JP5212370B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP5212370B2
JP5212370B2 JP2009522479A JP2009522479A JP5212370B2 JP 5212370 B2 JP5212370 B2 JP 5212370B2 JP 2009522479 A JP2009522479 A JP 2009522479A JP 2009522479 A JP2009522479 A JP 2009522479A JP 5212370 B2 JP5212370 B2 JP 5212370B2
Authority
JP
Japan
Prior art keywords
temperature
signal
circuit
switch
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009522479A
Other languages
English (en)
Other versions
JPWO2009008081A1 (ja
Inventor
郁 森
伸也 藤岡
克学 ▲高▼橋
潤 大野
明裕 舩生
晋一朗 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Publication of JPWO2009008081A1 publication Critical patent/JPWO2009008081A1/ja
Application granted granted Critical
Publication of JP5212370B2 publication Critical patent/JP5212370B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/04Arrangements for writing information into, or reading information out from, a digital store with means for avoiding disturbances due to temperature effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40626Temperature related aspects of refresh operations
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4072Circuits for initialization, powering up or down, clearing memory or presetting
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4074Power supply or voltage generation circuits, e.g. bias voltage generators, substrate voltage generators, back-up power, power control circuits

Description

本発明は、半導体装置に関する。
図21は、半導体装置の回路図である。遅延回路401は、信号PX1を遅延させて信号MZ1を出力する。遅延回路402は、信号PX2を遅延させて信号MZ2を出力する。遅延回路403は、信号PX3を遅延させて信号MZ3を出力する。pチャネル電界効果トランジスタ421のゲートは、インバータ423を介して信号LCUTXを入力する。nチャネル電界効果トランジスタ422のゲートは、インバータ423及び424を介して信号LCUTXを入力する。
半導体装置の低消費電力化のために、遅延回路401〜403のソース端子と電源線の間に、リークカット用のトランジスタ421及び422を挿入し、そのトランジスタ421及び422をスタンバイ時にはオフさせることにより、スタンバイ時のリーク電流を低減することができる。
図22は、温度に対するリフレッシュ周期を示すグラフである。横軸が温度[℃]、縦軸が時間である。DRAMは、常温以下のスタンバイ電流を低減するために、温度センサを搭載して、温度によってリフレッシュ周期TRを変化させる。DRAMのリフレッシュ周期TRは、60℃より高いときと60℃以下のときとで2段階に切り替えられる。DRAMのメモリセルのデータ保持時間tREFは、一般的に、温度が低くなるにつれて長くなり、ある温度以下では伸び率が飽和してくるという温度特性を持つ。このようなデータ保持時間tREFの温度特性にあわせて、温度センサに設定した判定温度以下になると、セルフリフレッシュ周期TRを長くし、常温以下のリフレッシュ電流を低減することができる。
図21の半導体装置では、スタンバイ時のリーク電流を低減することができるが、スタンバイ時におけるリフレッシュ動作時と非動作時との間でリークカット用トランジスタ421及び422のオン/オフを切り替える制御(以下、リークカット制御という)を行うために、AC(交流)電流は増加する。
図23は、スタンバイ電流の温度特性を示す図である。ここで、図21の制御及び図22の制御の両方を行った場合のリーク電流及びAC電流を示す。横軸は温度[℃]、縦軸は電流を示す。リーク電流1104は、リークカット制御をせずにトランジスタ421及び422を常にオンにしたときのスタンバイ時のリーク電流(以下、オフリーク電流という)を示す。電流1103は、リーク電流1101及びAC電流1102を加算した電流であり、リークカット制御を行ったときのスタンバイ時の電流を示す。リーク電流1101は、リークカット制御した場合のスタンバイ時のリーク電流である。AC電流1102は、リークカット制御のためのトランジスタ421及び422のAC電流である。60℃以下の温度ではリフレッシュ周期TRが長いのでAC電流1102が小さく、60℃より高い温度ではリフレッシュ周期TRが短いのでAC電流1102が大きくなる。
温度センサで60℃以下と判定した時には、60℃より高い時に対して、リフレッシュ周期TRは2倍長くなり、AC電流1102は2分の1に減少している場合を示す。一般に、オフリーク電流1104は、温度に対して指数関数で変化する。85℃程度の高温では、オフリーク電流1104よりリークカット制御のAC電流1102の方が小さいため、リークカット制御を行うことによりトータルのスタンバイ電流1103はオフリーク電流1104より電流差1105だけ小さくすることができる。しかし、40℃程度以下の常温では、60℃より高い温度に対して、オフリーク電流1104は指数関数に従った桁で減る一方で、AC電流1102は2分の1程度の減少にとどまるため、オフリーク電流1104よりAC電流1102の方が電流差1106だけ大きくなり、トータルのスタンバイ電流1103は増加してしまう。このため、常温以下のスタンバイ電流1103を低減できないという課題がある。
また、下記の特許文献1には、スイッチ手段を介して選択的に動作電圧の供給と停止が可能とされメモリアレイを含んだ内部回路と、所定の制御信号を受け、上記スイッチ手段による動作電圧の供給と停止を制御する入力回路とを備えてなることを特徴とする半導体記憶回路が記載されている。
また、下記の特許文献2には、メモリセルの電源電圧が、周辺回路の電源電圧より低くなるように構成されてなることを特徴とする半導体記憶装置が記載されている。
また、下記の特許文献3には、MOSFETと、前記MOSFETの動作モードに応じて前記MOSFETのソース電位を制御するソース電位制御回路と、を備える半導体集積回路装置であって、前記ソース電位制御回路は、温度に基づき前記制御するソース電位を変化させる半導体集積回路装置が記載されている。
特開2003−68079号公報 特開平4−319598号公報 特開2006−12968号公報
本発明の目的は、高温及び常温の両方においてスタンバイ電流を小さくすることができる半導体装置を提供することである。
本発明の一観点によれば、温度を検出する温度検出素子と、電源線から電源電圧が供給されて動作する内部回路と、前記電源線及び前記内部回路の間に接続されるスイッチと、前記温度検出素子により検出された温度が閾値よりも高いときには前記内部回路の動作時に前記スイッチをオンして前記内部回路の非動作時に前記スイッチをオフし、前記温度検出素子により検出された温度が前記閾値よりも低いときには前記内部回路の動作時及び非動作時に前記スイッチをオンするように制御し、前記閾値が、前記閾値より高い第1の温度においては、前記スイッチのオン及びオフの切り替え制御に起因する交流電流が、前記切り替え制御を行わず前記スイッチを動作時及び非動作時の両方でオンした場合の前記内部回路のスタンバイ時のリーク電流であるオフリーク電流よりも小さくなり、前記閾値より低い第2の温度においては、前記オフリーク電流が前記交流電流よりも小さくなるように設定された制御回路と、データを記憶するメモリセルとを有し、前記内部回路は、前記メモリセルの動作を制御する回路であり、前記メモリセルは、前記温度検出素子により検出された温度が閾値より高いときには、データを保持するために第1のリフレッシュ周期でリフレッシュ動作を行い、前記温度検出素子により検出された温度が閾値より低いときには、データを保持するために前記第1のリフレッシュ周期より長い第2のリフレッシュ周期でリフレッシュ動作を行うことを特徴とする半導体装置が提供される。
図1は、本発明の第1の実施形態による半導体記憶装置の構成例を示すブロック図である。 図2は、図1のリークカット制御回路の構成例を示す回路図である。 図3は、図1のリークカット制御回路の構成例を示す回路図である。 図4は、周辺回路内の一部の構成例を示す回路図である。 図5は、メモリセルブロック内の一部の構成例を示す回路図である。 図6は、図1の温度センサの構成例を示す回路図である。 図7は、図6のノード電圧n1及びn2の温度特性を示すグラフである。 図8は、図6のノード電圧n3の温度特性を示すグラフである。 図9は、60℃以下のときの第1のモードのリークカット制御回路の動作を説明するためのタイミングチャートである。 図10は、60℃より高温のときの第1のモードのリークカット制御回路の動作を説明するためのタイミングチャートである。 図11は、第1の実施形態によるリークカット制御によるスタンバイ電流の温度特性を示すグラフである。 図12は、本発明の第2の実施形態による半導体記憶装置の構成例を示すブロック図である。 図13は、本発明の第3の実施形態による半導体記憶装置の構成例を示すブロック図である。 図14は、図13のリークカット制御回路の構成例を示す回路図である。 図15は、60℃以下の温度においてパーシャルエントリ信号がローレベルであるときのタイミングチャートである。 図16は、60℃以下の温度においてパーシャルエントリ信号がハイレベルであるときのタイミングチャートである。 図17は、60℃より高温においてパーシャルエントリ信号がローレベルであるときのタイミングチャートである。 図18は、60℃より高温においてパーシャルエントリ信号がハイレベルであるときのタイミングチャートである。 図19は、本発明の第4の実施形態による半導体記憶装置の構成例を示すブロック図である。 図20は、リニア型オシレータの特性を示す図である。 図21は、半導体装置の回路図である。 図22は、温度に対するリフレッシュ周期を示すグラフである。 図23は、スタンバイ電流の温度特性を示す図である。 図24は、温度信号及びリフレッシュ周期信号を示す図である。 図25は、リフレッシュ周期信号の温度特性を示す図である。
(第1の実施形態)
図1は、本発明の第1の実施形態による半導体記憶装置の構成例を示すブロック図である。半導体記憶装置は、例えばDRAMである。メモリコア120は、例えば4個に分割されたメモリセルブロック121a,121b,121c,121dを有する。各メモリセルブロック121a,121b,121c,121dは、複数のメモリセルを有し、データの書き込み及び読み出しを行うことができる。第1のメモリセルブロック121aは、第1のブロック制御回路123a及びリークカット制御回路122aにより制御される。第2のメモリセルブロック121bは、第2のブロック制御回路123b及び第2のリークカット制御回路122bにより制御される。第3のメモリセルブロック121cは、第3のブロック制御回路123c及び第3のリークカット制御回路122cにより制御される。第4のメモリセルブロック121dは、第4のブロック制御回路123d及び第4のリークカット制御回路122dにより制御される。
図24は、温度信号templowz及びリフレッシュ周期信号SRTZを示す図である。
スタータ生成回路104は、電源起動時にスタータ信号STTZ(図9参照)を生成し、リークカット制御回路111、122a,122b,122c,122d、温度センサ102及び周辺回路112に出力する。周辺回路112は、例えば、メモリコアコントローラ106又はアドレスコントローラ107内の一部の回路でもよい。温度センサ102は、スタータ信号STTZがハイレベルからローレベルになった後、温度検出を開始し、図24に示すように、検出された温度が閾値(例えば60℃)より高ければローレベルの温度信号templowzを出力し、検出された温度が閾値(例えば60℃)以下であればハイレベルの温度信号templowzを出力する。温度センサ102の構成は、後に図6を参照しながら説明する。
セルフリフレッシュタイマ103は、図22及び図24に示すように、温度信号templowzに応じたリフレッシュ周期TRのリフレッシュ周期信号SRTZをメモリコアコントローラ106に出力する。リフレッシュ周期TRは、温度信号templowzがハイレベル(60℃以下の温度)であれば長い周期T1、温度信号templowzがローレベル(60℃より高い温度)であれば短い周期T2になる。メモリコントローラ106は、リフレッシュ周期信号SRTZが示すリフレッシュ周期TRでメモリコア制御信号RASZを出力し、リフレッシュ動作を制御する。
コマンドデコーダ105は、外部から第1のチップイネーブル信号/CE1、ライトイネーブル信号/WE及びクロック信号CLK等を入力し、リードコマンドRD及びライトコマンドWRをメモリコントローラ106、アドレスコントローラ107、I/Oバッファ109及びバスコントローラ110に出力する。メモリコアコントローラ106は、メモリコア制御信号RASZによりリード、ライト又はリフレッシュ動作を制御する。アドレスコントローラ107は、リードコマンドRD又はライトコマンドWRに応じて、アドレスラッチ・バッファ108を制御する。アドレスラッチ・バッファ108は、外部からアドレス信号A00〜A22を入力し、入力したアドレス信号A00〜A22をラッチしてブロック制御回路123a〜123dに出力する。I/Oバッファ109は、外部に対してデータDQ00〜DQ31を入出力し、バスコントローラ110に対してデータDATAを入出力する。バスコントローラ110は、メモリコア120に対してデータDATAを入出力する。
ヒューズ回路(メモリ)101は、モード信号TLCUTDSBPZ,TALWAYSLCPZ,TLCUTDSBCZ,TALWAYSLCCZを記憶し、モード信号TLCUTDSBPZ,TALWAYSLCPZをリークカット制御回路111に出力して、モード信号TLCUTDSBCZ,TALWAYSLCCZをリークカット制御回路122a〜122dに出力する。
リークカット制御回路111は、モード信号TLCUTDSBPZ,TALWAYSLCPZ、温度信号templowz、スタータ信号STTZ及びメモリコア制御信号RASZを入力し、リークカット制御信号LCUTPXを周辺回路112に出力する。リークカット制御回路111の構成は、後に図2を参照しながら説明する。周辺回路112は、例えば、メモリコアコントローラ106又はアドレスコントローラ107内の一部の回路でもよい。周辺回路112の構成は、後に図4を参照しながら説明する。
ブロック制御回路123a〜123dは、メモリコア制御信号RASZ及びアドレス信号を入力し、それぞれメモリセルブロック121a〜121dを制御し、ブロック制御信号BRAS1Z,BRAS2Z,BRAS3Z,BRAS4Zをそれぞれリークカット制御回路122a〜122dに出力する。リークカット制御回路122a〜122dは、モード信号TLCUTDSBCZ,TALWAYSLCCZ、温度信号templowz、スタータ信号STTZ及びブロック制御信号BRAS1Z,BRAS2Z,BRAS3Z,BRAS4Zを入力し、リークカット制御信号LCUTC1X,LCUTC2X,LCUTC3X,LCUTC4Xをメモリセルブロック121a,121b,121c,121dに出力する。リークカット制御回路122a〜122dの構成は、後に図3を参照しながら説明する。メモリセルブロック121a〜121d内の一部の構成は、後に図5を参照しながら説明する。
以上のように、メモリコア120は、DRAMのメモリコアである。コマンドデコーダ105、メモリコアコントローラ106及びセルフリフレッシュタイマ103は、メモリコア120に対するリード、ライト及びリフレッシュ動作を制御する。アドレスコントローラ107及びアドレスラッチ・バッファ108は、各動作のアドレスを決定する。I/Oバッファ109及びバスコントローラ110は、外部からメモリコア120にデータを入出力する。スタータ生成回路104は、起動時の状態及び起動後の初期状態を決めるためのスタータ信号STTZを生成する。セルフリフレッシュタイマ103は、温度センサ102の温度信号templowzによってリフレッシュ周期信号SRTZのリフレッシュ周期TRを変更する。
リークカット制御回路111は、メモリコア制御信号RASZと、温度信号templowzと、スタータ信号STTZと、モード信号TALWAYSLCPZ,TLCUTDSBPZを入力している。モード信号TALWAYSLCPZ,TLCUTDSBPZは、後述するが、温度に応じてリークカット制御を行う第1のモード、リークカット制御を常時行う第2のモード、又はリークカット制御を常時行わない第3のモードを指示することができる。
リークカット制御回路122a〜122dは、メモリコア制御信号RASZの代わりにブロック選択の論理を含んだブロック制御信号BRAS1Z〜BRAS4Zを入力し、さらに、温度信号templowzと、スタータ信号STTZと、モード信号TALWAYSLCCZ,TLCUTDSBCZを入力している。モード信号TALWAYSLCCZ,TLCUTDSBCZは、上記のモード信号TALWAYSLCPZ,TLCUTDSBPZと同様の信号である。
図4は、周辺回路112内の一部の構成例を示す回路図である。遅延回路401は、信号PX1を遅延させて信号MZ1を出力する。遅延回路402は、信号PX2を遅延させて信号MZ2を出力する。遅延回路403は、信号PX3を遅延させて信号MZ3を出力する。
遅延回路401の構成を説明する。pチャネル電界効果トランジスタ411及びnチャネル電界効果トランジスタ412は、インバータを構成し、入力信号PX1を入力する。トランジスタ411のソースは、pチャネル電界効果トランジスタ421を介して電源電圧の電源線に接続される。トランジスタ412のソースは、基準電位(グランド電位)の電源線に接続される。pチャネル電界効果トランジスタ413及びnチャネル電界効果トランジスタ414は、インバータを構成する。トランジスタ413のソースは、電源電圧の電源線に接続される。トランジスタ414のソースは、nチャネル電界効果トランジスタ422を介して基準電位の電源線に接続される。pチャネル電界効果トランジスタ415及びnチャネル電界効果トランジスタ416は、インバータを構成し、出力信号MZ1を出力する。トランジスタ415のソースは、トランジスタ421を介して電源電圧の電源線に接続される。トランジスタ416のソースは、基準電位の電源線に接続される。奇数番目のインバータのソースをpチャネル電界効果トランジスタ421に接続し、偶数番目のインバータのソースをnチャネル電界効果トランジスタ422に接続することにより、不定値の出力を防止することができる。遅延回路402及び403も、遅延回路401と同じ構成を有する。
トランジスタ421及び422は、リークカット制御のためのトランジスタである。pチャネル電界効果トランジスタ421のゲートは、インバータ423を介してリークカット制御信号LCUTPXを入力する。nチャネル電界効果トランジスタ422のゲートは、インバータ423及び424を介してリークカット制御信号LCUTPXを入力する。リークカット制御信号LCUTPXがローレベルになるとトランジスタ421及び422がオフし、リークカット制御信号LCUTPXがハイレベルになるとトランジスタ421及び422がオンする。スタンバイ時には、トランジスタ421及び422をオフするリークカット制御を行うことにより、スタンバイ時のリーク電流を低減し、半導体記憶装置を低消費電力化することができる。なお、周辺回路112は、遅延回路に限定されず、遅延回路以外の論理回路でもよい。
図5は、各メモリセルブロック121a〜121d内の一部の構成例を示す回路図であり、例えばワードデコーダの構成例を示す。ワードデコーダは、pチャネル電界効果トランジスタ501,505,507,508,510及びnチャネル電界効果トランジスタ502〜504,506,509,511を有し、信号bPRCH,X23P,X78P,X456Pを入力し、メインワードライン信号bMWLを出力する。電源電圧VPPは3V、基準電位VSSは0V、降圧電位VNNは−0.3Vである。
複数のワードデコーダは、それぞれ端子BKEDXを有する。nチャネル電界効果トランジスタ520は、ゲートがリークカット制御信号LCUTC#X(#は1〜4を示す)の線に接続され、ドレインが複数の端子BKEDXに接続され、ソースが降圧電位VNNの電源線に接続される。リークカット制御信号LCUTC#Xがローレベルになるとトランジスタ520がオフし、リークカット制御信号LCUTC#Xがハイレベルになるとトランジスタ520がオンする。トランジスタ520は、スタンバイ時にオフし、リフレッシュ、リード及びライト動作時にはオンするリークカット制御を行う。これにより、スタンバイ時のリーク電流を低減し、半導体記憶装置を低消費電力化することができる。
起動時には、信号bPRCH及びX23Pはローレベルになり、トランジスタ501がオンし、トランジスタX23Pがオフする。しかし、起動時の電源電圧VPPが所定値に到達していない状態では、トランジスタ509は完全にオンせず、トランジスタ506のゲートは不定値であり、トランジスタ506はオンにもオフにもなり得る。トランジスタ506がオンの場合に、起動時にリークカット制御信号LCUTC#Xをハイレベルにするとトランジスタ520がオンし、トランジスタ501、505、506及び520を介して、電源電圧VPPの貫通電流が発生する。その結果、電源電圧VPPが所定のレベルまで上がらずに起動不良を起こす可能性がある。このため、起動時には温度にかかわらず、リークカット制御信号LCUTC#Xをローレベルにして、電源電圧VPPの貫通電流が発生しないようにする。
図11は、本実施形態によるリークカット制御によるスタンバイ電流の温度特性を示すグラフである。横軸は温度[℃]、縦軸は電流を示す。リーク電流1101、AC電流1102、スタンバイ電流1103及びスタンバイ電流1104は、図23と同様である。リーク電流1104は、リークカット制御をせずにトランジスタ421、422及び520を常にオンにしたときのスタンバイ時のリーク電流(以下、オフリーク電流という)を示す。電流1103は、リーク電流1101及びAC電流1102を加算した電流であり、リークカット制御を行ったときのスタンバイ時の電流を示す。リーク電流1101は、リークカット制御した場合のスタンバイ時のリーク電流である。AC電流1102は、リークカット制御のためのトランジスタ421、422及び520のゲート信号のAC電流である。図22に示すように、60℃以下の温度ではリフレッシュ周期TRが長いのでAC電流1102が小さく、60℃より高い温度ではリフレッシュ周期TRが短いのでAC電流1102が大きくなる。
本実施形態では、温度センサ102により検出された温度が60℃より高いときにはリークカット制御を行い、温度センサ102により検出された温度が60℃以下のときにはリークカット制御を行わずにトランジスタ421、422及び520を常にオンすることにより、スタンバイ電流1107が生じる。スタンバイ電流1107は、60℃より高い温度ではリークカット制御するスタンバイ電流1103と同じになり、60℃以下の温度ではリークカット制御しないスタンバイ電流1104と同じになる。
温度センサ102により検出された温度が60℃以下の時には、60℃より高い時に対して、例えば、リフレッシュ周期TRは2倍長くなり、AC電流1102は2分の1に減少する。オフリーク電流1104は、温度に対して指数関数で変化する。85℃程度の高温では、オフリーク電流1104よりリークカット制御のAC電流1102の方が小さいため、リークカット制御を行うことによりトータルのスタンバイ電流1107はオフリーク電流1104より電流差1105だけ小さくすることができる。さらに、40℃程度以下の常温では、60℃より高い温度に対して、オフリーク電流1104は指数関数に従った桁で減る一方で、AC電流1102は2分の1程度の減少にとどまる。そのため、60℃以下の常温では、リークカット制御しないスタンバイ電流1107は、リークカット制御するスタンバイ電流1103に対して、電流差1106だけ小さくなる。このため、スタンバイ電流1107は、高温と常温以下の温度の両方において低減することができる。
以上のように、本実施形態は、温度センサ102を搭載して、60℃より高い高温判定時はリークカット制御を行うことにより、オフリーク電流1101を低減してトータルのスタンバイ電流1107を低減し、60℃の常温以下判定時はリークカット制御を行わず、起動時を除きリークカットトランジスタ421,422及び520を常時オンにすることにより、リークカット制御を行うと発生するAC電流1102が発生しないようにする。これらによって、高温と常温以下の両方で、スタンバイ電流1107を低減することができる。
次に、図1のモード信号TALWAYSLCPZ、TALWAYSLCCZ、TLCUTDSBPZ及びTLCUTDSBCZにより設定される3個のモードついて説明する。第1のモードは、モード信号TALWAYSLCPZ及びTALWAYSLCCZがローレベル、かつモード信号TLCUTDSBPZ及びTLCUTDSBCZがローレベルで表され、上記のように、60℃以下ではリークカット制御を行わず、60℃より高い温度ではリークカット制御を行う。
なお、60℃以下でのオフリーク電流1104が、リークカット制御のAC電流1102より大きくなる程プロセスがばらつくような場合には、常時リークカット制御を行った方がトータルのスタンバイ電流を低減できる場合もある。また、同じ半導体チップを使って、常温以下のスタンバイ電流低減の要求がない用途に使用する場合がある。
それらに対しては、半導体チップ内にヒューズ回路101を搭載して、ヒューズ回路101のヒューズ未切断の場合は、モード信号TALWAYSLCPZ及びTALWAYSLCCZをローレベルとし、上記の第1のモードとし、60℃より高い温度でリークカット制御を行い、60℃以下ではリークカット制御を行わないようにする。
ヒューズ回路101のヒューズ切断により、モード信号TALWAYSLCPZ及びTALWAYSLCCZをハイレベルとして、第2のモードとし、常時リークカット制御を行うという様に、動作を切り替えられるようにする。
また一方、60℃より高温のオフリーク電流1104が、リークカット制御のAC電流1102より小さく、温度によらずリークカット制御をせずリークカットトランジスタ421,422及び520を常時オンさせた方がトータルのスタンバイ電流を低減できる場合、もしくは、同じ半導体チップを使って、全温度でリークカット制御を行わなくともスタンバイ電流の要求を満足できる用途に使用する場合には、ヒューズ回路101のヒューズを切断し、モード信号TLCUTDSBPZ及びTLCUTDSBCZをハイレベルとして、第3のモードとし、常時リークカット制御を行わずリークカットトランジスタ421,422及び520をオンさせるように切り替えられるようにする。
以上のように、ヒューズ回路101のヒューズ情報に応じて、60℃より高温ではリークカット制御を行い、60℃以下ではリークカット制御を行わない第1のモード、60℃より高温及び60℃以下ともリークカット制御を行う第2のモード、60℃より高温及び60℃以下ともリークカット制御を行わないでリークカットトランジスタ421,422及び520を常時オンにする第3のモードの3個のモードを切り替えられるようにすることにより、対応可能なプロセス範囲及び用途が広がる。また、本実施形態では、メモリセルブロック121a〜121dのためのリークカット制御回路122a〜122dのモード信号TALWAYSLCCZ及びTLCUTDSBCZと、周辺回路112のためのリークカット制御回路111のモード信号TALWAYSLCPZ及びTLCUTDSBPZとにより、それぞれ独立に3個のモードを切り替えることができる。
図6は図1の温度センサ102の構成例を示す回路図、図7は図6のノード電圧n1及びn2の温度特性を示すグラフ、図8は図6のノード電圧n3の温度特性を示すグラフである。なお、図7は、図8に対して、縦軸の電圧を拡大して示す。
温度センサ102は、シュミットトリガ回路(フリップフロップ)600を有する。抵抗601,602及びpnpトランジスタ603は、電圧vrfv及びグランド電位間に直列に接続される。トランジスタ603のベースは、グランド電位に接続される。抵抗604,605及び606は、電圧vrfv及びグランド電位間に直列に接続される。オペアンプ607は、+端子が抵抗605及び606間のノード電圧n2に接続され、−端子が抵抗602及びトランジスタ603間のノード電圧n1に接続され、出力端子からノード電圧n3が出力される。図7に示すように、ノード電圧n2は温度にかかわらず一定であり、ノード電圧n1は高温になるほど低くなる。ノード電圧n1は、トランジスタ603の閾値電圧に依存した電圧であり、温度に依存する。図7及び図8に示すように、オペアンプ607は、ノード電圧n2からノード電圧n1を減算したノード電圧n3を出力する。
オペアンプ608は、+端子がノード電圧n3に接続され、−端子が抵抗604及び605間のノードのリファレンス電圧refHに接続される。オペアンプ609は、+端子がノード電圧n3に接続され、−端子が抵抗601及び602間のノードのリファレンス電圧refLに接続される。図8に示すように、リファレンス電圧refHは、リファレンス電圧refLより高い電圧である。オペアンプ608は、ノード電圧n3からリファレンス電圧refHを減算した電圧を出力する。オペアンプ609は、ノード電圧n3からリファレンス電圧refLを減算した電圧を出力する。なお、リファレンス電圧refLは、トランジスタ603の閾値電圧に依存した電圧であり、低温になるほど高くなるので、オペアンプ609は、動作マージンを拡大することができる。
インバータ610は、オペアンプ608の出力信号を入力する。インバータ611は、インバータ610の出力信号を入力する。インバータ612は、オペアンプ609の出力信号を入力する。インバータ613は、インバータ612の出力信号を入力する。インバータ615は、スタータ信号STTZを入力し、信号sttdxを出力する。インバータ614は、信号sttdxを入力する。
3個のnチャネル電界効果トランジスタ619〜621は、インバータ617の入力端子及び基準電位間に直列に接続される。トランジスタ619のゲートは信号sttdxに接続され、トランジスタ620のゲートはインバータ611の出力端子に接続され、トランジスタ621のゲートはインバータ613の出力端子に接続される。
3個のnチャネル電界効果トランジスタ622〜624は、インバータ617の出力端子及び基準電位間に直列に接続される。トランジスタ622のゲートは信号sttdxに接続され、トランジスタ623のゲートはインバータ612の出力端子に接続され、トランジスタ624のゲートはインバータ610の出力端子に接続される。
nチャネル電界効果トランジスタ618は、ドレインがインバータ617の入力端子に接続され、ゲートがインバータ614の出力端子に接続され、ソースが基準電位に接続される。インバータ616は、入力端子がインバータ617の出力端子に接続され、出力端子がインバータ617の入力端子に接続される。インバータ616及び617は、メモリ素子を構成する。インバータ625は、インバータ617の出力信号を論理反転した信号を温度信号templowzとして出力する。
図9に示すように、起動時には電源電圧VDDと共にスタータ信号STTZが徐々に上昇し、起動期間TS後にスタータ信号STTZはローレベルになる。起動期間TSでは、スタータ信号STTZがハイレベルになり、トランジスタ619及び622がオフし、トランジスタ618がオンし、温度信号templowzはローレベルになる。
起動期間TS後、スタータ信号STTZはローレベルになり、トランジスタ619及び622がオンし、トランジスタ618がオフする。図8に示すように、60℃より高いときには、ノード電圧n3がリファレンス電圧refH及びrefLより高くなり、オペアンプ608はハイレベルを出力し、オペアンプ609もハイレベルを出力する。トランジスタ620及び621がオンし、トランジスタ623及び624がオフする。その結果、図24に示すように、60℃より高いときには、温度信号templowzはローレベルになる。リフレッシュ周期信号SRTZの周期T1は長くなる。
これに対し、図8に示すように、60℃以下のときには、ノード電圧n3がリファレンス電圧refH及びrefLより低くなり、オペアンプ608はローレベルを出力し、オペアンプ609もローレベルを出力する。トランジスタ620及び621がオフし、トランジスタ623及び624がオンする。その結果、図24に示すように、60℃以下のときには、温度信号templowzはハイレベルになる。リフレッシュ周期信号SRTZの周期T2は短くなる。
以上のように、ノード電圧n1はトランジスタ603の閾値電圧を反映して温度依存を持つのに対して、ノード電圧n2は抵抗分圧で生成しているので温度依存を持たない。このノード電圧n1及びn2をオペアンプ607で比較して、温度検出結果としてノード電圧n3を出力するが、これだけだと60℃の境界にいるときに出力が短周期で移り変わるので、これを避けるために更にシュミットトリガ回路600を後段に接続している。60℃より高温時には温度信号templowzはローレベル、60℃以下の時には温度信号templowzはハイレベルになる。
図2は、図1のリークカット制御回路111の構成例を示す回路図である。インバータ201は、温度信号templowzを論理反転した信号を出力する。否定論理和(NOR)回路202は、インバータ201の出力信号及びモード信号TALWAYSLCPZの否定論理和信号を出力する。遅延回路203は、メモリコア制御信号RASZを遅延させた信号を出力する。遅延回路203は、図10において、リークカット制御信号LCUTPXの立ち下がりをメモリコア制御信号RASZの立ち下がりに対して遅延させるために設けられる。否定論理和回路204は、遅延回路203の出力信号及びメモリコア制御信号RASZの否定論理和信号を出力する。インバータ205は、否定論理和回路204の出力信号の論理反転信号を出力する。否定論理和回路206は、否定論理和回路202の出力信号、モード信号TLCUTDSBPZ、及びインバータ205の出力信号の否定論理和信号を出力する。否定論理和回路207は、否定論理和回路206の出力信号及びスタータ信号STTZの否定論理和信号を出力する。インバータ208は、否定論理和回路207の論理反転信号を出力する。インバータ209は、インバータ208の出力信号の論理反転信号をリークカット制御信号LCUTPXとして出力する。
上記で図5を参照しながら説明した理由と同様の理由により、起動時のスタータ信号STTZがハイレベルであるときには、リークカット制御信号LCUTPXをローレベルにし、リークカットトランジスタ421及び422をオフする。
第1のモードでは、モード信号TALWAYSLCPZ及びTLCUTDSBPZがローレベルである。第1のモードの動作は、後に図9及び図10を参照しながら説明する。
第2のモードでは、モード信号TALWAYSLCPZはハイレベル、モード信号TLCUTDSBPZはローレベルである。メモリコア制御信号RASZがハイレベルになるメモリセルブロック121a〜121dの動作時に、リークカット制御信号LCUTPXがハイレベルになり、リークカットトランジスタ421及び422がオンする。これに対し、メモリコア制御信号RASZがローレベルになるメモリセルブロック121a〜121dの非動作時に、リークカット制御信号LCUTPXがローレベルになり、リークカットトランジスタ421及び422がオフする。すなわち、温度信号templowzにかかわらず、常時リークカット制御を行う。
第3のモードでは、モード信号TALWAYSLCPZはローレベル、モード信号TLCUTDSBPZはハイレベルである。温度信号templowz及びメモリコア制御信号RASZにかかわらず、リークカット制御信号LCUTPXがハイレベルになり、リークカットトランジスタ421及び422が常にオンする。
図3は、図1の各リークカット制御回路122a〜122dの構成例を示す回路図である。図3の回路が図2の回路と異なる点を説明する。図3のブロック制御信号BRAS#Z(♯は1〜4の整数である)は図2のメモリコア制御信号RASZの代わるものであり、図3のリークカット制御信号LCUTC#X(♯は1〜4の整数である)は図2のリークカット制御信号LCUTPXに代わるものであり、図3のモード信号TALWAYSLCCZは図2のモード信号TALWAYSLCPZに代わるものであり、図3のモード信号TLCUTDSBCZは図2のモード信号TLCUTDSBPZに代わるものである。図3の回路は、図2の回路に対して、同じ論理動作を行う回路である。すなわち、両者の入出力関係は同じである。
図2のリークカット制御回路111は、電源電圧がVII(1.6V)であり、基準電位がグランド電位(0V)である。これに対して、図5のメモリセルブロック121a〜121dは電源電圧がVPP(3V)であり、基準電位がVNN(−0.3V)である。このため、図3のリークカット制御回路122a〜122dは、図2のリークカット制御回路111に対して、レベルシフト回路が追加されている。
図3の回路素子301〜306は、図2の回路素子201〜206に対応するものである。図3の回路は、図2の回路に対して、回路素子207〜209を削除し、下記の回路素子を追加したものである。インバータ307は、否定論理和回路306の出力信号の論理反転信号を出力する。インバータ308は、スタータ信号STTZの論理反転信号を出力する。インバータ309は、インバータ308の出力信号の論理反転信号を出力する。nチャネル電界効果トランジスタ310は、ドレインがインバータ319の入力端子に接続され、ゲートがインバータ309の出力端子に接続され、ソースがグランド電位に接続される。nチャネル電界効果トランジスタ311及び312は、インバータ319の入力端子及びグランド電位間に直列に接続される。トランジスタ311のゲートはインバータ308の出力端子に接続され、トランジスタ312のゲートは否定論理和回路306の出力端子に接続される。
pチャネル電界効果トランジスタ313及びnチャネル電界効果トランジスタ314は、電源電圧VDD(1.8V)及びグランド電位間に直列に接続される。pチャネル電界効果トランジスタ315及びnチャネル電界効果トランジスタ316は、電源電圧VDD及びグランド電位間に直列に接続される。トランジスタ313及び314のゲートは、トランジスタ315及び316のドレインに接続される。トランジスタ315及び316のゲートは、トランジスタ313及び314のドレインを介して、インバータ319の入力端子に接続される。
nチャネル電界効果トランジスタ317及び318は、トランジスタ315及び316のドレインの相互接続点とグランド電位との間に直列に接続される。トランジスタ317のゲートはインバータ308の出力端子に接続され、トランジスタ318のゲートはインバータ307の出力端子に接続される。
インバータ319は、電源電圧VDDに接続され、入力信号の論理反転信号を出力する。インバータ320は、電源電圧VDDに接続され、インバータ319の出力信号の論理反転信号を出力する。レベルシフタ321は、電源電圧VDD(1.8V)から電源電圧VPP(3V)の信号にレベルシフトし、リークカット制御信号LCUTC#X(#は1〜4の整数である)を出力する。
図3の回路は、図2の回路に対して、電源電圧VII(1.6V)から電源電圧VDD(1.8V)にレベルシフトし、電源電圧VDDから電源電圧VPP(3V)にレベルシフトする点が異なる。
以上のように、図3の回路は、図2の回路に対して、論理的動作が同じである。図3の回路は、後段の被リークカット回路であるメモリセルブロック121a〜121dがVPP(3V)及びVNN(−0.3V)の電源を使用しているため、図3の回路の出力の振幅もVPP−VSS(0V)又はやVII−VNNにレベルシフトして出力する。第1のモードでは、Row系動作時には、制御信号RASZ又はBRASZがハイレベルになることによりリークカットトランジスタ421,422,520をオンする。Row系の動作終了時には、制御信号RASZ又はBRASZがローレベルになってから、所定の遅延時間を経た後、リークカットトランジスタ421,422,520をオフする。信号RASZ/BRASZと、信号STTZ、LCUTC#X(#=1〜4)/LCUTPXの動作波形は、後に図9及び図10を参照しながら説明する。
図9は、60℃以下のときの第1のモードの図2及び図3のリークカット制御回路の動作を説明するためのタイミングチャートである。起動時に電源電圧VDDが上昇すると、起動期間TSではスタータ信号STTZも同時に立ち上がる。電源電圧VDDが所定のレベルまで上がったことを検出すると、スタータ信号STTZがローレベルにリセットされる。スタータ信号STTZがハイレベルの間は、温度センサ102の出力信号templowzはローレベルに固定される場合を示しているが、固定しない場合でもそれ以降は同様である。スタータ信号STTZがローレベルになった後に、温度センサ102が温度検出動作を開始し、温度が60℃以下であることを検出すると、温度信号templowzとしてハイレベルを出力する。それを受けて、リークカット制御信号LCUTPXがハイレベルになり、周辺回路112のリークカットトランジスタ421及び422が常時オンになり、またリークカット制御信号LCUTC#X(#=1〜4)がハイレベルになり、メモリセルブロック121a〜121dのリークカットトランジスタ520が常時オンになる。
図10は、60℃より高温のときの第1のモードの図2及び図3のリークカット制御回路の動作を説明するためのタイミングチャートである。例として、起動後に第1のメモリセルブロック121aにライト要求信号WR_BLK1、第1のメモリセルブロック121aにリード要求信号RD_BLK1、第3及び第4のメモリセルブロック121c,121dにリフレッシュ要求信号REF_BLK3,REF_BLK4が入力された場合を示している。ここで、リフレッシュ動作では第1のメモリセルブロック121a及び第2のメモリセルブロック121bが同時に動作し、第3のメモリセルブロック121c及び第4のメモリセルブロック121dが同時に動作するものとする。
起動時に電源電圧VDDが上昇すると、スタータ信号STTZも同時に立ち上がる。電源電圧VDDが所定のレベルまで上がったことを検出すると、スタータ信号STTZがローレベルにリセットされる。スタータ信号STTZがローレベルになった後、温度センサ102は、温度検出動作を開始し、温度が60℃より高温であることを検出すると、起動時と同様に温度信号templowzとしてローレベルの出力を継続する。周辺回路112のリークカットトランジスタ421及び422及びメモリセルブロック121a〜121dのリークカットトランジスタ520とも、オフ状態を継続する。その後、ライト要求信号WR_BLK1、リード要求信号RD_BLK1、リフレッシュ要求信号REF_BLK3,REF_BLK4が入力した場合に、ブロック共通の周辺回路112のリークカット制御信号LCUTPXは、共通のRow活性化信号RASZの立ち上がりで立ち上がり、信号RASZの立ち下がりを遅延させたタイミングで立ち下がる。
リークカット制御信号LCUTC#Xは、ブロック毎に独立したRow活性化信号BRAS#Z(#は1〜4、ブロック番号を示す)により、要求信号が入力されたブロックのみ立ち上がり、信号BRAS#Zの立ち下がりを遅延させたタイミングで立ち下がる。リークカット制御信号LCUTC#Xの立ち下がりを遅延させるのは、ブロック制御信号BRAS#Zの立ち下がり直後の動作を可能にするためである。
例えば、第1のメモリセルブロック121aにおいて、ブロック制御信号BRAS1Zはメモリコア制御信号WR_BLK1及びRD_BLK1と同じ信号になり、リークカット制御信号LCUTC1Xはブロック制御信号BRAS1Zに応じた信号である。また、第3のメモリセルブロック121cにおいて、ブロック制御信号BRAS3Zはメモリコア制御信号REF_BLK3と同じ信号になり、リークカット制御信号LCUTC3Xはブロック制御信号BRAS3Zに応じた信号である。
(第2の実施形態)
図12は、本発明の第2の実施形態による半導体記憶装置の構成例を示すブロック図である。本実施形態(図12)は、第1の実施形態(図1)に対して、ヒューズ回路101の代わりに半導体チップ1201及びモードセレクタ1202を設けたものである。以下、本実施形態が第1の実施形態と異なる点を説明する。半導体チップ1201は、例えばCPUであり、外部から半導体記憶装置の外部端子を介してモードセレクタ1202にモード信号を出力する。モードセレクタ1202は、半導体チップ1201からのモード信号に応じて、モード信号TLCUTDSBPZ,TALWAYSLCPZ,TLCUTDSBCZ,TALWAYSLCCZを出力する。
以上のように、第1の実施形態では半導体記憶装置内に搭載したヒューズ回路101によって、リークカット制御のモードを指定していたが、本実施形態では、CPU等の別の半導体チップ1201からモード信号を入力するか、もしくはボンディングによりモード信号を入力するかを行い、それに応じてリークカット制御のモードを切り替えられるようにした点が異なる。これによって、半導体記憶装置のチップを試験しヒューズ切断工程を経過した後の工程でも、用途に応じてモードを切り替えることができる。また、システムとして、半導体記憶装置のチップが動作しない時間帯が継続する場合には、60℃以下でもリークカット制御を行うように切り替えるなど、動的な切り替えが可能になる。
(第3の実施形態)
図13は、本発明の第3の実施形態による半導体記憶装置の構成例を示すブロック図である。本実施形態(図13)は、第1の実施形態(図1)に対して、モードレジスタ1301及びパーシャルリフレッシュ制御回路1302を追加したものである。以下、本実施形態が第1の実施形態と異なる点を説明する。モードレジスタ(コンフィグレーションレジスタ)1301は、コマンド、データ及びアドレスに応じて、パーシャルリフレッシュモードの設定を行う。パーシャルリフレッシュ制御回路1302は、モードレジスタ1301のパーシャルリフレッシュモードに応じて、1/2パーシャルエントリ信号sr1p2z又は1/4パーシャルエントリ信号sr1p4zを出力する。1/2パーシャルエントリ信号sr1p2zが第3のリークカット制御回路122c及び第4のリークカット制御回路122dに出力されると、第3のメモリセルブロック121c及び第4のメモリセルブロック121dはリフレッシュ動作を行わず、第1のメモリセルブロック121a及び第2のメモリセルブロック121bのみリフレッシュ動作を行う。1/4パーシャルエントリ信号sr1p4zが第2のリークカット制御回路122b、第3のリークカット制御回路122c及び第4のリークカット制御回路122dに出力されると、第2のメモリセルブロック121b、第3のメモリセルブロック121c及び第4のメモリセルブロック121dはリフレッシュ動作を行わず、第1のメモリセルブロック121aのみリフレッシュ動作を行う。
本実施形態は、全てのメモリセルブロック121a〜121dのデータを保持するのではなく、一部のメモリセルブロックのデータを保持することで、スタンバイ電流を低減することが可能なパーシャルリフレッシュモードを有する。この場合に、データを保持しないメモリセルブロックにおいては、スタンバイ時にリフレッシュ動作を行わないため、リークカット制御によるAC電流の増加も発生しない。従って、パーシャルリフレッシュモードにエントリしたときに、データを保持しないメモリセルブロックについては、60℃以下の判定でもリークカット制御を行うようにすると、60℃以下のスタンバイ電流を更に低減することができる。すなわち、図11において、AC電流1102は発生しないので、スタンバイ電流1107をスタンバイ電流1101に低減することができる。
本実施形態では、パーシャルリフレッシュ制御回路1302の出力信号である1/2パーシャルエントリ信号sr1p2zを第3及び第4のメモリセルブロック121c,121dのリークカット制御回路122c,122dに入力し、1/4パーシャルエントリ信号sr1p4zを、第2〜第4のメモリセルブロック121b〜121dのリークカット制御回路122b〜122dに入力している。パーシャルリフレッシュのモードに応じて、そのメモリセルブロックにリフレッシュ要求が入らない場合には60℃以下でもリークカット制御を行うようにする。
図14は、図13の各リークカット制御回路122c及び122dの構成例を示す回路図である。1/2パーシャルエントリ信号sr1p2zの場合を例に説明するが、1/4パーシャルエントリ信号sr1p4zの場合も同様である。また、リークカット制御回路122bの構成も同様である。図14は、図3に対して、1/2パーシャルエントリ信号sr1p2zを追加したものである。以下、図14が図3と異なる点を説明する。否定論理和回路302は、1/2パーシャルエントリ信号sr1p2z、モード信号TALWAYSLCCZ、及びインバータ301の出力信号の否定論理和信号を出力する。1/2パーシャルエントリ信号sr1p2zがハイレベルになると、温度信号templowzに関係なく、ブロック制御信号BRAS#Zに応じてリークカット制御信号LCUTC#Xが出力される。
以上のように、1/2パーシャルエントリ信号sr1p2zがハイレベルのときには、温度信号templowzによらずリークカット制御を行う。第2〜第4のメモリセルブロック121b〜121d用のリークカット制御回路122b〜122dでは、更に1/4パーシャルエントリ信号sr1p4zも入力し、1/2パーシャルもしくは1/4パーシャルのいずれかにエントリすると、温度信号templowzによらずリークカット制御を行うようにする。
図15は、60℃以下の温度においてパーシャルエントリ信号sr1p2z及びsr1p4zがローレベルであるときのタイミングチャートである。パーシャルリフレッシュモードの代表として、1/2パーシャルの場合を例に示す。パーシャルリフレッシュにエントリしない場合は、1/2パーシャルエントリ信号sr1p2zがローレベルとなり、第1の実施形態と同様に、起動時にはリークカット制御信号LCUTPX、LCUTC#Xをローレベルにし、起動後にスタータ信号STTZがローレベルにリセットされた後、リークカット制御信号LCUTPX、LCUTC#Xを常時ハイレベルにする。
図16は、60℃以下の温度においてパーシャルエントリ信号sr1p2zがハイレベル及びsr1p4zがローレベルであるときのタイミングチャートである。1/2パーシャルモードにエントリする場合、起動後にスタータ信号STTZがローレベルにリセットされると、図15と同様に、リークカット制御信号LCUTPX、LCUTC#Xを常時ハイレベルにする。その後、モードレジスタ1301を1/2パーシャルモードにセットした後、チップイネーブル信号CE2をローレベルにすると、1/2パーシャルモードにエントリする。このとき、1/2パーシャルにエントリしたことを示す信号sr1p2zがハイレベルになり、それがメモリコアコントローラ106及びアドレスコントローラ107に入力することにより、メモリコア120の4メモリセルブロック121a〜121dのうち、第3のメモリセルブロック121c及び第4のメモリセルブロック121dはリフレッシュを行わないようになる。更に、第3のメモリセルブロック121c及び第4のメモリセルブロック121dは、リークカット制御なし(リークカットトランジスタ520が常時オン)の状態からリークカット制御有りの状態に切り替わる。すなわち、リークカット制御信号LCUTC3X,LCUTC4Xはローレベルとなり、リークカット制御信号LCUTC1X,LCUTC2Xはハイレベルとなる。これにより、第3及び第4のメモリセルブロック121c、121dにおいて、60℃以下のオフリーク電流を低減することができる。
図17は60℃より高温においてパーシャルエントリ信号sr1p2zがローレベルであるときのタイミングチャートであり、図18は60℃より高温においてパーシャルエントリ信号sr1p2zがハイレベルであるときのタイミングチャートである。高温では第1の実施形態と同様に非動作メモリセルブロックではリークカット制御を行うので、パーシャルリフレッシュモードにエントリするかしないかで、メモリセルブロックのリークカット制御は変わらない。
図17において、リフレッシュ要求信号SREF12に応じて、ブロック制御信号BRAS1Z,BRAS2Zがハイレベルになり、リークカット制御信号LCUTPX,LCUTC1X,LCUTC2Xがハイレベルになる。また、リフレッシュ要求信号SREF34に応じて、ブロック制御信号BRAS3Z,BRAS4Zがハイレベルになり、リークカット制御信号LCUTPX,LCUTC3X,LCUTC4Xがハイレベルになる。
図18においては、1/2パーシャルモードにエントリしているので、第3及び第4のメモリセルブロック121c,121dのリフレッシュ要求SREF34が発生しない。
なお、パーシャルリフレッシュのモードとして、1/2パーシャルだけでなく、1/4パーシャルや1/8パーシャル等を行うこともできる。1/4パーシャルの場合は、第1のメモリセルブロック121aのみデータを保持するので、60℃以下では第2〜第4のメモリセルブロック121b〜121dではリークカット制御を行うように切り替える。これらは、1/2パーシャルと同様のため詳細は省略する。
(第4の実施形態)
図19は、本発明の第4の実施形態による半導体記憶装置の構成例を示すブロック図である。本実施形態(図19)は、第1の実施形態(図1)に対して、温度センサ102及びセルフリフレッシュタイマ103の代わりに温度特性リニア型オシレータ1901を設けたものである。以下、本実施形態が第1の実施形態と異なる点を説明する。温度特性リニア型オシレータ1901は、温度センサ102及びセルフリフレッシュタイマ103の機能を有し、温度信号templowz及びリフレッシュ周期信号SRTZを出力する。
図20は、リニア型オシレータ1901の特性を示す図である。リフレッシュ周期TRは、リフレッシュ周期信号SRTZの周期である。温度信号templowzは、第1の実施形態と同じく、60℃以下のときにハイレベルになり、60℃より高温のときにローレベルになる。
データ保持時間tREFは、図22と同様に、温度に対して完全にリニアではなく、所定温度以下で長くなり方が飽和する。そのため、リフレッシュ周期TRも、所定温度以下では温度変化の傾きを小さくしている。これを実現する方法として、2種類の定電流を生成する定電流源を設け、その2種類の定電流の特性2001及び2002の小さい方の特性をリフレッシュ周期TRとしてリフレッシュ周期信号SRTZを出力する。その結果、所定の温度でどちらの周期を出力するかが切り替わるが、その切り替わり時点で、温度信号templowzのレベルを切り替える。その温度信号templowzをリークカット制御回路111,122a〜122dに入力すれば、リニア型オシレータ1901を使用した場合も、第1の実施形態と同様に、60℃以下と60℃より高温の両方において、スタンバイ電流を低減する効果が得られる。
図25は、リフレッシュ周期信号SRTZの温度特性を示す図である。リフレッシュ周期信号SRTZは、図20に示すように、温度に対して連続的にリフレッシュ周期TRが変わる。60℃以下では、リフレッシュ周期信号SRTZの周期T1は一定である。60℃より高温では、リフレッシュ周期信号SRTZの周期T2は、高温になるほど周期が連続的に短くなる。
以上のように、第1〜第4の実施形態によれば、温度センサを使用し、所定温度(60℃)より高温の時にはリークカット制御を行い、所定温度(60℃)以下の時にはリークカット制御を行わず、リークカットトランジスタ421,422,520を常時オンにして、リークカット制御のためのAC電流1102をなくすことにより、所定温度より高温及び所定温度以下の両方において、トータルのスタンバイ電流を低減することができる。その際、起動時には温度に依らずリークカット制御を行うことにより、起動不良を回避することができる。更に、パーシャルリフレッシュモードでは、リフレッシュを行わないメモリセルブロックについては所定温度以下の時もリークカット制御を行うことにより、所定温度以下のトータルのスタンバイ電流を更に低減することができる。更に、温度検出素子として、温度センサ102の代わりにリニア型オシレータ1901を設けた場合にも、同様の効果を得ることができる。
温度検出素子102又は1901は、温度を検出する。内部回路は、例えば周辺回路112又はメモリセルブロック121a〜121dであり、電源線から電源電圧が供給されて動作する。リークカットトランジスタ421,422,520は、前記電源線(電源電圧又は基準電位の電源線)及び前記内部回路112,121a〜121dの間に接続されるスイッチである。リークカット制御回路111,122a〜122dは、前記温度検出素子102又は1901により検出された温度が閾値(例えば60℃)よりも高いときには前記内部回路112,121a〜121dの動作時に前記スイッチ421,422,520をオンして前記内部回路112,121a〜121dの非動作時に前記スイッチ421,422,520をオフし、前記温度検出素子102又は1901により検出された温度が閾値よりも低いときには前記内部回路112,121a〜121dの動作時及び非動作時に前記スイッチ421,422,520をオンするように制御する。
前記内部回路112,121a〜121dは、動作信号RASZ又はBRAS#Zに応じて動作する。リークカット制御回路111,122a〜122dは、前記動作信号RASZ又はBRAS#Zに応じて前記内部回路112,121a〜121dの動作時又は非動作時を判断する。
リークカット制御回路111,122a〜122dは、スタータ信号STTZに応じて、起動時には前記温度検出素子102又は1901により検出された温度にかかわらず前記スイッチ421,422,520をオフするように制御する。
モード設定回路は、例えばヒューズ回路101又はモードセレクタ1202等であり、第1のモード、第2のモード又は第3のモードを設定する。例えば、前記モード設定回路は、第1のモード、第2のモード又は第3のモードを記憶するヒューズ回路(メモリ)101、又は外部信号に応じて第1のモード、第2のモード又は第3のモードを設定するモードセレクタ1202である。
リークカット制御回路111,122a〜122dは、前記第1のモードが設定されているときには、前記温度検出素子により検出された温度が閾値よりも高いときには前記内部回路の動作時に前記スイッチをオンして前記内部回路の非動作時に前記スイッチをオフし、前記温度検出素子により検出された温度が閾値よりも低いときには前記内部回路の動作時及び非動作時に前記スイッチをオンする。
また、リークカット制御回路111,122a〜122dは、前記第2のモードが設定されているときには、前記温度検出素子により検出された温度にかかわらず前記内部回路の動作時に前記スイッチをオンして前記内部回路の非動作時に前記スイッチをオフするように制御する。
また、リークカット制御回路111,122a〜122dは、前記第3のモードが設定されているときには、前記温度検出素子により検出された温度にかかわらず前記内部回路の動作時及び非動作時に前記スイッチをオンするように制御する。
メモリセルブロック121a〜121dは、データを記憶するメモリセルを有する。前記内部回路は、周辺回路112又は図5のワードデコーダであり、前記メモリセルの動作を制御する回路である。前記メモリセルは、データを保持するためのリフレッシュ動作が行われる。また、前記メモリセルは、複数のブロック121a〜121dに分割されている。
前記内部回路は、例えばメモリセルブロック121a〜121d内のワードデコーダであり、前記メモリセルのブロック毎に動作を制御する複数の内部回路を有する。前記スイッチは、前記複数の内部回路毎に設けられる。前記リークカット制御回路は、前記複数の内部回路の前記スイッチを制御する複数の制御回路122a〜122dを有する。また、前記内部回路は、前記メモリセルの複数のブロックの動作を共通に制御する周辺回路112である。
第3の実施形態では、前記メモリセルは、前記ブロック単位でリフレッシュ動作が行われる。前記リークカット制御回路122a〜122dは、対応するメモリセルのブロックのリフレッシュ動作を抑制するためのリフレッシュ抑制信号sr1p2z,sr1p4zが入力されると、前記温度検出素子により検出された温度にかかわらず前記内部回路の非動作時に前記スイッチをオフする。
前記メモリセルは、前記温度検出素子により検出される温度に応じた周期TRでリフレッシュ動作が行われる。第4の実施形態では、図20に示すように、前記リフレッシュ動作の周期TRは、前記温度検出素子により検出される温度に対して連続的に変化し、前記閾値は、前記検出される温度に対する前記リフレッシュ動作の周期TRの傾きの変化点に対応する温度値(例えば60℃)である。
なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
温度に応じてスイッチを制御することにより、高温及び常温の両方においてスタンバイ電流を小さくすることができる。

Claims (6)

  1. 温度を検出する温度検出素子と、
    電源線から電源電圧が供給されて動作する内部回路と、
    前記電源線及び前記内部回路の間に接続されるスイッチと、
    前記温度検出素子により検出された温度が閾値よりも高いときには前記内部回路の動作時に前記スイッチをオンして前記内部回路の非動作時に前記スイッチをオフし、前記温度検出素子により検出された温度が前記閾値よりも低いときには前記内部回路の動作時及び非動作時に前記スイッチをオンするように制御し、前記閾値が、前記閾値より高い第1の温度においては、前記スイッチのオン及びオフの切り替え制御に起因する交流電流が、前記切り替え制御を行わず前記スイッチを動作時及び非動作時の両方でオンした場合の前記内部回路のスタンバイ時のリーク電流であるオフリーク電流よりも小さくなり、前記閾値より低い第2の温度においては、前記オフリーク電流が前記交流電流よりも小さくなるように設定された制御回路と、
    データを記憶するメモリセルとを有し、
    前記内部回路は、前記メモリセルの動作を制御する回路であり、
    前記メモリセルは、前記温度検出素子により検出された温度が閾値より高いときには、データを保持するために第1のリフレッシュ周期でリフレッシュ動作を行い、前記温度検出素子により検出された温度が閾値より低いときには、データを保持するために前記第1のリフレッシュ周期より長い第2のリフレッシュ周期でリフレッシュ動作を行うことを特徴とする半導体装置。
  2. 前記制御回路は、起動時には前記温度検出素子により検出された温度にかかわらず前記スイッチをオフするように制御することを特徴とする請求項1記載の半導体装置。
  3. さらに、第1のモード、第2のモード又は第3のモードを設定するモード設定回路を有し、
    前記制御回路は、前記第1のモードが設定されているときには、前記温度検出素子により検出された温度が閾値よりも高いときには前記内部回路の動作時に前記スイッチをオンして前記内部回路の非動作時に前記スイッチをオフし、前記温度検出素子により検出された温度が閾値よりも低いときには前記内部回路の動作時及び非動作時に前記スイッチをオンし、前記第2のモードが設定されているときには、前記温度検出素子により検出された温度にかかわらず前記内部回路の動作時に前記スイッチをオンして前記内部回路の非動作時に前記スイッチをオフし、前記第3のモードが設定されているときには、前記温度検出素子により検出された温度にかかわらず前記内部回路の動作時及び非動作時に前記スイッチをオンするように制御することを特徴とする請求項1又は2記載の半導体装置。
  4. 前記メモリセルは、複数のブロックに分割されていることを特徴とする請求項1〜3のいずれか1項に記載の半導体装置。
  5. 前記内部回路は、前記メモリセルのブロック毎に動作を制御する複数の内部回路を有し、
    前記スイッチは、前記複数の内部回路毎に設けられ、
    前記制御回路は、前記複数の内部回路の前記スイッチを制御する複数の制御回路を有することを特徴とする請求項4記載の半導体装置。
  6. 前記メモリセルは、前記ブロック単位でリフレッシュ動作が行われ、
    前記制御回路は、対応するメモリセルのブロックのリフレッシュ動作を抑制するためのリフレッシュ抑制信号が入力されると、前記温度検出素子により検出された温度にかかわらず前記内部回路の非動作時に前記スイッチをオフすることを特徴とする請求項4又は5記載の半導体装置。
JP2009522479A 2007-07-12 2007-07-12 半導体装置 Expired - Fee Related JP5212370B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/063880 WO2009008081A1 (ja) 2007-07-12 2007-07-12 半導体装置

Publications (2)

Publication Number Publication Date
JPWO2009008081A1 JPWO2009008081A1 (ja) 2010-09-02
JP5212370B2 true JP5212370B2 (ja) 2013-06-19

Family

ID=40228278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009522479A Expired - Fee Related JP5212370B2 (ja) 2007-07-12 2007-07-12 半導体装置

Country Status (3)

Country Link
US (1) US8111575B2 (ja)
JP (1) JP5212370B2 (ja)
WO (1) WO2009008081A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5259270B2 (ja) 2008-06-27 2013-08-07 ルネサスエレクトロニクス株式会社 半導体装置
JP5599984B2 (ja) * 2009-04-06 2014-10-01 ピーエスフォー ルクスコ エスエイアールエル 半導体装置
US8595520B2 (en) * 2011-10-12 2013-11-26 Qualcomm Incorporated System and method for determining thermal management policy from leakage current measurement
US8995218B2 (en) 2012-03-07 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9165668B1 (en) 2013-07-29 2015-10-20 Western Digital Technologies, Inc. Data retention monitoring using temperature history in solid state drives
KR102315277B1 (ko) * 2014-11-03 2021-10-20 삼성전자 주식회사 리프레쉬 특성이 개선된 반도체 메모리 장치
US10115471B1 (en) * 2017-05-01 2018-10-30 Western Digital Technologies, Inc. Storage system and method for handling overheating of the storage system
JP6709825B2 (ja) * 2018-06-14 2020-06-17 華邦電子股▲ふん▼有限公司Winbond Electronics Corp. Dram及びその操作方法
JP2023507423A (ja) 2019-12-18 2023-02-22 ブラッコ・イメージング・ソシエタ・ペル・アチオニ 新規診断用分子プローブとしての抗her2ポリペプチド誘導体

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883487A (ja) * 1994-09-09 1996-03-26 Mitsubishi Electric Corp 半導体集積回路装置
JP2000021162A (ja) * 1998-07-03 2000-01-21 Mitsubishi Electric Corp 揮発性メモリおよびエンベッデッド・ダイナミック・ランダム・アクセス・メモリ
JP2002133862A (ja) * 2000-10-30 2002-05-10 Nec Corp 半導体記憶装置及びその製造方法
JP2003068079A (ja) * 2001-08-30 2003-03-07 Hitachi Ltd 半導体記憶回路
JP2003168735A (ja) * 2001-11-30 2003-06-13 Hitachi Ltd 半導体集積回路装置
JP2005158222A (ja) * 2003-11-05 2005-06-16 Fujitsu Ltd 半導体集積回路
JP2006031860A (ja) * 2004-07-16 2006-02-02 Elpida Memory Inc リフレッシュ周期発生回路
JP2006236398A (ja) * 2005-02-22 2006-09-07 Fujitsu Ltd 半導体記憶装置
JP2007047177A (ja) * 2005-08-10 2007-02-22 Samsung Electronics Co Ltd オンチップ温度センサ及び温度検出方法、並びにこれを用いたリフレッシュ制御方法
JP2007164960A (ja) * 2005-11-15 2007-06-28 Nec Electronics Corp 半導体集積回路装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04319598A (ja) 1991-04-19 1992-11-10 Fujitsu Ltd 半導体記憶装置
DE10042383B4 (de) * 2000-08-29 2005-04-28 Infineon Technologies Ag Halbleiteranordnung mit optimiertem Refreshzyklus
JP4021643B2 (ja) * 2001-10-29 2007-12-12 富士通株式会社 温度検出機能を備えた半導体装置
JP2006012968A (ja) 2004-06-23 2006-01-12 Nec Electronics Corp 半導体集積回路装置及びその設計方法
KR100856060B1 (ko) * 2007-04-06 2008-09-02 주식회사 하이닉스반도체 반도체메모리소자의 내부리프레쉬신호 생성장치
US7630267B2 (en) * 2007-10-31 2009-12-08 Elite Semiconductor Memory Technology Inc. Temperature detector in an integrated circuit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883487A (ja) * 1994-09-09 1996-03-26 Mitsubishi Electric Corp 半導体集積回路装置
JP2000021162A (ja) * 1998-07-03 2000-01-21 Mitsubishi Electric Corp 揮発性メモリおよびエンベッデッド・ダイナミック・ランダム・アクセス・メモリ
JP2002133862A (ja) * 2000-10-30 2002-05-10 Nec Corp 半導体記憶装置及びその製造方法
JP2003068079A (ja) * 2001-08-30 2003-03-07 Hitachi Ltd 半導体記憶回路
JP2003168735A (ja) * 2001-11-30 2003-06-13 Hitachi Ltd 半導体集積回路装置
JP2005158222A (ja) * 2003-11-05 2005-06-16 Fujitsu Ltd 半導体集積回路
JP2006031860A (ja) * 2004-07-16 2006-02-02 Elpida Memory Inc リフレッシュ周期発生回路
JP2006236398A (ja) * 2005-02-22 2006-09-07 Fujitsu Ltd 半導体記憶装置
JP2007047177A (ja) * 2005-08-10 2007-02-22 Samsung Electronics Co Ltd オンチップ温度センサ及び温度検出方法、並びにこれを用いたリフレッシュ制御方法
JP2007164960A (ja) * 2005-11-15 2007-06-28 Nec Electronics Corp 半導体集積回路装置

Also Published As

Publication number Publication date
US20100110818A1 (en) 2010-05-06
JPWO2009008081A1 (ja) 2010-09-02
US8111575B2 (en) 2012-02-07
WO2009008081A1 (ja) 2009-01-15

Similar Documents

Publication Publication Date Title
JP5212370B2 (ja) 半導体装置
US7248527B2 (en) Self refresh period control circuits
US7994820B2 (en) Level shifter with embedded logic and low minimum voltage
JP5130792B2 (ja) 半導体集積回路およびシステム
JP2004134026A (ja) 半導体記憶装置及びその制御方法
JPH10283783A (ja) 節電機能付き半導体メモリ装置
KR100945940B1 (ko) 리프레쉬 신호 생성 회로
KR100800145B1 (ko) 셀프 리프레쉬 주기 제어 회로 및 그 방법
US8169836B2 (en) Buffer control signal generation circuit and semiconductor device
KR100933669B1 (ko) 저전력 쉬프트 레지스터 및 이를 포함하는 반도체메모리장치
TWI528531B (zh) 電晶體系記憶體單元及相關之操作方法
TWI740757B (zh) 半導體裝置
CN115413357A (zh) 供电电压选择电路
JP2002150788A (ja) 半導体装置及び半導体装置初期設定方法
JP2014089790A (ja) 半導体装置
JP2009230787A (ja) メモリ装置、メモリ制御方法
KR100858876B1 (ko) 리프레쉬 모드를 갖는 반도체메모리소자 및 그의 구동 방법
US7505354B2 (en) Word line voltage control circuit for memory devices
JP2008226384A (ja) 半導体記憶装置及びその試験方法
JP2014093585A (ja) 半導体集積回路
US11823735B2 (en) Semiconductor device
JP2000030438A (ja) 同期型半導体記憶装置
JPH05128866A (ja) ランダムアクセスメモリの書き込み、読出し制御回路
US8149636B2 (en) Semiconductor memory device with pulse width determination
JPH07235177A (ja) 半導体記憶装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R150 Certificate of patent or registration of utility model

Ref document number: 5212370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees