JP6494558B2 - 電極および電気化学的に活性な電極材料 - Google Patents

電極および電気化学的に活性な電極材料 Download PDF

Info

Publication number
JP6494558B2
JP6494558B2 JP2016077671A JP2016077671A JP6494558B2 JP 6494558 B2 JP6494558 B2 JP 6494558B2 JP 2016077671 A JP2016077671 A JP 2016077671A JP 2016077671 A JP2016077671 A JP 2016077671A JP 6494558 B2 JP6494558 B2 JP 6494558B2
Authority
JP
Japan
Prior art keywords
silicide
active material
template
electrochemically active
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016077671A
Other languages
English (en)
Other versions
JP2016164885A (ja
Inventor
ラブネス、ガイルン、イー.
デルハゲン、ウィリアム、エス.
ファスチング、レイナー
ハン、ソング
リウ、ズーチン
Original Assignee
アンプリウス、インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アンプリウス、インコーポレイテッド filed Critical アンプリウス、インコーポレイテッド
Publication of JP2016164885A publication Critical patent/JP2016164885A/ja
Application granted granted Critical
Publication of JP6494558B2 publication Critical patent/JP6494558B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

[関連出願]
本願は、米国仮特許出願第61/310,183号(出願日:2010年3月3日、発明の名称:「電気化学的に活性なシリサイド含有構造」)による恩恵を主張する。当該仮出願の内容は全て、参照により本願に組み込まれる。本願は、米国特許出願第12/437,529号(発明者:クイ他(Cui et al.)、発明の名称:「充電式電池用のナノ構造を含む電極」、出願日:2009年5月7日)の一部継続出願である。
高容量充電式電池の需要は、高く、毎年増加している。宇宙空間、医療機器、携帯可能電子機器および自動車等、多くの用途では、質量当たり、および/または、体積当たりの容量が高い電池が必要となっている。リチウムイオン電極技術は、この分野において改善に貢献した。しかし、現時点において、リチウムイオン電池は主に、グラファイトで製造されており、グラファイトの理論上の容量は、372mAh/gに過ぎない。
シリコン、ゲルマニウム、スズおよび多くのその他の材料は、電気化学容量が高いので、活性材料として魅力が大きい。例えば、シリコンは、理論上の容量が約4200mAh/gであり、Li4.4Si相に対応する。しかし、こういった材料の多くは、市販されているリチウムイオン電池で広く利用されていない。理由の1つとして考えられるのは、これらの材料の一部は、サイクル中に体積が大きく変化することである。例えば、シリコンは、理論上の容量まで充電されると、400%も膨張する。このような大きさの体積変化は、活性材料構造に大きな応力を発生させ、破損、粉状化が進み、電極内での電気的接続および機械的接続が失われ、容量が減衰する。
従来の電極は、基板上に活性材料を保持するために用いられるポリマーバインダーを含む。大半のポリマーバインダーは、大きく膨張する一部の高容量材料を許容するのに十分な弾性を持たない。このため、活性材料粒子は、互いから、そして、電流コレクタから分離する傾向がある。全体として、上述した問題点を最小限に抑える電池用電極において高容量活性材料の使用を改善する必要がある。
電気化学的に活性な電極材料、このような材料を利用する電極、および、このような電極を製造する方法の例を提供する。電気化学的に活性な電極材料は、金属シリサイドを含む表面積が大きいテンプレートと、テンプレート上に堆積される高容量活性材料の層とを含むとしてよい。テンプレートは、活性材料を機械的に支持する機能を持つとしてよく、および/または、例えば、基板と活性材料との間を導通させる機能を持つとしてよい。テンプレートの表面積が大きいので、活性材料の層は薄くても、活性材料を十分な量だけ設けることができ、対応して、表面積当たりの電極容量も十分な大きさにすることができる。このため、活性材料層の厚みは、電池サイクル中において構造一体性を維持するべく破損しきい値未満に維持されるとしてよい。活性層の厚みおよび/または組成はさらに、基板界面の近傍において膨張を軽減するように形状が決まっており、この界面での接続を維持するとしてよい。
特定の実施形態によると、リチウムイオン電池で利用され電気化学的に活性な電極材料は、金属シリサイドを有するナノ構造テンプレートと、ナノ構造テンプレートをコーティングしている電気化学的に活性な材料の層とを備える。電気化学的に活性な材料は、リチウムイオン電池のサイクル時に、リチウムイオンを取り込み放出する。さらに、ナノ構造テンプレートによって、前記電気化学的に活性な材料との間での電流の伝導が円滑化されるとしてよい。電気化学的に活性な電極材料は、電気化学的に活性な材料の層の上方に形成されているシェルをさらに備えるとしてよい。シェルは、炭素、銅、ポリマー、硫化物、および/または、金属酸化物を含むとしてよい。
ナノ構造のテンプレートに含まれる金属シリサイドの例としては、ケイ化ニッケル、ケイ化コバルト、ケイ化銅、ケイ化銀、ケイ化クロム、ケイ化チタン、ケイ化アルミニウム、ケイ化亜鉛およびケイ化鉄がある。特定の実施形態によると、金属シリサイドは、NiSi、NiSiおよびNiSiのうち少なくとも1つの別のケイ化ニッケル相を含む。電気化学的に活性な材料とは、結晶性シリコン、アモルファスシリコン、酸化シリコン、酸窒化シリコン、スズ含有材料、ゲルマニウム含有材料、および、炭素含有材料であってよい。電気化学的に活性な材料は、理論上のリチオ化容量が少なくとも約500mAh/gであるとしてよく、より具体的には、少なくとも約1000mAh/gであるとしてよい。このような容量を持つ活性材料は、「高容量活性材料」と呼ぶとしてよい。特定の実施形態によると、電気化学的に活性な電極材料は、正極を製造するために用いられるとしてよい。正極用の電気化学的に活性な材料の例としては、LiMOとして表されるさまざまな活性成分がある。尚、Mは、平均酸化状態が3である1以上のイオンを表す。このようなイオンの例としては、バナジウム(V)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、および、ニッケル(Ni)がある。非活性成分は、LiM'Oと表現されるとしてよい。M'は、平均酸化状態が4である1以上のイオンを表す。このようなイオンの例としては、マンガン(Mn)、チタン(Ti)、ジルコニウム(Zr)、ルテニウム(Ru)、レニウム(Re)、および、白金(Pt)がある。他の正極用活性材料としては、硫黄、リチウム鉄ケイ酸塩(LiFeSiO)、六価鉄ナトリウム酸化物(NaFeO)がある。
特定の実施形態によると、電気化学的に活性な材料の層は、活性材料の伝導率を高めるべくドープされている。ドーパントの例の一部を挙げると、リンおよび/またはホウ素がある。特定の実施形態によると、ナノ構造テンプレートは、シリサイド含有ナノワイヤを含む。ナノワイヤは、長さが平均で約1マイクロメートルと200マイクロメートルとの間であり、および/または、直径が平均で約100ナノメートル未満であるとしてよい。電気化学的に活性な材料の層は、厚みが平均で少なくとも約20ナノメートルである。上記およびその他の実施形態によると、活性材料とテンプレートとの間の質量比は、少なくとも約5である。
特定の実施形態によると、電気化学的に活性な材料の層は、アモルファスシリコンを含む。この層は、厚みが平均で少なくとも約20ナノメートルであってよい。さらに、ナノ構造テンプレートは、ニッケルシリサイドのナノワイヤを含んでおり、当該ナノワイヤは、長さが平均で約1マイクロメートルと200マイクロメートルとの間であり、直径が平均で約100ナノメートル未満である。
また、リチウムイオン電池で利用されるリチウムイオン電極を提供する。特定の実施形態によると、リチウムイオン電池電極は、ナノ構造テンプレートと、ナノ構造テンプレートをコーティングする電気化学的に活性な材料の層とを有する電気化学的に活性な電極材料を備える。ナノ構造テンプレートは、金属シリサイドを含むとしてよい。ナノ構造テンプレートによって、電気化学的に活性な材料との間の電流の伝導が円滑化されるとしてよい。電気化学的に活性な材料は、リチウムイオン電池のサイクル時に、リチウムイオンを取り込んで放出するとしてよい。リチウムイオン電極は、電気化学的に活性な電極材料と導通している電流コレクタ基板をさらに備えるとしてよい。電流コレクタ基板は、金属シリサイドの金属を含むとしてよい。
特定の実施形態によると、電極のナノ構造テンプレートは、基板に根付いているナノワイヤを含む。場合によっては、ナノ構造テンプレートの表面積と基板の表面積との間の比は、少なくとも約20である。基板は、金属シリサイドの金属が略含まれていない基部副層と、金属シリサイドの金属を含んでいる上部副層とを有するとしてよい。基板は、銅、ニッケル、チタン、および/または、ステンレススチールを含むとしてよい。正極用の基板はさらに、アルミニウムを含むとしてよい。
電気化学的に活性な電極材料は、遊離している端部および基板に根付いている端部を持つ複数の構造を含むとしてよい。これらの複数の構造はそれぞれ、ナノ構造テンプレートおよび電気化学的に活性な材料を含む。特定の実施形態によると、電気化学的に活性な材料は、(少なくとも部分的に)テンプレートをコーティングしている。活性材料層は、テンプレートの高さに沿って(例えば、ナノワイヤテンプレートの長さに沿って)、厚みおよび/または組成が変化していくとしてよい。特定の実施形態によると、活性材料は、構造のうち基板に根付いている端部よりも、遊離している端部において厚みが少なくとも2倍である。同じまたは別の実施形態において、電気化学的に活性な材料は、アモルファスシリコンおよびゲルマニウムを含む。活性材料は、構造のうち基板に根付いている端部よりも、遊離している端部の方が、シリコンが多くゲルマニウムが少ないとしてよい。
さらに、リチウムイオン電池で利用されるリチウムイオン電池電極を製造する方法を提供する。特定の実施形態に係る方法は、基板を受け取る段階と、基板の表面上に金属シリサイドを含むナノ構造テンプレートを形成する段階と、ナノ構造テンプレート上に電気化学的に活性な材料の層を形成する段階とを備える。電気化学的に活性な材料は、リチウムイオン電池のサイクル時にリチウムイオンを取り込んで放出する。ナノ構造テンプレートは、電気化学的に活性な材料との間で電流の伝導を円滑化させる。テンプレートはまた、以下で説明するが、電気化学的に活性な材料を構造的に支持する。
特定の実施形態に係る方法はさらに、金属シリサイドのテンプレートを形成する段階の前に、基板を処理する段階を備える。この処理は、酸化、アニーリング、還元、粗面化、スパッタリング、エッチング、電気メッキ、反転電気メッキ、化学気相成長、窒化物形成、および、中間副層の堆積といった方法のうち1以上を行うとしてよい。一の方法はさらに、金属成分の一部分が金属シリサイドを形成する際に消費されるように、基板の表面上に金属成分を形成する段階を備えるとしてよい。
特定の実施形態によると、ナノ構造テンプレートを形成する段階は、基板の表面上に前駆体を含むシリコンを流す段階を有する。一の方法はさらに、電気化学的に活性な材料をドープする段階を備えるとしてよい。一の方法はさらに、電気化学的に活性な材料の層の上方にシェルを形成する段階を備えるとしてよい。シェルは、炭素、銅、ポリマー、硫化物、フッ化物および金属酸化物のうち1以上を含むとしてよい。
特定の実施形態に係る方法はさらに、電気化学的に活性な材料の層を形成する段階の前に、ナノ構造テンプレートの上方に選択的にパッシベーション材料を堆積する段階を備える。パッシベーション材料は、一の層を形成する複数の個別の構造を含み、構造同士の間にはそれぞれ間隙が設けられているとしてよい。
特定の実施形態によると、電気化学的に活性な材料の層を形成する段階は、ナノ構造テンプレートの遊離端部よりも基板の表面において、利用可能な活性材料前駆体の濃度が大幅に低くなるように、物質移動方式で実行される。当該方法はさらに、電気化学的に活性な材料の層を形成する段階において、活性材料の前駆体の組成を変化させる段階を有するとしてよい。これによって、例えば、上述したように、段階的に変化するゲルマニウム/シリコンナノ構造が製造される。
上記およびその他の特徴はさらに、具体的な図面を参照しつつ、以下で説明する。
金属シリサイドのテンプレートおよび高容量活性材料を含む電気化学的に活性な材料を製造するプロセスの一例を示す図である。
3層基板の一例を示す概略図である。
クラスタ化されたシリサイド構造をコーティングしている活性材料層がシリサイド構造の基部の近傍で重なり合い、バルク状の活性材料集合体が形成される様子を示す概略図である。
特定の実施形態に係る、中間副層をマスクすることによって形成された複数の別箇のシリサイド構造を示す概略図である。
複数の分離したシリサイド構造をコーティングしている活性材料層がシリサイド構造の基部の近傍で重なり合っていない様子を示す概略図である。
パッシベーション材料が堆積されておりコーティングされていないシリサイド構造を示す概略図である。 パッシベーション材料によってシリサイド構造の基部の近傍への活性材料の堆積が回避されている、コーティングが施されたシリサイド構造を示す概略図である。
図1を参照しつつ説明した製造プロセスのさまざまな段階における最初の電極構造、中間時点での電極構造、および、最終的な電極構造の一例を示す図である。
高容量活性材料の分布が均一でない電極構造の一例を示す図である。
ニッケルコーティング上に表面積が大きいテンプレートを形成するニッケルシリサイドのナノワイヤを上から見た様子を示す走査型電子顕微鏡(SEM)画像である。
図4Aと同様の、ニッケルシリサイドのナノワイヤの上方に堆積されているアモルファスシリコンを上から見た様子を示すSEM画像である。
アモルファスシリコンでコーティングされているニッケルシリサイドナノワイヤを含む電極活性層を側方から見た様子を示すSEM画像である。
図4Bに示すものと同様で、倍率を高くしたSEM画像である。
電極の上面に対して斜めに撮影したSEM画像であって、ナノワイヤが、基板に根付いている端部よりも、遊離している端部において厚みが大きい様子を示すSEM画像である。
特定の実施形態に係る電極構造の一例を示す概略上面図である。 特定の実施形態に係る電極構造の一例を示す概略側面図である。
特定の実施形態に係る円状巻回型の電池の一例を示す概略上面図である。 特定の実施形態に係る円状巻回型の電池の一例を示す概略斜視図である。
特定の実施形態に係る、角柱状巻回型の電池の一例を示す概略上面図である。
特定の実施形態に係る、電極およびセパレータシートの積層体の一例を示す概略上面図である。 特定の実施形態に係る、電極およびセパレータシートの積層体の一例を示す概略斜視図である。
実施形態に係る、巻回型の電池の一例を示す概略断面図である。
ナノ構造、特に、ナノワイヤは、電池に利用される新しく革新的な材料である。高容量電極の活性材料をナノ構造として配設し、電池性能を犠牲にすることなく利用し得ることが提案されている。シリコンの場合に見られるようなリチオ化の際の大幅な膨張も、ナノ材料のサイズが小さいので、ナノ材料の構造一体性を悪化させることはない。言い換えると、ナノ構造は、従来の電極形状に比べて、表面積対体積の比が高い。また、表面積対体積の比が高いことによって、活性材料のうちより多くの部分が、電解質から得られる電気化学的に活性なイオンに直接到達可能となる。
本明細書では、ナノワイヤに関連してさまざまな実施形態を説明する。しかし、本明細書でナノワイヤに言及する場合、明確に記載されていない限り、他の種類のナノ構造、例えば、ナノチューブ、ナノ粒子、ナノ球体、ナノロッド、ナノウィスカ等を含むものと理解されたい。一般的に、「ナノ構造」という用語は、少なくとも1つの寸法が約1マイクロメートル未満である構造を意味する。この寸法は、例えば、ナノ構造の直径(例えば、シリサイドテンプレートナノワイヤ)、テンプレートの上方に形成されているシェルの厚み(例えば、アモルファスシリコン層の厚み)、または、一部のその他のナノ構造の寸法であってよい。最終的に得られるコーティングされた構造の全体的な寸法(長さおよび直径)はいずれもナノスケールである必要はないと理解されたい。例えば、最終的に得られる構造は、厚みが約500ナノメートルであるナノ層であって、直径が約100ナノメートルで長さが20マイクロメートルのテンプレート上にコーティングされているナノ層を含むとしてよい。この構造は全体的に直径が約1.1マイクロメートルであり長さが20マイクロメートルであるが、テンプレートおよび活性材料層の寸法を考慮して、「ナノ構造」と一般的に呼ぶこともできる。具体的な実施形態によると、「ナノワイヤ」という用語は、長尺状のテンプレート構造の上方に配置されるナノスケールのシェルを持つ構造を意味する。
ナノワイヤ(ナノ構造の具体例の1つとして挙げる)は、アスペクト比が1よりも大きく、通常は少なくとも約2であり、多くの場合には少なくとも約4である。具体的な実施形態によると、ナノワイヤは、アスペクト比が少なくとも約10であり、少なくとも約100となることもある。ナノワイヤは、寸法のうち比較的大きい1つの寸法を利用して他の電極構成要素(例えば、導電性を持つ基板、他の活性材料構造、または、導電性の添加物)と接続されるとしてよい。例えば、ナノワイヤは、基板に根付いているとしてもよく、その大半は一端(または、他の一部)が基板に接触している。他の2つの寸法については小さくなっており、膨張に備えて隣接する部分が空いているので、リチオ化においてナノワイヤ内に蓄積される内部応力(例えば、シリサイドテンプレートの上方に配置されているナノシェルの膨張)も小さく、ナノワイヤを破壊することはない(構造が大きくなると破壊されてしまう)。つまり、ナノワイヤの特定の寸法(例えば、全体的な直径および/またはシェルの厚み)は、利用する活性材料の破損水準未満に抑えられる。ナノワイヤはさらに、テンプレート構造の高さに対応する長尺状の構造を持つので、電極表面の単位面積当たりの容量が比較的高くなる。これは、ナノワイヤのアスペクト比が比較的高く、ナノワイヤの終端部が基板に接続されているためである。
高容量材料を含むナノ構造を堆積させる処理は、気液固相(VLS)堆積法で利用される金触媒等、高価な材料を必要とする遅い処理であるとしてよい。このような処理を用いて製造される電池電極は、携帯可能電子機器および電気自動車等の消費者向け機器においてはコストの面から利用できない可能性がある。さらに、VLS堆積法は通常、アモルファス構造よりも剛性が高い結晶質構造が得られるので、破損および粉状化の可能性が高くなる。最後に、VLS法で堆積させた構造と基板との接続は、一方が大幅に膨張するが、他方はそのままである2つの異なる材料(例えば、金属基板と高容量活性材料)の間の独特の界面のために弱いとしてよい。任意の特定の理論に限定されるものではないが、このような現象は、こういった電極で構成される電池のサイクル性能を低下させ得ると考えられる。
一部の金属シリサイドナノ構造は、触媒を利用することなく特定の基板上に直接形成され得ることが分かっている。このようなシリサイド構造は、金属シリサイドを形成する金属を含む表面上に形成されるとしてよい。金属を含む基板表面としてはさまざまなものが用意され得るが、例えば、基部副層(例えば、箔)、または、下方電流コレクタの上方に配置されている別箇の副層(例えば、ステンレススチールまたは銅箔の表面上に形成されている薄いニッケル層)であってよい。幾つか例を挙げると、金属を含む表面は、シリサイド形成プロセスを円滑に進めるべく、シリサイド構造の形成の前に、処理される。例えば、ニッケル含有表面を含む表面は、ニッケルシリサイドナノ構造を形成する前に、酸化されるとしてよい。さらに後述するが、この酸化処理により、ニッケルシリサイドを形成するための核生成点が形成される。結果として、酸化処理により、テンプレート形成時の処理ウィンドウが広くなることが分かっている。
シリサイドナノ構造は、表面積が大きいテンプレートとして利用可能であり、当該テンプレートは後に、高容量活性材料でコーティングされて、「複合」電極を形成する。本明細書において、「テンプレート」という用語は通常、電池電極において活性材料を支持するために用いられるナノ構造の集合体を含む。テンプレートは、例えば、導電性基板に対して、活性材料を機械的に支持し、および/または、電気接続させるとしてよい。特定の実施形態によると、テンプレートは、基板に隣接する層として配置されており、高さまたは厚みに特徴を持つとしてよい。このような構成は、「テンプレート層」と呼ばれるとしてよく、活性材料層等の他の種類の層とは区別されるべきである。この区別については、以下の説明でもさらに記載する。隣接する基板は、全てではないが一部の実施形態で設けられているとしてよい。特定の実施形態によると、活性材料でコーティングされているテンプレートは、電池の他の導電性構成要素(導電性基板以外)、例えば、電気導線および電池端子に直接接続されているとしてもよい。特定の実施形態によると、テンプレートは、通常は基板から離れるように、一部の実施形態では、略同じ方向に延伸しているシリサイドナノワイヤから成る一の層を含むとしてよい。このテンプレートの高さは通常、ナノワイヤの平均長に対応する。しかし、シリサイド構造は他の構成も可能である(例えば、多層型シリサイドテンプレート)と理解されたい。
「テンプレート構造」は通常、テンプレートの一部である別箇の構造を意味する。一部のテンプレート構造は、シリサイド材料を含み、同じテンプレートに含まれる複数のテンプレート構造は、材料が異なるとしてもよい(例えば、導電性添加物)。テンプレート構造は通常、少なくとも1つの寸法(例えば、直径)がナノスケールである。このため、このようなテンプレート構造は、テンプレートナノ構造と呼ぶとしてよい。一部の実施形態によると、テンプレートナノ構造は、基板に根付いている端部を持つナノワイヤの形状を持つとしてよく、この端部(または、別の部分)は、基板と一体化されている。言い換えると、シリサイドナノワイヤが取着されている基板表面との間の境界または界面が明確に画定されていないとしてよい。このため、基板に根付いているナノワイヤは、例えば、VLS法により堆積させた構造に比べて、基板に対する機械的な接着性が優れており、電気接触抵抗が低いとしてよい。さらに、多くのシリサイドは、導電性が良好で、シリサイドナノワイヤの周囲に堆積させた活性材料と、例えば、電流収集基板との間に導電性が高い経路を形成することができる。
金属シリサイドはさらに、それ自体が活性材料として機能することができ、リチオ化を実施することができる。しかし、シリサイドは通常、例えば、シリコンまたはスズに比べて、容量がはるかに低い。このため、シリサイドテンプレートは、電極の総容量に対する寄与度が比較的低いとしてよい。この寄与度は、シリサイド材料よりも活性材料が実質的に多い場合に特に小さいとしてよい。例えば、直径が約10ナノメートルに過ぎないシリサイドナノワイヤは、厚みが少なくとも約100ナノメートル、または、より具体的には、厚みが約300ナノメートルと500ナノメートルとの間である活性層を堆積させるために用いられるとしてよい。この例では、活性材料の体積とシリサイドの体積との比は、少なくとも約400である。このため、このような複合電極は、シリサイドテンプレートのリチオ化は実質的に行うことなく利用されるとしてよい。シリサイド構造のリチオ化を最小限に抑えるか、または、実質的に行わないので、テンプレートとしての一体性が維持されるとともに、基板に対する接続の一体性も変わらない。このような特性によって、電極内で強固且つロバストな機械的および電気的接続が得られるので、安定したサイクル性能が多数のサイクルにわたって得られる。他のさまざまなフィーチャ、例えば、厚みがより大きい基部を持つ円すい形状のシリサイド構造、および、厚みがより大きい遊離端部を持つ円すい形状(または、マッシュルーム形状)の活性材料層を用いて、このような接続を維持するとしてもよい。このようなフィーチャは通常、さまざまな方法により基板界面の近傍での膨張を低減することに重点を置いている。
ナノワイヤを含むシリサイドテンプレートは、活性材料を支持するために利用可能な表面積が大きい。特定の実施形態によると、テンプレートとして利用されるナノワイヤは、直径が約10ナノメートルと100ナノメートルとの間であり、長さが約10マイクロメートルと100マイクロメートルとの間である。ナノワイヤは、高密度に設けられるとしてよい。密に配されるテンプレート構造は共通して、一の共通コーティングシェルを持ち、実質的にマルチコア単一シェル構成が形成される。このような場合、テンプレート成長密度は必ずしもコーティングされたナノ構造の密度に対応しない。特定の実施形態によると、テンプレート構造同士の間隙は、コーティングの厚みよりも小さいとしてよい。このため、活性材料層には多くの相互接続部分が形成される。これらの相互接続部分は、基部の近傍で特に顕著であり、集合体状または一続きの膜のような構造が形成され、良好なサイクル性能が得られない。通常、さらに図2Bを参照しつつ説明するが、「束」または「茂み」状の集合体と呼ばれるナノワイヤ集合体を回避することが望ましい。
テンプレートは通常、表面積が通常の基板よりも数桁大きい。テンプレートは、活性材料の薄い層でコーティングされることができるので、反転可能なエネルギー密度が大きい電極が得られる。活性材料層は必ずしも、テンプレート全体、一部の実施形態では、基板に延在する一続きの層である必要はないことに留意されたい。一部の実施形態によると、活性材料層は、シリサイド構造の上方に配置される複数の活性材料シェルが集まったものである。これらのシェルの一部は、例えば、基板界面にパッシベーション材料を設けることによって、基板界面とは分離されているとしてよい。以下では活性材料層のさまざまな例について説明する。活性材料層の厚みは一般的に、利用する活性材料の特性に応じて決まり、特定の活性材料の破損限界未満になるように維持されるのが普通である。
テンプレートの上方にコーティングされている活性層の厚みは、電池電極の厚みとは区別すべきである。活性層の厚みは通常、ナノスケールであり、電池電極の厚みは一般的に、テンプレートの高さに少なくとも対応し、数十マイクロメートルであるとしてよい。テンプレート構造(例えば、シリサイドナノワイヤ)は通常完全に垂直ではないことに留意されたい。このため、テンプレートの高さは、テンプレート構造の長さよりもいくらか短いとしてよい。一般的に、導電性の基板もまた、電極の厚みを大きくする一因である。一例を挙げると、直径が10ナノメートルで500ナノメートルの間隔で配されている10マイクロメートルの長さのナノワイヤに堆積させた100ナノメートルの厚みのシリコン層は、はるかに厚みの大きい従来のグラファイト製の負極に匹敵するエネルギー密度を得られる。このように、このような活性材料構造および電極を利用することで、電気化学電池の質量および体積当たりの容量特性が改善される。
テンプレートが形成されると、活性材料は、このテンプレート上に、比較的高速に、高価な触媒を利用することなく、一の層として堆積させることができる。さらに、特定の堆積させた活性材料が取る形状としては、他にも望ましいものがあるとしてよい。例えば、VLS法で金触媒アイランドからシリコンナノワイヤを成長させることで結晶質シリコンを形成するが、ニッケルシリサイドのナノワイヤの上方に触媒を利用することなく堆積処理を行うことによってアモルファスシリコンを形成する。任意の特定の理論に限定されるものではないが、アモルファスシリコン構造は、原子結合が比較的少なく弱いので、リチオ化/非リチオ化のサイクルを繰り返すと発生する応力に暴露される場合、より剛性の高い結晶質の構造に比べて、一体性を維持しやすいと考えられている。また、活性材料層を形成するために用いられる堆積方法は、テンプレートの高さに沿った活性材料の分布を制御する(例えば、活性材料構造の基部近傍よりも、遊離端近傍において活性材料の堆積量を多くする)ように、そして、堆積させる材料の他の特性、例えば、組成、多孔性等を制御するように、特に調整されているとしてよい。
さらに、ナノワイヤと導電性基板との間の電気接続を保護する方法としてさまざまな方法が提案されている。あるタイプの方法では、完成したナノワイヤの構造は、ナノワイヤのうち基板に近く基板に接触している取着領域が、ナノワイヤのうち離れた方の領域に比べて、厚みが薄くなっており、「上部が大きい」形状を持つ。一般的に、離れた方の領域は、取着領域よりも活性材料が大幅に多い。別のタイプの方法によると、テンプレートナノワイヤの間隙は、各ワイヤが基板に取着される際に比較的均一な間隔で配されるように制御される。特定の実施形態によると、テンプレートナノワイヤが取着領域で互いに近接して束にならないようにするメカニズムを利用する。さらに別のタイプの方法では、特定の「パッシベーション」用の方法および/または材料を利用して、基板界面で活性材料の膨張および収縮に起因して通常発生する機械的な変形および応力を最小限に抑える。
上部が大きい形状の例を幾つか挙げると、徐々に且つ連続して、基板に根付いている端部から遊離している端部へと断面寸法(例えば、直径)が大きくなる形状(図3Bに示すものと同様)がある。他の実施形態によると、断面寸法は、徐々に大きくなるが、連続して大きくはならないとしてもよい。他の例としては、断面寸法が急激に、しかし、連続して大きくなる形状がある。さらに、他の例としては、断面寸法が急激且つ不連続に増加する形状が挙げられる。全体的な形状は、活性材料層の厚み、テンプレート構造の断面寸法、または、これら2つのパラメータの組み合わせによって決まるとしてよい。例えば、テンプレート構造は、遊離端部よりも基部が広くなっているとしてよく、活性材料コーティングは、電極構造は全体的に、底部よりも遊離端部が広くなるように、形成されるとしてよい。
図1は、特定の実施形態に係る、金属シリサイドテンプレートと高容量活性材料とを含む電気化学的に活性な電極を製造するプロセス100を説明するための図である。当該プロセスは、基板を受け取ることから開始されるとしてよい(処理102)。基板材料は、ロール状態、シート状態、または、後続の1以上の処理で利用される処理装置に供給される任意のその他の状態で用意されるとしてよい。基板は通常、電極電流コレクタとして機能することができる材料で形成されているが、これは必ずしも必要ではない(以下で説明する)。適切な装置の例としては、化学気相成長(CVD)装置(例えば、熱CVD装置またはプラズマCVD装置)、物理気相成長(PVD)装置、および、以下で説明する処理を実行するのに適したその他の装置がある。特定の実施形態によると、当該プロセスの1以上の処理は、米国特許出願第12/637,727号(発明の名称:「ウェブの2面に堆積を行う装置」、出願日:2009年12月14日、発明者:モッソ他(Mosso et al.)で説明されている垂直堆積装置で実行される。当該出願の内容は全て、垂直堆積装置を説明するべく、参照により本願に組み込まれる。
基板は通常、電極の一部である(例えば、電流コレクタ基板)。しかし、基板は、テンプレートおよび活性材料を製造時に支持する仮担体として利用するとしてもよく、および/または、電極製造時に材料供給源(例えば、金属シリサイド堆積処理において金属の供給源)として利用するとしてもよく、その後で除去するとしてもよい。尚、テンプレートは、電池の電流コレクタ部分に電気的に接続されている。基板は、電極の一部となる場合には、この電極での利用に適した(機械的側面、電気的側面、および、電気化学的側面から選択)材料を通常は含むとしてよい。例としては、一続きの箔状のシート、多孔性のシート、エキスパンドメタル、および、泡状部材がある。
特定の実施形態によると、基板は、金属シリサイドナノ構造を形成する場合に消費される金属を含有する金属含有材料を含む。適切な金属含有材料の例を以下に挙げる。金属含有材料は、基部基板副層で支持されるとしてよく、テンプレートおよび活性材料を機械的に支持する役割を持つ。これに代えて、または、これに加えて、基部基板副層は、シリサイドナノ構造(および、それよりは程度は抑えられるが、活性材料)と、電池電気端子との間で電流を導通させる役割を持つとしてよい。
基部材料と金属供給源との間には、さまざまな中間副層を設けるとしてよい。例えば、銅および/またはニッケルを含む副層は、基部副層と金属供給源である副層との間に、後に形成されるテンプレートと基部副層との間の金属結合および電子結合を改善するべく、堆積させるとしてよい。特定の実施形態によると、導電材料を含む基部副層(例えば、ステンレススチール)は、銅の薄い副層でコーティングされた後、より厚いニッケルの副層(例えば、約10ナノメートルと3マイクロメートルとの間)でコーティングする。ニッケルの副層はこの後、ニッケルシリサイドテンプレートを形成するために用いられ、銅の副層は、接着および導電用の中間層として利用される。
特定の実施形態によると、一の同じ材料が、電流収集基部材料として、そして、シリサイドテンプレート用の金属供給源としての役割を持つ。基部材料、および、シリサイド用金属供給源の両方として利用され得る材料の例を挙げると、ニッケル、銅およびチタンがあり、いずれも、箔、多孔質シート、エキスパンドメタル、泡状部材等として用意されるとしてよい。他の実施形態によると、基板は、複数の異なる副層等の構造を形成する2つの材料を含む(例えば、薄いニッケル層がコーティングされた銅箔)。金属供給源となる材料は、基部材料の全体にわたって離散した液滴、粒子または規則的なパターンとして設けられている場合がある。通常は、必ずしもそうでなくてよいが、シリサイドを形成するために用いられる金属含有材料は、基部材料表面に配置され、処理時には処理環境(例えば、シリコン含有前駆体ガス)に直接暴露されるようにする。一般的に、一の同じ構造における2つの材料の分布は、均一であってもよいし(極端な場合には合金または化合物)、または、不均一であってもよい(例えば、表面近傍では金属供給源材料が集中して多くなっているような段階的分布)。
基部材料の例としては、銅、金属酸化物でコーティングされた銅、ステンレススチール、チタン、アルミニウム、ニッケル、クロム、タングステン、金属窒化物、金属炭化物、炭素、カーボンファイバ、グラファイト、グラフェン、カーボンメッシュ、導電性ポリマー、または、これらの組み合わせ(多層構造を含む)がある。基部材料は、箔、膜、メッシュ、泡状部材、積層体、ワイヤ、管、粒子、多層構造、または、任意のその他の適切な構成を持つものとして形成されるとしてよい。特定の実施形態によると、基部材料は、厚みが約1マイクロメートルと50マイクロメートルとの間、または、より具体的には、約5マイクロメートルと30マイクロメートルとの間である金属箔である。
金属含有原材料の例としては、ニッケル、コバルト、銅、銀、クロム、チタン、鉄、亜鉛、アルミニウム、スズおよびこれらの組み合わせが挙げられる。合金の例を幾つか挙げると、ニッケル/リン、ニッケル/タングステン、ニッケル/クロム、ニッケル/コバルト、ニッケル/鉄、ニッケル/チタン、および、ニッケル/モリブデンがある。上述したように、特定の実施形態によると、金属含有原材料は、基部材料の上部に供給源副層を形成する。このような供給源副層は、厚みが少なくとも約10nmであり、または、より具体的には、少なくとも約100nmであるとしてよい。特定の実施形態によると、供給源副層は、厚みが最大で約3マイクロメートルであるとしてよい。他の実施形態によると、金属含有材料は、基部材料の表面上に、粒子等の離散した構造を形成する。このような離散構造は、厚みが少なくとも約10ナノメートルであり、または、より具体的には、約10ナノメートルと50マイクロメートルとの間になるように設けられるとしてよい。一般的に、基板は、シリサイドナノ構造を形成するべく、基板表面の近傍または基板表面上に金属含有材料を十分な量設ける必要がある。例えば、銅の基部副層に堆積させた厚みが20ナノメートルのニッケル副層は、長さが20マイクロメートルであるニッケルシリサイドのナノワイヤから成る高密度マット部材を形成するのには十分であるとしてよい。
特定の実施形態によると、マスキング材料から成る薄い副層を、PVD法等の堆積方法を用いて形成する。この副層の厚みは、約1オングストロームと15オングストロームとの間であるとしてよい。このような厚みを持つ場合、特定の材料は一続きの層を形成せず、小さく分離したアイランドまたは塊の一群を形成することが分かっている。具体的には、マスキング材料は、小さいアイランドとして堆積させ、これらの領域に金属含有副層を堆積させないようにその下方に位置する基板をマスキングするために用いられるとしてよい。これに代えて、または、これに加えて、マスキング材料は、テンプレートの成長をマスキングするべく、金属含有副層の上部に堆積させられるとしてよい。
特定の実施形態によると、金属含有副層は、この副層の堆積時にパターニングされるとしてよい。例えば、マスキング副層(例えば、メッシュ)を基部副層上に配置して、金属含有副層をこの積層体の上に形成するとしてもよい。基部副層のうち被覆された部分は、金属が略存在せず、後の処理を行ってもシリサイド構造が形成されない。基板表面上に配置された金属メッシュを用いて試験を実行した。この後、メッシュの開口領域にチタンを堆積させて、チタンアイランドを形成した。これらのアイランドは、これらの領域においてシリサイドが形成されないように設けられた。この結果、テンプレートの成長がパターニングされる。ピッチが小さい特別なメッシュは、例えば、ナノインプリントリソグラフィーまたは自己組織化方法を用いて、マスキング粒子を所望通りに分布させることによって製造されるとしてよい。
基板は、続いて形成されるシリサイドナノ構造と基部副層との接着性を高め、処理時およびセルのサイクリング時に基部副層を保護し、テンプレート構造の核生成を進め、活性材料が基板界面に(または、基板界面の近傍に)に堆積させないようにし、シリサイド形成時にシリコンの別の供給源として機能し、その他の目的のために利用され得る他の材料を含むとしてもよい。例えば、基板は、このような機能を実現するべく中間副層を含むとしてもよい。図2Aは、特定の実施形態に係る、3層基板200を示す概略図である。副層202は、基部副層であり、副層206は、金属含有材料の副層であり、副層204は、中間副層である。特定の実施形態(不図示)によると、中間副層は、金属含有副層の、基部副層(または、基板)とは反対側の面に配置されているとしてよい。中間副層の他の例および詳細な内容については、米国仮特許出願第61/260,297号(発明者:デルハーゲン他(DelHagen et al.)、発明の名称:「電極製造用の中間層」、出願日:2009年11月11日)に記載されている。当該仮出願の内容は全て、中間副層を説明するべく、参照により本願に組み込まれる。更に他の材料および副層は、基板の一部として提供され得る。例えば、金属含有副層は、金属酸化物副層または保護副層を含むとしてよい。
図1に戻って、処理102で受け取る基板は、金属含有副層の上方にマスキング副層が設けられているとしてよい。マスキング副層は、金属含有副層の一部を被覆しているが、金属含有領域のうち互いに離間した小領域を露出させている。処理106においてシリサイド構造を形成している間、露出した領域の方がシリコン含有前駆体(例えば、シラン)と反応し易いので、図2Bに示すシリサイド構造群ではなく、図2Cに示したような離散シリサイド構造が形成される。具体的には、図2Bは、クラスタ化シリサイド構造214をコーティングしている活性材料層216がシリサイド構造の基部の近傍(つまり、基板212の近傍)で重なり合い、バルク状活性材料集合体を形成している様子を示す概略図である。このような集合体の全体寸法(または、基板界面の近傍での活性材料の厚み)は、特定の活性材料のしきい値を大幅に超えているとしてよい。この結果、電池サイクル中、界面の近傍では破損が見られ、高い応力が発生する。活性材料がシリサイド構造から剥離するだけでなく、シリサイド構造全体が基板から離れてしまい、動作が不可能になる。
マスキング副層を堆積させることによって、このようなクラスタ化が回避され得る。図2Cは、特定の実施形態に係る、基板222上に配置されるマスキング中間副層225を用いて形成された、互いに分離したシリサイド構造224を示す概略図である。マスキング中間副層225は、シリサイド構造224が形成される箇所を画定する開口を有しているとしてよい。これによって、マスキング中間副層225によって画定されるテンプレートに基づき、シリサイド構造224を分離および分布させることが可能となる。テンプレート構造をこのように分布させる場合、ランダムに分布させるとしてもよいし、規則的に分布させるとしてもよい。マスキング副層の例としては、酸化亜鉛粒子および酸化シリコン粒子を自己組織化させること、および、ランダムに配向されたナノワイヤで金属含有副層上にメッシュ構造を形成することも含む。対応してマスキング副層または金属含有副層からアイランドを形成する方法は、蒸着、斜め蒸着、自己組織化、リソグラフィーパターニング等がある。
図2Dは、活性材料層226でコーティングされている互いに分離したシリサイド構造224(図2Cで図示し、上述したものと同様)を示す概略図である。活性材料層226は、シリサイド構造224の基部の近傍で重なり合っておらず、集合体を形成していない。このように、基板界面であっても、活性材料層226は破損しきい値内であるので、例えば、図2Bに示した構造よりも、機械的応力および粉状化が少なくなる。
マスキング副層は、電極の一部として残るとしてもよいし、除去されるとしてもよい。金属含有副層をパターニングするために用いられたマスキング副層は、シリサイド構造を形成する前に、機械的に除去されるとしてよい。シリサイド構造を形成する場合に金属含有副層の一部を被覆するために用いられたマスキング副層は、化学的に(例えば、シリサイド構造を略乱すことなくマスキング副層を選択的にエッチングすることによって)除去されるとしてよい。具体例としては、酸性エッチング、加熱、および蒸着がある。他の実施形態によると、マスキング副層は、電極の一部として残り、例えば、基板界面に活性材料が堆積させられないように防ぐべく利用されるとしてよい。これらの例の一部はさらに、図2Eおよび図2Fを参照しつつ後述する。
複数の基板材料が互いに編み込まれていることに留意されたい(例えば、織物、フェルト、メッシュ、または、同等の方式で、金属含有副層の粒子が、中間副層の粒子の間に位置している)。さらに、複数の異なる材料が処理102において当該プロセスに導入される基板の一部として同時に提供されるか、または、1以上のこのような材料は当該プロセスのその後の処理において基板に堆積またはその他の方法で一体化され得ることに留意されたい。
図1に戻って、プロセス100は、基板表面処理を任意で行うとしてよい(処理104)。この表面処理は、シリサイドを形成し易くするため、または、その他の目的で、基板表面を変化させるために用いられるとしてよい。このような表面処理の例を挙げると、金属シリサイドの形成で利用される材料(例えば、シリコンの供給源、金属の供給源、触媒等)を導入すること、基板表面を化学的に変化させること(例えば、酸化物、窒化物、炭化物、最初のシリサイド構造を形成すること、および、さまざまな酸化剤および還元剤で表面処理すること)、表面を物理的に変化させること(例えば、レーザアブレーション、ローレット切り、電解研磨(例えば、電気メッキおよび反転電気メッキを行って表面粗度を大きくする)によって表面粗度を大きくする)、粒子配向を変化させること、アニーリング、酸素系プラズマで表面処理して酸化物を形成すること、アルゴン系プラズマで表面処理して粗度を変化させること(例えば、スパッタコーンを形成する)、音波破砕、および、イオン注入がある。尚、これらの方法の一部は、表面上に存在するさまざまな材料(例えば、金属供給源材料)の量、および、これらの材料の物理的特性(例えば、表面粗度)を制御するために用いられ得ることに留意されたい。例えば、還元剤または酸化剤で基板表面を化学的に変化させる処理は、核生成を円滑化するために特に有益な程度、粗度を変化させるために用いられるとしてよい。アセトンでの音波破砕に続いてメタノールおよびイソプロパノールでリンスする処理は、エッチングの前に、金属箔を洗浄するために用いられるとしてよい。他の方法としては、酸素プラズマエッチングがある。さらに、ドーパントがシリコン反応金属内に拡散する場合には、シリサイド構造の導電性を高めるべくドーパントで表面を処理するとしてよい。
特定の実施形態によると、表面にニッケルコーティングまたはその他のシリサイド供給源材料を持つ基板は、最初に酸化処理を行う。上述したように、基板の大半は、シリサイド原材料で形成されているとしてよい。具体例としては、ニッケル箔が挙げられる。別の基板の上部でニッケル副層を利用する場合、ニッケルコーティングの厚みは、後述する処理条件の場合、約50ナノメートルと300ナノメートルとの間であるとしてよい。酸化/表面処理中の基板の温度は、酸素またはその他の適切な酸化剤が存在する中、約0.1分と10分との間の期間にわたって、約摂氏150度と摂氏500度との間になるように維持されるとしてよい。より具体的な実施形態によると、酸化処理は、基板を約摂氏300度で維持しつつ、約1分間にわたって、約50Torrが維持されているチャンバ内で、空気が存在する中で実行される。酸化/表面処理は、約1分間と2分間との間の期間にわたって行われるとしてよい。特定の実施形態によると、特定の酸化/表面処理は実行せず、直ぐにテンプレート構造の形成に進む。堆積チャンバ内に残る水分および酸素によって、プロセス開始時および堆積時にはニッケル表面が十分に表面処理されると考えられている。しかし、シリサイドテンプレート形成処理の制御を高めるためには、特に制御された酸化処理が必要であるとしてよい。具体的には、酸化処理によってはニッケルシリサイド構造が形成されることが分かっている。任意の特定の理論に限定されるものではないが、酸化処理で、円滑なニッケル表面が粗い酸化ニッケル表面に変化すると考えられている。粗い酸化物面は、後にシリサイド形成を行う場合に、核生成箇所となるとしてよい。さらに、酸化物は、ニッケルコーティングの孔のみで核生成を実現させるマスクとして機能するとしてもよい。これによって、シリサイドナノワイヤも分布が均一化され、クラスタ化が回避される(上述した内容を参照のこと)。
酸化物の別の機能としては、材料供給源である副層からの金属の拡散率および反応箇所への金属の拡散率を制御する機能があるとしてよい。過剰な酸化はシリサイドの形成に悪影響を与えることが分かっている。例えば、流量が約200sccmの乾燥空気をアルゴンと約1−5%で混合させて摂氏400度で約30秒にわたる酸化処理に利用すると、表面の酸化が過剰になると考えられている。複数の核生成箇所がある粗い表面を形成する代わりに、過剰に酸化が進んだ表面は、色が金色で、シリサイドナノワイヤの核生成が非常に少なくなってしまう。同様に、酸化が不十分な表面も、十分な核生成箇所が得られないとしてよい。このように、酸化条件は、金属含有材料毎、そして、当該金属含有材料を含む構造毎に最適化されるとしてよい。
当該プロセス100は、シリサイドナノ構造の形成を行うとしてよい(ブロック106)。特定の実施形態によると、基板をCVDチャンバに導入する。表面処理を行う動作104および/または活性材料を形成する動作108等の他の動作を同じチャンバで行うことに留意されたい。シラン等のシリコン含有前駆体をこの後、例えば、約10sccmと300sccmとの間の流量でチャンバに流入させる。この流量の値は、最大で直径が約4インチまでの基板を処理可能な、英国のサーフィス・テクノロジー・システムズ(Surface Technology Systems)社製のSTS MESC Multuplex CVDシステムについて決まっている値である。しかし、当業者であれば、他のCVDシステムも利用し得ることを理解されたい。キャリアガスでのシランの体積濃度は、約10%未満であるとしてよく、より具体的には、約5%未満であるか、または、約1%未満であるとしてよい。特定の実施形態によると、シランの濃度は約1%である。処理ガスはさらに、アルゴン、窒素、ヘリウム、水素、酸素(シランの場合は通常含まれない)、二酸化炭素、および、メタン等の1以上のキャリアガスを含むとしてもよい。シリサイドを堆積させる際、基板の温度は、約摂氏350度と摂氏500度との間で維持するとしてよく、より具体的には、約摂氏385度と摂氏450度との間に維持するとしてよい。チャンバ圧は、約0.1Torrと大気圧との間であるとしてよく、より具体的には、約50Torrと300Torrとの間であるとしてよい。堆積時間は、約1分と60分との間であるとしてよく、より具体的には、約5分と15分との間であるとしてよい。
特定の実施形態によると、処理条件は同一堆積サイクル内で変化させるとしてもよい。例えば、シランは、シリサイドナノ構造の核生成を進めることを目的として、最初は比較的高い濃度で導入するとしてよい。シラン濃度はこの後、ナノワイヤのうち根付いている端部から成長している先端に向けての金属拡散によって、ナノワイヤの成長が制限されるようになると、(例えば、シリサイド堆積動作の終了に近づくにつれて)低くするとしてよい。また、基板温度は、このような金属拡散を進めることを目的として、最初は低く維持しておいて後に昇温させるとしてよい。全般的に、処理条件は、物理的特性、例えば、長さ、直径、形状、テンプレート構造の向きを制御するために変化させるとしてよい。さらに、テンプレート構造の形状特性、例えば、化学量論相、結晶性/非結晶性相、および、テンプレートの高さに沿った材料の分布を、処理条件を変化させることによって制御するとしてよい。考慮すべき他の処理条件としては、混合ガスの組成、流量、流れパターン、チャンバ圧、基板温度、および、電界特性がある。特定の実施形態によると、処理条件(例えば、温度、圧力およびシラン濃度)は、アモルファスシリコンの側壁への堆積、または、核生成が完了した後のシリサイド構造へのシリコン粒子の堆積を進めるように調整される。変化可能な条件としては、処理温度、圧力、および、シラン濃度があるとしてよい。
選択する処理条件は通常、金属含有材料、サイズ、形状、および、所望の構造の組成に応じて決まる。例えば、上述した堆積条件は、平均して、長さが約0.5マイクロメートルと50マイクロメートルとの間であり、直径が約10ナノメートルと100ナノメートルとの間であるニッケルシリサイドナノワイヤを成長させるために用いられるとしてよい。厚みが少なくとも約20ナノメートルであるニッケルコーティングは、このようなニッケルシリサイド構造を堆積させるのに十分である。
一般的に、シリサイドナノワイヤは、直径が(つまり、活性材料を堆積させる前は)約5ナノメートルと100ナノメートルとの間であるとしてよく、より具体的には、約10ナノメートルと50ナノメートルとの間であるとしてよい。さらに、ナノワイヤは、長さが約1マイクロメートルと100マイクロメートルとの間であるとしてよく、より具体的には、長さが約5マイクロメートルと50マイクロメートルとの間であり、約12マイクロメートルと30マイクロメートルとの間であってもよい。任意の特定の理論に限定されるものではないが、シリサイドナノワイヤの長さは基板から成長している端部への金属拡散によって制限されると考えられている。ニッケルシリサイドナノワイヤはまれに、上記の処理条件を用いると、約20マイクロメートルから25マイクロメートルよりも長く成長する場合があることが分かっている。
このような長さとすると活性材料を堆積させるために適切な表面積が得られるが、特定の技術を利用してさらにナノワイヤを延伸させるとしてもよい。特定の実施形態によると、シリコン含有材料の中間副層を、基部副層と金属含有副層との間に導入する。シリコン中間副層は、成長しているナノ構造の根元により近接した別の(または、追加の)シリコン供給源となり、核生成プロセスを容易にするとしてよい。シリコンウェハ上に堆積させられているニッケルから成長させられたシリサイド構造は核生成がより均一化されるとともに成長速度がより高速になることが分かっている。特定の実施形態によると、中間副層は、シリコンが金属と反応すると拡散し、生成されるシリサイドの導電率を高める金属ドーパントを含む。当該ドーパントは、特に比較的少量で提供される場合、堆積させることが可能であり、さらに注入も可能である。場合によっては、ニッケルシリサイドをドープする際に窒素を利用する。
別の実施形態によると、最初のシリサイドテンプレートを形成した後、別の金属含有材料を追加で導入して(例えば、最初のテンプレート上にスパッタリング)、シリサイド形成動作106を繰り返し行うとしてよい。言い換えると、最初のシリサイドテンプレートは、その上に堆積させられる別のシリサイドテンプレートについて新しい基板になる。この例では、別のテンプレートを堆積させることによって、最初のテンプレートにおいて架橋が強化されるので、機械的完全性および電気的完全性が得られるとしてよい。テンプレートおよび電極のその他の例および詳細な内容については、米国仮特許出願第61/347,614号(発明の名称:「電池電極用の多次元の電気化学的に活性な構造」、出願日:2010年5月24日)および米国仮特許出願第61/406,047号(発明の名称:「高容量活性材料を高質量で実装するための電池電極構造」、出願日:2010年10月22日)に記載されている。両仮出願の内容は全て、テンプレートおよび電極を説明することを目的として、参照により本願に組み込まれる。
シリサイドナノワイヤは通常、基板上に設けられている金属含有材料から成長させることによって、基板に根付いている。基板に根付いている構造の詳細な内容については、米国特許出願第12/437,529号(発明の名称:「充電式電池用のナノ構造を含む電極」、出願日:2009年5月7日)に記載されている。当該出願の内容は全て、基板に根付いている構造を説明するという目的で、参照により本願に組み込まれる。しかし、シリサイドナノワイヤは、当該特許出願で説明している一部のVLS法で成長させたナノワイヤとは異なり、基板との間で形成される機械的結合がより強力であり、接触抵抗がより低いとしてよい。材料の組成が変更可能であること、および、基板に根付いている端部が広くなっていることによって、この効果が得られるものと考えられている。
シリサイドナノワイヤは通常、本明細書で説明しているように製造されると、ナノワイヤの長さに沿って材料の組成が変化していることが分かった。ナノワイヤは、基板に根付いている端部の近傍の方が、遊離している(離れた方の)端部の近傍より、金属の濃度が高くなっており、金属の量が多い。金属の種類によるが、このような変化は、シリサイドの形状相および化学量論相を変更することによって実現しているとしてよい。例えば、ニッケルシリサイドナノワイヤは、ニッケルシリサイドの1相、2相または3相全て(つまり、NiSi、NiSiおよびNiSi)を含むとしてよい。ニッケル含有率が高い相ほどニッケル金属との間の結合が強力になると考えられている。このため、このように変化させることで、基板へのニッケルシリサイドナノワイヤの接着性が強化され、接触抵抗が少なくなるとしてよい。金属含有率を変化させることで、ナノワイヤの長さに沿って物理的特性が変化するとしてもよい。
特定の実施形態によると、ニッケル含有率が比較的高くなっている基板に根付いている端部の方が、幅が広く、表面が粗い。これによって、基板との接触面積が大きくなり、接着性が改善され、接触抵抗が低くなる。基板とナノワイヤとの間の結合を強化することで、特に、ナノワイヤに堆積させられた活性材料が膨張および収縮し、さまざまな方向にナノワイヤを押圧する電池のサイクル時に、この接続が維持される。最後に、特定の実施形態によると、シリサイドナノワイヤは、サイクル時にリチオ化にさらされない。
円すい形状のナノワイヤは、上述したように、ナノワイヤのうち基板に根付いている端部の近傍の方が金属の量が多いためにその形状が得られるとしてよい。特定の実施形態によると、基板に根付いている端部の近傍での直径の平均値は、遊離している端部の近傍での直径の平均値の少なくとも約2倍である(ナノワイヤの各端部の断面を2つ比較した結果である。各断面は、ナノワイヤの端部から、ナノワイヤの全長の約10%に等しい所定距離空けた位置にある断面である)。言い換えると、基部は、基板の表面上で互いに接触するほどの大きさであるとしてよいが、基部から先端部に向って構造に沿って直径が小さくなるので、先端部は互いに離れて遊離している。より具体的な実施形態によると、2つの直径の比率は、少なくとも約4であり、より具体的には、少なくとも約10となる(基部の方が大きい円すいである)。
シリサイドナノワイヤは、例えば、1本のナノワイヤが成長時に別のナノワイヤと経路が交差する場合には、他のナノワイヤと互いに接続されているとしてよい。また、シリサイドナノワイヤを堆積させた後でさらに架橋を増やすとしてよい。例えば、上述したように、別のテンプレートを最初のテンプレートの上に堆積させるとしてよい。導電性の添加剤(例えば、カーボンブラック、金属粒子)をナノワイヤ中に導入するとしてもよい。ナノワイヤは、成膜後に再度成形して、例えば、シリサイドテンプレートを圧縮および/またはアニーリングすることによって、ナノワイヤ間の接触点を増やすとしてもよい。最後に、活性材料を堆積させる際にさらに相互接続部分が形成されるとしてもよい。例えば、密に配置した2つのシリサイドナノワイヤは、隣接するナノワイヤ上に形成された活性材料層が重なり合うように、活性材料でコーティングされているとしてよい。特定の実施形態によると、テンプレートを形成する動作は、圧力が約50Torrで維持されている処理チャンバで実行される。処理ガスは、シランを約1%含む。基板は、摂氏約450度で維持される。
本文献では概してナノワイヤを含むテンプレートについて説明しているが、テンプレートはその他の種類の構造も含み得ることに留意されたい。さらに、ワイヤをベースとするテンプレートは、直径の平均値が1マイクロメートルより大きいワイヤを含むとしてもよい。このようなテンプレートは、テンプレートの寸法に関係なく高容量活性材料の層自体がナノスケールの寸法を持つように、高容量活性材料の層を堆積させるために利用されるとしてよい。しかし、ナノワイヤ等のナノ構造で形成されるテンプレートの方が通常、高容量活性材料の堆積に利用できる表面積を大きくすることができる。
テンプレートの形成後で、活性材料の堆積前に、テンプレートはさらに、テンプレートのうち所定のエリアをマスクするように処理され、マスクされたエリアにおいて活性材料が堆積しないように、または、活性材料の堆積を最小限に抑えるとしてよい。上述したように、活性材料の膨張および収縮等、機械的な変形は、シリサイドテンプレートと基板との間の機械的結合および電気的結合を維持するべく、基板界面の近傍で最小限に抑える必要がある。このため、基板界面の近傍での活性材料の堆積は、一般的に望ましくなく、少なくとも、他の領域よりは望ましくない。堆積時に活性材料の層の厚みおよび/または組成を調整する方法を幾つか、活性材料を形成する動作108を参照しつつ、後述する。さらに、テンプレートを形成した後、基板界面に別の材料を追加で堆積させるとしてよい。このような材料は、上述したように、テンプレート形成前に設けられる中間副層に加えて、または、当該中間副層に代えて、堆積させ得ることに留意されたい。これら2つの材料を区別するべく、テンプレート形成後に堆積させられた材料は、特定の実施形態では、基板表面をパッシベーションしてこの界面での活性材料の形成を減らすために利用されるので、「パッシベーション材料」と呼ぶ。
図2Eは、パッシベーション材料235が堆積させられている、未コーティングのシリサイド構造234を示す概略図である。基板232の近傍に堆積させられたパッシベーション材料235は、シリサイド構造234のうち基板に根付いている端部をコーティングしているが、遊離している端部はコーティングされていない。パッシベーション材料235は、別の動作において、または、活性材料を堆積させる最初の段階で、堆積させられるとしてよい。例えば、自己組織化の酸化亜鉛および酸化シリコンの粒子をテンプレートに導入するとしてよい。パッシベーション材料235は、電気メッキによって、テンプレート内で分布させるとしてよい。
図2Fは、活性材料236でコーティングされているシリサイド構造234を示す概略図である。パッシベーション材料235によって、シリサイド構造234の基部の近傍では活性材料236が堆積されていない。このように、電極のサイクル時には基板232に機械的な変形および応力がほとんどまたは全く存在せず、シリサイド構造234と基板232との間の接続は、よりロバスト性が高くなる傾向にある。
特定の実施形態によると、中間副層は、形成されたテンプレート構造の上方に、電気化学的に活性な材料を堆積させる前に、堆積させる。この副層は、テンプレート−活性材料の界面に位置する。この中間副層は、チタン、銅、鉄、ニッケル、ニッケルチタン、クロム、または、その他の同様の材料を含むとしてよい。当該材料は、電気メッキ、スパッタリング、または、蒸着といった方法を利用して、堆積させるとしてよい。任意の特定の理論に限定されるものではないが、この界面に中間副層を設けることによって、活性材料との間での合金化が進み、接着性が改善されると考えられている。また、これらの材料のうち一部は、接着性を高め、酸素を取得する機能を持つとしてよい。最後に、ニッケルチタン、銅−亜鉛−アルミニウム−ニッケル、および、銅−アルミニウム−ニッケル等の合金は、弾性特性を持つので、相対的に動的な活性材料の層(サイクル時に膨張および収縮する)と、相対的に静的なテンプレート層との間の界面として利用されるとしてよい。
図1に戻って、プロセス100では、高容量の電気化学的に活性な材料を金属シリサイドテンプレート上に形成する(動作108)。電気化学的に活性な材料の例には、シリコン含有材料(例えば、結晶性シリコン、アモルファスシリコン、他のシリサイド、シリコン酸化物、亜酸化物、酸窒化物)、スズ含有材料(例えば、スズ、酸化スズ)、ゲルマニウム、炭素含有材料、さまざまな金属水素化物、(例えば、MgH)、シリサイド、リン化物、および、窒化物がある。他の例としては、炭素−シリコンの組み合わせ(例えば、炭素コーティングされたシリコン、シリコンコーティングされた炭素、シリコンでドープされている炭素、炭素でドープされているシリコン、および、炭素およびシリコンを含む合金)、炭素−ゲルマニウムの組み合わせ(例えば、炭素コーティングされたゲルマニウム、ゲルマニウムコーティングされた炭素、ゲルマニウムでドープされている炭素、および、炭素でドープされているゲルマニウム)、および、炭素−スズの組み合わせ(例えば、炭素コーティングされたスズ、スズコーティングされた炭素、スズでドープされた炭素、および、炭素でドープされたスズ)が挙げられる。正の電気化学的に活性な材料の例としては、さまざまなリチウム金属酸化物(例えば、LiCoO、LiFePO、LiMnO、LiNiO、LiMn、LiCoPO、LiNi1/3Co1/3Mn1/3、LiNiCoAlZO、LiFe(SO、LiFeSiO、NaFeO)、フッ化炭素、フッ化鉄(FeF)等の金属フッ化物、金属酸化物、硫黄、および、これらの組み合わせが挙げられる。これらの正および負の活性材料にドープを実施したもの、および、これらの不定比のものも同様に利用され得る。ドーパントの例には、周期表の第III族および第V族の元素(例えば、ホウ素、アルミニウム、ガリウム、インジウム、タリウム、リン、ヒ素、アンチモンおよびビスマス)、そして、他の適切なドーパント(例えば、硫黄およびセレン)がある。特定の実施形態によると、高容量活性材料は、アモルファスシリコンを含む。例えば、アモルファスシリコンの層を、ニッケルシリサイドテンプレートの上に堆積させるとしてもよい。
高容量活性材料は、堆積処理の間、または、堆積処理の後にドープされるとしてよい。ドーパントを用いることで、活性材料の導電率を改善し、他の機能を実現することができる。例えば、ホスフィン(PH)を処理ガスに追加して、シリコンまたは他の活性材料をリンでドープするとしてもよい。特定の実施形態によると、処理ガスでシランを利用する一部の実施形態によると、処理ガスにおけるホスフィンまたは別のドーパントキャリア成分の濃度は、少なくとも約0.1%(分圧に基づいて決まる)、または、少なくとも約0.5%、または、少なくとも約1%であるとしてよい。ドーパントは、活性材料の堆積後に、活性層に導入することもできる(例えば、スパッタリング、電気メッキ、イオン注入およびその他の方法を利用)。特定の実施形態によると、リチウム含有化合物を活性材料上に堆積させる。このように追加されるリチウムは、固体電解質界面(SEI)層の形成に関する損失を相殺するため、および/または、完全にリチウムイオン電池を放電する間であっても負の活性材料にリチウムをある程度残すためにリチウムイオン電池で利用されるとしてよい。負極にある程度リチウムを残すことによって、負の活性材料の導電率を改善し、および/または、サイクルの放電期間の終了時に負の活性材料で形状が変化するのを回避することにつながるとしてよい。
特定の実施形態によると、複数の異なる活性材料(例えば、スズ等の高容量活性材料)をテンプレート上に堆積させるとしてよい。一例を挙げると、シリコン層をさらに炭素層でコーティングして、コア−シェル構造を形成するとしてよい。この例では、テンプレートのシリサイドナノ構造はコアとなり、シリコン層は中間層または外側コアとなり、炭素層がシェルとなる。他の例としては、必ずしも電気化学的に活性な材料ではないが電極で他の機能、例えば、安定したSEI層の形成を促進する機能を実現する材料を含むコーティングがある。このような材料の例としては、炭素、銅、ポリマー、硫化物、および、金属酸化物が挙げられる。
特定の実施形態によると、活性材料層は、ゲルマニウムおよびシリコンの組み合わせとして堆積させる。これら2つの材料の分布は、テンプレートの高さに沿って変化し、基板界面の近傍には遊離している端部の近傍よりも多くのゲルマニウムが堆積させられており、シリコンについてはこの逆の構成になっている。ゲルマニウムはシリコンよりもリチオ化する量がはるかに少ないので、ゲルマニウムの膨張ははるかに小さい。同時に、ゲルマニウムの形状構造(例えば、格子)は、シリコンの形状構造との一致度が高い。膨張が少なくなることによって、基板とシリサイド構造との間の界面が保護されることになり、電極構造のロバスト性が高まると共に、電池のサイクル特性が改善される。
組成が変化する活性材料層を形成するためのCVDプロセスは、初期濃度のゲルマニウム含有前駆体および初期濃度のシリコン含有前駆体を含む処理ガスを導入することから開始されるとしてよい。この後、ゲルマニウム含有前駆体の濃度を低くしつつ、シリコン含有前駆体の濃度を高くする。
高容量活性材料は、CVD法、電気メッキ、化学メッキ、または、溶液堆積を用いて堆積させるとしてよい。一部の実施形態によると、シリサイド構造を成長させるために利用されたのと同様の方法で堆積させる。シリサイドおよび活性材料はどちらも、同じチャンバで堆積させるとしてよい。より具体的には、基板処理にも同じチャンバを利用するとしてよい。
特定の実施形態によると、活性材料は、プラズマ化学気相成長(PECVD)法を用いて堆積させるとしてよい。この方法について、リンでドープされているアモルファスシリコン層を参照しつつ以下で詳細に説明する。しかし、この方法または同様の方法は他の活性材料にも利用され得ると理解されたい。シリサイドテンプレート、より具体的には、ニッケルシリサイドテンプレートを含む基板は、PECVDチャンバに用意される。この基板は、約摂氏200度と摂氏400度との間の温度、より具体的には、約摂氏250度と摂氏350度との間の温度まで加熱される。シリコン含有前駆体(例えば、シラン)および1以上のキャリアガス(例えば、アルゴン、窒素、ヘリウム、水素、酸素、二酸化炭素、および、メタン)を含む処理ガスをチャンバに導入する。具体例を挙げると、ヘリウムでのシランの濃度は、約5%と20%との間であり、より具体的には、約8%と15%との間である。処理ガスはさらに、ホスフィン等のドーパント含有材料を、約1%と5%との間の濃度で、含むとしてよい。チャンバ圧は、約0.1Torrから10Torrの間で維持されるとしてよく、より具体的には、約0.5Torrと2Torrとの間で維持されるとしてよい。シランの分解を進めるべく、チャンバにおいてプラズマを点火させる。
以下の処理パラメータ(つまり、無線周波数(RF)電力および流量)は、最大で直径が約4インチまでの基板を処理可能な、英国のサーフィス・テクノロジー・システムズ(Surface Technology Systems)社製のSTS MESC Multuplex CVDシステムについて決まっている値である。当業者におかれては、これらの処理パラメータは、他の種類のチャンバおよび他の基板サイズについては、増減可能である旨を理解されたい。RF電力は、約10Wと100Wとの間で維持されるとしてよく、全体的な処理ガスの流量は、約200sccmと1000sccmとの間で維持されるとしてよく、より具体的には、約400sccmと700sccmとの間で維持されるとしてよい。
具体的な実施形態によると、電気化学的に活性な材料の層の形成は、圧力が約1Torrで維持される処理チャンバで実行される。処理ガスは、約50sccmのシランおよび約500sccmのヘリウムを含む。活性材料をドープするべく、約50sccmで15%のホスフィンを処理ガスに追加するとしてよい。基板の温度は、約摂氏300度で維持される。RF電力レベルは、約50Wに設定される。特定の実施形態によると、パルス状PECVD法を利用する。
活性材料を適切な厚みにするべく、堆積処理は、約0.5分と30分との間の期間にわたって実行されるとしてよい。活性材料の厚みは、エネルギー密度要件、材料特性(例えば、理論上の容量、応力破損限界)、テンプレートの表面積、および、その他のパラメータによって決まるとしてよい。特定の実施形態によると、厚みが約50ナノメートルと500ナノメートルとの間である、より具体的には、厚みが約100ナノメートルと300ナノメートルとの間であるアモルファスシリコンの層を堆積させる。この層は、直径が約10ナノメートルと100ナノメートルとの間であるシリサイドナノワイヤ上に堆積させられていることに留意されたい。このため、得られる構造(つまり、活性材料層を堆積させたシリサイドナノワイヤ)の直径の平均値は、約100ナノメートルと1,100ナノメートルとの間であるとしてよい。寸法は、他の値を取るとしてもよい。例えば、層の多孔性を高くすることで、厚みが約500ナノメートルと超えるアモルファスシリコン層も可能である。特定の実施形態によると、多孔性シリコン層は、厚みが約500ナノメートルと1000ナノメートルとの間であるとしてよく、より具体的には、厚みが約500ナノメートルと750ナノメートルとの間であるとしてよい。多孔性活性材料構造の例および詳細な内容は、米国仮特許出願第61/406,049号(発明の名称:「シェル内に閉じ込められている高容量多孔性活性材料を含む複合構造」、出願日:2010年10月22日)に記載されている。当該仮出願の内容は全て、多孔性活性材料構造を説明するために、参照により本願に組み込まれる。
厚みが約50ナノメートルと500ナノメートルとの間である一部の活性材料層は通常、10分から20分の間の期間で堆積させると定められている。堆積させる活性材料の量を特徴付ける別の方法は、その下層にあるテンプレートとの対比である。特定の実施形態によると、活性材料体積と金属シリサイド体積の質量比は、少なくとも約10、または、より具体的には、少なくとも約100である。本明細書で説明しているように、この比は、テンプレートの高さに沿って大幅に変化するとしてもよい。具体的には、この比は、各構造の遊離している端部の近傍よりも基板界面の近傍において、大幅に小さくなっているとしてよい。
図3Aは、上述した全プロセスのさまざまな段階において製造される構造の例を4つ挙げている図である。基板302は、最初の段階301において、最初に用意されるとしてよい。上述したように、基板302は、基部材料および金属供給源材料(シリサイドを形成するために用いられる)を含むとしてよい。これらの材料のさまざまな例および組み合わせについては、上述している。基板302はこの後、シリサイドナノ構造を形成するのに適した表面304を形成するべく、表面処理されるとしてよい(段階303)。基板302が箔である場合、表面304は、箔の両面に形成されるとしてよい(不図示)。一部の例によると、表面304は、ナノワイヤを形成するための核生成箇所を含む。表面304はさらに、マスク用材料を含むとしてよい。シリサイドナノ構造306はこの後、基板302上に形成される(段階305)。特定の実施形態によると、シリサイドナノ構造306は、端部が基板302に根付いている。シリサイドナノ構造は、活性材料を堆積させるために用いられる表面積が大きいテンプレートを形成する。最後に、活性材料層308は、シリサイドナノ構造306上に堆積させる(段階307)。シリサイドナノ構造306は、活性材料308を機械的に支持すると共に、基板302に対して電気接続を構築することができる。活性材料と基板との間にはある程度の接触が見られるが、電池として機能するか否かの観点からは、十分ではないとしてよい。
シリサイドナノ構造306および活性材料308の組み合わせは、基板302に隣接している活性層309と呼ぶとしてよい。全般的に、活性層309を特徴付けるのは、その高さであるとしてよい。活性層309の高さは通常、シリサイドテンプレートの高さに近いか、または、このテンプレートを構成しているナノワイヤの長さに近い。特定の実施形態によると、活性層の高さは、約10マイクロメートルと50マイクロメートルとの間であり、より具体的には、約20マイクロメートルと40マイクロメートルとの間である。基板と、当該基板の互いに対向する2面上に堆積させた2つの活性層とを有する電極は、高さが約50マイクロメートルと100マイクロメートルとの間であるとしてよい。さらに、活性層309は、多孔性(例えば、少なくとも約25%であり、より具体的には、少なくとも約50%であり、さらに具体的には、少なくとも約75%)、単位面積当たりの容量、および、その他の特性によって特徴付けられるとしてもよい。
さらに、テンプレートをコーティングする活性材料の量は、テンプレートの高さに沿って変化するとしてよい。例えば、活性材料層は、基板界面の近傍よりもテンプレート構造の遊離端部の近傍において厚くなっているとしてよい。図3Bは、基板302上に配設されているテンプレート構造306上に堆積されている活性材料層310の例を示す図である。任意の特定の理論に限定されるものではないが、物質移動制限方式となる特定の処理条件によって活性材料をこのように分布させると考えられている。この物質移動制限方式により、テンプレートの高さに沿って活性材料前駆体種(例えば、シラン)の濃度勾配を実現することができ、基板界面の近傍よりもテンプレート構造の遊離端部の近傍において堆積速度が速くなる。このような活性材料分布は、テンプレート構造のうち基板に根付いている端部はリチオ化の際の膨張および応力が比較的少ないので、テンプレート構造と基板との間の接触が維持されるため、電気化学的サイクルの観点から見て有益であるとしてよい。
具体的には、堆積チャンバ内で比較的高い圧力レベルでCVDによる堆積処理を実行することによって、活性材料の分布を不均一にするとしてよい。任意の特定の理論に限定されるものではないが、圧力レベルが高くなるほど、平均自由行程が短くなり、堆積速度が速くなり、活性材料前駆体の消費がテンプレート構造の遊離端部の近傍で早くなると考えられている。このため、テンプレートの高さにわたって物質移動制限方式が実質的に形成される。例えば、約50Torrと760Torrとの間で堆積処理を実行するとしてよく、より具体的には、約100Torrと600Torrとの間で行うとしてよく、さらに具体的には、約200Torrと600Torrとの間で実行するとしてよい。具体例を挙げると、堆積処理は約600Torrで実行する。堆積温度は、約摂氏400度と摂氏600度との間であり、より具体的には、約摂氏450度と摂氏550度との間の温度であるとしてよい。具体例を挙げると、堆積処理は約摂氏500度で実行する。こういった温度範囲は、熱CVD法について定められたものである。PECVD法を利用して堆積を行う場合には、温度は約摂氏200度と摂氏450度との間の範囲内であるとしてよい。アルゴンまたは水素中のシラン濃度は、約0.5%と20%との間であるとしてよく、より具体的には、約0.5%と10%との間であり、さらに具体的には、約1%と5%との間である。
別の方法として、低温でPECVD法を利用して堆積処理を実行する方法がある。PECVD法によると、熱的に励起されたラジカルよりも寿命が短い局所性ラジカルが形成される。このため、平均自由工程は短くなると考えられており、堆積処理はコンフォーマル性が低くなり、テンプレートの上部により多く堆積され、ラジカル濃度が高くなる。また、PECVD法によると、上述したように、低温で堆積処理を実行することが可能となる。低温とすることにより基板との間で発生し得る副反応が低減されることとなり、望ましくないことに基板界面でシリサイドが過剰に形成され脆弱化する可能性が低くなる。PECVD法による堆積処理は、圧力レベルを約1Torrと50Torrとの間とし、温度範囲を約摂氏200度と摂氏450度との間とし、水素、ヘリウム、窒素、アルゴンまたはこれらのさまざまな組み合わせにおけるシラン濃度を約1%と20%との間として行われるとしてよい。チャンバ内のプラズマは、反応性の種の分布をより望ましいものとするべくバイアスが印加されるとしてよい。
さらに、イオンおよびラジカル等の、活性材料前駆体から活性化した種を形成するべく、リモートプラズマ発生器を利用するとしてよい。活性化した種(例えば、−2SiH)は、活性化されていない種(例えば、SiH)よりも反応性が高く、構造の遊離端部で消費される速度が速い傾向にあるので、実質的に物質移動制限方式が形成される。リモートプラズマ生成器の一部の例としては、ASTRON(登録商標)i Type AX7670、ASTRON(登録商標) e Type AX7680、ASTRON(登録商標)ex Type AX7685、ASTRON(登録商標)hf−s Type AX7645が含まれる。これらは全て、米国マサチューセッツ州アンドーバーのエム・ケー・エス・インストルメンツ(MKS Instruments)社製である。このプラズマ生成器は通常、供給された活性材料前駆体を用いてイオン化プラズマを生成する自己完結型デバイスである。このプラズマ生成器はさらに、プラズマにおいて電子にエネルギーを供給する高電力RF生成器を含む。このエネルギーはこの後、中性の活性材料前駆体分子(例えば、シラン)に移動して、当該分子の温度を2000Kレベルまで昇温させ、分子を熱解離させるとしてよい。このプラズマ生成器は、RFエネルギーが高く、前駆体にこのエネルギーの大半を吸着させるような特別なチャネル構成があるので、供給された前駆体分子の90%以上を解離させるとしてよい。このプラズマ生成器は、単体で(例えば、熱CVDチャンバと共に利用するとしてもよい)利用するとしてもよいし、または、PECVD反応器と組み合わせて利用するとしてもよい。PECVD反応器は、種(例えば、分配ラインおよびシャワーヘッドで再結合された種)をさらに解離させる。
図4Aは、上方から見たシリサイドナノワイヤを示すSEM画像である。当該ナノワイヤは、ドイツ、ロスのカール・シュレンク・エー・ジー・カンパニー(Carl Schlenk AG Company)社製の圧延されたニッケル箔上に直接堆積された。このニッケル箔は最初に、圧力が50Torrであり空気を含む処理チャンバにおいて摂氏300度で1分間にわたって酸化処理が行なわれた。このニッケル箔はその後、摂氏450度に加熱され、1体積%のシランを含む処理ガスを10分間にわたってチャンバ内に導入した。こうして得られるシリサイドナノワイヤは、直径が約10ナノメートルから50ナノメートルであり、長さが約1マイクロメートルから30マイクロメートルであった。ナノワイヤの密度は、約10%から70%であった。このSEM画像から分かるように、ナノワイヤは、非常に表面積が大きいテンプレートを形成している。これらのテンプレートはこの後、アモルファスシリコンでコーティングされて、コイン電池を構成するために用いられた。
図4Bは、アモルファスシリコンでコーティングされたナノワイヤを示すSEM画像である。この画像は、図4Aと同じ方向で撮影された。シリコンを堆積させるために用いた最初のシリサイドテンプレートは、図4Aと同じである。アモルファスシリコンの堆積は、10分間にわたって摂氏300度且つ1Torrで実行された。この処理ガスは、100%のシランを50sccm、ヘリウムを500sccm、15体積パーセントのホスフィンを50sccmで含んでいた。RF電力は50Wであった。コーティングされたナノワイヤの直径の平均値は、271−280ナノメートルと推定された。図4Aおよび図4BのSEM画像は共に、コーティングされていないテンプレートナノワイヤ(図4A)、および、これらのナノワイヤ上にアモルファスシリコン構造が形成された様子(図4B)の相対的なサイズを説明するべく、同じ倍率である。これら2枚のSEM画像から分かるように、アモルファスシリコン構造は、コーティングされていないシリサイドナノワイヤよりもはるかに厚い。
図4Cは、図4Aに示したものと同様の、シリコンコーティングされたナノワイヤを含む活性層を側面から見た様子を示すSEM画像である。ナノワイヤは、活性材料でコーティングされた後であっても、アスペクト比が比較的高い。活性層の高さは通常、ナノワイヤの長さによって決まる。さらに、活性層は多孔性が比較的高いので、活性層内で過剰な応力を発生させることなく、さらに、ナノワイヤ同士が互いを破損させることなく、リチオ化時にナノワイヤが膨張することができる。このような多孔性を持つことによってさらに、電解質成分も、活性層を通過して自由に移動することが可能になる。
図4Dは、図4Bに最初に示した活性層をより高い倍率で示すSEM画像である。黒い矢印は、ナノワイヤ同士の接触点(当該明細書では、「相互接続部分」と呼んでいる場合もある)を指す。このような相互接続部分は、ニッケルシリサイドナノワイヤの堆積時、および/または、アモルファスシリコンでナノワイヤをコーティングする際に形成され得る。上述したように、このような相互接続部分は、活性層の機械的強度を高めるとともに、導電性を高める。
図4Eは、電極の上面に対して斜めに撮影されたSEM画像である。当該SEM画像は、基板に根付いている端部よりも遊離している端部において厚みが大きくなっているナノワイヤを示している。この電極を形成している活性材料構造は、基板界面端部よりも遊離端部がはるかに厚くなっている。このような構造は、図3Bを概略的に図示しているとともに、上述している。図4Eに示す構造では、遊離している端部の直径が約1マイクロメートルであるが、基板に根付いている端部は、直径が約200ナノメートルであると推定されている。構造の長さは、約12−20マイクロメートルであると推定された。
電極は通常、積層体またはジェリーロール体を形成するように組み合わせられる。図5Aおよび図5Bは、所定の実施形態に係る、正極502と、負極504と、2個のシート状のセパレータ506aおよび506bとを備える整列積層体を示す上面図および側面図である。正極502は、正側活性層502aおよび正側非コーティング基板部分502bを有するとしてよい。同様に、負極504も、負側活性層504aおよび負極用非コーティング基板部分504bを有するとしてよい。多くの実施形態によると、負側活性層504aの露出領域は、正側活性層502aの露出領域よりわずかに大きくなっている。これは、正側活性層502aから放出されるリチウムイオンの大半または全てが負側活性層504aに入るようにするためである。一実施形態によると、負側活性層504aは、1以上の方向(通常は全方向)において、正側活性層502aよりも、少なくとも約0.25mmと5mmとの間の長さ分だけ大きくなる。より具体的な実施形態によると、負極層は、1以上の方向において、約1mmと2mmとの間の長さ分だけ正極層よりも大きくなる。所定の実施形態によると、シート状のセパレータ506aおよび506bの端縁は、少なくとも負側活性層504aの外縁を超えて延在しており、電極を他の電池構成要素から絶縁する。正極用非コーティング部分502bは、正極への接続を構築するために用いられるとしてよく、負極504および/またはシート状のセパレータ506aおよび506bを超えて延在するとしてよい。同様に、負極用非コーティング部分504bは、負極への接続を構築するために用いられるとしてよく、正極502および/またはシート状のセパレータ506aおよび506bを超えて延在するとしてよい。
正極502は、2つの正側活性層512aおよび512bが平坦な正極電流コレクタ502bの互いに対向する面に設けられているものとして図示されている。同様に、負極504は、2つの負側活性層514aおよび514bが平坦な負極電流コレクタの互いに対向する面に設けられているものとして図示されている。正側活性層512a、対応するシート状セパレータ506a、および、対応する負側活性層514aの間に間隙がある場合には通常、特に蓄電池の最初のサイクルの後は、最小限から存在しない程度の大きさである。電極およびセパレータは、ジェリーロール型部材としてきつく巻回されているか、または、積層体を構成している。積層体は、ぴったりとした筐体に挿入される。電極およびセパレータは、電解質が導入された後に筐体内で膨張する傾向があり、初期のサイクルで、リチウムイオンが2つの電極の間をセパレータを貫通して循環することによって、間隙または乾燥領域が無くなる。
巻回式が一般的な構成である。複数の細長い電極を2枚のシート状のセパレータと共に巻回して、ジェリーロール体とも呼ばれる中間組立体を形成する。中間組立体は、曲線状の筐体、通常は円筒状の筐体の内側寸法に合った形状およびサイズを持つ。図6Aは、正極606および負極604を備えるジェリーロール体を示す上面図である。電極間の白い部分はシート状のセパレータを表す。ジェリーロール体は筐体602に挿入される。一部の実施形態によると、ジェリーロール体は、中心にマンドレル608が挿入されているとしてよく、マンドレル608によって最初に巻回する際の直径を画定して、内側の巻きが中央軸領域を形成しないようにする。マンドレル608は、導電材料を材料とするとしてよく、一部の実施形態では、電池端子の一部であってよい。図6Bは、正極用タブ612および負極用タブ614が延伸しているジェリーロール体を示す斜視図である。これらのタブは、電極基板のうち非コーティング部分に溶接されているとしてよい。
電極の長さおよび幅は、蓄電池全体の寸法、ならびに、活性層および電流コレクタの高さに応じて決まる。例えば、直径が18mmで長さが65mmである従来の18650電池は、電極の長さが約300mmと1000mmとの間であるとしてよい。低レート/高容量の目的に合わせて短くした電極では、厚みが大きく、巻き数が少なくなる。
電極がサイクル時に膨張して筐体に圧力をかけるので、一部のリチウムイオン電池では円筒形状が望ましいとしてよい。円形の筐体は、十分な圧力を維持しつつも十分に薄くするとしてよい。角柱形状の電池も同様に巻回するとしてよいが、この場合は筐体が内圧から長辺に沿って屈曲してしまう場合がある。また、電池の各部分で圧力が一定にならない場合があり、角柱形状の電池では角が空いたままとなる場合もある。リチウムイオン電池で空いた部分があるのは望ましくない。これは、電極が膨張するとこの空いた部分に不均一に押し込まれてしまうためである。また、電解質が集まって電極間の空いた部分に乾燥領域が出来てしまい、電極間のリチウムイオンの移動に悪影響が出てしまう場合がある。しかし、矩形形状因子が主な所定の用途では、角柱形状の電池が適切である。一部の実施形態によると、角柱形状の電池は、矩形の電極およびシート状セパレータの積層体を利用して、巻回型の角柱形状の電池が持つ問題の一部を回避する。
図7は、巻回型の角柱形状のジェリーロール体の筐体702内の位置を示す上面図である。ジェリーロール体は、正極704および「負極706を備える。電極間の白い部分は、シート状のセパレータを表している。ジェリーロール体は、矩形角柱形状の筐体に挿入されている。図6Aおよび図6Bに示す円筒形状のジェリーロール体とは違って、角柱形状のジェリーロール体は、ジェリーロール体の中央にある平坦幅広部分から巻回を開始している。一実施形態によると、ジェリーロール体は、中央にマンドレル(不図示)が配置され、マンドレルに電極およびセパレータを巻きつけるとしてもよい。
図8Aは、正極および負極が交互に設けられると共に電極間にはセパレータが設けられているセットを複数(801a、801b、および801c)備える積層型電池800を示す側面図である。積層型電池は、積層体をどのような形状にも出来、特に角柱形状の電池に適している。しかし、積層型電池は通常、正極及び負極の電極群を複数設けることが必要となり、電極のアラインメントが複雑になる。電流コレクタタブは通常、各電極から延伸して電池端子につながる総合電流コレクタに接続される。
上述したように電極を配置すると、電池に電解質を充填する。リチウムイオン電池の電解質は、液体、固体、またはゲルであってよい。電解質が固体であるリチウムイオン電池は、リチウムポリマー電池とも呼ばれる。
通常の液体の電解質は、1以上の溶媒および1以上の塩を含み、そのうち少なくとも1つがリチウムを含む。最初の充電サイクル(形成サイクルとも呼ばれる)において、電解質に含まれる有機溶媒が部分的に負極表面上で分解されて、固体電解質界面(solid electrolyte interphase:SEI)層が形成される。この界面は通常、電気絶縁性であるがイオン伝導性は持ち、リチウムイオンは通過させることができる。この界面はさらに、その後の充電サブサイクルにおいて電解質が分解しないように抑制する。
一部のリチウムイオン電池に適した非水系の溶媒の例を幾つか挙げると、環状カーボネート(例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)およびビニルエチレンカーボネート(VEC)、ビニレンカーボネート(VC))、ラクトン(例えば、γ−ブチロラクトン(GBL)、γ−バレロラクトン(GVL)およびα−アンゲリカラクトン(AGL))、直鎖カーボネート(例えば、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート(MPC)、ジプロピルカーボネート(DPC)、メチルブチルカーボネート(NBC)、および、ジブチルカーボネート(DBC))、エーテル(例えば、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン、および、1,2−ジブトキシエタン)、亜硝酸塩(例えば、アセトニトリルおよびアジポニトリル)、直鎖エステル(例えば、プロピオン酸メチル、ピバル酸メチル、ピバル酸ブチル、ピバル酸オクチル)、アミド(例えば、ジメチルホルムアミド)、有機リン酸塩(例えば、リン酸トリメチルおよびリン酸トリオクチル)、および、S=O基を含む有機化合物(例えば、ジメチルスルホンおよびジビニルスルホン)、ならびに、これらの組み合わせがある。
非水系の溶媒は、組み合わせて利用することができる。組み合わせの例を挙げると、環状カーボネート−直鎖カーボネート、環状カーボネート−ラクトン、環状カーボネート−ラクトン−直鎖カーボネート、環状カーボネート−直鎖カーボネート−ラクトン、環状カーボネート−直鎖カーボネート−エーテル、および、環状カーボネート−直鎖カーボネート−直鎖エステルといった組み合わせがある。一実施形態によると、環状カーボネートと直鎖エステルとを組み合わせるとしてよい。さらに、環状カーボネートと、ラクトンおよび直鎖エステルとを組み合わせるとしてよい。具体的な実施形態によると、環状カーボネートと直鎖エステルとの体積比率は、約1:9と10:0との間であり、2:8から7:3の間であることが好ましい。
液体状の電解質に用いられる塩は、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO、LiN(CSO、LiCFSO、LiC(CFSO、LiPF(CF、LiPF(C、LiPF(CF、LiPF(iso−C、LiPF(iso−C)、環状アルキル基を含むリチウム塩(例えば、(CF(SO2xLiおよび(CF(SO2xLi))、ならびに、これらの組み合わせのうち1以上を含むとしてよい。一般的な組み合わせとしては、LiPFおよびLiBF、LiPFおよびLiN(CFSO、LiBFおよびLiN(CFSOが挙げられる。
一実施形態によると、非水系溶媒(1種類または複数種類の組み合わせ)における塩の総濃度は、少なくとも約0.3Mであり、より具体的な実施形態では、少なくとも約0.7Mである。濃度の上限は、溶解度の上限によって決まるとしてよいが、約2.5M以下になるとしてよい。より具体的な実施形態では、約1.5M以下である。
固体状の電解質は通常、セパレータとしても機能するので、セパレータを省略する。固体状の電解質は、電気絶縁性およびイオン伝導性を持ち、電気化学的に安定している。固体状の電解質を用いる構成の場合、上述した液体状の電解質を用いる電池と同様に、リチウム含有塩を用いるが、有機溶媒に溶解されるのではなく、固体ポリマー複合体の内部に保持される。固体ポリマー電解質の例としては、電解質の塩のリチウムイオンが結合可能で伝導時に移動する孤立電子対を持つ原子を含むモノマーから用意されるイオン伝導性ポリマーが挙げられるとしてよく、例えば、フッ化ポリビニリデン(PVDF)または塩化ポリビニリデンまたはその派生物のコポリマー、ポリ(クロロトリフルオロエチレン)、ポリ(エチレン−クロロトリフルオロ−エチレン)、または、ポリ(フッ素化エチレン−プロピレン)、酸化ポリエチレン(PEO)およびオキシメチレンが結合されたPEO、三官能性ウレタンで架橋されたPEO−PPO−PEO、ポリ(ビス(メトキシ−エトキシ−エトキシド))−ホスファゼン(MEEP)、二官能基ウレタンで架橋されたトリオール型PEO、ポリ((オリゴ)オキシエチレン)メタクリレート−コ−アルカリ金属メタクリレート、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PNMA)、ポリメチルアクリロニトリル(PMAN)、ポリシロキサンおよびこれらのコポリマーおよび派生物、アクリレートをベースにするポリマー、その他の同様の無溶媒ポリマー、上記のポリマーを凝縮または架橋して組み合わせて形成した別のポリマー、および、上記のポリマーのうち任意のものを物理的に混合したものが挙げられるとしてよい。これ以外にも比較的低導電性のポリマーを上記のポリマーと組み合わせて用いて、薄型積層体の強度を上げるとしてもよい。例えば、ポリエステル(PET)、ポリプロピレン(PP)、ポリエチレンナフタレート(PEN)、フッ化ポリビニリデン(PVDF)、ポリカーボネート(PC)、硫化ポリフェニレン(PPS)、および、ポリテトラフルオロエチレン(PTFE)がある。
図9は、一実施形態に係る巻回型で円筒形状の電池を示す断面図である。ジェリーロール体は、らせん状に巻き回した正極902と、負極904と、2つのシート状のセパレータ906とを備える。ジェリーロール体は電池筐体916に挿入されており、キャップ918およびガスケット920を用いて電池を封止している。尚、所定の実施形態では、後続の処理を完了するまでは電池を封止しないことに留意されたい。キャップ918または筐体916が安全装置を有する場合がある。例えば、電池内で圧力が過剰な水準まで高まると開く安全弁または破裂弁を用いるとしてよい。所定の実施形態によると、一方向気体放出弁を設けて、正極材料が活性化される際に放出された酸素を放出する。また、正温度係数(PTC)装置をキャップ918の導電経路に組み込んで、電池で短絡が発生した場合の損傷を低減するとしてよい。キャップ918の外面を正の端子として利用するとしてよく、電池筐体916の外面を負の端子として利用するとしてよい。別の実施形態によると、電池の極性を逆にして、キャップ918の外面を負の端子として利用し、電池筐体916の外面を正の端子として利用するとしてよい。タブ908および910は、正極および負極と、対応する端子との間を接続するために用いられるとしてよい。内部短絡が発生しないように抑制するべく、適切な絶縁性を持つガスケット914および912を挿入するとしてよい。例えば、内部絶縁のためにKapton(登録商標)膜を用いるとしてよい。製造時には、キャップ918を筐体916に圧着して電池を封止するとしてよい。しかし、この処理を実行する前に、電解質(不図示)を追加してジェリーロール体の多孔質空間を充填する。
リチウムイオン電池では剛性が高い筐体を利用するのが普通であるが、リチウムポリマー電池は可撓性の箔(ポリマー積層体)のような筐体にパッケージングするとしてよい。この筐体の材料としてはさまざまな材料を選択し得る。リチウムイオン電池の場合、Ti−6−4、その他のTi合金、Al、Al合金、および、300シリーズのステンレススチールが正側の導電筐体部分および終端キャップに適した材料であるとしてよく、市販の純チタン、Ti合金、Cu、Al、Al合金、Ni、Pbおよびステンレススチールが負側の導電筐体部分および終端キャップに適した材料であるとしてよい。
金属シリサイドは、上述した電池での利用に加えて、燃料電池(例えば、アノード、カソード、および、電解質)、ヘテロ接合太陽電池用活物質、さまざまな形態の電流コレクタ、および/または、吸収性コーティングでも利用され得る。これらの用途には、金属シリサイド構造の広い表面積、シリサイド材料の高い導電率、および、高速且つ低コストの堆積技術といった特徴から利点を得るものもある。
なお、本願明細書に記載の実施形態によれば、以下の構成もまた開示される。
[項目1]
リチウムイオン電池で利用される電気化学的に活性な電極材料であって、
金属シリサイドを有するナノ構造テンプレートと、
前記ナノ構造テンプレートをコーティングしている電気化学的に活性な材料の層と
を備え、
前記電気化学的に活性な材料は、前記リチウムイオン電池のサイクル時に、リチウムイオンを取り込み放出し、
前記ナノ構造テンプレートによって、前記電気化学的に活性な材料との間での電流の伝導が円滑化され、前記電気化学的に活性な材料の前記層が支持される電気化学的に活性な電極材料。
[項目2]
前記金属シリサイドは、ニッケルシリサイド、ケイ化コバルト、ケイ化銅、ケイ化銀、ケイ化クロム、ケイ化チタン、ケイ化アルミニウム、ケイ化亜鉛、および、ケイ化鉄から成る群から選択される項目1に記載の電気化学的に活性な電極材料。
[項目3]
前記金属シリサイドは、Ni2Si相、NiSi相およびNiSi2相から成る群から選択される少なくとも2つの異なるニッケルシリサイド相を含む項目2に記載の電気化学的に活性な電極材料。
[項目4]
前記電気化学的に活性な材料は、結晶質シリコン、アモルファスシリコン、シリコン酸化物、シリコン酸窒化物、スズ含有材料、ゲルマニウム含有材料、および、炭素含有材料から成る群から選択される項目1に記載の電気化学的に活性な電極材料。
[項目5]
前記ナノ構造テンプレートは、シリサイド含有ナノワイヤを有する項目1に記載の電気化学的に活性な電極材料。
[項目6]
前記シリサイド含有ナノワイヤは、長さが平均で約1マイクロメートルと200マイクロメートルとの間である項目5に記載の電気化学的に活性な電極材料。
[項目7]
前記シリサイド含有ナノワイヤは、直径が平均で約100ナノメートル未満である項目5に記載の電気化学的に活性な電極材料。
[項目8]
前記電気化学的に活性な材料の前記層は、厚みが平均で少なくとも約100ナノメートルである項目1に記載の電気化学的に活性な電極材料。
[項目9]
前記電気化学的に活性な材料の前記テンプレートに対する体積比は少なくとも約5である項目1に記載の電気化学的に活性な電極材料。
[項目10]
前記電気化学的に活性な材料の前記層は、アモルファスシリコンを含み、
前記層は、厚みが平均で少なくとも約100ナノメートルであり、
前記ナノ構造テンプレートは、ニッケルシリサイドナノワイヤを含み、前記ニッケルシリサイドナノワイヤは、長さが平均で約10マイクロメートルと50マイクロメートルとの間であり、直径が平均で約50ナノメートル、30ナノメートル、20ナノメートルおよび10ナノメートル未満である項目1に記載の電気化学的に活性な電極材料。
[項目11]
前記リチウムイオン電池において前記電気化学的に活性な電極材料のサイクルの前に、前記電気化学的に活性な材料の前記層は、リン、ホウ素、ガリウムおよびリチウムのうち1以上によってドープされる項目1に記載の電気化学的に活性な電極材料。
[項目12]
前記電気化学的に活性な材料の前記層の上方に形成されているシェルをさらに備え、
前記シェルは、炭素、銅、ポリマー、硫化物、リチウムリン酸窒化物(LIPON)、金属酸化物、および、フッ素含有化合物から成る群から選択された1以上の材料を含む
項目1に記載の電気化学的に活性な電極材料。
[項目13]
前記電気化学的に活性な材料は、理論上のリチオ化容量が少なくとも約500mAh/gである項目1に記載の電気化学的に活性な電極材料。
[項目14]
リチウムイオン電池で利用されるリチウムイオン電極であって、
電気化学的に活性な電極材料と、
前記電気化学的に活性な電極材料と導通している電流コレクタ基板と
を備え、
前記電気化学的に活性な電極材料は、
金属シリサイドを含むナノ構造テンプレートと、
前記ナノ構造テンプレートをコーティングする電気化学的に活性な材料の層と
を有し、
前記電気化学的に活性な材料は、前記リチウムイオン電池のサイクル時に、リチウムイオンを取り込んで放出し、
前記ナノ構造テンプレートによって、前記電気化学的に活性な材料との間の電流の伝導が円滑化され、
前記電流コレクタ基板は、前記金属シリサイドの金属を含むリチウムイオン電極。
[項目15]
前記ナノ構造テンプレートは、前記基板に根付いているナノワイヤを含み、前記ナノワイヤは、遊離している端部と、前記基板に根付いている端部とを持つ項目14に記載のリチウムイオン電極。
[項目16]
前記電気化学的に活性な材料の前記層は、前記ナノワイヤの前記基板に根付いている端部に比べて前記遊離している端部において、厚みが少なくとも2倍である項目15に記載のリチウムイオン電極。
[項目17]
前記電気化学的に活性な材料の前記層は、アモルファスシリコンおよびゲルマニウムを含み、
前記層は、前記ナノワイヤの前記基板に根付いている端部に比べて前記遊離している端部において、シリコンがより多く、ゲルマニウムがより少なくなっている項目15に記載のリチウムイオン電極。
[項目18]
前記ナノ構造テンプレートと前記電流コレクタ基板との間に位置しており、前記ナノ構造テンプレートと前記電流コレクタ基板との間の金属結合および電子伝導を改善する中間副層をさらに備える項目14に記載のリチウムイオン電極。
[項目19]
前記ナノ構造テンプレートと前記電気化学的に活性な材料の前記層との間に位置しており、前記ナノ構造テンプレートと前記電気化学的に活性な材料の前記層との間の金属結合および電子伝導を改善する中間副層をさらに備える項目14に記載のリチウムイオン電極。
[項目20]
前記ナノ構造テンプレートと前記電気化学的に活性な材料の前記層との間に位置しており、前記ナノ構造テンプレートと前記電気化学的に活性な材料の前記層との間の弾性界面となる中間副層をさらに備える項目14に記載のリチウムイオン電極。
[項目21]
前記ナノ構造テンプレートの表面積の前記基板の表面積に対する比は、少なくとも約20である項目14に記載のリチウムイオン電極。
[項目22]
前記基板は、前記基板に隣接している基部層を有しており、前記基部層は、前記金属シリサイドの金属を略含まない項目14に記載のリチウムイオン電極。
[項目23]
前記基板は、銅、ニッケル、チタン、および、ステンレススチールから成る群から選択される1以上の材料を含む項目14に記載のリチウムイオン電極。
[項目24]
前記リチウムイオン電極は、負極である
項目14に記載のリチウムイオン電極。
[項目25]
前記リチウムイオン電極は、正極である
項目14に記載のリチウムイオン電極。
[項目26]
電気化学的に活性な電極材料と、
前記電気化学的に活性な電極材料と導通している電流コレクタ基板と
を備えるリチウムイオン電池であって、
前記電気化学的に活性な電極材料は、
金属シリサイドを含むナノ構造テンプレートと、
前記ナノ構造テンプレートをコーティングしている電気化学的に活性な材料の層と
を有し、
前記電気化学的に活性な材料は、前記リチウムイオン電池のサイクル時にリチウムイオンを取り込んで放出し、
前記ナノ構造テンプレートは、前記電気化学的に活性な材料との間で電流の伝導を円滑化させ、
前記電流コレクタ基板は、前記金属シリサイドの金属を含むリチウムイオン電池。
[項目27]
リチウムイオン電池で利用されるリチウムイオン電池電極を製造する方法であって、
基板を受け取る段階と、
前記基板の表面上に金属シリサイドを含むナノ構造テンプレートを形成する段階と、
前記ナノ構造テンプレート上に電気化学的に活性な材料の層を形成する段階と
を備え、
前記電気化学的に活性な材料は、前記リチウムイオン電池のサイクル時にリチウムイオンを取り込んで放出し、
前記ナノ構造テンプレートは、前記電気化学的に活性な材料との間で電流の伝導を円滑化させる方法。
[項目28]
前記金属シリサイドを含むナノ構造テンプレートを形成する段階の前に、酸化、アニーリング、還元、粗面化、スパッタリング、エッチング、電気メッキ、反転電気メッキ、化学気相成長、窒化物形成、および、中間層堆積から成る群から選択される1以上の方法を用いて前記基板を処理する段階をさらに備える項目27に記載の方法。
[項目29]
前記基板の前記表面上に金属部を形成する段階をさらに備え、
前記金属部の一部分は、前記金属シリサイドを形成する際に消費される項目27に記載の方法。
[項目30]
前記ナノ構造テンプレートを形成する段階は、前記基板の前記表面の上方にシリコン含有前駆体を導入する段階を有する項目27に記載の方法。
[項目31]
前記電気化学的に活性な材料の前記層を形成する段階の前に、前記ナノ構造テンプレートの上方にパッシベーション層を選択的に堆積させる段階をさらに備える項目27に記載の方法。
[項目32]
前記電気化学的に活性な材料の前記層を形成する段階は、前記ナノ構造テンプレートの遊離している端部に比べて前記基板の前記表面において、活性材料前駆体の濃度が大幅に低くなるように、物質移動方式で実行される項目27に記載の方法。
[項目33]
前記電気化学的に活性な材料の前記層を形成している段階の実行中、活性材料前駆体の組成を変化させる段階をさらに備える項目27に記載の方法。

Claims (14)

  1. 電流コレクタ基板と、
    金属シリサイドの複数のナノワイヤを有し、前記電流コレクタ基板上に配置された第1のナノ構造テンプレートと、
    金属シリサイドの複数のナノワイヤを有し、前記第1のナノ構造テンプレートの上方に堆積されている第2のナノ構造テンプレートと、
    前記第1のナノ構造テンプレートおよび前記第2のナノ構造テンプレートの少なくとも一部上に設けられた電気化学的に活性な材料の層と
    を備え、
    前記第1のナノ構造テンプレートおよび前記第2のナノ構造テンプレートに含まれる前記金属シリサイドは、ニッケルシリサイド、ケイ化コバルト、ケイ化銅、ケイ化銀、ケイ化クロム、ケイ化チタン、ケイ化アルミニウム、ケイ化亜鉛、および、ケイ化鉄から成る群から選択され、
    前記電気化学的に活性な材料は、結晶質シリコン、アモルファスシリコン、シリコン酸化物、シリコン酸窒化物、スズ含有材料、および、ゲルマニウム含有材料から成る群から選択されている
    電極。
  2. 前記第1のナノ構造テンプレートに含まれる前記金属シリサイドは、NiSi相、NiSi相およびNiSi相から成る群から選択される少なくとも2つの異なるニッケルシリサイド相を含む請求項1に記載の電極。
  3. 前記第1のナノ構造テンプレートは、複数のシリサイド含有ナノワイヤを有する請求項1または2に記載の電極。
  4. 前記第1のナノ構造テンプレートは、前記電流コレクタ基板に根付いている複数のナノワイヤを有する請求項1から3のいずれか一項に記載の電極。
  5. 前記電気化学的に活性な材料の前記層は、前記複数のナノワイヤの前記電流コレクタ基板に根付いている端部に比べて遊離している端部において、厚みが少なくとも2倍である請求項4に記載の電極。
  6. 前記第1のナノ構造テンプレートと前記電流コレクタ基板との間に位置しており、前記第1のナノ構造テンプレートと前記電流コレクタ基板との間の金属結合および電子伝導の少なくとも一つを改善する中間副層をさらに備える請求項1から5のいずれか一項に記載の電極。
  7. 前記第1のナノ構造テンプレートと前記電流コレクタ基板との間に位置しており、前記第1のナノ構造テンプレートと前記電流コレクタ基板との間の弾性界面となる中間副層をさらに備える請求項1から6のいずれか一項に記載の電極。
  8. 前記第1のナノ構造テンプレートと前記電流コレクタ基板との間に設けられた中間副層をさらに備える請求項1から7のいずれか一項に記載の電極。
  9. 前記第1のナノ構造テンプレートの基部にパッシベーション層をさらに備える請求項1から8のいずれか一項に記載の電極。
  10. 前記第1のナノ構造テンプレートは、圧縮されている請求項1から9のいずれか一項に記載の電極。
  11. リチウムイオン電池で利用される電気化学的に活性な電極材料であって、
    金属シリサイドを有するナノワイヤと、
    前記ナノワイヤをコーティングしている電気化学的に活性な材料の層と
    を備え、
    前記電気化学的に活性な材料は、前記リチウムイオン電池のサイクル時に、リチウムイオンを取り込み放出し、
    前記ナノワイヤによって、前記電気化学的に活性な材料との間での電流の伝導が円滑化され、前記電気化学的に活性な材料の前記層が支持され、
    前記ナノワイヤの前記金属シリサイドは、NiSi相、NiSi相およびNiSi相から成る群から選択される少なくとも2つの異なるニッケルシリサイド相を含み、
    前記電気化学的に活性な材料は、結晶質シリコン、アモルファスシリコン、シリコン酸化物、シリコン酸窒化物、スズ含有材料、および、ゲルマニウム含有材料から成る群から選択される
    電気化学的に活性な電極材料。
  12. リチウムイオン電池で利用される電気化学的に活性な電極材料であって、
    金属シリサイドを有するナノワイヤと、
    前記ナノワイヤをコーティングしている電気化学的に活性な材料の層と
    を備え、
    前記電気化学的に活性な材料は、前記リチウムイオン電池のサイクル時に、リチウムイオンを取り込み放出し、
    前記ナノワイヤによって、前記電気化学的に活性な材料との間での電流の伝導が円滑化され、前記電気化学的に活性な材料の前記層が支持され、
    前記ナノワイヤの前記金属シリサイドは、前記ナノワイヤの遊離している端部に比べて基板に根付いている端部において金属の濃度が高く、
    前記電気化学的に活性な材料は、結晶質シリコン、アモルファスシリコン、シリコン酸化物、シリコン酸窒化物、スズ含有材料、および、ゲルマニウム含有材料から成る群から選択される
    前記金属シリサイドは、ニッケルシリサイド、ケイ化コバルト、ケイ化銅、ケイ化銀、ケイ化クロム、ケイ化チタン、ケイ化アルミニウム、ケイ化亜鉛、および、ケイ化鉄から成る群から選択される
    電気化学的に活性な電極材料。
  13. 前記金属は、ニッケルであり、前記金属シリサイドは、ニッケルシリサイドである
    請求項12に記載の電気化学的に活性な電極材料。
  14. 前記金属は、銅であり、前記金属シリサイドは、ケイ化銅である
    請求項12に記載の電気化学的に活性な電極材料。
JP2016077671A 2010-03-03 2016-04-07 電極および電気化学的に活性な電極材料 Active JP6494558B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31018310P 2010-03-03 2010-03-03
US61/310,183 2010-03-03

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012556203A Division JP5918150B2 (ja) 2010-03-03 2011-03-02 活性材料を堆積させるためのテンプレート電極構造

Publications (2)

Publication Number Publication Date
JP2016164885A JP2016164885A (ja) 2016-09-08
JP6494558B2 true JP6494558B2 (ja) 2019-04-03

Family

ID=44542814

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012556203A Active JP5918150B2 (ja) 2010-03-03 2011-03-02 活性材料を堆積させるためのテンプレート電極構造
JP2016077671A Active JP6494558B2 (ja) 2010-03-03 2016-04-07 電極および電気化学的に活性な電極材料

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012556203A Active JP5918150B2 (ja) 2010-03-03 2011-03-02 活性材料を堆積させるためのテンプレート電極構造

Country Status (6)

Country Link
US (5) US8257866B2 (ja)
EP (1) EP2543098B1 (ja)
JP (2) JP5918150B2 (ja)
KR (2) KR101906606B1 (ja)
CN (2) CN105206794B (ja)
WO (1) WO2011109477A2 (ja)

Families Citing this family (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9979017B2 (en) 2009-02-25 2018-05-22 Cf Traverse Llc Energy storage devices
US9431181B2 (en) 2009-02-25 2016-08-30 Catalyst Power Technologies Energy storage devices including silicon and graphite
US10727481B2 (en) 2009-02-25 2020-07-28 Cf Traverse Llc Energy storage devices
US9966197B2 (en) 2009-02-25 2018-05-08 Cf Traverse Llc Energy storage devices including support filaments
US10056602B2 (en) 2009-02-25 2018-08-21 Cf Traverse Llc Hybrid energy storage device production
US9917300B2 (en) 2009-02-25 2018-03-13 Cf Traverse Llc Hybrid energy storage devices including surface effect dominant sites
US10205166B2 (en) 2008-02-25 2019-02-12 Cf Traverse Llc Energy storage devices including stabilized silicon
US11233234B2 (en) 2008-02-25 2022-01-25 Cf Traverse Llc Energy storage devices
US9349544B2 (en) 2009-02-25 2016-05-24 Ronald A Rojeski Hybrid energy storage devices including support filaments
US9412998B2 (en) 2009-02-25 2016-08-09 Ronald A. Rojeski Energy storage devices
US20160301067A9 (en) * 2008-02-25 2016-10-13 Ronald A. Rojeski Hybrid Energy Storage Devices
US9705136B2 (en) * 2008-02-25 2017-07-11 Traverse Technologies Corp. High capacity energy storage
US9362549B2 (en) 2011-12-21 2016-06-07 Cpt Ip Holdings, Llc Lithium-ion battery anode including core-shell heterostructure of silicon coated vertically aligned carbon nanofibers
US9941709B2 (en) 2009-02-25 2018-04-10 Cf Traverse Llc Hybrid energy storage device charging
US10193142B2 (en) 2008-02-25 2019-01-29 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
WO2010014966A1 (en) 2008-08-01 2010-02-04 Seeo, Inc High capacity anodes
US9882241B2 (en) 2008-08-01 2018-01-30 Seeo, Inc. High capacity cathode
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
JP2012525012A (ja) 2009-04-24 2012-10-18 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー Cnt浸出emi遮蔽複合材料及びコーティング
US20140370380A9 (en) * 2009-05-07 2014-12-18 Yi Cui Core-shell high capacity nanowires for battery electrodes
US8257866B2 (en) 2009-05-07 2012-09-04 Amprius, Inc. Template electrode structures for depositing active materials
US11996550B2 (en) 2009-05-07 2024-05-28 Amprius Technologies, Inc. Template electrode structures for depositing active materials
US20100285358A1 (en) 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
US8450012B2 (en) 2009-05-27 2013-05-28 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
EP2499686A2 (en) 2009-11-11 2012-09-19 Amprius, Inc. Intermediate layers for electrode fabrication
US20110143019A1 (en) 2009-12-14 2011-06-16 Amprius, Inc. Apparatus for Deposition on Two Sides of the Web
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
US9172088B2 (en) 2010-05-24 2015-10-27 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
US9876221B2 (en) * 2010-05-14 2018-01-23 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
KR101838627B1 (ko) * 2010-05-28 2018-03-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치 및 그 제작 방법
JP5859746B2 (ja) * 2010-05-28 2016-02-16 株式会社半導体エネルギー研究所 蓄電装置およびその作製方法
WO2011152190A1 (en) * 2010-06-02 2011-12-08 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US20120003383A1 (en) * 2010-06-30 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of energy storage device
US20120015247A1 (en) * 2010-07-14 2012-01-19 Semiconductor Energy Laboratory Co., Ltd. Silicon crystal body and power storage device using the silicon crystal body
JP2014508370A (ja) 2010-09-23 2014-04-03 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー 強化送電線のセルフシールドワイヤとしてのcnt浸出繊維
US9209456B2 (en) 2010-10-22 2015-12-08 Amprius, Inc. Composite structures containing high capacity porous active materials constrained in shells
WO2012067943A1 (en) 2010-11-15 2012-05-24 Amprius, Inc. Electrolytes for rechargeable batteries
KR101899374B1 (ko) * 2010-11-26 2018-09-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체막, 반도체막의 형성 방법 및 축전 장치
US10256458B2 (en) 2011-04-01 2019-04-09 Georgia Tech Research Corporation Curved two-dimensional nanocomposites for battery electrodes
US10090515B2 (en) 2011-05-11 2018-10-02 Gridtential Energy, Inc. Bipolar hybrid energy storage device
US10008713B2 (en) 2011-05-11 2018-06-26 Gridtential Energy, Inc. Current collector for lead acid battery
CN103493250B (zh) * 2011-05-11 2016-08-10 格雷腾能源有限公司 改进的电池及装配方法
TWI542539B (zh) 2011-06-03 2016-07-21 半導體能源研究所股份有限公司 單層和多層石墨烯,彼之製法,含彼之物件,以及含彼之電器裝置
US11296322B2 (en) 2011-06-03 2022-04-05 Semiconductor Energy Laboratory Co., Ltd. Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same
JP6035054B2 (ja) 2011-06-24 2016-11-30 株式会社半導体エネルギー研究所 蓄電装置の電極の作製方法
KR20140051928A (ko) * 2011-07-01 2014-05-02 암프리우스, 인코포레이티드 향상된 접착 특성을 가진 템플레이트 전극 구조체
KR20130006301A (ko) 2011-07-08 2013-01-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 실리콘막의 제작 방법 및 축전 장치의 제작 방법
KR101890742B1 (ko) 2011-07-19 2018-08-23 삼성전자주식회사 다층금속나노튜브를 포함하는 음극활물질, 이를 포함하는 음극과 리튬전지 및 음극활물질 제조방법
WO2013027561A1 (en) 2011-08-19 2013-02-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
JP6025284B2 (ja) 2011-08-19 2016-11-16 株式会社半導体エネルギー研究所 蓄電装置用の電極及び蓄電装置
JP6034621B2 (ja) * 2011-09-02 2016-11-30 株式会社半導体エネルギー研究所 蓄電装置の電極および蓄電装置
US9099735B2 (en) 2011-09-13 2015-08-04 Wildcat Discovery Technologies, Inc. Cathode for a battery
US8663841B2 (en) * 2011-09-16 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device
JP6045260B2 (ja) * 2011-09-16 2016-12-14 株式会社半導体エネルギー研究所 蓄電装置
JP6218349B2 (ja) 2011-09-30 2017-10-25 株式会社半導体エネルギー研究所 蓄電装置
US9812699B2 (en) * 2011-10-05 2017-11-07 Oned Material Llc Silicon nanostructure active materials for lithium ion batteries and processes, compositions, components and devices related thereto
WO2013052704A1 (en) * 2011-10-07 2013-04-11 Applied Nanostructured Solutions, Llc Hybrid capacitor-battery and supercapacitor with active bi-functional electrolyte
WO2013066963A2 (en) * 2011-10-31 2013-05-10 The Trustees Of Boston College Hetero-nanostructure materials for use in energy-storage devices and methods of fabricating same
JP6059941B2 (ja) 2011-12-07 2017-01-11 株式会社半導体エネルギー研究所 リチウム二次電池用負極及びリチウム二次電池
JP6050106B2 (ja) 2011-12-21 2016-12-21 株式会社半導体エネルギー研究所 非水二次電池用シリコン負極の製造方法
US9595360B2 (en) * 2012-01-13 2017-03-14 Energy Power Systems LLC Metallic alloys having amorphous, nano-crystalline, or microcrystalline structure
US9012075B2 (en) 2012-01-23 2015-04-21 GM Global Technology Operations LLC Fade-resistant high capacity electrodes for a lithium-ion battery
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
JP6495570B2 (ja) * 2012-03-23 2019-04-03 株式会社半導体エネルギー研究所 蓄電装置
CN104247102B (zh) 2012-03-31 2017-01-25 汉阳大学校产学协力团 锂二次电池用正极活性物质前驱体的制备方法、由此制备的锂二次电池用正极活性物质前驱体及包括其在内的锂二次电池用正极活性物质
US9692056B1 (en) * 2012-04-13 2017-06-27 Amprius, Inc. Dual current collectors for battery electrodes
US20140178247A1 (en) 2012-09-27 2014-06-26 Rhodia Operations Process for making silver nanostructures and copolymer useful in such process
KR101456201B1 (ko) * 2012-10-16 2014-10-31 국립대학법인 울산과학기술대학교 산학협력단 리튬 이차 전지용 음극 활물질, 리튬 이차 전지용 음극 활물질의 제조 방법 및 상기 리튬 이차 전지용 음극 활물질을 포함하는 리튬 이차 전지
KR101698763B1 (ko) * 2012-12-10 2017-01-23 삼성에스디아이 주식회사 음극 활물질, 그 제조방법, 이를 포함하는 전극 및 이를 채용한 리튬 이차 전지
US20140178758A1 (en) * 2012-12-24 2014-06-26 Epistar Corporation Device for producing an electric current and method for making the same
KR101708363B1 (ko) 2013-02-15 2017-02-20 삼성에스디아이 주식회사 음극 활물질, 및 이를 채용한 음극과 리튬 전지
US9123939B2 (en) * 2013-03-14 2015-09-01 GM Global Technology Operations LLC Anodes including mesoporous hollow silicon particles and a method for synthesizing mesoporous hollow silicon particles
WO2014144167A1 (en) 2013-03-15 2014-09-18 Wildcat Discovery Technologies, Inc. High energy materials for a battery and methods for making and use
US8916062B2 (en) 2013-03-15 2014-12-23 Wildcat Discovery Technologies, Inc. High energy materials for a battery and methods for making and use
WO2014144179A1 (en) 2013-03-15 2014-09-18 Wildcat Discovery Technologies, Inc. High energy materials for a battery and methods for making and use
US20140272581A1 (en) 2013-03-15 2014-09-18 Wildcat Discovery Technologies, Inc. High energy materials for a battery and methods for making and use
US9159994B2 (en) * 2013-03-15 2015-10-13 Wildcat Discovery Technologies, Inc. High energy materials for a battery and methods for making and use
DE102013204863A1 (de) * 2013-03-20 2014-09-25 Robert Bosch Gmbh Elektrode und Verfahren zum Herstellen einer Elektrode
US9379383B2 (en) * 2013-06-17 2016-06-28 Electronics And Telecommunications Research Institute Lithium battery and method of preparing the same
KR101918112B1 (ko) 2013-06-17 2018-11-15 한국전자통신연구원 리튬 전지 및 그 제조방법
US9455448B1 (en) 2013-08-23 2016-09-27 Greatbatch Ltd. Multi-thickness current collector
TWI495183B (zh) * 2013-10-09 2015-08-01 Nat Univ Tsing Hua 電極薄膜之製備方法
KR101575438B1 (ko) 2013-12-27 2015-12-07 현대자동차주식회사 리튬 기반 전지 음극을 위한 니켈 실리사이드 나노와이어에 임베디드된 실리콘 나노와이어 구조체
US10686195B2 (en) * 2014-02-19 2020-06-16 The Regents Of The University Of California Nanoframes with three-dimensional electrocatalytic surfaces
WO2015136684A1 (ja) * 2014-03-14 2015-09-17 株式会社日立製作所 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、およびリチウムイオン二次電池
KR101578379B1 (ko) * 2014-04-30 2015-12-17 한국과학기술연구원 이차전지용 음극전극 및 그 제조방법
WO2015175509A1 (en) * 2014-05-12 2015-11-19 Amprius, Inc. Structurally controlled deposition of silicon onto nanowires
US10122010B2 (en) * 2014-07-11 2018-11-06 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device including the same
US9331667B2 (en) * 2014-07-21 2016-05-03 Triquint Semiconductor, Inc. Methods, systems, and apparatuses for temperature compensated surface acoustic wave device
US10128496B2 (en) 2014-08-14 2018-11-13 Giner, Inc. Three-dimensional, porous anode for use in lithium-ion batteries and method of fabrication thereof
US10403889B2 (en) 2014-10-21 2019-09-03 RAMOT AT TEL-AVIV UNlVERSITY LTD. High-capacity silicon nanowire based anode for lithium-ion batteries
KR102331721B1 (ko) 2014-12-31 2021-11-26 삼성전자 주식회사 복합 음극 활물질, 그 제조방법, 이를 포함하는 음극 및 리튬이차전지
KR102356936B1 (ko) * 2014-12-31 2022-02-03 삼성전자주식회사 복합 음극 활물질, 그 제조방법, 이를 포함하는 음극 및 리튬이차전지
KR101773103B1 (ko) * 2015-01-09 2017-08-30 주식회사 엘지화학 전극, 이의 제조방법, 이에 의해 제조된 전극 및 이를 포함하는 이차전지
US9468989B2 (en) * 2015-02-26 2016-10-18 Northrop Grumman Systems Corporation High-conductivity bonding of metal nanowire arrays
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US10403902B2 (en) 2015-05-15 2019-09-03 Composite Materials Technology, Inc. High capacity rechargeable batteries
US10903483B2 (en) 2015-08-27 2021-01-26 Wildcat Discovery Technologies, Inc High energy materials for a battery and methods for making and use
US9865466B2 (en) 2015-09-25 2018-01-09 Applied Materials, Inc. Silicide phase control by confinement
US9966253B2 (en) * 2016-02-25 2018-05-08 International Business Machines Corporation Forming nanotips
KR102659195B1 (ko) 2016-07-11 2024-04-19 삼성전자주식회사 플라즈마 화학기상증착 장치 및 이를 이용한 Li 기반의 박막 형성방법
EP3507242B1 (en) 2016-09-01 2021-07-14 COMPOSITE MATERIALS TECHNOLOGY, Inc. Nano-scale/nanostructured si coating on valve metal substrate for lib anodes
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
DE102016220675A1 (de) * 2016-10-21 2018-04-26 Robert Bosch Gmbh Herstellung eines strukturierten Aktivmaterials für eine elektrochemische Zelle und/oder Batterie
US20210257604A1 (en) 2017-06-20 2021-08-19 Coreshell Technologies, Inc. Solution-phase deposition of thin films on solid-state electrolytes
US11990609B2 (en) 2017-06-20 2024-05-21 Coreshell Technologies, Incorporated Solution-deposited electrode coatings for thermal runaway mitigation in rechargeable batteries
EP3642896A4 (en) 2017-06-20 2021-03-31 Coreshell Technologies, Inc. METHODS, SYSTEMS AND COMPOSITIONS FOR THE LIQUID DEPOSIT OF THIN FILMS ON THE SURFACE OF BATTERY ELECTRODES
KR101998648B1 (ko) * 2017-11-03 2019-07-11 한국에너지기술연구원 슈퍼커패시터용 금속-실리사이드 나노선 기반 전극, 이 전극의 제조 방법, 이 전극을 사용한 슈퍼커패시터 및 이 슈퍼커패시터의 제조 방법
US20190214627A1 (en) * 2018-01-10 2019-07-11 Winsky Technology Hong Kong Limited Apparatus and Method of Treating a Lithium-Ion-Battery Part
WO2019165412A1 (en) * 2018-02-26 2019-08-29 Graphenix Development, Inc. Anodes for lithium-based energy storage devices
WO2019183615A1 (en) * 2018-03-23 2019-09-26 EnPower, Inc. Gap section multilayer electrode profile
US10991942B2 (en) 2018-03-23 2021-04-27 EnPower, Inc. Electrochemical cells having one or more multilayer electrodes
CN108767192A (zh) * 2018-05-25 2018-11-06 深圳市优特利电源有限公司 锂离子电池正极片及锂离子电池
US10833332B2 (en) 2018-06-01 2020-11-10 Uchicago Argonne, Llc Systems and methods for scale-up synthesis multi-layered Pt-skin nanoparticle catalysts
US10637072B2 (en) 2018-06-12 2020-04-28 Uchicago Argonne, Llc Systems and methods for PTNI nanocages
CN110660966B (zh) * 2018-06-28 2021-06-25 香港理工大学深圳研究院 非均匀锂离子电池负极片及锂离子电池
TWI837142B (zh) * 2018-06-30 2024-04-01 美商應用材料股份有限公司 形成含鉻膜的方法與以含氧化鉻膜或含鉻膜填充縫隙的方法
US11557784B2 (en) 2018-11-06 2023-01-17 Utility Global, Inc. Method of making a fuel cell and treating a component thereof
US11611097B2 (en) 2018-11-06 2023-03-21 Utility Global, Inc. Method of making an electrochemical reactor via sintering inorganic dry particles
US11539053B2 (en) 2018-11-12 2022-12-27 Utility Global, Inc. Method of making copper electrode
US11603324B2 (en) 2018-11-06 2023-03-14 Utility Global, Inc. Channeled electrodes and method of making
US11761100B2 (en) 2018-11-06 2023-09-19 Utility Global, Inc. Electrochemical device and method of making
WO2020146759A1 (en) * 2019-01-09 2020-07-16 Utility Global, Inc. Method of producing hydrogen
WO2020172564A1 (en) * 2019-02-22 2020-08-27 Amprius, Inc. Compositionally modified silicon coatings for use in a lithium ion battery anode
EP3939107A4 (en) * 2019-03-11 2023-06-21 Coreshell Technologies, Inc. SOLUTION PHASE ELECTRODEPOSITION OF ARTIFICIAL SOLID ELECTROLYTE (SEI) INTERPHASE LAYERS ON BATTERY ELECTRODES
US11024842B2 (en) 2019-06-27 2021-06-01 Graphenix Development, Inc. Patterned anodes for lithium-based energy storage devices
CN118693234A (zh) 2019-08-13 2024-09-24 格拉芬尼克斯开发公司 用于锂基储能装置的阳极及其制造方法
EP4018503A1 (en) 2019-08-20 2022-06-29 Graphenix Development, Inc. Structured anodes for lithium-based energy storage devices
US11489154B2 (en) 2019-08-20 2022-11-01 Graphenix Development, Inc. Multilayer anodes for lithium-based energy storage devices
US11495782B2 (en) 2019-08-26 2022-11-08 Graphenix Development, Inc. Asymmetric anodes for lithium-based energy storage devices
US12103087B2 (en) 2019-09-30 2024-10-01 Uchicago Argonne, Llc Systems and methods for platinum nanocatalyst synthesis via continuous flow reactor
US10998553B1 (en) 2019-10-31 2021-05-04 EnPower, Inc. Electrochemical cell with integrated ceramic separator
US11777126B2 (en) 2019-12-05 2023-10-03 Utility Global, Inc. Methods of making and using an oxide ion conducting membrane
US11679377B2 (en) 2020-01-28 2023-06-20 Uchicago Argonne, Llc Control of nanostructure and activity by alloying and/or segregation
US11628427B2 (en) 2020-01-28 2023-04-18 Uchicago Argonne, Llc Segregation induced core-shell structure
US10964935B1 (en) 2020-04-28 2021-03-30 Nanostar, Inc. Amorphous silicon-carbon composites and improved first coulombic efficiency
TWI770796B (zh) * 2021-01-29 2022-07-11 優材科技有限公司 導電結構與電池
KR102517722B1 (ko) * 2021-05-31 2023-04-04 주식회사 비이아이랩 기상 전기 환원법을 이용한 실리콘의 제조방법
CN117546313A (zh) * 2021-07-07 2024-02-09 松下知识产权经营株式会社 电池及其制造方法
US11594784B2 (en) 2021-07-28 2023-02-28 EnPower, Inc. Integrated fibrous separator

Family Cites Families (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU532635B2 (en) * 1979-11-06 1983-10-06 South African Inventions Development Corporation Metal oxide cathode
US4436796A (en) 1981-07-30 1984-03-13 The United States Of America As Represented By The United States Department Of Energy All-solid electrodes with mixed conductor matrix
JPS60224737A (ja) 1984-04-21 1985-11-09 Kobe Steel Ltd 耐孔蝕性に優れたアルミニウム合金複合材
JP2546114B2 (ja) 1992-12-22 1996-10-23 日本電気株式会社 異物質内包カーボンナノチューブとその製造方法
JPH097638A (ja) 1995-06-22 1997-01-10 Seiko Instr Inc 非水電解質二次電池
US6083644A (en) 1996-11-29 2000-07-04 Seiko Instruments Inc. Non-aqueous electrolyte secondary battery
US5997832A (en) 1997-03-07 1999-12-07 President And Fellows Of Harvard College Preparation of carbide nanorods
US6090505A (en) 1997-06-03 2000-07-18 Matsushita Electric Industrial Co., Ltd. Negative electrode materials for non-aqueous electrolyte secondary batteries and said batteries employing the same materials
JP2002518280A (ja) 1998-06-19 2002-06-25 ザ・リサーチ・ファウンデーション・オブ・ステイト・ユニバーシティ・オブ・ニューヨーク 整列した自立炭素ナノチューブおよびその合成
JP4352475B2 (ja) 1998-08-20 2009-10-28 ソニー株式会社 固体電解質二次電池
EP1028476A4 (en) * 1998-09-08 2007-11-28 Sumitomo Metal Ind NEGATIVE ELECTRODE MATERIAL FOR NONAQUEOUS ELECTRODE SECONDARY ACCUMULATOR AND PROCESS FOR PRODUCTION THEREOF
JP3620703B2 (ja) * 1998-09-18 2005-02-16 キヤノン株式会社 二次電池用負極電極材、電極構造体、二次電池、及びこれらの製造方法
JP2001254103A (ja) * 2000-03-13 2001-09-18 Sanei Kasei Kk ナノコンポジット構造を有する金属粒子及び自己組織化によるその製造方法
US6334939B1 (en) * 2000-06-15 2002-01-01 The University Of North Carolina At Chapel Hill Nanostructure-based high energy capacity material
US7056620B2 (en) * 2000-09-07 2006-06-06 Front Edge Technology, Inc. Thin film battery and method of manufacture
US6503660B2 (en) 2000-12-06 2003-01-07 R. Terry K. Baker Lithium ion battery containing an anode comprised of graphitic carbon nanofibers
JP4201509B2 (ja) 2001-03-06 2008-12-24 三洋電機株式会社 リチウム二次電池用電極及びリチウム二次電池
US7713352B2 (en) 2001-06-29 2010-05-11 University Of Louisville Research Foundation, Inc. Synthesis of fibers of inorganic materials using low-melting metals
US20060165988A1 (en) 2002-04-09 2006-07-27 Yet-Ming Chiang Carbon nanoparticles and composite particles and process of manufacture
EP1576678A2 (en) 2002-09-10 2005-09-21 California Institute Of Technology High-capacity nanostructured silicon and lithium alloys thereof
GB2395059B (en) 2002-11-05 2005-03-16 Imp College Innovations Ltd Structured silicon anode
WO2004086539A1 (en) * 2003-03-26 2004-10-07 Canon Kabushiki Kaisha Electrode material for lithium secondary battery and electrode structure having the electrode material
WO2004093223A2 (en) 2003-04-14 2004-10-28 Massachusetts Institute Of Technology Integrated thin film batteries on silicon integrated circuits
US7432014B2 (en) 2003-11-05 2008-10-07 Sony Corporation Anode and battery
US20050238810A1 (en) 2004-04-26 2005-10-27 Mainstream Engineering Corp. Nanotube/metal substrate composites and methods for producing such composites
US20050279274A1 (en) 2004-04-30 2005-12-22 Chunming Niu Systems and methods for nanowire growth and manufacturing
CN100338796C (zh) * 2004-05-26 2007-09-19 中国科学院金属研究所 一种锂离子电池负极材料的改性方法
US7733441B2 (en) 2004-06-03 2010-06-08 Semiconductor Energy Labortory Co., Ltd. Organic electroluminescent lighting system provided with an insulating layer containing fluorescent material
US7939218B2 (en) 2004-12-09 2011-05-10 Nanosys, Inc. Nanowire structures comprising carbon
US7842432B2 (en) * 2004-12-09 2010-11-30 Nanosys, Inc. Nanowire structures comprising carbon
FR2880197B1 (fr) 2004-12-23 2007-02-02 Commissariat Energie Atomique Electrolyte structure pour microbatterie
FR2880198B1 (fr) 2004-12-23 2007-07-06 Commissariat Energie Atomique Electrode nanostructuree pour microbatterie
JP2006269306A (ja) 2005-03-25 2006-10-05 Sanyo Electric Co Ltd リチウム二次電池用電極およびその製造方法
US20060216603A1 (en) 2005-03-26 2006-09-28 Enable Ipc Lithium-ion rechargeable battery based on nanostructures
US7402445B2 (en) 2005-05-16 2008-07-22 Wayne State University Method of forming micro-structures and nano-structures
FR2885913B1 (fr) 2005-05-18 2007-08-10 Centre Nat Rech Scient Element composite comprenant un substrat conducteur et un revetement metallique nanostructure.
JP4692163B2 (ja) 2005-08-30 2011-06-01 日産自動車株式会社 ワーク位置決め支持装置及びワーク位置決め支持方法
US20070065720A1 (en) 2005-09-22 2007-03-22 Masaki Hasegawa Negative electrode for lithium ion secondary battery and lithium ion secondary battery prepared by using the same
JP4432871B2 (ja) 2005-10-18 2010-03-17 ソニー株式会社 負極およびその製造方法、並びに電池
CN100423245C (zh) * 2005-12-07 2008-10-01 中国科学院物理研究所 金属硅化物纳米线及其制作方法
US7906238B2 (en) * 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
FR2895572B1 (fr) 2005-12-23 2008-02-15 Commissariat Energie Atomique Materiau a base de nanotubes de carbone et de silicium utilisable dans des electrodes negatives pour accumulateur au lithium
GB0601318D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd Method of etching a silicon-based material
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
US7408829B2 (en) 2006-02-13 2008-08-05 International Business Machines Corporation Methods and arrangements for enhancing power management systems in integrated circuits
US20080008844A1 (en) 2006-06-05 2008-01-10 Martin Bettge Method for growing arrays of aligned nanostructures on surfaces
US20070298168A1 (en) * 2006-06-09 2007-12-27 Rensselaer Polytechnic Institute Multifunctional carbon nanotube based brushes
JP4833758B2 (ja) 2006-07-21 2011-12-07 Okiセミコンダクタ株式会社 駆動回路
US8044292B2 (en) 2006-10-13 2011-10-25 Toyota Motor Engineering & Manufacturing North America, Inc. Homogeneous thermoelectric nanocomposite using core-shell nanoparticles
US20080110486A1 (en) 2006-11-15 2008-05-15 General Electric Company Amorphous-crystalline tandem nanostructured solar cells
JP4288621B2 (ja) 2006-12-19 2009-07-01 ソニー株式会社 負極及びそれを用いた電池、並びに負極の製造方法
JP2008192594A (ja) 2007-01-11 2008-08-21 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極とその製造方法およびそれを用いた非水電解質二次電池
US7754600B2 (en) * 2007-03-01 2010-07-13 Hewlett-Packard Development Company, L.P. Methods of forming nanostructures on metal-silicide crystallites, and resulting structures and devices
JP2008269827A (ja) 2007-04-17 2008-11-06 Matsushita Electric Ind Co Ltd 電気化学素子の電極材料およびその製造方法並びにそれを用いた電極極板および電気化学素子
US8828481B2 (en) 2007-04-23 2014-09-09 Applied Sciences, Inc. Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries
KR100868290B1 (ko) 2007-05-04 2008-11-12 한국과학기술연구원 나노파이버 네트워크 구조의 음극 활물질을 구비한이차전지용 음극 및 이를 이용한 이차전지와, 이차전지용음극 활물질의 제조방법
JP2008305781A (ja) * 2007-05-09 2008-12-18 Mitsubishi Chemicals Corp 電極及びその製造方法、並びに非水電解質二次電池
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
JP2009021226A (ja) 2007-06-15 2009-01-29 Toshiba Corp 燃料電池用膜電極接合体および燃料電池
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
GB0713896D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Method
GB0713895D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Production
US7816031B2 (en) 2007-08-10 2010-10-19 The Board Of Trustees Of The Leland Stanford Junior University Nanowire battery methods and arrangements
KR100878718B1 (ko) * 2007-08-28 2009-01-14 한국과학기술연구원 리튬이차전지용 실리콘 박막 음극, 이의 제조방법 및 이를포함하는 리튬이차전지
JP2010538444A (ja) 2007-09-07 2010-12-09 インオーガニック スペシャリスツ インク リチウム二次バッテリー用アノード材料としてのシリコン変性ナノファイバー紙
JP5186884B2 (ja) 2007-11-06 2013-04-24 株式会社豊田中央研究所 リチウム2次電池用電極及びリチウム2次電池
CN101453013A (zh) 2007-11-29 2009-06-10 比亚迪股份有限公司 锂离子电池负极及其制备方法和电池
US9564629B2 (en) * 2008-01-02 2017-02-07 Nanotek Instruments, Inc. Hybrid nano-filament anode compositions for lithium ion batteries
US8435676B2 (en) 2008-01-09 2013-05-07 Nanotek Instruments, Inc. Mixed nano-filament electrode materials for lithium ion batteries
DE112009000443B4 (de) * 2008-02-25 2017-05-11 Ronald Anthony Rojeski Elektroden für wiederaufladbare Batterie mit hoher Kapazität
US8481214B2 (en) 2008-02-25 2013-07-09 Catalyst Power Technologies Electrodes including support filament with collar stop
US9917300B2 (en) 2009-02-25 2018-03-13 Cf Traverse Llc Hybrid energy storage devices including surface effect dominant sites
JP5266839B2 (ja) 2008-03-28 2013-08-21 ソニー株式会社 二次電池用負極、二次電池および電子機器
WO2009137241A2 (en) 2008-04-14 2009-11-12 Bandgap Engineering, Inc. Process for fabricating nanowire arrays
CN101561694A (zh) 2008-04-15 2009-10-21 华硕电脑股份有限公司 可携式电脑及其键盘照明装置
WO2009129490A1 (en) 2008-04-17 2009-10-22 Microazure Corporation Anode material having a uniform metal-semiconductor alloy layer
CN101560694B (zh) * 2008-04-18 2011-11-09 中国科学院金属研究所 一种硅化物纳米带/纳米片的可控制备方法
WO2009131700A2 (en) 2008-04-25 2009-10-29 Envia Systems, Inc. High energy lithium ion batteries with particular negative electrode compositions
US8968820B2 (en) * 2008-04-25 2015-03-03 Nanotek Instruments, Inc. Process for producing hybrid nano-filament electrodes for lithium batteries
JP5333820B2 (ja) 2008-05-23 2013-11-06 ソニー株式会社 二次電池用負極およびそれを備えた二次電池
US8491718B2 (en) 2008-05-28 2013-07-23 Karin Chaudhari Methods of growing heteroepitaxial single crystal or large grained semiconductor films and devices thereon
US20090297774A1 (en) 2008-05-28 2009-12-03 Praveen Chaudhari Methods of growing heterepitaxial single crystal or large grained semiconductor films and devices thereon
US8216436B2 (en) * 2008-08-25 2012-07-10 The Trustees Of Boston College Hetero-nanostructures for solar energy conversions and methods of fabricating same
CN102282679B (zh) 2008-11-14 2015-05-20 班德加普工程有限公司 纳米结构器件
JP4816981B2 (ja) 2008-12-22 2011-11-16 ソニー株式会社 負極および二次電池
US8940438B2 (en) 2009-02-16 2015-01-27 Samsung Electronics Co., Ltd. Negative electrode including group 14 metal/metalloid nanotubes, lithium battery including the negative electrode, and method of manufacturing the negative electrode
WO2010100599A1 (en) 2009-03-04 2010-09-10 Koninklijke Philips Electronics, N.V. Large capacity thin film battery and method for making same
US8257866B2 (en) 2009-05-07 2012-09-04 Amprius, Inc. Template electrode structures for depositing active materials
US20100285358A1 (en) 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
US20140370380A9 (en) 2009-05-07 2014-12-18 Yi Cui Core-shell high capacity nanowires for battery electrodes
KR102067922B1 (ko) 2009-05-19 2020-01-17 원드 매터리얼 엘엘씨 배터리 응용을 위한 나노구조화된 재료
US8450012B2 (en) 2009-05-27 2013-05-28 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
US10366802B2 (en) * 2009-06-05 2019-07-30 University of Pittsburgh—of the Commonwealth System of Higher Education Compositions including nano-particles and a nano-structured support matrix and methods of preparation as reversible high capacity anodes in energy storage systems
DE102009035745A1 (de) 2009-08-01 2011-02-17 Christian-Albrechts-Universität Zu Kiel Elektrode für Lithium-Ionen Akkumulatoren
CN101989655B (zh) 2009-08-03 2019-09-10 张洪涛 纳米碳化硅作锂离子电池负极材料
JP2011108639A (ja) 2009-10-22 2011-06-02 Ronald Anthony Rojeski カラーストップを含む電極
EP2494602A1 (en) * 2009-10-26 2012-09-05 Trustees of Boston College Hetero-nanostructure materials for use in energy-storage devices and methods of fabricating same
EP2494634A1 (en) 2009-10-29 2012-09-05 Uchicago Argonne, LLC, Operator Of Argonne National Laboratory Autogenic pressure reactions for battery materials manufacture
KR20120128125A (ko) 2009-11-03 2012-11-26 엔비아 시스템즈 인코포레이티드 리튬 이온 전지용 고용량 아노드 물질
WO2011060023A2 (en) 2009-11-11 2011-05-19 Amprius Inc. Preloading lithium ion cell components with lithium
EP2499686A2 (en) 2009-11-11 2012-09-19 Amprius, Inc. Intermediate layers for electrode fabrication
DE102009056530A1 (de) 2009-12-04 2011-06-09 Christian-Albrechts-Universität Zu Kiel Nanodrahtstruktur mit freiliegenden, regelmäßig angeordneten Nanodrahtenden und Verfahren zur Herstellung einer solchen Struktur
US20110143019A1 (en) 2009-12-14 2011-06-16 Amprius, Inc. Apparatus for Deposition on Two Sides of the Web
US9878905B2 (en) 2009-12-31 2018-01-30 Samsung Electronics Co., Ltd. Negative electrode including metal/metalloid nanotubes, lithium battery including the negative electrode, and method of manufacturing the negative electrode
US20110189510A1 (en) 2010-01-29 2011-08-04 Illuminex Corporation Nano-Composite Anode for High Capacity Batteries and Methods of Forming Same
US9780365B2 (en) * 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
US9172088B2 (en) 2010-05-24 2015-10-27 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
US20120328942A1 (en) 2010-03-05 2012-12-27 A123 Systems, Inc. Design and fabrication of electrodes with gradients
US20110143263A1 (en) 2010-04-29 2011-06-16 Ford Global Technologies, Llc Catalyst Layer Having Thin Film Nanowire Catalyst and Electrode Assembly Employing the Same
US20110309306A1 (en) 2010-04-30 2011-12-22 University Of Southern California Fabrication of Silicon Nanowires
WO2011149958A2 (en) 2010-05-24 2011-12-01 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
CN101986447A (zh) 2010-05-25 2011-03-16 耿世达 一种锂离子电池高能复合负极材料及其制备方法
CA2809091A1 (en) 2010-08-27 2012-03-01 The Research Foundation Of State University Of New York Branched nanostructures for battery electrodes
US20120094192A1 (en) 2010-10-14 2012-04-19 Ut-Battelle, Llc Composite nanowire compositions and methods of synthesis
WO2012054767A2 (en) 2010-10-22 2012-04-26 Amprius Inc. Battery electrode structures for high mass loadings of high capacity active materials
TWI536640B (zh) 2011-03-02 2016-06-01 安普雷斯公司 用於沈積活性材料之模板電極結構
JP5606390B2 (ja) 2011-05-16 2014-10-15 株式会社東芝 不揮発性抵抗変化素子
KR20140051928A (ko) 2011-07-01 2014-05-02 암프리우스, 인코포레이티드 향상된 접착 특성을 가진 템플레이트 전극 구조체
KR101890742B1 (ko) 2011-07-19 2018-08-23 삼성전자주식회사 다층금속나노튜브를 포함하는 음극활물질, 이를 포함하는 음극과 리튬전지 및 음극활물질 제조방법
JP6070565B2 (ja) 2011-11-02 2017-02-01 コニカミノルタ株式会社 有機el照明装置およびその製造方法
CN104145355B (zh) 2011-12-21 2016-09-28 罗纳德·罗杰斯基 能量存储装置
CN112349879A (zh) 2012-07-03 2021-02-09 触媒能源技术公司 包含支撑丝的混合式能量存储装置
WO2015175509A1 (en) 2014-05-12 2015-11-19 Amprius, Inc. Structurally controlled deposition of silicon onto nanowires
WO2020172564A1 (en) 2019-02-22 2020-08-27 Amprius, Inc. Compositionally modified silicon coatings for use in a lithium ion battery anode

Also Published As

Publication number Publication date
CN105206794A (zh) 2015-12-30
US20110159365A1 (en) 2011-06-30
CN102844917B (zh) 2015-11-25
EP2543098A2 (en) 2013-01-09
JP2016164885A (ja) 2016-09-08
WO2011109477A3 (en) 2011-12-08
US20190273252A1 (en) 2019-09-05
US11024841B2 (en) 2021-06-01
US10230101B2 (en) 2019-03-12
US20120301789A1 (en) 2012-11-29
US20130344383A1 (en) 2013-12-26
EP2543098B1 (en) 2019-07-31
JP2013521621A (ja) 2013-06-10
WO2011109477A2 (en) 2011-09-09
KR102061993B1 (ko) 2020-01-02
CN102844917A (zh) 2012-12-26
EP2543098A4 (en) 2017-04-19
CN105206794B (zh) 2018-02-23
KR20130048201A (ko) 2013-05-09
US8556996B2 (en) 2013-10-15
US8257866B2 (en) 2012-09-04
US9172094B2 (en) 2015-10-27
US20160013483A1 (en) 2016-01-14
JP5918150B2 (ja) 2016-05-18
KR101906606B1 (ko) 2018-10-10
KR20180112101A (ko) 2018-10-11

Similar Documents

Publication Publication Date Title
JP6494558B2 (ja) 電極および電気化学的に活性な電極材料
US10096817B2 (en) Template electrode structures with enhanced adhesion characteristics
US20180090755A1 (en) High capacity battery electrode structures
TWI575800B (zh) 高電容活性材料的高質量負載之電池組電極結構
US9172088B2 (en) Multidimensional electrochemically active structures for battery electrodes
WO2011149958A2 (en) Multidimensional electrochemically active structures for battery electrodes
EP2436068A2 (en) Core-shell high capacity nanowires for battery electrodes
CN113646923A (zh) 用于锂离子电池阳极的组成调整的硅涂层
US11996550B2 (en) Template electrode structures for depositing active materials
US20220149379A1 (en) High capacity battery electrode structures
TWI536640B (zh) 用於沈積活性材料之模板電極結構

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171004

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180823

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190305

R150 Certificate of patent or registration of utility model

Ref document number: 6494558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250