JP6201327B2 - リチウム電池用電極複合体の製造方法、リチウム電池用電極複合体およびリチウム電池 - Google Patents

リチウム電池用電極複合体の製造方法、リチウム電池用電極複合体およびリチウム電池 Download PDF

Info

Publication number
JP6201327B2
JP6201327B2 JP2013020420A JP2013020420A JP6201327B2 JP 6201327 B2 JP6201327 B2 JP 6201327B2 JP 2013020420 A JP2013020420 A JP 2013020420A JP 2013020420 A JP2013020420 A JP 2013020420A JP 6201327 B2 JP6201327 B2 JP 6201327B2
Authority
JP
Japan
Prior art keywords
active material
molded body
electrolyte layer
solid electrolyte
material molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013020420A
Other languages
English (en)
Other versions
JP2014154237A (ja
Inventor
知史 横山
知史 横山
祐永 市川
祐永 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2013020420A priority Critical patent/JP6201327B2/ja
Priority to CN201410043327.7A priority patent/CN103972472B/zh
Priority to US14/172,024 priority patent/US20140220436A1/en
Publication of JP2014154237A publication Critical patent/JP2014154237A/ja
Application granted granted Critical
Publication of JP6201327B2 publication Critical patent/JP6201327B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、電極複合体の製造方法、電極複合体およびリチウム電池に関するものである。
携帯型情報機器をはじめとする多くの電子機器の電源として、リチウム電池(一次電池および二次電池を含む)が利用されている。リチウム電池は、正極と負極と、これらの層の間に設置され、リチウムイオンの伝導を媒介する電解質層とを備える。
近年、高エネルギー密度と安全性とを両立したリチウム電池として、電解質層の形成材料に、固体電解質を使用する全固体型リチウム電池が提案されている(例えば、特許文献1〜6参照)。
特開2009−215130号公報 特開2001−68149号公報 特開2000−311710号公報 特開2008−226666号公報 特開2006−260887号公報 特開2011−204511号公報
リチウム電池は、高出力であるものが求められているが、従来の全固体リチウム電池は、充分な性能とはなっておらず、さらなる改良が求められていた。
本発明はこのような事情に鑑みてなされたものであって、リチウム電池に好適に用いられ、高い出力のリチウム電池とすることが可能な電極複合体を提供することを目的とする。また、高い出力のリチウム電池とすることが可能な電極複合体の製造方法を提供することを合わせて目的とする。また、このような電極複合体を有し高出力なリチウム電池を提供することを合わせて目的とする。
上記の課題を解決するため、本発明の一態様は、多孔質の活物質成形体と、前記活物質成形体の細孔内を含む前記活物質成形体の表面を覆う固体電解質層と、前記固体電解質層から露出する前記活物質成形体に接する集電体と、を有する電極複合体の製造方法であって、活物質を用いて形成された多孔体を、850℃以上活物質の融点未満の温度条件で熱処理し、前記活物質成形体を得る工程と、前記活物質成形体を含む構造体において、前記活物質成形体の細孔の内部を含む前記活物質成形体の表面に、無機固体電解質の形成材料を含む液状体を塗布し熱処理して、前記固体電解質層を形成する工程と、を有する電極複合体の製造方法を提供する。
上記の課題を解決するため、本発明の一態様は、多孔質の活物質成形体と、前記活物質成形体の細孔内を含む前記活物質成形体の表面を覆う第1固体電解質層と、前記第1固体電解質層を覆う第2固体電解質層と、前記活物質成形体に接する集電体と、を有する電極複合体の製造方法であって、活物質を用いて形成された多孔体を、850℃以上活物質の融点未満の温度条件で熱処理し、前記活物質成形体を得る工程と、前記活物質成形体の細孔の内部を含む前記活物質成形体の表面に、前記第1固体電解質層の形成材料を含む液状体を塗布し熱処理して、前記第1固体電解質層を形成する工程と、前記第1固体電解質層の表面に、前記第2固体電解質層の形成材料を含む液状体を塗布し熱処理して、前記第2固体電解質層を形成する工程と、を有するリチウム電池用電極複合体の製造方法を提供する。
この方法によれば、形成される活物質成形体が良好な導電性を呈するとともに、活物質成形体の細孔の内部に充填された固体電解質層を容易に形成することができる。
また、この方法によれば、固体電解質層が活物質成形体の細孔内に形成されていない場合と比べ、活物質成形体と固体電解質層との接触面積が大きくなり、活物質成形体と固体電解質層との界面インピーダンスを低減させることができる。したがって、電極構造体は、活物質成形体と固体電解質層との界面において良好な電荷移動が可能となる。
また、この方法により得られる電極複合体では、集電体と活物質成形体との接触面積(第1の接触面積)よりも、活物質成形体と固体電解質層との接触面積(第2の接触面積)のほうが大きくしやすい。そのため、集電体と活物質成形体と固体電解質層とを接続する電子の移動経路を想定したときに、活物質成形体と固体電解質層との界面における電荷移動のボトルネックを解消しやすく、良好な電荷移動が可能な電極複合体とすることができる。
以上のことから、本発明の一態様に係る電極複合体の製造方法によれば、良好に電荷移動が可能であり、リチウム電池を高出力とすることができる電極複合体を容易に製造することができる。
本発明の一態様においては、前記多孔体が、粒子状の前記活物質を圧縮して成形される成形体である製造方法としてもよい。
この方法によれば、活物質成形体を容易に多孔質にすることができる。
本発明の一態様においては、前記活物質の平均粒径が、300nm以上5μmである製造方法としてもよい。
この方法によれば、適切な空隙率を有する活物質成形体が得られるため、活物質成形体の細孔内の表面積を広げ、且つ活物質成形体と固体電解質層との接触面積を広げやすくなる。そのため、電極複合体を用いたリチウム電池を高容量にしやすくなる。
本発明の一態様においては、前記固体電解質層を形成する工程は、前記無機固体電解質の形成材料を前記多孔体の表面に被着させる第1の熱処理と、前記第1の熱処理の処理温度以上700℃以下の温度条件で加熱する第2の熱処理と、を含む製造方法としてもよい。
この方法によれば、固体電解質層を所望の位置に容易に形成することができる。
本発明の一態様においては、前記構造体が前記活物質成形体であり、前記固体電解質層を形成する工程の後に、前記活物質成形体に前記集電体を接合する工程を有する製造方法としてもよい。
また、本発明の一態様においては、前記構造体が、前記活物質成形体と前記活物質成形体に接合された前記集電体とを有し、前記固体電解質層を形成する工程が、前記集電体を前記活物質成形体に接合した後に、前記活物質成形体に前記液状体を塗布して熱処理する工程を有する製造方法としてもよい。
これらの方法によれば、製造工程の自由度が増す。
本発明の一態様においては、前記集電体を接合する工程に先立って、前記活物質成形体の表面に前記固体電解質層を形成してなる複合体を複数に分割する工程を有し、前記集電体を接合する工程において、分割された前記複合体の分割面に露出する前記活物質成形体に前記集電体を接合する製造方法としてもよい。
この方法によれば、電極複合体の大量生産が容易となる。
本発明の一態様においては、分割された前記複合体が、複数の前記分割面を有し、前記集電体を接合する工程において、複数の前記分割面のうち一部に前記集電体を接合し、複数の前記分割面の残部に、無機固体電解質の層を形成する製造方法としてもよい。
この方法によれば、短絡が確実に防止された電極複合体を容易に製造することができる。
また、本発明の一態様は、多孔質の活物質成形体と、前記活物質成形体の細孔内を含む前記活物質成形体の表面を覆う固体電解質層と、前記固体電解質層から露出する前記活物質成形体に接する集電体と、を有し、前記活物質成形体が有する複数の細孔が、前記活物質成形体の内部で互いに網目状に連通しており、前記集電体と前記活物質成形体との接触面積よりも、前記活物質成形体と前記固体電解質層との接触面積のほうが大きい電極複合体を提供する。
また、本発明の一態様は、活物質成形体と、前記活物質成形体の細孔内を含む前記活物質成形体の表面を覆う第1固体電解質層と、前記第1固体電解質層と接する第2固体電解質層と、前記第1固体電解質層および前記第2固体電解質層から露出する前記活物質成形体に接する集電体と、を有するリチウム電池用電極複合体を提供する。
また、本発明の一態様は、活物質成形体と、前記活物質成形体の細孔内を含む前記活物質成形体の表面を覆う固体電解質層と、有し、前記活物質成形体および前記電解質層を400℃で30分加熱した時の質量減少率が、5質量%以下であるリチウム電池用電極複合体を提供する。
この構成によれば、活物質として結晶に電気化学的異方性があるものを用いたとしても、細孔が網目状に連通し、活物質成形体が網目構造を有していることから、結晶の電子伝導性またはイオン伝導性の異方性によらず、電気化学的に滑性な連続表面を形成することができる。そのため、用いる活物質の種類によらず、良好な電子伝導を担保した活物質成形体となる。
また、固体電解質層が活物質成形体の細孔内に形成されていない場合と比べ、活物質成形体と固体電解質層との接触面積が大きくなり、活物質成形体と固体電解質層との界面インピーダンスを低減させることができる。したがって、活物質成形体と固体電解質層との界面において良好な電荷移動が可能となる。
また、集電体と活物質成形体との接触面積(第1の接触面積)よりも、活物質成形体と固体電解質層との接触面積(第2の接触面積)のほうが大きいことから活物質成形体と固体電解質層との界面における電荷移動のボトルネックを解消しやすく、電極複合体全体として良好な電荷移動が可能となる。
以上のことから、本発明の一態様によれば、高出力のリチウム電池とすることが可能な電極複合体を提供することができる。
本発明の一態様においては、前記活物質成形体および前記固体電解質層を400℃で30分加熱した時の質量減少率が、5質量%以下である構成としてもよい。
この構成によれば、活物質成形体および固体電解質層の95質量%以上を無機物で構成する電極複合体とすることができ、安定性が高いものとすることができる。
本発明の一態様においては、前記活物質成形体の抵抗率が、700Ω/cm以下である構成としてもよい。
この構成によれば、電極複合体を用いてリチウム電池を形成した際に、充分な出力が得られる。
本発明の一態様においては、前記固体電解質層のイオン伝導率が、1×10−5S/cm以上である構成としてもよい。
この構成によれば、活物質成形体の表面から離れた位置の固体電解質層に含まれるイオンも、活物質成形体における電池反応に寄与することが可能となる。そのため、活物質成形体における活物質利用率を向上し、容量を大きくすることができる。
本発明の一態様においては、前記固体電解質層が、前記活物質成形体と接する第1電解質層と、前記第1電解質層を覆って設けられた第2電解質層と、を有する構成としてもよい。
例えば、電極複合体を有するリチウム電池を形成する際に、固体電解質層を構成する無機固体電解質によっては、固体電解質層と接する対極と反応し、固体電解質層の機能を失うおそれがある。しかしこの構成によれば、対極の形成材料に対して安定な無機固体電解質を第2電解質層の形成材料として選択し、第2電解質層を第1電解質層の保護層として機能させることができるため、第1電解質層についての材料選択の自由度が大きくなる。
また、本発明の一態様は、上記の電極複合体を、正極および負極の少なくとも一方に備えるリチウム電池を提供する。
この構成によれば、上述の電極複合体を用いているため、高出力化が可能になる。
本実施形態の電極複合体を示す要部側断面図である。 本実施形態の電極複合体の製造方法を示す工程図である。 本実施形態の電極複合体の製造方法を示す工程図である。 本実施形態の電極複合体の製造方法を示す工程図である。 本実施形態の電極複合体の変形例を示す要部側断面図である。 本実施形態の電極複合体の変形例を示す要部側断面図である。 本実施形態の電極複合体の製造方法の変形例を示す工程図である。 本実施形態のリチウム電池を示す要部側断面図である。 本実施形態のリチウム電池を示す要部側断面図である。
[電極複合体]
まず、本実施形態の電極複合体について説明する。図1は、本実施形態の電極複合体を示す要部側断面図である。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてある。
本実施形態の電極複合体10は、集電体1と、活物質成形体2と、固体電解質層3と、を備えている。活物質成形体2と固体電解質層3とを合わせた構成を、複合体4と称する。電極複合体10は、後述するようにリチウム電池に用いられる。
集電体1は、複合体4の一面4aにおいて固体電解質層3から露出する活物質成形体2に接して設けられている。集電体1の形成材料としては、銅(Cu)、マグネシウム(Mg)、チタン(Ti)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、ゲルマニウム(Ge)、インジウム(In)、金(Au)、白金(Pt)、銀(Ag)およびパラジウム(Pd)からなる群から選ばれる1種の金属(金属単体)や、この群から選ばれる2種以上の金属元素を含む合金等が挙げられる。
集電体1の形状は、板状、箔状、網状等を採用することができる。集電体1の表面は、平滑であってもよく、凹凸が形成されていてもよい。
活物質成形体2は、無機物の電極活物質(活物質)を形成材料とした多孔質の成形体である。活物質成形体2が有する複数の細孔は、活物質成形体2の内部で互いに網目状に連通している。
活物質成形体2は、リチウム電池において集電体1を正極側に使用する場合と、負極側に使用する場合とで、形成材料が異なる。
集電体1を正極側に使用する場合には、活物質成形体2の形成材料として、正極活物質として通常知られている物質を用いることができる。このような物質としては、例えば、リチウム複酸化物が挙げられる。
本明細書において「リチウム複酸化物」とは、リチウムを必ず含み、且つ全体として2種以上の金属イオンを含む酸化物であって、オキソ酸イオンの存在が認められないものを指す。
このようなリチウム複酸化物としては、例えば、LiCoO、LiNiO、LiMn、LiMn、LiFePO、LiFeP、LiMnPO、LiFeBO、Li(PO、LiCuO、LiFeF、LiFeSiO、LiMnSiO等が挙げられる。また、本明細書においては、これらのリチウム複酸化物の結晶内の一部原子が他の遷移金属、典型金属、アルカリ金属、アルカリ希土類、ランタノイド、カルコゲナイド、ハロゲン等で置換された固溶体もリチウム複酸化物に含むものとし、これら固溶体も正極活物質として用いることができる。
集電体1を負極側に使用する場合には、活物質成形体2の形成材料として、負極活物質として通常知られている物質を用いることができる。
負極活物質としては、シリコン−マンガン合金(Si−Mn)、シリコン−コバルト合金(Si−Co)、シリコン−ニッケル合金(Si−Ni)、五酸化ニオブ(Nb)、五酸化バナジウム(V)、酸化チタン(TiO)、酸化インジウム(In)、酸化亜鉛(ZnO)、酸化スズ(SnO)、酸化ニッケル(NiO)、錫(Sn)が添加された酸化インジウム(ITO)、アルミニウム(Al)が添加された酸化亜鉛(AZO)、ガリウム(Ga)が添加された酸化亜鉛(GZO)、アンチモン(Sb)が添加された酸化スズ(ATO)、フッ素(F)が添加された酸化スズ(FTO)、炭素材料、炭素材料の層間にリチウムイオンが挿入された物質、TiOのアナターゼ相、LiTi12,LiTi等のリチウム複酸化物、Li金属等が挙げられる。
活物質成形体2は、空隙率が10%以上50%以下であることが好ましい。活物質成形体2がこのような空隙率を有することにより、活物質成形体2の細孔内の表面積を広げ、且つ活物質成形体2と固体電解質層3との接触面積を広げやすくなり、電極複合体10を用いたリチウム電池を高容量にしやすくなる。
空隙率は、(1)活物質成形体2の外形寸法から得られる、細孔を含めた活物質成形体2の体積(見かけ体積)と、(2)活物質成形体2の質量と、(3)活物質成形体2を構成する活物質の密度と、から下記の式(I)に基づいて測定することができる。
Figure 0006201327
活物質成形体2の抵抗率は、700Ω/cm以下であることが好ましい。活物質成形体2がこのような抵抗率を有することにより、電極複合体10を用いてリチウム電池を形成した際に、充分な出力が得られる。
抵抗率は、活物質成形体の表面に電極として用いる銅箔を付着し、直流分極測定を行うことにより測定することができる。
固体電解質層3は、固体電解質を形成材料とし、活物質成形体2の細孔内を含む活物質成形体2の表面に接して設けられている。
固体電解質としては、SiO−P−LiO、SiO−P−LiCl、LiO−LiCl−B、Li3.40.6Si0.4、Li14ZnGe16、Li3.60.4Ge0.6、Li1.3Ti1.7Al0.3(PO、Li2.88PO3.730.14、LiNbO、Li0.35La0.55TiO、LiLaZr12、LiS−SiS、LiS−SiS−LiI、LiS−SiS−P、LiPON、LiN、LiI、LiI−CaI、LiI−CaO、LiAlCl、LiAlF、LiI−Al、LiF−Al、LiBr−Al、LiO−TiO、La−LiO−TiO、LiN、LiNI、LiN−LiI−LiOH、LiN−LiCl、LiNBr、LiSO、LiSiO、LiPO−LiSiO、LiGeO−LiVO、LiSiO−LiVO、LiGeO−ZnGeO、LiSiO−LiMoO、LiPO−LiSiO、LiSiO−LiZrO等の酸化物、硫化物、ハロゲン化物、窒化物が挙げられる。これらの固体電解質は、結晶質であってもよく、非晶質であってもよい。また、本明細書においては、これらの組成物の一部原子が他の遷移金属、典型金属、アルカリ金属、アルカリ希土類、ランタノイド、カルコゲナイド、ハロゲン等で置換された固溶体も、固体電解質として用いることができる。
固体電解質層3のイオン伝導率は、1×10−5S/cm以上であることが好ましい。固体電解質層3がこのようなイオン伝導率を有することにより、活物質成形体2の表面から離れた位置の固体電解質層3に含まれるイオンも、活物質成形体2の表面に達し、活物質成形体2における電池反応に寄与することが可能となる。そのため、活物質成形体2における活物質の利用率を向上し、容量を大きくすることができる。このとき、イオン伝導率が1×10−5S/cm未満であると、電極複合体をリチウム電池に用いたとき、活物質成形体2において対極と相対する面の表層近辺の活物質しか電池反応に寄与せず、容量が低下するおそれがある。
なお、「固体電解質層3のイオン伝導率」とは、固体電解質層3を構成する上述の無機電解質自身の伝導率である「バルク伝導率」と、無機電解質が結晶質である場合における結晶の粒子間の伝導率である「流界イオン伝導率」と、の総和である「総イオン伝導率」のことを指す。
固体電解質層3のイオン伝導率は、固体電解質粉末を624MPaで錠剤型にプレス成型したものを大気雰囲気下700℃で8時間焼結し、スパッタリングにより直径0.5cm、厚み100nmのプラチナ電極をプレス成型体両面に形成して交流インピーダンス法を実施することにより測定することができる。測定装置には、インピーダンスアナライザ(ソーラトロン社製、型番SI1260)を用いる。
電極複合体10においては、集電体1の表面から法線方向に遠ざかる方向を上方向としたとき、固体電解質層3の上側の表面3aが、活物質成形体2の上端位置2aよりも上に位置している。すなわち、固体電解質層3は、活物質成形体2の上端位置2aよりも上方まで形成されている。これにより、表面3aに電極を設け電極複合体10を有するリチウム電池を作製した際に、表面3aに設けた電極と集電体1とが、活物質成形体2で接続されることがなく、短絡を防ぐことができる。
本実施形態の電極複合体10は、活物質成形体2を成形する際に、活物質同士をつなぎ合わせるバインダーや、活物質成形体2の導電性を担保するための導電助剤などの有機物を用いることなく成形されており、ほぼ無機物のみで構成されている。具体的には、本実施形態の電極複合体10においては、複合体4(活物質成形体2および固体電解質層3)を400℃で30分加熱した時の質量減少率が、5質量%以下となっている。質量減少率は、3質量%以下が好ましく、1質量%以下がさらに好ましく、質量減少が観測されない、または誤差範囲であることが特に好ましい。すなわち、複合体4を400℃で30分加熱した時の質量減少率は0質量%以上であるとよい。
複合体4がこのような質量減少率を有するため、複合体4には、所定の加熱条件で蒸発する溶媒や吸着水等の物質や、所定の加熱条件で燃焼または酸化されて気化する有機物が、構成全体に対して5質量%以下しか含まれないこととなる。
複合体4の質量減少率は、示差熱−熱重量同時測定装置(TG−DTA)を用い、複合体4を所定の加熱条件で加熱することで、所定の加熱条件による加熱後の複合体4の質量を測定し、加熱前の質量と加熱後の質量との比から算出することができる。
本実施形態の電極複合体10においては、活物質成形体2において、複数の細孔が内部で網目状に連通しており、活物質成形体2の固体部分も網目構造を形成している。例えば、正極活物質であるLiCoOは、結晶の電子伝導性に異方性があることが知られているが、LiCoOを形成材料として活物質成形体を形成しようとすると、細孔を機械加工で形成するような、特定の方向に細孔が延在して設けられているような構成では、結晶の電子伝導性を示す方向によっては、内部で電子伝導しにくいことが考えられる。しかし、活物質成形体2のように細孔が網目状に連通し、活物質成形体2の固体部分が網目構造を有していると、結晶の電子伝導性またはイオン伝導性の異方性によらず、電気化学的に滑性な連続表面を形成することができる。そのため、用いる活物質の種類によらず、良好な電子伝導を担保することができる。
また、本実施形態の電極複合体10においては、複合体4が上述のような構成であるため、複合体4に含まれるバインダーや導電助剤の添加量が抑制されており、バインダーや導電助剤を用いる場合と比べて、電極複合体10の単位体積あたりの容量密度が向上する。
また、本実施形態の電極複合体10においては、多孔質の活物質成形体2の細孔内の表面にも固体電解質層3が接している。そのため、活物質成形体2が多孔質体ではない場合や、細孔内において固体電解質層3が形成されていない場合と比べ、活物質成形体2と固体電解質層3との接触面積が大きくなり、界面インピーダンスを低減させることができる。したがって、活物質成形体2と固体電解質層3との界面において良好な電荷移動が可能となる。
また、本実施形態の電極複合体10においては、集電体1は、複合体4の一面に露出する活物質成形体2と接触しているのに対し、固体電解質層3は、多孔質の活物質成形体2の細孔内にまで侵入し、細孔内を含み集電体1と接する面以外の活物質成形体2の表面と接している。このような構造の電極複合体10では、集電体1と活物質成形体2との接触面積(第1の接触面積)よりも、活物質成形体2と固体電解質層3との接触面積(第2の接触面積)のほうが大きいことは明らかである。
仮に、電極複合体が第1の接触面積と第2の接触面積とが同じ構成であると、集電体1と活物質成形体2との界面のほうが、活物質成形体2と固体電解質層3との界面よりも電荷移動が容易であるため、活物質成形体2と固体電解質層3との界面が電荷移動のボトルネックとなる。そのため、電極複合体全体としては良好な電荷移動を阻害してしまう。
しかし、本実施形態の電極複合体10では、第1の接触面積よりも、第2の接触面積のほうが大きいことにより、上述のボトルネックを解消しやすく、電極複合体全体として良好な電荷移動が可能となる。
これらのことから、本実施形態の電極複合体10は、電極複合体10を用いたリチウム電池の容量を向上させ、且つ高出力とすることができる。
[電極複合体の製造方法]
次に、図2〜4を用い、本実施形態の電極複合体10の製造方法について説明する。図2〜4は、本実施形態の電極複合体10の製造方法を示す工程図である。
まず、図2に示すように、成形型Fを用いて粒子状の活物質(以下、活物質粒子2Xと称する)を圧縮して成形し(図2(a))、熱処理することで活物質成形体2を得る(図2(b))。
熱処理することで、活物質粒子2X内の粒界の成長や、活物質粒子2X間の焼結が進行するため、得られる活物質成形体2が形状を保持しやすくなり、活物質成形体2のバインダーの添加量を低減することができる。また、焼結により活物質粒子2X間に結合が形成され、活物質粒子2X間の電子の移動経路が形成されるため、導電助剤の添加量も抑制できる。
また、得られる活物質成形体2は、活物質成形体2が有する複数の細孔が、活物質成形体2の内部で互いに網目状に連通したものとなる。
本工程において、活物質粒子2Xとしては、上述した正極活物質または負極活物質の粉末を用いることができる。活物質粒子2Xの平均粒径は、300nm以上5μm以下が好ましい。このような平均粒径の活物質を用いると、得られる活物質成形体2の空隙率が10%〜40%となる。これにより、活物質成形体2の細孔内の表面積を広げ、且つ活物質成形体2と固体電解質層3との接触面積を広げやすくなり、電極複合体10を用いたリチウム電池を高容量にしやすくなる。
活物質粒子2Xの平均粒径は、活物質粒子2Xをn−オクタノールに0.1質量%〜10質量%の範囲の濃度となるように分散させた後、光散乱式粒度分布測定装置(日機装社製、ナノトラックUPA−EX250)を用いて、メジアン径を求めることにより測定することができる。
活物質粒子2Xの平均粒径が300nm未満であると、形成される活物質成形体の細孔の半径が数十nmの微小なものになり易く、後述する工程において細孔の内部に無機固体電解質の前駆体を含む液状体を浸入させることが困難となる。その結果、細孔の内部の表面に接する固体電解質層3を形成しにくくなる。
活物質粒子2Xの平均粒径が5μmを超えると、形成される活物質成形体の単位質量当たりの表面積である比表面積が小さくなり、活物質成形体2と固体電解質層3との接触面積が小さくなる。そのため、得られる電極複合体10を用いてリチウム電池を形成した際に、充分な出力が得られない。また、活物質内から固体電解質層3までのイオン拡散距離が長くなるため、活物質粒子2Xにおいて中心付近の活物質は電池の機能に寄与しにくくなる。
活物質粒子2Xの平均粒径は、450nm以上3μm以下がより好ましく、500nm以上1μm以下がさらに好ましい。
圧粉成形時には、活物質粒子2Xにポリフッ化ビニリデン(PVdF)やポリビニルアルコール(PVA)などの有機高分子化合物を形成材料とするバインダーを添加してもよい。これらのバインダーは、本工程の熱処理において、燃焼または酸化され、量が低減する。
本工程の熱処理は、850℃以上であって、用いる活物質の融点未満の処理温度で行う。これにより、活物質粒子2X同士を焼結させて一体化された成形体とする。このような温度範囲で熱処理を行うことにより、導電助剤を添加しなくても、得られる活物質成形体2の抵抗率を700Ω/cm以下とすることができる。これにより、電極複合体10を用いてリチウム電池を形成した際に、充分な出力が得られる。
このとき、処理温度が850℃未満であると、充分に焼結が進行しないばかりか、活物質の結晶内の電子伝導性自体が低下するため、得られる電極複合体10を用いてリチウム電池を形成した際に、所望の出力が得られなくなる。
また、処理温度が活物質の融点を上回ると、活物質の結晶内からリチウムイオンが過剰に揮発するため、電子伝導性が低下し、得られる電極複合体10の容量も低下してしまう。
従って適切な出力と容量を得るためには上記処理温度が850℃以上活物質の融点未満であることが好ましく、875℃以上1000℃以下であることがより好ましく、900℃以上920℃以下であることが最も好ましい。
また本工程の熱処理は、5分以上36時間以下行うことが好ましく、4時間以上14時間以下行うことがより好ましい。
次いで、図3に示すように、活物質成形体の細孔の内部を含む活物質成形体2の表面に、無機固体電解質の前駆体を含む液状体3Xを塗布し(図3(a))、焼成することで前駆体を無機固体電解質として、固体電解質層3を形成する(図3(b))。
液状体3Xは、前駆体の他に前駆体を可溶な溶媒を含んでもよい。液状体3Xが溶媒を含む場合には、液状体3Xの塗布後、焼成の前に、適宜溶媒を除去するとよい。溶媒の除去は、加熱、減圧、送風など通常知られた方法の1種、または2種以上を組み合わせた方法を採用することができる。
流動性を有する液状体3Xを塗布して固体電解質層3を形成することから、微細な活物質成形体2の細孔の内部表面にも良好に固体電解質を形成することが可能となる。そのため、活物質成形体2と固体電解質層3との接触面積を拡大しやすく、活物質成形体2と固体電解質層3との界面の電流密度が低減され、大きな出力を得易くなる。
液状体3Xの塗布は、活物質成形体2の細孔の内部にまで液状体3Xが浸透する方法であれば、種々の方法により行うことができる。例えば、活物質成形体2を載置しておいたところに液状体3Xを滴下することで行ってもよく、液状体3Xを貯留しているところに活物質成形体2を浸漬させることで行ってもよく、液状体3Xを貯留しているところに活物質成形体2の端部を接触させ、毛管現象を利用して細孔内に含浸させることで行ってもよい。図3(a)では、ディスペンサーDを用いて液状体3Xを滴下する方法を示している。
前駆体としては、以下の(A)(B)(C)が挙げられる。(B)はいわゆるゾルゲル法を用いて無機固体電解質を形成する場合の前駆体である。
(A)無機固体電解質が有する金属原子を無機固体電解質の組成式に従った割合で含み、酸化により無機固体電解質となる塩を有する組成物
(B)無機固体電解質が有する金属原子を無機固体電解質の組成式に従った割合で含む金属アルコキシドを有する組成物
(C)無機固体電解質微粒子、または無機固体電解質が有する金属原子を無機固体電解質の組成式に従った割合で含む微粒子ゾルを溶媒、または(A)もしくは(B)に分散させた分散液
前駆体の焼成は、大気雰囲気下、上述した活物質成形体2を得るための熱処理よりも低い温度で行う。焼成温度は、300℃以上700℃以下の温度範囲で行うとよい。焼成により前駆体から無機固体電解質が生成され、固体電解質層3が形成される。
このような温度範囲で焼成することにより、活物質成形体2と固体電解質層3との界面において、それぞれを構成する元素の相互拡散による固相反応が生じ、電気化学的に不活性な副生物が生成することを抑制することができる。また、無機固体電解質の結晶性が向上し、固体電解質層3のイオン電導性を向上させることができる。加えて、活物質成形体2と固体電解質層3との界面において、焼結する部分が生じ、界面における電荷移動が容易となる。
これにより、電極複合体10を用いたリチウム電池の容量や出力が向上する。
焼成は、1度の熱処理で行うこととしてもよく、前駆体を前記多孔体の表面に被着させる第1の熱処理と、第1の熱処理の処理温度以上700℃以下の温度条件で加熱する第2の熱処理と、に分けて行うこととしてもよい。このような段階的な熱処理で焼成を行うことにより、固体電解質層3を所望の位置に容易に形成することができる。
次いで、図4に示すように、活物質成形体2と固体電解質層3とを有する複合体4の一面において露出する活物質成形体2に集電体1を接合することにより、電極複合体10を製造する。本実施形態では、複合体4の一面4aを研磨した後に(図4(a))、複合体4の一面4aに集電体1を形成する(図4(b))。
集電体1の接合に先立って、複合体4の一面4aを研磨することにより、複合体4の一面4aにおいて活物質成形体2を確実に露出させ、集電体1と活物質成形体2とを確実に接合させることができる。
なお、複合体4を形成した際に複合体4の載置面と接する面に活物質成形体2が露出することがある。この場合は、複合体4の研磨を行わなくても、集電体1と活物質成形体2とを接合することが可能である。
集電体1の接合は、別体として形成した集電体を複合体4の一面4aに接合することによって行ってもよく、複合体4の一面4aに上述した集電体1の形成材料を成膜し、複合体4の一面4aにおいて集電体1を形成することとしてもよい。成膜方法は、通常知られた物理気相成長法(PVD)や化学気相成長法(CVD)を採用することができる。
本実施形態の製造方法においては、このようにして目的の電極複合体10を製造する。
以上のような構成の電極複合体によれば、リチウム電池に好適に用いられ、高い出力のリチウム電池とすることが可能となる。
以上のような構成の電極複合体の製造方法によれば、高い出力のリチウム電池とすることが可能な電極複合体を容易に製造することができる。
なお、本実施形態においては、活物質成形体2を圧粉成形により形成することとしたが、これに限らない。例えば、活物質成形体を通常知られたゾル−ゲル法にて調製する際に、原料中に、細孔の鋳型として粒子状の高分子や炭素粉末を造孔材として混入することで、加熱時に造孔材を分解除去しつつ、活物質を生成させ、多孔質の活物質成形体を得ることとしても構わない。
また、本実施形態においては、活物質成形体2に固体電解質層3を形成し複合体4としたのちに、集電体1を活物質成形体2と接合することとしたが、これに限らない。例えば、箔状に形成した集電体1を活物質成形体2に接合させた後に、活物質成形体2に固体電解質層3を形成することとしてもよい。このような工程順でも電極複合体を作製可能であることから、工程の自由度が高くなる。また、活物質成形体2と集電体1とを確実に接合することができる。
(変形例1)
また、本実施形態においては、固体電解質層3を単一の層により形成することとしたが、複数の層により固体電解質層を形成することとしても構わない。
図5,6は、電極複合体の変形例を示す要部側断面図であり、図1に対応する図である。
図5に示す電極複合体11は、集電体1と、活物質成形体2と、固体電解質を形成材料とし、活物質成形体2の細孔内を含む活物質成形体2の表面に接して設けられた第1電解質層51と、第1電解質層51の表面に接して薄く設けられた第2電解質層52とを有している。第1電解質層51と第2電解質層52とは、全体として固体電解質層5を形成している。固体電解質層5では、第2電解質層52の体積よりも第1電解質層51の体積を大きくした構成となっている。
複数層が積層した固体電解質層5は、上述の固体電解質層3の形成方法を各層ごとに実施することにより製造可能である。または、第1電解質層51を形成するための液状体を塗布した後、第1の熱処理を行って前駆体を被着させ、次いで、第2電解質層52を形成するための液状体を塗布した後、第1の熱処理を行って前駆体を被着させ、次いで、被着させた複数層の前駆体に対して、第2の熱処理を行うこととしてもよい。
第1電解質層51および第2電解質層52の形成材料は、上述の固体電解質層3の形成材料と同じものを採用することができる。第1電解質層51と第2電解質層52との形成材料は、同じであってもよく、互いに異なっていてもよい。第2電解質層52を設けることで、固体電解質層5の表面5aに電極を設け電極複合体11を有するリチウム電池を作製した際に、表面3aに設けた電極と集電体1とが、活物質成形体2で接続される短絡を防ぐことができる。
また、電極複合体11を有するリチウム電池を作製する際、形成する電極の材料としてアルカリ金属を選択すると、固体電解質層を構成する無機固体電解質によっては、アルカリ金属の還元作用により、固体電解質層を構成する無機固体電解質が還元され、固体電解質層の機能を失うおそれがある。このような場合に、アルカリ金属に対して安定な無機固体電解質を第2電解質層52の形成材料として選択すると、第2電解質層52が第1電解質層51の保護層として機能し、第1電解質層51についての材料選択の自由度が大きくなる。
なお、電極複合体11のように、第2電解質層を第1電解質層の保護層として用いる場合、第1電解質層と固体電解質層の表面に設けられる電極との間に第2電解質層が介在する構成であれば、第1電解質層と第2電解質層との体積比は適宜変更することができる。
例えば、図6に示す電極複合体12のように、活物質成形体2の細孔内を含む活物質成形体2の表面に接して第1電解質層61が薄く形成され、第1電解質層61の表面に接して設けられた第2電解質層62が厚く形成されている固体電解質層6とし、第1電解質層61の体積よりも第2電解質層62の体積を大きくした構成としてもよい。
(変形例2)
また、本実施形態においては、活物質成形体2と固体電解質層3とを合わせた複合体4を形成した後に、形成した複合体4に集電体1を形成することとしたが、これに限らない。
図7は、電極複合体の製造方法の変形例の一部を示す工程図である。
図7に示す電極複合体の製造方法においては、まず、図7(a)に示すように、活物質成形体2と固体電解質層3とを合わせた構造体のバルク体4Xを形成し、バルク体4Xを目的とする電極複合体の大きさに合わせて複数に分割する。図7(a)では、分割位置を破線で示し、複数の分割面が互いに対向するように、バルク体4Xの長手方向の複数の位置において、バルク体4Xの長手方向に交差する方向に切断して分割することとして示している。
次いで、図7(b)に示すように、バルク体4Xを切断して得られる複合体4Yにおいて、一方の分割面4αには集電体1を形成する。また、他方の分割面4βには、分割面4βに露出する活物質成形体2を覆う無機固体電解質の層(固体電解質層7)を形成する。集電体1および固体電解質層7は、上述した方法により形成することができる。
以上のような構成の電極複合体の製造方法によれば、予めバルク体4Xを形成することで、高い出力のリチウム電池とすることが可能な電極複合体の大量生産が容易となる。
[リチウム電池]
次に、本実施形態のリチウム電池について説明する。
図8、9は、本実施形態のリチウム電池を示す要部側断面図であり、図1に対応する視野における図である。
図8に示すリチウム電池100は、上述の電極複合体10と、電極複合体10における固体電解質層3の表面3aに設けられた電極20と、を有している。活物質成形体2の形成材料が正極活物質である場合には、集電体1が正極側の集電体となり、電極20が負極となる。また、活物質成形体2の形成材料が負極活物質である場合には、集電体1が負極側の集電体となり、電極20が正極となる。
例えば、活物質成形体2の形成材料が正極活物質である場合、集電体1の形成材料としてアルミニウムを選択し、負極として機能する電極20の形成材料としてリチウムを選択することができる。
以上のようなリチウム電池100によれば、上述の電極複合体10を用いているため、高出力化、大容量化が可能になる。
図9に示すリチウム電池200は、上述の電極複合体10を正極側と負極側とに有している。すなわち、リチウム電池200は、正極側として電極複合体10A、負極側として電極複合体10Bをそれぞれ用意し、電極複合体10Aと電極複合体10Bとの固体電解質層同士を当接させ一体化することにより形成されている。
電極複合体10Aは、活物質成形体2Aの形成材料として正極活物質が用いられ、電極複合体10Bは、活物質成形体2Bの形成材料として負極活物質が用いられている。
電極複合体10Aの固体電解質層3Aと、電極複合体10Bの固体電解質層3Bとは、同じ形成材料であってもよく、異なる形成材料であってもよい。
以上のようなリチウム電池200も、上述の電極複合体10を用いているため、高出力化、大容量化が可能になる。
以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
[実施例]
以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
(1.活物質成形体の形成)
LiCoO(シグマアルドリッチ社製)の粒子について、湿式遠心分級機(Krettek社製、LC−1000型)を用いてn−ブタノール中で分級操作を行い、平均粒径1μmの粉末を得た。得られたLiCoO粉末に、バインダーとしてポリアクリル酸を3.5質量%混合して混練し、624MPaの圧力で直径1cm、厚み0.3mmの円盤状に成型した。得られたプレス成型体を、大気雰囲気下900℃で8時間加熱し焼結させ、徐冷することで正極活物質であるLiCoOを形成材料とする活物質成形体を得た。
得られた活物質成形体は、空隙率が37%の多孔質であり、直流印加時の抵抗率は650Ωcmであった。
(2.固体電解質層の形成)
チタン粉末を過酸化水素水に溶解しクエン酸を添加することで得られたペルオキソチタン酸クエン酸錯体水溶液に対し、硝酸リチウム、硝酸ランタン、およびクエン酸を溶解し、固体電解質の前駆体を含む第1液状体を調製した。この第1液状体を、上述の活物質成形体に滴下し、液状体が内部に充分に浸透するまで静置した後に、大気雰囲気下500℃で10分間加熱して、Li0.35La0.55TiOを形成材料とする第1電解質層を形成した。
次いで、酢酸ジルコニウム、酢酸リチウム、酢酸ランタンおよびクエン酸を純水に溶解し、固体電解質の前駆体を含む第2液状体を調製した。この第2液状体を、上述の第1電解質層を形成した活物質成形体に滴下し、ホットプレート上で70℃に加熱して乾燥させた後、大気雰囲気下500℃で10分間加熱して、LiLaZr12を形成材料とする第2電解質層を形成した。
次いで、第1電解質層および第2電解質層を形成した活物質成形体を、大気雰囲気下680℃で14時間加熱して焼成し、固体電解質層を形成して、固体電解質層を形成した活物質成形体である複合体1を形成した。
(3.電池セルの形成)
複合体1において、円盤の一面を研磨材(ラッピングフィルムシート、#15000、砥粒径0.3μm、3M社製)を用いて研磨し、研磨面に、Ar雰囲気下で厚み100nmのPt膜をスパッタ成膜して、正極側の集電体を形成した。
次いで、複合体1においてPt膜を成膜した面の反対側の面に、厚み40μmのリチウム金属箔を直径0.5cmの円形に打ち抜いたものと、直径0.8cmの円形に打ち抜いた厚み100μmの銅箔とを、複合体1側から順に積層し、255kPaの圧力で圧着して、負極を形成した。これにより、本実施例における積層セルを形成した。
得られた積層セルを二次電池セルとしてマルチチャネル充放電評価装置(北斗電工社製、HJ1001SD8)に接続し、電流密度0.1mA/cm、充電上限電圧4.2Vの定電流―定電圧、放電下限電圧3.0Vの定電流駆動にて充放電評価に供したところ、正常な充放電の挙動を示した。
[比較例1]
チタン粉末を過酸化水素水に溶解しクエン酸を添加することで得られたペルオキソチタン酸クエン酸錯体水溶液に対し、硝酸リチウム、硝酸ランタン、およびクエン酸を溶解し、固体電解質の前駆体を含む液状体を調製した。この液状体を700℃で焼成することによりLi0.35La0.55TiOを合成した。
得られたLi0.35La0.55TiOをメノウ鉢で粉砕してメジアン粒径500nm程度の粉末状とした。なお、メジアン粒径は、Li0.35La0.55TiOを粉砕して得られる粉末をn−ブタノールに分散させた後、動的光散乱式粒度分布測定装置(日機装社製、Nanotrac Wave−EX250)を用いて測定を実施した。
この粉末を、実施例の方法で調製した正極活物質である平均粒径1μmのLiCoO粉末に対し10質量%添加して混合し、624MPaの圧力で円盤状に成型した。
得られた円盤を700℃で14時間焼結することで、固体電解質の粉末と正極活物質の粉末とが焼結してなる複合体2を形成した。複合体2について直流印加時の抵抗率を測定するとともに、複合体1の代わりに複合体2を用いたこと以外は、実施例1と同様に積層セルを形成し、積層セルをマルチチャネル充放電評価装置(北斗電工社製、HJ1001SD8)に接続して電流密度0.5mA/cm、充電上限電圧4.2Vの定電流―定電圧、放電下限電圧3.0Vの定電流駆動にて充放電評価を行った。
評価の結果、複合体2は、直流の電気抵抗率が数百MΩcmときわめて高いものであった。また、得られた積層セルは、上記充放電試験の駆動条件において正常な二次電池セルとしての駆動はできなかった。
これらの結果から、本発明の有用性が確かめられた。
1…集電体、2,2A,2B…活物質成形体、3…固体電解質、3,3A,3B,5,6,7…固体電解質層、3a,5a…表面、3X…液状体、4,4Y…複合体、4X…バルク体、4α、4β…分割面、10,10A,10B,11,12…電極複合体、20…電極、51,61…第1電解質層、52,62…第2電解質層、100,200…リチウム電池

Claims (11)

  1. 多孔質の活物質成形体と、前記活物質成形体の細孔内を含む前記活物質成形体の表面を覆う第1固体電解質層と、前記第1固体電解質層を覆う第2固体電解質層と、前記活物質成形体に接する集電体と、を有する電極複合体の製造方法であって、
    活物質を用いて形成された多孔体を、850℃以上活物質の融点未満の温度条件で熱処理し、前記活物質成形体を得る工程と、
    前記活物質成形体の細孔の内部を含む前記活物質成形体の表面に、前記第1固体電解質層の形成材料を含む液状体を塗布し熱処理して、前記第1固体電解質層を形成する工程と、
    前記第1固体電解質層の表面に、前記第2固体電解質層の形成材料を含む液状体を塗布し熱処理して、前記第2固体電解質層を形成する工程と、を有するリチウム電池用電極複合体の製造方法。
  2. 前記活物質成形体が、粒子状の前記活物質を圧縮して成形される成形体である請求項1に記載のリチウム電池用電極複合体の製造方法。
  3. 前記活物質の平均粒径が、300nm以上5μmである請求項2に記載のリチウム電池用電極複合体の製造方法。
  4. 前記第1固体電解質層を形成する工程は、前記第1固体電解質層の形成材料を前記活物質成形体の表面に被着させる第1の熱処理と、
    前記第1の熱処理の処理温度以上700℃以下の温度条件で加熱する第2の熱処理と、を含む請求項1から3のいずれか1項に記載のリチウム電池用電極複合体の製造方法。
  5. 前記第2固体電解質層を形成する工程の後に、前記活物質成形体に前記集電体を接合する工程を有する請求項1から4のいずれか1項に記載のリチウム電池用電極複合体の製造方法。
  6. 前記第1固体電解質層を形成する工程を、前記集電体を前記活物質成形体に接合した後に行う請求項1から4のいずれか1項に記載のリチウム電池用電極複合体の製造方法。
  7. 多孔質の活物質成形体と、
    前記活物質成形体の細孔内を含む前記活物質成形体の表面を覆う第1固体電解質層と、
    前記第1固体電解質層を覆う第2固体電解質層と、
    前記第1固体電解質層および前記第2固体電解質層から露出する前記活物質成形体に接する集電体と、を有するリチウム電池用電極複合体。
  8. 多孔質の活物質成形体と、
    前記活物質成形体の細孔内を含む前記活物質成形体の表面を覆う固体電解質層と、有し、
    前記活物質成形体および前記固体電解質層を400℃で30分加熱した時の質量減少率が、5質量%以下であるリチウム電池用電極複合体。
  9. 前記活物質成形体の抵抗率が、700Ω/cm以下である請求項7または8に記載のリチウム電池用電極複合体。
  10. 前記固体電解質層のイオン伝導率が、1×10−5S/cm以上である請求項8に記載のリチウム電池用電極複合体。
  11. 請求項7から10のいずれか1項に記載のリチウム電池用電極複合体を、正極および負極の少なくとも一方に備えるリチウム電池。
JP2013020420A 2013-02-05 2013-02-05 リチウム電池用電極複合体の製造方法、リチウム電池用電極複合体およびリチウム電池 Active JP6201327B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013020420A JP6201327B2 (ja) 2013-02-05 2013-02-05 リチウム電池用電極複合体の製造方法、リチウム電池用電極複合体およびリチウム電池
CN201410043327.7A CN103972472B (zh) 2013-02-05 2014-01-29 电极复合体的制造方法、电极复合体及锂电池
US14/172,024 US20140220436A1 (en) 2013-02-05 2014-02-04 Method for producing electrode assembly, electrode assembly, and lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013020420A JP6201327B2 (ja) 2013-02-05 2013-02-05 リチウム電池用電極複合体の製造方法、リチウム電池用電極複合体およびリチウム電池

Publications (2)

Publication Number Publication Date
JP2014154237A JP2014154237A (ja) 2014-08-25
JP6201327B2 true JP6201327B2 (ja) 2017-09-27

Family

ID=51241728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013020420A Active JP6201327B2 (ja) 2013-02-05 2013-02-05 リチウム電池用電極複合体の製造方法、リチウム電池用電極複合体およびリチウム電池

Country Status (3)

Country Link
US (1) US20140220436A1 (ja)
JP (1) JP6201327B2 (ja)
CN (1) CN103972472B (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014154239A (ja) * 2013-02-05 2014-08-25 Seiko Epson Corp 活物質成形体の製造方法、活物質成形体、リチウム電池の製造方法、およびリチウム電池
JP2014154236A (ja) 2013-02-05 2014-08-25 Seiko Epson Corp 電極複合体の製造方法
JP6037897B2 (ja) * 2013-03-06 2016-12-07 多木化学株式会社 リチウムイオン伝導性酸化物用の前駆体分散液
EP2903073B1 (en) * 2013-10-24 2018-08-29 LG Chem, Ltd. Solid electrolyte particles, method for preparing same, and lithium secondary battery containing same
US20160093915A1 (en) 2014-09-30 2016-03-31 Seiko Epson Corporation Composition for forming lithium reduction resistant layer, method for forming lithium reduction resistant layer, and lithium secondary battery
JP6690127B2 (ja) * 2014-09-30 2020-04-28 セイコーエプソン株式会社 耐リチウム還元層形成用組成物および耐リチウム還元層の成膜方法
JP2016072077A (ja) 2014-09-30 2016-05-09 セイコーエプソン株式会社 電極複合体、電極複合体の製造方法およびリチウム電池
JP2016154140A (ja) * 2015-02-16 2016-08-25 日本碍子株式会社 リチウム二次電池用リチウム複合酸化物焼結板の製造方法
JP2016219130A (ja) * 2015-05-15 2016-12-22 セイコーエプソン株式会社 固体電解質電池、電極複合体、複合固体電解質および固体電解質電池の製造方法
JP2017004672A (ja) * 2015-06-08 2017-01-05 セイコーエプソン株式会社 電極複合体、電極複合体の製造方法およびリチウム電池
JP2017004673A (ja) 2015-06-08 2017-01-05 セイコーエプソン株式会社 電極複合体、電極複合体の製造方法およびリチウム電池
JP6596947B2 (ja) * 2015-06-09 2019-10-30 セイコーエプソン株式会社 電極複合体および電池
JP6597172B2 (ja) * 2015-10-23 2019-10-30 セイコーエプソン株式会社 電極複合体の製造方法、電極複合体および電池
JP6597183B2 (ja) * 2015-10-29 2019-10-30 セイコーエプソン株式会社 電極複合体の製造方法、電極複合体および電池
CN108370029B (zh) * 2015-10-23 2021-08-24 精工爱普生株式会社 电极复合体的制造方法、电极复合体以及电池
CN105470568B (zh) * 2016-01-11 2018-08-03 中国科学技术大学 一种固体锂离子电解质及其制备方法
JP2017135005A (ja) * 2016-01-28 2017-08-03 セイコーエプソン株式会社 電極複合体の製造方法、リチウムイオン電池の製造方法
KR101868686B1 (ko) * 2016-06-30 2018-06-19 중앙대학교 산학협력단 이온전도성 막의 제조 방법
JP6822101B2 (ja) * 2016-11-29 2021-01-27 セイコーエプソン株式会社 高分子電解質、電池、および電子機器
WO2018164455A1 (ko) * 2017-03-06 2018-09-13 주식회사 엘지화학 고분자 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
EP3467908B1 (en) * 2017-03-16 2024-03-06 LG Energy Solution, Ltd. Method for manufacturing electrode including polymer electrolyte and electrode obtained thereby
JP2019040674A (ja) * 2017-08-22 2019-03-14 昭和電工株式会社 リチウムイオン二次電池、リチウムイオン二次電池の正極
JP2019200851A (ja) * 2018-05-14 2019-11-21 トヨタ自動車株式会社 固体電解質、全固体電池および固体電解質の製造方法
JP6828789B2 (ja) * 2019-10-21 2021-02-10 セイコーエプソン株式会社 電極複合体の製造方法
JP6828788B2 (ja) * 2019-10-21 2021-02-10 セイコーエプソン株式会社 電極複合体の製造方法
CN114759181B (zh) * 2022-05-23 2023-09-01 荆门市格林美新材料有限公司 一种固态电池用正极材料及其制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3427570B2 (ja) * 1994-10-26 2003-07-22 ソニー株式会社 非水電解質二次電池
JP3068092B1 (ja) * 1999-06-11 2000-07-24 花王株式会社 非水系二次電池用正極の製造方法
JP4365098B2 (ja) * 2001-03-27 2009-11-18 シャープ株式会社 リチウムポリマー二次電池およびその製造方法
JP4029266B2 (ja) * 2001-12-04 2008-01-09 株式会社ジーエス・ユアサコーポレーション 非水電解質電池および非水電解質電池の製造法
JP2010080422A (ja) * 2008-04-10 2010-04-08 Sumitomo Electric Ind Ltd 電極体および非水電解質電池
JP2011065982A (ja) * 2009-08-18 2011-03-31 Seiko Epson Corp リチウム電池用電極体及びリチウム電池
JP2011159639A (ja) * 2011-05-23 2011-08-18 Toyota Motor Corp 電極体及びその製造方法、並びに、リチウムイオン二次電池
WO2013130983A2 (en) * 2012-03-01 2013-09-06 Excellatron Solid State, Llc Impregnated sintered solid state composite electrode, solid state battery, and methods of preparation
JP2014154239A (ja) * 2013-02-05 2014-08-25 Seiko Epson Corp 活物質成形体の製造方法、活物質成形体、リチウム電池の製造方法、およびリチウム電池

Also Published As

Publication number Publication date
US20140220436A1 (en) 2014-08-07
JP2014154237A (ja) 2014-08-25
CN103972472A (zh) 2014-08-06
CN103972472B (zh) 2018-04-10

Similar Documents

Publication Publication Date Title
JP6201327B2 (ja) リチウム電池用電極複合体の製造方法、リチウム電池用電極複合体およびリチウム電池
JP6596947B2 (ja) 電極複合体および電池
JP2014154236A (ja) 電極複合体の製造方法
US10862162B2 (en) Electrode composite body, method of manufacturing electrode composite body, and lithium battery
US20160028103A1 (en) Electrode assembly, lithium battery, and method for producing electrode assembly
US9457512B2 (en) Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery
JP6507778B2 (ja) 電極複合体および電池
JP4381273B2 (ja) 二次電池及び二次電池の製造方法
JP2017157529A (ja) 電極複合体、電極複合体の製造方法、正極活物質層およびリチウム電池
JP2017004672A (ja) 電極複合体、電極複合体の製造方法およびリチウム電池
US20140216632A1 (en) Method for producing active material molded body, active material molded body, method for producing lithium battery, and lithium battery
JP2016219130A (ja) 固体電解質電池、電極複合体、複合固体電解質および固体電解質電池の製造方法
US10547049B2 (en) Method for producing electrode assembly and method for producing lithium-ion battery
JP2016072077A (ja) 電極複合体、電極複合体の製造方法およびリチウム電池
JP2017004783A (ja) 電極複合体の製造方法、電極複合体およびリチウム電池
JP2017084515A (ja) 負極層、および全固体リチウムイオン二次電池
JP2016143477A (ja) 電極複合体、電極複合体の製造方法および電池
JP6163774B2 (ja) 複合体の製造方法およびリチウム電池の製造方法
JP2016213106A (ja) 電極複合体の製造方法、電極複合体およびリチウム電池の製造方法
JP2009081140A (ja) 二次電池及び二次電池の製造方法
JP2017168282A (ja) 電極複合体、電池、電極複合体の製造方法及び電池の製造方法
JP2017091665A (ja) 電解質複合体の製造方法、活物質複合体の製造方法、電極複合体の製造方法、電解質複合体、活物質複合体、電極複合体および電池
JP2017142885A (ja) 電極複合体の製造方法、リチウムイオン電池の製造方法、電極複合体、リチウムイオン電池
JP2017004707A (ja) 電極複合体の製造方法
JP6828789B2 (ja) 電極複合体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R150 Certificate of patent or registration of utility model

Ref document number: 6201327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150