JP6003381B2 - 画像形成装置、検査装置、及び検査方法 - Google Patents

画像形成装置、検査装置、及び検査方法 Download PDF

Info

Publication number
JP6003381B2
JP6003381B2 JP2012178424A JP2012178424A JP6003381B2 JP 6003381 B2 JP6003381 B2 JP 6003381B2 JP 2012178424 A JP2012178424 A JP 2012178424A JP 2012178424 A JP2012178424 A JP 2012178424A JP 6003381 B2 JP6003381 B2 JP 6003381B2
Authority
JP
Japan
Prior art keywords
mark
carrier
measurement
sensor
error detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012178424A
Other languages
English (en)
Other versions
JP2014035535A (ja
Inventor
高橋 修
修 高橋
紀貴 岩間
紀貴 岩間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2012178424A priority Critical patent/JP6003381B2/ja
Priority to US13/963,481 priority patent/US9383194B2/en
Publication of JP2014035535A publication Critical patent/JP2014035535A/ja
Application granted granted Critical
Publication of JP6003381B2 publication Critical patent/JP6003381B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Color Electrophotography (AREA)

Description

本発明は、センサの測定誤差を検出する技術に関する。
画像形成装置には、例えば、用紙上における画像形成位置のずれ等を補正する機能を有するものがある。具体的には、レジストレーションパターンなど、複数のマークからなるパターンをベルト上に形成し、当該ベルト上を検出領域とする光学式の検出センサから出力される受光信号に基づきマークの位置を検出し、検出結果に基づき画像形成位置のずれ等を補正する。
ところが、検出センサにより検出されるマークの検出位置は現実位置に対して誤差を生じることがあり、この誤差によって画像形成位置の補正等の精度が低下してしまうことがある。下記特許文献には、拡散反射光による検出波形のひずみ量が測定誤差量と一定の関係にあることに着目し、ひずみ量を計測して測定誤差を測定するようにしている。
特開2007−025315公報
しかしながら、従来技術文献のような手法を用いると、検出波形のひずみ量を実測するため、高分解能でサンプリングする必要があるので、信号処理回路が高価になるし、測定誤差の算出が複雑になる恐れがあった、
本発明は上記のような事情に基づいて完成されたものであって、簡易な方法で、検出センサの測定誤差を算出する術を提供することを目的とする。
本明細書によって開示される画像形成装置は、一方向に循環移動する担持体と、前記担持体上に現像剤を用いて画像を形成する形成部と、前記担持体上の照射位置に向けて光を照射する投光部と、前記投光部から前記担持体に向けて照射された光の反射光を受光し受光量に応じた受光信号を出力する受光部とを有するセンサと、制御装置と、を含み、前記制御装置は、第1マークと、前記第1マークに対して前記担持体の移動方向であるX方向に一定距離離れた第2マークとを含む画像である誤差検出用マークを、前記形成部を用いて前記担持体上の前記照射位置に形成する誤差検出用マーク形成処理と、前記担持体上の前記照射位置に形成された前記誤差検出用マークを、前記センサを用いて測定する第1測定処理と、前記第1測定処理にて測定した前記第1マークの測定値と前記第2マークの測定値とから前記センサの測定誤差を検出する測定誤差検出処理と、前記形成部を用いて補正用マークを前記照射位置に形成する補正用マーク形成処理と、前記担持体上の照射位置に形成された前記補正用マークを、前記センサを用いて測定する第2測定処理と、前記第2測定処理にて測定した前記補正用マークの測定値と、前記測定誤差検出処理にて検出した前記センサの測定誤差とに基づいて、画像を形成する位置のずれを補正する補正処理とを行う。この構成では、センサによる補正用マークの測定誤差を、誤差検出用マークを利用して検出する。検出波形のひずみ量を実測する従来の方法に比べて、検出波形のひずみ量を実測する必要がない分、センサによる補正用マークの測定誤差を比較的簡単に求めることが出来る。また、センサによる補正用マークの測定誤差のデータを、色ずれ補正に反映させているので、色ずれの補正を高精度に行うことが可能となる。
上記画像形成装置は以下のように構成することが好ましい。
・前記第1マークは、拡散反射率の低いブラックの第1現像剤により形成され、前記第2マークは、ブラックに比べて拡散反射率の高い第2現像剤により形成されるマーク本体部と、前記第1現像剤を用いて形成されるマスク部であって、前記マーク本体部の前記X方向の両端部を被覆するマスク部と、を含む。センサによる補正用マークの測定誤差の要因に検出センサの光軸ずれがある。投光部の光軸がずれた状態で補正用マークに光を照射すると、受光される光の拡散反射成分に、中心ずれ(偏り)が出来る。この構成では、マーク本体部の両側をマスク部により被覆しているので、第2マークに向けて光を照射すると、受光部には、マーク本体部からの拡散反射光だけが入光し、それ以外の光はほとんど入光しない。従って、拡散反射光の中心ずれが検出し易くなる。
・前記第1マークは、単一ラインから形成されるマークである。この構成では、現像剤の使用量が少なくて済む。
・前記第1マークは、2ラインから構成されるマークである。
・前記形成部は、各現像剤に対応して前記担持体の移動方向に整列状に複数設けられ、前記第2現像剤に対応する第2形成部が、前記第1現像剤に対応する第1形成部に対して、前記担持体の移動方向の上流側に設けられている。この構成では、第2形成部が上流側、第1形成部が下流側に配置されている。そのため、マーク本体部、マスク部を順々に形成できるので、マスク本部に対してマスク部を無理なく重ねて形成できる。
・前記制御装置は、前記測定誤差検出処理にて、前記第1マークと前記第2マークの測定値に基づいて、前記第1マークにおける前記照射位置を横切る辺のうちX方向最上流辺とX方向最下流辺との間の距離の中心位置から前記第2マークにおける前記照射位置を横切る辺のうち前記マーク本体部上に形成される二辺の距離の中心位置までの中心位置間距離を算出し、算出した中心位置間距離と基準値との差に基づいて、前記センサによる前記補正用マークのX方向に関する測定誤差を決定する。この構成では、センサのX方向に関する測定誤差を決定できる。
・前記制御装置は、前記誤差検出用マーク形成処理にて、前記形成部を用いて前記担持体上の照射位置に、2つの非平行な第1マークをX方向に間隔Pを空けて形成し、2つの非平行な第2マークをX方向に間隔Pを空けて形成し、前記測定誤差検出処理にて、前記各第1マークの測定値に基づいて、各第1マークにおける前記照射位置を横切る辺のうちX方向最上流辺とX方向最下流辺との間の距離の中心位置をそれぞれ検出し、検出した各中心位置間の中心位置間距離を検出し、前記各第2マークの測定値に基づいて、各第2マークにおける前記照射位置を横切る辺のうち前記マーク本体部上に形成される二辺の距離の中心位置をそれぞれ検出し、検出した各中心位置間の中心位置間距離を検出し、前記第1マーク側の中心位置間距離と前記第2マーク側の中心位置間距離の差からY方向の測定誤差を検出する。この構成では、センサのY方向に関する測定誤差を決定できる。
・前記第1マークは、ブラックの第1現像剤に比べて拡散反射率の高い第2現像剤により形成され、前記第2マークは、前記第1マークと濃度の異なる前記第2現像剤により形成される。この構成では、第1マークと第2マークの現像剤の濃度に差が付けてあるので、光軸がずれたセンサで両マークを読み取ると、波形の歪方に差が出来る。従って、波形の歪を検出することにより、光軸がずれたセンサの測定誤差を検出することが出来る。
・前記第1マークは、ブラックの第1現像剤に比べて拡散反射率の高い第2現像剤により形成され、前記第2マークは、前記第1マークと前記X方向の長さの異なる前記第2現像剤により形成される。この構成では、第1マークと第2マークのX方向の長さに差が付けてあるので、光軸がずれたセンサで両マークを読み取ると、波形の歪方に差が出来る。従って、波形の歪を検出することにより、光軸がずれたセンサの測定誤差を検出することが出来る。
・前記第1マークは、ブラックの第1現像剤に比べて拡散反射率の高い第2現像剤により形成され、前記第2マークは、前記第1現像剤により形成されるマスク部と、前記マスク部よりも前記X方向の長さが短く、かつ前記第2現像剤により前記マスク部上に形成されるマーク本体部と、を含む。この構成では、光軸がずれたセンサで両マークを読み取ると、波形の歪方に差が出来る。従って、波形の歪を検出することにより、光軸がずれたセンサの測定誤差を検出することが出来る。
・前記制御装置は、前記測定誤差検出処理にて、前記第1マークと前記第2マークの測定値に基づいて、前記第1マークのX方向の中心位置から、前記第2マークのX方向の中心位置までの中心位置間距離を算出し、算出した中心位置間距離と基準値との差に基づいて、前記センサによる前記補正用マークのX方向に関する測定誤差を決定する。この構成では、センサのX方向に関する測定誤差を決定できる。
・前記制御装置は、前記誤差検出用マーク形成処理にて、前記形成部を用いて前記担持体上の照射位置に、2つの非平行な第1マークをX方向に間隔Pを空けて形成し、2つの非平行な第2マークをX方向に間隔Pを空けて形成し、前記測定誤差検出処理にて、前記各第1マークの測定値に基づいて、各第1マークにおけるX方向の中心位置をそれぞれ検出し、検出した各中心位置間の中心位置間距離を検出し、前記各第2マークの測定値に基づいて、各第2マークのX方向の中心位置をそれぞれ検出し、検出した各中心位置間の中心位置間距離を検出し、前記第1マーク側の中心位置間距離と前記第2マーク側の中心位置間距離の差からY方向の測定誤差を検出する。この構成では、センサのY方向に関する測定誤差を決定できる。
・前記制御装置は、前記中心位置間距離のデータを、変換テーブルを用いて、前記補正用マークの測定誤差に変換する。
・前記変換テーブルは、担持体表面における光の反射率に応じて段階的に設けられている。
・前記担持体を循環駆動するローラ又は前記形成部を構成する感光ドラムの回転周期に合わせて前記誤差検出用マークを形成する。このようにすれば、ローラや感光ドラムの周期変動に左右されず、誤差検出用マークを形成することが可能となる。
・前記制御装置は、前記センサの測定誤差が上限値以上である場合、エラーとする。この構成では、測定誤差が上限値を超えて傾いている場合、エラーを報知するので、測定誤差の大きいセンサがそのまま使用されることを防止できる。
本明細書によって開示される検査装置は、担持体上の照射位置に向けて光を照射する投光部と、前記投光部から前記担持体に向けて照射された光の反射光を受光し受光量に応じた受光信号を出力する受光部とを有するセンサを検査する検査装置であって、一方向に循環移動する担持体と、前記担持体上に現像剤を用いて画像を形成する形成部と、制御装置と、を含み、前記制御装置は、第1マークと、前記第1マークに対して前記担持体の移動方向であるX方向に一定距離離れた第2マークとを含む画像である誤差検出用マークを、前記形成部を用いて前記担持体の前記照射位置に形成する誤差検出用マーク形成処理と、前記担持体上の前記照射位置に形成された前記誤差検出用マークを、前記センサを用いて測定する第1測定処理と、前記第1測定処理にて測定した前記第1マークの測定値と前記第2マークの測定値とから前記センサの測定誤差を検出する処理とを行う。このようにすれば、測定誤差に基づいて、センサの良否を判定することが出来る。
本明細書によって開示される検査方法は、担持体上の照射位置に向けて光を照射する投光部と、前記投光部から前記担持体に向けて照射された光の反射光を受光し受光量に応じた受光信号を出力する受光部とを有するセンサの検査方法であって、第1マークと、前記第1マークに対して担持体の移動方向であるX方向に一定距離離れた第2マークとを含む画像である誤差検出用マークを、形成部を用いて前記担持体上の前記照射位置に形成する誤差検出用マーク形成ステップと、前記担持体上の前記照射位置に形成された前記誤差検出用マークを、前記センサを用いて測定する第1測定ステップと、前記第1測定ステップにて測定した前記第1マークの測定値と前記第2マークの測定値とから、前記センサの測定誤差を検出するステップと、を含む。このようにすれば、測定誤差に基づいて、センサの良否を判定することが出来る。
本発明によれば、簡易な方法で、センサの測定誤差を算出する術を提供することが出来る。
実施形態1に係るプリンタの要部側断面図 プリンタの電気的構成を示すブロック図 レジマークを印刷したベルトの平面図 受光部の受光波形を示す図(投光部の光軸にずれがない場合) 受光部の受光波形を示す図(投光部の光軸のずれがある場合) ベルト表面での正反射光と受光部との関係を示す図 マーク表面での拡散反射光の受光部との関係を示す図 誤差検出用マークと受光波形の関係を示す図 誤差検出用マークを印刷したベルトの平面図 変換テーブルを示す図表 色ずれ補正シーケンスの処理の流れを示すフローチャート図 実施形態2における、誤差検出用マークと受光波形の関係を示す図 実施形態3における、誤差検出用マークと受光波形の関係を示す図 誤差検出用マークを印刷したベルトの平面図 第1ライン、第2ラインでの受光波形を示す図(光軸にずれがない場合) 第1ライン、第2ラインでの受光波形を示す図(光軸にずれがある場合) 実施形態4における誤差検出用マークを印刷したベルトの平面図 実施形態5における誤差検出用マークを印刷したベルトの平面図
<実施形態1>
本発明の実施形態1を図1ないし図11によって説明する。
1.プリンタの全体構成
図1は、本実施形態のプリンタ1(本発明の「画像形成装置」の一例)の内部構成を表す要部側断面図である。以下の説明では、各構成要素について、色毎に区別する場合は各部の符号にC(シアン),M(マゼンタ),Y(イエロー),K(ブラック)の添え字を付し、区別しない場合は添え字を省略する。また、以下の説明においてベルト34の移動方向(図1の左右方向)をX方向(副走査方向)とし、水平面内でX方向に直交する方向をY方向(主走査方向)とする。
プリンタ1は、給紙部3、画像形成部5、搬送機構7、定着部9、ベルトクリーニング機構20および高圧電源装置を含む構成である。給紙部3は、プリンタ1の最下部に設けられており、記録媒体としての用紙15を収容するトレイ17と、ピックアップローラ19とを備える。トレイ17に収容された用紙15は、ピックアップローラ19により1枚ずつ取り出され、搬送ローラ11、レジストレーションローラ12を介して搬送機構7に送られる。
搬送機構7は、用紙15を搬送するものであり、プリンタ1内において給紙部3の上側に設置されている。搬送機構7は、駆動ローラ31、従動ローラ32、および用紙搬送ベルト(以下、ベルトと呼ぶ)34を含み、ベルト34は、駆動ローラ31と従動ローラ32との間に架け渡されており、X方向に循環移動する。駆動ローラ31が回動すると、ベルト34は、感光ドラム41C、41M、41Y、41Kと対向する側の表面が、図1中の右方向から左方向へ移動する。これにより、レジストレーションローラ12から送られてきた用紙15が、画像形成部5の下へと搬送される。尚、用紙搬送ベルト34が、本発明の「担持体」の一例である。
また、ベルト34には、4つの感光ドラム41C、41M、41Y、41Kに対応して、4つの転写ローラ33C、33M、33Y、33Kが設けられている。各転写ローラ33は、ベルト34を間に挟みつつ各感光ドラム41C、41M、41Y、41Kに対して向かい合う位置に配置されている。
画像形成部5は4個のプロセスユニット40C、40M、40Y、40Kおよび4個の露光装置49C、49M、49Y、49Kを含む。各プロセスユニット40C、40M、40Y、40Kは、シアン、マゼンタ、イエロー、ブラックの順に、用紙15の搬送方向であるX方向(図1の左右方向)に一列状に配置されている。すなわち、ブラックを除く3色のプロセスユニット40C、40M、40Yが、ブラックのプロセスユニット40Kよりも、X方向の上流側に位置している。尚、各プロセスユニットト40C、40M、40Y、40Kが本発明の形成部の一例である。また、ブラックのプロセスユニットが本発明の第1形成部の一例であり、イエローのプロセスユニット40Yが本発明の第2形成部の一例である。
各プロセスユニット40は同一構造であり、各色の感光ドラム41C、41M、41Y、41K、各色のトナーを収容するトナーケース43、現像ローラ45及び帯電器50C、50M、50Y、50Kを含む構造となっている。尚、ブラックのトナーと、それ以外の3色(シアン、マゼンタ、イエロー)のトナーについて、光の拡散反射率を比較すると、ブラックのトナーは拡散反射率が低く、それ以外の3色はブラックに比べて拡散反射率が高い。理由は、ブラックは光を吸収し易いからである。尚、ブラックのトナーが本発明の第1現像剤であり、それ以外の3色(シアン、マゼンタ、イエロー)のトナーが本発明の第2現像剤の一例である。
各帯電器50C、50M、50Y、50Kは、スコロトロン型の帯電器であり、高電圧の印加により、シールドケース内においてコロナ放電を生じさせる。そして、コロナ放電により生じたイオンが放電口から感光ドラム41側に放電電流として流れることで、感光ドラム41の表面を一様に正極性に帯電させる。
各露光装置49C、49M、49Y、49Kは、例えば、感光ドラム41C、41M、41Y、41Kの回転軸方向に沿って一列状に並んだ複数の発光素子(例えばLED)を有し、外部より入力される印刷データに応じて発光することにより、各感光ドラム41C、41M、41Y、41Kの表面に静電潜像を形成する機能を果たす。
上記のように構成されたプリンタ1による一連の画像形成処理について簡単に説明すると、プリンタ1は印刷データDを受信すると(図2参照)、印刷処理を開始する。これにより、各感光ドラム41C、41M、41Y、41Kの表面は、その回転に伴って、各帯電器50C、50M、50Y、50Kにより一様に正帯電される。そして、各露光装置49によって、各感光ドラム41C、41M、41Y、41Kがそれぞれ印刷データに応じた露光が行われる。これにより、各感光ドラム41C、41M、41Y、41Kの表面には、印刷データに応じた所定の静電潜像が形成、すなわち一様に正帯電された感光ドラム41C、41M、41Y、41Kの表面のうち、露光された部分は電位が下がる。
次いで、現像ローラ45の回転により、現像ローラ45上に担持されかつ正帯電されているトナーが、各感光ドラム41C、41M、41Y、41Kの表面上に形成される静電潜像に供給される。これにより、各感光ドラム41C、41M、41Y、41Kの静電潜像は、可視像化され、感光ドラム41C、41M、41Y、41Kの表面には、反転現像によるトナー像が担持される。
また、上記したトナー像を形成するための処理と並行して、用紙15を搬送する処理が行われる。すなわち、ピックアップローラ19の回動により、トレイ17から用紙15が一枚ずつ用紙搬送経路Sへと送り出される。用紙搬送経路Sに送り出された用紙15は、搬送ローラ11、ベルト34により、転写位置(感光ドラム41と転写ローラ33とが接触する点)に運ばれる。
すると、この転写位置を通るときに、各転写ローラ33に印加される転写バイアスによって、各感光ドラム41の表面上に担持された各色のトナー像が用紙15の表面に順次、重畳転写される。かくして、用紙15上には、カラーのトナー像が形成される。その後、ベルト34の後方に設けられた定着部9を通過するときに、転写されたトナー像は熱定着され、用紙15は排紙トレイ60上に排紙される。
2.プリンタの電気的構成
次に、プリンタ1の電気的構成について説明する。図2はプリンタ1の電気的構成を概念的に示すブロック図である。プリンタ1は、メインモータ71、露光装置49、定着器9、高圧電源回路73、マークセンサ80、通信部75、入出力部77、制御装置100などから構成されている。メインモータ71は、感光ドラム41、現像ローラ45等のプロセス系の回転体や、搬送ローラ11や駆動ローラ31など用紙搬送系の回転体を回転駆動させるものである。高圧電源回路73は、帯電器50に印加する帯電電圧や、現像ローラ45に印加する現像電圧を生成する機能を果たすものである。また、通信部75はPC等の情報端末装置との間で通信を行うものであり、情報端末装置から印刷指示や印刷データを受信する機能を担う。尚、マークセンサ80は、本発明の「センサ」の一例である。
制御装置100は一連の画像形成処理を実行する装置全体の統括機能と、次に説明するマークセンサ80の検出結果に基づいて用紙上における色ずれ(印刷位置のずれ)を補正する機能を担っている。制御装置100はCPU110と、RAM120と、ROM130とを備える。ROM130は印刷処理を実行するためのプログラムや、後述する色ずれ補正シーケンスを実行するためのプログラムなどを記憶するものであり、RAM120には各種のデータが記憶されるようになっている。
3.レジストレーションマークと色ずれ補正
本プリンタ1は、ベルト34上に形成したレジストレーションマーク(以下、レジマーク170)をマークセンサ80で読み取り、得られたデータに基づいて、用紙上における色ずれ(各色の印刷位置のずれ)を補正する。レジマーク170は、図3に示すように等間隔で形成された各色のラインからなる。各色のラインはX方向に対して斜めに傾斜しており、傾斜方向が正逆異なる2組が設けられている。尚、図3中の「170K」はブラックのレジマークを、「170Y」はシアンのレジマークを、「170M」はマゼンタのレジマークを、「170C」はシアンのレジマークを示している。また、レジストレーションマーク70が本発明の補正用マークの一例である。
<X方向に関する印刷位置の補正>
ブラックのプロセスユニット40Kに対して各プロセスユニット40C、40M、40YのX方向に関する相対的な位置関係が保たれていれば、各レジマーク170は各プロセスユニット40によりブラックのレジマーク170Kから設定された距離だけX方向に離れた位置に印刷されるので、ブラックのレジマーク170Kのマークの中心位置を基準とした各色のレジマーク170Y、170M、170Cの中心位置までの中心位置間距離Lky、Lkm、Lkcを測定すると、その値は理論値に一致し、この場合、X方向の色ずれは発生しない。
一方、ブラックのプロセスユニット40Kに対して各プロセスユニット40C、40M、40YのX方向に関する相対的な位置関係が保たれていない場合、各レジマーク170は理論値通りに印刷されないので、ブラックのレジマーク170Kを基準とした各色のレジマーク170Y、170M、170Cの中心位置までの中心位置間距離Lky、Lkm、Lkcを測定すると、その値は理論値から外れる。理論値に対する各中心位置間距離Lky、Lkm、Lkcのずれ量は、ブラックを基準とした各色のX方向に関する印刷位置のずれ量に比例するので、求めた誤差が小さくなるように、印刷位置を各色について各々調整することで、X方向に関する各色の印刷位置ずれを抑えることが出来る。
<Y方向に関する印刷位置の補正>
また、同様に、ブラックのプロセスユニット40Kに対して各プロセスユニット40C、40M、40YのY方向に関する相対的な位置関係が保たれていない場合、各レジマーク170は理論値通りに印刷されないので、各色のレジマーク170K、170Y、170M、170Cについて、一方側のレジマークの中心位置から他方側のレジマークの中心位置までの中心位置間距離Lkk、Lyy、Lmm、Lccを測定すると、ブラックの中心位置間距離Lkkに対して各色の中心位置間距離Lyy、Lmm、Lccの値が外れる。
中心位置間距離Lkkに対する各中心位置間距離Lyy、Lmm、Lccのずれ量は、ブラックを基準とした各色のY方向に関する印刷位置のずれ量に比例するので、求めた誤差が小さくなるように、印刷位置を各色について各々調整することで、Y方向に関する各色の印刷位置ずれを抑えることが出来る。尚、図3中、レジマーク170に付した添え字の「−1」、「−2」はレジマークの向きの違いを示している。
4.マークセンサ80とレジマークの測定誤差
マークセンサ80は、画像形成部5よりベルト34上に印刷されたレジマーク170を読み取るものであり、この実施形態では、ベルト34の後方下部側に取り付けられている。マークセンサ80は、図3に示すように、投光部81と受光部85とから構成されている。投光部81は、例えばLEDからなり、受光部85は、例えばフォトトランジスタからなる。
これら投光部81と受光部85は、光軸をベルト34の表面に対して斜めに傾けつつ、Y方向に並んで取り付けられていている。そして、投光部81から、回転するベルト表面の照射位置Qに向けて照射された光の反射光を、受光部85が受光する構成となっている。そして、受光部85は受光量に応じた受光信号Srを出力する。
本実施形態では、レジマーク170をマークセンサ80で読み取って得られる受光信号Srをコンパレータ(図略)で閾値と比較して、閾値を下回る範囲Fの中心を検出することで、レジマーク170の中心位置を検出する。
5.マークセンサ80による検出特性の違いと、レジマーク170の測定誤差
トナーの色がブラック以外の場合、すなわちシアン、マゼンタ、イエローの場合、投光部81から出射された光はレジマーク表面で拡散し、レジマーク周辺のベルト表面が露出した箇所では正反射する。そのため、シアン、マゼンタ、イエローのレジマーク170に対するマークセンサ80の受光信号Srは、図4や図5に示すように、レジマーク表面での拡散反射光を受光した拡散反射成分と、ベルト表面での正反射光を受光した正反射成分とを合成した波形となる。尚、ベルト表面で光が正反射するのは、ベルト34は、表面を鏡面状に加工しているからである。
マークセンサ80の光軸の角度が正規角度である場合には、図4に示すように、正反射成分と拡散反射分はレジマーク170の中心に対して左右対称な波形となる。そのため受光信号Srはレジマーク170の中心に対して左右対称な波形となる。
ところが、マークセンサ80の投光部81の光軸の角度が正規角度からずれている場合、図5に示すように、正反射成分はレジマーク170の中心に対して左右対称な波形となるのに対し、拡散反射分はレジマーク170の中心から位置ずれ(図5では右側に位置ずれ)した波形となる。
その理由は、投光部81の光軸の角度がずれている場合、図6にて実線で示すように光軸中心の光は、検出ラインLQ上の照射位置Qから外れた位置で正反射するので、その正反射光は、受光部85を外れ、受光されない。すなわち、受光部85に受光される正反射成分は、照射位置Qに入光する光だけなので、投光部81の光軸の角度がずれているかどうかに関係なく、レジマーク170の中心に対して左右対称な波形となる。
一方、図7に示すように、投光部81の光軸の角度が正規角度に対してずれている場合には、照射位置Qから外れた位置に光軸中心の光が入光するので、その部分の拡散反射光の光量が最も高くなる。そのため、拡散反射光の分布に偏りが発生し、受光部85にて受光される拡散反射成分は、レジマークの中心から位置がずれた波形となる。
従って、シアン、マゼンタ、イエローのレジマーク170では、投光部81の光軸の角度がずれている場合、受光信号Srは、レジマーク170の中心に対して左右対称な正反射成分と、非対称な拡散反射成分を合成した波形になるので、レジマーク170の中心に対して非対称な波形となる。この場合、受光信号Srのうち閾値を下回っている範囲Fの中心は、レジマーク170の中心からずれてしまう。
一方、トナーの色がブラックの場合、投光部81から出射された光は、レジマーク表面でその大部分が吸収され、ほとんど拡散反射が起きない。そのため、ブラックのレジマーク170に対するマークセンサ80の受光信号Srは、ベルト表面での正反射光を受光した正反射成分の波形となり、光軸ずれの影響をほとんど受けない。すなわち、この場合、光軸がずれているかどうかに関係なく、受光信号Srのうち閾値を下回っている範囲Fの中心は、レジマーク170の中心に概ね一致する。
このように、ブラックのレジマーク170Kとそれ以外の色のレジマーク170Y、170M、170Cとでは、マークセンサ80の検出特性が異なる。具体的には、投光部81の光軸がずれている場合の検出特性が異なる。そのため、マークセンサ80に光軸ずれが発生していると、検出特性の相違に起因した、測定誤差Ux、Uyが発生する。尚、測定誤差Uxは、実際のレジマークの中心位置間距離Lky、Lkm、Lkcに対してマークセンサ80により測定される中心位置間距離Lky、Lkm、Lkcの誤差であり、測定誤差Uyは、実際のレジマークの中心位置間距離Lyy、Lmm、Lccに対してマークセンサ80により測定される中心位置間距離Lyy、Lmm、Lccの誤差である。
5.誤差検出用マークの説明
上記のようにレジマーク170の測定誤差Ux、Uyは、光軸ずれによって拡散反射成分の位置がずれることにより発生する。本実施形態では、以下に説明する誤差検出用マーク200を用いて、拡散反射成分の位置のずれを検出することによって、レジマーク170の測定誤差Ux、Uyを検出する。
誤差検出用マーク200は、画像形成部5によりベルト34の照射位置Qを通る検出ラインLQ上に印刷された画像であり、図8に示すように第1マーク210と、第2マーク220とを含む構成となっている。第1マーク210は、X方向に対して傾斜した一定幅の単一ラインであり、ブラックのトナーを使用して印刷される。第2マーク220は第1マーク210に対してX方向に一定距離離間して形成され、マーク本体部221とマスク部225とを含む。
マーク本体部221は、第1マーク210と同様、X方向に対して傾斜した一定幅のラインであり、ブラックより拡散反射率の高いイエローのトナーを使用して印刷される。尚、マーク本体部221は得ようとする線幅よりも太い幅で印刷される。
マスク部225は、ブラックのトナーを使用して、マーク本体部221の左右両側に印刷される。具体的には、マーク本体部221のうち、得ようする線幅からはみ出した余剰部分に対して上から重なるように印刷される。このようにすることで、マーク本体部221のうち得ようとする線幅部分だけが露出した状態となり、マーク本体部221のX方向の両端部がマスク部225にて被覆される。
また、図8、図9に示すように、第1マーク210と第2マーク220は、X方向に対して傾斜角度が正である正方向のマークと、傾斜角度が負である負方向のマークが対になって設けられている。すなわち、2つの第1マーク210−1、210−2は非平行でX方向に間隔Pを空けて形成されている。また、同様、2つの第2マーク220−1、220−2は非平行でX方向に間隔Pを空けて形成されている。尚、図8、図9中、誤差検出用マーク200に付した添え字の「−1」、「−2」はマークの向きの違いを示している。また、第1マーク210側の間隔Pと、第2マーク220側の間隔Pは、等しい。
また、第1マーク210と第2マーク220のX方向の間隔は、ベルト34を駆動する駆動ローラ31の回転周期や感光ドラム41の回転周期に合わせることが好ましい。すなわち、第1マーク210と第2マーク220のX方向の間隔を、駆動ローラ31の周長や感光ドラム41の周長の整数倍にすることが好ましい。そのようにすることで、2つのマーク210、220の間隔が、駆動ローラ31や感光ドラム41の周期変動に左右されず、2つのマークのX方向の位置精度が高くなる。また、同様に、マーク210−1とマーク210−2のX方向の間隔とマーク220−1とマーク220−2のX方向の間隔も、ベルト34を駆動する駆動ローラ31の回転周期や感光ドラム41の回転周期に合わせることが好ましい。理由は、上記の通りである。
プリンタ1では、ベルト34上に印刷された誤差検出用マーク200をマークセンサ80で読み取ったデータから、第1マーク210の中心位置P1から第2マーク220の中心位置P2までの中心位置間距離Lxを検出する(図9参照)。尚、第1マーク210の中心位置P1とは、第1マーク210における照射位置Qを横切る辺のうちX方向の最上流側辺と最下流辺のX方向の距離の中心である。この例では、第1マーク210を単一ラインとしている。そのため、第1マーク210のうち、図9に示す右側の外形線が最上流辺となり、左側の外形線が最下流辺となり、それら2辺のX方向の中心(すなわち第1マーク210のX方向の中心)が中心位置P1となる。また、第2マーク220の中心位置P2とは、第2マーク220における照射位置Qを横切る辺のうちマーク本体部221上に形成される二辺A、BのX方向の距離の中心である(図8参照)。また、中心位置間距離Lxは、ベルト34の移動速度Vに受光信号Srの検出間隔Txを乗算することによって算出できる(Lx=V×Tx)。尚、第1マーク210と第2マーク220を読み取ったマークセンサ80の出力する受光信号Srが、本発明の第1マークと第2マークの測定値に相当する。
ベルト34上に形成された誤差検出用マーク200をマークセンサ80で読み取ると、第1マーク210に対応する部分では、光が吸収されるので、受光量はほぼゼロになる。また、第2マーク220に対応する部分では、マーク本体部221では光が拡散反射し、マスク部225では吸収される。そのため、正反射成分は受光されず、拡散反射成分だけが受光される状態となる。
マークセンサ80の投光部81の光軸がX方向にずれている場合、拡散反射成分だけを受光する第2マーク220での受光信号が、マーク中心からX方向に位置がずれるため、中心位置間距離Lxは理論値(本発明の「基準値」の一例)に対して増減し、その大きさは光軸のずれに比例して大きくなる。
プリンタ1では、理論値に対する中心位置間距離Lxの差分ΔLxを、X方向の測定誤差Uxに換算する変換テーブルを設けている。具体的にはROM130に記憶させている。そのため、誤差検出用マーク200をマークセンサ80で読み取ったデータから、第1マーク210と第2マーク220の中心位置間距離Lxを算出した後、算出した中心位置間距離Lxを理論値と比較して、差分ΔLxを求めれば、変換テーブルを用いてX方向の測定誤差Uxを検出することが出来る。
また、ベルト34上に印刷された誤差検出用マーク200をマークセンサ80で読み取ったデータから、各第1マーク210−1、210−2の中心位置P11、P12をそれぞれ検出し、2つの中心位置P11、P12間の中心位置間距離Ly1を算出する。また、各第2マーク220−1、220−2の中心位置P21、P22をそれぞれ検出し、2つの中心位置P21、P22間の中心位置間距離Ly2を算出する。尚、各第1マーク210−1、210−2の中心位置P11、P12は、各第1マーク210−1、210−2のX方向の中心である。また、各第2マーク220−1、220−2の中心位置P21、P22とは、各第2マーク220−1、220−2における照射位置Qを横切る辺のうちマーク本体部221上に形成される二辺のA、BのX方向の距離の中心である。
投光部81の光軸がY方向にずれている場合、第2マーク220側の中心位置間距離Ly2が、第1マーク210側の中心位置間距離Ly1に対して光軸のずれ分に応じて増減する。
プリンタ1では、中心位置間距離Ly1に対する中心位置間距離Ly2の差分ΔLyを、Y方向の測定誤差Uyに換算する変換テーブルを設けている。具体的にはROM130に記憶させている。そのため、差分ΔLyを求めれば、変換テーブルを用いてY方向の測定誤差Uyを検出することが出来る。尚、中心位置間距離Lyは、ベルト34の移動速度Vに受光信号Srの検出間隔Tyを乗算することによって算出できる(Ly=V×Ty)。
変換テーブルには、図10に示すようにX方向用の変換テーブルとY方向用の変換テーブルの2種がある。X方向用の変換テーブルは、光軸のずれ角ごとに、中心位置間距離Lxの差分ΔLx、マークセンサ80によるレジマーク170の測定誤差Uxが関連付けられて記憶されている。そのため、差分ΔLxを変換テーブルに参照することで、マークセンサ80によるレジマーク170の測定誤差Uxを検出することが出来る。同様、Y方向用の変換テーブルは、光軸のずれ角ごとに、中心位置間距離の差分ΔLy、マークセンサ80によるレジマーク170の測定誤差Uyが関連付けられて記憶されている。そのため、差分ΔLyを変換テーブルに参照することで、マークセンサ80によるレジマーク170の測定誤差Uyを検出することが出来る。
尚、上記の変換テーブルを作成するには、ベルト34上に形成したレジマーク170と誤差検出用マーク200を、マークセンサ80を使用して読み取る試験を光軸のずれ角を変えて行い、レジマーク170の読み取り結果から得られる測定誤差Ux、Uyと、誤差検出用マーク200の読み取り結果から得られる差分ΔLx、差分ΔLyを関連付ければよい。
また、レジマーク170の測定誤差Ux、Uyの大きさは、ベルト表面による光の反射率に左右される。すなわち、ベルト表面の反射率が低い場合には投光側の光量を上げないと、受光信号のレベルが基準値以上にならない。そのため、拡散反射成分の比率が高くなって受光信号Srの中心ずれが顕著になるので、レジマーク170の測定誤差Ux、Uyが大きくなり易い。一方、ベルト表面の反射率が高い場合には、投光量が低く、拡散反射成分の比率が下がるので、受光信号Srの中心ずれは小さくなり、レジマーク170の測定誤差Ux、Uyはそれほど発生しない。本実施形態では、図10に示すように、変換テーブルを、ベルト表面における光の反射率に応じて段階的に設けている。このようにすれば、光の反射率に対応した変換テーブルを適用することで、レジマークの測定誤差Ux、Uyを正確に算出することが出来る。尚、光の反射率は、例えば、投光量と受光量の比率から算出すればよい。
6.色ずれ補正シーケンス
色ずれ補正とは、ブラックを基準とした各色の印刷位置のずれを小さくする処理である。色ずれ補正シーケンスは、図11に示すようにS10〜S110の処理から構成されており、例えば、ベルト34やプロセスユニット40の交換時に、制御装置100により実行される。
順に説明してゆくと、S10では、プリンタ1の準備動作が実行される。尚、準備動作とは、メインモータ71を回転させることにより、感光ドラム41等の各回転体やベルト34を駆動させることを意味する。
続くS20では、制御装置100の制御により、画像形成部5を介して、駆動するベルト34上に誤差検出用マーク200が印刷される。そして、誤差検出用マーク200が印刷されると、続くS30では、マークセンサ80により誤差検出用マーク200を読み取る処理が行われる。尚、制御装置100により実行されるS20が本発明の「誤差検出用マーク形成処理(ステップも同じ)」に対応し、S30が本発明の「第1測定処理(ステップも同じ)」に対応している。
マークセンサ80により読み取られた誤差検出用マーク200の読み取りデータは、制御装置100に入力される。そして、S40では、制御装置100により、誤差検出用マーク200のマーク数などに異常がないかチェックされる。マーク数に異常がある場合、S40ではNO判定され、S70に移行する。S70ではエラー処理が実行される。
誤差検出用マーク200のマーク数などに異常がない場合は、S40でYES判定される。S40でYES判定された場合は、S50に移行して、誤差検出用マーク200の読み取りデータから、マークセンサ80によるレジマーク170の測定誤差Ux、Uyが、制御装置100にて検出される。具体的には、誤差検出用マーク200の読み取りデータから第1マーク210と第2マーク220の中心位置間距離Lxを検出した後、検出した中心位置間距離Lxを理論値と比較して、差分ΔLxを求める。そして、求めた差分ΔLxを変換テーブルに参照することによりレジマーク170の測定誤差Uxが検出される。また、誤差検出用マーク200の読み取りデータから第1マーク側の中心位置間距離Ly1と第2マーク側の中心位置間距離Ly2を検出する。そして、中心位置間距離Lyの差分ΔLyを求め、求めた差分ΔLyを変換テーブルに参照することによりレジマーク170の測定誤差Uyが検出される。尚、制御装置100により実行されるS50が本発明の「測定誤差検出処理(ステップも同じ)」に対応している。
次に、S60では、S50で算出したレジマーク170の測定誤差Uxと測定誤差Uyをそれぞれ上限値と比較する処理が、制御装置100にて行われる。測定誤差Ux、Uyのどちらかが上限値を超えている場合、S60にてN0判定される。この場合、S70に移行して、制御装置100によりエラー処理(マークセンサに異常ありと判断される)が実行される。
一方、測定誤差Ux、Uyが上限値より小さい場合、S60にてYES判定される。この場合、S50にて算出したレジマーク170の測定誤差Ux、Uyのデータは、RAM120に記憶され、その後、処理はS80に移る。S80では、制御装置100の制御により、画像形成部5を介して、駆動するベルト34上にレジマーク170が印刷される。
レジマーク170が印刷されると、続くS90では、マークセンサ80によりレジマーク170を読み取る処理が行われる。マークセンサ80により読み取られたレジマーク170のデータは、制御装置100に入力される。尚、制御装置100により実行されるS80が本発明の「補正用マーク形成処理」に対応し、S90が本発明の「第2測定処理」に対応する。
S100では、マークセンサ80の読み取りデータに基づいて、ブラックを基準とした各色の中心位置間距離Lky、Lkm、Lkcが算出される。また、同様にレジマーク170の読み取りデータから中心位置間距離Lkk、Lyy、Lmm、Lccが算出される。そして、算出された各中心位置間距離のデータは、RAM120に記憶される。その後、プリンタ1は、印刷指示を待つ待機状態となる。
そして、PC等の情報端末装置から印刷データを受けると、プリンタ1は、用紙15に対して印刷データに基づく画像を形成する印刷処理を実行する。このとき、プリンタ1の制御装置100は、S50にて算出した測定誤差Ux、Uyのデータと、S100にて読み取ったレジマークの中心位置間距離のデータに基づいて、ブラックを基準としたシアン、マゼンタ、イエローの色ずれが小さくなるように、X方向、Y方向について印刷位置を補正する(S110)。
<X方向の印刷位置補正>
ブラックを基準とした各色のX方向に関する印刷位置のずれ量は、理論値に対する各中心位置間距離Lky、Lkm、Lkcのずれ量に比例する。そのため、まず、各中心位置間距離Lky、Lkm、Lkcについて理論値に対するずれ量Δky、Δkm、Δkcを算出する。そして、算出したずれ量Δky、Δkm、Δkcに対してS50にて算出した測定誤差Ux分のデータ修正を加える。すなわち、測定誤差Uxの符号をプラスマイナス反転させた修正値を加えるデータ補正を行う。そして、データ修正した各ずれ量Δky、Δkm、Δkcが小さくなるように、印刷位置を各色について各々調整することで、X方向に関する各色の印刷位置ずれを抑えることが出来る。尚、印刷位置の補正は、各露光装置49の露光開始タイミングを、補正値に相当する時間、調整することにより行なわれる。
<Y方向の印刷位置補正>
ブラックを基準とした各色のY方向に関する印刷位置のずれ量は、中心位置間距離Lkkに対する各中心位置間距離Lyy、Lmm、Lccのずれ量に比例する。そのため、まず、各中心位置間距離Lyy、Lmm、Lccについて中心位置間距離Lkkに対するずれ量Δyy、Δmm、Δccを算出する。そして、算出したずれ量Δyy、Δmm、Δccに対してS50にて算出した測定誤差Uy分のデータ修正を加える。すなわち、測定誤差Uyの符号をプラスマイナス反転させた修正値を加えるデータ補正を行う。そして、データ修正した各ずれ量Δyy、Δmm、Δccが小さくなるように、印刷位置を各色について各々調整することで、Y方向に関する各色の印刷位置ずれを抑えることが出来る。尚、印刷位置の補正は、各露光装置49の露光開始タイミングを、補正値に相当する時間、調整することにより行なわれる。尚、制御装置100により実行されるS110が本発明の「補正処理」に対応する。
8.効果説明
プリンタ1は、マークセンサ80によるレジマーク170の測定誤差Ux、Uyを検出し、そのデータを色ずれ補正用の補正値の算出に反映させているので、色ずれの補正を高精度に行うことが可能となる。
また、拡散反射成分の中心ずれを検出することによって、マークセンサ80によるレジマーク170の測定誤差Ux、Uyを求めている。そのため、レジマーク170の測定誤差Ux、Uyを正確に求めるには、受光信号Srから拡散反射成分の中心ずれを正確に求める必要がある。
この点、本プリンタ1では、マーク本体部221の両側にマスク部225を印刷している。もし仮に、マーク本体部221の両側にマスク部225が印刷されておらず、反射率の高いベルト表面が露出される場合、マーク本体部221の両側で、光が正反射する。そのため、マーク本体部221に対応する受光信号Srは、マーク本体部221で拡散反射した拡散反射成分と、マーク本体部221の両側で正反射した正反射成分とを合成した波形となるので、マーク中心に対する拡散反射成分の中心ずれを正確に検出することは困難である。
本実施形態では、マーク本体部221の両側にマスク部225を設けているので、マーク本体部221の両側では光が吸収され、正反射しない。そのため、マーク本体部221に対応する受光信号は、マーク本体部221で拡散反射した拡散反射成分だけが検出されるので、拡散反射成分の中心ずれを正確に検出することが可能となる。
また、本実施形態では、誤差検出用マーク200を基準側となる第1マーク210と、拡散反射光の中心ずれを検出するための第2マーク220の2つのマークから構成しているので、それら2つのマーク210、220に相対的な位置のずれがあると、中心位置間距離Lxが変わってしまい、拡散反射成分の中心ずれを正しく測定できない。
特に、第1マーク210はブラックのトナーを使用して印刷しているのに対して、第2マーク220のマーク本体部221はイエローのトナーを使用して印刷しており、印刷に使用するプロセスユニットが異なる。そのためマーク本体部221を単独で印刷すると、第1マーク210に対するマーク本体部221の相対的な位置精度を出すことは通常、難しい。
この点、本実施形態では、マーク本体部221を得ようとする線幅よりも太い幅で印刷し、マーク本体部221のうち、得ようする線幅からはみ出した余剰部分に対して上から重なるようにマスク部225を印刷している。言い換えれば、本実施形態では、マーク本体部221のうち表面に露出する部分の輪郭は、第1マーク210と同じブラックのトナーで印刷されたマスク部225が決めているので、第1マーク210に対するマーク本体部221の相対的な位置精度を出すことが出来る。そのため、拡散反射成分の中心ずれ、ひいてはマークセンサ80によるレジマーク170の測定誤差Ux、Uyを精度よく算出できる。
<実施形態2>
次に、本発明の実施形態2を図12によって説明する。実施形態2は、実施形態1に対して誤差検出用マーク200の構成を一部変形したものである。具体的には、実施形態1では、誤差検出用マーク200の第1マーク210を単一のラインにより構成した。
これに対して、実施形態2では、第1マーク210を次の2ライン、すなわち第2マーク220のマーク本体部221の両側に印刷された2つのマスク部225、225と等間隔で形成された2ライン215、215から構成している。
実施形態2の場合、第1マーク210の2ライン215、215と、第2マーク220のマスク部225、225が等間隔の繰り返しとなるので、第1マーク210と第2マーク220の相対的な位置精度を出し易くなる利点がある。
尚、この場合、第1マーク210の中心位置P1は、第1マーク210における照射位置Qを横切る辺のうちX方向最上流辺DとX方向最下流辺Cとの間のX方向の距離の中心となる。また、第2マークの中心位置P2は、実施形態1と同様、第2マーク220における照射位置Qを横切る辺のうちマーク本体部221上に形成される二辺A、BのX方向の距離の中心である。
<実施形態3>
次に、本発明の実施形態3を図13ないし図16によって説明する。
実施形態3は、実施形態1に対して誤差検出用マーク200の構成を変更したものである。実施形態3に適用される誤差検出用マーク300は、図13に示すように、第1マーク310と、第2マーク320と、基準マーク330を含む構成となっている。
第1マーク310と第2マーク320は、ブラックより拡散反射率の高いイエローのトナーにより印刷されたものである。第1マーク310と第2マーク320は、X方向に対して傾斜しており、ベルト34の移動方向であるX方向に対して一定距離離間して形成されている。そして、第1マーク310と第2マーク320はトナー濃度に差をつけてあり、第1マーク310のトナー濃度が低く、第2ライン320のトナー濃度が高い。トナー濃度と拡散反射成分の大きさは対応関係があるので、濃度差を付けることで、拡散反射成分に差を付けることが出来る。尚、トナー濃度とは単位面積当たりのトナーの付着量であり、現像ローラに印加する現像電圧の値や、露光量を調整することにより、調整可能である。
また、図13に示すように、第1マーク310と第2マーク320は、X方向に対して傾斜角度が正である正方向のマークと、傾斜角度が負である負方向のマークが対になって設けられている。すなわち、2つの第1マーク310−1、310−2は非平行でX方向に間隔Pを空けて形成されている。また、同様、2つの第2マーク320−1、320−2は非平行でX方向に間隔Pを空けて形成されている。尚、誤差検出用マーク300に付した添え字の「−1」、「−2」はラインの向きの違いを示している。また、第1マーク310側の間隔Pと、第2マーク320側の間隔Pは等しい。
また、第1マーク310−1の上流側には基準マーク330が形成されている。基準マーク330はイエローのトナーにより印刷されており、トナー濃度は第1マーク310と同じく低い濃度に設定されている。これら基準マーク330、第1マーク310、第2マーク320はX方向について等間隔で形成されている。
本実施形態では、ベルト34上に印刷された誤差検出用マーク300をマークセンサ80で読み取ったデータから、図14に示すように、基準マーク330のX方向の中心位置から第1マーク310のX方向の中心位置までの基準距離Lx0と、第1マーク310のX方向の中心位置から第2マーク320のX方向の中心位置までの中心位置間距離Lxをそれぞれ算出する。尚、基準距離Lx0が、本発明の基準値の一例である。
この例では、第1マーク310と第2マーク320のトナー濃度に差を付けてあるので、両間で拡散反射成分の大きさに差が出来て、トナー濃度の低い第1マーク310では、図16に示すように拡散反射成分が少なく、トナー濃度の高い第2マーク320では、図16に示すように拡散反射成分が多くなる。
そのため、第1マーク310、第2マーク320の受光信号の波形歪に差が出来て、X方向の光軸のずれがある場合に、中心位置間距離Lxの長さが基準距離Lx0に対して変化(増減)する。そのため、基準距離Lx0に対する中心位置間距離Lxの差分ΔLxを検出することで、光軸ずれに起因するマークセンサ80のX方向の測定誤差Uxを検出することが出来る。
具体的には、プリンタ1は、基準距離Lx0に対する中心位置間距離Lxの差分ΔLxを、X方向の測定誤差Uxに換算する変換テーブルを設けている。そのため、誤差検出用マーク300をマークセンサ80で読み取ったデータから、基準距離Lx0、中心位置間距離Lxを検出した後、それらの差分ΔLxを求めれば、変換テーブルを用いてX方向の測定誤差Uxを検出することが出来る。
また、本実施形態では、ベルト34上に印刷された誤差検出用マーク300をマークセンサ80で読み取ったデータから、図14に示すように、第1マーク310−1の中心位置から第1マーク310−2の中心位置までの中心位置間距離Ly1と、第2マーク320−1の中心位置から第2マーク320−2の中心位置までの中心位置間距離Ly2を算出する。
上記したようにマークのトナー濃度に差を付けると、拡散反射成分の大きさに差が出来る。そのため、第1マーク310、第2マーク320の受光信号の波形歪に差が出来る結果、Y方向の光軸のずれがある場合に、図9に示すように正規の検出ラインLQに対する現実の検出ラインLQ1のずれ量Eが、第1マーク310側と第2マーク320側とで異なる状態になることから、中心位置間距離Ly1に対して中心位置間距離Ly2の長さが変化する。そのため、中心位置間距離Ly1に対する中心位置間距離Ly2の差分ΔLyを検出することで、Y方向の測定誤差Uyを検出することが出来る。
具体的には、プリンタ1は、中心位置間距離Ly1に対する中心位置間距離Ly2の差分ΔLyを、Y方向の測定誤差Uyに換算する変換テーブルを設けている。そのため、誤差検出用マーク300をマークセンサ80で読み取ったデータから、中心位置間距離Ly1、Ly2を検出した後、それらの差分ΔLyを求めれば、変換テーブルを用いてY方向の測定誤差Uyを検出することが出来る。
上記では中心位置間距離Lxを基準距離Lx0と比較する例を説明したが、基準距離Lx0に替えて実施形態1のように理論値を用いることが可能であり、その場合には、基準マーク330を廃止することが可能である。尚、基準マークを使用するメリットとしては、ローラ31やローラ32の周期変動に起因する誤差の影響を受け難くなるので、差分ΔLxや差分ΔLyを正確に求めることが出来る。
<実施形態4>
次に、本発明の実施形態4を図17によって説明する。実施形態4は、実施形態3に対して誤差検出用マーク300の構成を変更したものである。実施形態3では、トナー濃度に差を付けることによって、第1マーク310と第2マーク320の拡散反射成分の大きさに差をもたせた。実施形態4ではX方向の長さ、すなわちライン幅に差を付けることにより、第1マーク410と第2マーク420の拡散反射成分の大きさに差をもたせるようにしている。
実施形態4に適用される誤差検出用マーク400は、図17に示すように、第1マーク410と、第2マーク420から構成されている。第1マーク410と第2マーク420は、ブラックより拡散反射率の高いイエローのトナーにより印刷されたものである。第1マーク410と第2マーク420は、X方向に対して傾斜しており、ベルトの移動方向であるX方向に対して一定距離離間して形成されている。そして、第1マーク410と第2マーク420は、X方向のライン幅に差をつけてあり、第1マーク410側のライン幅が狭く、第2マーク420側のライン幅が広く設定されている。
また、第1マーク410と第2マーク420は、X方向に対して傾斜角度が正である正方向のラインと、傾斜角度が負である負方向のラインが対になって設けられている。誤差検出用マーク400に付した添え字の「−1」、「−2」はラインの向きの違いを示している。また、第1マーク410−1の上流側には基準マーク430が形成されている。基準マーク430はイエローのトナーにより印刷されており、ライン幅は第1マーク410と同じ幅に設定されている。これら基準マーク430、第1マーク410、第2マーク420は等間隔で形成されている。
上記のようにライン幅に差を付けた場合、トナー濃度に差を付けた場合と同じように拡散反射成分の大きさに差が出来るので、誤差検出用マーク400をマークセンサ80で読み取ったデータから、基準距離Lx0、中心位置間距離Lxを検出した後、それらの差分ΔLxを求めれば、変換テーブルを用いてX方向の測定誤差Uxを検出することが出来る。また、誤差検出用マーク400をマークセンサ80で読み取ったデータから、中心位置間距離Ly1、中心位置間距離Ly2を検出した後、それらの差分ΔLyを求めれば、変換テーブルを用いてY方向の測定誤差Uyを検出することが出来る。
<実施形態5>
次に、本発明の実施形態5を図18によって説明する。実施形態5の誤算検出用マーク500は、第1マーク510と、第2マーク520と、基準マーク530を含む構成としている。
第1マーク510は、ベルト表面にイエローのトナーにより印刷されたものである。一方、第2マーク520はブラックのトナーにより印刷されたマスク部521と、マスク部521上に形成されたマーク本体部525とからなる。マーク本体部525は、マスク部521よりもX方向の長さ、すなわちライン幅が短く、イエローのトナーにより印刷されたものである。
この場合、第1マーク510に対応する受光波形は拡散反射成分と正反射成分を合成した波形になるのに対して、第2マーク520に対応する受光波形は拡散反射成分だけになる。理由は、マスク部525により正反射成分がカットされるためである。
そのため、投光部81の光軸がX方向やY方向にずれている場合、第1マーク510と第2マーク520の受光信号の波形歪に差が出来る。以上のことから、実施形態3や実施形態4の場合と同様に、誤差検出用マーク500をマークセンサ80で読み取ったデータから、基準距離Lx0、中心位置間距離Lxを検出した後、それらの差分ΔLxを求めれば、変換テーブルを用いてX方向の測定誤差Uxを検出することが出来る。また、誤差検出用マーク500をマークセンサ80で読み取ったデータから、中心位置間距離Ly1、中心位置間距離Ly2を検出した後、それらの差分ΔLyを求めれば、変換テーブルを用いてY方向の測定誤差Uyを検出することが出来る。
<実施形態6>
次に、本発明の実施形態6を説明する。実施形態1では、マークセンサ80の測定誤差Ux、Uyをプリンタ1にて検出する例を説明した。実施形態6では、マークセンサ80の測定誤差Ux、Uyを、検査装置を用いて検出するものである。
検査装置はプリンタ1への組み付けの前段階で、マークセンサ80の良否を検査するものである。検査装置は、プリンタ1と同じ構造をしていて、機構部品として給紙部3、画像形成部5、搬送機構7、定着部9、ベルトクリーニング機構20を備え、それらを制御装置100により制御する構成となっている。検査装置は、搬送機構7を構成するベルト34の後方下部に検査対象となるマークセンサ80を取り付けることが出来る構造となっている。
検査装置はマークセンサ80の装着後、次の検査シーケンスを実行する。検査シーケンスは、図11の色ずれ補正シーケンスからS80以降の処理、すなわちS80〜S110までの処理を省略したものであり、図11のS10〜S70の処理より構成されている。
検査シーケンスの実行により、プリンタ1で色ずれ補正シーケンスを実行した場合と同様に、S50にてマークセンサ80によるレジマーク170の測定誤差Ux、Uyが算出される。そして、S60では算出した測定誤差Ux、Uyをそれぞれ上限値を比較する処理が行われる。これにより、マークセンサ80の適否を判断することが出来る。すなわち、測定誤差Ux、Uyのどちらかが上限値を超えている場合、マークセンサ80は「不良」とされ、測定誤差Ux、Uyの双方が上限値以下の場合には、マークセンサ80は「良品」と判定される。
マークセンサ80は「良品」と判定された場合に限り、プリンタ1に組み付けられ、「不良」と判定された場合には、廃棄される。このようにしておけば、プリンタ1に対して不良品のマークセンサ80が搭載されることを防止出来る。
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)上記実施形態では、用紙に画像を直接転写する直接転写方式のレーザプリンタを例示したが、本発明は、中間転写方式のプリンタに対して適用することが可能である。この場合、中間転写ベルトが担持体の役割を果たすので、レジマークや誤差検出用マークは画像形成部により中間転写ベルト上に印刷し、それをマークセンサで読み取る構成となる。
(2)上記実施形態では、誤差検出用マークをイエローのトナーを用いて印刷する例を示したが、マゼンタ、シアン等のトナーを用いて印刷するようにしてもよい。
1...プリンタ(本発明の「画像形成装置」の一例)
5...画像形成部(本発明の「形成部」の一例)
34...ベルト(本発明の「担持体」の一例)
41...感光ドラム
80...マークセンサ(本発明の「センサ」の一例)
81...投光部
85...受光部
100...制御装置
150...ROM
170...レジマーク(本発明の「補正用マーク」の一例)
200...誤差検出用マーク
210...第1マーク
220...第2マーク
221...マーク本体部
225...マスク部

Claims (21)

  1. 一方向に循環移動する担持体と、
    前記担持体上に現像剤を用いて画像を形成する形成部と、
    前記担持体上の照射位置に向けて光を照射する投光部と、前記投光部から前記担持体に向けて照射された光の反射光を受光し受光量に応じた受光信号を出力する受光部とを有するセンサと、
    制御装置と、を含み、
    前記制御装置は、
    第1マークと、前記第1マークに対して前記担持体の移動方向であるX方向に一定距離離れた第2マークとを含む画像である誤差検出用マークを、前記形成部を用いて前記担持体上の前記照射位置に形成する誤差検出用マーク形成処理と、
    前記担持体上の前記照射位置に形成された前記誤差検出用マークを、前記センサを用いて測定する第1測定処理と、
    前記第1測定処理にて測定した前記第1マークの測定値と前記第2マークの測定値とから前記センサの測定誤差を検出する測定誤差検出処理と、
    前記形成部を用いて補正用マークを前記照射位置に形成する補正用マーク形成処理と、
    前記担持体上の照射位置に形成された前記補正用マークを、前記センサを用いて測定する第2測定処理と、
    前記第2測定処理にて測定した前記補正用マークの測定値と、前記測定誤差検出処理にて検出した前記センサの測定誤差とに基づいて、画像を形成する位置のずれを補正する補正処理とを行い、
    前記第1マークは、
    拡散反射率の低いブラックの第1現像剤により形成され、
    前記第2マークは、
    ブラックに比べて拡散反射率の高い第2現像剤により形成されるマーク本体部と、
    前記第1現像剤を用いて形成されるマスク部であって、前記マーク本体部の前記X方向の両端部を被覆するマスク部と、を含む画像形成装置。
  2. 前記第1マークは、単一ラインから形成されるマークである請求項1に記載の画像形成装置。
  3. 前記第1マークは、2ラインから構成されるマークである請求項1に記載の画像形成装置。
  4. 前記形成部は、各現像剤に対応して前記担持体の移動方向に整列状に複数設けられ、
    前記第2現像剤に対応する第2形成部が、前記第1現像剤に対応する第1形成部に対して、前記担持体の移動方向の上流側に設けられている請求項1ないし請求項3のいずれか一項に記載の画像形成装置。
  5. 前記制御装置は、
    前記測定誤差検出処理にて、前記第1マークと前記第2マークの測定値に基づいて、前記第1マークにおける前記照射位置を横切る辺のうちX方向最上流辺とX方向最下流辺との間の距離の中心位置から前記第2マークにおける前記照射位置を横切る辺のうち前記マーク本体部上に形成される二辺の距離の中心位置までの中心位置間距離を算出し、算出した中心位置間距離と基準値との差に基づいて、前記センサによる前記補正用マークのX方向に関する測定誤差を決定する請求項1ないし請求項4のいずれか一項に記載の画像形成装置。
  6. 前記制御装置は、
    前記誤差検出用マーク形成処理にて、前記形成部を用いて前記担持体上の照射位置に、2つの非平行な第1マークをX方向に間隔Pを空けて形成し、2つの非平行な第2マークをX方向に間隔Pを空けて形成し、
    前記測定誤差検出処理にて、前記各第1マークの測定値に基づいて、各第1マークにおける前記照射位置を横切る辺のうちX方向最上流辺とX方向最下流辺との間の距離の中心位置をそれぞれ検出し、検出した各中心位置間の中心位置間距離を検出し、前記各第2マークの測定値に基づいて、各第2マークにおける前記照射位置を横切る辺のうち前記マーク本体部上に形成される二辺の距離の中心位置をそれぞれ検出し、検出した各中心位置間の中心位置間距離を検出し、
    前記第1マーク側の中心位置間距離と前記第2マーク側の中心位置間距離の差からY方向の測定誤差を検出する請求項1ないし請求項4のいずれか一項に記載の画像形成装置。
  7. 一方向に循環移動する担持体と、
    前記担持体上に現像剤を用いて画像を形成する形成部と、
    前記担持体上の照射位置に向けて光を照射する投光部と、前記投光部から前記担持体に向けて照射された光の反射光を受光し受光量に応じた受光信号を出力する受光部とを有するセンサと、
    制御装置と、を含み、
    前記制御装置は、
    第1マークと、前記第1マークに対して前記担持体の移動方向であるX方向に一定距離離れた第2マークとを含む画像である誤差検出用マークを、前記形成部を用いて前記担持体上の前記照射位置に形成する誤差検出用マーク形成処理と、
    前記担持体上の前記照射位置に形成された前記誤差検出用マークを、前記センサを用いて測定する第1測定処理と、
    前記第1測定処理にて測定した前記第1マークの測定値と前記第2マークの測定値とから前記センサの測定誤差を検出する測定誤差検出処理と、
    前記形成部を用いて補正用マークを前記照射位置に形成する補正用マーク形成処理と、
    前記担持体上の照射位置に形成された前記補正用マークを、前記センサを用いて測定する第2測定処理と、
    前記第2測定処理にて測定した前記補正用マークの測定値と、前記測定誤差検出処理にて検出した前記センサの測定誤差とに基づいて、画像を形成する位置のずれを補正する補正処理とを行い、
    前記第1マークは、
    ブラックの第1現像剤に比べて拡散反射率の高い第2現像剤により形成され、
    前記第2マークは、
    前記第1マークと濃度の異なる前記第2現像剤により形成される画像形成装置。
  8. 一方向に循環移動する担持体と、
    前記担持体上に現像剤を用いて画像を形成する形成部と、
    前記担持体上の照射位置に向けて光を照射する投光部と、前記投光部から前記担持体に向けて照射された光の反射光を受光し受光量に応じた受光信号を出力する受光部とを有するセンサと、
    制御装置と、を含み、
    前記制御装置は、
    第1マークと、前記第1マークに対して前記担持体の移動方向であるX方向に一定距離離れた第2マークとを含む画像である誤差検出用マークを、前記形成部を用いて前記担持体上の前記照射位置に形成する誤差検出用マーク形成処理と、
    前記担持体上の前記照射位置に形成された前記誤差検出用マークを、前記センサを用いて測定する第1測定処理と、
    前記第1測定処理にて測定した前記第1マークの測定値と前記第2マークの測定値とから前記センサの測定誤差を検出する測定誤差検出処理と、
    前記形成部を用いて補正用マークを前記照射位置に形成する補正用マーク形成処理と、
    前記担持体上の照射位置に形成された前記補正用マークを、前記センサを用いて測定する第2測定処理と、
    前記第2測定処理にて測定した前記補正用マークの測定値と、前記測定誤差検出処理にて検出した前記センサの測定誤差とに基づいて、画像を形成する位置のずれを補正する補正処理とを行い、
    前記第1マークは、
    ブラックの第1現像剤に比べて拡散反射率の高い第2現像剤により形成され、
    前記第2マークは、
    前記第1マークと前記X方向の長さの異なる前記第2現像剤により形成される画像形成装置。
  9. 一方向に循環移動する担持体と、
    前記担持体上に現像剤を用いて画像を形成する形成部と、
    前記担持体上の照射位置に向けて光を照射する投光部と、前記投光部から前記担持体に向けて照射された光の反射光を受光し受光量に応じた受光信号を出力する受光部とを有するセンサと、
    制御装置と、を含み、
    前記制御装置は、
    第1マークと、前記第1マークに対して前記担持体の移動方向であるX方向に一定距離離れた第2マークとを含む画像である誤差検出用マークを、前記形成部を用いて前記担持体上の前記照射位置に形成する誤差検出用マーク形成処理と、
    前記担持体上の前記照射位置に形成された前記誤差検出用マークを、前記センサを用いて測定する第1測定処理と、
    前記第1測定処理にて測定した前記第1マークの測定値と前記第2マークの測定値とから前記センサの測定誤差を検出する測定誤差検出処理と、
    前記形成部を用いて補正用マークを前記照射位置に形成する補正用マーク形成処理と、
    前記担持体上の照射位置に形成された前記補正用マークを、前記センサを用いて測定する第2測定処理と、
    前記第2測定処理にて測定した前記補正用マークの測定値と、前記測定誤差検出処理にて検出した前記センサの測定誤差とに基づいて、画像を形成する位置のずれを補正する補正処理とを行い、
    前記第1マークは、
    ブラックの第1現像剤に比べて拡散反射率の高い第2現像剤により形成され、
    前記第2マークは、
    前記第1現像剤により形成されるマスク部と、
    前記マスク部よりも前記X方向の長さが短く、かつ前記第2現像剤により前記マスク部上に形成される画像形成装置。
  10. 前記制御装置は、前記測定誤差検出処理にて、前記第1マークと前記第2マークの測定値に基づいて、前記第1マークのX方向の中心位置から、前記第2マークのX方向の中心位置までの中心位置間距離を算出し、算出した中心位置間距離と基準値との差に基づいて、前記センサによる前記補正用マークのX方向に関する測定誤差を決定する請求項7ないし請求項9のいずれか一項に記載の画像形成装置。
  11. 前記制御装置は、前記誤差検出用マーク形成処理にて、前記形成部を用いて前記担持体上の照射位置に、2つの非平行な第1マークをX方向に間隔Pを空けて形成し、2つの非平行な第2マークをX方向に間隔Pを空けて形成し、
    前記測定誤差検出処理にて、前記各第1マークの測定値に基づいて、各第1マークにおけるX方向の中心位置をそれぞれ検出し、検出した各中心位置間の中心位置間距離を検出し、前記各第2マークの測定値に基づいて、各第2マークのX方向の中心位置をそれぞれ検出し、検出した各中心位置間の中心位置間距離を検出し、前記第1マーク側の中心位置間距離と前記第2マーク側の中心位置間距離の差からY方向の測定誤差を検出する請求項7ないし請求項9のいずれか一項に記載の画像形成装置。
  12. 前記制御装置は、前記中心位置間距離のデータを、変換テーブルを用いて、前記補正用マークの測定誤差に変換する請求項5、請求項6、請求項10、請求項11のいずれか一項に記載の画像形成装置。
  13. 前記変換テーブルは、担持体表面における光の反射率に応じて段階的に設けられている請求項12に記載の画像形成装置。
  14. 前記担持体を循環駆動するローラ又は前記形成部を構成する感光ドラムの回転周期に合わせて前記誤差検出用マークを形成する請求項1ないし請求項13のいずれか一項に記載の画像形成装置。
  15. 前記制御装置は、前記センサの測定誤差が上限値以上である場合、エラーとする請求項1ないし請求項14のいずれか一項に記載の画像形成装置。
  16. 担持体上の照射位置に向けて光を照射する投光部と、前記投光部から前記担持体に向けて照射された光の反射光を受光し受光量に応じた受光信号を出力する受光部とを有するセンサの検査方法であって、
    第1マークと、前記第1マークに対して担持体の移動方向であるX方向に一定距離離れた第2マークとを含む画像である誤差検出用マークを、形成部を用いて前記担持体上の前記照射位置に形成する誤差検出用マーク形成ステップと、
    前記担持体上の前記照射位置に形成された前記誤差検出用マークを、前記センサを用いて測定する第1測定ステップと、
    前記第1測定ステップにて測定した前記第1マークの測定値と前記第2マークの測定値とから、前記センサの測定誤差を検出するステップと、を含み、
    前記第1マークは、
    ブラックの第1現像剤に比べて拡散反射率の高い第2現像剤により形成され、
    前記第2マークは、
    ブラックに比べて拡散反射率の高い第2現像剤により形成されるマーク本体部と、
    前記第1現像剤を用いて形成されるマスク部であって、前記マーク本体部の前記X方向の両端部を被覆するマスク部と、を含む検査方法。
  17. 担持体上の照射位置に向けて光を照射する投光部と、前記投光部から前記担持体に向けて照射された光の反射光を受光し受光量に応じた受光信号を出力する受光部とを有するセンサの検査方法であって、
    第1マークと、前記第1マークに対して担持体の移動方向であるX方向に一定距離離れた第2マークとを含む画像である誤差検出用マークを、形成部を用いて前記担持体上の前記照射位置に形成する誤差検出用マーク形成ステップと、
    前記担持体上の前記照射位置に形成された前記誤差検出用マークを、前記センサを用いて測定する第1測定ステップと、
    前記第1測定ステップにて測定した前記第1マークの測定値と前記第2マークの測定値とから、前記センサの測定誤差を検出するステップと、を含み、
    前記第1マークは、
    ブラックの第1現像剤に比べて拡散反射率の高い第2現像剤により形成され、
    前記第2マークは、
    前記第1マークと濃度の異なる前記第2現像剤により形成される検査方法。
  18. 担持体上の照射位置に向けて光を照射する投光部と、前記投光部から前記担持体に向けて照射された光の反射光を受光し受光量に応じた受光信号を出力する受光部とを有するセンサの検査方法であって、
    第1マークと、前記第1マークに対して担持体の移動方向であるX方向に一定距離離れた第2マークとを含む画像である誤差検出用マークを、形成部を用いて前記担持体上の前記照射位置に形成する誤差検出用マーク形成ステップと、
    前記担持体上の前記照射位置に形成された前記誤差検出用マークを、前記センサを用いて測定する第1測定ステップと、
    前記第1測定ステップにて測定した前記第1マークの測定値と前記第2マークの測定値とから、前記センサの測定誤差を検出するステップと、を含み、
    前記第1マークは、
    ブラックの第1現像剤に比べて拡散反射率の高い第2現像剤により形成され、
    前記第2マークは、
    前記第1マークと前記X方向の長さの異なる前記第2現像剤により形成される検査方法。
  19. 担持体上の照射位置に向けて光を照射する投光部と、前記投光部から前記担持体に向けて照射された光の反射光を受光し受光量に応じた受光信号を出力する受光部とを有するセンサの検査方法であって、
    第1マークと、前記第1マークに対して担持体の移動方向であるX方向に一定距離離れた第2マークとを含む画像である誤差検出用マークを、形成部を用いて前記担持体上の前記照射位置に形成する誤差検出用マーク形成ステップと、
    前記担持体上の前記照射位置に形成された前記誤差検出用マークを、前記センサを用いて測定する第1測定ステップと、
    前記第1測定ステップにて測定した前記第1マークの測定値と前記第2マークの測定値とから、前記センサの測定誤差を検出するステップと、を含み、
    前記第1マークは、
    ブラックの第1現像剤に比べて拡散反射率の高い第2現像剤により形成され、
    前記第2マークは、
    前記第1現像剤により形成されるマスク部と、
    前記マスク部よりも前記X方向の長さが短く、かつ前記第2現像剤により前記マスク部上に形成される検査方法。
  20. 一方向に循環移動する担持体と、
    前記担持体上に現像剤を用いて画像を形成する形成部と、
    前記担持体上の照射位置に向けて光を照射する投光部と、前記投光部から前記担持体に向けて照射された光の反射光を受光し受光量に応じた受光信号を出力する受光部とを有するセンサと、
    制御装置と、を含み、
    前記制御装置は、
    第1マークと、前記第1マークに対して前記担持体の移動方向であるX方向に一定距離離れた第2マークとを含む画像である誤差検出用マークを、前記形成部を用いて前記担持体上の前記照射位置に形成する誤差検出用マーク形成処理と、
    前記担持体上の前記照射位置に形成された前記誤差検出用マークを、前記センサを用いて測定する第1測定処理と、
    前記第1測定処理にて測定した前記第1マークの測定値と前記第2マークの測定値とから前記センサの測定誤差を検出する測定誤差検出処理と、
    前記形成部を用いて補正用マークを前記照射位置に形成する補正用マーク形成処理と、
    前記担持体上の照射位置に形成された前記補正用マークを、前記センサを用いて測定する第2測定処理と、
    前記第2測定処理にて測定した前記補正用マークの測定値と、前記測定誤差検出処理にて検出した前記センサの測定誤差とに基づいて、画像を形成する位置のずれを補正する補正処理とを行い、
    前記測定誤差検出処理にて、前記第1マークと前記第2マークの測定値に基づいて、前記第1マークのX方向の中心位置から、前記第2マークのX方向の中心位置までの中心位置間距離を算出し、算出した前記中心位置間距離と基準値との差に基づいて、前記センサによる前記補正用マークのX方向に関する測定誤差を決定する画像形成装置。
  21. 担持体上の照射位置に向けて光を照射する投光部と、前記投光部から前記担持体に向けて照射された光の反射光を受光し受光量に応じた受光信号を出力する受光部とを有するセンサの検査方法であって、
    第1マークと、前記第1マークに対して担持体の移動方向であるX方向に一定距離離れた第2マークとを含む画像である誤差検出用マークを、形成部を用いて前記担持体上の前記照射位置に形成する誤差検出用マーク形成ステップと、
    前記担持体上の前記照射位置に形成された前記誤差検出用マークを、前記センサを用いて測定する第1測定ステップと、
    前記第1測定ステップにて測定した前記第1マークの測定値と前記第2マークの測定値に基づいて、前記第1マークのX方向の中心位置から、前記第2マークのX方向の中心位置までの中心位置間距離を算出し、算出した中心位置間距離と基準値との差に基づいて、前記センサによる前記補正用マークのX方向に関する測定誤差を決定するステップとを含む検査方法
JP2012178424A 2012-08-10 2012-08-10 画像形成装置、検査装置、及び検査方法 Active JP6003381B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012178424A JP6003381B2 (ja) 2012-08-10 2012-08-10 画像形成装置、検査装置、及び検査方法
US13/963,481 US9383194B2 (en) 2012-08-10 2013-08-09 Image forming apparatus, inspection apparatus, and inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012178424A JP6003381B2 (ja) 2012-08-10 2012-08-10 画像形成装置、検査装置、及び検査方法

Publications (2)

Publication Number Publication Date
JP2014035535A JP2014035535A (ja) 2014-02-24
JP6003381B2 true JP6003381B2 (ja) 2016-10-05

Family

ID=50065963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012178424A Active JP6003381B2 (ja) 2012-08-10 2012-08-10 画像形成装置、検査装置、及び検査方法

Country Status (2)

Country Link
US (1) US9383194B2 (ja)
JP (1) JP6003381B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5991246B2 (ja) * 2013-03-25 2016-09-14 ブラザー工業株式会社 センサ装置、同センサ装置を備えた画像形成装置、及び湿度検出方法
JP6370142B2 (ja) 2014-07-23 2018-08-08 株式会社ブリヂストン 重なり量測定装置及び重なり量測定方法
WO2016045743A1 (en) * 2014-09-26 2016-03-31 Hewlett-Packard Indigo B.V. Visualizing image registration information
JP6509080B2 (ja) * 2015-08-31 2019-05-08 株式会社沖データ 画像形成装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4326859B2 (ja) * 2003-07-30 2009-09-09 京セラミタ株式会社 画像形成装置
JP2006215524A (ja) * 2004-12-01 2006-08-17 Ricoh Co Ltd 画像形成装置、画像形成方法、およびその方法をコンピュータに実行させるプログラム
JP4579725B2 (ja) 2005-03-09 2010-11-10 株式会社リコー 位置ずれ補正方法及びカラー画像形成装置
JP4730006B2 (ja) 2005-07-19 2011-07-20 パナソニック株式会社 カラー画像形成装置
JP2008180946A (ja) 2007-01-25 2008-08-07 Ricoh Co Ltd 画像形成方法並びに画像形成装置、画像形成装置用のプログラム
JP4501082B2 (ja) * 2007-05-25 2010-07-14 ブラザー工業株式会社 画像形成装置
JP2009122437A (ja) * 2007-11-15 2009-06-04 Kyocera Mita Corp 画像形成装置における色ズレ検出方法及び画像形成装置
JP2009230111A (ja) * 2008-02-25 2009-10-08 Ricoh Co Ltd 画像形成装置、位置ズレ補正制御方法、及び位置ズレ補正制御プログラム
JP2009237560A (ja) * 2008-03-03 2009-10-15 Ricoh Co Ltd 画像形成装置
JP5146034B2 (ja) 2008-03-19 2013-02-20 株式会社リコー カラー画像形成装置
JP2010049031A (ja) 2008-08-21 2010-03-04 Kyocera Mita Corp 画像形成装置
JP5145189B2 (ja) * 2008-10-10 2013-02-13 京セラドキュメントソリューションズ株式会社 画像形成装置
KR101572164B1 (ko) * 2009-01-12 2015-11-26 삼성전자 주식회사 화상형성장치 및 그 컬러정렬방법
JP2010217556A (ja) 2009-03-17 2010-09-30 Ricoh Co Ltd カラー画像形成装置、色ずれ補正方法及びプログラム
JP2010217787A (ja) * 2009-03-18 2010-09-30 Ricoh Co Ltd カラー画像形成装置、画像形成方法およびプログラム
JP5229144B2 (ja) * 2009-07-17 2013-07-03 株式会社リコー 画像形成装置、画像形成方法およびプログラム
JP2012042884A (ja) 2010-08-23 2012-03-01 Fuji Xerox Co Ltd 画像検出装置及びこれを用いた画像形成装置
JP2012242616A (ja) * 2011-05-19 2012-12-10 Ricoh Co Ltd 画像形成装置及び画像形成方法

Also Published As

Publication number Publication date
US9383194B2 (en) 2016-07-05
JP2014035535A (ja) 2014-02-24
US20140043601A1 (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP4689292B2 (ja) 画像形成装置、および画像形成方法
CN103389636B (zh) 用于执行配准和浓度校正控制的图像形成装置
JP2010244029A (ja) 位置ずれ補正方法及び位置ずれ補正装置、並びにそれを用いた画像形成装置
US9116489B2 (en) Image forming apparatus for storing sampling values and method therefor
JP6003381B2 (ja) 画像形成装置、検査装置、及び検査方法
JP2010217325A (ja) 画像形成装置及び位置ずれ補正方法
US8803935B2 (en) Image forming method
JP2010181570A (ja) 画像形成装置、位置ずれ補正方法、位置ずれ補正プログラム、及び記録媒体
US8412063B2 (en) Image forming apparatus that performs image stabilization control
JP5262766B2 (ja) 画像形成装置
JP2009139575A (ja) 光量検出装置、色ずれ量検出装置、及び画像濃度検出装置
JP5145189B2 (ja) 画像形成装置
JP2010217562A (ja) 画像形成装置、位置ずれ補正方法、及び位置ずれ補正プログラム
JP5365439B2 (ja) 画像形成装置、および色ずれ補正方法
JP2007079605A (ja) 位置合わせパターン検知センサ・画像形成装置・色ずれ検知方法・色ずれ補正方法
JP2006084565A (ja) カラー画像形成装置
JP5636780B2 (ja) 画像形成装置
JP2009169397A (ja) 位置ずれ量検出装置、位置ずれ量検出方法、位置ずれ量検出プログラム
JP2010097120A (ja) 画像形成装置
JP5380824B2 (ja) 駆動制御装置及び画像形成装置
JP2004177809A (ja) 位置合わせパターン検知センサ・画像形成装置・色ずれ検知方法・色ずれ補正方法
JP2004264556A (ja) 位置ずれ量検出方法、位置ずれ量検出装置および画像形成装置
JP2012027138A (ja) 画像形成装置、およびプログラム
JP5375104B2 (ja) 位置ずれ量算出装置、位置ずれ量算出方法、位置ずれ量算出プログラム
JP2010217728A (ja) 光走査装置及び画像形成装置

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20140408

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 6003381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150