WO2019058477A1 - 半導体装置の製造方法、基板処理装置およびプログラム - Google Patents

半導体装置の製造方法、基板処理装置およびプログラム Download PDF

Info

Publication number
WO2019058477A1
WO2019058477A1 PCT/JP2017/034054 JP2017034054W WO2019058477A1 WO 2019058477 A1 WO2019058477 A1 WO 2019058477A1 JP 2017034054 W JP2017034054 W JP 2017034054W WO 2019058477 A1 WO2019058477 A1 WO 2019058477A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
film
carbon
substrate
gas
Prior art date
Application number
PCT/JP2017/034054
Other languages
English (en)
French (fr)
Inventor
広樹 山下
貴史 新田
島本 聡
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2017/034054 priority Critical patent/WO2019058477A1/ja
Publication of WO2019058477A1 publication Critical patent/WO2019058477A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a method of manufacturing a semiconductor device, a substrate processing apparatus, and a program.
  • a film containing silicon (Si), oxygen (O), carbon (C) and nitrogen (N) is formed on a substrate, ie, a silicon oxycarbonitride film (SiOCN film). Processing may be performed (see, for example, Patent Document 1).
  • An object of the present invention is to provide a technology capable of improving the characteristics of a film formed on a substrate.
  • Techniques are provided to form films comprising cyclic structures, nitrogen, and oxygen.
  • FIG. 2 is a schematic block diagram of a vertical processing furnace of a substrate processing apparatus suitably used in an embodiment of the present invention, the processing furnace portion being a sectional view taken along the line AA of FIG.
  • FIG. 2 is a schematic block diagram of the controller of the substrate processing apparatus suitably used by one Embodiment of this invention, and is a figure which shows the control system of a controller with a block diagram. It is a flowchart which shows the substrate processing sequence of one Embodiment of this invention.
  • FIG. 1 is a view showing a chemical structural formula of 1,1,3,3-tetrachloro-1,3-disilacyclobutane used as a raw material.
  • A is a figure which shows the measurement result of the dielectric constant of the film
  • (b) is a figure which shows the evaluation result of the etching tolerance after the ashing process of the film
  • the processing furnace 202 has a heater 207 as a heating mechanism (temperature adjustment unit).
  • the heater 207 has a cylindrical shape, and is vertically installed by being supported by the holding plate.
  • the heater 207 also functions as an activation mechanism (excitation unit) that thermally activates (excites) the gas.
  • a reaction tube 203 is disposed concentrically with the heater 207.
  • the reaction tube 203 is made of, for example, a heat resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape whose upper end is closed and whose lower end is open.
  • a processing chamber 201 is formed in the hollow portion of the reaction tube 203.
  • the processing chamber 201 is configured to be able to accommodate a wafer 200 as a substrate.
  • nozzles 249a and 249b are provided so as to penetrate the lower side wall of the reaction tube 203.
  • Gas supply pipes 232a and 232b are connected to the nozzles 249a and 249b, respectively.
  • mass flow controllers (MFC) 241a and 241b which are flow controllers (flow control units) and valves 243a and 243b which are on-off valves are provided in this order from the upstream side of the gas flow.
  • Gas supply pipes 232c and 232d are connected to the gas supply pipes 232a and 232b, respectively, downstream of the valves 243a and 243b.
  • MFCs 241c and 241d and valves 243c and 243d are provided in this order from the upstream side of the gas flow.
  • the nozzles 249 a and 249 b are provided in an annular space in plan view between the inner wall of the reaction tube 203 and the wafer 200, along the upper portion from the lower portion of the inner wall of the reaction tube 203. They are provided so as to rise upward in the arrangement direction. That is, the nozzles 249a and 249b are provided along the wafer array area in the area horizontally surrounding the wafer array area on the side of the wafer array area in which the wafers 200 are arrayed. Gas supply holes 250a and 250b for supplying gas are respectively provided on side surfaces of the nozzles 249a and 249b.
  • the gas supply holes 250 a and 250 b are opened to face the center of the reaction tube 203, and can supply gas toward the wafer 200.
  • a plurality of gas supply holes 250 a and 250 b are provided from the lower portion to the upper portion of the reaction tube 203.
  • a raw material for example, an annular structure constituted of Si and C and a gas containing halogen are supplied into the processing chamber 201 via the MFC 241a, the valve 243a and the nozzle 249a.
  • the raw material acts as a Si source and a C source.
  • a raw material for example, 1,1,3,3-tetrachloro-1,3-disilacyclobutane (C 2 H 4 Cl 4 Si 2 , abbreviation: TCDSCB) gas can be used as a raw material.
  • TCDSCB 1,1,3,3-tetrachloro-1,3-disilacyclobutane
  • the chemical structural formula of TCDSCB is shown in FIG.
  • TCDSCB has a cyclic structure composed of Si and C, and contains chlorine (Cl) as a halogen.
  • this cyclic structure composed of Si and C is simply referred to as a cyclic structure.
  • the shape of the annular structure included in TCDSCB is square.
  • This cyclic structure is composed of alternating Si and C, contains four Si—C bonds, and contains two Si atoms and two C atoms. Cl is bonded to Si in this cyclic structure, and H is bonded to C. That is, TCDSCB contains Si—Cl bond and CH—H bond in addition to Si—C bond.
  • an N-containing gas is supplied from the gas supply pipe 232b into the processing chamber 201 through the MFC 241b, the valve 243b, and the nozzle 249b.
  • the N-containing gas acts as a nitriding agent (nitriding gas), ie, an N source.
  • nitriding gas ie, an N source.
  • ammonia (NH 3 ) gas can be used as the N-containing gas.
  • an O-containing gas is supplied from the gas supply pipe 232b into the processing chamber 201 through the MFC 241b, the valve 243b, and the nozzle 249b.
  • the O-containing gas acts as an oxidant (oxidizing gas), that is, an O source.
  • oxygen (O 2 ) gas can be used as the O-containing gas.
  • a hydrogen (H) -containing gas is supplied from the gas supply pipe 232a into the processing chamber 201 through the MFC 241a, the valve 243a, and the nozzle 249a.
  • the H-containing gas alone can not obtain an oxidation effect.
  • the H-containing gas reacts with the O-containing gas under specific conditions to generate oxidizing species such as atomic oxygen (O), thereby improving the efficiency of the oxidation treatment. Therefore, the H-containing gas can be considered to be included in the oxidant as in the O-containing gas.
  • the term oxidizing agent when used in the present specification, it may contain only an O-containing gas or may contain both an O-containing gas and an H-containing gas.
  • hydrogen (H 2 ) gas can be used as the H-containing gas.
  • Nitrogen (N 2 ) gas as an inert gas is supplied from the gas supply pipes 232c and 232d to the processing chamber 201 via the MFCs 241c and 241d, the valves 243c and 243d, the gas supply pipes 232a and 232b, and the nozzles 249a and 249b, respectively. It is supplied to the inside.
  • a raw material supply system is mainly configured by the gas supply pipe 232a, the MFC 241a, and the valve 243a.
  • a reactant (N-containing gas, O-containing gas) supply system is mainly configured by the gas supply pipe 232b, the MFC 241b, and the valve 243b.
  • a reactant (H-containing gas) supply system is mainly configured by the gas supply pipe 232a, the MFC 241a, and the valve 243a.
  • the N-containing gas supply system functions as a nitriding agent supply system in a film forming step described later.
  • the O-containing gas supply system functions as an oxidant supply system in a film forming step described later.
  • the H-containing gas supply system may be included in the oxidant supply system.
  • An inert gas supply system is mainly configured by the gas supply pipes 232c and 232d, the MFCs 241c and 241d, and the valves 243c and 243d.
  • any or all of the supply systems may be configured as an integrated supply system 248 in which the valves 243a to 243d, the MFCs 241a to 241d, and the like are integrated.
  • the integrated supply system 248 is connected to each of the gas supply pipes 232a to 232d, and supplies various gases into the gas supply pipes 232a to 232d, that is, opens and closes the valves 243a to 243d or the MFCs 241a to 241d.
  • the flow rate adjustment operation and the like are configured to be controlled by a controller 121 described later.
  • the integrated supply system 248 is configured as an integrated or divided integrated unit, and can be attached to and detached from the gas supply pipes 232 a to 232 d etc. in units of integrated units. Maintenance, replacement, addition, and the like can be performed in units of integrated units.
  • An exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201 is connected to the lower side wall of the reaction pipe 203.
  • the exhaust pipe 231 is provided with a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure adjustment unit).
  • the vacuum pump 246 as an evacuation apparatus is connected.
  • the APC valve 244 can perform vacuum evacuation and vacuum evacuation stop inside the processing chamber 201 by opening and closing the valve while operating the vacuum pump 246, and further, with the vacuum pump 246 operating,
  • the pressure in the processing chamber 201 can be adjusted by adjusting the valve opening based on the pressure information detected by the pressure sensor 245.
  • An exhaust system is mainly configured by the exhaust pipe 231, the pressure sensor 245, and the APC valve 244.
  • the vacuum pump 246 may be included in the exhaust system.
  • a seal cap 219 as a furnace port cover capable of airtightly closing the lower end opening of the reaction tube 203 is provided.
  • the seal cap 219 is made of, for example, a metal material such as SUS, and is formed in a disk shape.
  • an O-ring 220 is provided on the top surface of the seal cap 219 as a seal member that abuts on the lower end of the reaction tube 203.
  • a rotation mechanism 267 for rotating a boat 217 described later is installed below the seal cap 219.
  • the rotation shaft 255 of the rotation mechanism 267 is connected to the boat 217 through the seal cap 219.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be vertically lifted and lowered by a boat elevator 115 as a lift mechanism installed outside the reaction tube 203.
  • the boat elevator 115 is configured as a transfer device (transfer mechanism) that carries the wafer 200 into and out of the processing chamber 201 by moving the seal cap 219 up and down.
  • the boat 217 as a substrate support supports a plurality of, for example, 25 to 200 wafers 200 in a horizontal posture and vertically aligned with multiple centers aligned with one another, ie, It is configured to arrange at intervals.
  • the boat 217 is made of, for example, a heat resistant material such as quartz or SiC.
  • a heat insulating plate 218 made of a heat resistant material such as quartz or SiC is supported in multiple stages in a horizontal posture.
  • a temperature sensor 263 as a temperature detector is installed in the reaction tube 203.
  • the temperature sensor 263 is provided along the inner wall of the reaction tube 203.
  • the controller 121 which is a control unit (control means), is configured as a computer including a central processing unit (CPU) 121a, a random access memory (RAM) 121b, a storage device 121c, and an I / O port 121d. It is done.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to be able to exchange data with the CPU 121a via the internal bus 121e.
  • An input / output device 122 configured as, for example, a touch panel or the like is connected to the controller 121.
  • the storage device 121 c is configured by, for example, a flash memory, a hard disk drive (HDD), or the like.
  • a control program for controlling the operation of the substrate processing apparatus, and a process recipe in which a procedure, conditions and the like of the substrate processing described later are stored are readably stored.
  • the process recipe is a combination of processes so as to cause the controller 121 to execute each procedure in the substrate processing process described later and obtain a predetermined result, and functions as a program.
  • the process recipe, the control program and the like are collectively referred to simply as a program.
  • the process recipe is simply referred to as a recipe.
  • the RAM 121 b is configured as a memory area (work area) in which programs and data read by the CPU 121 a are temporarily stored.
  • the I / O port 121d is connected to the MFCs 241a to 241d, the valves 243a to 243d, the pressure sensor 245, the APC valve 244, the vacuum pump 246, the heater 207, the temperature sensor 263, the rotation mechanism 267, the boat elevator 115, etc. .
  • the CPU 121a is configured to read out and execute the control program from the storage device 121c, and to read out the recipe from the storage device 121c in response to the input of the operation command from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rates of various gases by the MFCs 241a to 241d, opens and closes the valves 243a to 243d, opens and closes the APC valve 244, and adjusts the pressure by the APC valve 244 based on the pressure sensor 245 in accordance with the contents of the read recipe. Operation, start and stop of vacuum pump 246, temperature adjustment operation of heater 207 based on temperature sensor 263, rotation and rotation speed adjustment of boat 217 by rotation mechanism 267, elevation operation of boat 217 by boat elevator 115, etc. Is configured.
  • the controller 121 installs the above program stored in an external storage device (for example, a magnetic disk such as HDD, an optical disk such as CD, an optical magnetic disk such as MO, a semiconductor memory such as USB memory) 123 in a computer Can be configured by
  • the storage device 121 c and the external storage device 123 are configured as computer readable recording media. Hereinafter, these are collectively referred to simply as recording media.
  • recording medium when the term "recording medium" is used in the present specification, when only the storage device 121c is included, only the external storage device 123 may be included, or both of them may be included.
  • the program may be provided to the computer using communication means such as the Internet or a dedicated line without using the external storage device 123.
  • At least a part of the annular structure formed of Si and C contained in the SiOCN film is at a temperature higher than the processing temperature (first temperature described later) in the film forming step.
  • An annealing step is performed to heat treat the as-deposited SiOCN film under the maintained processing conditions.
  • the substrate processing sequence shown in FIG. 4 may be indicated as follows for convenience. The same notation is used in the following description of the modification and the like.
  • wafer When the term “wafer” is used in the present specification, it may mean the wafer itself or a laminate of the wafer and a predetermined layer or film formed on the surface thereof.
  • surface of wafer When the term “surface of wafer” is used in the present specification, it may mean the surface of the wafer itself or the surface of a predetermined layer or the like formed on the wafer.
  • the phrase “forming a predetermined layer on the wafer” means that the predetermined layer is directly formed on the surface of the wafer itself, or a layer formed on the wafer, etc. It may mean forming a predetermined layer on top of.
  • substrate in this specification is also synonymous with the use of the word "wafer”.
  • a plurality of wafers 200 are loaded into the boat 217 (wafer charging). Thereafter, as shown in FIG. 1, the boat 217 supporting the plurality of wafers 200 is lifted by the boat elevator 115 and carried into the processing chamber 201 (boat loading). In this state, the seal cap 219 seals the lower end of the reaction tube 203 via the O-ring 220.
  • the vacuum pump 246 evacuates (depressurizes and evacuates) the processing chamber 201, that is, the space in which the wafer 200 exists has a desired pressure (vacuum degree). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information. Further, the wafer 207 in the processing chamber 201 is heated by the heater 207 so as to have a desired processing temperature (first temperature). At this time, the degree of energization of the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution. Further, the rotation of the wafer 200 by the rotation mechanism 267 is started. The operation of the vacuum pump 246 and the heating and rotation of the wafer 200 are both continued at least until the processing of the wafer 200 is completed.
  • Step 1 the TCDSCB gas is supplied to the wafer 200 in the processing chamber 201.
  • the valve 243a is opened to flow the TCDSCB gas into the gas supply pipe 232a.
  • the flow rate of the TCDSCB gas is adjusted by the MFC 241 a, supplied into the processing chamber 201 through the nozzle 249 a, and exhausted from the exhaust pipe 231.
  • the TCDSCB gas is supplied to the wafer 200.
  • the valves 243c and 243d may be opened to flow the N 2 gas into the gas supply pipes 232c and 232d.
  • Processing temperature (first temperature): 250 to 400 ° C., preferably 250 to 350 ° C.
  • Processing pressure 1 to 20 Torr (133 to 2666 Pa)
  • TCDSCB gas supply flow rate 1 to 2000 sccm
  • N 2 gas supply flow rate (each gas supply pipe): 0 to 10000 sccm
  • Each gas supply time is 1 to 120 seconds, preferably 5 to 60 seconds.
  • the above-mentioned processing conditions are conditions under which at least a part of the cyclic structure composed of Si and C contained in TCDSCB can be maintained (maintained) without breaking. That is, the above-mentioned processing conditions are as they are without destroying at least a part of the plurality of annular structures contained in the TCDSCB gas (a plurality of TCDSCB molecules) supplied to the wafer 200. It is a condition to be held.
  • a cyclic structure composed of Si and C is also simply referred to as a cyclic structure.
  • a layer (SiC layer) containing Si and C is formed as the first layer (initial layer) on the outermost surface of the wafer 200.
  • the first layer is a low density state layer including a plurality of annular structures composed of Si and C.
  • the first layer may include a chain-like structure generated by breaking a part of a plurality of Si—C bonds constituting a cyclic structure.
  • the first layer may include at least one of Si—Cl bond and C—H bond.
  • the processing temperature in step 1 is preferably set to a predetermined temperature within the above range.
  • the valve 243 a is closed to stop the supply of the TCDSCB gas into the processing chamber 201. Then, the inside of the processing chamber 201 is evacuated to exhaust the gas and the like remaining in the processing chamber 201 from the inside of the processing chamber 201. At this time, the valves 243 c and 243 d are opened to supply N 2 gas into the processing chamber 201.
  • the N 2 gas acts as a purge gas.
  • 1,1,3,3-tetrachloro-1,3-disilacyclopentane (C 3 H 6 Cl 4 Si 2 ) gas or the like can be used as a raw material. That is, the shape of the annular structure comprised by Si and C contained in a raw material is not restricted to a case where it is a quadrangle. Moreover, this annular structure is not limited to the case where Si and C are alternately bonded. By using a raw material having a large annular structure, it is possible to reduce the film density of the SiOCN film to be finally formed and to lower the dielectric constant of this film.
  • 1,1,3,3-tetrafluoro-1,3-disilacyclobutane (C 2 H 4 F 4 Si 2 ) gas or the like can be used as a raw material. That is, the halogen contained in the raw material is not limited to Cl, and may be fluorine (F), bromine (Br), iodine (I) or the like.
  • the inert gas in addition to the N 2 gas, for example, various rare gases such as Ar gas, He gas, Ne gas, and Xe gas can be used. This point is the same in Steps 2 and 3 and an annealing step which will be described later.
  • Step 2 After step 1 is completed, NH 3 gas is supplied to the wafer 200 in the processing chamber 201, that is, the first layer formed on the wafer 200. Specifically, the opening and closing control of the valves 243b to 243d is performed in the same procedure as the opening and closing control of the valves 243a, 243c, and 243d in step 1. The flow rate of the NH 3 gas is adjusted by the MFC 241 b, and is supplied into the processing chamber 201 through the nozzle 249 b and exhausted from the exhaust pipe 231. At this time, NH 3 gas is supplied to the wafer 200.
  • Processing pressure 1 to 30 Torr (133 to 3999 Pa)
  • NH 3 gas supply flow rate 100 to 10000 sccm
  • the gas supply time 1 to 120 seconds is exemplified.
  • Other processing conditions are the same as the processing conditions in step 1.
  • a silicon carbonitride layer SiCN layer
  • SiCN layer silicon carbonitride layer
  • the second layer can be a layer in a low density state that includes a plurality of cyclic structures including Si and C, and further includes N.
  • the valve 243 b is closed to stop the supply of the NH 3 gas into the processing chamber 201. Then, the gas and the like remaining in the processing chamber 201 are removed from the inside of the processing chamber 201 by the processing procedure similar to that of step 1.
  • N-containing gas As the nitriding agent (N-containing gas), in addition to NH 3 gas, diazene (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, N 3 H 8 gas, gas containing these compounds, etc. Is possible.
  • Step 3 After step 2 is completed, the O 2 gas and the H 2 gas are separately supplied into the processing chamber 201 from different nozzles, and these gases are mixed and reacted in the processing chamber 201. Specifically, the valves 243 b and 243 a are opened to flow the O 2 gas and the H 2 gas into the gas supply pipes 232 b and 232 a, respectively. The opening and closing control of the valves 243 c and 243 d is performed in the same procedure as the opening and closing control of the valves 243 c and 243 d in step 1.
  • Step 3 includes a period during which O 2 gas and H 2 gas are simultaneously supplied.
  • Processing pressure 0.1 to 10 Torr (13.3 to 1333 Pa)
  • O 2 gas supply flow rate 100 to 10000 sccm
  • H 2 gas supply flow rate 100 to 10000 sccm
  • the gas supply time 1 to 120 seconds is exemplified.
  • Other processing conditions are the same as the processing conditions in step 1.
  • the O 2 gas and the H 2 gas are thermally activated (excited) by non-plasma in a heated reduced pressure atmosphere. And react, thereby generating an oxygen-free, water-containing (H 2 O) -free oxidizing species such as atomic oxygen (O). Then, at least a part of the second layer formed on the wafer 200 in Step 2 can be modified (oxidized) mainly by this oxidizing species. As a result, Cl, H and the like can be desorbed from the second layer, and the O component can be incorporated into the second layer.
  • a silicon oxycarbonitriding layer SiOCN layer
  • SiOCN layer silicon oxycarbonitriding layer
  • the oxidizing power can be greatly improved as compared with the case of supplying O 2 gas alone or the case of supplying water vapor (H 2 O gas). That is, by adding the H 2 gas to the O 2 gas in a reduced pressure atmosphere, a significant improvement in the oxidizing power can be obtained as compared to the case where the O 2 gas alone is supplied or the case where the H 2 O gas is supplied. .
  • at least a part of the annular structure contained in the second layer can be taken into the third layer as it is, without being broken.
  • the oxidation of the second layer can be made unsaturated (unsaturated oxidation) so that at least a part of the cyclic structures among the plurality of cyclic structures contained in the second layer is left as it is. .
  • valves 243b and 243a are closed to stop the supply of the O 2 gas and the H 2 gas into the processing chamber 201, respectively. Then, the gas and the like remaining in the processing chamber 201 are removed from the inside of the processing chamber 201 by the processing procedure similar to that of step 1.
  • oxidant in addition to O 2 + H 2 gas, nitrous oxide (N 2 O) gas, nitrogen monoxide (NO) gas, nitrogen dioxide (NO 2 ) gas, O 2 gas, water vapor, Hydrogen peroxide (H 2 O 2 ) gas, ozone (O 3 ) gas, plasma excited O 2 gas (O 2 * ), atomic oxygen (O), oxygen radical (O * ), and hydroxyl radical (OH) * )
  • O 2 + H 2 gas is used as the oxidizing agent
  • deuterium (D 2 ) gas or the like can be used instead of H 2 gas.
  • Si, O, C, and N can be formed on the wafer 200 by performing a predetermined number of cycles (n times, n is an integer of 1 or more) alternately performing steps 1 to 3 non-simultaneously, that is, without synchronization. It is possible to form a SiOCN film which is a film containing the same. This film contains a plurality of cyclic structures composed of Si and C, and further becomes a film in a low density state containing N and O.
  • the cycle described above is preferably repeated multiple times. That is, the thickness of the third layer formed per cycle is made thinner than the desired film thickness, and the film thickness of the film formed by laminating the third layer becomes the desired film thickness as described above. It is preferable to repeat the cycle of a plurality of times.
  • the temperature of the wafer 200 is changed (increased) to a second temperature higher than the first temperature described above. Thereafter, an annealing treatment is performed on the as-deposited SiOCN film formed on the wafer 200 at the second temperature.
  • the film forming step and the annealing step are continuously performed in the same processing chamber 201 without taking the wafer 200 after the film forming processing out of the processing chamber 201 out of the processing chamber 201. That is, the film forming step and the annealing step are performed in situ.
  • the annealing step is performed in a state in which the atmosphere in the processing chamber 201 is an atmosphere containing no oxygen. Specifically, the annealing step is performed in a state in which the supply of the TCDSCB gas, the NH 3 gas, the O 2 gas, and the H 2 gas into the processing chamber 201 is not performed, and the N 2 gas is supplied.
  • Processing temperature (second temperature): 450 to 800 ° C., preferably 500 to 700 ° C.
  • Processing pressure 0.5 to 760 Torr (67 to 101325 Pa)
  • N 2 gas supply flow rate 1000 to 5000 sccm Annealing time: 10 to 120 minutes is exemplified.
  • the portion other than the cyclic structure contained in the as-deposited SiOCN film is densified, and this portion, that is, the portion where the cyclic structure does not exist in the SiOCN film has a high density It is possible to That is, partial (local) densification of the SiOCN film is possible.
  • At least a part of the cyclic structure contained in the as-deposited SiOCN film can be held without destruction. That is, among the plurality of annular structures included in the as-deposited SiOCN film, at least a part of the annular structures can be left as it is in the film. As a result, it is possible to make the density of the portion of the SiOCN film subjected to the annealing process in which the cyclic structure exists is as low as that of the portion in the as-deposited SiOCN film in which the cyclic structure exists.
  • the processing temperature in the annealing step is preferably set to a predetermined temperature within the above range.
  • N 2 gas is supplied from the gas supply pipes 232 c and 232 d into the processing chamber 201 and exhausted from the exhaust pipe 231.
  • the inside of the processing chamber 201 is purged, and gas, reaction by-products and the like remaining in the processing chamber 201 are removed from the inside of the processing chamber 201 (after purge).
  • the atmosphere in the processing chamber 201 is replaced with the inert gas (inert gas substitution), and the pressure in the processing chamber 201 is returned to normal pressure (atmospheric pressure recovery).
  • the SiOCN film formed on the wafer 200 can include an annular structure composed of Si and C. As a result, it is possible to make this film into a low density state (porous state) film including an annular structure. This makes it possible to use this film as a low dielectric constant film (Low-k film) suitable for applications such as sidewall spacers.
  • Low-k film low dielectric constant film
  • Water contained in the film may be a factor to increase the dielectric constant of the film.
  • the dielectric constant of the finally obtained SiOCN film can be made lower than that of the as-deposited SiOCN film.
  • the finally obtained SiOCN film is a film which is less likely to cause the uptake of water into the film when exposed to the atmosphere than the as-deposited SiOCN film. can do. This makes it easy to maintain the finally formed SiOCN film as it is a film with a low dielectric constant.
  • by suppressing the uptake of water into the membrane it is also possible to suppress the oxidation of the membrane by moisture after exposure to the air.
  • the as-deposited SiOCN film can be obtained. It can avoid atmospheric exposure. This makes it possible to prevent the uptake of water into the as-deposited SiOCN film and the unnecessary oxidation of this film.
  • the recipe used for substrate processing be individually prepared according to the processing content, and stored in the storage device 121 c via the telecommunication line or the external storage device 123. Then, when the substrate processing is started, it is preferable that the CPU 121a appropriately select an appropriate recipe from among the plurality of recipes stored in the storage device 121c in accordance with the content of the substrate processing.
  • the burden on the operator can be reduced, and processing can be quickly started while avoiding an operation error.
  • the above-described recipe is not limited to the case of creating a new one, and may be prepared, for example, by changing an existing recipe already installed in the substrate processing apparatus.
  • the changed recipe may be installed in the substrate processing apparatus via the telecommunication line or the recording medium recording the recipe.
  • the existing recipe that has already been installed in the substrate processing apparatus may be directly changed by operating the input / output device 122 provided in the existing substrate processing apparatus.
  • the example which forms a film using the batch type substrate processing apparatus which processes a plurality of substrates at once was explained.
  • the present invention is not limited to the above-described embodiment, and can be suitably applied to, for example, the case where a film is formed using a sheet-fed substrate processing apparatus that processes one or several substrates at a time.
  • the example of forming the film using the substrate processing apparatus having the hot wall type processing furnace has been described.
  • the present invention is not limited to the above-described embodiment, and can be suitably applied to the case of forming a film using a substrate processing apparatus having a cold wall type processing furnace.
  • film formation can be performed under the same processing procedure and processing conditions as those of the above-described embodiment and modification, and the same effects as these can be obtained.
  • processing procedure and processing conditions at this time can be, for example, the same as the processing procedure and processing conditions of the above-described embodiment.
  • a SiOCN film was formed on a wafer by the substrate processing sequence shown in FIG. 4 using the substrate processing apparatus shown in FIG.
  • the film forming step and the annealing step were continuously performed in the same processing chamber. That is, the annealing step was performed without exposing the as-deposited SiOCN film to the air.
  • the processing condition is a predetermined condition within the processing condition range in the above-described embodiment.
  • a SiOCN film was formed on the wafer according to the substrate processing sequence shown in FIG.
  • the film forming step and the annealing step were performed in different processing chambers. That is, the as-deposited SiOCN film was exposed to the atmosphere and then the annealing step was performed.
  • the processing conditions were the same as the processing conditions when producing sample 1.
  • the dielectric constants of the SiOCN films of Samples 1 and 2 were measured.
  • the result is shown in FIG.
  • the vertical axis of FIG. 6A indicates the dielectric constant (k value), and the horizontal axis indicates samples 1 and 2.
  • the dielectric constants of the SiOCN films of Samples 1 and 2 were less than 3.5. That is, it has been confirmed that the dielectric constant of each film can be lowered by using a TCDSCB gas as a raw material and including an annular structure composed of Si and C in each film.
  • the WER after ashing treatment of the SiOCN film of sample 1 is smaller than the WER after ashing treatment of the SiOCN film of sample 2, and 1/1 of the WER after ashing treatment of the SiOCN film of sample 2 It was 2 or less. That is, by performing the film forming step and the annealing step in-situ, it is possible to significantly improve the etching resistance (HF resistance) after the ashing process of the finally formed SiOCN film. It could be confirmed. This result suggests that the SiOCN film of Sample 1 has much higher ashing resistance than the SiOCN film of Sample 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

基板に対して、シリコンと炭素とで構成される環状構造およびハロゲンを含む原料を供給する工程と、基板に対して窒化剤を供給する工程と、基板に対して酸化剤を供給する工程と、を非同時に行うサイクルを、シリコンと炭素とで構成される環状構造の少なくとも一部が保持される条件下で、所定回数行うことにより、基板上に、シリコンと炭素とで構成される環状構造、窒素、および酸素を含む膜を形成する。

Description

半導体装置の製造方法、基板処理装置およびプログラム
 本発明は、半導体装置の製造方法、基板処理装置およびプログラムに関する。
 半導体装置の製造工程の一工程として、基板上に、シリコン(Si)、酸素(O)、炭素(C)および窒素(N)を含む膜、すなわち、シリコン酸炭窒化膜(SiOCN膜)を形成する処理が行われることがある(例えば特許文献1参照)。
特開2011-238894号公報
 本発明の目的は、基板上に形成される膜の特性を向上させることが可能な技術を提供することにある。
 本発明の一態様によれば、
 基板に対して、シリコンと炭素とで構成される環状構造およびハロゲンを含む原料を供給する工程と、
 前記基板に対して窒化剤を供給する工程と、
 前記基板に対して酸化剤を供給する工程と、
 を非同時に行うサイクルを、前記シリコンと炭素とで構成される環状構造の少なくとも一部が保持される条件下で、所定回数行うことにより、前記基板上に、前記シリコンと炭素とで構成される環状構造、窒素、および酸素を含む膜を形成する技術が提供される。
 本発明によれば、基板上に形成される膜の特性を向上させることが可能となる。
本発明の一実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。 本発明の一実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を図1のA-A線断面図で示す図である。 本発明の一実施形態で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。 本発明の一実施形態の基板処理シーケンスを示すフロー図である。 原料として用いられる1,1,3,3-テトラクロロ-1,3-ジシラシクロブタンの化学構造式を示す図である。 (a)は基板上に形成された膜の誘電率の測定結果を示す図であり、(b)は基板上に形成された膜のアッシング処理後のエッチング耐性の評価結果を示す図である。
<本発明の一実施形態>
 以下、本発明の一実施形態について、図1~図5を用いて説明する。
(1)基板処理装置の構成
 図1に示すように、処理炉202は加熱機構(温度調整部)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板に支持されることにより垂直に据え付けられている。ヒータ207は、ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
 ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料により構成され、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の筒中空部には、処理室201が形成される。処理室201は、基板としてのウエハ200を収容可能に構成されている。
 処理室201内には、ノズル249a,249bが、反応管203の下部側壁を貫通するように設けられている。ノズル249a,249bには、ガス供給管232a,232bがそれぞれ接続されている。
 ガス供給管232a,232bには、ガス流の上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a,241bおよび開閉弁であるバルブ243a,243bがそれぞれ設けられている。ガス供給管232a,232bのバルブ243a,243bよりも下流側には、ガス供給管232c,232dがそれぞれ接続されている。ガス供給管232c,232dには、ガス流の上流側から順に、MFC241c,241dおよびバルブ243c,243dがそれぞれ設けられている。
 図2に示すように、ノズル249a,249bは、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の配列方向上方に向かって立ち上がるようにそれぞれ設けられている。すなわち、ノズル249a,249bは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うようにそれぞれ設けられている。ノズル249a,249bの側面には、ガスを供給するガス供給孔250a,250bがそれぞれ設けられている。ガス供給孔250a,250bは、反応管203の中心を向くようにそれぞれ開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250a,250bは、反応管203の下部から上部にわたって複数設けられている。
 ガス供給管232aからは、原料として、例えば、SiとCとで構成される環状構造およびハロゲンを含むガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。原料は、SiソースおよびCソースとして作用する。原料としては、例えば、1,1,3,3-テトラクロロ-1,3-ジシラシクロブタン(CClSi、略称:TCDSCB)ガスを用いることができる。図5に、TCDSCBの化学構造式を示す。TCDSCBは、SiとCとで構成される環状構造を含み、ハロゲンとしての塩素(Cl)を含んでいる。以下、このSiとCとで構成される環状構造を、便宜上、単に、環状構造とも称する。TCDSCBに含まれる環状構造の形状は四角形である。この環状構造は、SiとCとが交互に結合してなり、4つのSi-C結合を含んでおり、2つのSi原子と2つのC原子を含んでいる。この環状構造におけるSiにはClが結合しており、CにはHが結合している。すなわち、TCDSCBは、Si-C結合のほか、Si-Cl結合およびC-H結合をそれぞれ含んでいる。
 ガス供給管232bからは、反応体として、例えば、N含有ガスが、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給される。N含有ガスは、窒化剤(窒化ガス)、すなわち、Nソースとして作用する。N含有ガスとしては、例えば、アンモニア(NH)ガスを用いることができる。
 ガス供給管232bからは、反応体として、例えば、O含有ガスが、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給される。O含有ガスは、酸化剤(酸化ガス)、すなわち、Oソースとして作用する。O含有ガスとしては、例えば、酸素(O)ガスを用いることができる。
 ガス供給管232aからは、反応体として、例えば、水素(H)含有ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。H含有ガスは、それ単体では酸化作用は得られない。しかしながら、H含有ガスは、特定の条件下でO含有ガスと反応することで原子状酸素(atomic oxygen、O)等の酸化種を生成し、酸化処理の効率を向上させる。そのため、H含有ガスは、O含有ガスと同様に酸化剤に含めて考えることができる。本明細書において酸化剤という言葉を用いた場合は、O含有ガスのみを含む場合、または、O含有ガスとH含有ガスとの両方を含む場合がある。H含有ガスとしては、例えば、水素(H)ガスを用いることができる。
 ガス供給管232c,232dからは、不活性ガスとしての窒素(N)ガスが、それぞれ、MFC241c,241d、バルブ243c,243d、ガス供給管232a,232b、ノズル249a,249bを介して処理室201内へ供給される。
 主に、ガス供給管232a、MFC241a、バルブ243aにより、原料供給系が構成される。主に、ガス供給管232b、MFC241b、バルブ243bにより、反応体(N含有ガス、O含有ガス)供給系が構成される。主に、ガス供給管232a、MFC241a、バルブ243aにより、反応体(H含有ガス)供給系が構成される。N含有ガス供給系は、後述する成膜ステップにおいて窒化剤供給系として機能する。O含有ガス供給系は、後述する成膜ステップにおいて酸化剤供給系として機能する。H含有ガス供給系を酸化剤供給系に含めて考えてもよい。主に、ガス供給管232c,232d、MFC241c,241d、バルブ243c,243dにより、不活性ガス供給系が構成される。
 上述の各種供給系のうち、いずれか、或いは、全ての供給系は、バルブ243a~243dやMFC241a~241d等が集積されてなる集積型供給システム248として構成されていてもよい。集積型供給システム248は、ガス供給管232a~232dのそれぞれに対して接続され、ガス供給管232a~232d内への各種ガスの供給動作、すなわち、バルブ243a~243dの開閉動作やMFC241a~241dによる流量調整動作等が、後述するコントローラ121によって制御されるように構成されている。集積型供給システム248は、一体型、或いは、分割型の集積ユニットとして構成されており、ガス供給管232a~232d等に対して集積ユニット単位で着脱を行うことができ、集積型供給システム248のメンテナンス、交換、増設等を、集積ユニット単位で行うことが可能なように構成されている。
 反応管203の側壁下方には、処理室201内の雰囲気を排気する排気管231が接続されている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されている。主に、排気管231、圧力センサ245、APCバルブ244により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。
 反応管203の下方には、反応管203の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、例えばSUS等の金属材料により構成され、円盤状に形成されている。シールキャップ219の上面には、反応管203の下端と当接するシール部材としてのOリング220が設けられている。シールキャップ219の下方には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ウエハ200を処理室201内外に搬入および搬出(搬送)する搬送装置(搬送機構)として構成されている。
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料により構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料により構成される断熱板218が水平姿勢で多段に支持されている。
 反応管203内には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、反応管203の内壁に沿って設けられている。
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理工程における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC241a~241d、バルブ243a~243d、圧力センサ245、APCバルブ244、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC241a~241dによる各種ガスの流量調整動作、バルブ243a~243dの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作等を制御するように構成されている。
 コントローラ121は、外部記憶装置(例えば、HDD等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
 上述の基板処理装置を用い、半導体装置の製造工程の一工程として、基板としてのウエハ200上にSiOCN膜を形成するシーケンス例について、主に、図4を用いて説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
 図4に示す基板処理シーケンスでは、
 ウエハ200に対して原料としてTCDSCBガスを供給するステップ1と、
 ウエハ200に対して窒化剤としてNHガスを供給するステップ2と、
 ウエハ200に対して酸化剤としてOガスおよびHガスを供給するステップ3と、
 を非同時に行うサイクルを、SiとCとで構成される環状構造の少なくとも一部が保持される条件下で、所定回数行うことにより、ウエハ200上に、SiとCとで構成される環状構造、N、およびOを含む膜、すなわち、低密度状態(ポーラス状態)のSiOCN膜を形成する成膜ステップを行う。
 図4に示す基板処理シーケンスでは、
 成膜ステップの終了後、成膜ステップにおける処理温度(後述する第1温度)よりも高い温度下で、かつ、SiOCN膜中に含まれるSiとCとで構成される環状構造の少なくとも一部が保持される処理条件下で、アズデポ状態のSiOCN膜を熱処理(アニール)するアニールステップをさらに行う。
 本明細書では、図4に示す基板処理シーケンスを、便宜上、以下のように示すこともある。以下の変形例等の説明においても、同様の表記を用いることとする。
 (TCDSCB→NH→O+H)×n→アニール ⇒ SiOCN
 本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(ウエハチャージおよびボートロード)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)される。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220を介して反応管203の下端をシールした状態となる。
(圧力調整および温度調整)
 処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される。また、処理室201内のウエハ200が所望の処理温度(第1温度)となるように、ヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。また、回転機構267によるウエハ200の回転を開始する。真空ポンプ246の稼働、ウエハ200の加熱および回転は、いずれも、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。
(成膜ステップ)
 その後、以下のステップ1~3を順次実施する。
 [ステップ1]
 このステップでは、処理室201内のウエハ200に対してTCDSCBガスを供給する。具体的には、バルブ243aを開き、ガス供給管232a内へTCDSCBガスを流す。TCDSCBガスは、MFC241aにより流量調整され、ノズル249aを介して処理室201内へ供給され、排気管231から排気される。このとき、ウエハ200に対してTCDSCBガスが供給される。このときバルブ243c,243dを開き、ガス供給管232c,232d内へNガスを流すようにしてもよい。
 本ステップにおける処理条件としては、
 処理温度(第1温度):250~400℃、好ましくは250~350℃
 処理圧力:1~20Torr(133~2666Pa)
 TCDSCBガス供給流量:1~2000sccm
 Nガス供給流量(各ガス供給管):0~10000sccm
 各ガス供給時間:1~120秒、好ましくは5~60秒
 が例示される。
 上述の処理条件、特に温度条件は、TCDSCBに含まれるSiとCとで構成される環状構造の少なくとも一部を、破壊することなく保持(維持)することができる条件である。すなわち、上述の処理条件は、ウエハ200に対して供給されるTCDSCBガス(複数のTCDSCB分子)に含まれる複数の環状構造のうち、少なくとも一部の環状構造が破壊されることなくそのままの形で保持される条件である。本明細書では、SiとCとで構成される環状構造を、単に、環状構造とも称する。
 上述の条件下でウエハ200に対してTCDSCBガスを供給することにより、ウエハ200の最表面上に、第1層(初期層)として、SiおよびCを含む層(SiC層)が形成される。第1層中には、TCDSCBガスに含まれる複数の環状構造のうち、少なくとも一部の環状構造が、破壊されることなくそのままの形で取り込まれる。第1層は、SiとCとで構成される環状構造を複数含む、低密度状態の層となる。なお、第1層は、環状構造を構成する複数のSi-C結合のうち一部の結合が破壊されることで生成された鎖状構造を含む場合がある。また、第1層は、Si-Cl結合およびC-H結合のうち少なくともいずれかを含む場合がある。
 処理温度が250℃未満となると、ウエハ200上に第1層が形成されにくくなり、実用的な成膜レートが得られなくなる場合がある。処理温度を250℃以上の温度とすることで、ウエハ200上に第1層を形成でき、実用的な成膜レートが得られるようになる。また、処理温度が400℃を超えると、TCDSCBに含まれる環状構造を破壊することなく維持することが困難となる場合がある。処理温度を400℃以下の温度とすることで、TCDSCBに含まれる環状構造を破壊することなく維持し、第1層中へ取り込ませることが可能となる。処理温度を350℃以下の温度とすることで、この効果がより確実に得られるようになる。したがって、ステップ1における処理温度は、上述の範囲内の所定の温度とすることが好ましい。
 ウエハ200上に第1層を形成した後、バルブ243aを閉じ、処理室201内へのTCDSCBガスの供給を停止する。そして、処理室201内を真空排気し、処理室201内に残留するガス等を処理室201内から排除する。このとき、バルブ243c,243dを開き、処理室201内へNガスを供給する。Nガスはパージガスとして作用する。
 原料としては、TCDSCBガスの他、1,1,3,3-テトラクロロ-1,3-ジシラシクロペンタン(CClSi)ガス等を用いることができる。すなわち、原料に含まれるSiとCとで構成される環状構造の形状は、四角形である場合に限らない。また、この環状構造は、SiとCとが交互に結合してなる場合に限らない。環状構造が大きな原料を用いることにより、最終的に形成されるSiOCN膜の膜密度を小さくさせ、この膜の誘電率を低下させることが可能となる。また、原料としては、1,1,3,3-テトラフルオロ-1,3-ジシラシクロブタン(CSi)ガス等を用いることもできる。すなわち、原料に含まれるハロゲンは、Clに限らず、フッ素(F)、臭素(Br)、ヨウ素(I)等であってもよい。
 不活性ガスとしては、Nガスの他、例えば、Arガス、Heガス、Neガス、Xeガス等の各種希ガスを用いることが可能である。この点は、後述するステップ2,3、アニールステップにおいても同様である。
 [ステップ2]
 ステップ1が終了した後、処理室201内のウエハ200、すなわち、ウエハ200上に形成された第1層に対してNHガスを供給する。具体的には、バルブ243b~243dの開閉制御を、ステップ1におけるバルブ243a,243c,243dの開閉制御と同様の手順で行う。NHガスは、MFC241bにより流量調整され、ノズル249bを介して処理室201内へ供給され、排気管231から排気される。このとき、ウエハ200に対してNHガスが供給される。
 本ステップにおける処理条件としては、
 処理圧力:1~30Torr(133~3999Pa)
 NHガス供給流量:100~10000sccm
 ガス供給時間:1~120秒
 が例示される。他の処理条件は、ステップ1における処理条件と同様とする。
 上述の条件下でウエハ200に対してNHガスを供給することにより、ステップ1でウエハ200上に形成された第1層の少なくとも一部を改質(窒化)させることができる。それにより、第1層中からClやH等を脱離させると共に、N成分を第1層中に取り込ませることが可能となる。第1層が窒化されることで、ウエハ200上に、第2層として、Si、CおよびNを含む層であるシリコン炭窒化層(SiCN層)が形成される。
 また、上述の条件下でウエハ200に対してNHガスを供給することにより、第1層に含まれる環状構造の少なくとも一部を、破壊することなく保持したまま、第2層中にそのまま取り込ませる(残存させる)ことが可能となる。すなわち、第1層の窒化を、第1層に含まれる複数の環状構造のうち、少なくとも一部の環状構造をそのままの形で残すよう、不飽和(不飽和窒化)とすることが可能となる。これにより、第2層を、SiとCとで構成される環状構造を複数含み、さらにNを含む、低密度状態の層とすることが可能となる。
 ウエハ200上に第2層を形成した後、バルブ243bを閉じ、処理室201内へのNHガスの供給を停止する。そして、ステップ1と同様の処理手順により、処理室201内に残留するガス等を処理室201内から排除する。
 窒化剤(N含有ガス)としては、NHガスの他、ジアゼン(N)ガス、ヒドラジン(N)ガス、Nガス、これらの化合物を含むガス等を用いることが可能である。
 [ステップ3]
 ステップ2が終了した後、処理室201内へOガスとHガスとを異なるノズルより別々に供給し、これらのガスを処理室201内で混合させて反応させる。具体的には、バルブ243b,243aを開き、ガス供給管232b,232a内にOガスとHガスとをそれぞれ流す。バルブ243c,243dの開閉制御は、ステップ1におけるバルブ243c,243dの開閉制御と同様の手順で行う。ガス供給管232b,232a内を流れたOガス、Hガスは、それぞれ、MFC241b,241aにより流量調整され、ノズル249b,249aを介して処理室201内へ供給される。OガスとHガスとは、処理室201内で混合して反応し、その後、排気管231から排気される。ステップ3は、OガスとHガスとを同時に供給する期間を含むことになる。
 本ステップにおける処理条件としては、
 処理圧力:0.1~10Torr(13.3~1333Pa)
 Oガス供給流量:100~10000sccm
 Hガス供給流量:100~10000sccm
 ガス供給時間:1~120秒
 が例示される。他の処理条件は、ステップ1における処理条件と同様とする。
 上述の条件下でOガスおよびHガスを処理室201内へ供給することで、OガスおよびHガスは、加熱された減圧雰囲気下においてノンプラズマで熱的に活性化(励起)されて反応し、それにより、原子状酸素(O)等の酸素を含む水分(HO)非含有の酸化種が生成される。そして、主にこの酸化種により、ステップ2でウエハ200上に形成された第2層の少なくとも一部を改質(酸化)させることができる。それにより、第2層中からClやH等を脱離させると共に、O成分を第2層中に取り込ませることが可能となる。第2層が酸化されることで、ウエハ200上に、第3層として、Si、O、C、およびNを含む層であるシリコン酸炭窒化層(SiOCN層)が形成される。
 この酸化処理によれば、Oガスを単独で供給する場合や水蒸気(HOガス)を供給する場合に比べ、酸化力を大幅に向上させることができる。すなわち、減圧雰囲気下においてOガスにHガスを添加することで、Oガス単独供給の場合やHOガスを供給する場合に比べ、大幅な酸化力向上効果が得られるようになる。ただし、上述の処理条件では、第2層に含まれる環状構造の少なくとも一部を、破壊することなく保持したまま、第3層中にそのまま取り込ませることが可能となる。すなわち、第2層の酸化を、第2層に含まれる複数の環状構造のうち、少なくとも一部の環状構造をそのままの形で残すよう、不飽和(不飽和酸化)とすることが可能となる。これにより、第3層を、SiとCとで構成される環状構造を複数含み、さらにNおよびOを含む、低密度状態の層とすることが可能となる。
 ウエハ200上に第3層を形成した後、バルブ243b,243aを閉じ、処理室201内へのOガスおよびHガスの供給をそれぞれ停止する。そして、ステップ1と同様の処理手順により、処理室201内に残留するガス等を処理室201内から排除する。
 酸化剤(O含有ガス)としては、O+Hガスの他、亜酸化窒素(NO)ガス、一酸化窒素(NO)ガス、二酸化窒素(NO)ガス、Oガス、水蒸気、過酸化水素(H)ガス、オゾン(O)ガス、プラズマ励起させたOガス(O )、原子状酸素(O)、酸素ラジカル(O)、および水酸基ラジカル(OH)等を用いることが可能である。なお、酸化剤としてO+Hガスを用いる場合、Hガスの代わりに重水素(D)ガス等を用いることが可能である。
 [所定回数実施]
 ステップ1~3を非同時に、すなわち、同期させることなく交互に行うサイクルを所定回数(n回、nは1以上の整数)行うことにより、ウエハ200上に、Si、O、C、およびNを含む膜であるSiOCN膜を形成することが可能となる。この膜は、SiとCとで構成される環状構造を複数含み、さらにNおよびOを含む低密度状態の膜となる。上述のサイクルは、複数回繰り返すのが好ましい。すなわち、1サイクルあたりに形成される第3層の厚さを所望の膜厚よりも薄くし、第3層を積層することで形成される膜の膜厚が所望の膜厚になるまで、上述のサイクルを複数回繰り返すのが好ましい。
(アニールステップ)
 成膜ステップが終了した後、ウエハ200の温度を上述の第1温度よりも高い第2温度に変更(上昇)させる。その後、第2温度下で、ウエハ200上に形成されたアズデポ状態のSiOCN膜に対してアニール処理を行う。成膜ステップとアニールステップとは、同一の処理室201内で、成膜処理後のウエハ200を処理室201内から処理室201外に取り出すことなく、連続的に行う。すなわち、成膜ステップとアニールステップとは、in-situにて行う。また、アニールステップは、処理室201内の雰囲気を酸素非含有の雰囲気とした状態で行う。具体的には、処理室201内へのTCDSCBガス、NHガス、Oガス、Hガスの供給をそれぞれ不実施とし、Nガスの供給を実施した状態で、アニールステップを行う。
 本ステップにおける処理条件としては、
 処理温度(第2温度):450~800℃、好ましくは500~700℃
 処理圧力:0.5~760Torr(67~101325Pa)
 Nガス供給流量:1000~5000sccm
 アニール時間:10~120分
 が例示される。
 上述の条件下でアニール処理を行うことにより、アズデポ状態のSiOCN膜中から不純物を除去することが可能となる。例えば、アズデポ状態のSiOCN膜中に残留していたClおよび水分(HO)のうち少なくともいずれかを、この膜中から脱離させることが可能となる。
 また、上述の条件下でアニール処理を行うことにより、アズデポ状態のSiOCN膜中に含まれるNと、N以外の元素(例えばSiやC)と、の結合を強化することも可能となる。例えば、アズデポ状態のSiOCN膜中に含まれるSi-N結合等を強化することが可能となる。
 また、上述の条件下でアニール処理を行うことにより、アズデポ状態のSiOCN膜中に含まれる環状構造以外の部分を緻密化し、この部分、すなわち、SiOCN膜のうち環状構造が存在しない部分を高密度化することが可能となる。すなわち、SiOCN膜の部分的な(局所的な)高密度化が可能となる。
 また、上述の条件下では、アズデポ状態のSiOCN膜中に含まれる環状構造の少なくとも一部を、破壊することなく保持することが可能となる。すなわち、アズデポ状態のSiOCN膜に含まれる複数の環状構造のうち、少なくとも一部の環状構造を、そのままの形で膜中に残存させることが可能となる。これにより、アニール処理が施されたSiOCN膜における環状構造が存在する部分を、アズデポ状態のSiOCN膜における環状構造が存在する部分と同程度に、低密度状態とすることが可能となる。
 なお、処理温度が450℃未満となると、アニール処理を行うことによる不純物の脱離、結合の強化、部分的な緻密化といった上述の効果が得られなくなる場合がある。処理温度を450℃以上の温度とすることで、アニール処理を行うことによるこれらの効果が得られるようになる。処理温度を500℃以上とすることで、アニール処理を行うことによるこれらの効果がより確実に得られるようになる。また、処理温度が800℃を超えると、アズデポ状態のSiOCN膜に含まれる環状構造を破壊することなく維持することが困難となる場合がある。処理温度を800℃以下の温度とすることで、アズデポ状態のSiOCN膜に含まれる環状構造を破壊することなく維持することが容易となる。処理温度を700℃以下の温度とすることで、この効果がより確実に得られるようになる。したがって、アニールステップにおける処理温度は、上述の範囲内の所定の温度とすることが好ましい。
(アフターパージおよび大気圧復帰)
 アニールステップが終了した後、ガス供給管232c,232dのそれぞれからNガスを処理室201内へ供給し、排気管231から排気する。これにより、処理室201内がパージされ、処理室201内に残留するガスや反応副生成物等が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(ボートアンロード、大気暴露およびウエハディスチャージ)
 その後、ボートエレベータ115によりシールキャップ219が下降され、反応管203の下端が開口されるとともに、アニール処理済のウエハ200が、ボート217に支持された状態で、反応管203の下端から反応管203の外部に搬出(ボートアンロード)される。これにより、ウエハ200上に形成されたアニール処理済のSiOCN膜が、大気に暴露される(大気暴露)。アニール処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出される(ウエハディスチャージ)。
(3)本実施形態による効果
 本実施形態によれば、以下に示す1つ又は複数の効果が得られる。
(a)成膜ステップでは、ウエハ200上に形成されるSiOCN膜中に、SiとCとで構成される環状構造を含ませることが可能となる。結果として、この膜を、環状構造を含む低密度状態(ポーラス状態)の膜とすることが可能となる。これにより、この膜を、サイドウォールスペーサ等の用途に好適な誘電率の低い膜(Low-k膜)として用いることが可能となる。
(b)アニールステップでは、アズデポ状態のSiOCN膜が有する低密度状態すなわち環状構造を、破壊することなく維持することが可能となる。これにより、最終的に得られるSiOCN膜の誘電率を、アズデポ状態のSiOCN膜が有する誘電率と同程度に低い値のまま維持することが可能となる。
(c)アニールステップでは、アズデポ状態のSiOCN膜の環状構造以外の部分を緻密化し、環状構造以外の部分を高密度化することが可能となる。これにより、最終的に得られるSiOCN膜の酸化耐性(アッシング耐性)を、アズデポ状態のSiOCN膜よりも高めることが可能となる。
(d)アニールステップでは、アズデポ状態のSiOCN膜中に含まれるNと、N以外の元素(Si等)と、の結合を強化することが可能となる。結果として、最終的に得られるSiOCN膜を、大気に暴露された際における膜中からのNの脱離確率が小さい膜とすることが可能となる。すなわち、最終的に形成されるSiOCN膜のアッシング耐性を、アズデポ状態のSiOCN膜のアッシング耐性よりも高めることが可能となる。
(e)アニールステップでは、アズデポ状態のSiOCN膜中に残留していたClおよび水分のうち少なくともいずれかを、膜中から脱離させることが可能となる。膜中からこれらの不純物を除去することにより、最終的に得られるSiOCN膜のエッチング耐性(HF耐性)を、アズデポ状態のSiOCN膜のエッチング耐性よりも高めることが可能となる。
 なお、膜中に含まれる水分は、膜の誘電率を上昇させる要因となる場合がある。アズデポ状態のSiOCN膜中から水分を除去することより、最終的に得られるSiOCN膜の誘電率を、アズデポ状態のSiOCN膜の誘電率よりも低下させることが可能となる。
 また、膜中に含まれるClは、膜が大気に暴露された際における膜中への水分の取り込みを生じさせる要因となる場合がある。アズデポ状態のSiOCN膜中からClを除去することにより、最終的に得られるSiOCN膜を、アズデポ状態のSiOCN膜よりも、大気に暴露された際における膜中への水分の取り込みの生じにくい膜とすることができる。これにより、最終的に形成されるSiOCN膜を、誘電率の低い膜のまま維持することが容易となる。また、膜中への水分の取り込みを抑制することにより、大気暴露後におけるこの膜の水分による酸化を抑制することも可能となる。
(f)成膜ステップとアニールステップとを、同一の処理室201内で、ウエハ200を処理室201内から処理室201外に取り出すことなく、連続的に行うことにより、アズデポ状態のSiOCN膜の大気暴露を回避できる。これにより、アズデポ状態のSiOCN膜中への水分の取り込みや、この膜の不要な酸化を防止することが可能となる。
(g)上述の効果は、TCDSCBガス以外の上述の要件を満たすガスを原料ガスとして用いる場合にも、同様に得ることができる。また、上述の効果は、NHガス以外の窒化剤を用いる場合や、O+Hガス以外の酸化剤を用いる場合や、Nガス以外の不活性ガスを用いる場合にも、同様に得ることができる。
<他の実施形態>
 以上、本発明の実施形態を具体的に説明した。但し、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 基板処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、基板処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、基板処理の内容に応じて、適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の膜を、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、処理を迅速に開始できるようになる。
 上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更するようにしてもよい。
 上述の実施形態では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いて膜を形成する例について説明した。本発明は上述の実施形態に限定されず、例えば、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて膜を形成する場合にも、好適に適用できる。また、上述の実施形態では、ホットウォール型の処理炉を有する基板処理装置を用いて膜を形成する例について説明した。本発明は上述の実施形態に限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて膜を形成する場合にも、好適に適用できる。
 これらの基板処理装置を用いる場合においても、上述の実施形態や変形例と同様な処理手順、処理条件にて成膜を行うことができ、これらと同様の効果が得られる。
 また、上述の実施形態や変形例は、適宜組み合わせて用いることができる。このときの処理手順、処理条件は、例えば、上述の実施形態の処理手順、処理条件と同様とすることができる。
 以下、実施例について説明する。
 サンプル1として、図1に示す基板処理装置を用い、図4に示す基板処理シーケンスにより、ウエハ上にSiOCN膜を形成した。サンプル1を作製する際、成膜ステップとアニールステップとを同一の処理室内で連続的に行った。すなわち、アズデポ状態のSiOCN膜を大気に暴露することなく、アニールステップを実施した。処理条件は、上述の実施形態における処理条件範囲内の所定の条件とした。
 サンプル2として、図1に示す基板処理装置を用い、図4に示す基板処理シーケンスにより、ウエハ上にSiOCN膜を形成した。サンプル2を作製する際、成膜ステップとアニールステップとを異なる処理室内で行った。すなわち、アズデポ状態のSiOCN膜を大気に暴露してから、アニールステップを実施した。処理条件は、サンプル1を作製する際における処理条件と同様の条件とした。
 そして、サンプル1,2のSiOCN膜の誘電率を測定した。図6(a)にその結果を示す。図6(a)の縦軸は誘電率(k値)を、横軸はサンプル1,2を示している。この図に示すように、サンプル1,2のSiOCN膜の誘電率はそれぞれ3.5未満であった。すなわち、原料としてTCDSCBガスを用い、SiとCとで構成される環状構造を各膜中に含ませることにより、これらの膜の誘電率をそれぞれ低下させることが可能となることが確認できた。
 また、サンプル1,2のSiOCN膜に対してアッシング処理を行った後、各膜に対してエッチング処理を行い、それらのエッチング耐性を評価した。アッシング処理では、各膜に対してOプラズマを供給した。エッチング処理では、各膜に対して濃度1%のHF水溶液を供給した。図6(b)に、アッシング処理後の各SiOCN膜におけるウェットエッチングレート(WER)の評価結果を示す。図6(b)の縦軸はアッシング処理後のWER[Å/min]を、横軸はサンプル1,2を示している。この図に示すように、サンプル1のSiOCN膜のアッシング処理後のWERは、サンプル2のSiOCN膜のアッシング処理後のWERに比べて小さく、サンプル2のSiOCN膜のアッシング処理後のWERの1/2以下であった。すなわち、成膜ステップとアニールステップとをin-situにて行うことにより、最終的に形成されるSiOCN膜のアッシング処理後のエッチング耐性(HF耐性)を大幅に向上させることが可能となることを確認できた。この結果は、サンプル1のSiOCN膜がサンプル2のSiOCN膜よりも大幅に高いアッシング耐性を有していることを示唆するものである。
200  ウエハ(基板)

Claims (18)

  1.  基板に対して、シリコンと炭素とで構成される環状構造およびハロゲンを含む原料を供給する工程と、
     前記基板に対して窒化剤を供給する工程と、
     前記基板に対して酸化剤を供給する工程と、
     を非同時に行うサイクルを、前記シリコンと炭素とで構成される環状構造の少なくとも一部が保持される条件下で、所定回数行うことにより、前記基板上に、前記シリコンと炭素とで構成される環状構造、窒素、および酸素を含む膜を形成する工程を有する半導体装置の製造方法。
  2.  前記シリコンと炭素とで構成される環状構造は、シリコンと炭素とが交互に結合してなる請求項1に記載の半導体装置の製造方法。
  3.  前記シリコンと炭素とで構成される環状構造は、4つのシリコン-炭素結合を含む請求項2に記載の半導体装置の製造方法。
  4.  前記シリコンと炭素とで構成される環状構造は、2つのシリコン原子と2つの炭素原子を含む請求項3に記載の半導体装置の製造方法。
  5.  前記シリコンと炭素とで構成される環状構造は四角形である請求項4に記載の半導体装置の製造方法。
  6.  前記シリコンと炭素とで構成される環状構造におけるシリコンには前記ハロゲンが結合している請求項5に記載の半導体装置の製造方法。
  7.  前記シリコンと炭素とで構成される環状構造における炭素には水素が結合している請求項6に記載の半導体装置の製造方法。
  8.  前記原料を供給する工程では、前記シリコンと炭素とで構成される環状構造および前記ハロゲンを含む第1層を形成し、
     前記窒化剤を供給する工程では、前記第1層を窒化して、前記シリコンと炭素とで構成される環状構造および窒素を含む第2層を形成し、
     前記酸化剤を供給する工程では、前記第2層を酸化して、前記シリコンと炭素とで構成される環状構造、窒素および酸素を含む第3層を形成する請求項1に記載の半導体装置の製造方法。
  9.  前記膜を形成する工程における処理温度よりも高い温度下で、かつ、前記膜中に含まれる前記シリコンと炭素とで構成される環状構造の少なくとも一部が保持される条件下で、前記膜に対し熱処理を行う工程をさらに有し、
     前記膜を形成する工程と前記熱処理を行う工程とを、同一の処理室内で、前記基板を前記処理室内から前記処理室外に取り出すことなく、連続的に行う請求項1に記載の半導体装置の製造方法。
  10.  前記熱処理を行う工程では、前記膜中に残留した前記ハロゲンおよび水分のうち少なくとも何れかを除去する請求項9に記載の半導体装置の製造方法。
  11.  前記熱処理を行う工程では、前記膜中に含まれる窒素と、窒素以外の元素と、の結合を強化する請求項9に記載の半導体装置の製造方法。
  12.  前記熱処理を行う工程では、前記膜中に含まれる窒素と、シリコンと、の結合を強化する請求項9に記載の半導体装置の製造方法。
  13.  前記熱処理を行う工程では、前記膜中に含まれる前記シリコンと炭素とで構成される環状構造の少なくとも一部を保持することで前記環状構造による前記膜の低密度状態を維持しつつ、前記膜の前記環状構造以外の部分を緻密化し高密度化する請求項9に記載の半導体装置の製造方法。
  14.  前記熱処理後の前記膜を大気曝露する工程をさらに有する請求項9に記載の半導体装置の製造方法。
  15.  前記膜を形成する工程における処理温度を250℃以上400℃以下とする請求項1に記載の半導体装置の製造方法。
  16.  前記熱処理を行う工程における処理温度を450℃以上800℃以下とする請求項9に記載の半導体装置の製造方法。
  17.  基板に対する処理が行われる処理室と、
     前記処理室内の基板に対して、シリコンと炭素とで構成される環状構造およびハロゲンを含む原料を供給する原料供給系と、
     前記処理室内の基板に対して窒化剤を供給する窒化剤供給系と、
     前記処理室内の基板に対して酸化剤を供給する酸化剤供給系と、
     前記処理室内において、基板に対して前記原料を供給する処理と、前記基板に対して前記窒化剤を供給する処理と、前記基板に対して前記酸化剤を供給する処理と、を非同時に行うサイクルを、前記シリコンと炭素とで構成される環状構造の少なくとも一部が保持される条件下で、所定回数行うことにより、前記基板上に、前記シリコンと炭素とで構成される環状構造、窒素、および酸素を含む膜を形成する処理を行わせるように、前記原料供給系、前記窒化剤供給系、および前記酸化剤供給系を制御するよう構成される制御部と、
     を有する基板処理装置。
  18.  基板処理装置の処理室内において、
     基板に対して、シリコンと炭素とで構成される環状構造およびハロゲンを含む原料を供給する手順と、
     前記基板に対して窒化剤を供給する手順と、
     前記基板に対して酸化剤を供給する手順と、
     を非同時に行うサイクルを、前記シリコンと炭素とで構成される環状構造の少なくとも一部が保持される条件下で、所定回数行うことにより、前記基板上に、前記シリコンと炭素とで構成される環状構造、窒素、および酸素を含む膜を形成する手順をコンピュータによって前記基板処理装置に実行させるプログラム。
PCT/JP2017/034054 2017-09-21 2017-09-21 半導体装置の製造方法、基板処理装置およびプログラム WO2019058477A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/034054 WO2019058477A1 (ja) 2017-09-21 2017-09-21 半導体装置の製造方法、基板処理装置およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/034054 WO2019058477A1 (ja) 2017-09-21 2017-09-21 半導体装置の製造方法、基板処理装置およびプログラム

Publications (1)

Publication Number Publication Date
WO2019058477A1 true WO2019058477A1 (ja) 2019-03-28

Family

ID=65810203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034054 WO2019058477A1 (ja) 2017-09-21 2017-09-21 半導体装置の製造方法、基板処理装置およびプログラム

Country Status (1)

Country Link
WO (1) WO2019058477A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519496A (ja) * 2003-02-26 2006-08-24 ダウ・コーニング・コーポレイション 水素化シリコンオキシカーバイド膜の生成方法。
JP2010050425A (ja) * 2007-12-26 2010-03-04 Hitachi Kokusai Electric Inc 半導体装置の製造方法および基板処理装置
JP2011238894A (ja) * 2010-04-12 2011-11-24 Hitachi Kokusai Electric Inc 半導体装置の製造方法、基板処理方法及び基板処理装置
WO2012128044A1 (ja) * 2011-03-23 2012-09-27 株式会社日立国際電気 半導体装置の製造方法、基板処理方法および基板処理装置
JP2016051864A (ja) * 2014-09-02 2016-04-11 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
WO2016126911A2 (en) * 2015-02-06 2016-08-11 Air Products And Chemicals, Inc. Compositions and methods using same for carbon doped silicon containing films

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519496A (ja) * 2003-02-26 2006-08-24 ダウ・コーニング・コーポレイション 水素化シリコンオキシカーバイド膜の生成方法。
JP2010050425A (ja) * 2007-12-26 2010-03-04 Hitachi Kokusai Electric Inc 半導体装置の製造方法および基板処理装置
JP2011238894A (ja) * 2010-04-12 2011-11-24 Hitachi Kokusai Electric Inc 半導体装置の製造方法、基板処理方法及び基板処理装置
WO2012128044A1 (ja) * 2011-03-23 2012-09-27 株式会社日立国際電気 半導体装置の製造方法、基板処理方法および基板処理装置
JP2016051864A (ja) * 2014-09-02 2016-04-11 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
WO2016126911A2 (en) * 2015-02-06 2016-08-11 Air Products And Chemicals, Inc. Compositions and methods using same for carbon doped silicon containing films

Similar Documents

Publication Publication Date Title
JP6980624B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6529348B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6745887B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
KR102288228B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
KR102419555B1 (ko) 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치 및 프로그램
JP2019125714A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP2018125416A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6470468B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
US11094532B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
WO2021009838A1 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
KR102365948B1 (ko) 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치, 및 프로그램
TWI747084B (zh) 半導體裝置之製造方法、基板處理方法、基板處理裝置及程式
WO2019058477A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6987948B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
JP2019220575A (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
CN113169069B (zh) 半导体器件的制造方法、衬底处理方法、衬底处理装置及记录介质
WO2019207864A1 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP