを形成する工程を含む、レジストパターン形成方法。
  20.  請求項1~5のいずれか1項に記載の化合物及び請求項6に記載の樹脂からなる群より選ばれる種類以上を含有する、リソグラフィー用下層膜形成材料。
  21.  請求項20に記載のリソグラフィー用下層膜形成材料と、
     溶媒と、を含有する、リソグラフィー用下層膜形成用組成物。
  22.  酸発生剤をさらに含有する、請求項21に記載のリソグラフィー用下層膜形成用組成物。
  23.  架橋剤をさらに含有する、請求項21又は22に記載のリソグラフィー用下層膜形成用組成物。
  24.  請求項21~23のいずれか1項に記載のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程を含む、リソグラフィー用下層膜の製造方法。
  25.  請求項21~23のいずれか1項に記載のリソグラフィー用下層膜形成用組成物を用いて、基板上に、下層膜を形成する工程と、
     前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程と、
     前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程と、を有する、レジストパターン形成方法。
  26.  請求項21~23のいずれか1項に記載のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程と、
     前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程と、
     前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程と、
     前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程と、
     前記レジストパターンをマスクとして前記中間層膜をエッチングして、中間層膜パターンを形成する工程と、
     前記中間層膜パターンをエッチングマスクとして前記下層膜をエッチングして、下層膜パターンを形成する工程と、
     前記下層膜パターンをエッチングマスクとして前記基板をエッチングして、前記基板にパターンを形成する工程と、を有する、回路パターン形成方法。
  27.  請求項1~5のいずれか1項に記載の化合物及び請求項6に記載の樹脂からなる群より選ばれる1種類以上を、溶媒に溶解させて溶液(S)を得る工程と、
     得られた溶液(S)と酸性の水溶液とを接触させて、前記化合物及び/又は前記樹脂中の不純物を抽出する第一抽出工程とを含み、
     前記溶液(S)を得る工程で用いる溶媒が、水と混和しない溶媒を含む、精製方法。
  28.  前記酸性の水溶液が、鉱酸水溶液又は有機酸水溶液であり、
     前記鉱酸水溶液が、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上を水に溶解させた鉱酸水溶液であり、
     前記有機酸水溶液が、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上を水に溶解させた有機酸水溶液である、請求項27に記載の精製方法。
  29.  前記水と混和しない溶媒が、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート及び酢酸エチルからなる群より選ばれる1種以上の溶媒である、請求項27又は28に記載の精製方法。
  30.  前記第一抽出工程後、前記化合物及び/又は前記樹脂を含む溶液相を、さらに水に接触させて、前記化合物及び/又は前記樹脂中の不純物を抽出する第二抽出工程含む、請求項27~29のいずれか1項に記載の精製方法。
     
     
PCT/JP2017/042114 2016-11-24 2017-11-22 化合物、樹脂、組成物、パターン形成方法及び精製方法 WO2018097215A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018552955A JP7145415B2 (ja) 2016-11-24 2017-11-22 化合物、樹脂、組成物、パターン形成方法及び精製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-227837 2016-11-24
JP2016227837 2016-11-24

Publications (1)

Publication Number Publication Date
WO2018097215A1 true WO2018097215A1 (ja) 2018-05-31

Family

ID=62196226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042114 WO2018097215A1 (ja) 2016-11-24 2017-11-22 化合物、樹脂、組成物、パターン形成方法及び精製方法

Country Status (3)

Country Link
JP (1) JP7145415B2 (ja)
TW (1) TW201833092A (ja)
WO (1) WO2018097215A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013184755A2 (en) * 2012-06-07 2013-12-12 Georgia State University Research Foundation, Inc. Seca inhibitors and methods of making and using thereof
WO2014123032A1 (ja) * 2013-02-08 2014-08-14 三菱瓦斯化学株式会社 レジスト組成物、レジストパターン形成方法及びそれに用いるポリフェノール誘導体
WO2017111165A1 (ja) * 2015-12-25 2017-06-29 三菱瓦斯化学株式会社 化合物、樹脂、組成物、レジストパターン形成方法、及び、回路パターン形成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614056B2 (ja) 2003-09-18 2011-01-19 三菱瓦斯化学株式会社 レジスト用化合物および感放射線性組成物
CN106957217B (zh) 2011-08-12 2020-07-24 三菱瓦斯化学株式会社 用于抗蚀剂组合物的多元酚化合物
KR101907481B1 (ko) * 2011-08-12 2018-10-12 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 리소그래피용 하층막 형성재료, 리소그래피용 하층막 및 패턴형성방법
EP3285119A1 (en) 2015-03-31 2018-02-21 Mitsubishi Gas Chemical Company, Inc. Radiation-sensitive composition
KR102562846B1 (ko) 2015-03-31 2023-08-02 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 레지스트 조성물, 레지스트패턴 형성방법, 및 이것에 이용하는 폴리페놀 화합물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013184755A2 (en) * 2012-06-07 2013-12-12 Georgia State University Research Foundation, Inc. Seca inhibitors and methods of making and using thereof
WO2014123032A1 (ja) * 2013-02-08 2014-08-14 三菱瓦斯化学株式会社 レジスト組成物、レジストパターン形成方法及びそれに用いるポリフェノール誘導体
WO2017111165A1 (ja) * 2015-12-25 2017-06-29 三菱瓦斯化学株式会社 化合物、樹脂、組成物、レジストパターン形成方法、及び、回路パターン形成方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, 16 November 1984, Columbus, Ohio, US; abstract no. 27677-33-4 *
CHEMICAL ABSTRACTS, 8 March 1991, Columbus, Ohio, US; abstract no. 132467-79-9 *
CUI, J. ET AL.: "Design, synthesis and biological evaluation of rose bengal analogues as SecA inhibitors", CHEMMEDCHEM., vol. 8, 21 June 2013 (2013-06-21), pages 1384 - 1394, XP055078119, DOI: 10.1002/cmdc.201300216 *
VON LIEBIG, H. : "Tritan-Carbonsäuren", BERICHTE DER DEUTSCHEN CHEMISCHEN GESELLSCHAFT, vol. 41, 1908, pages 1645 - 1648, ISSN: 0365-9496, DOI: 10.1002/cber.19080410218 *

Also Published As

Publication number Publication date
JPWO2018097215A1 (ja) 2019-10-17
JP7145415B2 (ja) 2022-10-03
TW201833092A (zh) 2018-09-16

Similar Documents

Publication Publication Date Title
JP7283515B2 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JP7194355B2 (ja) 化合物、樹脂、組成物及びパターン形成方法
WO2017038979A1 (ja) 化合物及びその製造方法、並びに、組成物、光学部品形成用組成物、リソグラフィー用膜形成組成物、レジスト組成物、レジストパターンの形成方法、感放射線性組成物、アモルファス膜の製造方法、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法、レジストパターン形成方法、回路パターン形成方法、及び、精製方法
WO2018016615A1 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
WO2018016648A1 (ja) 化合物、樹脂、組成物及びパターン形成方法
WO2018016634A1 (ja) 化合物、樹脂及び組成物、並びにレジストパターン形成方法及び回路パターン形成方法
WO2017014285A1 (ja) 新規(メタ)アクリロイル化合物及びその製造方法
JP7205716B2 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JP7452947B2 (ja) 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法
JP7205715B2 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
WO2018056279A1 (ja) 化合物、樹脂、組成物、並びにレジストパターン形成方法及びパターン形成方法
WO2018135498A1 (ja) 化合物、樹脂、組成物及びパターン形成方法
WO2018056277A1 (ja) 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法
JP7385827B2 (ja) 化合物、樹脂、組成物、レジストパターン形成方法、回路パターン形成方法及び樹脂の精製方法
JP7090843B2 (ja) 化合物、樹脂、組成物、パターン形成方法及び精製方法
JP7445382B2 (ja) 化合物、樹脂、組成物及びパターン形成方法
JP7216897B2 (ja) 化合物、樹脂、組成物、パターン形成方法及び精製方法
JP7145415B2 (ja) 化合物、樹脂、組成物、パターン形成方法及び精製方法
JP2019148727A (ja) 化合物、樹脂、組成物及びパターン形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552955

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873065

Country of ref document: EP

Kind code of ref document: A1