JP5775947B2 - 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム - Google Patents

半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム Download PDF

Info

Publication number
JP5775947B2
JP5775947B2 JP2014070517A JP2014070517A JP5775947B2 JP 5775947 B2 JP5775947 B2 JP 5775947B2 JP 2014070517 A JP2014070517 A JP 2014070517A JP 2014070517 A JP2014070517 A JP 2014070517A JP 5775947 B2 JP5775947 B2 JP 5775947B2
Authority
JP
Japan
Prior art keywords
gas
layer
film
oxygen
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014070517A
Other languages
English (en)
Other versions
JP2014168070A (ja
Inventor
太田 陽介
陽介 太田
義朗 ▲ひろせ▼
義朗 ▲ひろせ▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2014070517A priority Critical patent/JP5775947B2/ja
Publication of JP2014168070A publication Critical patent/JP2014168070A/ja
Application granted granted Critical
Publication of JP5775947B2 publication Critical patent/JP5775947B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment

Description

この発明は、基板上に薄膜を形成する工程を含む半導体装置の製造方法、基板処理方法および基板処理装置に関するものである。
ゲート電極のサイドウォールスペーサ(SWS)等を構成する絶縁膜等の薄膜には、フッ化水素(HF)に対する高い耐性と低誘電率とが求められる。そのため、絶縁膜として、シリコン窒化膜(SiN膜)に炭素(C)を添加したシリコン炭窒化膜(SiCN膜)や、更に酸素(O)を添加したシリコン酸炭窒化膜(SiOCN膜)等が用いられている。これらの絶縁膜は、高いステップカバレッジ特性が求められることから、処理ガスを同時に供給する一般的なCVD(Chemical Vapor Deposition)法ではなく、処理ガスを交互に供給するALD(Atomic Layer Deposition)法等の交互供給法によって形成されることが多い。
上述のSiCN膜やSiOCN膜等の絶縁膜について、HFに対する耐性を更に向上させたり、誘電率を更に低下させたりするには、膜中の窒素濃度を減少させ、炭素濃度を増加させたり、酸素濃度を増加させたりすることが有効である。しかしながら、従来の交互供給法では、例えば炭素濃度が窒素濃度を超えるような膜を形成することは困難であった。また、サイドウォールスペーサ等を構成する絶縁膜を形成する際には成膜温度の低温化が求められるが、従来の交互供給法における成膜温度は600℃前後であり、例えば550℃以下の低温領域で上述の絶縁膜等の薄膜を形成することは困難であった。
従って本発明の目的は、低温領域において良質な薄膜を形成することができる半導体装置の製造方法、基板処理方法および基板処理装置を提供することにある。
本発明の一態様によれば、
処理室内の基板に対して所定元素およびハロゲン基を含む第1の原料を供給する工程と、前記処理室内の前記基板に対して前記所定元素およびアミノ基を含む第2の原料を供給する工程と、を交互に所定回数行うことで、前記基板上に、前記所定元素、窒素および炭素を含む第1の層を形成する工程と、
前記処理室内の前記基板に対して酸素含有ガス、または、酸素含有ガスおよび水素含有ガスを供給することで、前記第1の層を酸化して、第2の層を形成する工程と、
を交互に所定回数行うことで、前記基板上に、前記所定元素を含む酸炭窒化膜、酸炭化膜または酸化膜を形成する工程を有する半導体装置の製造方法が提供される。
本発明の他の態様によれば、
処理室内の基板に対して所定元素およびハロゲン基を含む第1の原料を供給する工程と、前記処理室内の前記基板に対して前記所定元素およびアミノ基を含む第2の原料を供給する工程と、を交互に所定回数行うことで、前記基板上に、前記所定元素、窒素および炭素を含む第1の層を形成する工程と、
前記処理室内の前記基板に対して酸素含有ガス、または、酸素含有ガスおよび水素含有ガスを供給することで、前記第1の層を酸化して、第2の層を形成する工程と、
を交互に所定回数行うことで、前記基板上に、前記所定元素を含む酸炭窒化膜、酸炭化膜または酸化膜を形成する工程を有する基板処理方法が提供される。
本発明のさらに他の態様によれば、
基板を収容する処理室と、
前記処理室内の基板に対して所定元素およびハロゲン基を含む第1の原料を供給する第1原料供給系と、
前記処理室内の基板に対して前記所定元素およびアミノ基を含む第2の原料を供給する第2原料供給系と、
前記処理室内の基板に対して酸素含有ガス、または、酸素含有ガスおよび水素含有ガスを供給する反応ガス供給系と、
前記処理室内の基板に対して前記第1の原料を供給する処理と、前記処理室内の前記基板に対して前記第2の原料を供給する処理と、を交互に所定回数行うことで、前記基板上に、前記所定元素、窒素および炭素を含む第1の層を形成する処理と、前記処理室内の前記基板に対して前記酸素含有ガス、または、前記酸素含有ガスおよび前記水素含有ガスを供給することで、前記第1の層を酸化して、第2の層を形成する処理と、を交互に所定回数行うことで、前記基板上に、前記所定元素を含む酸炭窒化膜、酸炭化膜または酸化膜を形成するように、前記第1原料供給系、前記第2原料供給系および前記反応ガス供給系を制御する制御部と、
を有する基板処理装置が提供される。
本発明によれば、低温領域において良質な薄膜を形成する半導体装置の製造方法、基板処理方法および基板処理装置を提供できる。
本実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。 本実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を図1のA−A線断面図で示す図である。 本実施形態の第1シーケンスにおける成膜フローを示す図である。 本実施形態の第2シーケンスにおける成膜フローを示す図である。 本実施形態の第1シーケンスにおけるガス供給のタイミングを示す図である。 本実施形態の第2シーケンスにおけるガス供給のタイミングを示す図である。 本実施形態の第3シーケンスにおけるガス供給のタイミングを示す図である。 本実施形態の第4シーケンスにおけるガス供給のタイミングを示す図である。 他の実施形態におけるガス供給のタイミングを示す図である。 他の実施形態におけるガス供給のタイミングを示す図である。 本発明の実施例1に係るXRFの測定結果を示すグラフ図である。 本発明の実施例2に係るXPSスペクトルの測定結果を示すグラフ図である。 本発明の実施例2に係るエッチングレートの測定結果を示すグラフ図である。 本発明の実施例2に係る比誘電率の測定結果を示すグラフ図である。 本発明の実施例3に係るO濃度、C濃度及びN濃度の測定結果を示すグラフ図である。 本実施形態で好適に用いられる基板処理装置のコントローラの概略構成図である。
以下に本発明の実施の形態を図面に基づいて説明する。
図1は、本実施の形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉202部分を縦断面図で示しており、図2は本実施の形態で好適に用いられる縦型処理炉の概略構成図であり、処理炉202部分を図1のA−A線断面図で示している。
図1に示されているように、処理炉202は加熱手段(加熱機構)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。なお、ヒータ207は、後述するようにガスを熱で活性化させる活性化機構としても機能する。
ヒータ207の内側には、ヒータ207と同心円状に反応容器(処理容器)を構成する反応管203が配設されている。反応管203は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の筒中空部には処理室201が形成されており、基板としてのウエハ200を後述するボート217によって水平姿勢で垂直方向に多段に整列した状態で収容可能に構成されている。
処理室201内には、第1ノズル249a、第2ノズル249b、第3ノズル249cが反応管203の下部を貫通するように設けられている。第1ノズル249a、第2ノズル249b、第3ノズル249cには、第1ガス供給管232a、第2ガス供給管232b、第3ガス供給管232cが、それぞれ接続されている。また、第3ガス供給管232cには、第4ガス供給管232dが接続されている。このように、反応管203には3本のノズル249a、249b、249cと、4本のガス供給管232a、232b、232c、232dが設けられており、処理室201内へ複数種類、ここでは4種類のガスを供給することができるように構成されている。
なお、反応管203の下方に、反応管203を支持する金属製のマニホールドを設け、各ノズルを、この金属製のマニホールドの側壁を貫通するように設けるようにしてもよい。この場合、この金属製のマニホールドに、さらに後述する排気管231を設けるようにしてもよい。なお、この場合であっても、排気管231を金属製のマニホールドではなく、反応管203の下部に設けるようにしてもよい。このように、処理炉202の炉口部を金属製とし、この金属製の炉口部にノズル等を取り付けるようにしてもよい。
第1ガス供給管232aには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a、及び開閉弁であるバルブ243aが設けられている。また、第1ガス供給管232aのバルブ243aよりも下流側には、第1不活性ガス供給管232eが接続されている。この第1不活性ガス供給管232eには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ241e、及び開閉弁であるバルブ243eが設けられている。また、第1ガス供給管232aの先端部には、上述の第1ノズル249aが接続されている。第1ノズル249aは、反応管203の内壁とウエハ200との間における円弧状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるように設けられている。すなわち、第1ノズル249aは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。第1ノズル249aはL字型のロングノズルとして構成されており、その水平部は反応管203の下部側壁を貫通するように設けられており、その垂直部は少なくともウエハ配列領域の一端側から他端側に向かって立ち上がるように設けられている。第1ノズル249aの側面にはガスを供給するガス供給孔250aが設けられている。ガス供給孔250aは反応管203の中心を向くように開口している。このガス供給孔250aは、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。主に、第1ガス供給管232a、マスフローコントローラ241a、バルブ243a、第1ノズル249aにより第1ガス供給系が構成される。また、主に、第1不活性ガス供給管232e、マスフローコントローラ241e、バルブ243eにより第1不活性ガス供給系が構成される。
第2ガス供給管232bには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241b、及び開閉弁であるバルブ243bが設けられている。また、第2ガス供給管232bのバルブ243bよりも下流側には、第2不活性ガス供給管232fが接続されている。この第2不活性ガス供給管232fには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ241f、及び開閉弁であるバルブ243fが設けられている。また、第2ガス供給管232bの先端部には、上述の第2ノズル249bが接続されている。第2ノズル249bは、反応管203の内壁とウエハ200との間における円弧状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるように設けられている。すなわち、第2ノズル249bは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。第2ノズル249bはL字型のロングノズルとして構成されており、その水平部は反応管203の下部側壁を貫通するように設けられており、その垂直部は少なくともウエハ配列領域の一端側から他端側に向かって立ち上がるように設けられている。第2ノズル249bの側面にはガスを供給するガス供給孔250bが設けられている。ガス供給孔250bは反応管203の中心を向くように開口している。このガス供給孔250bは、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。主に、第2ガス供給管232b、マスフローコントローラ241b、バルブ243b、第2ノズル249bにより第2ガス供給系が構成される。また、主に、第2不活性ガス供給管232f、マスフローコントローラ241f、バルブ243fにより第2不活性ガス供給系が構成される。
第3ガス供給管232cには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241c、及び開閉弁であるバルブ243cが設けられている。また、第3ガス供給管232cのバルブ243cよりも下流側には、第4ガス供給管232dが接続されている。この第4ガス供給管232dには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ241d、及び開閉弁であるバルブ243dが設けられている。また、第3ガス供給管232cにおける第4ガス供給管232dとの接続箇所よりも下流側には、第3不活性ガス供給管232gが接続されている。この第3不活性ガス供給管232gには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ241g、及び開閉弁であるバルブ243gが設けられている。また、第3ガス供給管232cの先端部には、上述の第3ノズル249cが接続されている。第3ノズル249cは、反応管203の内壁とウエハ200との間における円弧状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるように設けられている。すなわち、第3ノズル249cは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。第3ノズル249cはL字型のロングノズルとして構成されており、その水平部は反応管203の下部側壁を貫通するように設けられており、その垂直部は少なくともウエハ配列領域の一端側から他端側に向かって立ち上がるように設けられている。第3ノズル249cの側面にはガスを供給するガス供給孔250cが設けられている。ガス供給孔250cは反応管203の中心を向くように開口している。このガス供給孔250cは、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。主に、第3ガス供給管232c、マスフローコントローラ241c、バルブ243c、第3ノズル249cにより第3ガス供給系が構成される。また、主に、第4ガス供給管232d、マスフローコントローラ241d、バルブ243d、第3ノズル249cにより、第4ガス供給系が構成される。また、主に、第3不活性ガス供給管232g、マスフローコントローラ241g、バルブ243gにより、第3不活性ガス供給系が構成される。
このように、本実施形態におけるガス供給の方法は、反応管203の内壁と、積載された複数枚のウエハ200の端部とで定義される円弧状の縦長の空間内に配置したノズル249a,249b,249cを経由してガスを搬送し、ノズル249a,249b,249cにそれぞれ開口されたガス供給孔250a,250b,250cからウエハ200の近傍で初めて反応管203内にガスを噴出させており、反応管203内におけるガスの主たる流れをウエハ200の表面と平行な方向、すなわち水平方向としている。このような構成とすることで、各ウエハ200に均一にガスを供給でき、各ウエハ200に形成される薄膜の膜厚を均一にできる効果がある。なお、反応後の残ガスは、排気口、すなわち、後述する排気管231の方向に向かって流れるが、この残ガスの流れの方向は、排気口の位置によって適宜特定され、垂直方向に限ったものではない。
第1ガス供給管232aからは、所定元素およびハロゲン基を含む第1の原料として、例えば、少なくともシリコン(Si)元素とクロロ基とを含む第1の原料ガスであるクロロシラン系原料ガスが、マスフローコントローラ241a、バルブ243a、第1ノズル249aを介して処理室201内に供給される。ここで、クロロシラン系原料とは、クロロ基を有するシラン系原料のことであり、少なくともシリコン(Si)及び塩素(Cl)を含む原料のことである。クロロシラン系原料ガスとしては、例えばヘキサクロロジシラン(SiCl、略称:HCDS)ガスを用いることができる。なお、HCDSのように常温常圧下で液体状態である液体原料を用いる場合は、液体原料を気化器やバブラ等の気化システムにより気化して、原料ガス(HCDSガス)として供給することとなる。
第2ガス供給管232bからは、所定元素およびアミノ基(アミン基)を含む第2の原料として、例えば、少なくともシリコン(Si)元素とアミノ基とを含む第2の原料ガスであるアミノシラン系原料ガスが、マスフローコントローラ241b、バルブ243b、第2ノズル249bを介して処理室201内に供給される。ここで、アミノシラン系原料とは、アミノ基を有するシラン系原料(メチル基やエチル基をも含有するシラン系原料でもある)のことであり、少なくともシリコン(Si)、窒素(N)及び炭素(C)を含む原料のことである。アミノシラン系原料ガスとしては、例えばトリスジメチルアミノシラン(Si[N(CHH、略称:3DMAS)ガスを用いることができる。なお、3DMASのように常温常圧下で液体状態である液体原料を用いる場合は、液体原料を気化器やバブラ等の気化システムにより気化して、原料ガス(3DMASガス)として供給することとなる。
第3ガス供給管232cからは、例えば、酸素(O)を含むガス(酸素含有ガス)が、マスフローコントローラ241c、バルブ243c、第3ノズル249cを介して処理室201内に供給される。酸素含有ガスとしては、例えば酸素(O)ガスを用いることができる。
第4ガス供給管232dからは、例えば、水素(H)を含むガス(水素含有ガス)が、マスフローコントローラ241d、バルブ243d、第3ガス供給管232c、第3ノズル249cを介して処理室201内に供給される。水素含有ガスとしては、例えば水素(H)ガスを用いることができる。
不活性ガス供給管232e、232f、232gからは、例えば窒素(N)ガスが、それぞれマスフローコントローラ241e、241f、241g、バルブ243e、243f、243g、ガス供給管232a、232b、232c、ガスノズル249a、249b、249cを介して処理室201内に供給される。
なお、例えば各ガス供給管から上述のようなガスをそれぞれ流す場合、第1ガス供給系により、所定元素およびハロゲン基を含む第1の原料を供給する第1原料供給系、すなわち第1原料ガス供給系としてのクロロシラン系原料ガス供給系が構成される。また、第2ガス供給系により、所定元素およびアミノ基を含む第2の原料を供給する第2原料供給系、すなわち第2原料ガス供給系としてのアミノシラン系原料ガス供給系が構成される。なお、クロロシラン系原料ガス供給系、アミノシラン系原料ガス供給系を、それぞれ、単に、クロロシラン系原料供給系、アミノシラン系原料供給系とも称する。また、第3ガス供給系により酸素含有ガス供給系が構成される。また、第4ガス供給系により水素含有ガス供給系が構成される。なお、酸素含有ガス、水素含有ガスを総称して反応ガスと称する場合、酸素含有ガス供給系、水素含有ガス供給系により反応ガス供給系が構成される。
反応管203には、処理室201内の雰囲気を排気する排気管231が設けられている。図2に示すように、横断面視において、排気管231は、反応管203の第1ノズル249aのガス供給孔250a、第2ノズル249bのガス供給孔250b、および、第3ノズル249cのガス供給孔250cが設けられる側と対向する側、すなわちウエハ200を挟んでガス供給孔250a,250b,250cとは反対側に設けられている。また、図1に示すように縦断面視において、排気管231は、ガス供給孔250a,250b,250cが設けられる箇所よりも下方に設けられている。この構成により、ガス供給孔250a,250b,250cから処理室201内のウエハ200の近傍に供給されたガスは、水平方向、すなわちウエハ200の表面と平行な方向に向かって流れた後、下方に向かって流れ、排気管231より排気されることとなる。処理室201内におけるガスの主たる流れが水平方向へ向かう流れとなるのは上述の通りである。
排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。主に、排気管231、APCバルブ244、圧力センサ245により排気系が構成される。なお、真空ポンプ246を排気系に含めて考えてもよい。なお、APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で弁開度を調節することで、処理室201内の圧力を調整することができるように構成されているバルブである。排気系は、真空ポンプ246を作動させつつ、圧力センサ245により検出された圧力情報に基づいてAPCバルブ244の弁の開度を調節することにより、処理室201内の圧力が所定の圧力(真空度)となるよう真空排気し得るように構成されている。
反応管203の下方には、反応管203の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は反応管203の下端に垂直方向下側から当接されるようになっている。シールキャップ219は例えばステンレス等の金属からなり、円盤状に形成されている。シールキャップ219の上面には反応管203の下端と当接するシール部材としてのOリング220が設けられている。シールキャップ219の処理室201と反対側には、ボートを回転させる回転機構267が設置されている。回転機構267の回転軸255はシールキャップ219を貫通して、後述するボート217に接続されており、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は反応管203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されており、これによりボート217を処理室201内外に対し搬入搬出することが可能となっている。すなわち、ボートエレベータ115は、ボート217すなわちウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成される。
基板支持具としてのボート217は、例えば石英や炭化珪素等の耐熱性材料からなり、複数枚のウエハ200を水平姿勢でかつ互いに中心を揃えた状態で整列させて多段に支持するように構成されている。なおボート217の下部には、例えば石英や炭化珪素等の耐熱性材料からなる断熱部材218が設けられており、ヒータ207からの熱がシールキャップ219側に伝わりにくくなるよう構成されている。なお、断熱部材218は、石英や炭化珪素等の耐熱性材料からなる複数枚の断熱板と、これらを水平姿勢で多段に支持する断熱板ホルダとにより構成してもよい。
反応管203内には温度検出器としての温度センサ263が設置されており、温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。温度センサ263は、ノズル249a、249b、249cと同様にL字型に構成されており、反応管203の内壁に沿って設けられている。
図16に示されているように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件などが記載されたプロセスレシピ等が、読み出し可能に格納されている。なお、プロセスレシピは、後述する基板処理工程における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単にプログラムともいう。なお、本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。また、RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
I/Oポート121dは、上述のマスフローコントローラ241a,241b,241c,241d,241e,241f,241g、バルブ243a,243b,243c,243d,243e,243f,243g、圧力センサ245、APCバルブ244、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115等に接続されている。
CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからプロセスレシピを読み出すように構成されている。そして、CPU121aは、読み出したプロセスレシピの内容に沿うように、マスフローコントローラ241a,241b,241c,241d,241e,241f,241gによる各種ガスの流量調整動作、バルブ243a,243b,243c,243d,243e,243f,243gの開閉動作、APCバルブ244の開閉動作及びAPCバルブ244による圧力センサ245に基づく圧力調整動作、温度センサ263に基づくヒータ207の温度調整動作、真空ポンプ246の起動および停止、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作等を制御するように構成されている。
なお、コントローラ121は、専用のコンピュータとして構成されている場合に限らず、汎用のコンピュータとして構成されていてもよい。例えば、上述のプログラムを格納した外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123を用意し、係る外部記憶装置123を用いて汎用のコンピュータにプログラムをインストールすること等により、本実施形態に係るコントローラ121を構成することができる。なお、コンピュータにプログラムを供給するための手段は、外部記憶装置123を介して供給する場合に限らない。例えば、インターネットや専用回線等の通信手段を用い、外部記憶装置123を介さずにプログラムを供給するようにしてもよい。なお、記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に記録媒体ともいう。なお、本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。
次に、上述の基板処理装置の処理炉を用いて半導体装置(デバイス)の製造工程の一工程として、基板上に絶縁膜を成膜するシーケンス例について説明する。尚、以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
なお、従来のCVD(Chemical Vapor Deposition)法やALD(Atomic Layer Deposition)法では、例えば、CVD法の場合、形成する膜を構成する複数の元素を含む複数種類のガスを同時に供給し、また、ALD法の場合、形成する膜を構成する複数の元素を含む複数種類のガスを交互に供給する。そして、ガス供給時のガス供給流量、ガス供給時間、処理温度などの供給条件を制御することによりSiO膜やSi膜を形成する。それらの技術では、例えばSiO膜を形成する場合、膜の組成比が化学量論組成であるO/Si≒2となるように、また例えばSi膜を形成する場合、膜の組成比が化学量論組成であるN/Si≒1.33となるようにすることを目的として、供給条件を制御する。
これに対し、本発明の実施形態では、形成する膜の組成比が化学量論組成、または、化学量論組成とは異なる所定の組成比となるようにすることを目的として、供給条件を制御する。例えば、形成する膜を構成する複数の元素のうち少なくとも一つの元素が他の元素よりも化学量論組成に対し過剰となるようにすることを目的として、供給条件を制御する。以下、形成する膜を構成する複数の元素の比率、すなわち、膜の組成比を制御しつつ成膜を行うシーケンス例について説明する。
本実施形態の成膜シーケンスでは、
処理室201内のウエハ200に対して、クロロシラン系原料とアミノシラン系原料とを交互に供給することで、ウエハ200上にシリコン、窒素および炭素を含む第1の層を形成する工程と、
処理室201内のウエハ200に対して、酸素含有ガスを供給することで、第1の層を酸化して、第2の層としてシリコン酸炭窒化層またはシリコン酸炭化層を形成する工程と、
を交互に行うことで、ウエハ200上に、所定組成及び所定膜厚のシリコン酸炭窒化膜またはシリコン酸炭化膜を形成する。
ここで、「クロロシラン系原料とアミノシラン系原料とを交互に供給する」とは、クロロシラン系原料およびアミノシラン系原料のうちの一方の原料を供給し、その後、他方の原料を供給し、これを1セットとした場合、このセットを1回行う場合と、このセットを複数回繰り返す場合の両方を含む。すなわち、このセットを1回以上(所定回数)行うことを意味する。なお、このセットを1回行うケースが後述する第1シーケンスに相当し、このセットを複数回繰り返すケースが後述する第2シーケンスに相当する。
また、「第1の層を形成する工程と第2の層を形成する工程とを交互に行う」とは、第1の層を形成する工程と第2の層を形成する工程とを1サイクルとした場合、このサイクルを1回行う場合と、このサイクルを複数回繰り返す場合の両方を含む。すなわち、このサイクルを1回以上(所定回数)行うことを意味する。
(第1シーケンス)
まず、本実施形態の第1シーケンスについて説明する。
図3は、本実施形態の第1シーケンスにおける成膜フローを示す図である。図5は、本実施形態の第1シーケンスにおけるガス供給のタイミングを示す図である。
本実施形態の第1シーケンスでは、
処理室201内のウエハ200に対して、クロロシラン系原料およびアミノシラン系原料のうちの一方の原料を供給し、その後、他方の原料を供給することで、ウエハ200上にシリコン、窒素および炭素を含む第1の層を形成する工程と、
処理室201内のウエハ200に対して、酸素含有ガスを供給することで、第1の層を酸化して、第2の層としてシリコン酸炭窒化層またはシリコン酸炭化層を形成する工程と、
を交互に行うことで、ウエハ200上に、所定組成及び所定膜厚のシリコン酸炭窒化膜またはシリコン酸炭化膜を形成する。
なお、図3、図5は、第1の層を形成する際に、処理室201内のウエハ200に対して、クロロシラン系原料を供給し、その後、アミノシラン系原料を供給する例、すなわち、クロロシラン系原料をアミノシラン系原料よりも先に供給する例を示している。
以下、本実施形態の第1シーケンスを具体的に説明する。ここでは、クロロシラン系原料ガスとしてHCDSガスを、アミノシラン系原料ガスとして3DMASガスを、酸素含有ガスとしてOガスを用い、図3の成膜フローおよび図5のシーケンスにより、ウエハ200上に絶縁膜としてシリコン酸炭窒化膜(SiOCN膜)またはシリコン酸炭化膜(SiOC膜)を形成する例について説明する。
複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、図1に示されているように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入(ボートロード)される。この状態で、シールキャップ219はOリング220を介して反応管203の下端をシールした状態となる。
処理室201内が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244が、フィードバック制御される(圧力調整)。なお、真空ポンプ246は、少なくともウエハ200に対する処理が終了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される(温度調整)。なお、ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。続いて、回転機構267によるボート217及びウエハ200の回転を開始する。なお、回転機構267によるボート217及びウエハ200の回転は、少なくとも、ウエハ200に対する処理が完了するまでの間は継続して行われる。
(シリコン酸炭窒化膜またはシリコン酸炭化膜形成工程)
その後、次の3つのステップ、すなわち、ステップ1〜3を順次実行する。
[ステップ1]
第1ガス供給管232aのバルブ243a開き、第1ガス供給管232a内にHCDSガスを流す。第1ガス供給管232a内を流れたHCDSガスは、マスフローコントローラ241aにより流量調整される。流量調整されたHCDSガスは第1ノズル249aのガス供給孔250aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してHCDSガスが供給されることとなる(HCDSガス供給)。このとき同時にバルブ243eを開き、不活性ガス供給管232e内にNガス等の不活性ガスを流す。不活性ガス供給管232e内を流れたNガスは、マスフローコントローラ241eにより流量調整される。流量調整されたNガスはHCDSガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、第2ノズル249b、第3ノズル249c内へのHCDSガスの侵入を防止するため、バルブ243f,243gを開き、第2不活性ガス供給管232f、第3不活性ガス供給管232g内にNガスを流す。Nガスは、第2ガス供給管232b、第3ガス供給管232c、第2ノズル249b、第3ノズル249cを介して処理室201内に供給され、排気管231から排気される。
このときAPCバルブ244を適正に調整して処理室201内の圧力を、例えば1〜13300Pa、好ましくは20〜1330Paの範囲内の圧力とする。マスフローコントローラ241aで制御するHCDSガスの供給流量は、例えば1〜1000sccmの範囲内の流量とする。マスフローコントローラ241e,241f,241gで制御するNガスの供給流量は、それぞれ例えば100〜10000sccmの範囲内の流量とする。HCDSガスをウエハ200に対して供給する時間、すなわちガス供給時間(照射時間)は、例えば1〜120秒、好ましくは1〜60秒の範囲内の時間とする。このときヒータ207の温度は、ウエハ200の温度が、例えば250〜700℃、好ましくは350〜650℃、より好ましくは350〜600℃の範囲内の温度となるような温度に設定する。なお、ウエハ200の温度が250℃未満となるとウエハ200上にHCDSが化学吸着しにくくなり、実用的な成膜速度が得られなくなることがある。ウエハ200の温度を250℃以上とすることで、これを解消することが可能となる。なお、ウエハ200の温度を350℃以上とすることで、ウエハ200上にHCDSをより十分に吸着させることが可能となり、より十分な成膜速度が得られるようになる。また、ウエハ200の温度が700℃を超えるとCVD反応が強くなる(気相反応が支配的になる)ことで、膜厚均一性が悪化しやすくなり、その制御が困難となってしまう。ウエハ200の温度を700℃以下とすることで、膜厚均一性の悪化を抑制でき、その制御が可能となる。特にウエハ200の温度を650℃以下、さらには600℃以下とすることで、表面反応が支配的になり、膜厚均一性を確保しやすくなり、その制御が容易となる。よって、ウエハ200の温度は250〜700℃、好ましくは350〜650℃、より好ましくは350〜600℃の範囲内の温度とするのがよい。
HCDSガスの供給により、ウエハ200(表面の下地膜)上に、例えば1原子層未満から数原子層程度の厚さのシリコン含有層が形成される。
シリコン含有層はHCDSの化学吸着層であってもよいし、シリコン層(Si層)であってもよいし、その両方を含んでいてもよい。ただし、シリコン含有層はシリコン(Si)及び塩素(Cl)を含む層であることが好ましい。ここでシリコン層とは、シリコン(Si)により構成される連続的な層の他、不連続な層や、これらが重なってできるシリコン薄膜をも含む総称である。なお、Siにより構成される連続的な層をシリコン薄膜という場合もある。なお、シリコン層を構成するSiは、Clとの結合が完全に切れていないものも含む。また、HCDSガスの吸着層は、HCDSガスのガス分子の連続的な化学吸着層の他、不連続な化学吸着層をも含む。すなわち、HCDSガスの吸着層は、HCDS分子で構成される1分子層もしくは1分子層未満の厚さの化学吸着層を含む。なお、HCDSガスの吸着層を構成するHCDS(SiCl)分子は、SiとClとの結合が一部切れたもの(SiCl分子)も含む。すなわち、HCDSの吸着層は、SiCl分子および/またはSiCl分子の連続的な化学吸着層や不連続な化学吸着層を含む。なお、1原子層未満の厚さの層とは不連続に形成される原子層のことを意味しており、1原子層の厚さの層とは連続的に形成される原子層のことを意味している。また、1分子層未満の厚さの層とは不連続に形成される分子層のことを意味しており、1分子層の厚さの層とは連続的に形成される分子層のことを意味している。HCDSガスが自己分解(熱分解)する条件下、すなわち、HCDSの熱分解反応が生じる条件下では、ウエハ200上にSiが堆積することでシリコン層が形成される。HCDSガスが自己分解(熱分解)しない条件下、すなわち、HCDSの熱分解反応が生じない条件下では、ウエハ200上にHCDSガスが吸着することでHCDSガスの吸着層が形成される。なお、ウエハ200上にHCDSガスの吸着層を形成するよりも、ウエハ200上にシリコン層を形成する方が、成膜レートを高くすることができ、好ましい。ウエハ200上に形成されるシリコン含有層の厚さが数原子層を超えると、後述するステップ2及びステップ3での改質の作用がシリコン含有層の全体に届かなくなる。また、ウエハ200上に形成可能なシリコン含有層の厚さの最小値は1原子層未満である。よって、シリコン含有層の厚さは1原子層未満から数原子層程度とするのが好ましい。なお、シリコン含有層の厚さを1原子層以下、すなわち、1原子層または1原子層未満とすることで、後述するステップ2及びステップ3での改質反応の作用を相対的に高めることができ、ステップ2及びステップ3の改質反応に要する時間を短縮することができる。ステップ1のシリコン含有層形成に要する時間を短縮することもできる。結果として、1サイクルあたりの処理時間を短縮することができ、トータルでの処理時間を短縮することも可能となる。すなわち、成膜レートを高くすることも可能となる。また、シリコン含有層の厚さを1原子層以下とすることで、膜厚均一性の制御性を高めることも可能となる。
シリコン含有層が形成された後、第1ガス供給管232aのバルブ243aを閉じ、HCDSガスの供給を停止する。このとき、排気管231のAPCバルブ244は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはシリコン含有層形成に寄与した後のHCDSガスを処理室201内から排除する(残留ガス除去)。なお、このとき、バルブ243e,243f,243gは開いたままとして、不活性ガスとしてのNガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、これにより、処理室201内に残留する未反応もしくはシリコン含有層形成に寄与した後のHCDSガスを処理室201内から排除する効果を高めることができる。なお、このとき、処理室201内に残留するガスを完全に排除しなくてもよく、処理室201内を完全にパージしなくてもよい。処理室201内に残留するガスが微量であれば、その後に行われるステップ2において悪影響が生じることはない。このとき処理室201内に供給するNガスの流量も大流量とする必要はなく、例えば、反応管203(処理室201)の容積と同程度の量を供給することで、ステップ2において悪影響が生じない程度のパージを行うことができる。このように、処理室201内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。また、Nガスの消費も必要最小限に抑えることが可能となる。
クロロシラン系原料ガスとしては、ヘキサクロロジシラン(SiCl、略称:HCDS)ガスの他、テトラクロロシランすなわちシリコンテトラクロライド(SiCl、略称:STC)ガス、トリクロロシラン(SiHCl、略称:TCS)ガス、ジクロロシラン(SiHCl、略称:DCS)ガス、モノクロロシラン(SiHCl、略称:MCS)ガス等の無機原料を用いてもよい。不活性ガスとしては、Nガスの他、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いてもよい。
[ステップ2]
ステップ1が終了し処理室201内の残留ガスを除去した後、第2ガス供給管232bのバルブ243bを開き、第2ガス供給管232b内に3DMASガスを流す。第2ガス供給管232b内を流れた3DMASガスは、マスフローコントローラ241bにより流量調整される。流量調整された3DMASガスは、第2ノズル249bのガス供給孔250bから処理室201内へ供給され、排気管231から排気される。このとき、ウエハ200に対して3DMASガスが供給されることとなる(3DMASガス供給)。このとき同時にバルブ243fを開き、第2不活性ガス供給管232f内に不活性ガスとしてのNガスを流す。第2不活性ガス供給管232f内を流れたNガスは、マスフローコントローラ241fにより流量調整される。流量調整されたNガスは、3DMASガスと一緒に処理室201内へ供給され、排気管231から排気される。なお、このとき、第1ノズル249a、第3ノズル249c内への3DMASガスの侵入を防止するため、バルブ243e,243gを開き、第1不活性ガス供給管232e、第3不活性ガス供給管232g内にNガスを流す。Nガスは、第1ガス供給管232a、第3ガス供給管232c、第1ノズル249a、第3ノズル249cを介して処理室201内に供給され、排気管231から排気される。
このときAPCバルブ244を適正に調整して処理室201内の圧力を、例えば1〜13300Pa、好ましくは20〜1330Paの範囲内の圧力とする。マスフローコントローラ241bで制御する3DMASガスの供給流量は、例えば1〜1000sccmの範囲内の流量とする。マスフローコントローラ241fで制御するNガスの供給流量は、例えば100〜10000sccmの範囲内の流量とする。3DMASガスをウエハ200に対して供給する時間、すなわちガス供給時間(照射時間)は、例えば1〜120秒、好ましくは1〜60秒の範囲内の時間とする。このときのヒータ207の温度は、ステップ1と同様、ウエハ200の温度が、例えば250〜700℃、好ましくは350〜650℃、より好ましくは350〜600℃の範囲内の温度となるような温度に設定する。
3DMASガスの供給により、ステップ1でウエハ200上に形成されたシリコン含有層と3DMASガスとが反応する。これによりシリコン含有層は、シリコン(Si)、窒素(N)及び炭素(C)を含む第1の層へと変化する(改質される)。第1の層は、1原子層未満から数原子層程度の厚さのSi、N及びCを含む層となる。なお、第1の層は、Si成分の割合とC成分の割合が比較的多い層、すなわち、Siリッチであり、かつ、Cリッチな層となる。
その後、第2ガス供給管232bのバルブ243bを閉じて、3DMASガスの供給を停止する。このとき、排気管231のAPCバルブ244は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは反応に寄与した後の3DMASガスや反応副生成物を処理室201内から排除する(残留ガス除去)。なお、このとき、バルブ243f,243e,243gは開いたままとして、不活性ガスとしてのNガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、これにより、処理室201内に残留する未反応もしくは第1の層形成に寄与した後の3DMASガスや反応副生成物を処理室201内から排除する効果を高めることができる。なお、このとき、処理室201内に残留するガスを完全に排除しなくてもよく、処理室201内を完全にパージしなくてもよい。処理室201内に残留するガスが微量であれば、その後に行われるステップ3において悪影響が生じることはない。このとき処理室201内に供給するNガスの流量も大流量とする必要はなく、例えば、反応管203(処理室201)の容積と同程度の量を供給することで、ステップ3において悪影響が生じない程度のパージを行うことができる。このように、処理室201内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。また、Nガスの消費も必要最小限に抑えることが可能となる。
アミノシラン系原料ガスとしては、3DMASガスの他、テトラキスジメチルアミノシラン(Si[N(CH、略称:4DMAS)ガス、ビスジエチルアミノシラン(Si[N(C、略称:2DEAS)ガス、ビスターシャリーブチルアミノシラン(SiH[NH(C)]、略称:BTBAS)ガス等の有機原料を用いてもよい。不活性ガスとしては、Nガスの他、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いてもよい。
[ステップ3]
ステップ2が終了し処理室201内の残留ガスを除去した後、第3ガス供給管232cのバルブ243cを開き、第3ガス供給管232c内にOガスを流す。第3ガス供給管232c内を流れたOガスは、マスフローコントローラ241cにより流量調整される。流量調整されたOガスは、第3ノズル249cのガス供給孔250cから処理室201内に供給される。処理室201内に供給されたOガスは熱で活性化され、排気管231から排気される。このときウエハ200に対して、熱で活性化されたOガスが供給されることとなる(Oガス供給)。このとき同時にバルブ243gを開き、第3不活性ガス供給管232g内にNガスを流す。NガスはOガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、第1ノズル249a、第2ノズル249b内へのOガスの侵入を防止するため、バルブ243e,243fを開き、第1不活性ガス供給管232e、第2不活性ガス供給管232f内にNガスを流す。Nガスは、第1ガス供給管232a、第2ガス供給管232b、第1ノズル249a、第2ノズル249bを介して処理室201内に供給され、排気管231から排気される。
このとき、APCバルブ244を適正に調整して、処理室201内の圧力を、例えば1〜3000Paの範囲内の圧力とする。処理室201内の圧力をこのような比較的高い圧力帯とすることで、Oガスをノンプラズマで熱的に活性化させることが可能となる。なお、Oガスを熱で活性化させて供給することで、ソフトな反応を生じさせることができ、後述する酸化をソフトに行うことができる。マスフローコントローラ241cで制御するOガスの供給流量は、例えば100〜10000sccmの範囲内の流量とする。マスフローコントローラ241g,241e,241fで制御するNガスの供給流量は、それぞれ例えば100〜10000sccmの範囲内の流量とする。このとき処理室201内におけるOガスの分圧は、0.01〜2970Paの範囲内の圧力とする。熱で活性化させたOガスをウエハ200に対して供給する時間、すなわちガス供給時間(照射時間)は、例えば1〜120秒、好ましくは1〜60秒の範囲内の時間とする。このときのヒータ207の温度は、ステップ1〜2と同様、ウエハ200の温度が、例えば250〜700℃、好ましくは350〜650℃、より好ましくは350℃〜600℃の範囲内の温度となるような温度に設定する。
このとき処理室201内に流しているガスは、処理室201内の圧力を高くすることで熱的に活性化されたOガスであり、処理室201内にはHCDSガスも3DMASガスも流していない。したがって、Oガスは気相反応を起こすことはなく、活性化されたOガスは、ステップ2でウエハ200上に形成されたSi、NおよびCを含む第1の層の少なくとも一部と反応する。これにより第1の層は酸化されて、第2の層としてのシリコン酸炭窒化層(SiOCN層)またはシリコン酸炭化層(SiOC層)へと改質される。
なお、Oガスを熱で活性化させて処理室201内に流すことで、第1の層を熱酸化してSiOCN層またはSiOC層へと改質(変化)させることができる。このとき、第1の層にO成分を付加しつつ、第1の層をSiOCN層またはSiOC層へと改質させることとなる。なおこのとき、Oガスによる熱酸化の作用により、第1の層におけるSi−O結合が増加する一方、Si−N結合、Si−C結合およびSi−Si結合は減少し、第1の層におけるN成分の割合、C成分の割合およびSi成分の割合は減少することとなる。そしてこのとき、熱酸化時間を延ばしたり、熱酸化における酸化力を高めたりすることで、N成分の大部分を脱離させてN成分を不純物レベルにまで減少させるか、N成分を実質的に消滅させることが可能となる。すなわち、酸素濃度を増加させる方向に、また、窒素濃度、炭素濃度およびシリコン濃度を減少させる方向に組成比を変化させつつ第1の層をSiOCN層またはSiOC層へと改質させることができる。さらに、このとき処理室201内の圧力やガス供給時間等の処理条件を制御することで、SiOCN層またはSiOC層におけるO成分の割合、すなわち、酸素濃度を微調整することができ、SiOCN層またはSiOC層の組成比をより緻密に制御することができる。
なお、ステップ1、2により形成された第1の層におけるC成分はN成分に比べてリッチな状態にあることが判明している。例えば、ある実験では、炭素濃度が窒素濃度の2倍以上となることもあった。すなわち、Oガスによる熱酸化の作用により、第1の層におけるN成分が完全に脱離する前に、すなわちN成分が残留した状態で酸化を止めることで、第1の層にはC成分とN成分とが残ることとなり、第1の層はSiOCN層へと改質されることとなる。また、Oガスによる熱酸化の作用により、第1の層におけるN成分の大部分が脱離し終わった段階においても、第1の層にはC成分が残ることとなり、この状態で酸化を止めることで、第1の層はSiOC層へと改質されることとなる。なお、後述する第3シーケンスのように酸化力を高めることができれば、N成分の大部分が脱離し終わった後においても、酸化を継続し、C成分の大部分が脱離し終わった段階において酸化を止めることで、第1の層はSiO層へと改質されることとなる。つまり、ガス供給時間(酸化処理時間)や酸化力を制御することにより、C成分の割合、すなわち、炭素濃度を制御することができ、SiOCN層、SiOC層およびSiO層のうちの何れかの層を、組成比を制御しつつ形成することができる。さらに、このとき処理室201内の圧力やガス供給時間等の処理条件を制御することで、SiOCN層、SiOC層またはSiO層におけるO成分の割合、すなわち、酸素濃度を微調整することができ、SiOCN層、SiOC層またはSiO層の組成比をより緻密に制御することができる。
なお、このとき、第1の層の酸化反応は飽和させないようにするのが好ましい。例えばステップ1、2で1原子層または1原子層未満の厚さの第1の層を形成した場合は、その第1の層の一部を酸化させるようにするのが好ましい。この場合、1原子層または1原子層未満の厚さの第1の層の全体を酸化させないように、第1の層の酸化反応が不飽和となる条件下で酸化を行う。
なお、第1の層の酸化反応を不飽和とするには、ステップ3における処理条件を上述の処理条件とすればよいが、さらにステップ3における処理条件を次の処理条件とすることで、第1の層の酸化反応を不飽和とすることが容易となる。
ウエハ温度:500〜600℃
処理室内圧力:133〜2666Pa
ガス分圧:33〜2515Pa
ガス供給流量:1000〜5000sccm
ガス供給流量:300〜3000sccm
ガス供給時間:6〜60秒
その後、第3ガス供給管232cのバルブ243cを閉じて、Oガスの供給を停止する。このとき、排気管231のAPCバルブ244は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは反応に寄与した後のOガスや反応副生成物を処理室201内から排除する(残留ガス除去)。なお、このとき、バルブ243g,243e,243fは開いたままとして、不活性ガスとしてのNガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、これにより、処理室201内に残留する未反応もしくは第2の層の形成に寄与した後のOガスや反応副生成物を処理室201内から排除する効果を高めることができる。なお、このとき、処理室201内に残留するガスを完全に排除しなくてもよく、処理室201内を完全にパージしなくてもよい。処理室201内に残留するガスが微量であれば、その後に行われるステップ1において悪影響が生じることはない。このとき処理室201内に供給するNガスの流量も大流量とする必要はなく、例えば、反応管203(処理室201)の容積と同程度の量を供給することで、ステップ1において悪影響が生じない程度のパージを行うことができる。このように、処理室201内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。また、Nガスの消費も必要最小限に抑えることが可能となる。
酸素含有ガスとしては、Oガスの他、亜酸化窒素(NO)ガス、一酸化窒素(NO)ガス、二酸化窒素(NO)ガス、オゾン(O)ガス、水素(H)ガス+酸素(O)ガス、Hガス+Oガス、水蒸気(HO)ガス、一酸化炭素(CO)ガス、二酸化炭素(CO)ガス等を用いてもよい。不活性ガスとしては、Nガスの他、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いてもよい。
上述したステップ1〜3を1サイクルとして、このサイクルを1回以上(所定回数)行うことにより、ウエハ200上に所定組成及び所定膜厚のシリコン酸炭窒化膜(SiOCN膜)またはシリコン酸炭化膜(SiOC膜)を成膜することができる。なお、上述のサイクルは、複数回繰り返すのが好ましい。すなわち、1サイクルあたりに形成するSiOCN層またはSiOC層の厚さを所望の膜厚よりも小さくして、上述のサイクルを所望の膜厚になるまで複数回繰り返すのが好ましい。
所定組成を有する所定膜厚のSiOCN膜またはSiOC膜を形成する成膜処理がなされると、バルブ243e,243f,243gを開き、第1不活性ガス供給管232e、第2不活性ガス供給管232f、第3不活性ガス供給管232gのそれぞれから不活性ガスとしてのNガスを処理室201内に供給し排気管231から排気する。Nガスはパージガスとして作用し、これにより、処理室201内が不活性ガスでパージされ、処理室201内に残留するガスや反応副生成物が処理室201内から除去される(パージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
その後、ボートエレベータ115によりシールキャップ219が下降されて、反応管203の下端が開口されるとともに、処理済のウエハ200がボート217に支持された状態で反応管203の下端から反応管203の外部に搬出(ボートアンロード)される。その後、処理済ウエハ200はボート217より取出される(ウエハディスチャージ)。
(第2シーケンス)
次に、本実施形態の第2シーケンスについて説明する。
酸素含有ガスとして例えばOガスを用いる場合や、低温領域、例えば550℃以下の温度帯で成膜する場合には、上述の第1シーケンスを用いることで、SiOCN膜またはSiOC膜を成膜することができる。これに対し、酸素含有ガスとしてOガスよりも酸化力の強いガスを用いる場合や、比較的高い温度領域で成膜する場合には、以下に示す第2シーケンスを用いてSiOCN膜またはSiOC膜を成膜するようにしてもよい。図4は、本実施形態の第2シーケンスにおける成膜フローを示す図である。図6は、本実施形態の第2シーケンスにおけるガス供給のタイミングを示す図である。
本実施形態の第2シーケンスでは、
処理室201内のウエハ200に対して、クロロシラン系原料およびアミノシラン系原料のうちの一方の原料を供給し、その後、他方の原料を供給し、これを交互に複数回繰り返すことで、ウエハ200上にシリコン、窒素および炭素を含む第1の層を形成する工程と、
処理室201内のウエハ200に対して、酸素含有ガスを供給することで、第1の層を酸化して、第2の層としてシリコン酸炭窒化層またはシリコン酸炭化層を形成する工程と、
を交互に行うことで、ウエハ200上に、所定組成及び所定膜厚のシリコン酸炭窒化膜またはシリコン酸炭化膜を形成する。
なお、図4、図6は、第1の層を形成する際に、処理室201内のウエハ200に対して、クロロシラン系原料を供給し、その後、アミノシラン系原料を供給し、これを交互に複数回繰り返す例、すなわち、クロロシラン系原料をアミノシラン系原料よりも先に供給する例を示している。
すなわち、本シーケンスでは、上述した第1シーケンスにおけるステップ1、2を1セットとしてこのセットを複数回繰り返した後、ステップ3を行い、これを1サイクルとして、このサイクルを所定回数行うことにより、ウエハ200上に、絶縁膜としてシリコン酸炭窒化膜(SiOCN膜)またはシリコン酸炭化膜(SiOC膜)を形成するようにしている。図6は、上述したステップ1、2を1セットとしてこのセットを2回行った後、ステップ3を行い、これを1サイクルとして、このサイクルをn回行うことにより、ウエハ200上に所定膜厚のSiOCN膜またはSiOC膜を成膜する例を示している。なお、本シーケンスが第1シーケンスと異なるのは、上述したステップ1,2を1セットとしてこのセットを複数回繰り返した後、ステップ3を行う点だけであり、その他は第1シーケンスと同様に行うことができる。また、本シーケンスにおける処理条件も、上述の第1シーケンスと同様な処理条件とすることができる。
このように、ステップ1、2を1セットとしてこのセットを複数回繰り返した後、ステップ3を行い、これを1サイクルとして、このサイクルを所定回数行うことで、SiOCN膜またはSiOC膜の酸素成分に対するシリコン成分、炭素成分および窒素成分の割合を適正に(リッチな方向に)制御できることとなり、SiOCN膜またはSiOC膜の組成比の制御性をより向上させることができるようになる。また、セット数を増やすことで、1サイクルあたりに形成する第1の層の層数をセット数の数だけ増やすことができ、サイクルレートを向上させることが可能となる。また、これにより、成膜レートを向上させることもできるようになる。
(第3シーケンス)
次に、本実施形態の第3シーケンスについて説明する。
上述の第1シーケンスでは、ステップ3において、酸素含有ガスを用いて第1の層を熱酸化する例について説明したが、以下に示す第3シーケンスのように、ステップ3において酸素含有ガスと水素含有ガスとを用いて第1の層を熱酸化するようにしてもよい。図7は、本実施形態の第3シーケンスにおけるガス供給のタイミングを示す図である。
本実施形態の第3シーケンスでは、
処理室201内のウエハ200に対して、クロロシラン系原料およびアミノシラン系原料のうちの一方の原料を供給し、その後、他方の原料を供給することで、ウエハ200上にシリコン、窒素および炭素を含む第1の層を形成する工程と、
減圧下にある処理室201内のウエハ200に対して、酸素含有ガスと水素含有ガスとを供給することで、第1の層を酸化して、第2の層としてシリコン酸炭化層またはシリコン酸化層を形成する工程と、
を交互に行うことで、ウエハ200上に、所定組成及び所定膜厚のシリコン酸炭化膜またはシリコン酸化膜を形成する。
なお、図7は、第1の層を形成する際に、処理室201内のウエハ200に対して、クロロシラン系原料を供給し、その後、アミノシラン系原料を供給する例、すなわち、クロロシラン系原料をアミノシラン系原料よりも先に供給する例を示している。
すなわち、本シーケンスでは、上述の第1シーケンスのステップ3において、酸素含有ガスと一緒に水素含有ガスを供給するようにしている。本シーケンスが第1シーケンスと異なるのはこの点だけであり、その他は第1シーケンスと同様に行うことができる。本シーケンスでは、第3ガス供給管232cのバルブ243cを開き、第3ガス供給管232c内にOガスを流す際、第4ガス供給管232dのバルブ243dを更に開き、第4ガス供給管232d内にHガスを流すことで、減圧下にある処理室201内の加熱されたウエハ200に対して、熱で活性化させたOガスとHガスとを一緒に供給する。なお、第4ガス供給管232d内を流れたHガスはマスフローコントローラ241dにより流量調整される。本シーケンスのステップ3においてマスフローコントローラ241dで制御するHガスの供給流量は、例えば100〜5000sccmの範囲内の流量とする。本シーケンスにおけるそれ以外の処理条件は、上述の第1シーケンスと同様な処理条件とすることができる。
このように、ステップ3において、大気圧未満の圧力(減圧)下にある処理室201内の加熱されたウエハ200に対して、酸素含有ガスと一緒に水素含有ガスを供給することで、処理室201内で酸素含有ガスと水素含有ガスとが反応し、原子状酸素(O)等の酸素を含む水分(HO)非含有の酸化種が生成され、この酸化種により第1の層を酸化することができる。この場合、酸素含有ガス単体で酸化する場合や水蒸気(HO)で酸化する場合よりも高い酸化力にて酸化を行うことができる。このとき、第1の層にO成分を付加しつつ、酸化種のエネルギーにより、第1の層におけるC成分とN成分との両成分を脱離させることで、第1の層をSiO層へと改質させることができる。なおこのとき、酸化種による熱酸化の作用により、第1の層におけるSi−O結合が増加する一方、Si−N結合、Si−C結合およびSi−Si結合は減少し、第1の層におけるN成分の割合、C成分の割合およびSi成分の割合は減少することとなる。特にN成分およびC成分は、その大部分が脱離することで不純物レベルにまで減少するか、実質的に消滅することとなる。すなわち、酸素濃度を増加させる方向に、また、窒素濃度、炭素濃度およびシリコン濃度を減少させる方向に、組成比を変化させつつ第1の層をSiO層へと改質させることができる。そしてその結果、ウエハ200上に、絶縁膜としてシリコン酸化膜(SiO膜)を形成することができることとなる。
但し、第3シーケンスにおいても、例えば450℃以下の低温領域にて成膜する場合等には、酸化種の生成量を少なくでき、酸化力を弱めることもできる。そして、第1の層におけるC成分を不純物レベルにまで減少させることなく残留させ、第1の層をSiOC層へと改質することもできる。その結果、ウエハ200上に、絶縁膜としてシリコン酸炭化膜(SiOC膜)を形成することもできるようになる。
(第4シーケンス)
次に、本実施形態の第4シーケンスについて説明する。
上述の第2シーケンスでは、ステップ3において、酸素含有ガスを用いて第1の層を熱酸化する例について説明したが、以下に示す第4シーケンスのように、ステップ3において酸素含有ガスと水素含有ガスとを用いて第1の層を熱酸化するようにしてもよい。図8は、本実施形態の第4シーケンスにおけるガス供給のタイミングを示す図である。
本実施形態の第4シーケンスでは、
処理室201内のウエハ200に対して、クロロシラン系原料およびアミノシラン系原料のうちの一方の原料を供給し、その後、他方の原料を供給し、これを交互に複数回繰り返すことで、ウエハ200上にシリコン、窒素および炭素を含む第1の層を形成する工程と、
減圧下にある処理室201内のウエハ200に対して、酸素含有ガスと水素含有ガスとを供給することで、第1の層を酸化して、第2の層としてシリコン酸炭窒化層またはシリコン酸炭化層を形成する工程と、
を交互に行うことで、ウエハ200上に、所定組成及び所定膜厚のシリコン酸炭窒化膜またはシリコン酸炭化膜を形成する。
なお、図8は、第1の層を形成する際に、処理室201内のウエハ200に対して、クロロシラン系原料を供給し、その後、アミノシラン系原料を供給し、これを交互に複数回繰り返す例、すなわち、クロロシラン系原料をアミノシラン系原料よりも先に供給する例を示している。
すなわち、本シーケンスでは、上述の第2シーケンスのステップ3において、酸素含有ガスと一緒に水素含有ガスを供給するようにしている。本シーケンスが第2シーケンスと異なるのはこの点だけであり、その他は第2シーケンスと同様に行うことができる。本シーケンスでは、第3ガス供給管232cのバルブ243cを開き、第3ガス供給管232c内にOガスを流す際、第4ガス供給管232dのバルブ243dを更に開き、第4ガス供給管232d内にHガスを流すことで、減圧下にある処理室201内の加熱されたウエハ200に対して、熱で活性化させたOガスとHガスとを供給する。なお、本シーケンスにおける処理条件は、上述の第3シーケンスと同様な処理条件とすることができる。
このように、ステップ3において、減圧下にある処理室201内の加熱されたウエハ200に対して、酸素含有ガスと一緒に水素含有ガスを供給することで、処理室201内で酸素含有ガスと水素含有ガスとが反応し、原子状酸素(O)等の酸素を含む水分(HO)非含有の酸化種が生成され、第3シーケンスと同様、酸素含有ガス単体で酸化する場合や水蒸気(HO)で酸化する場合よりも高い酸化力にて酸化を行うことができる。そしてこのとき、酸化種による熱酸化の作用により、第1の層におけるSi−O結合が増加する一方、Si−N結合、Si−C結合およびSi−Si結合は減少し、第1の層におけるN成分の割合、C成分の割合およびSi成分の割合は減少することとなる。
但し、第4シーケンスでは、第2シーケンスと同様に、ステップ1、2を1セットとしてこのセットを複数回繰り返した後、ステップ3を行うようにしているため、ステップ3で酸化させる第1の層の厚さを厚くすることができる。すなわち、ステップ3で酸化させる第1の層におけるSi成分、C成分およびN成分の割合を増加させることができる。それにより、ステップ3において、第1の層におけるC成分やN成分が不純物レベルにまで減少したり、実質的に消滅したりしないようにすることができ、これらの成分を層中に残留させることが可能となる。そしてその結果、ウエハ200上に、絶縁膜としてシリコン酸炭窒化膜(SiOCN膜)またはシリコン酸炭化膜(SiOC膜)を形成することができることとなる。また、セット数を増やすことで、1サイクルあたりに形成する第1の層の層数をセット数の数だけ増やすことができ、サイクルレートを向上させることが可能となる。また、これにより、成膜レートを向上させることもできるようになる。
本実施形態の第1〜第4シーケンスによれば、クロロシラン系原料やアミノシラン系原料を用いて絶縁膜を形成する場合に、低温領域においてシリコン密度の高い所望組成のシリコン絶縁膜を形成することができる。また、理想的量論比のシリコン絶縁膜を形成することもできる。なお、発明者らの実験によれば、クロロシラン系原料単体を用いる場合、500℃以下の温度帯では生産効率を満たす成膜レートでウエハ上にシリコンを堆積させることは困難であった。また、アミノシラン系原料単体を用いる場合、500℃以下の温度帯ではウエハ上へのシリコンの堆積も確認されなかった。しかしながら、本実施形態の手法によれば、500℃以下の低温領域においても、生産効率を満たす成膜レートで、良質なシリコン絶縁膜を形成することが可能となる。
なお、成膜温度を低温化させると、通常、分子の運動エネルギーが低下して、クロロシラン系原料に含まれる塩素やアミノシラン系原料に含まれるアミンの反応・脱離が起きづらくなり、これらのリガンドがウエハ表面上に残留することとなる。そしてこれらの残留したリガンドが立体障害となることで、ウエハ表面上へのシリコンの吸着が阻害され、シリコン密度が低下し、膜の劣化が引き起こされてしまう。しかしながら、そのような反応・脱離が進みにくい条件下でも、2つのシランソース、すなわちクロロシラン系原料とアミノシラン系原料とを適正に反応させることで、それらの残留リガンドを脱離させることが可能となる。そしてそれら残留リガンドの脱離により立体障害が解消され、それにより開放されたサイトにシリコンを吸着させることが可能となり、シリコン密度を高めることが可能となる。このようにして、500℃以下の低温領域においてもシリコン密度の高い膜を形成することができるようになると考えられる。
また、本実施形態の第1〜第4シーケンスによれば、クロロシラン系原料を供給し、その後、アミノシラン系原料を供給してウエハ上にSi、NおよびCを含む第1の層、すなわち、シリコン絶縁層を形成した後、更に、酸素含有ガスを含むガスを供給するようにしたので、シリコン絶縁層の窒素濃度、炭素濃度、酸素濃度を調整でき、組成比を制御しつつ、所望の特性を有するシリコン絶縁膜を形成することができる。
また、本実施形態の手法により形成したシリコン絶縁膜を、サイドウォールスペーサとして使用することにより、リーク電流が少なく、加工性に優れたデバイス形成技術を提供することが可能となる。
また、本実施形態の手法により形成したシリコン絶縁膜を、エッチストッパーとして使用することにより、加工性に優れたデバイス形成技術を提供することが可能となる。
本実施形態によれば、低温領域においてもプラズマを用いず、理想的量論比のシリコン絶縁膜を形成することができる。また、プラズマを用いずシリコン絶縁膜を形成できることから、例えばDPTのSADP膜等、プラズマダメージを懸念する工程への適応も可能となる。
なお、上述の実施形態では、各シーケンスにおいてSi、NおよびCを含む第1の層を形成する際に、処理室201内のウエハ200に対して、クロロシラン系原料を供給し、その後、アミノシラン系原料を供給する例について説明したが、原料の流し方は逆でもよい。すなわち、アミノシラン系原料を供給し、その後、クロロシラン系原料を供給するようにしてもよい。つまり、クロロシラン系原料およびアミノシラン系原料のうちの一方の原料を供給し、その後、他方の原料を供給するようにすればよい。このように、原料を流す順番を変えることにより、各シーケンスにおいて形成される薄膜の膜質や組成比を変化させることも可能である。
また、クロロシラン系原料とアミノシラン系原料を流す順番だけでなく、クロロシラン系原料およびアミノシラン系原料を含む全てのガスを流す順番を変えることにより、各シーケンスにおいて形成される薄膜の膜質や組成比を変化させることも可能である。
また、上述の実施形態では、各シーケンスにおいてSi、NおよびCを含む第1の層を形成する際に、クロロシラン系原料とアミノシラン系原料とを用いる例について説明したが、クロロシラン系原料の代わりに、クロロシラン系原料以外のハロゲン系のリガンドを持つシラン系原料を用いてもよい。例えば、クロロシラン系原料の代わりに、フルオロシラン系原料を用いてもよい。ここで、フルオロシラン系原料とは、ハロゲン基としてのフルオロ基を有するシラン系原料のことであり、少なくともシリコン(Si)及びフッ素(F)を含む原料のことである。フルオロシラン系原料ガスとしては、例えばテトラフルオロシランすなわちシリコンテトラフルオライド(SiF)ガスやヘキサフルオロジシラン(Si)ガス等のフッ化ケイ素ガスを用いることができる。この場合、各シーケンスにおいてSi、NおよびCを含む第1の層を形成する際に、処理室201内のウエハ200に対して、フルオロシラン系原料を供給し、その後、アミノシラン系原料を供給するか、アミノシラン系原料を供給し、その後、フルオロシラン系原料を供給することとなる。
また、上述の実施形態では、各シーケンスにおいてSi、NおよびCを含む第1の層を形成する際に、処理室201内のウエハ200に対してクロロシラン系原料を供給し、その後、アミノシラン系原料を供給する例について説明したが、図9、図10のようにクロロシラン系原料とアミノシラン系原料とを同時に処理室201内のウエハ200に対して供給してCVD反応を生じさせるようにしてもよい。
図9、図10は、クロロシラン系原料とアミノシラン系原料とを同時に供給する本発明の他の実施形態におけるガス供給のタイミングを示す図である。なお、この場合における処理条件も、上述の実施形態の各シーケンスにおける処理条件と同様な処理条件とすればよい。
図9及び図10のシーケンスは、処理室201内のウエハ200に対して、クロロシラン系原料(HCDS)とアミノシラン系原料(3DMAS)とを同時に供給することで、ウエハ200上にシリコン、窒素および炭素を含む第1の層を形成する工程と、
処理室201内のウエハ200に対して、反応ガスとして酸素含有ガス(O)を供給することで、第1の層を改質して、第2の層としてシリコン酸炭窒化層(SiOCN層)またはシリコン酸炭化層(SiOC層)を形成する工程と、
を交互に所定回数行うことで、所定組成及び所定膜厚のシリコン酸炭窒化膜(SiOCN膜)またはシリコン酸炭化膜(SiOC膜)を形成する例である。なお、図9は、第1の層を形成する工程において、HCDSと3DMASとを同時に供給する工程を1回行うケースを示しており、図10は、第1の層を形成する工程において、HCDSと3DMASと、を同時に供給する工程を複数回(2回)行うケースを示している。
このように、処理室201内のウエハ200に対して、クロロシラン系原料とアミノシラン系原料とを順次供給するのではなく、同時に供給するようにしても上述の実施形態と同様な作用効果が得られる。ただし、上述の実施形態のように、各原料を順次供給する方が、すなわち、クロロシラン系原料とアミノシラン系原料とを、それらの間に処理室201内のパージを挟んで交互に供給する方が、クロロシラン系原料とアミノシラン系原料とを、表面反応が支配的な条件下で適正に反応させることができ、膜厚制御の制御性を上げることができることとなる。
また、上述の実施形態では、各シーケンスにおいて、処理室内でウエハ上に一度に1種類の薄膜(単膜)を形成する例について説明したが、上述の各シーケンスを適宜組み合わせることにより、処理室内でウエハ上に一度に2種類以上の薄膜の積層膜を形成することもできる。例えば、処理室内で、第1シーケンス(図5)と、第2シーケンス(図6)とを、in−situにて交互に行うことで、SiOCN膜とSiOC膜とが交互に積層された積層膜を形成することができる。また例えば、処理室内で、第1シーケンス(図5)と、第3シーケンス(図7)とを、in−situにて交互に行うことで、SiOCN膜とSiOC膜とが交互に積層された積層膜や、SiOCN膜とSiO膜とが交互に積層された積層膜や、SiOC膜とSiO膜とが交互に積層された積層膜を形成することができる。更には、SiO膜とSiOC膜とSiOCN膜とが積層された積層膜を形成することもできる。
このように、本発明は、単膜だけでなく、積層膜を形成する場合にも好適に適用することができ、この場合であっても上述の実施形態と同様な作用効果が得られる。
また、上述の実施形態では、酸炭窒化膜、酸炭化膜、酸化膜として、半導体元素であるシリコンを含むシリコン系絶縁膜(SiOCN膜、SiOC膜、SiO膜)を形成する例について説明したが、本発明は、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、タンタル(Ta)、アルミニウム(Al)、モリブデン(Mo)等の金属元素を含む金属系薄膜を形成する場合にも適用することができる。
例えば、本発明は、チタン酸炭窒化膜(TiOCN膜)、チタン酸炭化膜(TiOC膜)、チタン酸化膜(TiO膜)や、これらを組み合わせたり、混合させたりしたTi系薄膜や、これらの積層膜を形成する場合にも適用することができる。
また例えば、本発明は、ジルコニウム酸炭窒化膜(ZrOCN膜)、ジルコニウム酸炭化膜(ZrOC膜)、ジルコニウム酸化膜(ZrO膜)や、これらを組み合わせたり、混合させたりしたZr系薄膜や、これらの積層膜を形成する場合にも適用することができる。
また例えば、本発明は、ハフニウム酸炭窒化膜(HfOCN膜)、ハフニウム酸炭化膜(HfOC膜)、ハフニウム酸化膜(HfO膜)や、これらを組み合わせたり、混合させたりしたHf系薄膜や、これらの積層膜を形成する場合にも適用することができる。
また例えば、本発明は、タンタル酸炭窒化膜(TaOCN膜)、タンタル酸炭化膜(TaOC膜)、タンタル酸化膜(TaO膜)や、これらを組み合わせたり、混合させたりしたTa系薄膜や、これらの積層膜を形成する場合にも適用することができる。
また例えば、本発明は、アルミニウム酸炭窒化膜(AlOCN膜)、アルミニウム酸炭化膜(AlOC膜)、アルミニウム酸化膜(AlO膜)や、これらを組み合わせたり、混合させたりしたAl系薄膜や、これらの積層膜を形成する場合にも適用することができる。
また例えば、本発明は、モリブデン酸炭窒化膜(MoOCN膜)、モリブデン酸炭化膜(MoOC膜)、モリブデン酸化膜(MoO膜)や、これらを組み合わせたり、混合させたりしたMo系薄膜や、これらの積層膜を形成する場合にも適用することができる。
この場合、上述の実施形態におけるクロロシラン系原料の代わりに、金属元素およびハロゲン基を含む原料(第1の原料)を用い、アミノシラン系原料の代わりに、金属元素およびアミノ基を含む原料(第2の原料)を用い、上述の実施形態と同様なシーケンスにより成膜を行うことができる。第1の原料としては、例えば、金属元素およびクロロ基を含む原料や、金属元素およびフルオロ基を含む原料を用いることができる。
すなわち、この場合、処理室201内のウエハ200に対して金属元素およびハロゲン基を含む原料を供給する工程と、処理室201内のウエハ200に対して金属元素およびアミノ基を含む原料を供給する工程と、を交互に所定回数行うことで、ウエハ200上に金属元素、窒素および炭素を含む第1の層を形成する工程と、
処理室201内のウエハ200に対して酸素含有ガス、または、酸素含有ガスおよび水素含有ガスを供給することで、第1の層を酸化して、第2の層として金属酸炭窒化層、金属酸炭化層または金属酸化層を形成する工程と、
を交互に所定回数行うことで、ウエハ200上に、所定組成及び所定膜厚の金属酸炭窒化膜、金属酸炭化膜または金属酸化膜を形成する。
例えば、金属系薄膜として、Ti系薄膜を形成する場合は、第1の原料として、チタニウムテトラクロライド(TiCl)等のTiおよびクロロ基を含む原料や、チタニウムテトラフルオライド(TiF)等のTiおよびフルオロ基を含む原料を用いることができる。第2の原料としては、テトラキスエチルメチルアミノチタニウム(Ti[N(C)(CH)]、略称:TEMAT)、テトラキスジメチルアミノチタニウム(Ti[N(CH、略称:TDMAT)、テトラキスジエチルアミノチタニウム(Ti[N(C、略称:TDEAT)等のTiおよびアミノ基を含む原料を用いることができる。酸素含有ガスや水素含有ガスとしては、上述の実施形態と同様なガスを用いることができる。なお、このときの処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
また例えば、金属系薄膜として、Zr系薄膜を形成する場合は、第1の原料として、ジルコニウムテトラクロライド(ZrCl)等のZrおよびクロロ基を含む原料や、ジルコニウムテトラフルオライド(ZrF)等のZrおよびフルオロ基を含む原料を用いることができる。第2の原料としては、テトラキスエチルメチルアミノジルコニウム(Zr[N(C)(CH)]、略称:TEMAZ)、テトラキスジメチルアミノジルコニウム(Zr[N(CH、略称:TDMAZ)、テトラキスジエチルアミノジルコニウム(Zr[N(C、略称:TDEAZ)等のZrおよびアミノ基を含む原料を用いることができる。酸素含有ガスや水素含有ガスとしては、上述の実施形態と同様なガスを用いることができる。なお、このときの処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
また例えば、金属系薄膜として、Hf系薄膜を形成する場合は、第1の原料として、ハフニウムテトラクロライド(HfCl)等のHfおよびクロロ基を含む原料や、ハフニウムテトラフルオライド(HfF)等のHfおよびフルオロ基を含む原料を用いることができる。第2の原料としては、テトラキスエチルメチルアミノハフニウム(Hf[N(C)(CH)]、略称:TEMAH)、テトラキスジメチルアミノハフニウム(Hf[N(CH、略称:TDMAH)、テトラキスジエチルアミノハフニウム(Hf[N(C、略称:TDEAH)等のHfおよびアミノ基を含む原料を用いることができる。酸素含有ガスや水素含有ガスとしては、上述の実施形態と同様なガスを用いることができる。なお、このときの処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
このように、本発明はシリコン系薄膜だけでなく、金属系薄膜の成膜にも適用することができ、この場合であっても上述の実施形態と同様な作用効果が得られる。
すなわち、本発明は、半導体元素や金属元素等の所定元素を含む薄膜を形成する場合に適用することができる。
また、上述の実施形態では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いて成膜する例について説明したが、本発明はこれに限定されず、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて成膜する場合にも、好適に適用できる。
また、上述の各実施形態や各変形例や各応用例等は、適宜組み合わせて用いることができる。
また、本発明は、例えば、既存の基板処理装置のプロセスレシピを変更することでも実現できる。プロセスレシピを変更する場合は、本発明に係るプロセスレシピを電気通信回線や当該プロセスレシピを記録した記録媒体を介して既存の基板処理装置にインストールしたり、また、既存の基板処理装置の入出力装置を操作し、そのプロセスレシピ自体を本発明に係るプロセスレシピに変更することも可能である。
ところで、従来のCVD法の場合、形成する薄膜を構成する複数の元素を含む複数種類のガスを同時に供給する。この場合、形成する薄膜の組成比を制御するには、例えばガス供給時のガス供給流量比を制御することが考えられる。なお、この場合にガス供給時の基板温度、処理室内圧力、ガス供給時間などの供給条件を制御しても形成する薄膜の組成比を制御することはできない。
また、ALD法の場合、形成する薄膜を構成する複数の元素を含む複数種類のガスを交互に供給する。この場合、形成する薄膜の組成比を制御するには、例えば各ガス供給時のガス供給流量、ガス供給時間を制御することが考えられる。なお、ALD法の場合、原料ガスの供給は、原料ガスの基板表面上への吸着飽和を目的としているため、処理室内の圧力制御が必要ではない。すなわち原料ガスの吸着飽和は、反応温度に対して原料ガスが吸着する所定圧力以下で生じ、処理室内の圧力をその所定圧力以下としさえすれば、どのような圧力値としても原料ガスの吸着飽和を実現できる。そのため通常、ALD法により成膜する場合、処理室内の圧力はガス供給量に対する基板処理装置の排気能力に任せた圧力となっている。処理室内圧力を変化させるようにする場合、原料ガスの基板表面上への化学吸着を阻害したり、CVD反応に近づくことも考えられ、ALD法による成膜を適切に行うことができなくなる。またALD法により所定の膜厚の薄膜を形成するためにはALD反応(吸着飽和,表面反応)を繰り返し行うため、それぞれのALD反応が飽和するまでそれぞれのALD反応を十分に行わなければ、堆積が不十分となり、十分な堆積速度が得られなくなってしまうことも考えられる。よって、ALD法の場合、処理室内の圧力制御により薄膜の組成比を制御することは考えにくい。
これに対し、本実施形態では、いずれのシーケンスにおいても、各ステップにおける処理室内の圧力やガス供給時間を制御することにより、薄膜組成比を制御(微調整)するようにしている。なお、好ましくは、処理室内の圧力、または、圧力およびガス供給時間を制御することにより、薄膜組成比を制御するのがよい。
各ステップにおける処理室内の圧力を制御することにより、薄膜の組成比を制御する場合、異なる基板処理装置間での機差の影響を少なくすることができる。すなわち、異なる基板処理装置間でも、同様な制御により、同様に薄膜の組成比を制御することが可能となる。この場合に、各ステップにおけるガス供給時間をも制御するようにすれば、薄膜の組成比を微調整でき、薄膜の組成比制御の制御性を上げることができる。また、各ステップにおける処理室内の圧力を制御することにより、成膜レートを上げつつ、薄膜の組成比を制御することも可能となる。すなわち、処理室内の圧力を制御することにより、例えば各シーケンスにおけるステップ1で形成するシリコン含有層の成長レートを上げつつ、薄膜の組成比を制御することも可能となる。このように、本実施形態によれば、異なる基板処理装置間でも、同様な制御により、同様に薄膜の組成比を制御できるだけでなく、薄膜の組成比制御の制御性を上げることもでき、さらには成膜レート、すなわち生産性を向上させることもできる。
一方、例えばALD法による成膜において、各ステップにおけるガス供給流量やガス供給時間を制御することにより、薄膜の組成比を制御する場合、異なる基板処理装置間での機差の影響が大きくなる。すなわち、異なる基板処理装置間で、同様な制御を行っても、同様に薄膜の組成比を制御することができなくなる。例えば、異なる基板処理装置間で、ガス供給流量、ガス供給時間を同じ流量値、時間に設定した場合であっても、機差により処理室内の圧力は同じ圧力値にはならない。よって、この場合、処理室内の圧力が基板処理装置毎に変わり、所望の組成比制御を異なる基板処理装置間で同様に行うことができなくなる。さらには、処理室内の圧力が基板処理装置毎に変わることで、原料ガスの基板表面上への化学吸着を阻害したり、CVD反応に近づくことも考えられ、ALD法による成膜を適切に行うことができなくなる場合もある。
〔実施例1〕
上述の実施形態における第1シーケンスにより、ステップ3における酸素含有ガスのガス種、及び酸素含有ガスの供給時間をそれぞれ変えて、ウエハ上にSiOCN膜またはSiOC膜を形成し、その際に形成されるそれぞれの膜のO濃度、C濃度およびN濃度をXRFにて測定した。なお、本実施例では、クロロシラン系原料ガスとしてHCDSガスを、アミノシラン系原料ガスとして3DMASガスを、酸素含有ガスとしてOガス、NOガス、NOガスを用い、図3及び図5のシーケンスによりSiOCN膜またはSiOC膜を形成した。そのときの各ステップにおける処理条件は次のように設定した。
(ステップ1)
処理室内温度:550℃
処理室内圧力:399Pa(3Torr)
HCDSガス供給流量:200sccm
HCDSガス照射時間:12秒
(ステップ2)
処理室内温度:550℃
処理室内圧力:10Pa(0.075Torr)
3DMASガス供給流量:200sccm
3DMASガス照射時間:6秒
(ステップ3)
処理室内温度:550℃
処理室内圧力:10Pa(0.075Torr)
酸素含有ガス供給流量:1000sccm
酸素含有ガス照射時間:0〜30秒
図11は、本実施例に係るXRFの測定結果を示すグラフ図であり、横軸は酸素含有ガスの供給時間(秒)を、縦軸はO濃度、C濃度およびN濃度(任意単位(a.u.))をそれぞれ示している。図中の●印はO濃度を、○印はC濃度を、□印はN濃度をそれぞれ示している。また、図中の実線は酸素含有ガスとしてOガスを用いた場合を、破線は酸素含有ガスとしてNOガスを用いた場合を、一点鎖線は酸素含有ガスとしてNOガスを用いた場合をそれぞれ示している。また、Oxidation Gas Flow time(s)=ゼロとは、酸素含有ガスを供給しなかったケース、つまり、図3のシーケンスのステップ1とステップ2とを交互に繰り返すシーケンスによりSi、C及びNを含む物質(以下、単にSiCNという)を形成したケース(比較例)を示している。
図11に示すように、酸素含有ガスを供給しなかったケース(比較例)では、C濃度が高く、CリッチなSiCNが形成されることが分かる。また、N濃度よりもC濃度の方が2倍以上高いことが分かる。なお、図11によれば、SiCNにOが含まれているように見えるが、これは、SiCNと下地との界面や、SiCNの表面にて検出されたものであり、SiCN中の成分ではないので、ここでは考慮していない。これに対し、酸素含有ガスを供給したケース(実施例)では、酸素含有ガスとしてOガス、NOガス、NOガスのいずれを用いた場合においても、酸素含有ガスを供給することで酸化が生じ、SiCNがSiOCN膜に変わることが分かる。また、酸素含有ガスの供給時間を長くする程、酸化が進行してO濃度(●印)が増加し、C濃度(○印)およびN濃度(□印)が減少することが分かる。そして、酸素含有ガスの供給時間をある程度長くして、酸化がある程度進行したところでN成分が不純物レベルとなり、酸素含有ガスの供給時間を更に長くすることで、酸化が更に進行してN成分が実質的に消滅し、SiOC膜が形成されることが分かる。なお、膜中のO濃度は、酸素含有ガスとしてOガスを用いた場合が最も高くなり(実線)、NOガスを用いた場合が次に高くなり(破線)、NOガスを用いた場合が次に高くなる(一点鎖線)ことが分かる。また、膜中のC濃度は、酸素含有ガスとしてOガスやNOガスを用いた場合(実線及び破線)の方が、NOガスを用いた場合(一点鎖線)よりも低くなることが分かる。
つまり、本実施例では、ステップ3における酸素含有ガスによる熱酸化の作用により、O成分の割合が増加しつつ、また、C成分の割合が減少しつつ、さらにN成分の割合が減少しつつ、SiOCN膜が形成されることが分かる。また、ステップ3における酸素含有ガスによる熱酸化の作用により、O成分の割合が増加しつつ、また、C成分の割合が減少しつつ、さらにN成分の割合が不純物レベルにまで減少(もしくは実質的に消滅)しつつ、SiOC膜が形成されることが分かる。なお、本実施例にて形成されたSiOCN膜およびSiOC膜の成膜レートは、酸素含有ガスとしてOガス、NOガス、NOガスのいずれを用いた場合においても、0.61Å/サイクル以上となり、また、ウエハ面内膜厚均一性は1.7%以下となった。すなわち、550℃という低温領域においても、生産効率を満たす成膜レートで、組成比を制御しつつ、良質なシリコン絶縁膜を形成できることが判明した。
〔実施例2〕
上述の実施形態における第1シーケンスによりウエハ上にSiOC膜を形成し、SiOC膜のO濃度、C濃度およびN濃度をXPSにて測定した。さらに、そのSiOC膜のエッチングレート及び比誘電率kを測定した。なお、本実施例では、クロロシラン系原料ガスとしてHCDSガスを、アミノシラン系原料ガスとして3DMASガスを、酸素含有ガスとしてNOガスを用い、図3及び図5のシーケンスによりSiOC膜を形成した。そのときの各ステップにおける処理条件は実施例1と同様とした。
また、比較例1として、HCDSガスの供給、プロピレン(C)ガスの供給、アンモニア(NH)ガスの供給及びOガスの供給を1サイクルとして、このサイクルをn回繰り返す交互供給法によりウエハ上にSiOCN膜を形成し、SiOCN膜のO濃度、C濃度およびN濃度をXPSにて測定した。さらに、比較例1に係るSiOCN膜のエッチングレート及び比誘電率kを測定した。
また、比較例2として、DCSガスの供給及びNHガスの供給を1サイクルとして、このサイクルをn回繰り返す交互供給法によりSiN膜を形成し、SiN膜のエッチングレート及び比誘電率kを測定した。
図12は、本実施例に係るSiOC膜及び比較例1に係るSiOCN膜のXPSスペクトルの測定結果を示すグラフ図である。図12の縦軸は濃度(%)を、横軸はO、C、Nの各元素を示している。図12によれば、本実施例に係るSiOC膜の方が、比較例1に係るSiOCN膜よりもO濃度が高く、また、C濃度が高く、N濃度が低くなっていることが分かる。特に、本実施例に係るSiOC膜では、N濃度が不純物レベルにまで低下していることが分かる。これらのことから、比較例1に係るSiOCN膜は、酸化を進めると、Nよりも先にCが不純物レベルにまで減少するか、実質的に消滅することで、SiON膜に変化することが分かる。一方、本実施例に係るSiOC膜は、酸化によりSiOCN膜のNが不純物レベルにまで減少することでSiOC膜に変化したものである。すなわち、本実施例においては、酸化を進めると、SiOCN膜中においてCよりも先にNが不純物レベルにまで減少するか、実質的に消滅することで、SiOCN膜がSiOC膜に変化することが分かる。
図13は、本実施例に係るSiOC膜、比較例1に係るSiOCN膜、比較例2に係るSiN膜を、濃度1%のフッ化水素(HF)水溶液を用いてエッチングした際のエッチングレート、及び150℃の熱燐酸水溶液を用いてエッチングした際のエッチングレートの測定結果をそれぞれ示すグラフ図である。図13の縦軸はエッチングレート(任意単位(a.u.))を、横軸は実施例及び比較例1,2を示している。図13によれば、HF水溶液及び熱燐酸水溶液のいずれを用いた場合であっても、本実施例に係るSiOC膜のエッチングレートは、比較例1に係るSiOCN膜及び比較例2に係るSiN膜のエッチングレートと比較して最も低いことが分かる。すなわち、本実施例に係るSiOC膜は、HF及び熱燐酸に対してそれぞれ高い耐性を有することが分かる。これは、C濃度が高いとHF耐性が向上し、N濃度が低いと熱燐酸耐性が向上するという一般的な膜特性とも矛盾しない結果となっている。なお、本実施例に係るSiOC膜の1%HF水溶液に対するエッチングレートは、10Å/min以下であった。
図14は、本実施例に係るSiOC膜、比較例1に係るSiOCN膜、比較例2に係るSiN膜の比誘電率kの測定結果をそれぞれ示すグラフ図である。図14の横軸は光学的膜厚(nm)を、縦軸は電気的膜厚であるEOT、すなわち等価酸化膜厚(nm)を示している。すなわち、図14は、それぞれの膜の光学的膜厚と電気的膜厚との関係を示している。図中の●印は本実施例に係るSiOC膜、○印は比較例1に係るSiOCN膜、□印は比較例2に係るSiN膜の光学的膜厚に対する等価酸化膜厚をそれぞれ示している。比誘電率kは、グラフの傾きから算出することができる。傾きが大きくなるほど比誘電率kは小さくなり、傾きが1のときに熱酸化膜(SiO膜)の比誘電率kと等しくなる。図14によれば、本実施例に係るSiOC膜の比誘電率kは4.6となり、比較例1に係るSiOCN膜の比誘電率kは5.5となり、比較例2に係るSiN膜の比誘電率kは7.1となることが分かる。すなわち、本実施例に係るSiOC膜は、比誘電率5以下を実現できることが分かった。
これらのことから、本実施例では、550℃以下の低温領域において、HF及び熱燐酸に対してそれぞれ高い耐性を有し、比誘電率5以下のSiOC膜を形成できることが分かる。
〔実施例3〕
上述の実施形態における第3シーケンスによりウエハ上にSiO膜を形成してサンプル1とし、そのSiO膜のO濃度、C濃度およびN濃度を測定した。なお、サンプル1では、クロロシラン系原料ガスとしてHCDSガスを、アミノシラン系原料ガスとして3DMASガスを、酸素含有ガスとしてOガスを、水素含有ガスとしてHガスを用い、図7のシーケンスによりSiO膜を形成した。サンプル1では、ステップ1、2、3を1サイクルとして、このサイクルを複数回行った。なお、そのときの各ステップにおける処理条件は次のように設定した。
(ステップ1)
処理室内温度:550℃
処理室内圧力:399Pa(3Torr)
HCDSガス供給流量:180sccm
HCDSガス照射時間:18秒
(ステップ2)
処理室内温度:550℃
処理室内圧力:399Pa(3Torr)
3DMASガス供給流量:50sccm
3DMASガス照射時間:12秒
(ステップ3)
処理室内温度:550℃
処理室内圧力:10Pa(0.075Torr)
ガス供給流量:5000sccm
ガス供給流量:500sccm
ガス+Hガス照射時間:6秒
また、上述の実施形態における第4シーケンスによりウエハ上にSiOCN膜を形成してサンプル2〜4とし、各サンプルにおけるSiOCN膜のO濃度、C濃度およびN濃度を測定した。サンプル2,3,4は、それぞれ処理室内の上部、中央部、下部に配置されたウエハ上に形成されたSiOCN膜のサンプルである。なお、サンプル2〜4では、クロロシラン系原料ガスとしてHCDSガスを、アミノシラン系原料ガスとして3DMASガスを、酸素含有ガスとしてOガスを、水素含有ガスとしてHガスを用い、図8のシーケンスにより、SiOCN膜を形成した。サンプル2〜4では、ステップ1、2を1セットとしてこのセットを3回行った後、ステップ3を行い、これを1サイクルとして、このサイクルを複数回行った。なお、そのときの各ステップにおける処理条件は次のように設定した。
(ステップ1)
処理室内温度:500℃
処理室内圧力:399Pa(3Torr)
HCDSガス供給流量:180sccm
HCDSガス照射時間:18秒
(ステップ2)
処理室内温度:500℃
処理室内圧力:399Pa(3Torr)
3DMASガス供給流量:50sccm
3DMASガス照射時間:24秒
(ステップ3)
処理室内温度:500℃
処理室内圧力:10Pa(0.075Torr)
ガス供給流量:5000sccm
ガス供給流量:500sccm
ガス+Hガス照射時間:6秒
図15は、各サンプル1〜4におけるO濃度、C濃度およびN濃度の測定結果を示すグラフ図である。図15の縦軸はIntensity、すなわち各元素の強度(任意単位(a.u.))を、横軸は各サンプルを示している。
図15によれば、第3シーケンスを用いたサンプル1においては、膜中からC成分及びN成分が脱離することでSiO膜が形成されていることが分かる。つまり、ステップ3における酸化種による熱酸化の作用により、膜中におけるC成分およびN成分の割合が不純物レベルにまで著しく減少するか実質的に消滅することで、SiO膜が形成されていることが分かる。
また、図15によれば、第4シーケンスを用いたサンプル2〜4においては、SiOCN膜が形成されることが分かる。つまり、ステップ1、2を1セットとしてこのセットを複数回繰り返した後に、ステップ3を行うようにすることで、膜中からのC成分及びN成分の脱離が抑制され、これらの成分が膜中に残留し、SiOCN膜が形成されることが分かる。また、図15におけるサンプル2,3,4は、それぞれ処理室内の上部、中央部、下部に配置されたウエハ上に形成されたSiOCN膜のサンプルであり、それぞれのSiOCN膜の組成比が略同様であることから、ウエハ間において均一に組成比を制御できることが分かる。
また、図15によれば、処理条件により、SiOC膜を形成可能であることも分かる。つまり、サンプル1では、各ステップにおける処理条件を上述の条件とすることでSiO膜を形成し、サンプル2〜4では、各ステップにおける処理条件を上述の条件とすることでSiOCN膜を形成したが、この図15に示すデータは、成膜シーケンスや処理条件により膜中のC濃度及びN濃度の制御が可能であることを示している。すなわち、図15より、成膜シーケンスを所定のシーケンスとしたり、各ステップにおける処理条件を所定の条件としたりすることで、例えばSiOC膜を形成するように組成比を制御できることが分かる。
以下に、本発明の好ましい態様について付記する。
(付記1)
本発明の一態様によれば、
処理室内の基板に対して所定元素およびハロゲン基を含む第1の原料を供給する工程と、前記処理室内の前記基板に対して前記所定元素およびアミノ基を含む第2の原料を供給する工程と、を交互に所定回数行うことで、前記基板上に、前記所定元素、窒素および炭素を含む第1の層を形成する工程と、
前記処理室内の前記基板に対して酸素含有ガス、または、酸素含有ガスおよび水素含有ガスを供給することで、前記第1の層を酸化して、第2の層を形成する工程と、
を交互に所定回数行うことで、前記基板上に、前記所定元素を含む酸炭窒化膜、酸炭化膜または酸化膜を形成する工程を有する半導体装置の製造方法が提供される。
(付記2)
付記1の半導体装置の製造方法であって、好ましくは、
前記第1の層を形成する工程では、前記第1の原料を供給する工程と、前記第2の原料を供給する工程と、を交互に1回行い、
前記第2の層を形成する工程では、前記酸素含有ガスを供給し、
前記第1の層を形成する工程と、前記第2の層を形成する工程と、を交互に所定回数行うことで、前記基板上に、前記所定元素を含む酸炭窒化膜または酸炭化膜を形成する。
(付記3)
付記1の半導体装置の製造方法であって、好ましくは、
前記第1の層を形成する工程では、前記第1の原料を供給する工程と、前記第2の原料を供給する工程と、を交互に複数回行い、
前記第2の層を形成する工程では、前記酸素含有ガスを供給し、
前記第1の層を形成する工程と、前記第2の層を形成する工程と、を交互に所定回数行うことで、前記基板上に、前記所定元素を含む酸炭窒化膜または酸炭化膜を形成する。
(付記4)
付記1の半導体装置の製造方法であって、好ましくは、
前記第1の層を形成する工程では、前記第1の原料を供給する工程と、前記第2の原料を供給する工程と、を交互に1回行い、
前記第2の層を形成する工程では、前記酸素含有ガスおよび前記水素含有ガスを供給し、
前記第1の層を形成する工程と、前記第2の層を形成する工程と、を交互に所定回数行うことで、前記基板上に、前記所定元素を含む酸化膜を形成する。
(付記5)
付記1の半導体装置の製造方法であって、好ましくは、
前記第1の層を形成する工程では、前記第1の原料を供給する工程と、前記第2の原料を供給する工程と、を交互に複数回行い、
前記第2の層を形成する工程では、前記酸素含有ガスおよび前記水素含有ガスを供給し、
前記第1の層を形成する工程と、前記第2の層を形成する工程と、を交互に所定回数行うことで、前記基板上に、前記所定元素を含む酸炭窒化膜または酸炭化膜を形成する。
(付記6)
付記1の半導体装置の製造方法であって、好ましくは、
前記第2の層を形成する工程では、前記処理室内の前記基板に対して、熱で活性化させた前記酸素含有ガス、または、熱で活性化させた前記酸素含有ガスおよび前記水素含有ガスを供給する。
(付記7)
付記1の半導体装置の製造方法であって、好ましくは、
前記第2の層を形成する工程では、前記第1の層の酸化反応を不飽和とする。
(付記8)
付記1の半導体装置の製造方法であって、好ましくは、
前記第1の原料がクロロシラン系原料またはフルオロシラン系原料を含み、
前記第2の原料がアミノシラン系原料を含む。
(付記9)
本発明の他の態様によれば、
処理室内の基板に対してシリコンおよびハロゲン基を含む第1の原料を供給する工程と、前記処理室内の前記基板に対してシリコンおよびアミノ基を含む第2の原料を供給する工程と、を交互に所定回数行うことで、前記基板上に、シリコン、窒素および炭素を含む第1の層を形成する工程と、
前記処理室内の前記基板に対して酸素含有ガス、または、酸素含有ガスおよび水素含有ガスを供給することで、前記第1の層を酸化して、第2の層を形成する工程と、
を交互に所定回数行うことで、前記基板上に、シリコン酸炭窒化膜、シリコン酸炭化膜またはシリコン酸化膜を形成する工程を有する半導体装置の製造方法が提供される。
(付記10)
本発明のさらに他の態様によれば、
処理室内の基板に対してクロロシラン系原料またはフルオロシラン系原料を供給する工程と、前記処理室内の前記基板に対してアミノシラン系原料を供給する工程と、を交互に所定回数行うことで、前記基板上に、シリコン、窒素および炭素を含む第1の層を形成する工程と、
前記処理室内の前記基板に対して酸素含有ガス、または、酸素含有ガスおよび水素含有ガスを供給することで、前記第1の層を酸化して、第2の層を形成する工程と、
を交互に所定回数行うことで、前記基板上に、シリコン酸炭窒化膜、シリコン酸炭化膜またはシリコン酸化膜を形成する工程を有する半導体装置の製造方法が提供される。
(付記11)
本発明のさらに他の態様によれば、
処理室内の基板に対して所定元素およびハロゲン基を含む第1の原料を供給する工程と、前記処理室内の前記基板に対して前記所定元素およびアミノ基を含む第2の原料を供給する工程と、を交互に所定回数行うことで、前記基板上に、前記所定元素、窒素および炭素を含む第1の層を形成する工程と、
前記処理室内の前記基板に対して酸素含有ガス、または、酸素含有ガスおよび水素含有ガスを供給することで、前記第1の層を酸化して、第2の層を形成する工程と、
を交互に所定回数行うことで、前記基板上に、前記所定元素を含む酸炭窒化膜、酸炭化膜または酸化膜を形成する工程を有する基板処理方法が提供される。
(付記12)
本発明のさらに他の態様によれば、
基板を収容する処理室と、
前記処理室内の基板に対して所定元素およびハロゲン基を含む第1の原料を供給する第1原料供給系と、
前記処理室内の基板に対して前記所定元素およびアミノ基を含む第2の原料を供給する第2原料供給系と、
前記処理室内の基板に対して酸素含有ガス、または、酸素含有ガスおよび水素含有ガスを供給する反応ガス供給系と、
前記処理室内の基板に対して前記第1の原料を供給する処理と、前記処理室内の前記基板に対して前記第2の原料を供給する処理と、を交互に所定回数行うことで、前記基板上に、前記所定元素、窒素および炭素を含む第1の層を形成する処理と、前記処理室内の前記基板に対して前記酸素含有ガス、または、前記酸素含有ガスおよび前記水素含有ガスを供給することで、前記第1の層を酸化して、第2の層を形成する処理と、を交互に所定回数行うことで、前記基板上に、前記所定元素を含む酸炭窒化膜、酸炭化膜または酸化膜を形成するように、前記第1原料供給系、前記第2原料供給系および前記反応ガス供給系を制御する制御部と、
を有する基板処理装置が提供される。
(付記13)
本発明のさらに他の態様によれば、
基板処理装置の処理室内の基板に対して所定元素およびハロゲン基を含む第1の原料を供給する手順と、前記処理室内の前記基板に対して前記所定元素およびアミノ基を含む第2の原料を供給する手順と、を交互に所定回数行うことで、前記基板上に、前記所定元素、窒素および炭素を含む第1の層を形成する手順と、
前記処理室内の前記基板に対して酸素含有ガス、または、酸素含有ガスおよび水素含有ガスを供給することで、前記第1の層を酸化して、第2の層を形成する手順と、
を交互に所定回数行うことで、前記基板上に、前記所定元素を含む酸炭窒化膜、酸炭化膜または酸化膜を形成する手順をコンピュータに実行させるためのプログラムが提供される。
(付記14)
本発明のさらに他の態様によれば、
基板処理装置の処理室内の基板に対して所定元素およびハロゲン基を含む第1の原料を供給する手順と、前記処理室内の前記基板に対して前記所定元素およびアミノ基を含む第2の原料を供給する手順と、を交互に所定回数行うことで、前記基板上に、前記所定元素、窒素および炭素を含む第1の層を形成する手順と、
前記処理室内の前記基板に対して酸素含有ガス、または、酸素含有ガスおよび水素含有ガスを供給することで、前記第1の層を酸化して、第2の層を形成する手順と、
を交互に所定回数行うことで、前記基板上に、前記所定元素を含む酸炭窒化膜、酸炭化膜または酸化膜を形成する手順をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。
121 コントローラ
200 ウエハ
201 処理室
202 処理炉
203 反応管
207 ヒータ
231 排気管
232a 第1ガス供給管
232b 第2ガス供給管
232c 第3ガス供給管
232d 第4ガス供給管

Claims (10)

  1. 基板に対して所定元素およびハロゲン基を含む第1の原料ガスを供給する工程と前記基板に対して前記所定元素およびアミノ基を含む第2の原料ガスを供給する工程と、を間に残留ガスをパージする工程を挟んで交互に所定回数行うことで、第1の層を形成する工程と、
    前記基板に対して酸素含有ガス、または、酸素含有ガスおよび水素含有ガスを供給することで、前記第1の層を酸化して、第2の層を形成する工程と、
    間に残留ガスをパージする工程を挟んで交互に行うサイクルを所定回数行うことで、前記基板上に、前記所定元素、酸素、炭素および窒素を含む膜、前記所定元素、酸素および炭素を含む膜、または、前記所定元素および酸素を含む膜を形成する工程を有する半導体装置の製造方法。
  2. 前記第1の層は、前記所定元素、窒素および炭素を含み、炭素濃度が窒素濃度よりも高い層である請求項1に記載の半導体装置の製造方法。
  3. 前記第2の層を形成する工程では、前記基板に対して、熱で活性化させた前記酸素含有ガス、または、熱で活性化させた前記酸素含有ガスおよび前記水素含有ガスを供給する請求項1または2に記載の半導体装置の製造方法。
  4. 前記第2の層を形成する工程では、前記基板に対して、ノンプラズマで熱的に活性化させた前記酸素含有ガス、または、ノンプラズマで熱的に活性化させた前記酸素含有ガスおよび前記水素含有ガスを供給する請求項1乃至3のいずれかに記載の半導体装置の製造方法。
  5. 前記第2の層を形成する工程では、前記第1の層の酸化反応を不飽和とする請求項1乃至4のいずれかに記載の半導体装置の製造方法。
  6. 前記所定元素は半導体元素または金属元素を含む請求項1乃至5のいずれかに記載の半導体装置の製造方法。
  7. 前記第1の原料ガスがクロロシラン系原料ガスまたはフルオロシラン系原料ガスを含み、
    前記第2の原料ガスがアミノシラン系原料ガスを含む請求項1乃至6のいずれかに記載の半導体装置の製造方法。
  8. 基板に対して所定元素およびハロゲン基を含む第1の原料ガスを供給する工程と前記基板に対して前記所定元素およびアミノ基を含む第2の原料ガスを供給する工程と、を間に残留ガスをパージする工程を挟んで交互に所定回数行うことで、第1の層を形成する工程と、
    前記基板に対して酸素含有ガス、または、酸素含有ガスおよび水素含有ガスを供給することで、前記第1の層を酸化して、第2の層を形成する工程と、
    間に残留ガスをパージする工程を挟んで交互に行うサイクルを所定回数行うことで、前記基板上に、前記所定元素、酸素、炭素および窒素を含む膜、前記所定元素、酸素および炭素を含む膜、または、前記所定元素および酸素を含む膜を形成する工程を有する基板処理方法。
  9. 基板を収容する処理室と、
    前記処理室内の基板に対して所定元素およびハロゲン基を含む第1の原料ガスを供給する第1原料ガス供給系と、
    前記処理室内の基板に対して前記所定元素およびアミノ基を含む第2の原料ガスを供給する第2原料ガス供給系と、
    前記処理室内の基板に対して酸素含有ガス、または、酸素含有ガスおよび水素含有ガスを供給する反応ガス供給系と、
    前記処理室内の残留ガスをパージするために前記処理室内へパージガスを供給するパージガス供給系と、
    前記処理室内の基板に対して前記第1の原料ガスを供給する処理と、前記処理室内の前記基板に対して前記第2の原料ガスを供給する処理と、を間に残留ガスをパージする処理を挟んで交互に所定回数行うことで、第1の層を形成する処理と、前記処理室内の前記基板に対して前記酸素含有ガス、または、前記酸素含有ガスおよび前記水素含有ガスを供給することで、前記第1の層を酸化して、第2の層を形成する処理と、を間に残留ガスをパージする工程を挟んで交互に行うサイクルを所定回数行うことで、前記基板上に、前記所定元素、酸素、炭素および窒素を含む膜、前記所定元素、酸素および炭素を含む膜、または、前記所定元素および酸素を含む膜を形成するように、前記第1原料ガス供給系、前記第2原料ガス供給系前記反応ガス供給系および前記パージガス供給系を制御するよう構成される制御部と、
    を有する基板処理装置。
  10. 処理室内の基板に対して所定元素およびハロゲン基を含む第1の原料ガスを供給する手順と、前記処理室内の前記基板に対して前記所定元素およびアミノ基を含む第2の原料ガスを供給する手順と、を間に残留ガスをパージする手順を挟んで交互に所定回数行うことで、第1の層を形成する手順と、
    前記処理室内の前記基板に対して酸素含有ガス、または、酸素含有ガスおよび水素含有ガスを供給することで、前記第1の層を酸化して、第2の層を形成する手順と、
    間に残留ガスをパージする工程を挟んで交互に行うサイクルを所定回数行うことで、前記基板上に、前記所定元素、酸素、炭素および窒素を含む膜、前記所定元素、酸素および炭素を含む膜、または、前記所定元素および酸素を含む膜を形成する手順をコンピュータに実行させるプログラム。
JP2014070517A 2011-03-23 2014-03-28 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム Active JP5775947B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014070517A JP5775947B2 (ja) 2011-03-23 2014-03-28 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011064726 2011-03-23
JP2011064726 2011-03-23
JP2014070517A JP5775947B2 (ja) 2011-03-23 2014-03-28 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013505876A Division JP5514365B2 (ja) 2011-03-23 2012-03-07 半導体装置の製造方法、基板処理方法および基板処理装置

Publications (2)

Publication Number Publication Date
JP2014168070A JP2014168070A (ja) 2014-09-11
JP5775947B2 true JP5775947B2 (ja) 2015-09-09

Family

ID=46879199

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013505876A Active JP5514365B2 (ja) 2011-03-23 2012-03-07 半導体装置の製造方法、基板処理方法および基板処理装置
JP2014070517A Active JP5775947B2 (ja) 2011-03-23 2014-03-28 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013505876A Active JP5514365B2 (ja) 2011-03-23 2012-03-07 半導体装置の製造方法、基板処理方法および基板処理装置

Country Status (5)

Country Link
US (2) US9123530B2 (ja)
JP (2) JP5514365B2 (ja)
KR (1) KR101378478B1 (ja)
TW (1) TWI447257B (ja)
WO (1) WO2012128044A1 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993055B2 (en) 2005-10-27 2015-03-31 Asm International N.V. Enhanced thin film deposition
JP6046351B2 (ja) * 2012-01-19 2016-12-14 日新電機株式会社 絶縁膜およびその製造方法
JP6024484B2 (ja) * 2013-01-29 2016-11-16 東京エレクトロン株式会社 成膜方法及び成膜装置
JP6199570B2 (ja) * 2013-02-07 2017-09-20 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6125279B2 (ja) * 2013-03-05 2017-05-10 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
US8841182B1 (en) * 2013-03-14 2014-09-23 Asm Ip Holding B.V. Silane and borane treatments for titanium carbide films
JP6111317B2 (ja) * 2013-03-19 2017-04-05 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置、プログラムおよび記録媒体
JP5864637B2 (ja) 2013-03-19 2016-02-17 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体
JP6230809B2 (ja) * 2013-04-22 2017-11-15 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP5998101B2 (ja) * 2013-05-24 2016-09-28 株式会社日立国際電気 半導体装置の製造方法、基板処理装置及びプログラム
WO2016027369A1 (ja) * 2014-08-22 2016-02-25 株式会社日立国際電気 半導体装置の製造方法、基板処理装置および記録媒体
JP6347548B2 (ja) * 2014-09-08 2018-06-27 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
US9437484B2 (en) * 2014-10-17 2016-09-06 Taiwan Semiconductor Manufacturing Company, Ltd. Etch stop layer in integrated circuits
WO2016103317A1 (ja) 2014-12-22 2016-06-30 株式会社日立国際電気 半導体装置の製造方法、基板処理装置および記録媒体
JP6345136B2 (ja) * 2015-03-06 2018-06-20 東京エレクトロン株式会社 炭素含有シリコン窒化物膜の成膜方法および成膜装置
KR102396111B1 (ko) 2015-06-18 2022-05-10 삼성전자주식회사 반도체 소자 및 그 제조 방법
JP6523080B2 (ja) * 2015-07-10 2019-05-29 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
JP6546872B2 (ja) * 2016-04-07 2019-07-17 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
WO2017199570A1 (ja) * 2016-05-20 2017-11-23 株式会社日立国際電気 クリーニング方法、半導体装置の製造方法、基板処理装置およびプログラム
US20180033614A1 (en) * 2016-07-27 2018-02-01 Versum Materials Us, Llc Compositions and Methods Using Same for Carbon Doped Silicon Containing Films
US11447861B2 (en) * 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
JP6749268B2 (ja) * 2017-03-07 2020-09-02 東京エレクトロン株式会社 基板処理装置
JP6602332B2 (ja) * 2017-03-28 2019-11-06 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
KR102324630B1 (ko) 2017-03-29 2021-11-10 삼성전자주식회사 집적회로 소자의 제조 방법
KR102269343B1 (ko) * 2017-05-30 2021-06-28 주식회사 원익아이피에스 박막 증착 방법
KR102334832B1 (ko) * 2017-07-13 2021-12-06 가부시키가이샤 코쿠사이 엘렉트릭 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
WO2019058477A1 (ja) * 2017-09-21 2019-03-28 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
US10649471B2 (en) * 2018-02-02 2020-05-12 Mks Instruments, Inc. Method and apparatus for pulse gas delivery with isolation valves
KR102541454B1 (ko) * 2018-04-26 2023-06-09 삼성전자주식회사 저유전막의 형성 방법, 및 반도체 소자의 형성방법
JP6783888B2 (ja) 2019-03-15 2020-11-11 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置及び記録媒体
US11404290B2 (en) * 2019-04-05 2022-08-02 Mks Instruments, Inc. Method and apparatus for pulse gas delivery
KR20230044316A (ko) * 2020-09-24 2023-04-03 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6211096B1 (en) * 1997-03-21 2001-04-03 Lsi Logic Corporation Tunable dielectric constant oxide and method of manufacture
US6534442B1 (en) * 1998-05-14 2003-03-18 Caigon Carbon Corporation Process for production of carbonaceous chars having catalytic activity
US6780704B1 (en) * 1999-12-03 2004-08-24 Asm International Nv Conformal thin films over textured capacitor electrodes
AU2003213420A1 (en) * 2003-03-17 2004-10-11 Fujitsu Limited Semiconductor device and method for manufacturing semiconductor device
JP2005159316A (ja) * 2003-10-30 2005-06-16 Tokyo Electron Ltd 半導体装置の製造方法及び成膜装置並びに記憶媒体
JP4595702B2 (ja) 2004-07-15 2010-12-08 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体
KR100640638B1 (ko) * 2005-03-10 2006-10-31 삼성전자주식회사 원자층 증착법에 의한 고유전막 형성 방법 및 고유전막을 갖는 반도체소자의 제조 방법
US7465669B2 (en) * 2005-11-12 2008-12-16 Applied Materials, Inc. Method of fabricating a silicon nitride stack
US20070237697A1 (en) * 2006-03-31 2007-10-11 Tokyo Electron Limited Method of forming mixed rare earth oxide and aluminate films by atomic layer deposition
US7883746B2 (en) 2006-07-27 2011-02-08 Panasonic Corporation Insulating film formation method which exhibits improved thickness uniformity and improved composition uniformity
JP2008053683A (ja) * 2006-07-27 2008-03-06 Matsushita Electric Ind Co Ltd 絶縁膜形成方法、半導体装置、および基板処理装置
US20080213479A1 (en) 2007-02-16 2008-09-04 Tokyo Electron Limited SiCN film formation method and apparatus
JP4924437B2 (ja) * 2007-02-16 2012-04-25 東京エレクトロン株式会社 成膜方法及び成膜装置
CA2670809A1 (en) * 2007-02-27 2008-09-04 Sixtron Advanced Materials, Inc. Method for forming a film on a substrate
US7651961B2 (en) * 2007-03-30 2010-01-26 Tokyo Electron Limited Method for forming strained silicon nitride films and a device containing such films
US7943531B2 (en) * 2007-10-22 2011-05-17 Applied Materials, Inc. Methods for forming a silicon oxide layer over a substrate
JP4611414B2 (ja) * 2007-12-26 2011-01-12 株式会社日立国際電気 半導体装置の製造方法、基板処理方法および基板処理装置
TWI415206B (zh) * 2008-01-31 2013-11-11 Hitachi Int Electric Inc A substrate processing apparatus, and a method of manufacturing the semiconductor device
KR101532751B1 (ko) * 2008-09-19 2015-07-02 삼성전자주식회사 반도체 소자 및 그 반도체 소자의 형성 방법
JP5384291B2 (ja) * 2008-11-26 2014-01-08 株式会社日立国際電気 半導体装置の製造方法、基板処理方法及び基板処理装置
JP5774822B2 (ja) * 2009-05-25 2015-09-09 株式会社日立国際電気 半導体デバイスの製造方法及び基板処理装置
JP2011029598A (ja) * 2009-06-30 2011-02-10 Hitachi Kokusai Electric Inc 基板処理方法及び基板処理装置
US20110065287A1 (en) 2009-09-11 2011-03-17 Tokyo Electron Limited Pulsed chemical vapor deposition of metal-silicon-containing films
US9018104B2 (en) 2010-04-09 2015-04-28 Hitachi Kokusai Electric Inc. Method for manufacturing semiconductor device, method for processing substrate and substrate processing apparatus
US8728956B2 (en) * 2010-04-15 2014-05-20 Novellus Systems, Inc. Plasma activated conformal film deposition

Also Published As

Publication number Publication date
TWI447257B (zh) 2014-08-01
US9761437B2 (en) 2017-09-12
US20150325427A1 (en) 2015-11-12
TW201250044A (en) 2012-12-16
JP5514365B2 (ja) 2014-06-04
US20140051261A1 (en) 2014-02-20
KR20130057491A (ko) 2013-05-31
KR101378478B1 (ko) 2014-03-27
WO2012128044A1 (ja) 2012-09-27
JPWO2012128044A1 (ja) 2014-07-24
JP2014168070A (ja) 2014-09-11
US9123530B2 (en) 2015-09-01

Similar Documents

Publication Publication Date Title
JP5775947B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP5947417B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
US9837262B2 (en) Method of manufacturing a SiOCN film, substrate processing apparatus and recording medium
JP6125279B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP5847566B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6030378B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6035166B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP5869923B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
US9478413B2 (en) Method of manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and recording medium
US9218955B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP2013077805A (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP2016072587A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6151335B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6470468B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP6654232B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150706

R150 Certificate of patent or registration of utility model

Ref document number: 5775947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250