WO2018056277A1 - 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法 - Google Patents

化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法 Download PDF

Info

Publication number
WO2018056277A1
WO2018056277A1 PCT/JP2017/033799 JP2017033799W WO2018056277A1 WO 2018056277 A1 WO2018056277 A1 WO 2018056277A1 JP 2017033799 W JP2017033799 W JP 2017033799W WO 2018056277 A1 WO2018056277 A1 WO 2018056277A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resist
compound
film
acid
Prior art date
Application number
PCT/JP2017/033799
Other languages
English (en)
French (fr)
Inventor
越後 雅敏
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020197007791A priority Critical patent/KR20190057060A/ko
Priority to CN201780057702.5A priority patent/CN109790097A/zh
Priority to EP17853047.3A priority patent/EP3517522A4/en
Priority to JP2018541074A priority patent/JP7061271B2/ja
Priority to US16/335,064 priority patent/US20190278180A1/en
Publication of WO2018056277A1 publication Critical patent/WO2018056277A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/17Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings containing other rings in addition to the six-membered aromatic rings, e.g. cyclohexylphenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/10Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with phenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with monohydric phenols having only one hydrocarbon substituent ortho on para to the OH group, e.g. p-tert.-butyl phenol
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09D161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0023Etching of the substrate by chemical or physical means by exposure and development of a photosensitive insulating layer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2037Exposure with X-ray radiation or corpuscular radiation, through a mask with a pattern opaque to that radiation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/322Aqueous alkaline compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking

Definitions

  • the present invention relates to a compound having a specific structure, a resin, a composition, a resist pattern forming method, and a circuit pattern forming method.
  • the molecular weight is as large as about 10,000 to 100,000, and the molecular weight distribution is wide, resulting in roughness on the pattern surface, making it difficult to control the pattern size, and limiting the miniaturization.
  • various low molecular weight resist materials have been proposed so far in order to provide resist patterns with higher resolution. Since the low molecular weight resist material has a small molecular size, it is expected to provide a resist pattern with high resolution and low roughness.
  • an alkali development type negative radiation sensitive composition for example, see Patent Document 1 and Patent Document 2 using a low molecular weight polynuclear polyphenol compound as a main component
  • a low molecular weight resist material having high heat resistance As candidates, an alkali development negative radiation-sensitive composition using a low molecular weight cyclic polyphenol compound as a main component (see, for example, Patent Document 3 and Non-Patent Document 1) has also been proposed.
  • Non-Patent Document 2 a polyphenol compound as a base compound for a resist material can impart high heat resistance despite its low molecular weight, and is useful for improving the resolution and roughness of a resist pattern (for example, Non-Patent Document 2). reference).
  • the present inventors have so far developed a resist composition containing a compound having a specific structure and an organic solvent as a material excellent in etching resistance, soluble in a solvent and applicable to a wet process (for example, Patent Document 4). See).
  • a terminal layer is removed by applying a predetermined energy as a resist underlayer film for lithography having a dry etching rate selection ratio close to that of a resist.
  • a material for forming a lower layer film for a multilayer resist process which contains at least a resin component having a substituent that generates a sulfonic acid residue and a solvent (see, for example, Patent Document 5).
  • resist underlayer film materials containing a polymer having a specific repeating unit have been proposed as a material for realizing a resist underlayer film for lithography having a lower dry etching rate selectivity than resist (for example, Patent Documents). 6). Furthermore, in order to realize a resist underlayer film for lithography having a low dry etching rate selection ratio compared with a semiconductor substrate, a repeating unit of acenaphthylenes and a repeating unit having a substituted or unsubstituted hydroxy group are copolymerized. A resist underlayer film material containing a polymer is proposed (see, for example, Patent Document 7).
  • an amorphous carbon underlayer film formed by CVD using methane gas, ethane gas, acetylene gas or the like as a raw material is well known.
  • a resist underlayer film material capable of forming a resist underlayer film by a wet process such as spin coating or screen printing is required.
  • the present inventors have a composition for forming an underlayer film for lithography containing a compound having a specific structure and an organic solvent as a material having excellent etching resistance, high heat resistance, soluble in a solvent and applicable to a wet process.
  • the thing (for example, refer patent document 8) is proposed.
  • a silicon nitride film formation method for example, Patent Document 9
  • a silicon nitride film CVD formation method for example, Patent Document 10.
  • an intermediate layer material for a three-layer process a material containing a silsesquioxane-based silicon compound is known (see, for example, Patent Documents 11 and 12).
  • compositions for optical members have been proposed. However, none of them has a combination of heat resistance, transparency and refractive index at a high level, and the development of new materials is required.
  • the present invention has been made in view of the above-described problems of the prior art, and the purpose thereof is to form a photoresist and a lower layer film for photoresist that can be applied with a wet process and have excellent heat resistance, solubility, and etching resistance. It is in providing a compound, a resin, and a composition useful for the purpose.
  • the present inventors have found that the problems of the prior art can be solved by a compound or resin having a specific structure, and have completed the present invention. It was. That is, the present invention is as follows. [1] The compound represented by following formula (0).
  • R Y is a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms
  • R Z is an N-valent group having 1 to 60 carbon atoms or a single bond
  • R T is a hydrogen atom
  • R S each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent.
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond, m is each independently an integer of 0 to 7, N is an integer of 1 to 4.
  • N is an integer of 2 or more, the structural formulas in N [] may be the same or different.
  • the alkylene group, the arylene group and the alkoxylene group may contain an ether bond, a ketone bond or an ester bond. . )
  • a composition comprising at least one selected from the group consisting of the compound according to any one of [1] to [4] and the resin according to any one of [5] to [6].
  • the composition according to [8] further comprising a solvent.
  • the crosslinking agent is at least one selected from the group consisting of phenol compounds, epoxy compounds, cyanate compounds, amino compounds, benzoxazine compounds, melamine compounds, guanamine compounds, glycoluril compounds, urea compounds, isocyanate compounds, and azide compounds.
  • the composition according to [11] The composition according to [11].
  • [13] The composition according to [11] or [12], wherein the crosslinking agent has at least one allyl group.
  • crosslinking accelerator is at least one selected from the group consisting of amines, imidazoles, organic phosphines, and Lewis acids.
  • content of the crosslinking accelerator is 0.1 to 5% by mass of the total mass of the solid component.
  • a composition according to 1. [20] The composition according to any one of [8] to [19], wherein the content of the radical polymerization initiator is 0.05 to 25% by mass of the total mass of the solid component. [21] The composition according to any one of [8] to [20], which is used for forming a film for lithography.
  • a method for forming a resist pattern comprising: forming a photoresist layer on a substrate using the composition according to [21]; and irradiating a predetermined region of the photoresist layer with a radiation to perform development.
  • a lower layer film is formed on a substrate using the composition described in [21], and at least one photoresist layer is formed on the lower layer film, and then a predetermined region of the photoresist layer is irradiated with radiation.
  • a resist pattern forming method including a step of developing.
  • a lower layer film is formed on a substrate using the composition described in [21]
  • an intermediate layer film is formed on the lower layer film using a resist intermediate layer film material, and at least one layer is formed on the intermediate layer film.
  • the compound and resin according to the present invention are highly soluble in a safe solvent, and have good heat resistance and etching resistance. Moreover, the resist composition containing the compound and / or resin according to the present invention gives a good resist pattern shape.
  • the present embodiment a mode for carrying out the present invention (hereinafter also referred to as “the present embodiment”) will be described.
  • the following embodiment is an illustration for demonstrating this invention, and this invention is not limited only to the embodiment.
  • the compound, resin, and composition containing the compound in the present embodiment can be applied to a wet process, and are useful for forming a photoresist underlayer film having excellent heat resistance and etching resistance.
  • the composition in the present embodiment uses a compound or resin having a specific structure with high heat resistance and solvent solubility, deterioration of the film during high-temperature baking is suppressed, and etching resistance against oxygen plasma etching and the like.
  • an excellent resist and lower layer film can be formed.
  • the adhesion with the resist layer is also excellent, so that an excellent resist pattern can be formed.
  • the refractive index is high and coloring due to a wide range of heat treatments from low to high temperatures is suppressed, it is also useful as various optical forming compositions.
  • the compound and resin in this embodiment have very low crystallinity, and the composition containing the compound is advantageous for molding a resist, a lower layer film and an optical member.
  • R Y is a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms
  • R Z is an N-valent group having 1 to 60 carbon atoms or a single bond
  • R T is a hydrogen atom
  • R S each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent.
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond
  • m is each independently an integer of 0 to 7
  • N is an integer of 1 to 4.
  • N is an integer of 2 or more, the structural formulas in N [] may be the same or different.
  • R Y is a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms.
  • alkyl group a linear, branched or cyclic alkyl group can be used.
  • R Y is a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, excellent heat resistance and solvent solubility can be imparted.
  • R z is an N-valent group having 1 to 60 carbon atoms or a single bond, and each aromatic ring is bonded through this R z .
  • N is an integer of 1 to 4, and when N is an integer of 2 or more, the structural formulas in N [] may be the same or different.
  • N-valent group examples include those having a linear hydrocarbon group, a branched hydrocarbon group, or an alicyclic hydrocarbon group.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the N-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aromatic group having 6 to 60 carbon atoms.
  • RT is a hydrogen atom.
  • R S each independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, or a substituent.
  • the alkyl group, the aryl group, the alkenyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond.
  • the alkyl group, alkenyl group and alkoxy group may be linear, branched or cyclic groups.
  • M is an integer of 0 to 7 each independently.
  • the compound represented by the above formula is more preferably a compound represented by the following.
  • R T has the same meaning as described in the above formula (0).
  • R Z ' are as defined R Z of the formula (0).
  • m 14 is an integer from 0 to 5
  • m 14 ′ is an integer from 0 to 4
  • m 14 ′′ is an integer from 0 to 3.
  • R Z ′ is, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, triacontyl group, cyclopropyl group, Cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotriacontyl group, norbornyl group, adamantyl group, phenyl group, naphthyl group, Anthracene group, pyrenyl group, biphenyl group, heptacene group, vinyl group, allyl group, tri
  • R Z ′ includes an isomer.
  • the butyl group includes n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • the compound (0) in the present embodiment is preferably a compound represented by the following formula (1) from the viewpoints of heat resistance and solvent solubility.
  • R ⁇ Y> , R ⁇ Z > , R ⁇ T> , N is synonymous with the above.
  • the compound represented by the above formula (1) has a relatively low molecular weight but has high heat resistance due to the rigidity of its structure, and therefore can be used under high temperature baking conditions. Moreover, it has tertiary carbon or quaternary carbon in the molecule, the crystallinity is suppressed, and it is suitably used as a film forming composition for lithography that can be used for film production for lithography.
  • the resist formation composition for lithography containing the compound represented by said Formula (1) may give a favorable resist pattern shape. it can.
  • the film has a relatively low molecular weight and low viscosity, even a substrate having a step (particularly, a fine space or a hole pattern) can be uniformly filled to every corner of the step and the film can be flattened.
  • the composition for forming a lower layer film for lithography using the same has good embedding and planarization characteristics.
  • it is a compound having a relatively high carbon concentration, high etching resistance can be imparted.
  • the aromatic density is high, the refractive index is high, and coloring is suppressed by a wide range of heat treatments from low to high temperatures, so that it is also useful as a composition for forming various optical parts.
  • the compound which has quaternary carbon from a viewpoint which suppresses oxidative decomposition of a compound, suppresses coloring, and improves heat resistance and solvent solubility is preferable.
  • Optical parts include film and sheet parts, plastic lenses (prism lenses, lenticular lenses, micro lenses, Fresnel lenses, viewing angle control lenses, contrast enhancement lenses, etc.), retardation films, electromagnetic shielding films, It is useful as a prism, an optical fiber, a solder resist for flexible printed wiring, a plating resist, an interlayer insulating film for multilayer printed wiring boards, and a photosensitive optical waveguide.
  • the compound represented by the above formula (1) is more preferably a compound represented by the following formula (1-1) from the viewpoint of heat resistance and solubility in an organic solvent. (1-1)
  • R Z , R T , and N are as defined above.
  • the compound represented by the above formula (1) is more preferably a compound represented by the following formula (1-2) from the viewpoint of easy crosslinking.
  • R Y , R Z , R T and N have the same meanings as described above.
  • the compound represented by the above formula (1-1) is more preferably a compound selected from the group consisting of compounds represented by the following formula (1a) from the viewpoint of feedability of raw materials.
  • R ⁇ Y> , R ⁇ Z > , R ⁇ T> , N is synonymous with what was demonstrated by said formula (1).
  • the compound represented by the formula (1a) is more preferably a compound represented by the following formulas (BiF-1) to (BiF-2) from the viewpoint of further solubility in an organic solvent.
  • the compound represented by the above formula (1-2) is more preferably a compound selected from the group consisting of compounds represented by the following formula (1b) from the viewpoint of feedability of raw materials.
  • R ⁇ Y> , R ⁇ Z > , R ⁇ T> , N is synonymous with what was demonstrated by said formula (1).
  • the compound represented by the above formula (1a) is more preferably a compound represented by the following formulas (BiF-3) to (BiF-4) from the viewpoint of further solubility in an organic solvent.
  • the compound represented by the formula (0) in this embodiment can be appropriately synthesized by applying a known technique, and the synthesis technique is not particularly limited.
  • a polyphenol compound can be obtained by subjecting 2,2′-biphenol and a corresponding aldehyde or ketone to a polycondensation reaction under an acid catalyst under normal pressure. Moreover, it can also carry out under pressure as needed.
  • 2,2′-biphenols examples include 2,2′-biphenol, 3,3′-dimethyl-2,2′-biphenol, 3,3′-diphenyl-2,2′-biphenol, and the like. However, it is not particularly limited to these. These can be used individually by 1 type or in combination of 2 or more types. Among these, it is more preferable to use 2,2'-biphenol from the viewpoint of stable supply of raw materials.
  • aldehydes examples include formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, biphenylaldehyde, Examples include naphthaldehyde, anthracene carbaldehyde, phenanthrene carbaldehyde, pyrene carbaldehyde, furfural, and the like, but are not limited thereto.
  • carbaldehyde and furfural is preferable in terms of giving high heat resistance
  • Dehydrogenase, naphthaldehyde, anthracene carbaldehyde, phenanthrene carbaldehyde, pyrene carbaldehyde be used furfural, high etching resistance, and more preferably.
  • ketones examples include acetone, methyl ethyl ketone, cyclobutanone, cyclopentanone, cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, adamantanone, fluorenone, benzofluorenone, acenaphthenequinone, acenaphthenone, anthraquinone, acetophenone, diacetylbenzene.
  • Triacetylbenzene Triacetylbenzene, acetonaphthone, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, diphenylcarbonylbiphenyl, benzophenone, diphenylcarbonylbenzene, triphenylcarbonylbenzene, benzonaphthone, diphenylcarbonylnaphthalene, phenylcarbonylbiphenyl, diphenylcarbonylbiphenyl, etc. Is particularly limited to There. These can be used alone or in combination of two or more.
  • ketones aromatic ketones are preferably used from the viewpoint of having both high heat resistance and high etching resistance.
  • the acid catalyst used in the above reaction can be appropriately selected from known ones and is not particularly limited.
  • inorganic acids and organic acids are widely known.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid; oxalic acid, malonic acid, succinic acid, Adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, Organic acids such as naphthalenedisulfonic acid; Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride; solid acids such as silicotungstic acid, phosphotungstic acid,
  • an organic acid and a solid acid are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is more preferably used from the viewpoint of production such as availability and ease of handling.
  • an acid catalyst 1 type can be used individually or in combination of 2 or more types.
  • the amount of the acid catalyst used can be appropriately set according to the raw material to be used, the type of the catalyst, and further the reaction conditions, and is not particularly limited, but is 0.01 to 100 parts by mass with respect to 100 parts by mass of the reaction raw material. It is preferable that
  • a reaction solvent may be used.
  • the reaction solvent is not particularly limited as long as the reaction between the aldehyde or ketone to be used and 2,2'-biphenol proceeds, and can be appropriately selected from known ones.
  • Examples of the reaction solvent include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, or a mixed solvent thereof.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • reaction solvents used can be appropriately set according to the types of raw materials and catalysts to be used, reaction conditions and the like, and is not particularly limited. A range is preferable.
  • reaction temperature in the above reaction can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
  • reaction method can be appropriately selected from known methods and is not particularly limited.
  • the reaction method may be a method in which 2,2′-biphenols, aldehydes, ketones, and a catalyst are charged all together, or 2,2′- A method in which biphenols, aldehydes or ketones are dropped in the presence of a catalyst.
  • the obtained compound can be isolated according to a conventional method, and is not particularly limited. For example, in order to remove unreacted raw materials, catalysts, etc. existing in the system, a general method such as raising the temperature of the reaction vessel to 130 to 230 ° C. and removing volatile components at about 1 to 50 mmHg is adopted. As a result, the target compound can be isolated.
  • Preferable reaction conditions are as follows: 1 mol to excess of 2,2′-biphenol and 0.001 to 1 mol of acid catalyst are used with respect to 1 mol of aldehyde or ketone, and 50 to 150 at normal pressure. The reaction may be performed at 20 ° C. for about 20 minutes to 100 hours.
  • the target product can be isolated by a known method.
  • the reaction solution is concentrated, pure water is added to precipitate the reaction product, cooled to room temperature, filtered and separated, and the resulting solid is filtered and dried, followed by column chromatography.
  • the product represented by the above formula (0), which is the target product, can be obtained by separating and purifying from the by-product by evaporating, evaporating the solvent, filtering and drying.
  • composition used for forming a film for lithography or forming an optical component.
  • a resin obtained using the compound represented by the above formula (0) as a monomer can also be used as a composition.
  • the resin is obtained, for example, by reacting a compound represented by the above formula (0) with a compound having a crosslinking reactivity.
  • Examples of the resin obtained using the compound represented by the above formula (0) as a monomer include those having a structure represented by the following formula (2). That is, the composition in the present embodiment may contain a resin having a structure represented by the following formula (2).
  • L has an optionally substituted alkylene group having 1 to 30 carbon atoms, an optionally substituted arylene group having 6 to 30 carbon atoms, and a substituent.
  • the alkylene group, the arylene group, and the alkoxylene group may include an ether bond, a ketone bond, or an ester bond. Further, the alkylene group and the alkoxylene group may be a linear, branched or cyclic group.
  • R Y , R Z , R T , R S , N, and m are as defined in the above formula (0).
  • the resin represented by the above formula (2) is preferably a resin having a structure represented by the following formula (3) from the viewpoint of availability of raw materials. (3) (In formula (3), R Y , R Z , R T , N, and L are as defined above.)
  • the resin in the present embodiment is obtained by reacting the compound represented by the above formula (0) with a compound having crosslinking reactivity.
  • a known compound can be used without particular limitation as long as the compound represented by the above formula (0) can be oligomerized or polymerized. Specific examples thereof include, but are not limited to, aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, imino compounds, isocyanates, unsaturated hydrocarbon group-containing compounds, and the like.
  • the resin having the structure represented by the above formula (2) include, for example, a condensation reaction of the compound represented by the above formula (0) with an aldehyde and / or a ketone having a crosslinking reactivity.
  • a novolak resin may be used.
  • aldehyde used when novolak-forming the compound represented by the above formula (0), for example, formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde
  • examples thereof include, but are not limited to, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbaldehyde, phenanthrenecarbaldehyde, pyrenecarbaldehyde, and furfural.
  • ketones include the above ketones. Among these, formaldehyde is more preferable. In addition, these aldehydes and / or ketones can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the aldehyde and / or ketone used is not particularly limited, but is preferably 0.2 to 5 mol, more preferably 1 mol with respect to 1 mol of the compound represented by the formula (0). 0.5 to 2 moles.
  • an acid catalyst may be used.
  • the acid catalyst used here can be appropriately selected from known ones and is not particularly limited.
  • As such an acid catalyst inorganic acids and organic acids are widely known.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid; oxalic acid, malonic acid, succinic acid, Adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, Organic acids such as naphthalenedisulfonic acid; Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride; solid acids such as silicotungstic acid, phosphotungstic acid, silicomolybdic acid, and phosphomolybdic acid However, it is not particularly limited to these.
  • an organic acid and a solid acid are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferable from the viewpoint of production such as availability and ease of handling.
  • an acid catalyst 1 type can be used individually or in combination of 2 or more types.
  • the amount of the acid catalyst used can be appropriately set according to the raw material to be used, the type of the catalyst, and further the reaction conditions, and is not particularly limited, but is 0.01 to 100 parts by mass with respect to 100 parts by mass of the reaction raw material. It is preferable that However, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, norbornadiene, 5-vinylnorborna-2-ene, ⁇ -pinene, ⁇ -pinene In the case of a copolymerization reaction with a compound having a nonconjugated double bond such as limonene, aldehydes are not necessarily required.
  • a reaction solvent can be used.
  • the reaction solvent in this polycondensation can be appropriately selected from known solvents and is not particularly limited. Examples thereof include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, and mixed solvents thereof. Can be mentioned.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the amount of these solvents used can be appropriately set according to the types of raw materials and catalysts used, and further the reaction conditions and the like, and is not particularly limited. It is preferable that Furthermore, the reaction temperature can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
  • the reaction method can be appropriately selected from known methods, and is not particularly limited. However, the reaction method may be a method in which the compound represented by the above formula (0), the aldehyde and / or ketone, and a catalyst are charged all together, The method of dripping the compound represented by the said Formula (0), an aldehyde, and / or ketones in catalyst presence is mentioned.
  • the obtained compound can be isolated according to a conventional method, and is not particularly limited.
  • a general method such as raising the temperature of the reaction vessel to 130 to 230 ° C. and removing volatile components at about 1 to 50 mmHg is adopted.
  • the novolak resin as the target product can be isolated.
  • the resin having the structure represented by the formula (2) may be a homopolymer of the compound represented by the formula (0), but is a copolymer with other phenols. May be.
  • the copolymerizable phenols include phenol, cresol, dimethylphenol, trimethylphenol, butylphenol, phenylphenol, diphenylphenol, naphthylphenol, resorcinol, methylresorcinol, catechol, butylcatechol, methoxyphenol, methoxyphenol, Although propylphenol, pyrogallol, thymol, etc. are mentioned, it is not specifically limited to these.
  • the resin having the structure represented by the above formula (2) may be copolymerized with a polymerizable monomer other than the above-described phenols.
  • the copolymerization monomer include naphthol, methylnaphthol, methoxynaphthol, dihydroxynaphthalene, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene.
  • the resin having the structure represented by the above formula (3) is a binary or more (for example, 2-4 quaternary) copolymer of the compound represented by the above formula (0) and the above-described phenols. Even if it is a binary or more (for example, 2-4 quaternary) copolymer of the compound represented by the above formula (0) and the above-mentioned copolymerization monomer, it is represented by the above formula (0). It may be a ternary or more (for example, ternary to quaternary) copolymer of the above compound, the above-mentioned phenols, and the above-mentioned copolymerization monomer.
  • the molecular weight of the resin having the structure represented by the above formula (2) is not particularly limited, but the polystyrene equivalent weight average molecular weight (Mw) is preferably 500 to 30,000, more preferably 750 to 20,000. Further, from the viewpoint of enhancing the crosslinking efficiency and suppressing the volatile components in the baking, the resin having the structure represented by the above formula (2) has a dispersity (weight average molecular weight Mw / number average molecular weight Mn) of 1.2. It is preferably within the range of ⁇ 7. In addition, said Mw and Mn can be calculated
  • the resin having the structure represented by the above formula (2) is preferably highly soluble in a solvent from the viewpoint of easier application of a wet process. More specifically, when 1-methoxy-2-propanol (PGME) and / or propylene glycol monomethyl ether acetate (PGMEA) is used as a solvent, the solubility in the solvent is preferably 10% by mass or more.
  • the solubility in PGM and / or PGMEA is defined as “resin mass ⁇ (resin mass + solvent mass) ⁇ 100 (mass%)”.
  • the solubility of the resin in PGMEA is “10 mass% or more”, and when it is not dissolved, it is “less than 10 mass%”.
  • the method for purifying the compound and / or resin in the present embodiment comprises at least one selected from a compound represented by the above formula (0) and a resin obtained by using the compound represented by the above formula (0) as a monomer.
  • the solvent used in the step of obtaining the solution (S) includes a solvent that is arbitrarily immiscible with water.
  • the resin is a resin obtained by a reaction between the compound represented by the formula (1) and / or the compound represented by the formula (2) and a compound having a crosslinking reactivity. preferable.
  • the purification method of the present embodiment the content of various metals that can be contained as impurities in the compound or resin having the specific structure described above can be reduced. More specifically, in the purification method of the present embodiment, the compound and / or the resin is dissolved in an organic solvent that is arbitrarily immiscible with water to obtain a solution (S), and the solution (S) is further obtained.
  • the extraction treatment can be performed in contact with an acidic aqueous solution. Thereby, after transferring the metal content contained in the solution (S) to the aqueous phase, the organic phase and the aqueous phase can be separated to obtain a compound and / or resin having a reduced metal content.
  • the compounds and / or resins used in the purification method of this embodiment may be used alone or in combination of two or more.
  • the said compound and resin may contain various surfactant, various crosslinking agents, various acid generators, various stabilizers, etc.
  • the solvent that is not arbitrarily miscible with water used in the purification method of the present embodiment is not particularly limited, but an organic solvent that can be safely applied to a semiconductor manufacturing process is preferable, and specifically, solubility in water at room temperature. Is less than 30%, more preferably less than 20%, and even more preferably less than 10%.
  • the amount of the organic solvent used is preferably 1 to 100 times by mass with respect to the total amount of the compound to be used and the resin.
  • toluene, 2-heptanone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate and ethyl acetate are preferable, methyl isobutyl ketone, ethyl acetate, cyclohexanone and propylene glycol monomethyl ether acetate are more preferable, and methyl More preferred are isobutyl ketone and ethyl acetate. Methyl isobutyl ketone, ethyl acetate, etc.
  • solvents are removed when the solvent is industrially distilled off or dried because the above compound and the resin containing the compound as a constituent component have a relatively high saturation solubility and a relatively low boiling point. It is possible to reduce the load in the process.
  • These solvents can be used alone or in combination of two or more.
  • the acidic aqueous solution used in the purification method of the present embodiment is appropriately selected from aqueous solutions in which generally known organic compounds or inorganic compounds are dissolved in water.
  • the acidic aqueous solution include, but are not limited to, for example, a mineral acid aqueous solution in which a mineral acid such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid is dissolved in water; acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid
  • acidic aqueous solutions can be used alone or in combination of two or more.
  • one or more mineral acid aqueous solutions selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, or acetic acid, propionic acid, succinic acid, malonic acid, succinic acid, fumaric acid, maleic acid,
  • One or more organic acid aqueous solutions selected from the group consisting of tartaric acid, citric acid, methanesulfonic acid, phenolsulfonic acid, p-toluenesulfonic acid and trifluoroacetic acid are preferred, and sulfuric acid, nitric acid, acetic acid, oxalic acid,
  • An aqueous solution of carboxylic acid such as tartaric acid and citric acid is more preferable
  • an aqueous solution of sulfuric acid, succinic acid, tartaric acid and citric acid is more preferable
  • the water used here is preferably water having a low metal content, such as ion-exchanged water, in accordance with the purpose of the purification method of the present embodiment.
  • the pH of the acidic aqueous solution used in the purification method of the present embodiment is not particularly limited, but it is preferable to adjust the acidity of the aqueous solution in consideration of the influence on the compound and the resin.
  • the pH of the acidic aqueous solution is usually about 0 to 5, preferably about 0 to 3.
  • the amount of the acidic aqueous solution used in the purification method of the present embodiment is not particularly limited, but is used from the viewpoint of reducing the number of extractions for metal removal and ensuring operability in consideration of the total liquid amount. It is preferable to adjust the amount. From the above viewpoint, the amount of the acidic aqueous solution used is preferably 10 to 200 parts by mass, and more preferably 20 to 100 parts by mass with respect to 100 parts by mass of the solution (S).
  • the metal component can be extracted from the compound or the resin in the solution (S) by bringing the acidic aqueous solution into contact with the solution (S).
  • the solution (S) further includes an organic solvent that is arbitrarily mixed with water.
  • the solution (S) contains an organic solvent that is arbitrarily miscible with water, the amount of the compound and / or resin charged can be increased, the liquid separation property is improved, and purification is performed with high pot efficiency.
  • the method of adding an organic solvent arbitrarily mixed with water is not particularly limited, for example, a method of adding to a solution containing an organic solvent in advance, a method of adding to a water or acidic aqueous solution in advance, a solution containing an organic solvent and water or an acidic aqueous solution. Any of the methods of adding after contacting may be used. Among these, the method of adding to the solution containing an organic solvent in advance is preferable from the viewpoint of the workability of the operation and the ease of management of the charged amount.
  • the organic solvent arbitrarily mixed with water used in the purification method of the present embodiment is not particularly limited, but an organic solvent that can be safely applied to a semiconductor manufacturing process is preferable.
  • the amount of the organic solvent arbitrarily mixed with water is not particularly limited as long as the solution phase and the aqueous phase are separated from each other, but is 0.1 to 100 times by mass with respect to the total amount of the compound and the resin to be used. It is preferably 0.1 to 50 times by mass, more preferably 0.1 to 20 times by mass.
  • organic solvent arbitrarily mixed with water used in the purification method of the present embodiment include, but are not limited to, ethers such as tetrahydrofuran and 1,3-dioxolane; alcohols such as methanol, ethanol and isopropanol Ketones such as acetone and N-methylpyrrolidone; aliphatic hydrocarbons such as glycol ethers such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether (PGME) and propylene glycol monoethyl ether Can be mentioned.
  • ethers such as tetrahydrofuran and 1,3-dioxolane
  • alcohols such as methanol, ethanol and isopropanol Ketones such as acetone and N-methylpyrrolidone
  • aliphatic hydrocarbons such as glycol ethers such as ethylene glycol monoethyl ether, ethylene glycol monobutyl
  • N-methylpyrrolidone, propylene glycol monomethyl ether and the like are preferable, and N-methylpyrrolidone and propylene glycol monomethyl ether are more preferable.
  • Each of these solvents can be used alone or in combination of two or more.
  • the temperature at the time of the extraction treatment is usually 20 to 90 ° C, preferably 30 to 80 ° C.
  • the extraction operation is performed, for example, by mixing well by stirring and then allowing to stand. Thereby, the metal part contained in solution (S) transfers to an aqueous phase. Moreover, the acidity of a solution falls by this operation and the quality change of a compound and / or resin can be suppressed.
  • the solution phase is recovered by decantation or the like.
  • the standing time is not particularly limited, but it is preferable to adjust the standing time from the viewpoint of improving the separation between the solvent-containing solution phase and the aqueous phase.
  • the time for standing is 1 minute or longer, preferably 10 minutes or longer, more preferably 30 minutes or longer.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times.
  • the solution phase containing the compound or the resin is further brought into contact with water to extract impurities in the compound or the resin (second extraction).
  • second extraction Specifically, for example, after performing the extraction treatment using an acidic aqueous solution, the solution phase containing the compound and / or resin and solvent extracted and recovered from the aqueous solution is further subjected to extraction treatment with water. It is preferable.
  • the extraction treatment with water is not particularly limited, and can be performed, for example, by thoroughly mixing the solution phase and water by stirring or the like and then allowing the obtained mixed solution to stand. Since the mixed solution after standing is separated into a solution phase containing a compound and / or a resin and a solvent and an aqueous phase, the solution phase can be recovered by decantation or the like.
  • the water used here is preferably water having a low metal content, for example, ion-exchanged water, in accordance with the purpose of the present embodiment.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times. Further, the use ratio of both in the extraction process, conditions such as temperature and time are not particularly limited, but they may be the same as in the case of the contact process with the acidic aqueous solution.
  • the water that can be mixed into the solution containing the compound and / or resin and solvent thus obtained can be easily removed by performing an operation such as vacuum distillation. Further, if necessary, a solvent can be added to the above solution to adjust the concentration of the compound and / or resin to an arbitrary concentration.
  • the method for isolating the compound and / or resin from the solution containing the obtained compound and / or resin and solvent is not particularly limited, and known methods such as removal under reduced pressure, separation by reprecipitation, and combinations thereof. Can be done. If necessary, known processes such as a concentration operation, a filtration operation, a centrifugal separation operation, and a drying operation can be performed.
  • composition contains 1 or more types chosen from the group which consists of resin obtained by using the compound represented by the compound represented by the said Formula (0), and the said Formula (0) as a monomer.
  • composition of the present embodiment can be a film forming composition for lithography or an optical component forming composition.
  • the film-forming composition for lithography (hereinafter also referred to as “resist composition”) for chemically amplified resist applications in the present embodiment is represented by the compound represented by the above formula (0) and the above formula (0).
  • resist composition for chemically amplified resist applications in the present embodiment is represented by the compound represented by the above formula (0) and the above formula (0).
  • One or more selected from the group consisting of resins obtained using compounds as monomers is contained as a resist substrate.
  • composition (resist composition) in the present embodiment preferably further contains a solvent.
  • the solvent include, but are not limited to, ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-propyl ether acetate, and ethylene glycol mono-n-butyl ether acetate.
  • Ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate, propylene glycol mono-n-propyl ether acetate, propylene glycol mono -Propylene glycol such as n-butyl ether acetate Monoalkyl ether acetates; propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether (PGME) and propylene glycol monoethyl ether; methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate, n-amyl lactate, etc.
  • PGMEA propylene glycol monomethyl ether acetate
  • PGMEA propylene glycol monoethyl ether acetate
  • Lactate esters aliphatic carboxylic acid esters such as methyl acetate, ethyl acetate, n-propyl acetate, n-butyl acetate, n-amyl acetate, n-hexyl acetate, methyl propionate, ethyl propionate; Methyl propionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl 3-methoxy-2-methylpropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl A
  • Other esters such as tate, butyl 3-methoxy-3-methylpropionate, butyl 3-methoxy-3-methylbutyrate, methyl acetoacetate, methyl pyruvate, ethyl pyruvate; aromatic hydrocarbons such as toluene, xylene Ketones such as 2-h
  • the solvent used in this embodiment is preferably a safe solvent, more preferably at least one selected from PGMEA, PGME, CHN, CPN, 2-heptanone, anisole, butyl acetate, ethyl propionate and ethyl lactate.
  • a seed more preferably at least one selected from PGMEA, PGME and CHN.
  • the amount of the solid component and the amount of the solvent are not particularly limited, but 1 to 80% by weight of the solid component and 20 to 99% of the solvent with respect to 100% by weight of the total amount of the solid component and the solvent.
  • the solid component is preferably 1 to 50% by mass, more preferably 1 to 50% by mass of the solid component and 50 to 99% by mass of the solvent, further preferably 2 to 40% by mass of the solid component and 60 to 98% by mass of the solvent, and particularly preferably solid
  • the component is 2 to 10% by mass and the solvent is 90 to 98% by mass.
  • composition (resist composition) of this embodiment is a group consisting of an acid generator (C), an acid crosslinking agent (G), an acid diffusion controller (E), and other components (F) as other solid components. You may further contain at least 1 type chosen from more.
  • solid component refers to a component other than a solvent.
  • the acid generator (C), the acid crosslinking agent (G), the acid diffusion controller (E) and other components (F) may be known ones, and are not particularly limited. Those described in 2013/024778 are preferred.
  • the content of the compound and / or resin used as the resist base material is not particularly limited, but the total mass of the solid component (resist base material, acid generator (C), acid crosslinking agent ( G), the total amount of solid components including optionally used components such as the acid diffusion controller (E) and other components (F), the same shall apply hereinafter)) is preferably 50 to 99.4% by mass, More preferred is 55 to 90% by mass, still more preferred is 60 to 80% by mass, and particularly preferred is 60 to 70% by mass.
  • the content of the compound and / or resin used as the resist base is in the above range, the resolution is further improved and the line edge roughness (LER) tends to be further reduced.
  • the said content is a total amount of both components.
  • a resist base material In the resist composition in the present embodiment, a resist base material, an acid generator (C), an acid cross-linking agent (G), and an acid diffusion controller (E) are included in a range that does not impair the object of the present invention.
  • dissolution accelerators As other components, dissolution accelerators, dissolution control agents, sensitizers, surfactants, organic carboxylic acids or phosphorus oxo acids or derivatives, heat and / or photocuring catalysts, polymerization inhibitors, flame retardants, fillers , Coupling agents, thermosetting resins, photocurable resins, dyes, pigments, thickeners, lubricants, antifoaming agents, leveling agents, UV absorbers, surfactants, colorants, nonionic surfactants, etc.
  • Various additives can be added alone or in combination of two or more.
  • another component (F) may be called arbitrary component (F).
  • a resist base material hereinafter also referred to as “component (A)”
  • an acid generator C
  • an acid crosslinking agent G
  • an acid diffusion controller E
  • optional components The content of (F) (component (A) / acid generator (C) / acid crosslinking agent (G) / acid diffusion controller (E) / optional component (F)) is mass% based on solids, Preferably 50 to 99.4 / 0.001 to 49 / 0.5 to 49 / 0.001 to 49/0 to 49, More preferably 55 to 90/1 to 40 / 0.5 to 40 / 0.01 to 10/0 to 5, More preferably 60 to 80/3 to 30/1 to 30 / 0.01 to 5/0 to 1, Particularly preferred is 60 to 70/10 to 25/2 to 20 / 0.01 to 3/0.
  • the blending ratio of each component is selected from each range so that the sum is 100% by mass. When the blending ratio of each component is within the above range, the performance such as sensitivity, resolution
  • the resist composition of this embodiment is usually prepared by dissolving each component in a solvent at the time of use to make a uniform solution, and then filtering with a filter having a pore size of about 0.2 ⁇ m, for example, as necessary.
  • the resist composition of the present embodiment can contain other resins other than the resin of the present embodiment as long as the object of the present invention is not impaired.
  • Other resins are not particularly limited.
  • novolak resins polyvinylphenols, polyacrylic acid, polyvinyl alcohol, styrene-maleic anhydride resins, and acrylic acid, vinyl alcohol, or vinylphenol as monomer units. Examples thereof include polymers or derivatives thereof.
  • the content of other resins is not particularly limited and is appropriately adjusted according to the type of component (A) to be used, but is preferably 30 parts by mass or less with respect to 100 parts by mass of component (A). More preferably, it is 10 mass parts or less, More preferably, it is 5 mass parts or less, Most preferably, it is 0 mass part.
  • An amorphous film can be formed by spin coating using the resist composition of the present embodiment. Moreover, the resist composition of this embodiment can be applied to a general semiconductor manufacturing process. Either a positive resist pattern or a negative resist pattern can be created depending on the type of the compound represented by the above formula (0), the type of resin obtained using this as a monomer, and / or the type of developer used.
  • the dissolution rate of the amorphous film formed by spin-coating the resist composition of the present embodiment with respect to the developer at 23 ° C. is preferably 5 ⁇ / sec or less, and 0.05 to 5 ⁇ / It is more preferable that it is sec, and it is more preferable that it is 0.0005 to 5 cm / sec.
  • the dissolution rate is 5 kg / sec or less, the resist is insoluble in the developer and tends to be easily formed as a resist. Further, when the dissolution rate is 0.0005 K / sec or more, the resolution may be improved.
  • the dissolution rate of the amorphous film formed by spin-coating the resist composition of the present embodiment in a developing solution at 23 ° C. is preferably 10 ⁇ / sec or more.
  • the dissolution rate is 10 kg / sec or more, it is easily dissolved in a developer and suitable for a resist.
  • the dissolution rate is 10 ⁇ / sec or more, the resolution may be improved. This is presumably because the compound represented by the above formula (0) and / or the micro surface portion of the resin containing the compound as a constituent component dissolves and LER is reduced. Defect reduction effect is also seen.
  • the dissolution rate can be determined by immersing the amorphous film in a developing solution at 23 ° C. for a predetermined time, and measuring the film thickness before and after the immersion by a known method such as visual observation, an ellipsometer, or a QCM method.
  • a portion exposed to radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray of an amorphous film formed by spin-coating the resist composition of this embodiment is applied to a developer at 23 ° C.
  • the dissolution rate is preferably 10 ⁇ / sec or more.
  • the dissolution rate is 10 kg / sec or more, it is easily dissolved in a developer and suitable for a resist.
  • the dissolution rate is 10 ⁇ / sec or more, the resolution may be improved. This is presumably because the compound represented by the above formula (0) and / or the micro surface portion of the resin containing the compound as a constituent component dissolves and LER is reduced. Defect reduction effect is also seen.
  • the amorphous film formed by spin-coating the resist composition of this embodiment is exposed to a developing solution at 23 ° C. at a portion exposed by radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray.
  • the dissolution rate is preferably 5 kg / sec or less, more preferably 0.05 to 5 kg / sec, and further preferably 0.0005 to 5 kg / sec.
  • the dissolution rate is 5 kg / sec or less, the resist is insoluble in the developer and tends to be easily formed as a resist. Further, when the dissolution rate is 0.0005 K / sec or more, the resolution may be improved.
  • the component (A) contained in the film forming composition for lithography for non-chemically amplified resist application of the present embodiment is a diazonaphthoquinone photoactive compound (B) described later.
  • a positive resist base material that is easily soluble in a developer by irradiating g-line, h-line, i-line, KrF excimer laser, ArF excimer laser, extreme ultraviolet light, electron beam or X-ray. Useful as.
  • G-line, h-line, i-line, KrF excimer laser, ArF excimer laser, extreme ultraviolet light, electron beam or X-ray does not change the property of component (A) greatly, but diazonaphthoquinone photoactivity is hardly soluble in the developer. Since the compound (B) changes to a readily soluble compound, a resist pattern can be formed by a development process.
  • the component (A) contained in the radiation-sensitive composition of the present embodiment is a compound having a relatively low molecular weight, the roughness of the resulting resist pattern is very small.
  • at least one selected from the group consisting of R S is preferably a group containing an iodine atom.
  • the radiation-sensitive composition increases the ability to absorb radiation such as electron beams, extreme ultraviolet rays (EUV), and X-rays. This is preferable because the sensitivity can be increased.
  • EUV extreme ultraviolet rays
  • the glass transition temperature of the component (A) contained in the radiation-sensitive composition of the present embodiment is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, further preferably 140 ° C. or higher, and particularly preferably 150 ° C. or higher.
  • the upper limit of the glass transition temperature of a component (A) is not specifically limited, For example, it is 400 degreeC.
  • the semiconductor lithography process has heat resistance capable of maintaining the pattern shape and tends to improve performance such as high resolution.
  • the crystallization calorific value obtained by differential scanning calorimetric analysis of the glass transition temperature of the component (A) contained in the radiation-sensitive composition of the present embodiment is preferably less than 20 J / g.
  • the (crystallization temperature) ⁇ (glass transition temperature) is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, still more preferably 100 ° C. or higher, and particularly preferably 130 ° C. or higher.
  • crystallization heat generation amount is less than 20 J / g, or (crystallization temperature) ⁇ (glass transition temperature) is in the above range, an amorphous film can be easily formed by spin-coating the radiation-sensitive composition, and the resist Therefore, it is likely that the film forming property required for the above can be maintained for a long period of time and the resolution can be improved.
  • the crystallization heat generation amount, the crystallization temperature, and the glass transition temperature can be obtained by differential scanning calorimetry using DSC / TA-50WS manufactured by Shimadzu Corporation.
  • About 10 mg of a sample is put into an aluminum non-sealed container and heated to a melting point or higher at a temperature rising rate of 20 ° C./min in a nitrogen gas stream (50 mL / min).
  • the temperature is raised again to the melting point or higher at a temperature rising rate of 20 ° C./min in a nitrogen gas stream (30 mL / min). Further, after rapid cooling, the temperature is increased again to 400 ° C.
  • the temperature at the midpoint of the step difference of the baseline that has changed in a step shape is the glass transition temperature (Tg), and the temperature of the exothermic peak that appears thereafter is the crystallization temperature.
  • Tg glass transition temperature
  • the calorific value is obtained from the area of the region surrounded by the exothermic peak and the baseline, and is defined as the crystallization calorific value.
  • the component (A) contained in the radiation-sensitive composition of the present embodiment is 100 or less, preferably 120 ° C. or less, more preferably 130 ° C. or less, further preferably 140 ° C. or less, and particularly preferably 150 ° C. or less under normal pressure. It is preferable that sublimability is low. Low sublimation means that, in thermogravimetric analysis, the weight loss when held at a predetermined temperature for 10 minutes is 10% or less, preferably 5% or less, more preferably 3% or less, even more preferably 1% or less, particularly preferably Indicates 0.1% or less. Since the sublimation property is low, it is possible to prevent exposure apparatus from being contaminated by outgas during exposure. In addition, a good pattern shape can be obtained with low roughness.
  • Component (A) contained in the radiation-sensitive composition of the present embodiment is propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), cyclohexanone (CHN), cyclopentanone (CPN), 2-heptanone Selected from the group consisting of anisole, butyl acetate, ethyl propionate and ethyl lactate and exhibiting the highest solubility in component (A) at 23 ° C., preferably 1% by mass or more, more preferably Dissolves in an amount of 5 mass% or more, more preferably 10 mass% or more.
  • it is selected from the group consisting of PGMEA, PGME, and CHN, and (A) a solvent that exhibits the highest solubility in the resist base material, at 23 ° C., 20% by mass or more, and particularly preferably PGMEA On the other hand, 20 mass% or more dissolves at 23 ° C.
  • the diazonaphthoquinone photoactive compound (B) contained in the radiation-sensitive composition of the present embodiment is a diazonaphthoquinone substance containing a polymeric and non-polymeric diazonaphthoquinone photoactive compound.
  • a photosensitive component photosensitive agent
  • one or more kinds can be arbitrarily selected and used without any particular limitation.
  • the component (B) a compound obtained by reacting naphthoquinone diazide sulfonic acid chloride, benzoquinone diazide sulfonic acid chloride and the like with a low molecular compound or a high molecular compound having a functional group capable of condensation reaction with these acid chlorides.
  • the functional group capable of condensing with acid chloride is not particularly limited, and examples thereof include a hydroxyl group and an amino group, and a hydroxyl group is particularly preferable.
  • the compound that can be condensed with an acid chloride containing a hydroxyl group is not particularly limited, and examples thereof include hydroquinone, resorcin, 2,4-dihydroxybenzophenone, 2,3,4-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone.
  • 2,4,4'-trihydroxybenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 2,2', 3,4,6 ' Hydroxybenzophenones such as pentahydroxybenzophenone; hydroxyphenylalkanes such as bis (2,4-dihydroxyphenyl) methane, bis (2,3,4-trihydroxyphenyl) methane, bis (2,4-dihydroxyphenyl) propane 4, 4 ′, 3 ′′, 4 ′′ -tetrahydroxy-3, 5, Hydroxytriphenylmethane such as 3 ′, 5′-tetramethyltriphenylmethane, 4, 4 ′, 2 ′′, 3 ′′, 4 ′′ -pentahydroxy-3, 5, 3 ′, 5′-tetramethyltriphenylmethane And the like.
  • hydroxyphenylalkanes such as bis (2,4-dihydroxyphenyl) methane
  • acid chlorides such as naphthoquinone diazide sulfonic acid chloride and benzoquinone diazide sulfonic acid chloride include 1,2-naphthoquinone diazide-5-sulfonyl chloride, 1,2-naphthoquinone diazide-4-sulfonyl chloride, and the like. Can be mentioned.
  • the radiation-sensitive composition of the present embodiment is prepared by, for example, dissolving each component in a solvent at the time of use to obtain a uniform solution, and then filtering by, for example, a filter having a pore size of about 0.2 ⁇ m as necessary. It is preferred that
  • An amorphous film can be formed by spin coating using the radiation-sensitive composition of the present embodiment. Moreover, the radiation sensitive composition of this embodiment can be applied to a general semiconductor manufacturing process. Depending on the type of developer used, either a positive resist pattern or a negative resist pattern can be created.
  • the dissolution rate of the amorphous film formed by spin-coating the radiation-sensitive composition of this embodiment at 23 ° C. with respect to the developing solution is preferably 5 ⁇ / sec or less, and 0.05 to More preferably, it is 5 ⁇ / sec, and further preferably 0.0005 to 5 ⁇ / sec.
  • the dissolution rate is 5 kg / sec or less, the resist is insoluble in the developer and tends to be easily formed as a resist. Further, when the dissolution rate is 0.0005 K / sec or more, the resolution may be improved.
  • the dissolution rate of the amorphous film formed by spin-coating the radiation-sensitive composition of the present embodiment in a developer at 23 ° C. is preferably 10 ⁇ / sec or more.
  • the dissolution rate is 10 ⁇ ⁇ / sec or more, it is easily dissolved in a developer and suitable for a resist.
  • the dissolution rate is 10 ⁇ / sec or more, the resolution may be improved. This is presumably because the compound represented by the above formulas (1) and (2) and / or the micro surface portion of the resin containing the compound as a constituent component dissolves and LER is reduced. Defect reduction effect is also seen.
  • the dissolution rate can be determined by immersing the amorphous film in a developing solution for a predetermined time at 23 ° C., and measuring the film thickness before and after the immersion by a known method such as visual observation, an ellipsometer, or a QCM method. .
  • the amorphous film formed by spin-coating the radiation-sensitive composition of this embodiment is irradiated with radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray, or 20 to
  • the dissolution rate of the exposed portion after heating at 500 ° C. in the developer at 23 ° C. is preferably 10 ⁇ / sec or more, more preferably 10 to 10000 ⁇ / sec, and even more preferably 100 to 1000 ⁇ / sec.
  • the dissolution rate is 10 kg / sec or more, it is easily dissolved in a developer and suitable for a resist.
  • the dissolution rate is 10,000 kg / sec or less, the resolution may be improved. This is presumably because the compound represented by the above formula (0) and / or the micro surface portion of the resin containing the compound as a constituent component dissolves and LER is reduced. Defect reduction effect is also seen.
  • the amorphous film formed by spin-coating the radiation-sensitive composition of the present embodiment is irradiated with radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray, or 20 to
  • the dissolution rate of the exposed portion after heating at 500 ° C. with respect to the developer at 23 ° C. is preferably 5 K / sec or less, more preferably from 0.05 to 5 K / sec, more preferably from 0.0005 to More preferably, it is 5 kg / sec.
  • the dissolution rate is 5 kg / sec or less, the resist is insoluble in the developer and tends to be easily formed as a resist.
  • the resolution may be improved. This is because the compound represented by the above formula (0) and / or the resin containing the compound as a constituent component changes in solubility before and after the exposure, and the unexposed portion that dissolves in the developer and the exposure that does not dissolve in the developer. This is presumably because the contrast at the interface with the portion increases. In addition, LER reduction and defect reduction effects are also seen.
  • the content of the component (A) is arbitrarily selected from the total mass of the solid component (component (A), diazonaphthoquinone photoactive compound (B), and other components (D)).
  • the total of solid components used, the same shall apply hereinafter) is preferably 1 to 99% by mass, more preferably 5 to 95% by mass, still more preferably 10 to 90% by mass, and particularly preferably 25 to 75%. % By mass.
  • the content of the component (A) is within the above range, the radiation-sensitive composition of the present embodiment tends to obtain a pattern with high sensitivity and small roughness.
  • the content of the diazonaphthoquinone photoactive compound (B) is the total mass of the solid components (component (A), diazonaphthoquinone photoactive compound (B) and other components (D). Etc.), preferably 1 to 99% by mass, more preferably 5 to 95% by mass, still more preferably 10 to 90% by mass, and particularly preferably Is 25 to 75% by mass.
  • the radiation-sensitive composition of the present embodiment tends to obtain a highly sensitive and small roughness pattern.
  • an acid generator, an acid, and a component other than the component (A) and the diazonaphthoquinone photoactive compound (B) are included as necessary, as long as the object of the present invention is not impaired.
  • Cross-linking agent acid diffusion control agent, dissolution accelerator, dissolution control agent, sensitizer, surfactant, organic carboxylic acid or phosphorus oxo acid or derivative thereof, heat and / or photocuring catalyst, polymerization inhibitor, flame retardant , Fillers, coupling agents, thermosetting resins, photocurable resins, dyes, pigments, thickeners, lubricants, antifoaming agents, leveling agents, UV absorbers, surfactants, colorants, nonionic surfactants
  • another component (D) may be called arbitrary component (D).
  • the blending ratio of each component is mass% based on the solid component, Preferably 1 to 99/99 to 1/0 to 98, More preferably 5 to 95/95 to 5/0 to 49, More preferably, 10 to 90/90 to 10/0 to 10, Even more preferably, 20-80 / 80-20 / 0-5, Particularly preferred is 25 to 75/75 to 25/0.
  • the blending ratio of each component is selected from each range so that the sum is 100% by mass. When the blending ratio of each component of the radiation-sensitive composition of the present embodiment is in the above range, it tends to be excellent in performance such as sensitivity and resolution in addition to roughness.
  • the radiation-sensitive composition of the present embodiment may contain other resins as long as the object of the present invention is not impaired.
  • other resins include novolak resins, polyvinylphenols, polyacrylic acid, polyvinyl alcohol, styrene-maleic anhydride resins, and polymers containing acrylic acid, vinyl alcohol, or vinyl phenol as monomer units or These derivatives are mentioned.
  • the blending amount of these resins is appropriately adjusted according to the type of component (A) used, but is preferably 30 parts by mass or less, more preferably 10 parts per 100 parts by mass of component (A). It is not more than part by mass, more preferably not more than 5 parts by mass, particularly preferably 0 part by mass.
  • a resist pattern is formed by forming a photoresist layer on a substrate using the resist composition or radiation-sensitive composition of the present embodiment described above, and then applying radiation to a predetermined region of the photoresist layer. And developing. More specifically, a step of forming a resist film on a substrate using the resist composition or radiation-sensitive composition of the present embodiment described above, a step of exposing the formed resist film, and developing the resist film And a step of forming a resist pattern.
  • the resist pattern in this embodiment can also be formed as an upper layer resist in a multilayer process.
  • the method for forming the resist pattern is not particularly limited, and examples thereof include the following methods.
  • a resist film is formed by applying a resist composition or a radiation sensitive composition on a conventionally known substrate by a coating means such as spin coating, cast coating, roll coating or the like.
  • the conventionally known substrate is not particularly limited, and examples thereof include a substrate for electronic components and a substrate on which a predetermined wiring pattern is formed. More specifically, a silicon substrate, a metal substrate such as copper, chromium, iron, and aluminum, a glass substrate, and the like can be given. Examples of the wiring pattern material include copper, aluminum, nickel, and gold. Further, if necessary, an inorganic and / or organic film may be provided on the substrate.
  • inorganic BARC inorganic antireflection film
  • organic BARC organic antireflection film
  • Surface treatment with hexamethylene disilazane or the like may be performed on the substrate.
  • the substrate coated with the resist composition or radiation-sensitive composition is heated.
  • the heating conditions vary depending on the composition of the resist composition or radiation-sensitive composition, but are preferably 20 to 250 ° C, more preferably 20 to 150 ° C. Heating is preferred because the adhesion of the resist to the substrate tends to be improved.
  • the resist film is exposed to a desired pattern with any radiation selected from the group consisting of visible light, ultraviolet light, excimer laser, electron beam, extreme ultraviolet light (EUV), X-ray, and ion beam.
  • the exposure conditions and the like are appropriately selected according to the composition of the resist composition or the radiation sensitive composition.
  • the heating conditions vary depending on the composition of the resist composition or the radiation-sensitive composition, but are preferably 20 to 250 ° C, more preferably 20 to 150 ° C.
  • a predetermined resist pattern is formed by developing the exposed resist film with a developer.
  • a solubility parameter (SP value) for the compound obtained by using the compound represented by the formula (1) or (2) or the compound represented by the formula (1) or (2) as a monomer is used. It is preferable to select a solvent close to), and polar solvents such as ketone solvents, ester solvents, alcohol solvents, amide solvents, ether solvents, etc., hydrocarbon solvents or alkaline aqueous solutions can be used.
  • ketone solvent examples include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, acetone, 4-heptanone, 1-hexanone, 2-hexanone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, phenylacetone, methyl ethyl ketone.
  • ester solvents include methyl acetate, butyl acetate, ethyl acetate, isopropyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3 -Ethoxypropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl formate, ethyl formate, butyl formate, propyl formate, ethyl lactate, butyl lactate, propyl lactate and the like.
  • the alcohol solvent examples include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol (2-propanol), n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isobutyl alcohol, n-hexyl alcohol, Alcohols such as 4-methyl-2-pentanol, n-heptyl alcohol, n-octyl alcohol, n-decanol, glycol solvents such as ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol monomethyl ether, propylene glycol monomethyl Ether, ethylene glycol monoethyl ether, propylene glycol monoethyl ether, diethylene glycol monomethyl ether, triethylene Glycol monoethyl ether, glycol monoethyl ether and methoxymethyl butanol.
  • Alcohols such as 4-methyl-2-pentanol, n-heptyl alcohol, n-oc
  • ether solvent examples include dioxane, tetrahydrofuran and the like in addition to the glycol ether solvent.
  • amide solvents include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, hexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone and the like. Can be mentioned.
  • hydrocarbon solvent examples include aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents such as pentane, hexane, octane and decane.
  • the water content of the developer as a whole is preferably less than 70% by mass, more preferably less than 50% by mass, and less than 30% by mass. More preferably, it is still more preferable that it is less than 10 mass%, and it is especially preferable not to contain water
  • alkaline aqueous solution examples include alkaline compounds such as mono-, di- or trialkylamines, mono-, di- or trialkanolamines, heterocyclic amines, tetramethylammonium hydroxide (TMAH), and choline. Can be mentioned.
  • alkaline compounds such as mono-, di- or trialkylamines, mono-, di- or trialkanolamines, heterocyclic amines, tetramethylammonium hydroxide (TMAH), and choline. Can be mentioned.
  • the developer is at least selected from a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent, and an ether solvent from the viewpoint of improving resist performance such as resist pattern resolution and roughness.
  • a developer containing one solvent is preferred.
  • the vapor pressure of the developer is preferably 5 kPa or less, more preferably 3 kPa or less, and even more preferably 2 kPa or less at 20 ° C.
  • the vapor pressure of the developing solution is 5 kPa or less, evaporation of the developing solution on the substrate or in the developing cup is suppressed, temperature uniformity in the wafer surface is improved, and as a result, dimensional uniformity in the wafer surface is good. It tends to become.
  • Examples of specific developers having a vapor pressure of 5 kPa or less at 20 ° C. include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 4-heptanone, 2-hexanone, diisobutylketone, cyclohexanone, methyl Ketone solvents such as cyclohexanone, phenylacetone, methyl isobutyl ketone; butyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3-ethoxypro Pionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, butyl formate, propyl formate, ethyl lactate, butyl lactate, milk Ester solvent
  • ether solvents such as tetrahydrofuran; N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide amide solvents; toluene, xylene and other aromatic hydrocarbon solvents; Aliphatic hydrocarbon solvents such as octane and decane are listed.
  • Examples of specific developers having a vapor pressure of 2 kPa or less at 20 ° C. include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 4-heptanone, 2-hexanone, diisobutylketone, cyclohexanone, methyl Ketone solvents such as cyclohexanone and phenylacetone; butyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3-ethoxypropionate, 3 -Ester solvents such as methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, ethyl lactate, butyl lactate, propyl lactate; n-butyl alcohol alcohol solvents such as sec-
  • the surfactant is not particularly limited, and for example, ionic or nonionic fluorine-based and / or silicon-based surfactants can be used.
  • fluorine and / or silicon surfactants include, for example, JP-A-62-36663, JP-A-61-226746, JP-A-61-226745, JP-A-62-170950.
  • the amount of the surfactant used is usually 0.001 to 5% by mass, preferably 0.005 to 2% by mass, and more preferably 0.01 to 0.5% by mass with respect to the total amount of the developer.
  • a development method for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle) Method), a method of spraying the developer on the substrate surface (spray method), a method of continuously applying the developer while scanning the developer coating nozzle on the substrate rotating at a constant speed (dynamic dispensing method) ) Etc.
  • the time for developing the pattern is not particularly limited, but is preferably 10 seconds to 90 seconds.
  • a step of stopping development may be performed while substituting with another solvent.
  • the rinsing liquid used in the rinsing step after development is not particularly limited as long as the resist pattern cured by crosslinking is not dissolved, and a solution or water containing a general organic solvent can be used.
  • a rinsing liquid containing at least one organic solvent selected from hydrocarbon solvents, ketone solvents, ester solvents, alcohol solvents, amide solvents and ether solvents.
  • a cleaning step is performed using a rinse solution containing at least one organic solvent selected from the group consisting of ketone solvents, ester solvents, alcohol solvents, and amide solvents.
  • a cleaning step is performed using a rinse solution containing an alcohol solvent or an ester solvent. Even more preferably, after the development, a step of washing with a rinsing solution containing a monohydric alcohol is performed. Particularly preferably, after the development, a washing step is performed using a rinsing liquid containing a monohydric alcohol having 5 or more carbon atoms.
  • the time for rinsing the pattern is not particularly limited, but is preferably 10 seconds to 90 seconds.
  • examples of the monohydric alcohol used in the rinsing step after development include linear, branched, and cyclic monohydric alcohols, and specifically, 1-butanol, 2-butanol, 3-methyl- 1-butanol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 1-hexanol, 4-methyl-2-pentanol, 1-heptanol, 1-octanol, 2-hexanol, cyclopentanol, 2- Heptanol, 2-octanol, 3-hexanol, 3-heptanol, 3-octanol, 4-octanol and the like can be used.
  • Particularly preferable monohydric alcohols having 5 or more carbon atoms include 1-hexanol, 2-hexanol, 4 -Methyl-2-pentanol, 1-pentanol, 3-methyl-1-butanol, etc. It is.
  • a plurality of the above components may be mixed, or may be used by mixing with an organic solvent other than the above.
  • the water content in the rinsing liquid is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less. When the water content in the rinsing liquid is 10% by mass or less, better development characteristics tend to be obtained.
  • the vapor pressure of the rinsing liquid used after development is preferably 0.05 kPa or more and 5 kPa or less at 20 ° C., more preferably 0.1 kPa or more and 5 kPa or less, and 0.12 kPa or more and 3 kPa or less. Is more preferable.
  • the vapor pressure of the rinsing liquid is 0.05 kPa or more and 5 kPa or less, the temperature uniformity in the wafer surface is further improved, and further, the swelling due to the penetration of the rinsing liquid is further suppressed, and the dimension in the wafer surface is uniform. Tend to be better.
  • An appropriate amount of a surfactant can be added to the rinse solution.
  • the developed wafer is cleaned using a rinsing solution containing the organic solvent.
  • the cleaning method is not particularly limited. For example, a method of continuously applying a rinsing liquid onto a substrate rotating at a constant speed (rotary coating method), or immersing the substrate in a bath filled with the rinsing liquid for a certain period of time. A method (dip method), a method of spraying a rinsing liquid onto the substrate surface (spray method), etc. can be applied. Among them, a cleaning process is performed by a spin coating method, and the substrate is rotated at a rotational speed of 2000 rpm to 4000 rpm after cleaning. It is preferable to remove the rinse liquid from the substrate.
  • the pattern wiring board is obtained by etching.
  • the etching can be performed by a known method such as dry etching using plasma gas and wet etching using an alkali solution, a cupric chloride solution, a ferric chloride solution, or the like.
  • plating after forming the resist pattern.
  • Examples of the plating method include copper plating, solder plating, nickel plating, and gold plating.
  • the residual resist pattern after etching can be stripped with an organic solvent.
  • organic solvent include PGMEA (propylene glycol monomethyl ether acetate), PGME (propylene glycol monomethyl ether), EL (ethyl lactate) and the like.
  • peeling method include a dipping method and a spray method.
  • the wiring board on which the resist pattern is formed may be a multilayer wiring board or may have a small diameter through hole.
  • the wiring board in this embodiment can also be formed by a method of depositing a metal in a vacuum after forming a resist pattern and then dissolving the resist pattern with a solution, that is, a lift-off method.
  • the film forming composition for lithography for use in the lower layer film in the present embodiment includes a compound represented by the above formula (0) and a compound represented by the above formula (0). Containing at least one substance selected from the group consisting of resins obtained using as a monomer.
  • the above substance is preferably 1 to 100% by mass, more preferably 10 to 100% by mass, and more preferably 50 to 100%, based on the total mass of the solid component, from the viewpoints of coatability and quality stability. More preferably, it is 100% by weight, and particularly preferably 100% by weight.
  • the underlayer film forming material of this embodiment can be applied to a wet process and has excellent heat resistance and etching resistance. Furthermore, since the lower layer film forming material of the present embodiment uses the above-mentioned substances, it is possible to form a lower layer film that suppresses deterioration of the film during high-temperature baking and has excellent etching resistance against oxygen plasma etching and the like. . Furthermore, since the lower layer film forming material of this embodiment is also excellent in adhesion to the resist layer, an excellent resist pattern can be obtained. In addition, the lower layer film forming material of the present embodiment may include a known lower layer film forming material for lithography and the like as long as the effects of the present invention are not impaired.
  • the lower layer film forming material in the present embodiment may contain a solvent.
  • a solvent used for the lower layer film forming material a known one can be appropriately used as long as it can dissolve at least the above-described substances.
  • the solvent include, but are not limited to, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cellosolv solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate; ethyl lactate and methyl acetate Ester solvents such as ethyl acetate, butyl acetate, isoamyl acetate, ethyl lactate, methyl methoxypropionate, methyl hydroxyisobutyrate; alcohol solvents such as methanol, ethanol, isopropanol, 1-ethoxy-2-propanol; toluene, xylene And aromatic hydrocarbons such as anisole. These solvents can be used alone or in combination of two or more.
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and
  • cyclohexanone, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, methyl hydroxyisobutyrate and anisole are particularly preferable from the viewpoint of safety.
  • the content of the solvent is not particularly limited, but from the viewpoint of solubility and film formation, it is preferably 100 to 10000 parts by mass, and 200 to 5000 parts by mass with respect to 100 parts by mass of the total mass of the solid components. More preferred is 200 to 1000 parts by mass.
  • the lower layer film-forming material in the present embodiment may contain a crosslinking agent as necessary from the viewpoint of suppressing intermixing. Although it does not specifically limit as a crosslinking agent, For example, what was described in the international publication 2013/024779 can be used.
  • crosslinking agent examples include, for example, phenol compounds, epoxy compounds, cyanate compounds, amino compounds, benzoxazine compounds, acrylate compounds, melamine compounds, guanamine compounds, glycoluril compounds, urea compounds, isocyanates. Examples thereof include, but are not limited to, compounds and azide compounds.
  • crosslinking agents can be used alone or in combination of two or more. Among these, a benzoxazine compound, an epoxy compound, or a cyanate compound is preferable, and a benzoxazine compound is more preferable from the viewpoint of improving etching resistance.
  • phenol compound known compounds can be used.
  • phenols include phenols, alkylphenols such as cresols and xylenols, polyhydric phenols such as hydroquinone, polycyclic phenols such as naphthols and naphthalenediols, and bisphenols such as bisphenol A and bisphenol F.
  • polyfunctional phenol compounds such as phenol novolac and phenol aralkyl resin.
  • aralkyl type phenol resins are preferable from the viewpoint of heat resistance and solubility.
  • epoxy compound known compounds can be used and selected from those having two or more epoxy groups in one molecule.
  • Examples thereof include epoxidized products of aralkyl type phenol resins, and epoxidized products of naphthol aralkyl resins synthesized from naphthols and paraxylylene dichloride. These epoxy resins may be used alone or in combination of two or more. From the viewpoint of heat resistance and solubility, an epoxy resin that is solid at room temperature such as an epoxy resin obtained from phenol aralkyl resins or biphenyl aralkyl resins is preferable.
  • the cyanate compound is not particularly limited as long as it is a compound having two or more cyanate groups in one molecule, and known compounds can be used.
  • a preferred cyanate compound one having a structure in which a hydroxyl group of a compound having two or more hydroxyl groups in one molecule is substituted with a cyanate group can be mentioned.
  • the cyanate compound preferably has an aromatic group, and a cyanate compound having a structure in which the cyanate group is directly connected to the aromatic group can be suitably used.
  • cyanate compounds include bisphenol A, bisphenol F, bisphenol M, bisphenol P, bisphenol E, phenol novolac resin, cresol novolac resin, dicyclopentadiene novolac resin, tetramethylbisphenol F, bisphenol A novolac resin, bromine.
  • Bisphenol A brominated phenol novolak resin, trifunctional phenol, tetrafunctional phenol, naphthalene type phenol, biphenyl type phenol, phenol aralkyl resin, biphenyl aralkyl resin, naphthol aralkyl resin, dicyclopentadiene aralkyl resin, alicyclic phenol, phosphorus
  • cyanate compounds may be used alone or in combination of two or more.
  • the cyanate compound described above may be in any form of a monomer, an oligomer, and a resin.
  • amino compound examples include m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3 , 3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl Sulfide, 3,3′-diaminodiphenyl sulfide, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene
  • Alicyclic amines such as heptane, 3 (4), 8 (9) -bis (aminomethyl) tricyclo [5.2.1.02,6] decane, 1,3-bisaminomethylcyclohexane, isophoronediamine , Ethylenediamine, hexamethylenediamine Octamethylene diamine, decamethylene diamine, diethylene triamine, aliphatic amines such as triethylenetetramine, and the like.
  • benzoxazine compound examples include Pd-type benzoxazine obtained from bifunctional diamines and monofunctional phenols, and Fa-type benzoxazine obtained from monofunctional diamines and bifunctional phenols. It is done.
  • the melamine compound include, for example, hexamethylol melamine, hexamethoxymethyl melamine, a compound obtained by methoxymethylating 1 to 6 methylol groups of hexamethylol melamine or a mixture thereof, hexamethoxyethyl melamine, hexaacyloxymethyl.
  • examples thereof include compounds in which 1 to 6 methylol groups of melamine and hexamethylolmelamine are acyloxymethylated, or a mixture thereof.
  • the guanamine compound include, for example, tetramethylolguanamine, tetramethoxymethylguanamine, a compound in which 1 to 4 methylol groups of tetramethylolguanamine are methoxymethylated, or a mixture thereof, tetramethoxyethylguanamine, tetraacyloxyguanamine And compounds in which 1 to 4 methylol groups of tetramethylolguanamine are acyloxymethylated, or a mixture thereof.
  • glycoluril compound examples include, for example, tetramethylol glycoluril, tetramethoxyglycoluril, tetramethoxymethylglycoluril, a compound in which 1 to 4 methylol groups of tetramethylolglycoluril are methoxymethylated, or a mixture thereof, Examples thereof include compounds in which 1 to 4 methylol groups of tetramethylol glycoluril are acyloxymethylated, or mixtures thereof.
  • urea compound examples include, for example, tetramethylol urea, tetramethoxymethyl urea, a compound in which 1 to 4 methylol groups of tetramethylol urea are methoxymethylated or a mixture thereof, tetramethoxyethyl urea, and the like.
  • a crosslinking agent having at least one allyl group may be used from the viewpoint of improving the crosslinkability.
  • Specific examples of the crosslinking agent having at least one allyl group include 2,2-bis (3-allyl-4-hydroxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2 -Bis (3-allyl-4-hydroxyphenyl) propane, bis (3-allyl-4-hydroxyphenyl) sulfone, bis (3-allyl-4-hydroxyphenyl) sulfide, bis (3-allyl-4-hydroxyphenyl) ) Allylphenols such as ether, 2,2-bis (3-allyl-4-cyanatophenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3 -Allyl-4-cyanatophenyl) propane, bis (3-allyl-4-cyanatosiphenyl) sulfone, bis (3-allyl-4-cyanatophenyl) sulfide, bis (3- Examples
  • the content of the crosslinking agent in the lower layer film-forming material is not particularly limited, but is preferably 0.1 to 50% by mass, more preferably 5 to 50% by mass, and still more preferably 10%, based on the total mass of the solid component. ⁇ 40% by weight.
  • Crosslinking accelerator In the lower layer film forming material of the present embodiment, a crosslinking accelerator for accelerating the crosslinking and curing reaction can be used as necessary.
  • the crosslinking accelerator is not particularly limited as long as it promotes crosslinking and curing reaction, and examples thereof include amines, imidazoles, organic phosphines, and Lewis acids. These crosslinking accelerators can be used alone or in combination of two or more. Among these, imidazoles or organic phosphines are preferable, and imidazoles are more preferable from the viewpoint of lowering the crosslinking temperature.
  • crosslinking accelerator examples include, but are not limited to, for example, 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylamino).
  • Tertiary amines such as methyl) phenol, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, 2,4,5- Imidazoles such as triphenylimidazole, organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, phenylphosphine, tetraphenylphosphonium tetraphenylborate, teto Tetraphenyl such as phenylphosphonium / ethyltriphenylborate, tetrabutylphosphonium / tetrabutylborate, etc., 2-ethyl-4-methylimidazole / tetraphenylborate, N-methylmorpholine /
  • the content of the crosslinking accelerator is usually 0.1 to 10% by mass of the total mass of the solid component, and more preferably 0.1 to 5 from the viewpoint of ease of control and economy. Parts by mass, more preferably 0.1 to 3% by mass.
  • a radical polymerization initiator can be blended as necessary.
  • the radical polymerization initiator may be a photopolymerization initiator that initiates radical polymerization with light or a thermal polymerization initiator that initiates radical polymerization with heat.
  • the radical polymerization initiator can be, for example, at least one selected from the group consisting of ketone photopolymerization initiators, organic peroxide polymerization initiators, and azo polymerization initiators.
  • Such a radical polymerization initiator is not particularly limited, and those conventionally used can be appropriately employed.
  • 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile 1-[(1-cyano-1-methylethyl) azo] formamide, 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-methylpropionamidine) dihydrochloride, 2,2′-azobis (2-methyl-N-phenylpropionamidine) dihydrochloride, 2,2′-azobis [N- (4-chlorophenyl) -2-methylpropionamidine] Dihydride chloride, 2,2'-azobis [N- (4-hydrophenyl) -2-methylpropionamidine] dihydrochloride 2,2′-azobis [2-methyl-N- (phenylmethyl) propionamidine] dihydrochloride, 2,2′-azo
  • the content of the radical polymerization initiator may be a stoichiometrically required amount, but is preferably 0.05 to 25% by mass, and preferably 0.1 to 10% by mass based on the total mass of the solid component. % Is more preferable.
  • the content of the radical polymerization initiator is 0.05% by mass or more, there is a tendency that curing can be prevented from being insufficient.
  • the content of the radical polymerization initiator is 25% by mass or less. In such a case, the long-term storage stability of the lower layer film-forming material at room temperature tends to be prevented from being impaired.
  • the lower layer film-forming material in the present embodiment may contain an acid generator as necessary from the viewpoint of further promoting the crosslinking reaction by heat.
  • an acid generator those that generate an acid by thermal decomposition, those that generate an acid by light irradiation, and the like are known, and any of them can be used.
  • an acid generator what was described in the international publication 2013/024779 can be used, for example.
  • the content of the acid generator in the lower layer film-forming material is not particularly limited, but is preferably 0.1 to 50% by mass, more preferably 0.5 to 40% by mass based on the total mass of the solid component. .
  • the acid generation amount tends to increase and the crosslinking reaction tends to be enhanced, and the occurrence of the mixing phenomenon with the resist layer tends to be suppressed.
  • the lower layer film-forming material in the present embodiment may contain a basic compound from the viewpoint of improving storage stability.
  • the basic compound serves as a quencher for the acid to prevent a slight amount of acid generated from the acid generator from causing the crosslinking reaction to proceed.
  • a basic compound is not particularly limited, and examples thereof include those described in International Publication No. 2013/024779.
  • the content of the basic compound in the lower layer film-forming material is not particularly limited, but is preferably 0.001 to 2% by mass, more preferably 0.01 to 1% by mass, based on the total mass of the solid component. .
  • the lower layer film forming material in the present embodiment may contain other resins and / or compounds for the purpose of imparting curability by heat or light and controlling the absorbance.
  • Such other resins and / or compounds include: naphthol resins, xylene resins, naphthol modified resins, phenol modified resins of naphthalene resins; polyhydroxystyrene, dicyclopentadiene resin, (meth) acrylate, dimethacrylate, trimethacrylate, tetra Resins containing no heteroaromatic ring such as methacrylate, vinylnaphthalene, naphthalene rings such as polyacenaphthylene, biphenyl rings such as phenanthrenequinone and fluorene, heterocycles having heteroatoms such as thiophene, indene, etc .; rosin resins; Examples thereof include resins or compounds containing an alicyclic structure such as cyclodextr, cyclodext
  • the lower layer film-forming material in the present embodiment may contain a known additive.
  • Known additives include, but are not limited to, for example, heat and / or photocuring catalysts, polymerization inhibitors, flame retardants, fillers, coupling agents, thermosetting resins, photocurable resins, dyes, and pigments. , Thickeners, lubricants, antifoaming agents, leveling agents, ultraviolet absorbers, surfactants, colorants, nonionic surfactants, and the like.
  • the lower layer film for lithography in the present embodiment is formed from the lower layer film forming material described above.
  • a lower layer film is formed on a substrate using the composition, and at least one photoresist layer is formed on the lower layer film.
  • a step of performing development by irradiating a predetermined region with radiation More specifically, a step (A-1) of forming a lower layer film on the substrate using the lower layer film forming material of the present embodiment, and a step of forming at least one photoresist layer on the lower layer film ( A-2) and a step (A-3) of performing development by irradiating a predetermined region of the photoresist layer with radiation after the step (A-2).
  • the lower layer film is formed on the substrate using the composition, the intermediate layer film is formed on the lower layer film using the resist intermediate layer film material, and the intermediate layer is formed.
  • the intermediate layer film is etched using the resist pattern as a mask, the lower layer film is etched using the obtained intermediate layer film pattern as an etching mask, and the substrate is etched using the obtained lower layer film pattern as an etching mask. Forming a pattern.
  • a step (B-1) of forming a lower layer film on the substrate using the lower layer film forming material of the present embodiment, and a resist intermediate layer material containing silicon atoms on the lower layer film are used.
  • a step (B-4) of irradiating a predetermined region of the photoresist layer and developing to form a resist pattern and after the step (B-4), the intermediate layer film using the resist pattern as a mask Etching the lower layer film using the obtained intermediate layer film pattern as an etching mask, and etching the substrate using the obtained lower layer film pattern as an etching mask to form a pattern on the substrate (B-5) It has a.
  • the formation method of the lower layer film for lithography in the present embodiment is not particularly limited as long as it is formed from the lower layer film forming material of the present embodiment, and a known method can be applied.
  • a known method can be applied.
  • the lower layer film material of the present embodiment is crosslinked by a known method. And cured to form the lower layer film for lithography of the present embodiment.
  • the crosslinking method include methods such as thermosetting and photocuring.
  • the baking temperature is not particularly limited, but is preferably in the range of 80 to 450 ° C., more preferably 200 to 400 ° C.
  • the baking time is not particularly limited, but is preferably within the range of 10 to 300 seconds.
  • the thickness of the lower layer film can be appropriately selected according to the required performance, and is not particularly limited, but is usually preferably about 30 to 20000 nm, and more preferably 50 to 15000 nm.
  • a silicon-containing resist layer thereon in the case of a two-layer process, a silicon-containing resist layer thereon, or a single-layer resist made of normal hydrocarbon, and in the case of a three-layer process, a silicon-containing intermediate layer is further formed thereon. It is preferable to prepare a single-layer resist layer that does not contain silicon. In this case, a well-known thing can be used as a photoresist material for forming this resist layer.
  • a silicon-containing resist layer or a single layer resist made of ordinary hydrocarbon can be formed on the lower layer film.
  • a silicon-containing intermediate layer can be formed on the lower layer film, and a single-layer resist layer not containing silicon can be formed on the silicon-containing intermediate layer.
  • the photoresist material for forming the resist layer can be appropriately selected from known materials and is not particularly limited.
  • a silicon-containing resist material for a two-layer process from the viewpoint of oxygen gas etching resistance, a silicon atom-containing polymer such as a polysilsesquioxane derivative or a vinylsilane derivative is used as a base polymer, and an organic solvent, an acid generator, If necessary, a positive photoresist material containing a basic compound or the like is preferably used.
  • a silicon atom-containing polymer a known polymer used in this type of resist material can be used.
  • a polysilsesquioxane-based intermediate layer is preferably used as the silicon-containing intermediate layer for the three-layer process.
  • the intermediate layer With an effect as an antireflection film, reflection tends to be effectively suppressed.
  • the k value increases and the substrate reflection tends to increase, but the reflection is suppressed in the intermediate layer.
  • the substrate reflection can be reduced to 0.5% or less.
  • the intermediate layer having such an antireflection effect is not limited to the following, but for 193 nm exposure, a polysilsesquide crosslinked with an acid or heat in which a light absorbing group having a phenyl group or a silicon-silicon bond is introduced. Oxane is preferably used.
  • an intermediate layer formed by a chemical vapor deposition (CVD) method can also be used.
  • the intermediate layer produced by the CVD method and having a high effect as an antireflection film is not limited to the following, for example, a SiON film is known.
  • the upper layer resist in the three-layer process may be either a positive type or a negative type, and the same one as a commonly used single layer resist can be used.
  • the lower layer film in this embodiment can also be used as an antireflection film for a normal single layer resist or a base material for suppressing pattern collapse. Since the lower layer film has excellent etching resistance for the base processing, it can be expected to function as a hard mask for the base processing.
  • a wet process such as spin coating or screen printing is preferably used as in the case of forming the lower layer film.
  • prebaking is usually performed, but this prebaking is preferably performed at 80 to 180 ° C. for 10 to 300 seconds.
  • a resist pattern can be obtained by performing exposure, post-exposure baking (PEB), and development.
  • the thickness of the resist film is not particularly limited, but is generally preferably 30 to 500 nm, more preferably 50 to 400 nm.
  • the exposure light may be appropriately selected and used according to the photoresist material to be used.
  • high energy rays having a wavelength of 300 nm or less, specifically, 248 nm, 193 nm, 157 nm excimer laser, 3 to 20 nm soft X-ray, electron beam, X-ray and the like can be mentioned.
  • the resist pattern formed by the above-described method is one in which pattern collapse is suppressed by the lower layer film. Therefore, by using the lower layer film in the present embodiment, a finer pattern can be obtained, and the exposure amount necessary for obtaining the resist pattern can be reduced.
  • gas etching is preferably used as the etching of the lower layer film in the two-layer process.
  • gas etching etching using oxygen gas is suitable.
  • oxygen gas it is also possible to add an inert gas such as He or Ar, or CO, CO 2 , NH 3 , SO 2 , N 2 , NO 2, or H 2 gas.
  • gas etching can be performed only with CO, CO 2 , NH 3 , N 2 , NO 2, and H 2 gas without using oxygen gas.
  • the latter gas is preferably used for side wall protection for preventing undercut of the pattern side wall.
  • gas etching is also preferably used for etching the intermediate layer in the three-layer process.
  • the gas etching the same one as described in the above two-layer process can be applied.
  • the processing of the intermediate layer in the three-layer process is preferably performed using a fluorocarbon gas and a resist pattern as a mask.
  • the lower layer film can be processed by, for example, oxygen gas etching using the intermediate layer pattern as a mask.
  • a silicon oxide film, a silicon nitride film, or a silicon oxynitride film is formed by a CVD method, an ALD method, or the like.
  • the method for forming the nitride film is not limited to the following, but for example, a method described in Japanese Patent Application Laid-Open No. 2002-334869 (Patent Document 6) and WO 2004/066377 (Patent Document 7) can be used.
  • a photoresist film can be formed directly on such an intermediate film, but an organic antireflection film (BARC) is formed on the intermediate film by spin coating, and a photoresist film is formed thereon. May be.
  • BARC organic antireflection film
  • a polysilsesquioxane-based intermediate layer is also preferably used.
  • the resist intermediate layer film By providing the resist intermediate layer film with an effect as an antireflection film, reflection tends to be effectively suppressed.
  • Specific materials of the polysilsesquioxane-based intermediate layer are not limited to the following, but are described, for example, in JP-A-2007-226170 (Patent Document 8) and JP-A-2007-226204 (Patent Document 9). Can be used.
  • Etching of the next substrate can also be performed by a conventional method.
  • the substrate is SiO 2 or SiN
  • Etching mainly with gas can be performed.
  • the substrate is etched with a chlorofluorocarbon gas, the silicon-containing resist of the two-layer resist process and the silicon-containing intermediate layer of the three-layer process are peeled off simultaneously with the substrate processing.
  • the silicon-containing resist layer or the silicon-containing intermediate layer is separately peeled, and generally, dry etching peeling with a chlorofluorocarbon-based gas is performed after the substrate is processed. .
  • the lower layer film in the present embodiment has a feature that the etching resistance of the substrate is excellent.
  • known substrates can be appropriately selected and used, and are not particularly limited. Examples thereof include Si, ⁇ -Si, p-Si, SiO 2 , SiN, SiON, W, TiN, and Al. It is done.
  • the substrate may be a laminate having a film to be processed (substrate to be processed) on a base material (support). Examples of such processed films include various Low-k films and stoppers thereof such as Si, SiO 2 , SiON, SiN, p-Si, ⁇ -Si, W, W-Si, Al, Cu, and Al—Si. A film etc.
  • the thing of a different material from a base material (support body) is used normally.
  • the thickness of the substrate to be processed or the film to be processed is not particularly limited, but is usually preferably about 50 to 10,000 nm, more preferably 75 to 5,000 nm.
  • the resist permanent film which can also produce a resist permanent film
  • the permanent film include a solder resist, a package material, an underfill material, a package adhesive layer such as a circuit element, an adhesive layer between an integrated circuit element and a circuit board, and a thin film display protective film for a thin display. Examples include a liquid crystal color filter protective film, a black matrix, and a spacer.
  • a permanent film made of the above composition has excellent heat resistance and moisture resistance, and also has a very excellent advantage of less contamination due to sublimation components.
  • a display material is a material having high sensitivity, high heat resistance, and moisture absorption reliability with little image quality deterioration due to important contamination.
  • the above-mentioned film-forming composition for lithography and the composition for permanent resist film can be prepared by blending the above components and mixing them using a stirrer or the like. Further, when the resist underlayer film composition or resist permanent film composition contains a filler or a pigment, it is adjusted by dispersing or mixing using a dispersing device such as a dissolver, a homogenizer, or a three-roll mill. I can do it.
  • a dispersing device such as a dissolver, a homogenizer, or a three-roll mill. I can do it.
  • Carbon concentration and oxygen concentration Carbon concentration and oxygen concentration (mass%) were measured by organic elemental analysis using the following apparatus. Apparatus: CHN coder MT-6 (manufactured by Yanaco Analytical Co., Ltd.)
  • the molecular weight of the compound was measured by LC-MS analysis using Water's Acquity UPLC / MALDI-Synapt HDMS. Moreover, the gel permeation chromatography (GPC) analysis was performed on the following conditions, and the polystyrene conversion weight average molecular weight (Mw), number average molecular weight (Mn), and dispersity (Mw / Mn) were calculated
  • Apparatus Shodex GPC-101 (manufactured by Showa Denko KK) Column: KF-80M x 3 Eluent: THF 1mL / min Temperature: 40 ° C
  • the obtained resin (R1-BiF-1) was Mn: 1985, Mw: 3420, and Mw / Mn: 1.72.
  • the obtained resin (R2-BiF-1) was Mn: 1612, Mw: 3040, and Mw / Mn: 1.89.
  • ethylbenzene (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) as a diluent solvent was added to the reaction solution, and after standing, the lower aqueous phase was removed. Further, neutralization and washing with water were performed, and ethylbenzene and unreacted 1,5-dimethylnaphthalene were distilled off under reduced pressure to obtain 1.25 kg of a light brown solid dimethylnaphthalene formaldehyde resin. The molecular weight of the obtained dimethylnaphthalene formaldehyde was Mn: 562.
  • a four-necked flask having an internal volume of 0.5 L equipped with a Dimroth condenser, a thermometer, and a stirring blade was prepared.
  • This four-necked flask was charged with 100 g (0.51 mol) of the dimethylnaphthalene formaldehyde resin obtained as described above and 0.05 g of paratoluenesulfonic acid under a nitrogen stream, and the temperature was raised to 190 ° C. Stir after heating for hours. Thereafter, 52.0 g (0.36 mol) of 1-naphthol was further added, and the temperature was raised to 220 ° C. and reacted for 2 hours.
  • the obtained resin (CR-1) was Mn: 885, Mw: 2220, and Mw / Mn: 4.17.
  • materials for forming a lower layer film for lithography having the composition shown in Table 3 were prepared.
  • these lower-layer film forming materials for lithography were spin-coated on a silicon substrate, and then baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to prepare 200 nm-thick underlayer films.
  • the following were used about the acid generator, the crosslinking agent, and the organic solvent.
  • Acid generator Ditertiary butyl diphenyliodonium nonafluoromethanesulfonate (DTDDPI) manufactured by Midori Chemical Co., Ltd.
  • DTDDPI Ditertiary butyl diphenyliodonium nonafluoromethanesulfonate
  • Crosslinking agent Nikalac MX270 (Nikalac) manufactured by Sanwa Chemical Co., Ltd.
  • Organic solvent propylene glycol monomethyl ether acetate acetate (PGMEA)
  • Etching device RIE-10NR manufactured by Samco International Output: 50W Pressure: 20Pa Time: 2min Etching gas
  • Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate 50: 5: 5 (sccm)
  • Etching resistance was evaluated according to the following procedure. First, a novolak underlayer film was prepared under the same conditions as in Example 1 except that novolak (PSM4357 manufactured by Gunei Chemical Co., Ltd.) was used instead of the compound (BiF-1). Then, the above-described etching test was performed on this novolac lower layer film, and the etching rate at that time was measured. Next, the above-described etching test was similarly performed on the lower layer films of Examples 1 to 9, Examples 1A to 9A, and Comparative Example 1, and the etching rate at that time was measured. Then, the etching resistance was evaluated according to the following evaluation criteria based on the etching rate of the novolak underlayer film.
  • Etching rate is less than ⁇ 10% compared to the novolac lower layer film
  • B Etching rate from ⁇ 10% to + 5% compared to the novolac lower layer film
  • C Etching rate is more than + 5% compared to the novolak underlayer
  • each solution of the lower layer film forming material for lithography containing BiF-1 or BiF-3 obtained in Examples 1 and 2 was applied on a SiO 2 substrate having a film thickness of 300 nm, and 60 ° C. at 60 ° C. Then, baking was further performed at 400 ° C. for 120 seconds to form a lower layer film having a thickness of 70 nm. On this lower layer film, an ArF resist solution was applied and baked at 130 ° C. for 60 seconds to form a 140 nm-thick photoresist layer.
  • the compound of the formula (11) is 4.15 g of 2-methyl-2-methacryloyloxyadamantane, 3.00 g of methacryloyloxy- ⁇ -butyrolactone, 2.08 g of 3-hydroxy-1-adamantyl methacrylate, azobisisobutyronitrile. 0.38 g was dissolved in 80 mL of tetrahydrofuran to obtain a reaction solution. This reaction solution was polymerized for 22 hours under a nitrogen atmosphere while maintaining the reaction temperature at 63 ° C., and then the reaction solution was dropped into 400 mL of n-hexane. The resulting resin thus obtained was coagulated and purified, and the resulting white powder was filtered and obtained by drying overnight at 40 ° C. under reduced pressure.
  • the photoresist layer was exposed using an electron beam drawing apparatus (ELIONX, ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), and 2.38 mass% tetramethylammonium hydroxide (A positive resist pattern was obtained by developing with an aqueous solution of TMAH for 60 seconds.
  • ELIONX electron beam drawing apparatus
  • ELS-7500 ELS-7500, 50 keV
  • PEB baked at 115 ° C. for 90 seconds
  • TMAH 2.38 mass% tetramethylammonium hydroxide
  • the shapes and defects of the obtained 55 nm L / S (1: 1) and 80 nm L / S (1: 1) resist patterns were observed using an electron microscope (S-4800) manufactured by Hitachi, Ltd.
  • S-4800 electron microscope
  • the resist pattern was evaluated as “good” when the pattern was not collapsed and the rectangularity was good, and “bad”.
  • the minimum line width with no pattern collapse and good rectangularity was used as an evaluation index as “resolution”.
  • the minimum electron beam energy amount capable of drawing a good pattern shape was set as “sensitivity” and used as an evaluation index.
  • Table 4 The evaluation results are shown in Table 4.
  • Examples 1 and 2 using BiF-1 and BiF-3 are superior to Comparative Example 1 in all of heat resistance, solubility, and etching resistance. At least confirmed.
  • Comparative Example 1 using CR-1 (phenol-modified dimethylnaphthalene formaldehyde resin) had poor etching resistance.
  • the resist pattern shape after development was good and no defects were observed.
  • both the resolution and sensitivity were significantly superior to those of Comparative Example 2 in which the formation of the lower layer film was omitted.
  • the lower layer film forming material for lithography used in Examples 1 and 2 had good adhesion to the resist material.
  • Examples 12 and 13 The lower layer film forming material solution for lithography of Examples 1 and 2 was applied onto a 300 nm thick SiO 2 substrate and baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to form a lower layer film having a thickness of 80 nm. A film was formed. On this lower layer film, a silicon-containing intermediate layer material was applied and baked at 200 ° C. for 60 seconds to form an intermediate layer film having a thickness of 35 nm. Further, the ArF resist solution was applied on the intermediate layer film and baked at 130 ° C. for 60 seconds to form a 150 nm-thick photoresist layer. As the silicon-containing intermediate layer material, the silicon atom-containing polymer obtained below was used.
  • the photoresist layer was subjected to mask exposure using an electron beam lithography apparatus (ELIONX, ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), and 2.38 mass% tetramethylammonium hydroxide.
  • ELIONX electron beam lithography apparatus
  • PEB baked at 115 ° C. for 90 seconds
  • TMAH tetramethylammonium hydroxide
  • optical component-forming compositions were prepared with the formulations shown in Table 5 below. Of the components of the optical component-forming composition in Table 5, the following were used for the acid generator, acid cross-linking agent, acid diffusion inhibitor, and solvent.
  • Acid generator Ditertiary butyl diphenyliodonium nonafluoromethanesulfonate (DTDDPI) manufactured by Midori Chemical Co., Ltd.
  • Crosslinking agent Nikalac MX270 (Nikalac) manufactured by Sanwa Chemical Co., Ltd.
  • Organic solvent Propylene glycol monomethyl ether acetate acetate (PGMEA)
  • PMEA Propylene glycol monomethyl ether acetate acetate
  • the optical component-forming composition in a uniform state was spin-coated on a clean silicon wafer, and then pre-baked (PB) in an oven at 110 ° C. to form an optical component-forming film having a thickness of 1 ⁇ m.
  • the prepared optical component-forming composition was evaluated as “A” when the film formation was good and “C” when the formed film had defects.
  • a uniform optical component-forming composition was spin-coated on a clean silicon wafer, and then PB was performed in an oven at 110 ° C. to form a film having a thickness of 1 ⁇ m.
  • a resist composition was prepared with the formulation shown in Table 6 below.
  • the following were used for the acid generator, acid crosslinking agent, acid diffusion inhibitor, and solvent.
  • Acid generator Triphenylphosphonium trifluoromethanesulfonate manufactured by Midori Kagaku Co., Ltd.
  • Crosslinking agent Nicalak MX270 manufactured by Sanwa Chemical Co., Ltd.
  • Acid diffusion inhibitor Trioctylamine manufactured by Tokyo Chemical Industry Co., Ltd.
  • Organic solvent Propylene glycol monomethyl ether (PGME) manufactured by Tokyo Chemical Industry Co., Ltd.
  • the line and space was observed with a scanning electron microscope (S-4800, manufactured by Hitachi High-Technology Corporation), and the reactivity of the resist composition by electron beam irradiation was evaluated.
  • Sensitivity was expressed as the minimum amount of energy per unit area necessary for obtaining a pattern, and was evaluated according to the following.
  • the obtained pattern shape is transferred to an SEM (Scanning Electron Microscope). And evaluated according to the following.
  • C When a non-rectangular pattern is obtained
  • the compound and resin according to the present invention are highly soluble in a safe solvent, have good heat resistance and etching resistance, and the resist composition according to the present invention gives a good resist pattern shape.
  • a wet process can be applied, and a compound, a resin, and a film forming composition for lithography useful for forming a photoresist underlayer film having excellent heat resistance and etching resistance can be realized.
  • this film-forming composition for lithography uses a compound or resin having a specific structure that has high heat resistance and high solvent solubility, deterioration of the film during high-temperature baking is suppressed, oxygen plasma etching, etc. It is possible to form a resist and an underlayer film that are also excellent in etching resistance to. Furthermore, when the lower layer film is formed, the adhesion with the resist layer is also excellent, so that an excellent resist pattern can be formed.
  • the refractive index is high and the coloring is suppressed by low-temperature to high-temperature treatment, it is useful as a composition for forming various optical parts.
  • the present invention provides, for example, an electrical insulating material, a resist resin, a semiconductor sealing resin, an adhesive for a printed wiring board, an electrical laminate mounted on an electrical device / electronic device / industrial device, etc. ⁇ Matrix resin for prepregs, built-up laminate materials, resin for fiber reinforced plastics, sealing resin for liquid crystal display panels, paints, various coating agents, adhesives, and coatings for semiconductors installed in electronic equipment and industrial equipment
  • resin for semiconductor resist resin for forming lower layer film, film and sheet, plastic lens (prism lens, lenticular lens, micro lens, Fresnel lens, viewing angle control lens, contrast enhancement lens, etc.)
  • Retardation film electromagnetic shielding film, prism, optical fiber, flexible Solder resist printed wiring, plating resist, multilayer printed wiring boards interlayer insulating film, the optical component such as a photosensitive optical waveguide, it is widely and effectively available.
  • the present invention has industrial applicability in the fields of lithography resist, lithography underlayer film, multilayer resist underlayer film and optical components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Architecture (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials For Photolithography (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

本発明は、下記式(0)で表される、化合物を提供する。 (式(0)中、Rは、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基であり、 Rは、炭素数1~60のN価の基又は単結合であり、 Rは、水素原子であり、 Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、 mは、各々独立して0~7の整数であり、Nは、1~4の整数であり、ここで、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよい。)

Description

化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法
 本発明は、特定の構造を有する化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法に関する。
 半導体デバイスの製造において、フォトレジスト材料を用いたリソグラフィーによる微細加工が行われているが、近年、LSIの高集積化と高速度化に伴い、パターンルールによる更なる微細化が求められている。また、レジストパターン形成の際に使用するリソグラフィー用の光源は、KrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)へと短波長化されており、極端紫外光(EUV、13.5nm)の導入も見込まれている。
 しかしながら、従来の高分子系レジスト材料を用いるリソグラフィーでは、その分子量が1万~10万程度と大きく、分子量分布も広いため、パターン表面にラフネスが生じパターン寸法の制御が困難となり、微細化に限界がある。そこで、これまでに、より解像性の高いレジストパターンを与えるために、種々の低分子量レジスト材料が提案されている。低分子量レジスト材料は分子サイズが小さいことから、解像性が高く、ラフネスが小さいレジストパターンを与えることが期待される。
 現在、このような低分子系レジスト材料として、様々なものが知られている。例えば、低分子量多核ポリフェノール化合物を主成分として用いるアルカリ現像型のネガ型感放射線性組成物(例えば、特許文献1及び特許文献2参照)が提案されており、高耐熱性を有する低分子量レジスト材料の候補として、低分子量環状ポリフェノール化合物を主成分として用いるアルカリ現像型のネガ型感放射線性組成物(例えば、特許文献3及び非特許文献1参照)も提案されている。また、レジスト材料のベース化合物として、ポリフェノール化合物が、低分子量ながら高耐熱性を付与でき、レジストパターンの解像性やラフネスの改善に有用であることが知られている(例えば、非特許文献2参照)。
 本発明者らは、これまでに、エッチング耐性に優れるとともに、溶媒に可溶で湿式プロセスが適用可能な材料として、特定の構造の化合物及び有機溶媒を含有するレジスト組成物(例えば、特許文献4参照)を提案している。
 また、レジストパターンの微細化が進むと、解像度の問題若しくは現像後にレジストパターンが倒れるといった問題が生じるため、レジストの薄膜化が望まれるようになる。ところが、単にレジストの薄膜化を行うと、基板加工に十分なレジストパターンの膜厚を得ることが難しくなる。そのため、レジストパターンだけではなく、レジストと加工する半導体基板との間にレジスト下層膜を作製し、このレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要になっている。
 現在、このようなプロセス用のレジスト下層膜として、種々のものが知られている。例えば、従来のエッチング速度の速いレジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、所定のエネルギーが印加されることにより末端基が脱離してスルホン酸残基を生じる置換基を少なくとも有する樹脂成分と、溶媒とを含有する多層レジストプロセス用下層膜形成材料が提案されている(例えば、特許文献5参照)。また、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、特定の繰り返し単位を有する重合体を含むレジスト下層膜材料が提案されている(例えば、特許文献6参照)。さらに、半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、アセナフチレン類の繰り返し単位と、置換又は非置換のヒドロキシ基を有する繰り返し単位とを共重合してなる重合体を含むレジスト下層膜材料が提案されている(例えば、特許文献7参照)。
 一方、この種のレジスト下層膜において高いエッチング耐性を持つ材料としては、メタンガス、エタンガス、アセチレンガス等を原料に用いたCVDによって形成されたアモルファスカーボン下層膜がよく知られている。しかしながら、プロセス上の観点から、スピンコート法やスクリーン印刷等の湿式プロセスでレジスト下層膜を形成できるレジスト下層膜材料が求められている。
 また、本発明者らは、エッチング耐性に優れるとともに、耐熱性が高く、溶媒に可溶で湿式プロセスが適用可能な材料として、特定の構造の化合物及び有機溶媒を含有するリソグラフィー用下層膜形成組成物(例えば、特許文献8参照)を提案している。
 さらに、3層プロセスにおけるレジスト下層膜の形成において用いられる中間層の形成方法に関しては、例えば、シリコン窒化膜の形成方法(例えば、特許文献9参照)や、シリコン窒化膜のCVD形成方法(例えば、特許文献10参照)が知られている。また、3層プロセス用の中間層材料としては、シルセスキオキサンベースの珪素化合物を含む材料が知られている(例えば、特許文献11及び12参照)。
 光学部品形成組成物としても様々なものが提案されており、例えば、アクリル系樹脂(例えば、特許文献13及び14参照)や、アリル基で誘導された特定の構造を有するポリフェノール(例えば、特許文献15参照)が提案されている。
特開2005-326838号公報 特開2008-145539号公報 特開2009-173623号公報 国際公開第2013/024778号 特開2004-177668号公報 特開2004-271838号公報 特開2005-250434号公報 国際公開第2013/024779号 特開2002-334869号公報 国際公開第2004/066377号 特開2007-226170号公報 特開2007-226204号公報 特開2010-138393号公報 特開2015-174877号公報 国際公開第2014/123005号
T.Nakayama,M.Nomura,K.Haga,M.Ueda:Bull.Chem.Soc.Jpn.,71,2979(1998) 岡崎信次、他22名「フォトレジスト材料開発の新展開」株式会社シーエムシー出版、2009年9月、p.211-259
 上述したように、従来、数多くのレジスト用途向けリソグラフィー用膜形成組成物及び下層膜用途向けリソグラフィー用膜形成組成物が提案されているが、スピンコート法やスクリーン印刷等の湿式プロセスが適用可能な高い溶媒溶解性を有するのみならず、耐熱性及びエッチング耐性を高い次元で両立させたものはなく、新たな材料の開発が求められている。
 また、従来、数多くの光学部材向け組成物が提案されているが、耐熱性、透明性及び屈折率を高い次元で両立させたものはなく、新たな材料の開発が求められている。
 本発明は、上記従来技術の課題を鑑みてなされたものであり、その目的は、湿式プロセスが適用可能であり、耐熱性、溶解性及びエッチング耐性に優れるフォトレジスト及びフォトレジスト用下層膜を形成するために有用な、化合物、樹脂、及び組成物を提供することにある。
 本発明者らは、上記従来技術の課題を解決するために鋭意検討を重ねた結果、特定構造を有する化合物又は樹脂により、上記従来技術の課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下のとおりである。
[1]
 下記式(0)で表される、化合物。
Figure JPOXMLDOC01-appb-C000007
(0)
(式(0)中、Rは、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基であり、
 Rは、炭素数1~60のN価の基又は単結合であり、
 Rは、水素原子であり、
 Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 mは、各々独立して0~7の整数であり、
Nは、1~4の整数であり、ここで、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよい。)
[2]
 前記式(0)で表される化合物が、下記式(1)で表される化合物である、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000008
(1)
(式(1)中、R、R、R及びNは、前記と同義である。)
[3]
 前記式(1)で表される化合物が、下記式(1-1)で表される化合物である、[2]に記載の化合物。
Figure JPOXMLDOC01-appb-C000009
(1-1)
(式(1-1)中、R、R及びNは、前記と同義である。)
[4]
 前記式(1)で表される化合物が、下記式(1-2)で表される化合物である、[2]に記載の化合物。
Figure JPOXMLDOC01-appb-C000010
(1-2)
(式(1-2)中、R、R、R及びNは、前記と同義である。)
[5]
 [1]に記載の化合物をモノマーとして得られる、樹脂。
[6]
 下記式(2)で表される構造を有する、[5]に記載の樹脂。
Figure JPOXMLDOC01-appb-C000011
(2)
(式(2)中、R、R、R、R、N及びmは、前記と同義であり、
 Lは、置換基を有していてもよい炭素数1~30の直鎖状、分岐状若しくは環状のアルキレン基、置換基を有していてもよい炭素数6~30のアリーレン基、置換基を有していてもよい炭素数1~30のアルコキシレン基又は単結合であり、前記アルキレン基、前記アリーレン基及び前記アルコキシレン基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよい。)
[7]
 前記式(2)で表される樹脂が、下記式(3)で表される構造を有する、[6]に記載の樹脂。
Figure JPOXMLDOC01-appb-C000012
(3)
(式(3)中、R、R、R、N及びLは、前記と同義である。)
[8]
 [1]~[4]のいずれかに記載の化合物及び[5]~[6]のいずれかに記載の樹脂からなる群より選ばれる1種以上を含有する、組成物。
[9]
 溶媒をさらに含有する、[8]に記載の組成物。
[10]
 酸発生剤をさらに含有する、[8]又は[9]に記載の組成物。
[11]
 架橋剤をさらに含有する、[8]~[10]のいずれか1項に記載の組成物。
[12]
 前記架橋剤が、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物及びアジド化合物からなる群より選ばれる少なくとも1種である、[11]に記載の組成物。
[13]
 前記架橋剤が、少なくとも1つのアリル基を有する、[11]又は[12]に記載の組成物。
[14]
 前記架橋剤の含有量が、固形成分の全質量の0.1~50質量%である、[11]~[13]のいずれかに記載の組成物。
[15]
 架橋促進剤をさらに含有する、[11]~[14]のいずれかに記載の組成物。
[16]
 前記架橋促進剤が、アミン類、イミダゾール類、有機ホスフィン類及びルイス酸からなる群より選ばれる少なくとも1種である、[15]に記載の組成物。
[17]
 前記架橋促進剤の含有量が、固形成分の全質量の0.1~5質量%である、[15]又は[16]に記載の組成物。
[18]
 ラジカル重合開始剤をさらに含有する、[8]~[17]のいずれかに記載の組成物
[19]
 前記ラジカル重合開始剤が、ケトン系光重合開始剤、有機過酸化物系重合開始剤及びアゾ系重合開始剤からなる群より選ばれる少なくとも1種である、[8]~[18]のいずれかに記載の組成物。
[20]
 前記ラジカル重合開始剤の含有量が、固形成分の全質量の0.05~25質量%である、[8]~[19]のいずれかに記載の組成物。
[21]
 リソグラフィー用膜形成に用いられる、[8]~[20]のいずれかに記載の組成物。
[22]
 レジスト永久膜形成に用いられる、[8]~[20]のいずれかに記載の組成物。
[23]
 光学部品形成組成物である、[8]~[20]のいずれかに記載の組成物。
[24]
 [21]に記載の組成物を用いて基板上にフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。
[25]
 [21]に記載の組成物を用いて基板上に下層膜を形成し、前記下層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。
[26]
 [21]に記載の組成物を用いて基板上に下層膜を形成し、前記下層膜上にレジスト中間層膜材料を用いて中間層膜を形成し、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程、
 前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程、
 前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることにより基板にパターンを形成する工程、を含む、回路パターン形成方法。
 本発明に係る化合物及び樹脂は、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好である。また、本発明に係る化合物及び/又は樹脂を含むレジスト組成物は、良好なレジストパターン形状を与える。
 以下、本発明を実施するための形態(以下「本実施形態」ともいう。)について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
 本実施形態における化合物、樹脂、及びそれを含む組成物は、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるフォトレジスト下層膜を形成するために有用である。また、本実施形態における組成物は、耐熱性及び溶媒溶解性の高い、特定構造を有する化合物又は樹脂を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れたレジスト及び下層膜を形成することができる。加えて、下層膜を形成した場合、レジスト層との密着性にも優れるので、優れたレジストパターンを形成することができる。
 さらには、屈折率が高く、また低温から高温までの広範囲の熱処理による着色が抑制されることから、各種光学形成組成物としても有用である。
 また本実施形態における化合物、樹脂は結晶性が非常に低く、それを含む組成物は、レジスト、下層膜や光学部材を成形するのに有利である。
[式(0)で表される化合物]
 本実施形態における化合物は、下記式(0)で表される。
Figure JPOXMLDOC01-appb-C000013
(0)
(式(0)中、Rは、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基であり、
 Rは、炭素数1~60のN価の基又は単結合であり、
 Rは、水素原子であり、
 Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、上記アルキル基、上記アリール基、上記アルケニル基及び上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 mは、各々独立して0~7の整数であり、
 Nは、1~4の整数であり、ここで、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよい。)
 Rは、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基である。アルキル基は、直鎖状、分岐状若しくは環状のアルキル基を用いることができる。Rが、炭素数1~30の直鎖状、分岐状若しくは環状のアルキル基又は炭素数6~30のアリール基であることにより、優れた耐熱性及び溶媒溶解性を付与することができる。
 Rは炭素数1~60のN価の基又は単結合であり、このRを介して各々の芳香環が結合している。Nは、1~4の整数であり、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよい。なお、上記N価の基とは、N=1のときには、炭素数1~60のアルキル基、N=2のときには、炭素数1~30のアルキレン基、N=3のときには、炭素数2~60のアルカンプロパイル基、N=4のときには、炭素数3~60のアルカンテトライル基のことを示す。上記N価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基を有するもの等が挙げられる。ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、上記N価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~60の芳香族基を有していてもよい。
 Rは、水素原子である。
 Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、上記アルキル基、上記アリール基、上記アルケニル基、上記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよい。なお、上記アルキル基、アルケニル基及びアルコキシ基は、直鎖状、分岐状若しくは環状の基であってもよい。
 mは、各々独立して0~7の整数である。
 上記式(0)で表される化合物の具体例を以下に例示するが、式(0)で表される化合物は、ここで列挙した具体例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 原料の入手性の観点から、上記式で表される化合物は、更に好ましくは以下に表される化合物である。
 上記式中、RTは上記式(0)で説明したものと同義である。RZ’は上記式(0)のR Zと同義である。m14は0~5の整数であり、m14’は0~4の整数であり、m14’’は0~3の整数である。
 RZ’は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセン基、ピレニル基、ビフェニル基、ヘプタセン基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
 上記RZ’の各例示は、異性体を含んでいる。例えば、ブチル基には、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
[式(1)で表される化合物]
 本実施形態における化合物(0)は、耐熱性及び溶媒溶解性の観点から、下記式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000020
(1)
 上記式(1)中、R、R、R、Nは、上記と同義である。
 上記式(1)で表される化合物は、比較的低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、分子中に3級炭素又は4級炭素を有しており、結晶性が抑制され、リソグラフィー用膜製造に使用できるリソグラフィー用膜形成組成物として好適に用いられる。
 また、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であるため、上記式(1)で表される化合物を含むリソグラフィー用レジスト形成組成物は、良好なレジストパターン形状を与えることができる。
 さらに、比較的に低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させつつ、膜の平坦性を高めることが容易であり、その結果、これを用いたリソグラフィー用下層膜形成組成物は、埋め込み及び平坦化特性が良好である。また、比較的高い炭素濃度を有する化合物であることから、高いエッチング耐性をも付与することができる。
 さらにまた、芳香族密度が高いため屈折率が高く、また低温から高温までの広範囲の熱処理によっても着色が抑制されることから、各種光学部品形成組成物としても有用である。中でも、化合物の酸化分解を抑制して着色を抑え、耐熱性及び溶媒溶解性を向上させる観点から、4級炭素を有する化合物が好ましい。光学部品としては、フィルム状、シート状の部品の他、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路として有用である。
 上記式(1)で表される化合物は、耐熱性及び有機溶媒への溶解性の観点から、下記式(1-1)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000021
(1-1)
 式(1-1)中、R、R、Nは、上記と同義である。
 また、上記式(1)で表される化合物は、架橋のし易さの観点から、下記式(1-2)で表される化合物であることもより好ましい。
Figure JPOXMLDOC01-appb-C000022
(1-2)
 式(1-2)中、R、R、R、Nは、上記と同義である。
 また、上記式(1-1)で表される化合物は、原料の供給性の観点から、下記式(1a)で表される化合物からなる群より選ばれる化合物であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000023
(1a)
 上記式(1a)中、R、R、R、Nは、上記式(1)で説明したものと同義である。
 上記式(1a)で表される化合物は、さらなる有機溶媒への溶解性の観点から、下記式(BiF-1)~(BiF-2)で表される化合物であることがよりさらに好ましい。
Figure JPOXMLDOC01-appb-C000024
(BiF-1)
Figure JPOXMLDOC01-appb-C000025
(BiF-2)
 また、上記式(1-2)で表される化合物は、原料の供給性の観点から、下記式(1b)で表される化合物からなる群より選ばれる化合物であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000026
(1b)
 上記式(1a)中、R、R、R、Nは、上記式(1)で説明したものと同義である。
 上記式(1a)で表される化合物は、さらなる有機溶媒への溶解性の観点から、下記式(BiF-3)~(BiF-4)で表される化合物であることがよりさらに好ましい。
Figure JPOXMLDOC01-appb-C000027
(BiF-3)
Figure JPOXMLDOC01-appb-C000028
(BiF-4)
[式(0)で表される化合物の製造方法]
 本実施形態における式(0)で表される化合物は、公知の手法を応用して適宜合成することができ、その合成手法は特に限定されない。
 例えば、常圧下、2,2’-ビフェノール類と、対応するアルデヒド類又はケトン類とを酸触媒下にて重縮合反応させることによりポリフェノール化合物を得ることができる。また、必要に応じて、加圧下で行うこともできる。
 上記2,2’-ビフェノール類としては、例えば、2,2’-ビフェノール、3,3’-ジメチル-2,2’-ビフェノール、3,3’-ジフェニル-2,2’-ビフェノール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらの中でも、原料の安定供給性の観点から、2,2’-ビフェノールを用いることがより好ましい。
 上記アルデヒド類としては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、ベンズアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラールを用いることが、高い耐熱性を与える点で好ましく、ベンズアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラールを用いることが、エッチング耐性が高く、より好ましい。
 上記ケトン類としては、例えば、アセトン、メチルエチルケトン、シクロブタノン、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらの中でも、高い耐熱性を付与する観点から、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることが好ましく、エッチング耐性を向上させる観点から、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることがより好ましい。
 ケトン類としては、高い耐熱性及び高いエッチング耐性を兼備するという観点から、芳香族を有するケトンを用いることが好ましい。
 上記反応に用いる酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらの中でも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることがより好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。また、酸触媒の使用量は、使用する原料及び触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。
 上記反応の際には、反応溶媒を用いてもよい。反応溶媒としては、用いるアルデヒド類又はケトン類と、2,2’-ビフェノール類との反応が進行するものであれば、特に限定されず、公知のものの中から適宜選択して用いることができる。反応溶媒としては、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル又はこれらの混合溶媒等が挙げられる。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
 また、これらの反応溶媒の使用量は、使用する原料及び触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、上記反応における反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。
 ポリフェノール化合物を得るためには、反応温度は高い方が好ましく、具体的には60~200℃の範囲が好ましい。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、2,2’-ビフェノール類、アルデヒド類、ケトン類、触媒を一括で仕込む方法や、2,2’-ビフェノール類やアルデヒド類又はケトン類を触媒存在下で滴下していく方法が挙げられる。重縮合反応終了後、得られた化合物の単離は、常法に従って行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物である化合物を単離することができる。
 好ましい反応条件としては、アルデヒド類又はケトン類1モルに対し、2,2’-ビフェノール類を1モル~過剰量、及び酸触媒を0.001~1モル使用し、常圧で、50~150℃で20分~100時間程度反応させることが挙げられる。
 反応終了後、公知の方法により目的物を単離することができる。例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離させ、得られた固形物を濾過し、乾燥させた後、カラムクロマトグラフにより副生成物と分離精製し、溶媒留去、濾過、乾燥を行って目的物である上記式(0)で表される化合物を得ることができる。
[式(0)で表される化合物をモノマーとして得られる樹脂]
 上記式(0)で表される化合物は、リソグラフィー用膜形成や光学部品形成に用いられる組成物(以下、単に「組成物」ともいう。)として、そのまま使用することができる。また、上記式(0)で表される化合物をモノマーとして得られる樹脂を、組成物として使用することもできる。樹脂は、例えば、上記式(0)で表される化合物と架橋反応性のある化合物とを反応させて得られる。
 上記式(0)で表される化合物をモノマーとして得られる樹脂としては、例えば、以下の式(2)で表される構造を有するものが挙げられる。すなわち、本実施形態における組成物は、下記式(2)で表される構造を有する樹脂を含有するものであってもよい。
Figure JPOXMLDOC01-appb-C000029
(2)
 式(2)中、Lは、置換基を有していてもよい炭素数1~30のアルキレン基、置換基を有していてもよい炭素数6~30のアリーレン基、置換基を有していてもよい炭素数1~30のアルコキシレン基又は単結合であり、上記アルキレン基、上記アリーレン基及び上記アルコキシレン基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよい。また、上記アルキレン基及び上記アルコキシレン基は、直鎖状、分岐状若しくは環状の基であってもよい。
 R、R、R、R、N、mは、上記式(0)におけるものと同義である。
 上記式(2)で表される樹脂は、下記式(3)で表される構造を有する樹脂であることが、原料の入手性の観点から好ましい。
Figure JPOXMLDOC01-appb-C000030
(3)
(式(3)中、R、R、R、N、Lは、上記と同義である。)
[式(0)で表される化合物をモノマーとして得られる樹脂の製造方法]
 本実施形態における樹脂は、上記式(0)で表される化合物を、架橋反応性のある化合物と反応させることにより得られる。架橋反応性のある化合物としては、上記式(0)で表される化合物をオリゴマー化又はポリマー化し得るものである限り、公知のものを特に制限なく使用することができる。その具体例としては、例えば、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート、不飽和炭化水素基含有化合物等が挙げられるが、これらに特に限定されない。
 上記式(2)で表される構造を有する樹脂の具体例としては、例えば、上記式(0)で表される化合物を、架橋反応性のある化合物であるアルデヒド及び/又はケトンとの縮合反応等によってノボラック化した樹脂が挙げられる。
 ここで、上記式(0)で表される化合物をノボラック化する際に用いるアルデヒドとしては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。ケトンとしては、上記ケトン類が挙げられる。これらの中でも、ホルムアルデヒドがより好ましい。なお、これらのアルデヒド及び/又はケトン類は、1種を単独で又は2種以上を組み合わせて用いることができる。また、上記アルデヒド及び/又はケトン類の使用量は、特に限定されないが、上記式(0)で表される化合物1モルに対して、0.2~5モルであることが好ましく、より好ましくは0.5~2モルである。
 上記式(0)で表される化合物とアルデヒド及び/又はケトンとの縮合反応においては、酸触媒を用いることもできる。ここで使用する酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらの中でも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸が好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。
 また、酸触媒の使用量は、使用する原料及び触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。但し、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、5-ビニルノルボルナ-2-エン、α-ピネン、β-ピネン、リモネン等の非共役二重結合を有する化合物との共重合反応の場合は、必ずしもアルデヒド類は必要ない。
 上記式(0)で表される化合物とアルデヒド及び/又はケトンとの縮合反応においては、反応溶媒を用いることもできる。この重縮合における反応溶媒としては、公知のものの中から適宜選択して用いることができ、特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒等が挙げられる。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
 また、これらの溶媒の使用量は、使用する原料及び触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、上記式(0)で表される化合物、アルデヒド及び/又はケトン類、触媒を一括で仕込む方法や、上記式(0)で表される化合物やアルデヒド及び/又はケトン類を触媒存在下で滴下していく方法が挙げられる。
 重縮合反応終了後、得られた化合物の単離は、常法に従って行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物であるノボラック化した樹脂を単離することができる。
 ここで、上記式(2)で表される構造を有する樹脂は、上記式(0)で表される化合物の単独重合体であってもよいが、他のフェノール類との共重合体であってもよい。ここで共重合可能なフェノール類としては、例えば、フェノール、クレゾール、ジメチルフェノール、トリメチルフェノール、ブチルフェノール、フェニルフェノール、ジフェニルフェノール、ナフチルフェノール、レゾルシノール、メチルレゾルシノール、カテコール、ブチルカテコール、メトキシフェノール、メトキシフェノール、プロピルフェノール、ピロガロール、チモール等が挙げるが、これらに特に限定されない。
 また、上記式(2)で表される構造を有する樹脂は、上述した他のフェノール類以外に、重合可能なモノマーと共重合させたものであってもよい。かかる共重合モノマーとしては、例えば、ナフトール、メチルナフトール、メトキシナフトール、ジヒドロキシナフタレン、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルナエン、ピネン、リモネン等が挙げられるが、これらに特に限定されない。なお、上記式(3)で表される構造を有する樹脂は、上記式(0)で表される化合物と上述したフェノール類との2元以上の(例えば、2~4元系)共重合体であっても、上記式(0)で表される化合物と上述した共重合モノマーとの2元以上(例えば、2~4元系)共重合体であっても、上記式(0)で表される化合物と上述したフェノール類と上述した共重合モノマーとの3元以上の(例えば、3~4元系)共重合体であっても構わない。
 上記式(2)で表される構造を有する樹脂の分子量は、特に限定されないが、ポリスチレン換算の重量平均分子量(Mw)が500~30000であることが好ましく、より好ましくは750~20000である。また、架橋効率を高めるとともにベーク中の揮発成分を抑制する観点から、上記式(2)で表される構造を有する樹脂は、分散度(重量平均分子量Mw/数平均分子量Mn)が1.2~7の範囲内であることが好ましい。なお、上記Mw及びMnは、後述する実施例に記載の方法により求めることができる。
 上記式(2)で表される構造を有する樹脂は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、1-メトキシ-2-プロパノール(PGME)及び/又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、当該溶媒に対する溶解度が10質量%以上であることが好ましい。ここで、PGME及び/又はPGMEAに対する溶解度は、「樹脂の質量÷(樹脂の質量+溶媒の質量)×100(質量%)」と定義される。例えば、上記樹脂10gがPGMEA90gに対して溶解する場合は、上記樹脂のPGMEAに対する溶解度は、「10質量%以上」となり、溶解しない場合は、「10質量%未満」となる。
[化合物及び/又は樹脂の精製方法]
 本実施形態における化合物及び/又は樹脂の精製方法は、上記式(0)で表される化合物、上記式(0)で表される化合物をモノマーとして得られる樹脂から選ばれる1種以上を、溶媒に溶解させて溶液(S)を得る工程と、得られた溶液(S)と酸性の水溶液とを接触させて、上記化合物及び/又は上記樹脂中の不純物を抽出する工程(第一抽出工程)とを含み、上記溶液(S)を得る工程で用いる溶媒が、水と任意に混和しない溶媒を含む。
 第一抽出工程において、上記樹脂は、上記式(1)で表される化合物及び/又は式(2)で表される化合物と架橋反応性のある化合物との反応によって得られる樹脂であることが好ましい。本実施形態の精製方法によれば、上述した特定の構造を有する化合物又は樹脂に不純物として含まれ得る種々の金属の含有量を低減することができる。
 より詳細には、本実施形態の精製方法においては、上記化合物及び/又は上記樹脂を、水と任意に混和しない有機溶媒に溶解させて溶液(S)を得て、さらにその溶液(S)を酸性水溶液と接触させて抽出処理を行うことができる。これにより、上記溶液(S)に含まれる金属分を水相に移行させた後、有機相と水相とを分離して金属含有量の低減された化合物及び/又は樹脂を得ることができる。
 本実施形態の精製方法で使用する化合物及び/又は樹脂は、単独で用いてもよく、2種以上混合して用いることもできる。また、上記化合物や樹脂は、各種界面活性剤、各種架橋剤、各種酸発生剤、各種安定剤等を含有していてもよい。
 本実施形態の精製方法において使用される水と任意に混和しない溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましく、具体的には、室温下における水への溶解度が30%未満、より好ましくは20%未満、さらに好ましくは10%未満である有機溶媒である。当該有機溶媒の使用量は、使用する化合物と樹脂の合計量に対して、1~100質量倍であることが好ましい。
 水と任意に混和しない溶媒の具体例としては、以下に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル等のエーテル類;酢酸エチル、酢酸n-ブチル、酢酸イソアミル等のエステル類、メチルエチルケトン、メチルイソブチルケトン、エチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、2-ペンタノン等のケトン類;エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート類;n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類等が挙げられる。これらの中でも、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチルが好ましく、メチルイソブチルケトン、酢酸エチル、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテートがより好ましく、メチルイソブチルケトン、酢酸エチルがよりさらに好ましい。メチルイソブチルケトン、酢酸エチル等は、上記化合物及び該化合物を構成成分として含む樹脂の飽和溶解度が比較的高く、沸点が比較的低いことから、工業的に溶媒を留去する場合や乾燥により除去する工程での負荷を低減することが可能となる。これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
 本実施形態の精製方法において使用される酸性水溶液としては、一般に知られる有機系化合物若しくは無機系化合物を水に溶解させた水溶液の中から適宜選択される。酸性水溶液としては、以下に限定されないが、例えば、塩酸、硫酸、硝酸、リン酸等の鉱酸を水に溶解させた鉱酸水溶液;酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸、トリフルオロ酢酸等の有機酸を水に溶解させた有機酸水溶液が挙げられる。これらの酸性水溶液は、それぞれ単独で用いることもできるし、また2種以上を組み合わせて用いることもできる。これらの酸性水溶液の中でも、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上の鉱酸水溶液、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上の有機酸水溶液であることが好ましく、硫酸、硝酸、及び酢酸、蓚酸、酒石酸、クエン酸等のカルボン酸の水溶液がより好ましく、硫酸、蓚酸、酒石酸、クエン酸の水溶液がさらに好ましく、蓚酸の水溶液がよりさらに好ましい。蓚酸、酒石酸、クエン酸等の多価カルボン酸は、金属イオンに配位し、キレート効果が生じるために、より効果的に金属を除去できる傾向にあるものと考えられる。また、ここで用いる水は、本実施形態の精製方法の目的に沿って、金属含有量の少ない水、例えばイオン交換水等を用いることが好ましい。
 本実施形態の精製方法において使用する酸性水溶液のpHは、特に限定されないが、上記化合物や樹脂への影響を考慮して、水溶液の酸性度を調整することが好ましい。酸性水溶液のpHは、通常0~5程度であり、好ましくはpH0~3程度である。
 本実施形態の精製方法において使用する酸性水溶液の使用量は特に限定されないが、金属除去のための抽出回数を低減する観点、及び全体の液量を考慮して操作性を確保する観点から、使用量を調整することが好ましい。上記観点から、酸性水溶液の使用量は、上記溶液(S)100質量部に対して、好ましくは10~200質量部であり、より好ましくは20~100質量部である。
 本実施形態の精製方法においては、上記酸性水溶液と、上記溶液(S)とを接触させることにより、溶液(S)中の上記化合物又は上記樹脂から金属分を抽出することができる。
 本実施形態の精製方法においては、上記溶液(S)が、水と任意に混和する有機溶媒をさらに含むことが好ましい。溶液(S)が水と任意に混和する有機溶媒を含む場合、上記化合物及び/又は樹脂の仕込み量を増加させることができ、また、分液性が向上し、高い釜効率で精製を行うことができる傾向にある。水と任意に混和する有機溶媒を加える方法は特に限定されず、例えば、予め有機溶媒を含む溶液に加える方法、予め水又は酸性水溶液に加える方法、有機溶媒を含む溶液と水又は酸性水溶液とを接触させた後に加える方法のいずれでもよい。これらの中でも、操作の作業性や仕込み量の管理のし易さの観点から、予め有機溶媒を含む溶液に加える方法が好ましい。
 本実施形態の精製方法において使用される水と任意に混和する有機溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましい。水と任意に混和する有機溶媒の使用量は、溶液相と水相とが分離する範囲であれば特に限定されないが、使用する化合物と樹脂の合計量に対して、0.1~100質量倍であることが好ましく、0.1~50質量倍であることがより好ましく、0.1~20質量倍であることがさらに好ましい。
 本実施形態の精製方法において使用される水と任意に混和する有機溶媒の具体例としては、以下に限定されないが、テトラヒドロフラン、1,3-ジオキソラン等のエーテル類;メタノール、エタノール、イソプロパノール等のアルコール類;アセトン、N-メチルピロリドン等のケトン類;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル等のグリコールエーテル類等の脂肪族炭化水素類が挙げられる。これらの中でも、N-メチルピロリドン、プロピレングリコールモノメチルエーテル等が好ましく、N-メチルピロリドン、プロピレングリコールモノメチルエーテルがより好ましい。これらの溶媒はそれぞれ単独で用いることもできるし、2種以上を混合して用いることもできる。
 抽出処理を行う際の温度は通常、20~90℃であり、好ましくは30~80℃の範囲である。抽出操作は、例えば、撹拌等によりよく混合させた後、静置することにより行われる。これにより、溶液(S)中に含まれていた金属分が水相に移行する。また、本操作により、溶液の酸性度が低下し、化合物及び/又は樹脂の変質を抑制することができる。
 上記混合溶液は静置により、化合物及び/又は樹脂と溶媒とを含む溶液相と、水相とに分離するので、デカンテーション等により、溶液相を回収する。静置する時間は特に限定されないが、溶媒を含む溶液相と水相との分離をより良好にする観点から、当該静置する時間を調整することが好ましい。通常、静置する時間は1分以上であり、好ましくは10分以上であり、より好ましくは30分以上である。また、抽出処理は1回だけでも構わないが、混合、静置、分離という操作を複数回繰り返して行うことも有効である。
 本実施形態の精製方法においては、上記第一抽出工程後、上記化合物又は上記樹脂を含む溶液相を、さらに水に接触させて、上記化合物又は上記樹脂中の不純物を抽出する工程(第二抽出工程)を含むことが好ましい。具体的には、例えば、酸性の水溶液を用いて上記抽出処理を行った後に、該水溶液から抽出され、回収された化合物及び/又は樹脂と溶媒を含む溶液相を、さらに水による抽出処理に供することが好ましい。この水による抽出処理は、特に限定されないが、例えば、上記溶液相と水とを、撹拌等によりよく混合させた後、得られた混合溶液を静置することにより行うことができる。当該静置後の混合溶液は、化合物及び/又は樹脂と溶媒とを含む溶液相と水相とに分離するので、デカンテーション等により溶液相を回収することができる。
 また、ここで用いる水は、本実施の形態の目的に沿って、金属含有量の少ない水、例えば、イオン交換水等であることが好ましい。抽出処理は1回だけでも構わないが、混合、静置、分離という操作を複数回繰り返して行うことも有効である。また、抽出処理における両者の使用割合や、温度、時間等の条件は特に限定されないが、先の酸性水溶液との接触処理の場合と同様で構わない。
 こうして得られた化合物及び/又は樹脂と溶媒とを含む溶液に混入しうる水分については、減圧蒸留等の操作を施すことにより容易に除去できる。また、必要により上記溶液に溶媒を加え、化合物及び/又は樹脂の濃度を任意の濃度に調整することができる。
 得られた化合物及び/又は樹脂と溶媒とを含む溶液から、化合物及び/又は樹脂を単離する方法は、特に限定されず、減圧除去、再沈殿による分離、及びそれらの組み合わせ等、公知の方法で行うことができる。必要に応じて、濃縮操作、ろ過操作、遠心分離操作、乾燥操作等の公知の処理を行うことができる。
[組成物]
 本実施形態における組成物は、上記式(0)で表される化合物及び上記式(0)で表される化合物をモノマーとして得られる樹脂からなる群より選ばれる1種以上を含有する。
 本実施形態の組成物は、リソグラフィー用膜形成組成物や光学部品形成組成物であることができる。
[化学増幅型レジスト用途向けリソグラフィー用膜形成組成物]
 本実施形態における化学増幅型レジスト用途向けリソグラフィー用膜形成組成物(以下、「レジスト組成物」ともいう。)は、上記式(0)で表される化合物、上記式(0)で表される化合物をモノマーとして得られる樹脂からなる群より選ばれる1種以上をレジスト基材として含有する。
 また、本実施形態における組成物(レジスト組成物)は、溶媒をさらに含有することが好ましい。溶媒としては、特に限定されないが、例えば、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-プロピルエーテルアセテート、エチレングリコールモノ-n-ブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のエチレングリコールモノアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノ-n-プロピルエーテルアセテート、プロピレングリコールモノ-n-ブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル等のプロピレングリコールモノアルキルエーテル類;乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸n-アミル等の乳酸エステル類;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、酢酸n-アミル、酢酸n-ヘキシル、プロピオン酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシ-2-メチルプロピオン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メトキシ-3-メチルプロピオン酸ブチル、3-メトキシ-3-メチル酪酸ブチル、アセト酢酸メチル、ピルビン酸メチル、ピルビン酸エチル等の他のエステル類;トルエン、キシレン等の芳香族炭化水素類;2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロペンタノン(CPN)、シクロヘキサノン(CHN)等のケトン類;N,N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;γ-ラクトン等のラクトン類等を挙げることができるが、これらに特に限定はされない。これらの溶媒は、単独で用いても、2種以上を併用してもよい。
 本実施形態で使用される溶媒は、安全溶媒であることが好ましく、より好ましくは、PGMEA、PGME、CHN、CPN、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル及び乳酸エチルから選ばれる少なくとも1種であり、さらに好ましくはPGMEA、PGME及びCHNから選ばれる少なくとも一種である。
 本実施形態において、固形成分の量と溶媒との量は、特に限定されないが、固形成分の量と溶媒との合計質量100質量%に対して、固形成分1~80質量%及び溶媒20~99質量%であることが好ましく、より好ましくは固形成分1~50質量%及び溶媒50~99質量%、さらに好ましくは固形成分2~40質量%及び溶媒60~98質量%であり、特に好ましくは固形成分2~10質量%及び溶媒90~98質量%である。
 本実施形態の組成物(レジスト組成物)は、他の固形成分として、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)からなる群より選ばれる少なくとも一種をさらに含有してもよい。なお、本明細書において「固形成分」とは溶媒以外の成分をいう。
 ここで、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)については公知のものが使用でき、特に限定されないが、例えば、国際公開第2013/024778号に記載されているものが好ましい。
[各成分の配合割合]
 本実施形態のレジスト組成物において、レジスト基材として用いる化合物及び/又は樹脂の含有量は、特に限定されないが、固形成分の全質量(レジスト基材、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)等の任意に使用される成分を含む固形成分の総和、以下同様。)の50~99.4質量%であることが好ましく、より好ましくは55~90質量%、さらに好ましくは60~80質量%、特に好ましくは60~70質量%である。レジスト基材として用いる化合物及び/又は樹脂の含有量が上記範囲である場合、解像度が一層向上し、ラインエッジラフネス(LER)が一層小さくなる傾向にある。
 なお、レジスト基材として化合物と樹脂の両方を含有する場合、上記含有量は、両成分の合計量である。
[その他の成分(F)]
 本実施形態におけるレジスト組成物には、本発明の目的を阻害しない範囲で、必要に応じて、レジスト基材、酸発生剤(C)、酸架橋剤(G)及び酸拡散制御剤(E)以外の成分として、溶解促進剤、溶解制御剤、増感剤、界面活性剤、有機カルボン酸又はリンのオキソ酸若しくはその誘導体、熱及び/又は光硬化触媒、重合禁止剤、難燃剤、充填剤、カップリング剤、熱硬化性樹脂、光硬化性樹脂、染料、顔料、増粘剤、滑剤、消泡剤、レベリング剤、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等の各種添加剤を、1種又は2種以上添加することができる。なお、本明細書において、その他の成分(F)を任意成分(F)ということがある。
 本実施形態のレジスト組成物において、レジスト基材(以下、「成分(A)」ともいう。)、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)、任意成分(F)の含有量(成分(A)/酸発生剤(C)/酸架橋剤(G)/酸拡散制御剤(E)/任意成分(F))は、固形物基準の質量%で、
 好ましくは50~99.4/0.001~49/0.5~49/0.001~49/0~49、
 より好ましくは55~90/1~40/0.5~40/0.01~10/0~5、
 さらに好ましくは60~80/3~30/1~30/0.01~5/0~1、
 特に好ましくは60~70/10~25/2~20/0.01~3/0、である。
 各成分の配合割合は、その総和が100質量%になるように各範囲から選ばれる。各成分の配合割合が上記範囲である場合、感度、解像度、現像性等の性能に優れる傾向にある。
 本実施形態のレジスト組成物は、通常は、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば、孔径0.2μm程度のフィルター等でろ過することにより調製される。
 本実施形態のレジスト組成物は、本発明の目的を阻害しない範囲で、本実施形態の樹脂以外のその他の樹脂を含むことができる。その他の樹脂としては、特に限定されず、例えば、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン-無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体或いはこれらの誘導体等が挙げられる。その他の樹脂の含有量は、特に限定されず、使用する成分(A)の種類に応じて適宜調節されるが、成分(A)100質量部に対して、30質量部以下であることが好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下、特に好ましくは0質量部である。
[レジスト組成物の物性等]
 本実施形態のレジスト組成物を用いて、スピンコートによりアモルファス膜を形成することができる。また、本実施形態のレジスト組成物は、一般的な半導体製造プロセスに適用することができる。上記式(0)で表される化合物、これをモノマーとして得られる樹脂の種類及び/又は用いる現像液の種類によって、ポジ型レジストパターン及びネガ型レジストパターンのいずれかを作り分けることができる。
 ポジ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、5Å/sec以下であることが好ましく、0.05~5Å/secであることがより好ましく、0.0005~5Å/secであることがさらに好ましい。溶解速度が5Å/sec以下である場合、現像液に不溶で、レジストとすることが容易となる傾向にある。また、溶解速度が0.0005Å/sec以上である場合、解像性が向上する場合がある。これは、上記式(0)で表される化合物及び/又は該化合物を構成成分として含む樹脂の露光前後の溶解性の変化により、現像液に溶解する露光部と、現像液に溶解しない未露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果もみられる。
 ネガ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。溶解速度が10Å/sec以上である場合、現像液に易溶で、レジストに好適である。また、溶解速度が10Å/sec以上である場合、解像性が向上する場合もある。これは、上記式(0)で表される化合物及び/又は該化合物を構成成分として含む樹脂のミクロの表面部位が溶解し、LERを低減するためと推測される。またディフェクトの低減効果もみられる。
 上記溶解速度は、23℃にて、アモルファス膜を所定時間現像液に浸漬させ、その浸漬前後の膜厚を、目視、エリプソメーター又はQCM法等の公知の方法によって測定して決定することできる。
 ポジ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。溶解速度が10Å/sec以上である場合、現像液に易溶で、レジストに好適である。また、溶解速度が10Å/sec以上である場合、解像性が向上する場合もある。これは、上記式(0)で表される化合物及び/又は該化合物を構成成分として含む樹脂のミクロの表面部位が溶解し、LERを低減するためと推測される。またディフェクトの低減効果もみられる。
 ネガ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における現像液に対する溶解速度は、5Å/sec以下であることが好ましく、0.05~5Å/secであることがより好ましく、0.0005~5Å/secであることがさらに好ましい。溶解速度が5Å/sec以下である場合、現像液に不溶で、レジストとすることが容易となる傾向にある。また、溶解速度が0.0005Å/sec以上である場合、解像性が向上する場合もある。これは、上記式(0)で表される化合物及び/又は該化合物を構成成分として含む樹脂の露光前後の溶解性の変化により、現像液に溶解する未露光部と、現像液に溶解しない露光部との界面のコントラストが大きくなるためと推測される。またLERの低減、ディフェクトの低減効果もみられる。
[非化学増幅型レジスト用途向けリソグラフィー用膜形成組成物]
 本実施形態の非化学増幅型レジスト用途向けリソグラフィー用膜形成組成物(以下、「感放射線性組成物」ともいう。)に含有させる成分(A)は、後述するジアゾナフトキノン光活性化合物(B)と併用し、g線、h線、i線、KrFエキシマレーザー、ArFエキシマレーザー、極端紫外線、電子線又はX線を照射することにより、現像液に易溶な化合物となるポジ型レジスト用基材として有用である。g線、h線、i線、KrFエキシマレーザー、ArFエキシマレーザー、極端紫外線、電子線又はX線により、成分(A)の性質は大きくは変化しないが、現像液に難溶なジアゾナフトキノン光活性化合物(B)が易溶な化合物に変化するため、現像工程によってレジストパターンを作ることが可能となる。
 本実施形態の感放射線性組成物に含有させる成分(A)は、比較的低分子量の化合物であることから、得られるレジストパターンのラフネスは非常に小さい。また、上記式(0)中、Rからなる群より選択される少なくとも1つがヨウ素原子を含む基であることが好ましい。本実施形態の感放射線性組成物は、ヨウ素原子を含む基を有する成分(A)を適用した場合、電子線、極端紫外線(EUV)、X線等の放射線に対する吸収能を増加させ、その結果、感度を高めることが可能となるため好ましい。
 本実施形態の感放射線性組成物に含有させる成分(A)のガラス転移温度は、好ましくは100℃以上、より好ましくは120℃以上、さらに好ましくは140℃以上、特に好ましくは150℃以上である。成分(A)のガラス転移温度の上限値は、特に限定されないが、例えば、400℃である。成分(A)のガラス転移温度が上記範囲内であることにより、半導体リソグラフィープロセスにおいて、パターン形状を維持しうる耐熱性を有し、高解像度等の性能が向上する傾向にある。
 本実施形態の感放射線性組成物に含有させる成分(A)のガラス転移温度の示差走査熱量分析により求めた結晶化発熱量は、好ましくは20J/g未満である。また、(結晶化温度)-(ガラス転移温度)は、好ましくは70℃以上、より好ましくは80℃以上、さらに好ましくは100℃以上、特に好ましくは130℃以上である。結晶化発熱量が20J/g未満、又は(結晶化温度)-(ガラス転移温度)が上記範囲内であると、感放射線性組成物をスピンコートすることによりアモルファス膜を形成しやすく、かつレジストに必要な成膜性が長期に渡り保持でき、解像性を向上することができる傾向にある。
 本実施形態において、上記結晶化発熱量、結晶化温度及びガラス転移温度は、島津製作所製DSC/TA-50WSを用いた示差走査熱量分析により求めることができる。試料約10mgをアルミニウム製非密封容器に入れ、窒素ガス気流中(50mL/分)昇温速度20℃/分で融点以上まで昇温する。急冷後、再び窒素ガス気流中(30mL/分)昇温速度20℃/分で融点以上まで昇温する。さらに急冷後、再び窒素ガス気流中(30mL/分)昇温速度20℃/分で400℃まで昇温する。ステップ状に変化したベースラインの段差の中点(比熱が半分に変化したところ)の温度をガラス転移温度(Tg)、その後に現れる発熱ピークの温度を結晶化温度とする。発熱ピークとベースラインに囲まれた領域の面積から発熱量を求め、結晶化発熱量とする。
 本実施形態の感放射線性組成物に含有させる成分(A)は、常圧下、100以下、好ましくは120℃以下、より好ましくは130℃以下、さらに好ましくは140℃以下、特に好ましくは150℃以下において、昇華性が低いことが好ましい。昇華性が低いとは、熱重量分析において、所定温度で10分保持した際の重量減少が10%以下、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1%以下、特に好ましくは0.1%以下であることを示す。昇華性が低いことにより、露光時のアウトガスによる露光装置の汚染を防止することができる。また低ラフネスで良好なパターン形状を得ることができる。
 本実施形態の感放射線性組成物に含有させる成分(A)は、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン(CHN)、シクロペンタノン(CPN)、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル及び乳酸エチルからなる群から選ばれ、かつ、成分(A)に対して最も高い溶解能を示す溶媒に、23℃で、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上溶解する。特に好ましくは、PGMEA、PGME、CHNからなる群から選ばれ、かつ、(A)レジスト基材に対して最も高い溶解能を示す溶媒に、23℃で、20質量%以上、特に好ましくはPGMEAに対して、23℃で、20質量%以上溶解する。上記条件を満たしていることにより、実生産における半導体製造工程での使用が容易となる。
[ジアゾナフトキノン光活性化合物(B)]
 本実施形態の感放射線性組成物に含有させるジアゾナフトキノン光活性化合物(B)は、ポリマー性及び非ポリマー性ジアゾナフトキノン光活性化合物を含むジアゾナフトキノン物質であり、一般にポジ型レジスト組成物において、感光性成分(感光剤)として用いられているものであれば特に制限なく、1種又は2種以上を任意に選択して用いることができる。
 成分(B)としては、ナフトキノンジアジドスルホン酸クロライドやベンゾキノンジアジドスルホン酸クロライド等と、これら酸クロライドと縮合反応可能な官能基を有する低分子化合物又は高分子化合物とを反応させることによって得られる化合物が好ましい。ここで、酸クロライドと縮合可能な官能基としては、特に限定されず、例えば、水酸基、アミノ基等が挙げられるが、特に水酸基が好適である。水酸基を含む酸クロライドと縮合可能な化合物としては、特に限定されず、例えば、ハイドロキノン、レゾルシン、2、4-ジヒドロキシベンゾフェノン、2、3、4-トリヒドロキシベンゾフェノン、2、4、6-トリヒドロキシベンゾフェノン、2、4、4’-トリヒドロキシベンゾフェノン、2、3、4、4’-テトラヒドロキシベンゾフェノン、2、2’、4、4’-テトラヒドロキシベンゾフェノン、2、2’、3、4、6’-ペンタヒドロキシベンゾフェノン等のヒドロキシベンゾフェノン類;ビス(2、4-ジヒドロキシフェニル)メタン、ビス(2、3、4-トリヒドロキシフェニル)メタン、ビス(2、4-ジヒドロキシフェニル)プロパン等のヒドロキシフェニルアルカン類;4、4’、3”、4”-テトラヒドロキシ-3、5、3’、5’-テトラメチルトリフェニルメタン、4、4’、2”、3”、4”-ペンタヒドロキシ-3、5、3’、5’-テトラメチルトリフェニルメタン等のヒドロキシトリフェニルメタン類等を挙げることができる。
 また、ナフトキノンジアジドスルホン酸クロライドやベンゾキノンジアジドスルホン酸クロライド等の酸クロライドとしては、例えば、1、2-ナフトキノンジアジド-5-スルフォニルクロライド、1、2-ナフトキノンジアジド-4-スルフォニルクロライド等が好ましいものとして挙げられる。
 本実施形態の感放射線性組成物は、例えば、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば、孔径0.2μm程度のフィルター等でろ過することにより調製されることが好ましい。
[感放射線性組成物の特性]
 本実施形態の感放射線性組成物を用いて、スピンコートによりアモルファス膜を形成することができる。また、本実施形態の感放射線性組成物は、一般的な半導体製造プロセスに適用することができる。用いる現像液の種類によって、ポジ型レジストパターン及びネガ型レジストパターンのいずれかを作り分けることができる。
 ポジ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、5Å/sec以下であることが好ましく、0.05~5Å/secであることがより好ましく、0.0005~5Å/secであることがさらに好ましい。溶解速度が5Å/sec以下である場合、現像液に不溶で、レジストとすることが容易となる傾向にある。また、溶解速度が0.0005Å/sec以上である場合、解像性が向上する場合がある。これは、上記式(1)及び(2)で表される化合物及び/又は該化合物を構成成分として含む樹脂の露光前後の溶解性の変化により、現像液に溶解する露光部と、現像液に溶解しない未露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果もみられる。
 ネガ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上である場合、現像液に易溶で、レジストに好適である。また、溶解速度が10Å/sec以上である場合、解像性が向上する場合もある。これは、上記式(1)及び(2)で表される化合物及び/又は該化合物を構成成分として含む樹脂のミクロの表面部位が溶解し、LERを低減するためと推測される。またディフェクトの低減効果もみられる。
 上記溶解速度は、23℃にて、アモルファス膜を所定時間現像液に浸漬させ、その浸漬前後の膜厚を、目視、エリプソメーター又はQCM法等の公知の方法によって測定して決定することができる。
 ポジ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により照射した後、又は、20~500℃で加熱した後の露光した部分の、23℃における現像液に対する溶解速度は、10Å/sec以上が好ましく、10~10000Å/secがより好ましく、100~1000Å/secがさらに好ましい。溶解速度が10Å/sec以上である場合、現像液に易溶で、レジストに好適である。また、溶解速度が10000Å/sec以下である場合、解像性が向上する場合もある。これは、上記式(0)で表される化合物及び/又は該化合物を構成成分として含む樹脂のミクロの表面部位が溶解し、LERを低減するためと推測される。またディフェクトの低減効果もみられる。
 ネガ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により照射した後、又は、20~500℃で加熱した後の露光した部分の、23℃における現像液に対する溶解速度は、5Å/sec以下であることが好ましく、0.05~5Å/secであることがより好ましく、0.0005~5Å/secであることがさらに好ましい。溶解速度が5Å/sec以下である場合、現像液に不溶で、レジストとすることが容易となる傾向にある。また、溶解速度が0.0005Å/sec以上である場合、解像性が向上する場合もある。これは、上記式(0)で表される化合物及び/又は該化合物を構成成分として含む樹脂の露光前後の溶解性の変化により、現像液に溶解する未露光部と、現像液に溶解しない露光部との界面のコントラストが大きくなるためと推測される。またLERの低減、ディフェクトの低減効果もみられる。
[各成分の配合割合]
 本実施形態の感放射線性組成物において、成分(A)の含有量は、固形成分の全質量(成分(A)、ジアゾナフトキノン光活性化合物(B)及びその他の成分(D)等の任意に使用される固形成分の総和、以下同様。)に対して、好ましくは1~99質量%であり、より好ましくは5~95質量%、さらに好ましくは10~90質量%、特に好ましくは25~75質量%である。本実施形態の感放射線性組成物は、成分(A)の含有量が上記範囲内であると、高感度でラフネスの小さなパターンを得ることができる傾向にある。
 本実施形態の感放射線性組成物において、ジアゾナフトキノン光活性化合物(B)の含有量は、固形成分の全質量(成分(A)、ジアゾナフトキノン光活性化合物(B)及びその他の成分(D)等の任意に使用される固形成分の総和、以下同様。)に対して、好ましくは1~99質量%であり、より好ましくは5~95質量%、さらに好ましくは10~90質量%、特に好ましくは25~75質量%である。本実施の形態の感放射線性組成物は、ジアゾナフトキノン光活性化合物(B)の含有量が上記範囲内であると、高感度でラフネスの小さなパターンを得ることができる傾向にある。
[その他の成分(D)]
 本実施形態の感放射線性組成物には、本発明の目的を阻害しない範囲で、必要に応じて、成分(A)及びジアゾナフトキノン光活性化合物(B)以外の成分として、酸発生剤、酸架橋剤、酸拡散制御剤、溶解促進剤、溶解制御剤、増感剤、界面活性剤、有機カルボン酸又はリンのオキソ酸若しくはその誘導体、熱及び/又は光硬化触媒、重合禁止剤、難燃剤、充填剤、カップリング剤、熱硬化性樹脂、光硬化性樹脂、染料、顔料、増粘剤、滑剤、消泡剤、レベリング剤、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等の各種添加剤を1種又は2種以上添加することができる。なお、本明細書において、その他の成分(D)を任意成分(D)ということがある。
 本実施形態の感放射線性組成物において、各成分の配合割合(成分(A)/ジアゾナフトキノン光活性化合物(B)/任意成分(D))は、固形成分基準の質量%で、
 好ましくは1~99/99~1/0~98、
 より好ましくは5~95/95~5/0~49、
 さらに好ましくは10~90/90~10/0~10、
 さらにより好ましくは20~80/80~20/0~5、
 特に好ましくは25~75/75~25/0、である。
 各成分の配合割合は、その総和が100質量%になるように各範囲から選ばれる。本実施形態の感放射線性組成物の各成分の配合割合が上記範囲である場合、ラフネスに加え、感度、解像度等の性能に優れる傾向にある。
 本実施形態の感放射線性組成物は、本発明の目的を阻害しない範囲で、その他の樹脂を含んでもよい。このようなその他の樹脂としては、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン-無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体或いはこれらの誘導体等が挙げられる。これらの樹脂の配合量は、使用する成分(A)の種類に応じて適宜調節されるが、成分(A)100質量部に対して、30質量部以下であることが好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下、特に好ましくは0質量部である。
[レジストパターンの形成方法]
 本実施形態におけるレジストパターンの形成方法は、上述した本実施形態のレジスト組成物又は感放射線性組成物を用いて基板上にフォトレジスト層を形成した後、上記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む。より詳しくは、上述した本実施形態のレジスト組成物又は感放射線性組成物を用いて基板上にレジスト膜を形成する工程と、形成されたレジスト膜を露光する工程と、上記レジスト膜を現像してレジストパターンを形成する工程とを備える。本実施形態におけるレジストパターンは、多層プロセスにおける上層レジストとして形成することもできる。
 レジストパターンを形成する方法としては、特に限定されないが、例えば、以下の方法が挙げられる。まず、従来公知の基板上にレジスト組成物又は感放射線性組成物を、回転塗布、流延塗布、ロール塗布等の塗布手段によって塗布することによりレジスト膜を形成する。従来公知の基板とは、特に限定されず、例えば、電子部品用の基板や、これに所定の配線パターンが形成されたもの等が挙げられる。より具体的には、シリコンウェハー、銅、クロム、鉄、アルミニウム等の金属製の基板や、ガラス基板等が挙げられる。配線パターンの材料としては、例えば、銅、アルミニウム、ニッケル、金等が挙げられる。また、必要に応じて、前述基板上に無機系及び/又は有機系の膜が設けられたものであってもよい。無機系の膜としては、無機反射防止膜(無機BARC)が挙げられる。有機系の膜としては、有機反射防止膜(有機BARC)が挙げられる。基板上にはヘキサメチレンジシラザン等による表面処理を行ってもよい。
 次に、必要に応じて、レジスト組成物又は感放射線性組成物を塗布した基板を加熱する。加熱条件は、レジスト組成物又は感放射線組成物の配合組成等により変わるが、20~250℃であることが好ましく、より好ましくは20~150℃である。加熱することによって、レジストの基板に対する密着性が向上する傾向にあるため好ましい。次いで、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線、及びイオンビームからなる群から選ばれるいずれかの放射線により、レジスト膜を所望のパターンに露光する。露光条件等は、レジスト組成物又は感放射線性組成物の配合組成等に応じて適宜選定される。本実施形態においては、露光における高精度の微細パターンを安定して形成するために、放射線照射後に加熱することが好ましい。加熱条件は、レジスト組成物又は感放射線性組成物の配合組成等により変わるが、20~250℃であることが好ましく、より好ましくは20~150℃である。
 次いで、露光されたレジスト膜を現像液で現像することにより、所定のレジストパターンを形成する。現像液としては、使用する式(1)若しくは式(2)で表される化合物又は式(1)若しくは式(2)で表される化合物をモノマーとして得られる樹脂に対して溶解度パラメーター(SP値)の近い溶剤を選択することが好ましく、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤等の極性溶剤、炭化水素系溶剤又はアルカリ水溶液を用いることができる。
 ケトン系溶剤としては、例えば、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、アセトン、4-ヘプタノン、1-ヘキサノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、イソホロン、プロピレンカーボネート等が挙げられる。
 エステル系溶剤としては、例えば、酢酸メチル、酢酸ブチル、酢酸エチル、酢酸イソプロピル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル等が挙げられる。
 アルコール系溶剤としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール(2-プロパノール)、n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソブチルアルコール、n-ヘキシルアルコール、4-メチル-2-ペンタノール、n-ヘプチルアルコール、n-オクチルアルコール、n-デカノール等のアルコールや、エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤や、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール等のグリコールエーテル系溶剤等が挙げられる。
 エーテル系溶剤としては、例えば、上記グリコールエーテル系溶剤の他、ジオキサン、テトラヒドロフラン等が挙げられる。
 アミド系溶剤としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド、1,3-ジメチル-2-イミダゾリジノン等が挙げられる。
 炭化水素系溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素系溶剤、ペンタン、ヘキサン、オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
 上記溶剤は、複数混合してもよいし、性能を有する範囲内で、上記以外の溶剤や水と混合し使用してもよい。但し、本発明の効果を十二分に奏するという観点からは、現像液全体としての含水率が70質量%未満であることが好ましく、50質量%未満であることがより好ましく、30質量%未満であることがさらに好ましく、10質量%未満であることがさらにより好ましく、実質的に水分を含有しないことが特に好ましい。すなわち、現像液に対する有機溶剤の含有量は、現像液の全量に対して、30質量%以上100質量%以下であることが好ましく、50質量%以上100質量%以下であることがより好ましく、70質量%以上100質量%以下であることがさらに好ましく、90質量%以上100質量%以下であることがさらにより好ましく、95質量%以上100質量%以下であることが特に好ましい。
 アルカリ水溶液としては、例えば、モノ-、ジ-或いはトリアルキルアミン類、モノ-、ジ-或いはトリアルカノールアミン類、複素環式アミン類、テトラメチルアンモニウムヒドロキシド(TMAH)、コリン等のアルカリ性化合物が挙げられる。
 特に、現像液としては、レジストパターンの解像性やラフネス等のレジスト性能を改善するという観点から、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤から選択される少なくとも1種の溶剤を含有する現像液が好ましい。
 現像液の蒸気圧は、20℃において、5kPa以下であることが好ましく、3kPa以下であることがより好ましく、2kPa以下であることがさらに好ましい。現像液の蒸気圧が5kPa以下である場合、現像液の基板上或いは現像カップ内での蒸発が抑制され、ウェハ面内の温度均一性が向上し、結果としてウェハ面内の寸法均一性が良化する傾向にある。
 20℃において5kPa以下の蒸気圧を有する具体的な現像液の例としては、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、4-ヘプタノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルイソブチルケトン等のケトン系溶剤;酢酸ブチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル等のエステル系溶剤;n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソブチルアルコール、n-ヘキシルアルコール、4-メチル-2-ペンタノール、n-ヘプチルアルコール、n-オクチルアルコール、n-デカノール等のアルコール系溶剤;エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤;エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール等のグリコールエーテル系溶剤;テトラヒドロフラン等のエーテル系溶剤;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドのアミド系溶剤;トルエン、キシレン等の芳香族炭化水素系溶剤;オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
 20℃において2kPa以下の蒸気圧を有する具体的な現像液の例としては、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、4-ヘプタノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン等のケトン系溶剤;酢酸ブチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸エチル、乳酸ブチル、乳酸プロピル等のエステル系溶剤;n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソブチルアルコール、n-ヘキシルアルコール、4-メチル-2-ペンタノール、n-ヘプチルアルコール、n-オクチルアルコール、n-デカノール等のアルコール系溶剤;エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤;エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール等のグリコールエーテル系溶剤;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドのアミド系溶剤、キシレン等の芳香族炭化水素系溶剤;オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
 現像液には、必要に応じて界面活性剤を適当量添加することができる。界面活性剤としては特に限定されないが、例えば、イオン性や非イオン性のフッ素系及び/又はシリコン系界面活性剤等を用いることができる。これらのフッ素及び/又はシリコン系界面活性剤としては、例えば、特開昭62-36663号公報、特開昭61-226746号公報、特開昭61-226745号公報、特開昭62-170950号公報、特開昭63-34540号公報、特開平7-230165号公報、特開平8-62834号公報、特開平9-54432号公報、特開平9-5988号公報、米国特許第5405720号明細書、同5360692号明細書、同5529881号明細書、同5296330号明細書、同5436098号明細書、同5576143号明細書、同5294511号明細書、同5824451号明細書に記載された界面活性剤を挙げることができ、好ましくは、非イオン性の界面活性剤である。非イオン性の界面活性剤としては特に限定されないが、好ましくは、フッ素系界面活性剤又はシリコン系界面活性剤である。
 界面活性剤の使用量は、現像液の全量に対して、通常0.001~5質量%、好ましくは0.005~2質量%、さらに好ましくは0.01~0.5質量%である。
 現像方法としては、例えば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出し続ける方法(ダイナミックディスペンス法)等を適用することができる。パターンの現像を行なう時間としては、特に制限はないが、好ましくは10秒~90秒である。
 また、現像を行う工程の後に、他の溶媒に置換しながら、現像を停止する工程を実施してもよい。
 現像の後には、有機溶剤を含むリンス液を用いて洗浄する工程を含むことが好ましい。
 現像後のリンス工程に用いるリンス液としては、架橋により硬化したレジストパターンを溶解しなければ特に制限はなく、一般的な有機溶剤を含む溶液又は水を使用することができる。上記リンス液としては、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤から選択される少なくとも1種類の有機溶剤を含有するリンス液を用いることが好ましい。より好ましくは、現像の後に、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有するリンス液を用いて洗浄する工程を行う。さらに好ましくは、現像の後に、アルコール系溶剤又はエステル系溶剤を含有するリンス液を用いて洗浄する工程を行う。さらにより好ましくは、現像の後に、1価アルコールを含有するリンス液を用いて洗浄する工程を行う。特に好ましくは、現像の後に、炭素数5以上の1価アルコールを含有するリンス液を用いて洗浄する工程を行う。パターンのリンスを行なう時間としては、特に制限はないが、好ましくは10秒~90秒である。
 ここで、現像後のリンス工程で用いられる1価アルコールとしては、直鎖状、分岐状、環状の1価アルコールが挙げられ、具体的には、1-ブタノール、2-ブタノール、3-メチル-1-ブタノール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、1-ヘキサノール、4-メチル-2-ペンタノール、1-ヘプタノール、1-オクタノール、2-ヘキサノール、シクロペンタノール、2-ヘプタノール、2-オクタノール、3-ヘキサノール、3-ヘプタノール、3-オクタノール、4-オクタノール等を用いることができ、特に好ましい炭素数5以上の1価アルコールとしては、1-ヘキサノール、2-ヘキサノール、4-メチル-2-ペンタノール、1-ペンタノール、3-メチル-1-ブタノール等が挙げられる。
 上記各成分は、複数混合してもよいし、上記以外の有機溶剤と混合し使用してもよい。
 リンス液中の含水率は、10質量%以下であることが好ましく、より好ましくは5質量%以下であり、さらに好ましくは3質量%以下である。リンス液中の含水率を10質量%以下にすることで、より良好な現像特性を得ることができる傾向にある。
 現像後に用いるリンス液の蒸気圧は、20℃において0.05kPa以上、5kPa以下であることが好ましく、0.1kPa以上、5kPa以下であることがより好ましく、0.12kPa以上、3kPa以下であることがさらに好ましい。リンス液の蒸気圧が0.05kPa以上、5kPa以下である場合、ウェハ面内の温度均一性がより向上し、さらにはリンス液の浸透に起因した膨潤がより抑制され、ウェハ面内の寸法均一性がより良化する傾向にある。
 リンス液には、界面活性剤を適当量添加して使用することもできる。
 リンス工程においては、現像を行ったウェハを上記の有機溶剤を含むリンス液を用いて洗浄処理する。洗浄処理の方法は特に限定されないが、例えば、一定速度で回転している基板上にリンス液を塗出し続ける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面にリンス液を噴霧する方法(スプレー法)等を適用することができ、中でも、回転塗布方法により洗浄処理を行い、洗浄後に基板を2000rpm~4000rpmの回転数で回転させ、リンス液を基板上から除去することが好ましい。
 レジストパターンを形成した後、エッチングすることによりパターン配線基板が得られる。エッチングの方法はプラズマガスを使用するドライエッチング及びアルカリ溶液、塩化第二銅溶液、塩化第二鉄溶液等によるウェットエッチング等公知の方法で行うことができる。
 レジストパターンを形成した後、めっきを行うこともできる。めっき法としては、例えば、銅めっき、はんだめっき、ニッケルめっき、金めっき等が挙げられる。
 エッチング後の残存レジストパターンは有機溶剤で剥離することができる。有機溶剤としては、PGMEA(プロピレングリコールモノメチルエーテルアセテート)、PGME(プロピレングリコールモノメチルエーテル)、EL(乳酸エチル)等が挙げられる。剥離方法としては、例えば、浸漬方法、スプレイ方式等が挙げられる。また、レジストパターンが形成された配線基板は、多層配線基板でもよく、小径スルーホールを有していてもよい。
 本実施形態における配線基板は、レジストパターン形成後、金属を真空中で蒸着し、その後レジストパターンを溶液で溶かす方法、すなわちリフトオフ法により形成することもできる。
[下層膜用途向けリソグラフィー用膜形成組成物]
 本実施形態における下層膜用途向けリソグラフィー用膜形成組成物(以下、「下層膜形成材料」ともいう。)は、上記式(0)で表される化合物、上記式(0)で表される化合物をモノマーとして得られる樹脂からなる群より選ばれる少なくとも1種の物質を含有する。本実施形態において上記物質は塗布性及び品質安定性の点から、固形成分の全質量中、1~100質量%であることが好ましく、10~100質量%であることがより好ましく、50~100質量%であることがさらに好ましく、100質量%であることが特に好ましい。
 本実施形態の下層膜形成材料は、湿式プロセスへの適用が可能であり、耐熱性及びエッチング耐性に優れる。さらに、本実施形態の下層膜形成材料は、上記物質を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れた下層膜を形成することができる。さらに、本実施形態の下層膜形成材料は、レジスト層との密着性にも優れるので、優れたレジストパターンを得ることができる。なお、本実施形態の下層膜形成材料は、本発明の効果が損なわれない範囲において、既に知られているリソグラフィー用下層膜形成材料等を含んでいてもよい。
[溶媒]
 本実施形態における下層膜形成材料は、溶媒を含有してもよい。下層膜形成材料に用いられる溶媒としては、上述した物質が少なくとも溶解するものであれば、公知のものを適宜用いることができる。
 溶媒の具体例としては、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のセロソルブ系溶媒;乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒;メタノール、エタノール、イソプロパノール、1-エトキシ-2-プロパノール等のアルコール系溶媒;トルエン、キシレン、アニソール等の芳香族系炭化水素等が挙げられる。これらの溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
 上記溶媒の中でも、安全性の観点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、ヒドロキシイソ酪酸メチル、アニソールが特に好ましい。
 溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、固形成分の全質量100質量部に対して、100~10000質量部であることが好ましく、200~5000質量部であることがより好ましく、200~1000質量部であることがさらに好ましい。
[架橋剤]
 本実施形態における下層膜形成材料は、インターミキシングを抑制する等の観点から、必要に応じて架橋剤を含有していてもよい。架橋剤としては特に限定されないが、例えば、国際公開第2013/024779号に記載されたものを用いることができる。
 本実施形態で使用可能な架橋剤の具体例としては、例えば、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、アクリレート化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物、アジド化合物等が挙げられるが、これらに特に限定されない。これらの架橋剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。これらの中でもベンゾオキサジン化合物、エポキシ化合物又はシアネート化合物が好ましく、エッチング耐性向上の観点から、ベンゾオキサジン化合物がより好ましい。
 上記フェノール化合物としては、公知のものが使用できる。例えば、フェノール類としては、フェノールの他、クレゾール類、キシレノール類等のアルキルフェノール類、ヒドロキノン等の多価フェノール類、ナフトール類、ナフタレンジオール類等の多環フェノール類、ビスフェノールA、ビスフェノールF等のビスフェノール類、あるいはフェノールノボラック、フェノールアラルキル樹脂等の多官能性フェノール化合物等が挙げられる。中でも、耐熱性及び溶解性の点から、アラルキル型フェノール樹脂が好ましい。
 上記エポキシ化合物としては、公知のものが使用でき、1分子中にエポキシ基を2個以上有するもの中から選択される。例えば、ビスフェノールA、ビスフェノールF、3,3’,5,5’-テトラメチル-ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、2,2’ -ビフェノール、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシビフェノール、レゾルシン、ナフタレンジオール類等の2価のフェノール類のエポキシ化物、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、トリス(2,3-エポキシプロピル)イソシアヌレート、トリメチロールメタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリエチロールエタントリグリシジルエーテル、フェノールノボラック、o-クレゾールノボラック等の3価以上のフェノール類のエポキシ化物、ジシクロペンタジエンとフェノール類の共縮合樹脂のエポキシ化物、フェノール類とパラキシリレンジクロライド等から合成されるフェノールアラルキル樹脂類のエポキシ化物、フェノール類とビスクロロメチルビフェニル等から合成されるビフェニルアラルキル型フェノール樹脂のエポキシ化物、ナフトール類とパラキシリレンジクロライド等から合成されるナフトールアラルキル樹脂類のエポキシ化物等が挙げられる。これらのエポキシ樹脂は、単独でもよいし、2種以上を併用してもよい。好ましくは、耐熱性と溶解性という点から、フェノールアラルキル樹脂類、ビフェニルアラルキル樹脂類から得られるエポキシ樹脂等の常温で固体状エポキシ樹脂である。
 上記シアネート化合物としては、1分子中に2個以上のシアネート基を有する化合物であれば特に制限なく、公知のものを使用することができる。本実施形態において、好ましいシアネート化合物としては、1分子中に2個以上の水酸基を有する化合物の水酸基をシアネート基に置換した構造のものが挙げられる。また、シアネート化合物は、芳香族基を有するものが好ましく、シアネート基が芳香族基に直結した構造のものを好適に使用することができる。このようなシアネート化合物としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールM、ビスフェノールP、ビスフェノールE、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエンノボラック樹脂、テトラメチルビスフェノールF、ビスフェノールAノボラック樹脂、臭素化ビスフェノールA、臭素化フェノールノボラック樹脂、3官能フェノール、4官能フェノール、ナフタレン型フェノール、ビフェニル型フェノール、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂、ジシクロペンタジエンアラルキル樹脂、脂環式フェノール、リン含有フェノール等の水酸基をシアネート基に置換した構造のものが挙げられる。これらのシアネート化合物は、単独でまたは2種以上を適宜組み合わせて使用してもよい。また、上記したシアネート化合物は、モノマー、オリゴマー及び樹脂のいずれの形態であってもよい。
 上記アミノ化合物としては、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン、O-トリジン、m-トリジン、4,4’-ジアミノベンズアニリド、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4-アミノフェニル-4-アミノベンゾエート、2-(4-アミノフェニル)-6-アミノベンゾオキサゾール等が例示される。さらに、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル等の芳香族アミン類、ジアミノシクロヘキサン、ジアミノジシクロヘキシルメタン、ジメチルージアミノジシクロヘキシルメタン、テトラメチルージアミノジシクロヘキシルメタン、ジアミノジシクロヘキシルプロパン、ジアミノビシクロ[2.2.1]ヘプタン、ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、3(4),8(9)-ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン、1,3-ビスアミノメチルシクロヘキサン、イソホロンジアミン等の脂環式アミン類、エチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族アミン類等が挙げられる。
 上記ベンゾオキサジン化合物としては、二官能性ジアミン類と単官能フェノール類から得られるP-d型ベンゾオキサジン、単官能性ジアミン類と二官能性フェノール類から得られるF-a型ベンゾオキサジン等が挙げられる。
 上記メラミン化合物の具体例としては、例えば、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1~6個のメチロール基がメトキシメチル化した化合物又はその混合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1~6個がアシロキシメチル化した化合物又はその混合物などが挙げられる。
 上記グアナミン化合物の具体例としては、例えば、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がアシロキシメチル化した化合物又はその混合物などが挙げられる。
 上記グリコールウリル化合物の具体例としては、例えば、テトラメチロールグリコールウリル、テトラメトキシグリコールウリル、テトラメトキシメチルグリコールウリル、テトラメチロールグリコールウリルのメチロール基の1~4個がメトキシメチル化した化合物又はその混合物、テトラメチロールグリコールウリルのメチロール基の1~4個がアシロキシメチル化した化合物又はその混合物などが挙げられる。
 上記ウレア化合物の具体例としては、例えば、テトラメチロールウレア、テトラメトキシメチルウレア、テトラメチロールウレアの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルウレアなどが挙げられる。
 また、本実施形態において、架橋性向上の観点から、少なくとも1つのアリル基を有する架橋剤を用いてもよい。少なくとも1つのアリル基を有する架橋剤の具体例としては、2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、ビス(3-アリル-4-ヒドロキシフェニル)スルホン、ビス(3-アリル-4-ヒドロキシフェニル)スルフィド、ビス(3-アリル-4-ヒドロキシフェニル)エ-テル等のアリルフェノール類、2,2-ビス(3-アリル-4-シアナトフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-シアナトフェニル)プロパン、ビス(3-アリル-4-シアナトシフェニル)スルホン、ビス(3-アリル-4-シアナトフェニル)スルフィド、ビス(3-アリル-4-シアナトフェニル)エ-テル等のアリルシアネート類、ジアリルフタレート、ジアリルイソフタレート、ジアリルテレフタレート、トリアリルイソシアヌレート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールアリルエーテル等が挙げられるが、これら例示されたものに限定されるものではない。これらは単独でも、2種類以上の混合物であってもよい。これらの中でも、2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、ビス(3-アリル-4-ヒドロキシフェニル)スルホン、ビス(3-アリル-4-ヒドロキシフェニル)スルフィド、ビス(3-アリル-4-ヒドロキシフェニル)エ-テル等のアリルフェノール類が好ましい
 下層膜形成材料中の架橋剤の含有量は、特に限定されないが、固形成分の全質量の0.1~50質量%であることが好ましく、より好ましくは5~50質量%、さらに好ましくは10~40質量%である。架橋剤の含有量を上記範囲にすることで、レジスト層とのミキシング現象の発生が抑制される傾向にあり、また、反射防止効果が高められ、架橋後の膜形成性が高められる傾向にある。
[架橋促進剤]
 本実施形態の下層膜形成材料には、必要に応じて架橋、硬化反応を促進させるための架橋促進剤を用いることができる。
 上記架橋促進剤としては、架橋、硬化反応を促進させるものであれば、特に限定されないが、例えば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等が挙げられる。これらの架橋促進剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。これらの中でもイミダゾール類又は有機ホスフィン類が好ましく、架橋温度の低温化の観点から、イミダゾール類がより好ましい。
 上記架橋促進剤としては、以下に限定されないが、例えば、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの三級アミン、2-メチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-へプタデシルイミダゾール、2,4,5-トリフェニルイミダゾールなどのイミダゾール類、トリブチルホスフィン、メチルジフェニルホスフイン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィンなどの有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレートなどのテトラ置換ホスホニウム・テトラ置換ボレート、2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレートなどのテトラフェニルボロン塩などが挙げられる。
 架橋促進剤の含有量としては、通常、固形成分の全質量の、好ましくは0.1~10質量%であり、より好ましくは、制御のし易さ及び経済性の観点から0.1~5質量部であり、さらに好ましくは0.1~3質量%である
[ラジカル重合開始剤]
 本実施形態の下層膜形成材料には、必要に応じてラジカル重合開始剤を配合することができる。ラジカル重合開始剤としては、光によりラジカル重合を開始させる光重合開始剤であってもよいし、熱によりラジカル重合を開始させる熱重合開始剤であってもよい。ラジカル重合開始剤としては、例えば、ケトン系光重合開始剤、有機過酸化物系重合開始剤及びアゾ系重合開始剤からなる群より選ばれる少なくとも1種とすることができる。
 このようなラジカル重合開始剤としては、特に制限されず、従来用いられているものを適宜採用することができる。例えば、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジメチルケタール、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチルプロパン-1-オン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のケトン系光重合開始剤、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセテートパーオキサイド、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、1,1-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、イソブチリルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシン酸パーオキサイド、m-トルオイルベンゾイルパーオキサイド、ベンゾイルパーオキサイド、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジ-2-エトキシヘキシルパーオキシジカーボネート、ジ-3-メトキシブチルパーオキシジカーボネート、ジ-s-ブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、α,α’-ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノオエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサノエート、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシマレート、t-ブチルパーオキシ-3,5,5-トリメトルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシアセテート、t-ブチルパーオキシ-m-トルイルベンゾエート、t-ブチルパーオキシベンゾエート、ビス(t-ブチルパーオキシ)イソフタレート、2,5-ジメチル-2,5-ビス(m-トルイルパーオキシ)ヘキサン、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアリルモノカーボネート、t-ブチルトリメチルシリルパーオキサイド、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,3-ジメチル-2,3-ジフェニルブタン等の有機過酸化物系重合開始剤が挙げられる。
 また、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス(2-メチル-N-フェニルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[N-(4-クロロフェニル)-2-メチルプロピオンアミジン]ジヒドリドクロリド、2,2’-アゾビス[N-(4-ヒドロフェニル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(フェニルメチル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(2-プロペニル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[N-(2-ヒドロキシエチル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2´-アゾビス[2-(4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(5-ヒドロキシ-3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド]、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)エチル]プロピオンアミド]、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(2-メチルプロピオンアミド)、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス(2-メチルプロパン)、ジメチル-2,2-アゾビス(2-メチルプロピオネート)、4,4’-アゾビス(4-シアノペンタン酸)、2,2’-アゾビス[2-(ヒドロキシメチル)プロピオニトリル]等のアゾ系重合開始剤も挙げられる。本実施形態におけるラジカル重合開始剤としては、これらのうちの1種を単独で用いても2種以上を組み合わせて用いてもよく、他の公知の重合開始剤をさらに組み合わせて用いてもよい。
 上記ラジカル重合開始剤の含有量としては、化学量論的に必要な量であればよいが、固形成分の全質量の0.05~25質量%であることが好ましく、0.1~10質量%であることがより好ましい。ラジカル重合開始剤の含有量が0.05質量%以上である場合には、硬化が不十分となることを防ぐことができる傾向にあり、他方、ラジカル重合開始剤の含有量が25質量%以下である場合には、下層膜形成材料の室温での長期保存安定性が損なわれることを防ぐことができる傾向にある。
[酸発生剤]
 本実施形態における下層膜形成材料は、熱による架橋反応をさらに促進させる等の観点から、必要に応じて酸発生剤を含有していてもよい。酸発生剤としては、熱分解によって酸を発生するもの、光照射によって酸を発生するもの等が知られているが、いずれも使用することができる。酸発生剤としては、例えば、国際公開第2013/024779号に記載されたものを用いることができる。
 下層膜形成材料中の酸発生剤の含有量は、特に限定されないが、固形成分の全質量の0.1~50質量%であることが好ましく、より好ましくは0.5~40質量%である。酸発生剤の含有量を上記範囲にすることで、酸発生量が多くなって架橋反応が高められる傾向にあり、また、レジスト層とのミキシング現象の発生が抑制される傾向にある。
[塩基性化合物]
 本実施形態における下層膜形成材料は、保存安定性を向上させる等の観点から、塩基性化合物を含有していてもよい。
 塩基性化合物は、酸発生剤から微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。このような塩基性化合物としては、特に限定されないが、例えば、国際公開第2013/024779号に記載されたものが挙げられる。
 下層膜形成材料中の塩基性化合物の含有量は、特に限定されないが、固形成分の全質量の0.001~2質量%であることが好ましく、より好ましくは0.01~1質量%である。塩基性化合物の含有量を上記範囲にすることで、架橋反応を過度に損なうことなく保存安定性が高められる傾向にある。
[その他の添加剤]
 また、本実施形態における下層膜形成材料は、熱や光による硬化性の付与や吸光度をコントロールする目的で、他の樹脂及び/又は化合物を含有していてもよい。このような他の樹脂及び/又は化合物としては、ナフトール樹脂、キシレン樹脂ナフトール変性樹脂、ナフタレン樹脂のフェノール変性樹脂;ポリヒドロキシスチレン、ジシクロペンタジエン樹脂、(メタ)アクリレート、ジメタクリレート、トリメタクリレート、テトラメタクリレート、ビニルナフタレン、ポリアセナフチレン等のナフタレン環、フェナントレンキノン、フルオレン等のビフェニル環、チオフェン、インデン等のヘテロ原子を有する複素環を含む樹脂や芳香族環を含まない樹脂;ロジン系樹脂、シクロデキストリン、アダマンタン(ポリ)オール、トリシクロデカン(ポリ)オール及びそれらの誘導体等の脂環構造を含む樹脂又は化合物等が挙げられるが、これらに特に限定されない。さらに、本実施形態における下層膜形成材料は、公知の添加剤を含有していてもよい。公知の添加剤としては、以下に限定されないが、例えば、熱及び/又は光硬化触媒、重合禁止剤、難燃剤、充填剤、カップリング剤、熱硬化性樹脂、光硬化性樹脂、染料、顔料、増粘剤、滑剤、消泡剤、レベリング剤、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等が挙げられる。
[リソグラフィー用下層膜及び多層レジストパターンの形成方法]
 本実施形態におけるリソグラフィー用下層膜は、上述した下層膜形成材料から形成される。
 また、本実施形態のレジストパターン形成方法は、上記組成物を用いて基板上に下層膜を形成し、上記下層膜上に、少なくとも1層のフォトレジスト層を形成した後、上記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む。より詳しくは、基板上に、本実施形態の下層膜形成材料を用いて下層膜を形成する工程(A-1)と、上記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A-2)と、上記(A-2)工程の後、上記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程(A-3)と、を有する。
 さらに、本実施形態の回路パターン形成方法は、上記組成物を用いて基板上に下層膜を形成し、上記下層膜上にレジスト中間層膜材料を用いて中間層膜を形成し、上記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程、
 上記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程、
 上記レジストパターンをマスクとして上記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして上記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることにより基板にパターンを形成する工程、を含む。
 より詳しくは、基板上に、本実施形態の下層膜形成材料を用いて下層膜を形成する工程(B-1)と、上記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程(B-2)と、上記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B-3)と、上記工程(B-3)の後、上記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(B-4)と、上記工程(B-4)の後、上記レジストパターンをマスクとして上記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして上記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B-5)と、を有する。
 本実施形態におけるリソグラフィー用下層膜は、本実施形態の下層膜形成材料から形成されるものであれば、その形成方法は特に限定されず、公知の手法を適用することができる。例えば、本実施形態の下層膜材料をスピンコートやスクリーン印刷等の公知の塗布法或いは印刷法等で基板上に付与した後、有機溶媒を揮発させるなどして除去した後、公知の方法で架橋、硬化させて、本実施形態のリソグラフィー用下層膜を形成することができる。架橋方法としては、熱硬化、光硬化等の手法が挙げられる。
 下層膜の形成時には、上層レジストとのミキシング現象の発生を抑制するとともに架橋反応を促進させるために、ベークを施すことが好ましい。この場合、ベーク温度は、特に限定されないが、80~450℃の範囲内であることが好ましく、より好ましくは200~400℃である。また、ベーク時間も、特に限定されないが、10~300秒の範囲内であることが好ましい。なお、下層膜の厚さは、要求性能に応じて適宜選定することができ、特に限定されないが、通常、30~20000nm程度であることが好ましく、より好ましくは50~15000nmである。
 下層膜を作製した後、2層プロセスの場合は、その上に珪素含有レジスト層、或いは通常の炭化水素からなる単層レジスト、3層プロセスの場合はその上に珪素含有中間層、さらにその上に珪素を含まない単層レジスト層を作製することが好ましい。この場合、このレジスト層を形成するためのフォトレジスト材料としては公知のものを使用することができる。
 基板上に下層膜を作製した後、2層プロセスの場合は、その下層膜上に珪素含有レジスト層或いは通常の炭化水素からなる単層レジストを作製することができる。3層プロセスの場合は、その下層膜上に珪素含有中間層、さらにその珪素含有中間層上に珪素を含まない単層レジスト層を作製することができる。これらの場合において、レジスト層を形成するためのフォトレジスト材料は、公知のものから適宜選択して使用することができ、特に限定されない。
 2層プロセス用の珪素含有レジスト材料としては、酸素ガスエッチング耐性の観点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーを使用し、さらに有機溶媒、酸発生剤、必要により塩基性化合物等を含むポジ型のフォトレジスト材料が好ましく用いられる。ここで珪素原子含有ポリマーとしては、この種のレジスト材料において用いられている公知のポリマーを使用することができる。
 3層プロセス用の珪素含有中間層としては、ポリシルセスキオキサンベースの中間層が好ましく用いられる。中間層に反射防止膜としての効果を持たせることによって、効果的に反射を抑えることができる傾向にある。例えば、193nm露光用プロセスにおいて、下層膜として芳香族基を多く含み基板エッチング耐性が高い材料を用いると、k値が高くなり、基板反射が高くなる傾向にあるが、中間層で反射を抑えることによって、基板反射を0.5%以下にすることができる。このような反射防止効果を有する中間層としては、以下に限定されないが、193nm露光用としては、フェニル基又は珪素-珪素結合を有する吸光基が導入された、酸或いは熱で架橋するポリシルセスキオキサンが好ましく用いられる。
 また、Chemical Vapour Deposition(CVD)法で形成した中間層を用いることもできる。CVD法で作製した、反射防止膜としての効果が高い中間層としては、以下に限定されないが、例えば、SiON膜が知られている。一般的には、CVD法よりスピンコート法やスクリーン印刷等の湿式プロセスによって中間層を形成する方が、簡便でコスト的なメリットがある。なお、3層プロセスにおける上層レジストは、ポジ型、ネガ型のどちらでもよく、また、通常用いられている単層レジストと同じものを用いることができる。
 さらに、本実施形態における下層膜は、通常の単層レジスト用の反射防止膜或いはパターン倒れ抑制のための下地材として用いることもできる。下層膜は、下地加工のためのエッチング耐性に優れるため、下地加工のためのハードマスクとしての機能も期待できる。
 上記フォトレジスト材料によりレジスト層を形成する場合においては、上記下層膜を形成する場合と同様に、スピンコート法やスクリーン印刷等の湿式プロセスが好ましく用いられる。また、レジスト材料をスピンコート法等で塗布した後、通常、プリベークが行われるが、このプリベークは、80~180℃で10~300秒の範囲で行うことが好ましい。その後、常法にしたがい、露光を行い、ポストエクスポジュアーベーク(PEB)、現像を行うことで、レジストパターンを得ることができる。なお、レジスト膜の厚さは特に制限されないが、一般的には、30~500nmが好ましく、より好ましくは50~400nmである。
 また、露光光は、使用するフォトレジスト材料に応じて適宜選択して用いればよい。一般的には、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3~20nmの軟X線、電子ビーム、X線等を挙げることができる。
 上述した方法により形成されるレジストパターンは、下層膜によってパターン倒れが抑制されたものとなる。そのため、本実施形態における下層膜を用いることで、より微細なパターンを得ることができ、また、そのレジストパターンを得るために必要な露光量を低下させ得る。
 次に、得られたレジストパターンをマスクにしてエッチングを行う。2層プロセスにおける下層膜のエッチングとしては、ガスエッチングが好ましく用いられる。ガスエッチングとしては、酸素ガスを用いたエッチングが好適である。酸素ガスに加えて、He、Ar等の不活性ガスや、CO、CO、NH、SO、N、NO2、ガスを加えることも可能である。また、酸素ガスを用いずに、CO、CO、NH、N、NO2、ガスだけでガスエッチングを行うこともできる。特に後者のガスは、パターン側壁のアンダーカット防止のための側壁保護のために好ましく用いられる。
 一方、3層プロセスにおける中間層のエッチングにおいても、ガスエッチングが好ましく用いられる。ガスエッチングとしては、上記の2層プロセスにおいて説明したものと同様のものが適用可能である。とりわけ、3層プロセスにおける中間層の加工は、フロン系のガスを用いてレジストパターンをマスクにして行うことが好ましい。その後、上述したように中間層パターンをマスクにして、例えば酸素ガスエッチングを行うことで、下層膜の加工を行うことができる。
 ここで、中間層として無機ハードマスク中間層膜を形成する場合は、CVD法やALD法等で、珪素酸化膜、珪素窒化膜、珪素酸化窒化膜(SiON膜)が形成される。窒化膜の形成方法としては、以下に限定されないが、例えば、特開2002-334869号公報(特許文献6)、WO2004/066377(特許文献7)に記載された方法を用いることができる。このような中間層膜の上に直接フォトレジスト膜を形成することができるが、中間層膜の上に有機反射防止膜(BARC)をスピンコートで形成して、その上にフォトレジスト膜を形成してもよい。
 中間層としては、ポリシルセスキオキサンベースの中間層も好ましく用いられる。レジスト中間層膜に反射防止膜としての効果を持たせることによって、効果的に反射を抑えることができる傾向にある。ポリシルセスキオキサンベースの中間層の具体的な材料については、以下に限定されないが、例えば、特開2007-226170号(特許文献8)、特開2007-226204号(特許文献9)に記載されたものを用いることができる。
 また、次の基板のエッチングも、常法によって行うことができ、例えば、基板がSiO2、SiNであればフロン系ガスを主体としたエッチング、p-SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行うことができる。基板をフロン系ガスでエッチングする場合、2層レジストプロセスの珪素含有レジストと3層プロセスの珪素含有中間層は、基板加工と同時に剥離される。一方、塩素系或いは臭素系ガスで基板をエッチングした場合は、珪素含有レジスト層又は珪素含有中間層の剥離が別途行われ、一般的には、基板加工後にフロン系ガスによるドライエッチング剥離が行われる。
 本実施形態における下層膜は、基板のエッチング耐性に優れるという特徴を有する。なお、基板としては、公知のものを適宜選択して使用することができ、特に限定されないが、Si、α-Si、p-Si、SiO、SiN、SiON、W、TiN、Al等が挙げられる。また、基板は、基材(支持体)上に被加工膜(被加工基板)を有する積層体であってもよい。このような被加工膜としては、Si、SiO、SiON、SiN、p-Si、α-Si、W、W-Si、Al、Cu、Al-Si等、種々のLow-k膜及びそのストッパー膜等が挙げられ、通常、基材(支持体)とは異なる材質のものが用いられる。なお、加工対象となる基板或いは被加工膜の厚さは、特に限定されないが、通常、50~10,000nm程度であることが好ましく、より好ましくは75~5,000nmである。
[レジスト永久膜]
 なお、上記組成物を用いてレジスト永久膜を作製することもできる、上記組成物を塗布してなるレジスト永久膜は、必要に応じてレジストパターンを形成した後、最終製品にも残存する永久膜として好適である。永久膜の具体例としては、半導体デバイス関係では、ソルダーレジスト、パッケージ材、アンダーフィル材、回路素子等のパッケージ接着層や集積回路素子と回路基板の接着層、薄型ディスプレー関連では、薄膜トランジスタ保護膜、液晶カラーフィルター保護膜、ブラックマトリクス、スペーサーなどが挙げられる。特に、上記組成物からなる永久膜は、耐熱性や耐湿性に優れている上に昇華成分による汚染性が少ないという非常に優れた利点も有する。特に表示材料において、重要な汚染による画質劣化の少ない高感度、高耐熱、吸湿信頼性を兼ね備えた材料となる。
 上記組成物をレジスト永久膜用途に用いる場合には、硬化剤の他、更に必要に応じてその他の樹脂、界面活性剤や染料、充填剤、架橋剤、溶解促進剤などの各種添加剤を加え、有機溶剤に溶解することにより、レジスト永久膜用組成物とすることができる。
 上記リソグラフィー用膜形成組成物やレジスト永久膜用組成物は上記各成分を配合し、攪拌機等を用いて混合することにより調整できる。また、上記レジスト下層膜用組成物やレジスト永久膜用組成物が充填剤や顔料を含有する場合には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散あるいは混合して調整することが出来る。
 以下、本実施形態を合成実施例、合成例、実施例及び比較例によりさらに詳細に説明するが、本実施形態は、これらの例によってなんら限定されるものではない。
(炭素濃度及び酸素濃度)
 下記装置を用いて有機元素分析により炭素濃度及び酸素濃度(質量%)を測定した。
 装置:CHNコーダーMT-6(ヤナコ分析工業(株)製)
(分子量)
 化合物の分子量は、Water社製Acquity UPLC/MALDI-Synapt HDMSを用いて、LC-MS分析により測定した。
 また、以下の条件でゲル浸透クロマトグラフィー(GPC)分析を行い、ポリスチレン換算の重量平均分子量(Mw)、数平均分子量(Mn)、及び分散度(Mw/Mn)を求めた。
 装置:Shodex GPC-101型(昭和電工(株)製)
 カラム:KF-80M×3
 溶離液:THF 1mL/min
 温度:40℃
(溶解性)
 23℃にて、化合物をプロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン(CHN)、乳酸エチル(EL)、メチルアミルケトン(MAK)又はテトラメチルウレア(TMU)に対して3重量%及び10質量%溶液になるよう溶解させ、1週間後の結果を以下の基準で評価した。
 評価S:10質量%でいずれかの溶媒で析出物がないことを目視により確認した
 評価A:3重量%でいずれかの溶媒で析出物がないことを目視により確認した
 評価C:全ての溶媒で析出物あることを目視により確認した
[化合物の構造]
 化合物の構造は、Bruker社製「Advance600II spectrometer」を用いて、以下の条件で、1H-NMR測定を行い、確認した。
  周波数:400MHz
  溶媒:d6-DMSO
  内部標準:TMS
  測定温度:23℃
<合成実施例1> BiF-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積300mLの容器において、2,2’-ビフェノール(東京化成工業社製試薬)13g(69.0mmol)を120℃で溶融後、硫酸0.27gを仕込み、4-アセチルビフェニル(シグマ-アルドリッチ社製試薬)2.7g(13.8mmol)を加えて、内容物を120℃で6時間撹拌して反応を行って反応液を得た。次に反応液にN-メチル-2-ピロリドン(関東化学株式会社製)100mL、純水50mLを加えたあと、酢酸エチルにより抽出した。次に純水を加えて中性になるまで分液後、濃縮を行って溶液を得た。
 得られた溶液を、カラムクロマトによる分離後、下記式(BiF-1)で表される目的化合物(BiF-1)が1.0g得られた。
 得られた化合物(BiF-1)について、上述の方法により分子量を測定した結果、550であった。
 熱分解温度は330℃、ガラス転移温度は102℃であり、高耐熱性を有することが確認できた。また融点が認められなかったことから、非晶性が高く、スピンコートで成形しやすいことが確認できた。
 得られた化合物(BiF-1)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(BiF-1)の化学構造を有することを確認した。
 δ(ppm)9.20(4H,O-H)、6.77~7.66(23H,Ph-H)、2.09(3H,C-H)
Figure JPOXMLDOC01-appb-C000031
(BiF-1)
<合成実施例2> BiF-3の合成
 4-アセチルビフェニルを4-ビフェニルアルデヒドに変更し、その他は同様に操作し、下記式(BiF-3)で表される目的化合物(BiF-3)が2.0g得られた。
 得られた化合物(BiF-3)について、上述の方法により分子量を測定した結果、536であった。
 熱分解温度は275℃、ガラス転移温度は102℃であり、高耐熱性を有することが確認できた。また融点が認められなかったことから、非晶性が高く、スピンコートで成形しやすいことが確認できた。
 得られた化合物(BiF-3)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(BiF-3)の化学構造を有することを確認した。
 δ(ppm)9.15(4H,O-H)、6.78~7.64(23H,Ph-H)、5.47(1H,C-H)
Figure JPOXMLDOC01-appb-C000032
(BiF-3)
(合成実施例3~7)
 合成実施例1の原料である4-アセチルビフェニルを表1の原料2のように変更し、その他は合成実施例1と同様に行い、各目的物を得た。
 それぞれ、1H-NMRで同定した(表2)。
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-C000035
(BiF-2)
Figure JPOXMLDOC01-appb-C000036
(BiF-4)
Figure JPOXMLDOC01-appb-C000037
(BiF-5)
Figure JPOXMLDOC01-appb-C000038
(BiF-6)
Figure JPOXMLDOC01-appb-C000039
(BiF-7)
(合成実施例8)樹脂(R1-BiF-1)の合成
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積1Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、合成実施例1で得られた化合物(BiF-1)を39.6g(70mmol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液21.0g(ホルムアルデヒドとして280mmol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてオルソキシレン(和光純薬工業(株)製試薬特級)180.0gを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、オルソキシレンを減圧下で留去することにより、褐色固体の樹脂(R1-BiF-1)31.6gを得た。
 得られた樹脂(R1-BiF-1)は、Mn:1985、Mw:3420、Mw/Mn:1.72であった。
(合成実施例9)樹脂(R2-BiF-1)の合成
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積1Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、合成実施例1で得られた化合物(BiF-1)を39.6g(70mmol、三菱ガス化学(株)製)、4-ビフェニルアルデヒド50.9g(280mmol、三菱ガス化学(株)製)、アニソール(関東化学(株)製)100mL及びシュウ酸二水和物(関東化学(株)製)10mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてオルソキシレン(和光純薬工業(株)製試薬特級)180.0gを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、有機相の溶媒および未反応の4-ビフェニルアルデヒドを減圧下で留去することにより、褐色固体の樹脂(R2-BiF-1)34.7gを得た。
 得られた樹脂(R2-BiF-1)は、Mn:1612、Mw:3040、Mw/Mn:1.89であった。
(合成比較例1)
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、1,5-ジメチルナフタレン1.09kg(7mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業(株)製試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5-ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。
 得られたジメチルナフタレンホルムアルデヒドの分子量は、Mn:562、であった。
 続いて、ジムロート冷却管、温度計及び攪拌翼を備えた内容積0.5Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流下で、上記のようにして得られたジメチルナフタレンホルムアルデヒド樹脂100g(0.51mol)とパラトルエンスルホン酸0.05gとを仕込み、190℃まで昇温させて2時間加熱した後、攪拌した。その後、さらに1-ナフトール52.0g(0.36mol)を加え、220℃まで昇温させて2時間反応させた。溶剤希釈後、中和及び水洗を行い、溶剤を減圧下で除去することにより、黒褐色固体の変性樹脂(CR-1)126.1gを得た。
 得られた樹脂(CR-1)は、Mn:885、Mw:2220、Mw/Mn:4.17であった。
(実施例1~9、比較例1)
 上記、合成実施例1~9の化合物、樹脂、及びCR-1につき、各々溶解性を評価した。結果を表3に示す。
 また、表3に示す組成のリソグラフィー用下層膜形成材料を各々調製した。次に、これらのリソグラフィー用下層膜形成材料をシリコン基板上に回転塗布し、その後、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を各々作製した。酸発生剤、架橋剤及び有機溶媒については以下のものを用いた。
・酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
・架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
・有機溶媒:プロピレングリコールモノメチルエーテルアセテートアセテート(PGMEA)
[エッチング耐性]
 そして、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表に示す。
[エッチング試験]
 エッチング装置:サムコインターナショナル社製 RIE-10NR
 出力:50W
 圧力:20Pa
 時間:2min
 エッチングガス
 Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
 エッチング耐性の評価は、以下の手順で行った。
 まず、化合物(BiF-1)に代えてノボラック(群栄化学社製 PSM4357)を用いたこと以外は、実施例1と同様の条件で、ノボラックの下層膜を作製した。そして、このノボラックの下層膜を対象として、上記のエッチング試験を行い、そのときのエッチングレートを測定した。
 次に、実施例1~9、実施例1A~9A及び比較例1の下層膜を対象として、上記エッチング試験を同様に行い、そのときのエッチングレートを測定した。
 そして、ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。
[評価基準]
 A:ノボラックの下層膜に比べてエッチングレートが-10%未満
 B:ノボラックの下層膜に比べてエッチングレートが-10%~+5%
 C:ノボラックの下層膜に比べてエッチングレートが+5%超
Figure JPOXMLDOC01-appb-T000040
(実施例10、11)
 次に、実施例1、2で得られた、BiF-1又はBiF-3を含むリソグラフィー用下層膜形成材料の各溶液を、膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚70nmの下層膜を形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。なお、ArFレジスト溶液としては、下記式(11)の化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。
 式(11)の化合物は、2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下した。このようにして得られた生成樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて得た。
Figure JPOXMLDOC01-appb-C000041
(11)
 上記式(11)中、「40」、「40」、「20」とあるのは、各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。
 得られた55nmL/S(1:1)及び80nmL/S(1:1)のレジストパターンの形状及び欠陥を(株)日立製作所製電子顕微鏡(S-4800)を用いて観察した。
 現像後のレジストパターンの形状については、パターン倒れがなく、矩形性が良好なものを「良好」とし、それ以外を「不良」として評価した。また、上記観察の結果、パターン倒れが無く、矩形性が良好な最小の線幅を“解像性”として評価の指標とした。さらに、良好なパターン形状を描画可能な最小の電子線エネルギー量を“感度”として、評価の指標とした。
 評価結果を、表4に示す。
(比較例2)
 下層膜の形成を行わなかったこと以外は、実施例3と同様にして、フォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得た。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000042
 表1から明らかなように、BiF-1、BiF-3を用いた実施例1~2では、比較例1に比して、耐熱性、溶解度及びエッチング耐性のいずれの点でも良好であることが少なくとも確認された。一方、CR-1(フェノール変性ジメチルナフタレンホルムアルデヒド樹脂)を用いた比較例1では、エッチング耐性が不良であった。
 また、実施例10、11においては、現像後のレジストパターン形状が良好であり、欠陥も見られないことも確認された。さらに、下層膜の形成を省略した比較例2に比べて、解像性及び感度ともに有意に優れていることも確認された。
 加えて、現像後のレジストパターン形状の相違から、実施例1~2において用いたリソグラフィー用下層膜形成材料は、レジスト材料との密着性が良いことも確認された。
<実施例12、13>
 実施例1~2のリソグラフィー用下層膜形成材料の溶液を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚80nmの下層膜を形成した。この下層膜上に、珪素含有中間層材料を塗布し、200℃で60秒間ベークすることにより、膜厚35nmの中間層膜を形成した。さらに、この中間層膜上に、上記ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、珪素含有中間層材料としては、下記で得られた珪素原子含有ポリマーを用いた。
 テトラヒドロフラン(THF)200g、純水100gに、3-カルボキシルプロピルトリメトキシシラン16.6gとフェニルトリメトキシシラン7.9gと3-ヒドロキシプロピルトリメトキシシラン14.4gとを溶解させ、液温を35℃にし、シュウ酸5gを滴下し、その後80℃に昇温し、シラノールの縮合反応を行った。次に、ジエチルエーテルを200g加え水層を分別し、有機液層を超純水で2回洗浄、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を200g加え、液温を60℃に加熱しながらの減圧下にTHF、ジエチルエーテル水を除去し、珪素原子含有ポリマーを得た。
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層をマスク露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、55nmL/S(1:1)のポジ型のレジストパターンを得た。
 その後、サムコインターナショナル社製 RIE-10NRを用いて、得られたレジストパターンをマスクにして珪素含有中間層膜(SOG)のドライエッチング加工を行い、続いて、得られた珪素含有中間層膜パターンをマスクにした下層膜のドライエッチング加工と、得られた下層膜パターンをマスクにしたSiO膜のドライエッチング加工とを順次行った。
 各々のエッチング条件は、下記に示すとおりである。
 レジストパターンのレジスト中間層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:1min
   エッチングガス
   Arガス流量:CFガス流量:Oガス流量=50:8:2(sccm)
 レジスト中間膜パターンのレジスト下層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
 レジスト下層膜パターンのSiO 膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:C12ガス流量:Cガス流量:Oガス流量
          =50:4:3:1(sccm)
[評価]
 上記のようにして得られたパターン断面(エッチング後のSiO膜の形状)を、(株)日立製作所製電子顕微鏡(S-4800)を用いて観察したところ、本実施形態の下層膜を用いた実施例は、多層レジスト加工におけるエッチング後のSiO膜の形状は矩形であり、欠陥も認められず良好であることが確認された。
[実施例14~15]
 上記合成例、及び合成実施例で合成した各化合物を用いて、下記表5に示す配合で光学部品形成組成物を調製した。なお、表5中の光学部品形成組成物の各成分のうち、酸発生剤、酸架橋剤、酸拡散抑制剤、及び溶媒については、以下のものを用いた。
・酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
・架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
有機溶媒:プロピレングリコールモノメチルエーテルアセテートアセテート(PGMEA)
 均一状態の光学部品形成組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中でプレベーク(prebake:PB)して、厚さ1μmの光学部品形成膜を形成した。調製した光学部品形成組成物について、膜形成が良好な場合には「A」、形成した膜に欠陥がある場合には「C」と評価した。
 均一な光学部品形成組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中でPBして、厚さ1μmの膜を形成した。その膜につき、ジェー・エー・ウーラム製多入射角分光エリプソメーターVASEにて、25℃における屈折率(λ=589.3nm)を測定した。調製した膜について、屈折率が1.6以上の場合には「A」、1.55以上1.6未満の場合には「B」、1.55未満の場合には「C」と評価した。また透明性(λ=632.8nm)が90%以上の場合には「A」、90%未満の場合には「C」と評価した。
Figure JPOXMLDOC01-appb-T000043
[実施例16~17]
 上記合成例、及び合成実施例で合成した各化合物を用いて、下記表6に示す配合でレジスト組成物を調製した。なお、表6中のレジスト組成物の各成分のうち、酸発生剤、酸架橋剤、酸拡散抑制剤、及び溶媒については、以下のものを用いた。
・酸発生剤:みどり化学社製 トリフェニルホスホニウム トリフルオロメタンスルホネート
・架橋剤:三和ケミカル社製 ニカラックMX270
・酸拡散抑制剤:東京化成工業社製 トリオクチルアミン
・有機溶媒:東京化成工業社製 プロピレングリコールモノメチルエーテル(PGME)
[評価方法]
(1)レジスト組成物の保存安定性及び薄膜形成
 レジスト組成物の保存安定性は、レジスト組成物を作成後、23℃、50%RHにて3日間静置し、析出の有無を目視にて観察することにより評価した。3日間静置後のレジスト組成物において、均一溶液であり析出がない場合にはA、析出がある場合はCと評価した。また、均一状態のレジスト組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ40nmのレジスト膜を形成した。作成したレジスト組成物について、薄膜形成が良好な場合にはA、形成した膜に欠陥がある場合にはCと評価した。
(2)レジストパターンのパターン評価
 均一なレジスト組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ60nmのレジスト膜を形成した。得られたレジスト膜に対して、電子線描画装置(ELS-7500、(株)エリオニクス社製)を用いて、50nm、40nm及び30nm間隔の1:1のラインアンドスペース設定の電子線を照射した。当該照射後に、レジスト膜を、それぞれ所定の温度で、90秒間加熱し、PGMEに60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄、乾燥して、ネガ型のレジストパターンを形成した。形成されたレジストパターンについて、ラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800)により観察し、レジスト組成物の電子線照射による反応性を評価した。
 感度は、パターンを得るために必要な単位面積当たりの最小のエネルギー量で示し、以下に従って評価した。
 A:50μC/cm未満でパターンが得られた場合
 C:50μC/cm以上でパターンが得られた場合
 パターン形成は、得られたパターン形状をSEM(走査型電子顕微鏡:Scanning Electron Microscope)にて観察し、以下に従って評価した。
 A:矩形なパターンが得られた場合
 B:ほぼ矩形なパターンが得られた場合
 C:矩形でないパターンが得られた場合
Figure JPOXMLDOC01-appb-T000044
 上述したとおり、本実施形態は、上記実施形態及び実施例に限定されるものではなく、その要旨を逸脱しない範囲内において適宜変更を加えることが可能である。
 本発明に係る化合物及び樹脂は、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であり、本発明に係るレジスト組成物は良好なレジストパターン形状を与える。
 また、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるフォトレジスト下層膜を形成するために有用な化合物、樹脂及びリソグラフィー用膜形成組成物を実現することができる。そして、このリソグラフィー用膜形成組成物は、耐熱性が高く、溶媒溶解性も高い、特定構造を有する化合物又は樹脂を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れたレジスト及び下層膜を形成することができる。さらには、下層膜を形成した場合、レジスト層との密着性にも優れるので、優れたレジストパターンを形成することができる。
 さらには屈折率が高く、また低温~高温処理によって着色が抑制されることから、各種光学部品形成組成物としても有用である。
 したがって、本発明は、例えば、電気用絶縁材料、レジスト用樹脂、半導体用封止樹脂、プリント配線板用接着剤、電気機器・電子機器・産業機器等に搭載される電気用積層板、電気機器・電子機器・産業機器等に搭載されるプリプレグのマトリックス樹脂、ビルドアップ積層板材料、繊維強化プラスチック用樹脂、液晶表示パネルの封止用樹脂、塗料、各種コーティング剤、接着剤、半導体用のコーティング剤、半導体用のレジスト用樹脂、下層膜形成用樹脂、フィルム状、シート状で使われる他、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路等の光学部品等において、広く且つ有効に利用可能である。
 本出願は、2016年9月20日に日本国特許庁へ出願された日本特許出願(特願2016-183026号)に基づくものであり、それらの内容はここに参照として取り込まれる。
 本発明は、リソグラフィー用レジスト、リソグラフィー用下層膜及び多層レジスト用下層膜及び光学部品の分野における産業上利用可能性を有する。

Claims (26)

  1.  下記式(0)で表される、化合物。
    Figure JPOXMLDOC01-appb-C000001
    (0)
    (式(0)中、Rは、水素原子、炭素数1~30のアルキル基又は炭素数6~30のアリール基であり、
     Rは、炭素数1~60のN価の基又は単結合であり、
     Rは、水素原子であり、
     Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、チオール基又は水酸基であり、前記アルキル基、前記アリール基、前記アルケニル基及び前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
     mは、各々独立して0~7の整数であり、
    Nは、1~4の整数であり、ここで、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよい。)
  2.  前記式(0)で表される化合物が、下記式(1)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
    (1)
    (式(1)中、R、R、R及びNは、前記と同義である。)
  3.  前記式(1)で表される化合物が、下記式(1-1)で表される化合物である、請求項2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    (1-1)
    (式(1-1)中、R、R及びNは、前記と同義である。)
  4.  前記式(1)で表される化合物が、下記式(1-2)で表される化合物である、請求項2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    (1-2)
    (式(1-2)中、R、R、R及びNは、前記と同義である。)
  5.  請求項1に記載の化合物をモノマーとして得られる、樹脂。
  6.  下記式(2)で表される構造を有する、請求項5に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000005
    (2)
    (式(2)中、R、R、R、R、N及びmは、前記と同義であり、
     Lは、置換基を有していてもよい炭素数1~30の直鎖状、分岐状若しくは環状のアルキレン基、置換基を有していてもよい炭素数6~30のアリーレン基、置換基を有していてもよい炭素数1~30のアルコキシレン基又は単結合であり、前記アルキレン基、前記アリーレン基及び前記アルコキシレン基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよい。)
  7.  前記式(2)で表される樹脂が、下記式(3)で表される構造を有する、請求項6に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000006
    (3)
    (式(3)中、R、R、R、N及びLは、前記と同義である。)
  8.  請求項1~4のいずれか1項に記載の化合物及び請求項5~6のいずれか1項に記載の樹脂からなる群より選ばれる1種以上を含有する、組成物。
  9.  溶媒をさらに含有する、請求項8に記載の組成物。
  10.  酸発生剤をさらに含有する、請求項8又は9に記載の組成物。
  11.  架橋剤をさらに含有する、請求項8~10のいずれか1項に記載の組成物。
  12.  前記架橋剤が、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物及びアジド化合物からなる群より選ばれる少なくとも1種である、請求項11に記載の組成物。
  13.  前記架橋剤が、少なくとも1つのアリル基を有する、請求項11又は12に記載の組成物。
  14.  前記架橋剤の含有量が、固形成分の全質量の0.1~50質量%である、請求項11~13のいずれか一項に記載の組成物。
  15.  架橋促進剤をさらに含有する、請求項11~14のいずれか一項に記載の組成物。
  16.  前記架橋促進剤が、アミン類、イミダゾール類、有機ホスフィン類及びルイス酸からなる群より選ばれる少なくとも1種である、請求項15に記載の組成物。
  17.  前記架橋促進剤の含有量が、固形成分の全質量の0.1~5質量%である、請求項15又は16に記載の組成物。
  18.  ラジカル重合開始剤をさらに含有する、請求項8~17のいずれか一項に記載の組成物
  19.  前記ラジカル重合開始剤が、ケトン系光重合開始剤、有機過酸化物系重合開始剤及びアゾ系重合開始剤からなる群より選ばれる少なくとも1種である、請求項8~18のいずれか一項に記載の組成物。
  20.  前記ラジカル重合開始剤の含有量が、固形成分の全質量の0.05~25質量%である、請求項8~19のいずれか一項に記載の組成物。
  21.  リソグラフィー用膜形成に用いられる、請求項8~20のいずれか一項に記載の組成物。
  22.  レジスト永久膜形成に用いられる、請求項8~20のいずれか一項に記載の組成物。
  23.  光学部品形成組成物である、請求項8~20のいずれか一項に記載の組成物。
  24.  請求項21に記載の組成物を用いて基板上にフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。
  25.  請求項21に記載の組成物を用いて基板上に下層膜を形成し、前記下層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。
  26.  請求項21に記載の組成物を用いて基板上に下層膜を形成し、前記下層膜上にレジスト中間層膜材料を用いて中間層膜を形成し、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程、
     前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程、
     前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることにより基板にパターンを形成する工程、を含む、回路パターン形成方法。
PCT/JP2017/033799 2016-09-20 2017-09-20 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法 WO2018056277A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197007791A KR20190057060A (ko) 2016-09-20 2017-09-20 화합물, 수지, 조성물, 그리고 레지스트 패턴 형성방법 및 회로패턴 형성방법
CN201780057702.5A CN109790097A (zh) 2016-09-20 2017-09-20 化合物、树脂、组合物、以及抗蚀图案形成方法和电路图案形成方法
EP17853047.3A EP3517522A4 (en) 2016-09-20 2017-09-20 CONNECTION, RESIN, COMPOSITION, RESIST STRUCTURAL MOLDING METHOD AND CIRCUIT STRUCTURAL MOLDING METHOD
JP2018541074A JP7061271B2 (ja) 2016-09-20 2017-09-20 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法
US16/335,064 US20190278180A1 (en) 2016-09-20 2017-09-20 Compound, resin, composition, resist pattern formation method and circuit pattern formation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016183026 2016-09-20
JP2016-183026 2016-09-20

Publications (1)

Publication Number Publication Date
WO2018056277A1 true WO2018056277A1 (ja) 2018-03-29

Family

ID=61690394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033799 WO2018056277A1 (ja) 2016-09-20 2017-09-20 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法

Country Status (7)

Country Link
US (1) US20190278180A1 (ja)
EP (1) EP3517522A4 (ja)
JP (1) JP7061271B2 (ja)
KR (1) KR20190057060A (ja)
CN (1) CN109790097A (ja)
TW (1) TW201827389A (ja)
WO (1) WO2018056277A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020007544A (ja) * 2018-07-11 2020-01-16 三星エスディアイ株式会社Samsung SDI Co., Ltd. ハードマスク組成物、ハードマスク層およびパターン形成方法
WO2020026879A1 (ja) * 2018-07-31 2020-02-06 三菱瓦斯化学株式会社 下層膜形成組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3395845A4 (en) * 2015-12-25 2019-08-14 Mitsubishi Gas Chemical Company, Inc. COMPOUND, RESIN, COMPOSITION, METHOD FOR FORMING A RESIST PATTERN, AND METHOD FOR FORMING A SWITCH PATTERN

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024778A1 (ja) * 2011-08-12 2013-02-21 三菱瓦斯化学株式会社 レジスト組成物、レジストパターン形成方法、それに用いるポリフェノール化合物及びそれから誘導され得るアルコール化合物
JP2014106263A (ja) * 2012-11-26 2014-06-09 Shin Etsu Chem Co Ltd レジスト下層膜材料及びパターン形成方法
WO2015137486A1 (ja) * 2014-03-13 2015-09-17 三菱瓦斯化学株式会社 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法、及び化合物又は樹脂の精製方法
WO2015137485A1 (ja) * 2014-03-13 2015-09-17 三菱瓦斯化学株式会社 レジスト組成物及びレジストパターン形成方法
WO2017111165A1 (ja) * 2015-12-25 2017-06-29 三菱瓦斯化学株式会社 化合物、樹脂、組成物、レジストパターン形成方法、及び、回路パターン形成方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108665A (en) * 1976-10-07 1978-08-22 Minnesota Mining And Manufacturing Company Stabilizers for photothermographic constructions
JP3774668B2 (ja) 2001-02-07 2006-05-17 東京エレクトロン株式会社 シリコン窒化膜形成装置の洗浄前処理方法
JP3914493B2 (ja) 2002-11-27 2007-05-16 東京応化工業株式会社 多層レジストプロセス用下層膜形成材料およびこれを用いた配線形成方法
JP4382750B2 (ja) 2003-01-24 2009-12-16 東京エレクトロン株式会社 被処理基板上にシリコン窒化膜を形成するcvd方法
JP3981030B2 (ja) 2003-03-07 2007-09-26 信越化学工業株式会社 レジスト下層膜材料ならびにパターン形成方法
JP4388429B2 (ja) 2004-02-04 2009-12-24 信越化学工業株式会社 レジスト下層膜材料ならびにパターン形成方法
EP1739485B1 (en) 2004-04-15 2016-08-31 Mitsubishi Gas Chemical Company, Inc. Resist composition
JP4781280B2 (ja) 2006-01-25 2011-09-28 信越化学工業株式会社 反射防止膜材料、基板、及びパターン形成方法
JP4638380B2 (ja) 2006-01-27 2011-02-23 信越化学工業株式会社 反射防止膜材料、反射防止膜を有する基板及びパターン形成方法
JP4858136B2 (ja) 2006-12-06 2012-01-18 三菱瓦斯化学株式会社 感放射線性レジスト組成物
JP5446118B2 (ja) 2007-04-23 2014-03-19 三菱瓦斯化学株式会社 感放射線性組成物
JP2010138393A (ja) 2008-11-13 2010-06-24 Nippon Kayaku Co Ltd 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
US9316913B2 (en) 2011-08-12 2016-04-19 Mitsubishi Gas Chemical Company, Inc. Underlayer film-forming material for lithography, underlayer film for lithography, and pattern formation method
KR102094211B1 (ko) 2013-02-08 2020-03-27 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 신규 알릴 화합물 및 그 제조방법
JP2015174877A (ja) 2014-03-13 2015-10-05 日産化学工業株式会社 特定の硬化促進触媒を含む樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024778A1 (ja) * 2011-08-12 2013-02-21 三菱瓦斯化学株式会社 レジスト組成物、レジストパターン形成方法、それに用いるポリフェノール化合物及びそれから誘導され得るアルコール化合物
JP2014106263A (ja) * 2012-11-26 2014-06-09 Shin Etsu Chem Co Ltd レジスト下層膜材料及びパターン形成方法
WO2015137486A1 (ja) * 2014-03-13 2015-09-17 三菱瓦斯化学株式会社 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法、及び化合物又は樹脂の精製方法
WO2015137485A1 (ja) * 2014-03-13 2015-09-17 三菱瓦斯化学株式会社 レジスト組成物及びレジストパターン形成方法
WO2017111165A1 (ja) * 2015-12-25 2017-06-29 三菱瓦斯化学株式会社 化合物、樹脂、組成物、レジストパターン形成方法、及び、回路パターン形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3517522A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020007544A (ja) * 2018-07-11 2020-01-16 三星エスディアイ株式会社Samsung SDI Co., Ltd. ハードマスク組成物、ハードマスク層およびパターン形成方法
CN110713588A (zh) * 2018-07-11 2020-01-21 三星Sdi株式会社 硬掩模组合物、硬掩模层以及形成图案的方法
TWI731370B (zh) * 2018-07-11 2021-06-21 南韓商三星Sdi股份有限公司 硬罩幕組成物、硬罩幕層以及形成圖案的方法
US11214678B2 (en) 2018-07-11 2022-01-04 Samsung Sdi Co., Ltd. Hardmask composition, hardmask layer and method of forming patterns
JP6994480B2 (ja) 2018-07-11 2022-01-14 三星エスディアイ株式会社 ハードマスク組成物、ハードマスク層およびパターン形成方法
CN110713588B (zh) * 2018-07-11 2022-08-09 三星Sdi株式会社 硬掩模组合物、硬掩模层以及形成图案的方法
WO2020026879A1 (ja) * 2018-07-31 2020-02-06 三菱瓦斯化学株式会社 下層膜形成組成物
CN112513737A (zh) * 2018-07-31 2021-03-16 三菱瓦斯化学株式会社 下层膜形成组合物
JPWO2020026879A1 (ja) * 2018-07-31 2021-09-09 三菱瓦斯化学株式会社 下層膜形成組成物
JP7331853B2 (ja) 2018-07-31 2023-08-23 三菱瓦斯化学株式会社 下層膜形成組成物

Also Published As

Publication number Publication date
JP7061271B2 (ja) 2022-04-28
KR20190057060A (ko) 2019-05-27
EP3517522A4 (en) 2020-04-22
US20190278180A1 (en) 2019-09-12
TW201827389A (zh) 2018-08-01
CN109790097A (zh) 2019-05-21
JPWO2018056277A1 (ja) 2019-07-04
EP3517522A1 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
JP7283515B2 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JP7194355B2 (ja) 化合物、樹脂、組成物及びパターン形成方法
JP7069529B2 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
WO2018016648A1 (ja) 化合物、樹脂、組成物及びパターン形成方法
JP7194356B2 (ja) 化合物、樹脂及び組成物、並びにレジストパターン形成方法及び回路パターン形成方法
JP7205716B2 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JP7452947B2 (ja) 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法
JP7205715B2 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JP7061271B2 (ja) 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法
JP7068661B2 (ja) 化合物、樹脂、組成物、並びにレジストパターン形成方法及びパターン形成方法
WO2018135498A1 (ja) 化合物、樹脂、組成物及びパターン形成方法
JP7385827B2 (ja) 化合物、樹脂、組成物、レジストパターン形成方法、回路パターン形成方法及び樹脂の精製方法
JP7445382B2 (ja) 化合物、樹脂、組成物及びパターン形成方法
WO2018101463A1 (ja) 化合物、樹脂、組成物、パターン形成方法及び精製方法
JP7216897B2 (ja) 化合物、樹脂、組成物、パターン形成方法及び精製方法
JP7139622B2 (ja) 化合物、樹脂、組成物及びパターン形成方法
JP7145415B2 (ja) 化合物、樹脂、組成物、パターン形成方法及び精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018541074

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197007791

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017853047

Country of ref document: EP

Effective date: 20190423