JP6785719B2 - アクティブフィルタ、交直変換装置 - Google Patents

アクティブフィルタ、交直変換装置 Download PDF

Info

Publication number
JP6785719B2
JP6785719B2 JP2017101035A JP2017101035A JP6785719B2 JP 6785719 B2 JP6785719 B2 JP 6785719B2 JP 2017101035 A JP2017101035 A JP 2017101035A JP 2017101035 A JP2017101035 A JP 2017101035A JP 6785719 B2 JP6785719 B2 JP 6785719B2
Authority
JP
Japan
Prior art keywords
voltage
capacitor
current
active filter
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017101035A
Other languages
English (en)
Other versions
JP2017139965A5 (ja
JP2017139965A (ja
Inventor
川嶋 玲二
玲二 川嶋
崇之 藤田
崇之 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of JP2017139965A publication Critical patent/JP2017139965A/ja
Publication of JP2017139965A5 publication Critical patent/JP2017139965A5/ja
Application granted granted Critical
Publication of JP6785719B2 publication Critical patent/JP6785719B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/084Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/08Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Direct Current Feeding And Distribution (AREA)

Description

この発明はアクティブフィルタに関し、特に並列形アクティブフィルタに関する。
アクティブフィルタを用いて高調波電流を補償し、以て高調波を抑制する技術は、例えば特許文献1〜3に紹介されている。
特許文献1では、昇圧チョッパで昇圧されて平滑コンデンサに与えられた直流電圧を、アクティブフィルタに直接に印加している。
特許文献2では、変圧器で昇圧された交流電圧が整流されて直流平滑コンデンサに与えられた直流電圧を、電圧形自励式電力変換器たるアクティブフィルタに直接に印加している。
特許文献3ではインバータ側のコンデンサが変換器とインバータとの間で配置され、一つの保護ダイオードを介して整流器側のコンデンサに対して並列に接続されている。
特許文献4ではいわゆる電解コンデンサレスインバータについて開示される。
特許第4411845号公報 特許第4284053号公報 特開2005−223999号公報 特開2002−51589号公報 特開2015−092813号公報
特許文献1,2に記載された技術では高調波電流の補償は適切であっても、昇圧チョッパや変圧器を必要とする。特許文献3は、並列接続されたコンデンサの間にダイオードが1つ設けられた簡単な技術を紹介するが、アクティブフィルタに与えられる直流電圧が不十分となり、ひいては適切な補償電流が得られない。
この発明は、上記の事情に鑑みてなされたもので、簡単な構成で、アクティブフィルタに与えられる直流電圧を高める技術を提供することを目的とする。
この発明にかかるアクティブフィルタは、一組の交流入力線(W)から入力する交流電圧(Vr,Vs,Vt)を整流し、負荷(4)が両者間に接続される一対の直流母線(LH,LL)へと直流電圧(Vdc)を出力する整流回路(2)に対して、前記一組の交流入力線と前記一対の直流母線との間に並列に接続される。
そして当該アクティブフィルタの第1の態様は、第1コンデンサ(C2)と、前記第1コンデンサの一対の端のそれぞれを前記一対の直流母線のそれぞれと接続し、少なくともその一方が前記直流電圧に対して順方向となる向きで配置されるダイオード(D1)である、一対の電流制限素子(D1,D2,R2)と、前記一組の交流入力線に接続された一組の交流側端子(51,52,53)と、前記第1コンデンサの両端に接続された一対の直流側端子(54,55)と、前記交流側端子の各々と前記直流側端子の各々とを接続するスイッチング素子の複数と、前記スイッチング素子の各々に逆並列に接続されたダイオードの複数とを有するインバータ(5)とを備える。
この発明にかかるアクティブフィルタの第2の態様は、その第1の態様であって、前記整流回路(2)は、ダイオードブリッジ(21)と、ローパスフィルタ(22)とを有し、前記ローパスフィルタ(22)は前記ダイオードブリッジ(21)と前記一対の直流母線(LH,LL)との間に設けられ、前記ダイオードブリッジ(21)は前記一組の交流入力線(W)と前記ローパスフィルタ(22)との間に設けられる。前記ローパスフィルタは、一の前記一対の直流母線(LH)と前記ダイオードブリッジ(21)との間に設けられる第1リアクトル(DCL1)と、他の前記一対の直流母線(LL)と前記ダイオードブリッジ(21)との間に設けられる第2リアクトル(DCL2)と、前記一対の直流母線(LH,LL)の間に設けられる第2コンデンサ(C1)とを有する。
例えば、前記一対の電流制限素子のいずれもが、前記直流電圧に対して順方向となる向きで配置されるダイオード(D1,D2)である。あるいは例えば、前記一対の電流制限素子の他方は抵抗(R2)である。
交直変換装置を、この発明にかかるアクティブフィルタと前記整流回路(2)とを含んで構成してもよい。
この発明にかかるアクティブフィルタの第1の態様によれば、アクティブフィルタが通常備える第1コンデンサを、一対の電流制限素子を介して一対の直流母線に接続するという簡単な構成により、直流母線間の電圧よりも高い電圧が第1コンデンサにおいて得られ、高調波電流の抑制を行うことができる。
この発明にかかるアクティブフィルタの第2の態様によれば、インバータの制御に用いられるキャリア成分が、交流入力線に流れる電流において低減する。
第1の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系を示す回路図である。 比較例となるアクティブフィルタが採用されたモータ駆動系を示す回路図である。 比較例となるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。 比較例となるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。 第1の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。 第1の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。 第2の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系を示す回路図である。 第2の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。 第2の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。 第3の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系を示す回路図である。 第3の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。 第3の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。 第1変形例たるアクティブフィルタが採用されたモータ駆動系を示す回路図である。 第2変形例たるアクティブフィルタが採用されたモータ駆動系を示す回路図である。 第4の実施の形態にかかるアクティブフィルタの構成を部分的に示す回路図である。 第4の実施の形態に対する比較例となるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。 第4の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。 第3変形例たるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。 第4変形例たるアクティブフィルタの構成を部分的に示す回路図である。 第4変形例たるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。 第5の実施の形態にかかるアクティブフィルタの構成を部分的に示す回路図である。 第5の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。 第5変形例たるアクティブフィルタの構成を部分的に示す回路図である。 第5変形例たるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。 第5の実施の形態に対する比較例となるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。 第6の実施の形態にかかるアクティブフィルタの構成を部分的に示す回路図である。 第6の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系における等価回路を示す回路図である。 第6の実施の形態におけるコモンモード電圧を説明するグラフである。 第6の実施の形態におけるコモンモードノイズを説明するグラフである。 第6の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。 第6の実施の形態にかかるアクティブフィルタの構成を部分的に示す回路図である。 第6の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系における等価回路を示す回路図である。 第6の実施の形態におけるコモンモードノイズを説明するグラフである。 第6の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。 第6変形例たるアクティブフィルタの構成を部分的に示す回路図である。 第7変形例たるアクティブフィルタの構成を部分的に示す回路図である。 第8変形例たるアクティブフィルタの構成を部分的に示す回路図である。 第9変形例たるアクティブフィルタの構成を部分的に示す回路図である。 第7変形例にかかるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。 第8変形例にかかるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。 第9変形例にかかるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。 第10変形例たるアクティブフィルタの構成を部分的に示す回路図である。 第10変形例にかかるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。
第1の実施の形態.
図1は第1の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系を示す回路図である。
当該モータ駆動系では、整流回路2が三相交流の電圧Vr,Vs,Vtを整流し、一対の直流母線LH,LLへと直流電圧Vdcを出力する。一対の直流母線LH,LL間には負荷4が接続される。電圧Vr,Vs,Vtは、一組の交流入力線Wを介して交流電源1から与えられる。
そして、当該アクティブフィルタは、一組の交流入力線Wと一対の直流母線LH,LLとの間で、整流回路2に対して並列に接続される、いわゆる並列形アクティブフィルタである。
当該アクティブフィルタは、インバータ5と、コンデンサC2と、一対の電流制限素子とを備える。一対の電流制限素子の内のいずれか一方はダイオードであり、第1の実施の形態では一対の電流制限素子は一対のダイオードである場合を例示する。
一対のダイオードはそれぞれダイオードD1,D2である。これらはいずれもコンデンサC2の一対の端のそれぞれを一対の直流母線LH,LLのそれぞれと接続する。そしてダイオードD1,D2のいずれも、直流電圧Vdcに対して順方向となる向きで配置される。
具体的には、直流母線LHの電位は直流母線LLの電位よりも高い。ダイオードD1のアノードは直流母線LHに、ダイオードD2のカソードは直流母線LLに、それぞれ接続される。ダイオードD1のカソードはコンデンサC2の高電位側の端に、ダイオードD2のアノードはコンデンサC2の低電位側の端に、それぞれ接続される。
インバータ5は一組の交流入力線Wに連系リアクトル6を介して接続された一組の交流側端子51,52,53と、コンデンサC2の両端に接続された一対の直流側端子54,55とを有する。更にインバータ5は、交流側端子51,52,53との各々と直流側端子54,55の各々とを接続するスイッチング素子を複数有する。図1ではこれらのスイッチング素子をIGBT(絶縁ゲート型バイポーラトランジスタ)として示した。インバータ5は更に、これらのスイッチング素子の各々に逆並列に接続されたダイオードの複数も有する。
かかるインバータ5の構成及びその動作自体は公知であるので、ここではその詳細を省略する。
整流回路2は、ダイオードブリッジ21と、ローパスフィルタ22とを有する。ローパスフィルタ22はダイオードブリッジ21と一対の直流母線LH,LLとの間に設けられる。ダイオードブリッジ21は一組の交流入力線Wとローパスフィルタ22との間に設けられる。
ローパスフィルタ22は、インバータ5のスイッチングによる高調波成分を抑制する観点で設けられることが望ましい。但し、負荷4に起因する高調波電流をアクティブフィルタが補償する機能において必須では無い。
ローパスフィルタ22は、直流母線LHとダイオードブリッジ21との間に設けられるリアクトルDCL1と、一対の直流母線LH,LLの間に設けられるコンデンサC1とを有している。リアクトルDCL1は、直流母線LLとダイオードブリッジ21との間に設けられてもよい。
負荷4は直流負荷であるが、高調波電流が流れる。例えば負荷4はインバータ41とモータ42とを有する。インバータ41は直流電圧Vdcを交流電圧に変換してモータ42に供給する。モータ42は例えば冷媒を圧縮する圧縮機を駆動する交流モータである。
第1の実施の形態にかかるアクティブフィルタの効果を説明するため、比較例を導入して説明する。
図2は第1の実施の形態に対する比較例となるアクティブフィルタが採用されたモータ駆動系を示す回路図である。図2に示されるアクティブフィルタは、図1に示されるアクティブフィルタのダイオードD2を短絡除去した構造に相当する。
即ち、当該比較例では、コンデンサC1,C2のそれぞれの低電位側の端は、直流母線LLに共通に接続されている。
このため、第1の実施の形態にかかる構成では流れなかった直流母線LLから直流側端子55へ向かう電流が、比較例にかかる構成では流れることになる。以下、詳細を説明する。
交流電源1から整流回路2を介して負荷4へ流れる電流I7、交流電源1から連系リアクトル6を介してアクティブフィルタ(より具体的にはインバータ5)へ流れる電流I5を導入すると、交流電源1から流れ出す電流I0(これは交流入力線Wに流れる電流でもある)は電流I7と電流I5との和となる。また、直流母線LHから直流側端子54に流れる電流I1、直流側端子54から直流母線LLに流れる電流I2を導入する。
但し、第1の実施の形態にかかる構成ではI2≧0であるのに対し、比較例ではI2<0となり得る。
以下、R相の電圧VrよりもS相の電圧Vsが高い場合を想定して説明する。図2を参照して、電流I5のうち、S相からR相へと流れる成分は、インバータ5のS相に対応した上アーム側ダイオードDsuと、R相に対応して導通中の上アーム側スイッチング素子Qruを通って流れる。電流I7のうち、S相からR相へと流れる成分は、ダイオードブリッジ21のS相に対応した上アーム側ダイオードRsuと、リアクトルDCL1と、ダイオードD1とを流れる。そしてその一部はコンデンサC2に流れ、他の一部は上アーム側スイッチング素子Qruを通る。これらの電流についての説明は、第1の実施の形態にかかる構成でも、比較例にかかる構成でも同様である。
さて比較例にかかる構成では上述のように電流I2は負となり得るので、直流母線LLからコンデンサC2を介して上アーム側スイッチング素子Qruに電流I2が流れ得る。これにより、コンデンサC2が保持する電圧Vdc2は、コンデンサC1が保持する直流電圧Vdcとほぼ等しくなってしまう。コンデンサC2を充電する電流は、ほぼ電流I1,I2の和であるので、電流I2の値が小さいほど(負であればその絶対値が大きいほど)、コンデンサC2は充電されにくくなるからである。
このように電圧Vdc2が直流電圧Vdcとほぼ等しくなっていると、高調波電流を補償するための電流I5を適切に流すことができない。これは特許文献3について既に指摘した問題点である。
図3は、比較例となる構成における各部の電流、電圧を示すグラフである。第2段のグラフに示された電流I2の波形は、電流I2が負となる期間が長い。これにより第3段のグラフに示されるように、電圧Vdc2は直流電圧Vdcをわずかに越えるに留まっている。
また、第1段のグラフで示されるように、電流I2が流れることにより電流I7も大きく乱れ、電流I5による高調波電流の補償は十分ではなく、結局、電流I0は正弦波から大きく外れた波形を呈することとなる。なお、電流I0,I5,I7の波形については、一つの相、例えばR相についての波形を示した。他図も同様である。
電圧Vdc2を直流電圧Vdcよりも大きくする対策としては、コンデンサC1の静電容量を大きくし、直流電圧Vdcの脈動を抑制することが挙げられる。
図4は、比較例となる構成における各部の電流、電圧を示すグラフである。但しコンデンサC1の静電容量は、図3で示された場合(数十μF)と比較して、図4で示された場合(数千μF)の方が大きく選定されている。
図3と図4とを比較してみれば、コンデンサC1の静電容量を大きくすることにより、電流I2が負となる期間が減ることがわかる。しかしながら、直流電圧Vdcと電圧Vdc2とが一致する期間は存在し、また直流電圧Vdcに対する電圧Vdc2の増分も不十分である。このため、電流I0の波形は、正弦波から大きく外れている。
図5は第1の実施の形態にかかる構成における各部の電流、電圧を示すグラフである。但し、図3で示された場合と、コンデンサC1の静電容量を揃えた。
第2段、第3段のグラフを参照して理解されるように、電流I2は正であり、よってコンデンサC2を充電する電流は、比較例よりも第1の実施の形態にかかる構成の方が大きくなる。よって電圧Vdc2も直流電圧Vdcよりも顕著に高くなり、電流I5による電流I7の高調波成分の補償も十分に行える。これにより、電流I0の波形もほぼ正弦波状となっている。
図6は第1の実施の形態にかかる構成における各部の電流、電圧を示すグラフである。但し、図4で示された場合と、コンデンサC1の静電容量を揃えた。
図5で示された場合と比較して、図6で示された場合は、直流電圧Vdcの脈動を抑制することで、電圧Vdc2は更に増大している(図5及び図6のいずれでも直流電圧Vdcのピーク値は280V程度であるが、図5では電圧Vdc2が320V程度であるのに対し、図6では電圧Vdc2が340V程度である)。
電流I7は、コンデンサC1の静電容量が大きい方(図6)が乱れやすくなっているが、電流I5がこの乱れをよく補償しており、電流I0の波形もほぼ正弦波状となっている。
以上のことから、第1の実施の形態による効果は、コンデンサC1の静電容量の大きさに拘わらず、発揮されることがわかる。つまり、直流電圧Vdcの脈動を平滑できる程度に大きな、例えば電解コンデンサをコンデンサC1に並列に接続することもできる。
このように、第1の実施の形態によれば、アクティブフィルタが通常備えるコンデンサC2を、一対のダイオードD1,D2を介して一対の直流母線LH,LLに接続するという簡単な構成により、直流電圧Vdcよりも高い電圧Vdc2を得て、高調波電流の抑制を行うことができる。これは特許文献1に示されたような昇圧チョッパや、特許文献2に示されたような変圧器を必要としない点で、有利である。
第2の実施の形態.
図7は第2の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系を示す回路図である。第2の実施の形態にかかるアクティブフィルタは、第1の実施の形態にかかるアクティブフィルタ(図1参照)に対し、ダイオードD2を抵抗R2に置換して得られる。
つまり、第2の実施の形態にかかるアクティブフィルタは、上述の一対の電流制限素子とを備える点で第1の実施の形態にかかるアクティブフィルタと共通するものの、一対の電流制限素子の内の一方がダイオードD1であり、他方は抵抗R2である点で相違する。
抵抗R2は電流I2を制限し、電流I2の絶対値を小さくする。見方を変えれば、電流I2は抵抗R2において電圧降下を発生させる。よって電圧Vdc2を直流電圧Vdcよりも大きく保持することができる。
図8は第2の実施の形態にかかる構成における各部の電流、電圧を示すグラフである。但し、図3で示された場合と、コンデンサC1の静電容量を揃えた。
第2の実施の形態の電流I2は、第1の実施の形態の電流I2とは異なり、また比較例の電流I2と類似して、負となる期間がある。しかし第2の実施の形態での電流I2の絶対値の最大値は、比較例の電流I2の絶対値の最大値の半分以下となっている。これにより、第2の実施の形態でも電圧Vdc2は310V程度が得られている。
図9は第2の実施の形態にかかる構成における各部の電流、電圧を示すグラフである。但し、図4で示された場合と、コンデンサC1の静電容量を揃えた。
図8で示された場合と比較して、図9で示された場合は、直流電圧Vdcの脈動を抑制することで、電圧Vdc2は更に増大している(図8及び図9のいずれでも直流電圧Vdcのピーク値は280V程度であるが、図8では電圧Vdc2が310V程度であるのに対し、図9では電圧Vdc2が310〜320V程度である)。
電流I7は、コンデンサC1の静電容量が大きい方(図9)が乱れやすくなっているが、電流I5がこの乱れをよく補償しており、電流I0の波形もほぼ正弦波状となっている。
以上のことから、第2の実施の形態による効果は、コンデンサC1の静電容量の大きさに拘わらず、発揮されることがわかる。
また、第2の実施の形態によれば、アクティブフィルタが通常備えるコンデンサC2を、少なくとも一つのダイオードD1と、電流制限素子たる抵抗R2を介して一対の直流母線LH,LLに接続するという簡単な構成により、第1の実施の形態による効果と同様の効果が得られる。
第3の実施の形態.
図10は第3の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系を示す回路図である。第3の実施の形態にかかるアクティブフィルタは、第1の実施の形態にかかるアクティブフィルタ(図1参照)に対し、ローパスフィルタ22においてリアクトルDCL2を追加して得られる。第1の実施の形態ではローパスフィルタ22は必須では無かったが、第3の実施の形態ではローパスフィルタ22は必須となる。
第3の実施の形態にかかるローパスフィルタ22は、直流母線LHとダイオードブリッジ21との間に設けられるリアクトルDCL1と、直流母線LLとダイオードブリッジ21との間に設けられるリアクトルDCL2と、直流母線LH,LLの間に設けられるコンデンサC1とを有する、と把握される。
ローパスフィルタ22では、ダイオードブリッジ21の出力側の一対の端子の間で、リアクトルDCL1,DCL2がコンデンサC1を挟んで直列に接続されている、と見ることもできる。
図11は、第3の実施の形態にかかる構成における各部の電流、電圧を示すグラフであって、図5と同内容を示す。但し、図5で示されたグラフのうち、電流I1,I2の縦軸を拡大して示すグラフである。図11からは、電流I1,I2の波形が大きく異なっていることが理解される。これは、電流I1,I2が流れる経路における非平衡が原因である。そして当該非平衡を原因として、電流I0,I5,I7のいずれについても、電流I7が負となる区間において波形が太く示されている。この波形が太く見えているのは、ローパスフィルタ22が採用されているにもかかわらず、インバータ5のスイッチングを制御することに採用されるキャリア信号が重畳していることが現れている。
以下、図10を参照して、第3の実施の形態においてこの非平衡が低減される様子を説明する。
Vr<Vsとなっているとき、電流I5のうちS相からR相へ向かう成分は二つの経路を有している。第1の経路は、インバータ5のS相に対応した上アーム側ダイオードDsu、R相に対応して導通中の上アーム側スイッチング素子Qruをこの順に通る経路である。第2の経路は電流I1として流れる経路であって、ダイオードブリッジ21のS相に対応した上アーム側ダイオードRsu、リアクトルDCL1、直流母線LH、ダイオードD1、上アーム側スイッチング素子Qruをこの順に通る経路である。図1に示された第1の実施の形態にかかる構成でも第2の経路においてリアクトルDCL1が存在する。
Vr>Vsとなっているとき、電流I5のうちR相からS相へ向かう成分は二つの経路を有している。第1の経路は、R相に対応して導通中の下アーム側スイッチング素子Qrd、インバータ5のS相に対応した下アーム側ダイオードDsdをこの順に通る経路である。第2の経路は電流I2として流れる経路であって、下アーム側スイッチング素子Qrd、ダイオードD2、直流母線LL、ダイオードブリッジ21のS相に対応した下アーム側ダイオードRsdを通る経路である。図1に示された第1の実施の形態にかかる構成では第2の経路においてリアクトルDCL2はないが、図10に示された第3の実施の形態にかかる構成では第2の経路においてリアクトルDCL2が存在する。
このように第3の実施の形態では電流I1,I2が流れる経路においてそれぞれリアクトルDCL1,DCL2が存在する。これにより、電流I1,I2の非平衡は緩和される。
図12は第3の実施の形態にかかる構成における各部の電流、電圧を示すグラフであって、図11と対応した内容を示す。図11に示された場合と比較して、図12に示された場合は、電流I1,I2の波形が類似しており、電流I0,I5,I7の波形でのキャリア信号の重畳が低減していることが見て取れる。
このように第3の実施の形態では、ローパスフィルタ22の構成において、一対のリアクトルDCL1,DCL2がコンデンサC1を挟みつつ、これらの三者がダイオードブリッジ21の出力側において直列に接続されている。これにより電流I1,I2の非平衡が緩和され、以てインバータ5の制御に用いられるキャリア成分が電流I0において低減する。
第1変形例.
図13は、第1変形例たるアクティブフィルタが採用されたモータ駆動系を示す回路図である。第1の実施の形態で示された構成(図1参照)において、ダイオードD1を抵抗R1に置換した構成を有している。かかる構成は第2の実施の形態で示された構成(図7参照)と同様にして、抵抗R1が電流制限素子として機能し、同様の効果を得ることができる。
第2変形例.
図14は、第2変形例たるアクティブフィルタが採用されたモータ駆動系を示す回路図である。第3の実施の形態で示された構成(図10参照)において、ダイオードD2を抵抗R2に置換した構成を有している。かかる構成によれば、第2の実施の形態で説明された内容に鑑みて、第3の実施の形態と同様の効果を得ることができる。但し、電流I1がダイオードD1を流れ、電流I2が抵抗R2を流れるので、電流I1,I2の非平衡が緩和される効果は、第3の実施の形態の方が期待される。
このように、第1の実施の形態、第2の実施の形態、第3の実施の形態、あるいは変形は、互いにそれぞれの作用効果を滅却しない限りにおいて、相互に組み合わせて変形を創出できる。
第4の実施の形態.
図15は、第4の実施の形態にかかるアクティブフィルタの構成を部分的に示す回路図である。第4の実施の形態にかかるアクティブフィルタは、第1の実施の形態にかかるアクティブフィルタ(図1参照)に対し、クランプ回路8を追加して得られる。
このようなクランプ回路8を設けることは、特にコンデンサC1,C2の静電容量を低減する場合に好適である。コンデンサC1の静電容量を小さくし、いわゆる電解コンデンサレスインバータ(例えば特許文献4、特許文献5を参照)が採用される場合、コンデンサC2の静電容量も小さくすることができる。コンデンサC1,C2の静電容量が低いと、整流回路2やインバータ5から出力されるサージ電流が直流電圧Vdcや電圧Vdc2(第1の実施の形態参照)に与える影響が大きい。そこでクランプ回路8を設けることによって、かかる影響を小さくする。
換言すれば、クランプ回路8を設けることにより、コンデンサC1,C2の静電容量が低くても、それぞれの電圧たる直流電圧Vdc、電圧Vdc2の変動が抑制される。
具体的には、第4の実施の形態においてクランプ回路8は、クランプ用ダイオードD3と、クランプ用コンデンサC3とを有する。クランプ用ダイオードD3は、コンデンサC2と電流制限素子たるダイオードD1との間に設けられ、直流電圧Vdcに対して逆方向となる。より具体的にはクランプ用ダイオードD3は、そのアノードがコンデンサC2に接続され、そのカソードがダイオードD1のカソードに接続される。
一対の電流制限素子たるダイオードD1,D2は、直流母線LH,LLの間でクランプ用コンデンサC3と直列に接続される。ダイオードD1はクランプ用ダイオードD3を介してコンデンサC1の一端に接続される。よって具体的には、クランプ用コンデンサC3は、ダイオードD1のカソードと、ダイオードD2のアノードとの間に接続される。見方を変えれば、クランプ用コンデンサC3は、ダイオードD1よりもコンデンサC2側でクランプ用ダイオードD3を介してコンデンサC2と並列に接続される。
図16は、第4の実施の形態に対する比較例となるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。具体的には、当該比較例は、図15に示されたダイオードD2を短絡除去した構成を有する。つまり第4の実施の形態に対する当該比較例の関係は、第1の実施の形態に対する(第1の実施の形態における)比較例の関係と同じである。
図17は、第4の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。図16及び図17において電流I0,I5,I7は第1の実施の形態で説明したものであり、図1に図示される。
図16と図17を比較して明白なように、第4の実施の形態にかかるアクティブフィルタが採用された場合は、その比較例たるアクティブフィルタが採用された場合よりも、電圧Vdc2と直流電圧Vdcとの差が大きく、電流I0が正弦波に近い。
つまり、クランプ回路8を設けた構成においても、第1の実施の形態と同様に、コンデンサC2を、一対のダイオードD1,D2を介して一対の直流母線LH,LLに接続するという簡単な構成により、直流電圧Vdcよりも高い電圧Vdc2を得て、高調波電流の抑制を行うことができる。
図18は、第4の実施の形態の変形たる第3変形例のアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。第3変形例は第4の実施の形態に対し、ローパスフィルタ22として、第3の実施の形態で採用された構成、即ちダイオードブリッジ21の出力側の一対の端子の間で、リアクトルDCL1,DCL2がコンデンサC1を挟んで直列に接続されている構成を採用したものである。
つまり、第4の実施の形態に対する第3変形例の関係は、第1の実施の形態に対する第3実施の形態の関係と同じである。
図17に示された電流I0,I5,I7の波形は、電流I7が負となる区間において波形が太く示されている。この波形が太く見えているのは、第3の実施の形態で説明したように、第1の実施の形態ではローパスフィルタ22が採用されているにもかかわらず、インバータ5のスイッチングを制御することに採用されるキャリア信号が重畳していることが現れている。これは電流I1,I2が流れる経路における非平衡が原因である。
よって第3の実施の形態と同様に、リアクトルDCL1,DCL2を採用することにより、図18に示されるように電流I0,I5,I7の波形もそれぞれの平衡が反映されている。
よって第3変形例でも第3の実施の形態と同様に、電流I1,I2の非平衡が緩和され、以てインバータ5の制御に用いられるキャリア成分が電流I0において低減する。
図19は、第4の実施の形態の変形たる第4変形例のアクティブフィルタの構成を部分的に示す回路図である。第4変形例は第4の実施の形態に対し、電流制限素子としてダイオードD2に代えて抵抗R2を採用したものである。つまり、第4の実施の形態に対する第4変形例の関係は、第1の実施の形態に対する第2の実施の形態の関係と同じである。
図20は第4変形例たるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。第2の実施の形態と同様に電流I2は負となる期間が多く存在するが、電圧Vdc2は直流電圧Vdcよりも明らかに高い。このようにして第4変形例でも第2の実施の形態と同様の効果が得られる。
第5の実施の形態.
図21は第5の実施の形態にかかるアクティブフィルタの構成を部分的に示す回路図である。第5の実施の形態ではクランプ回路8が、第4の実施の形態で示されたクランプ回路8に対してクランプ用ダイオードD4が追加された構成を有している。
具体的にはクランプ用ダイオードD4は、コンデンサC2の一対の端の間でクランプ用ダイオードD3及びクランプ用コンデンサC3と直列に接続される。クランプ用ダイオードD4は直流電圧Vdcに対して逆方向となる。更に具体的には、クランプ用ダイオードD4はそのアノードがダイオードD2のアノードに、そのカソードがコンデンサC2に、それぞれ接続される。
インバータ5から直流母線LH,LL側を見て、クランプ用ダイオードD4とダイオードD2とは直列に接続され、かつそれらの順方向は相互に逆向きとなって配置されている。従ってダイオードD1,D2及びクランプ用ダイオードD3,D4を流れる電流は必ずクランプ用コンデンサC3を充電することになる。よってクランプ用ダイオードD3に要求される電流容量は、クランプ用ダイオードD4を設けることにより小さくすることができる。しかもクランプ用ダイオードD4に要求される電流容量も、クランプ用ダイオードD3に要求される電流容量と同程度で足りる。従ってまた、ダイオードD1,D2に要求される電流容量も低減することができる。
図22は、第5の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。第5の実施の形態における電流I1,I2は、第4の実施の形態における電流I1,I2(図17参照)よりも小さい。これは上述のダイオードD1,D2及びクランプ用ダイオードD3,D4に要求される電流容量の低減を根拠づけるものとなっている。
しかも本実施の形態では電流I1,I2の平衡も改善されるので、電流I0,I5,I7におけるキャリア成分は、第4の実施の形態と比較して低減される。
図23は第5変形例たるアクティブフィルタの構成を部分的に示す回路図である。第5変形例は第5の実施の形態に対し、電流制限素子としてダイオードD2に代えて抵抗R2を採用したものである。つまり、第5の実施の形態に対する第5変形例の関係は、第1の実施の形態に対する第2の実施の形態の関係と同じである。
図24は第5変形例たるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。第2の実施の形態と同様に電流I2は負となる期間が多く存在するが、電圧Vdc2は直流電圧Vdcよりも明らかに高い。このようにして第5変形例でも第2の実施の形態と同様の効果が得られる。
なお、第5変形例においてはダイオードD2の逆方向電流ほどにはキャリア成分を阻止できない。よって電流I0における波形の改善度は、クランプ用ダイオードD4が無い場合(第4変形例:図20参照)と同程度である。換言すれば、電流制限素子としてダイオードD2ではなく抵抗R2を採用した場合には、クランプ用ダイオードD4の有無は効果に与える影響が小さいといえる。
図25は、第5実施の形態に対する比較例となるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。具体的には、当該比較例は、図21に示されたダイオードD2を短絡除去した構成を有する。つまり第5の実施の形態に対する当該比較例の関係は、第1の実施の形態に対する(第1の実施の形態における)比較例の関係と同じである。
図22及び図24と、図25の比較から、電流制限素子たるダイオードD2あるいは抵抗R2が果たす、電流I0,I5,I7の波形を改善する機能が看取できる。
第6の実施の形態.
図26は第6の実施の形態にかかるアクティブフィルタの構成を部分的に示す回路図である。但し、第6の実施の形態の説明に用いるため、ダイオードブリッジ21が出力する電圧Vdb、クランプ用コンデンサC3に流れる電流I8、クランプ用ダイオードD3,D4にそれぞれ(順方向電流として)流れる電流I3,I4、及びクランプ用コンデンサC3に掛る電圧VC3を更に導入している。ここで電圧Vdbは直流母線LLを基準とし、電流I8はダイオードD1及びクランプ用ダイオードD3からダイオードD2及びクランプ用ダイオードD4へと向かう方向を正の方向とし、電圧VC3はダイオードD2とクランプ用ダイオードD4との接続点を基準とした。
図27は、第6の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系における等価回路を示す回路図である。但しこの等価回路ではコモンモード電圧に着目して示している。
具体的には、ダイオードブリッジ21は電圧Vdbのコモンモード電圧Vdbcを発生し、インバータ5は電圧Vdc2のコモンモード電圧Vfcを発生する。電圧Vdb,VC3の基準を上述の様に採用したことにより、図27に矢印で示される方向が正の電圧の方向となる。
図1を参照して、交流電源1から得られる電圧Vr,Vs,Vtが三相交流電圧を成すので、コモンモード電圧Vdbcは式(1)で求められる。
Vdbc=(Vr+Vs+Vt)/3…(1)
また、直流側端子55を基準とした交流側端子51,52,53のそれぞれの電圧Vu,Vv,Vwを導入すると、コモンモード電圧Vfcは式(2)で求められる。
Vfc=(Vu+Vv+Vw)/3…(2)
図28はコモンモード電圧Vfcを説明するグラフである。インバータ5のスイッチング動作はキャリアCWと信号波Vu*,Vv*,Vw*との比較によって決定される。信号波Vu*,Vv*,Vw*は電圧Vu,Vv,Vwの指令値に対応する。簡単に説明すると、キャリアCWが信号波Vu*以上の値を採る場合に電圧Vuは電圧Vdc2と一致し、それ以外の場合には電圧Vuは0となる。電圧Vv,Vwについても同様である。このような技術は当業者に周知であるので、ここではその詳細を省略する。
このようにして電圧Vu,Vv,Vwが決定されるので、コモンモード電圧Vfcは電圧Vdc2の0倍、1/3倍、2/3倍、1倍の4種の値を採るステップ状の波形を呈する。当該波形の基本周波数はキャリアCWの周波数と一致する。
ここで、信号波Vu*,Vv*,Vw*を式(3)で表す。但し変調率K及び信号波Vu*,Vv*,Vw*の周期についての位相αを導入した。
Vu=K・sin(α),Vv=K・sin(α-2π/3),Vw=K・sin(α+2π/3)…(3)
これにより、電圧Vuが電圧Vdc2を採る時間の半値a、電圧Vvが電圧Vdc2を採る時間の半値b、電圧Vwが電圧Vdc2を採る時間の半値cは式(4)で表される。但しキャリアCWの周期Tswを導入した。
a=(Tsw/2)/(1/2−K・sin(α)),b=(Tsw/2)/(1/2−K・sin(α-2π/3)),c=(Tsw/2)/(1/2−K・sin(α+2π/3))…(4)
図29は、第6実施の形態におけるコモンモードノイズを説明するグラフである。ここでは電圧Vr,Vs,Vtの実効値が400Vである場合を例示した。直流電圧Vdcはローパスフィルタ22の作用によって平滑された波形を呈している。他方、コモンモード電圧Vdbcは200V近傍で細かな変動を呈している。なお、ダイオードブリッジ21では直列に接続された上アーム側ダイオードと下アーム側ダイオードのいずれか一方が導通するので、コモンモード電圧Vdbcは直流電圧Vdcの1/3程度となる。
電圧Vdc2はコモンモード電圧Vfcの上限を結ぶ包絡線を呈する。コモンモード電圧Vcomはコモンモード電圧Vdbc,Vfcの和であり、図27から理解されるように、電圧VC3のコモンモード電圧に相当する。よって電圧Vdc2のコモンモード電圧Vfcに対する振る舞いと同様に、電圧VC3もコモンモード電圧Vcomのほぼ上限を結ぶ包絡線を呈する。但し電圧VC3は電圧Vdc2よりもVdc/3程度高い。
コモンモード電圧Vcomに由来して、電圧VC3は電圧Vdc2と比較して高くなり、電流I8も大きい。これはクランプ用コンデンサC3に対して大きな電力容量を要求することとなり、クランプ回路8の、ひいてはアクティブフィルタ全体を小型に、かつ安価に構成することを阻む。
なお、より巨視的な時間軸で見た諸量を図30に示す。ここには第5実施の形態で既に説明された電流I0,I1,I2,I5,I7並びに直流電圧Vdc及び電圧Vdc2の他、電流I3,I4及び電圧VC3をも示した。但し図30のグラフでは、図22のグラフとは、直流電圧Vdcが異なった設定を採用しているので、波形がやや異なっている。
図31は、第6の実施の形態にかかるアクティブフィルタの構成を部分的に示す回路図である。図31に示された構成は、図26に示された(第5の実施の形態にかかる)構成に対し、コモンモードチョークL9を追加した点で異なっている。
コモンモードチョークL9は、同極性で誘導結合するリアクトルL91,L92を有している。リアクトルL91は直流母線LHとコンデンサC2の端の一方(高電位端)との間でダイオードD1と直列に接続される。リアクトルL92は直流母線LLとコンデンサC2の端の他方(低電位端)との間でダイオードD2と直列に接続される。また、リアクトルL91,L92のいずれもが、クランプ用コンデンサC3に対してコンデンサC2側にあるか、コンデンサC2と反対側にある。
図31においては、リアクトルL91がクランプ用ダイオードD3とコンデンサC2の高電位端との間に接続され、リアクトルL92がクランプ用ダイオードD4とコンデンサC2の低電位端との間に接続される場合が例示される。よってリアクトルL91,L92のいずれもが、クランプ用コンデンサC3に対してコンデンサC2と反対側にある。
図32は第6の実施の形態にかかるアクティブフィルタが採用されたモータ駆動系における等価回路を示す回路図である。図32は図27と同様に、コモンモード電圧に着目した等価回路を示している。
この等価回路においてコモンモードチョークL9はインバータ5とクランプ用コンデンサC3との間に配置され、電圧VC3と同じ方向に電圧V9が発生する。これにより、コモンモード電圧Vcomは打ち消される。また電流I5,I7に流れるコモンモード電流もキャンセルされ、電流I8も小さくなる。
図33は第6の実施の形態におけるコモンモードノイズを説明するグラフであり、図29と同じ諸量を示す。電流I8は小さくなり、電圧VC3は電圧Vdc2程度となることが分かる。よってクランプ用コンデンサC3に対して要求される電力容量が低減する。
図34はより巨視的な時間軸で見た諸量を示し、図30と同じ諸量を示す。電圧VC3は電圧Vdc2程度となるのみならず、電流I1,I2,I3,I4も小さくなることが看取される。これはダイオードD1,D2やクランプ用ダイオードD3,D4に要求される電力容量を小さくできる観点で有利である。
コモンモードチョークL9におけるコイルの巻数Nを導入すると、コモンモードチョークL9に流れる磁束Φcmcは式(5)で表される。但し記号∫と記号dtとは、これら二者によって挟まれた量の時間積分を示す。
Φcmc=(1/N)・∫V9・dt…(5)
コモンモード電圧Vfcが全てコモンモードチョークL9に印加された場合、そのピーク値Φpeakを検討する。但し簡単のため、図28に示されたようにc<a<b(<Tsw/2)の場合について説明する。これは-π/6<α<π/6の場合に相当する。この場合、図28を参照して、ピーク値Φpeakは式(6)で求められる。インバータ5が三相正弦波変調で動作する場合、磁束Φcmcは位相αについてπ/6を周期とする周期関数となる。図28には磁束Φcmcも併記した。
Φpeak=(1/N)・[(Vdc2/2)(c-0)+(Vdc2/3)(a-c)]=(Vdc2/N)・(c/6+a/3)…(6)
ピーク値Φpeakが最大となるのは変調率Kが0となるときであって、インバータ5の上アーム側スイッチング素子が全てオンとなって下アーム側スイッチング素子が全てオフとなる場合、もしくは、上アーム側スイッチング素子が全てオフとなって下アーム側スイッチング素子が全てオンとなる場合である。このときにはa=b=c=Tsw/4であり、ピーク値Φpeakは式(7)で表される。
Φpeak=(1/N)・(Vdc2/2)・(Tsw/4)=(Vdc2・Tsw)/(8・N)…(7)
コモンモードチョークL9がコアを有しているとき、そのコアの飽和磁束が式(7)で示されるピーク値Φpeakよりも大きく選定されることが望まれる。つまり当該コアは、電圧Vdc2が高いほど、キャリアCWの周波数が高い(これはインバータ5のスイッチング周波数が高いことに繋がる)ほど、コモンモードチョークL9のコアに要求される飽和磁束も高まる。
図35は第6変形例たるアクティブフィルタの構成を部分的に示す回路図である。第6変形例は第6の実施の形態に対し、クランプ回路8に対するコモンモードチョークL9の位置が異なっている。
具体的には、第6変形例におけるコモンモードチョークL9も、同極性で誘導結合するリアクトルL91,L92を有している。そしてリアクトルL91は直流母線LHとコンデンサC2の高電位端との間でダイオードD1と直列に接続され、リアクトルL92は直流母線LLとコンデンサC2の低電位端との間でダイオードD2と直列に接続される。但しリアクトルL91は、クランプ用コンデンサC3よりもコンデンサC2から遠い側で、クランプ用ダイオードD3とダイオードD1との間に設けられる。またリアクトルL92は、クランプ用コンデンサC3よりもコンデンサC2から遠い側で、クランプ用ダイオードD4とダイオードD2との間に設けられる。よってリアクトルL91,L92のいずれもが、クランプ用コンデンサC3に対してコンデンサC2と反対側にある。
このような構成においてもコモンモードチョークL9が第6の実施の形態と同様に機能し、同様の作用効果を果たすことは明らかである。その理由は:第6変形例の等価回路は、図32に示された等価回路においてクランプ用コンデンサC3の位置とコモンモードチョークL9の位置を入れ替えたものであること;クランプ用コンデンサC3とコモンモードチョークL9とは互いに直列接続された関係にあること;直列接続された二つの素子を入れ替えてもその直列接続された構成が当該直列接続の外部に対して果たす作用効果は異ならないこと;である。
図36、図37、図38は、それぞれ第7変形例、第8変形例、第9変形例たるアクティブフィルタの構成を部分的に示す回路図である。第7乃至第9変形例は第6の実施の形態に対し、クランプ回路8に対するコモンモードチョークL9の位置が異なっている。
具体的には、第7乃至第9変形例におけるコモンモードチョークL9も、同極性で誘導結合するリアクトルL91,L92を有している。そしてリアクトルL91は直流母線LHとコンデンサC2の高電位端との間でダイオードD1と直列に接続され、リアクトルL92は直流母線LLとコンデンサC2の低電位端との間でダイオードD2と直列に接続される。
但し第7変形例では、リアクトルL91は、クランプ用コンデンサC3よりもコンデンサC2に近い側で、クランプ用ダイオードD3とダイオードD1との間に設けられる。またリアクトルL92は、クランプ用コンデンサC3よりもコンデンサC2に近い側で、クランプ用ダイオードD4とダイオードD2との間に設けられる。よってリアクトルL91,L92のいずれもが、クランプ用コンデンサC3に対してコンデンサC2側にある。
第8変形例では、リアクトルL91は、直流母線LHとダイオードD1との間に設けられる。またリアクトルL92は直流母線LLとダイオードD2との間に設けられる。よってリアクトルL91,L92のいずれもが、クランプ用コンデンサC3に対してコンデンサC2と反対側にある。
第9変形例では、リアクトルL91は、クランプ用コンデンサC3よりもコンデンサC2から遠い側で、クランプ用ダイオードD3とダイオードD1との間に設けられる。またリアクトルL92は、直流母線LLとダイオードD2との間に設けられる。よってリアクトルL91,L92のいずれもが、クランプ用コンデンサC3に対してコンデンサC2と反対側にある。
あるいはリアクトルL91が直流母線LHとダイオードD1との間に設けられ、リアクトルL92がクランプ用コンデンサC3よりもコンデンサC2から遠い側で、クランプ用ダイオードD4とダイオードD2との間に設けられてもよい。
図39、図40、図41は、それぞれ第7変形例、第8変形例、第9変形例にかかるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を示すグラフである。具体的には電流I0,I8及び電圧Vdc,Vdc2,VC3を示す。これらの変形例においても第6の実施の形態(図34参照)と同様に、電圧VC3は電圧Vdc2程度に抑えられている。
第6実施の形態及び第6乃至第9変形例では、第5の実施の形態に対してコモンモードチョークL9を追加した構成が示された。しかしコモンモードチョークL9を第4の実施の形態に対して追加してもよい。換言すれば、第6実施の形態及び第6乃至第9変形例からクランプ用ダイオードD4を省略してもよい。
図42は、第6変形例においてクランプ用ダイオードD4を短絡除去して得られる、第10変形例の構成を部分的に示す回路図である。図43は第10変形例にかかるアクティブフィルタが採用されたモータ駆動系における各部の電流、電圧を、具体的には電流I0,I8及び電圧Vdc,Vdc2,VC3を示すグラフである。
第10変形例において、クランプ用ダイオードD4がないために電流I8が高くなる時間領域があるものの、第6変形例と同様に電圧VC3を電圧Vdc2程度に抑える効果が得られる。
なるほど、コモンモード電圧を低減するためには、例えば電流I5が流れる三相の経路、あるいは電流I7が流れる三相の経路において、三相のコモンモードチョークを設けることも考えられる。
しかしながらそのような場合と比較して、第6の実施の形態あるいは第6変形例では電流容量が小さい単相のコモンモードチョークL9で足りる。これは、アクティブフィルタ全体の、ひいては当該アクティブフィルタを採用するモータ駆動系を小型に、かつ安価に構成できる観点で有利である。
なお、第6の実施の形態及び第6乃至第10変形例ではダイオードD2を採用しているが、第5変形例の第5の実施の形態に対する変形と同様に、これに代えて抵抗R2を採用してもよい。
上述の第5の実施の形態、第6の実施の形態及び第6乃至第10変形例のいずれにおいても、電流I8が急峻に変動しないように、クランプ用コンデンサC3に対して直列に抵抗を接続してもよい。
上述のアクティブフィルタと整流回路2を含めた構成を、交直変換装置として把握することができる。
2 整流回路
21 ダイオードブリッジ
22 ローパスフィルタ
4 負荷
5 インバータ
51,52,53 交流側端子
54,55 直流側端子
8 クランプ回路
C1,C2 コンデンサ
C3 クランプ用コンデンサ
D1,D2 ダイオード
D3,D4 クランプ用ダイオード
DCL1,DCL2,L91,L92 リアクトル
LH,LL 直流母線
R1,R2 抵抗
Vdc 直流電圧
Vr,Vs,Vt (三相交流の)電圧
W 交流入力線

Claims (5)

  1. 一組の交流入力線(W)から入力する交流電圧(Vr,Vs,Vt)を整流し、負荷(4)が両者間に接続される一対の直流母線(LH,LL)へと直流電圧(Vdc)を出力する整流回路(2)に対して、前記一組の交流入力線と前記一対の直流母線との間に並列に接続されるアクティブフィルタであって、
    第1コンデンサ(C2)と、
    前記第1コンデンサの一対の端のそれぞれを前記一対の直流母線のそれぞれと接続し、少なくともその一方が前記直流電圧に対して順方向となる向きで配置されるダイオード(D1)である、一対の電流制限素子(D1,D2,R2)と、
    前記一組の交流入力線に接続された一組の交流側端子(51,52,53)と、前記第1コンデンサの両端に接続された一対の直流側端子(54,55)と、前記交流側端子の各々と前記直流側端子の各々とを接続するスイッチング素子の複数と、前記スイッチング素子の各々に逆並列に接続されたダイオードの複数とを有するインバータ(5)と
    を備える、アクティブフィルタ。
  2. 一組の交流入力線(W)から入力する交流電圧(Vr,Vs,Vt)を整流し、負荷(4)が両者間に接続される一対の直流母線(LH,LL)へと直流電圧(Vdc)を出力する整流回路(2)に対して、前記一組の交流入力線と前記一対の直流母線との間に並列に接続されるアクティブフィルタであって、
    第1コンデンサ(C2)と、
    前記第1コンデンサの一対の端のそれぞれを前記一対の直流母線のそれぞれと接続し、少なくともその一方が前記直流電圧に対して順方向となる向きで配置されるダイオード(D1)である、一対の電流制限素子(D1,D2,R2)と、
    前記一組の交流入力線に接続された一組の交流側端子(51,52,53)と、前記第1コンデンサの両端に接続された一対の直流側端子(54,55)と、前記交流側端子の各々と前記直流側端子の各々とを接続するスイッチング素子の複数と、前記スイッチング素子の各々に逆並列に接続されたダイオードの複数とを有するインバータ(5)と
    を備え
    前記整流回路(2)は、ダイオードブリッジ(21)と、ローパスフィルタ(22)とを有し、
    前記ローパスフィルタ(22)は前記ダイオードブリッジ(21)と前記一対の直流母線(LH,LL)との間に設けられ、
    前記ダイオードブリッジ(21)は前記一組の交流入力線(W)と前記ローパスフィルタ(22)との間に設けられ、
    前記ローパスフィルタは、一の前記一対の直流母線(LH)と前記ダイオードブリッジ(21)との間に設けられる第1リアクトル(DCL1)と、他の前記一対の直流母線(LL)と前記ダイオードブリッジ(21)との間に設けられる第2リアクトル(DCL2)と、前記一対の直流母線(LH,LL)の間に設けられる第2コンデンサ(C1)とを有する、アクティブフィルタ。
  3. 前記一対の電流制限素子のいずれもが、前記直流電圧に対して順方向となる向きで配置されるダイオード(D1,D2)である、請求項1または請求項2に記載のアクティブフィルタ。
  4. 前記一対の電流制限素子の他方は抵抗(R2)である、請求項1または請求項2に記載のアクティブフィルタ。
  5. 請求項1乃至請求項4のいずれか一つに記載のアクティブフィルタと前記整流回路(2)とを含む、交直変換装置。
JP2017101035A 2014-10-15 2017-05-22 アクティブフィルタ、交直変換装置 Active JP6785719B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014210821 2014-10-15
JP2014210821 2014-10-15
JP2015078968 2015-04-08
JP2015078968 2015-04-08

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015191013A Division JP6183434B2 (ja) 2014-10-15 2015-09-29 アクティブフィルタ、交直変換装置

Publications (3)

Publication Number Publication Date
JP2017139965A JP2017139965A (ja) 2017-08-10
JP2017139965A5 JP2017139965A5 (ja) 2018-12-27
JP6785719B2 true JP6785719B2 (ja) 2020-11-18

Family

ID=55746517

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015191013A Active JP6183434B2 (ja) 2014-10-15 2015-09-29 アクティブフィルタ、交直変換装置
JP2017101035A Active JP6785719B2 (ja) 2014-10-15 2017-05-22 アクティブフィルタ、交直変換装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015191013A Active JP6183434B2 (ja) 2014-10-15 2015-09-29 アクティブフィルタ、交直変換装置

Country Status (7)

Country Link
US (1) US10110113B2 (ja)
EP (1) EP3208926B1 (ja)
JP (2) JP6183434B2 (ja)
CN (1) CN107112914B (ja)
AU (1) AU2015331531B2 (ja)
ES (1) ES2781116T3 (ja)
WO (1) WO2016059969A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3024133A1 (en) * 2014-11-24 2016-05-25 Broadband Power Solutions DC-to-AC power converter
JP5920520B1 (ja) * 2014-12-17 2016-05-18 ダイキン工業株式会社 充放電回路、充放電回路の制御方法、充放電回路の制御装置、及び直接形電力変換器
JP6260578B2 (ja) * 2015-04-17 2018-01-17 トヨタ自動車株式会社 送電装置及び受電装置
CN111108673B (zh) * 2017-09-28 2024-02-09 开利公司 脉冲宽度调制交织
DE102018204090A1 (de) * 2018-03-16 2019-09-19 Schmidhauser Ag Filtereinheit und Frequenzumrichter
JP6690662B2 (ja) * 2018-03-29 2020-04-28 ダイキン工業株式会社 電源品質管理システムならびに空気調和装置
CN108879765B (zh) * 2018-07-02 2021-04-02 太原理工大学 防止微电网交流母线电流畸变的双向功率变换器控制方法
CN111256281B (zh) * 2018-11-30 2021-10-22 广东美的制冷设备有限公司 运行控制方法及系统、压缩机和空调器
DE102019102550B4 (de) * 2019-02-01 2022-06-30 Infineon Technologies Austria Ag Leistungswandler und leistungswandlungsverfahren
CN113328639B (zh) * 2021-07-09 2021-11-19 四川大学 一种大功率的电解制氢整流电源及控制方法
WO2024189669A1 (ja) * 2023-03-10 2024-09-19 三菱電機株式会社 アクティブフィルタ装置、電力変換装置、冷凍サイクル装置及びアクティブフィルタ装置の制御方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757106B2 (ja) * 1984-05-07 1995-06-14 株式会社日立製作所 インバータ装置
WO1988008639A1 (en) * 1987-04-30 1988-11-03 Fanuc Ltd Power source regeneration circuit
JPH08251947A (ja) * 1995-03-15 1996-09-27 Hitachi Ltd 電力変換装置の回生制御装置
KR100214686B1 (ko) * 1997-04-10 1999-08-02 이종수 엘리베이터의 구출운전 겸용 역률 개선장치
JP3367101B2 (ja) * 1999-11-11 2003-01-14 サンケン電気株式会社 Ac−dcコンバータ
JP2002051589A (ja) 2000-07-31 2002-02-15 Isao Takahashi モータ駆動用インバータの制御装置
JP2003309977A (ja) * 2002-04-15 2003-10-31 Toshiba Corp 電力変換装置
JP4284053B2 (ja) 2002-11-21 2009-06-24 株式会社東芝 電力変換装置
CN1264269C (zh) 2002-12-13 2006-07-12 永大机电工业股份有限公司 升降设备的电力控制装置
JP4411845B2 (ja) 2003-02-13 2010-02-10 株式会社明電舎 並列型ac−dc変換器
TW591870B (en) * 2003-02-18 2004-06-11 Delta Electronics Inc Integrated converter with three-phase power factor correction
JP2006109558A (ja) 2004-10-01 2006-04-20 Matsushita Electric Ind Co Ltd 空気調和装置
GB2427512A (en) 2005-06-23 2006-12-27 Alstom Electrical power converters
US8098031B2 (en) 2006-11-28 2012-01-17 Baumuller Nurnberg Gmbh Active brake unit
FI120665B (fi) 2007-06-20 2010-01-15 Kone Corp Kuljetusjärjestelmän tehonohjaus
CN201051718Y (zh) 2007-06-22 2008-04-23 北京利德华福电气技术有限公司 带有能量回馈装置的功率单元模块
CN101237185A (zh) * 2007-12-07 2008-08-06 华中科技大学 适用于整流装置的能量回馈与谐波无功补偿系统
US8274803B2 (en) * 2009-01-09 2012-09-25 Yaskawa America, Inc. Low stress soft charge circuit for diode front end variable frequency drive
CN102044974B (zh) 2010-08-11 2014-03-19 江苏斯达工业科技有限公司 一种能量回馈器主电路拓扑结构
JP5762869B2 (ja) * 2011-07-26 2015-08-12 住友重機械工業株式会社 射出成形機
MY176806A (en) 2013-09-30 2020-08-21 Daikin Ind Ltd Power conversion device

Also Published As

Publication number Publication date
AU2015331531B2 (en) 2018-04-05
US10110113B2 (en) 2018-10-23
EP3208926A4 (en) 2018-05-16
ES2781116T3 (es) 2020-08-28
CN107112914A (zh) 2017-08-29
US20170237334A1 (en) 2017-08-17
EP3208926B1 (en) 2020-01-01
JP2017139965A (ja) 2017-08-10
EP3208926A1 (en) 2017-08-23
JP2016185058A (ja) 2016-10-20
WO2016059969A1 (ja) 2016-04-21
JP6183434B2 (ja) 2017-08-23
CN107112914B (zh) 2019-07-02
AU2015331531A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
JP6785719B2 (ja) アクティブフィルタ、交直変換装置
KR101189428B1 (ko) 전력 변환 장치
JP5772915B2 (ja) 直接形電力変換装置および直接形電力変換装置の制御方法
US8508957B2 (en) Power conversion device for converting DC power to AC power
KR101230743B1 (ko) 전력 변환 장치
JP4760001B2 (ja) 多相電流供給回路、駆動装置、圧縮機、及び空気調和機
JP5145762B2 (ja) サージ抑制回路およびインバータ駆動モータシステム
WO2016086457A1 (zh) 带二次滤波电路的牵引变流器
CN105932870B (zh) 用于pfc电流整形的方法和控制电路
JP6396135B2 (ja) 電力変換装置
EP2852039A1 (en) Power factor corrector
JP2002272113A (ja) 直流リアクトル装置及び高周波抑制制御装置
JP5824339B2 (ja) 三相整流装置
JP2009095202A (ja) インバータ
JP5778533B2 (ja) 回生型モータ端サージ電圧抑制装置、モータ駆動システム、および、回生型モータ端サージ電圧抑制方法
JP6480290B2 (ja) 電力変換装置
JP2008043096A (ja) 電力変換装置
JP6098629B2 (ja) 電力変換装置
JP2016092929A (ja) インバータ回路
JP6129650B2 (ja) 車両用電力変換装置
JP2018113837A (ja) ノイズ低減用のxコンデンサの劣化検出装置
JP2016116387A (ja) 電源回路
Marouchos et al. Investigation on line current compensation techniques for rectifier circuits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200205

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201027

R150 Certificate of patent or registration of utility model

Ref document number: 6785719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150