JP5113446B2 - 半導体素子およびその製造方法 - Google Patents

半導体素子およびその製造方法 Download PDF

Info

Publication number
JP5113446B2
JP5113446B2 JP2007204962A JP2007204962A JP5113446B2 JP 5113446 B2 JP5113446 B2 JP 5113446B2 JP 2007204962 A JP2007204962 A JP 2007204962A JP 2007204962 A JP2007204962 A JP 2007204962A JP 5113446 B2 JP5113446 B2 JP 5113446B2
Authority
JP
Japan
Prior art keywords
semiconductor element
thermal expansion
expansion coefficient
element portion
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007204962A
Other languages
English (en)
Other versions
JP2008066717A (ja
Inventor
雅幸 畑
康彦 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007204962A priority Critical patent/JP5113446B2/ja
Priority to CN2007800297641A priority patent/CN101501947B/zh
Priority to US12/161,358 priority patent/US20100219419A1/en
Priority to PCT/JP2007/065483 priority patent/WO2008018482A1/ja
Publication of JP2008066717A publication Critical patent/JP2008066717A/ja
Application granted granted Critical
Publication of JP5113446B2 publication Critical patent/JP5113446B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0202Cleaving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02375Positioning of the laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2027Reflecting region or layer, parallel to the active layer, e.g. to modify propagation of the mode in the laser or to influence transverse modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2201Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure in a specific crystallographic orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/32025Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth non-polar orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Description

本発明は、半導体素子およびその製造方法に関し、特に、主面の面内方向において異なる熱膨張係数を有する複数の方向を含む半導体素子部を備える半導体素子およびその製造方法に関する。
従来、主面の面内方向において異なる熱膨張係数を有する複数の方向を含むGaN系半導体積層構造(半導体素子部)を備える半導体発光素子(半導体素子)が知られている(たとえば、特許文献1参照)。
上記特許文献1に開示された従来の半導体発光素子は、(1−100)面を主面とする単結晶基板上にGaN系半導体積層構造を積層することにより、(1−100)面を主面とするGaN系半導体積層構造が形成されている。ここで、(0001)面以外の主面を備えるウルツ鉱構造のGaN系半導体積層構造の熱膨張係数は、主面の面内方向において異方性を有することが知られている。たとえば、(1−100)面の面内方向においては、[0001]方向であるc軸方向の熱膨張係数と、[11−20]方向であるa軸方向の熱膨張係数とが異なる。また、GaN系半導体積層構造は、主面の面内方向において等方的な熱膨張係数を有する基体に接合されている。
特開2001−7394号公報
しかしながら、上記特許文献1に開示された半導体発光素子では、主面の面内方向において等方的な熱膨張係数を有する基体に、主面の面内方向において異方的な熱膨張係数を有するGaN系半導体積層構造が接合されているので、接合面の面内の各方向について基体とGaN系半導体積層構造との熱膨張係数の差を小さくすることが困難になるという不都合がある。したがって、GaN系半導体積層構造を基体に接合するときの温度と半導体発光素子の動作時の温度との違いに起因して、GaN系半導体積層構造に歪みが発生するので、半導体発光素子の素子特性が低下するという問題点がある。
この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、半導体素子部が面内方向において異なる熱膨張係数を有する複数の方向を含む場合にも、素子特性が低下するのを抑制することが可能な半導体素子およびその製造方法を提供することである。
課題を解決するための手段および発明の効果
上記目的を達成するために、この発明の第1の局面における半導体素子は、第1の面を有するとともに、第1の面の面内方向において異なる熱膨張係数を有する複数の方向を含む半導体素子部と、第2の面を有するとともに、第2の面の面内方向において異なる熱膨張係数を有する複数の方向を含み、かつ、半導体素子部の第1の面が第2の面と接合された基体とを備え、半導体素子部の第1の面における熱膨張係数の最も大きい方向が、基体の第2の面における熱膨張係数の最も小さい方向よりも最も大きい方向側に近くなるように、基体に対して半導体素子部が接合されている。
この発明の第1の局面による半導体素子では、上記のように、第1の面の面内方向において異なる熱膨張係数を有する複数の方向を含む半導体素子部と、第2の面の面内方向において異なる熱膨張係数を有する複数の方向を含む基体とを設け、かつ、半導体素子部の第1の面における熱膨張係数の最も大きい方向が、基体の第2の面における熱膨張係数の最も小さい方向よりも最も大きい方向側に近くなるように、基体に対して半導体素子部を接合するように構成することによって、半導体素子部の第1の面と基体の第2の面とが接合する面の面内の各方向において熱膨張係数の違いを小さくすることができるので、半導体素子部を基体に接合するときの温度と半導体素子の動作時の温度との違いに起因して、半導体素子部の第1の面に歪みが発生するのを抑制することができる。その結果、半導体素子部が第1の面の面内方向において異なる熱膨張係数を有する複数の方向を含む場合にも、半導体素子の素子特性が低下するのを抑制することができる。
上記構成において、好ましくは、半導体素子部の第1の面の面内方向における熱膨張係数の最も大きい方向は、基体の第2の面の面内方向における熱膨張係数の最も大きい方向と実質的に一致する。
上記構成において、好ましくは、半導体素子部の第1の面の面内方向における最も大きい熱膨張係数および最も小さい熱膨張係数がそれぞれαELおよびαESであり、基体の第2の面の面内方向における最も大きい熱膨張係数および最も小さい熱膨張係数がそれぞれαSLおよびαSSである場合、基体と半導体素子部との各方向の熱膨張係数の間には、少なくともαSL≧αEL>αSSまたはαSL>αES≧αSSまたはαEL≧αSL>αESまたはαEL>αSS≧αESのうちのいずれか一つの関係が成り立っている。このように構成すれば、半導体素子部の第1の面の面内方向と基体の第2の面の面内方向との各方向に対応した熱膨張係数の差をさらに小さくすることができる。
上記構成において、好ましくは、半導体素子部の第1の面の面内方向における最も大きい熱膨張係数および最も小さい熱膨張係数がそれぞれαELおよびαESであり、基体の第2の面の面内方向における最も大きい熱膨張係数および最も小さい熱膨張係数がそれぞれαSLおよびαSSである場合、|αSL−αEL|>|αSS−αES|であれば、長辺の方向の熱膨張係数がαESとなるように半導体素子部の第1の面が長方形状に形成され、|αSL−αEL|<|αSS−αES|であれば、長辺の方向の熱膨張係数がαELとなるように半導体素子部の第1の面が長方形状に形成されている。このように構成すれば、上記の関係式に示すとおり、半導体素子部および基体の各方向の熱膨張係数の差の大小関係に基づいて、第1の面の長辺および短辺の方向を基体側と整合させた長方形状を有する半導体素子部を形成することができるので、半導体素子部の短辺方向に比べて歪みが発生しやすい長辺方向に歪みが発生するのを効果的に抑制することができる。
上記第1の局面による半導体素子において、好ましくは、半導体素子部の第1の面の面内方向における熱膨張係数の最も大きい方向と、半導体素子部の第1の面の面内方向における熱膨張係数の最も小さい方向とを区別できるように、半導体素子部の外観が形成されている。
上記第1の局面による半導体素子において、好ましくは、半導体素子部の第1の面の形状が、略長方形に形成されている。このように構成すれば、半導体素子部の第1の面の面内方向における熱膨張係数の最も大きい方向と、熱膨張係数の最も小さい方向とを容易に区別することができる。
上記構成において、好ましくは、半導体素子部は、第1の面を有するとともに、六方晶構造またはウルツ鉱構造を有する半導体層を含み、第1の面は、HおよびKの少なくともいずれか一方が0ではない整数とした場合に、実質的に(H、K、−H−K、0)面である。
上記構成において、好ましくは、基体の第2の面と、半導体素子部の第1の面とを接合するための接着層をさらに備える。
この発明の第2の局面による半導体素子の製造方法は、第1の面を有するとともに、第1の面の面内方向において異なる熱膨張係数を有する複数の方向を含む半導体素子部を形成する工程と、第2の面を有するとともに、第2の面の面内方向において異なる熱膨張係数を有する複数の方向を含む基体の第2の面に、第1の面における熱膨張係数の最も大きい方向が第2の面における熱膨張係数の最も小さい方向よりも最も大きい方向側に近くなるように、半導体素子部の第1の面を接合する工程とを備える。
この発明の第2の局面による半導体素子の製造方法では、上記のように、第2の面の面内方向において異なる熱膨張係数を有する複数の方向を含む基体に、第1の面における熱膨張係数の最も大きい方向が第2の面における熱膨張係数の最も小さい方向よりも最も大きい方向側に近くなるように半導体素子部を接合するように構成することによって、半導体素子部の第1の面と基体の第2の面とが接合する面の面内の各方向において熱膨張係数の違いを小さくすることができるので、半導体素子部を基体に接合するときの温度と半導体素子の動作時の温度との違いに起因して、半導体素子部の第1の面に歪みが発生するのを抑制することができる。その結果、半導体素子部が第1の面の面内方向において異なる熱膨張係数を有する複数の方向を含む場合にも、半導体素子の素子特性が低下するのを抑制することができる。
この場合において、好ましくは、半導体素子部を形成する工程は、面内方向において異なる熱膨張係数を有する複数の方向を含む成長用基板の表面上に、第1の面の面内方向において異なる熱膨張係数を有する複数の方向を含む半導体素子部を成長する工程を含む。
図1は、本発明の概念を説明するための平面図であり、図2は、図1の1000−1000線に沿った断面図である。まず、図1および図2を参照して、本発明の具体的な実施形態を説明する前に本発明の概念について説明する。
本発明の半導体素子は、図1および図2に示すように、基体1と、基体1に接合された半導体素子部2とを備えている。
半導体素子の基体1は、サブマウントでもよいし、支持基板でもよい。また、基体1は、半導体素子部2と接合される主面1aの面内方向において異なる熱膨張係数を有する複数の方向を含んでいる。具体的には、たとえば、図2に示すように、矢印A方向に最も大きい熱膨張係数αSLを有するとともに、矢印B方向に最も小さい熱膨張係数αSSを有する。なお、主面1aは、本発明の「第2の面」の一例である。
面内方向によって異なる熱膨張係数を有する基体1としては、単結晶の材料では、立方晶以外の斜方晶、正方晶、六方晶、菱面体、単斜晶および三斜晶の結晶構造を有する材料を用いることができる。これらの立方晶以外の結晶構造を有する材料では、結晶の対称性から一般的に熱膨張係数に異方性を有する。このような立方晶以外の結晶構造を有する材料を、熱膨張係数の異方性が主面1aの面内方向に現れるように加工する。たとえば、正方晶および六方晶の結晶構造を有する材料では、c軸と垂直な面以外の面が主面1aとなるように加工する。
単結晶の材料としては、たとえば、六方晶または菱面体構造のα−SiCや、ウルツ鉱構造のGaNおよびAlNなどの窒化物系半導体や、ウルツ鉱構造のZnOおよびZnSや、六方晶のZrBおよびHfBなどを用いることができる。また、六方晶の単結晶の場合には、主面1aが(0001)面以外の(H、K、−H−K、L)面、たとえば、{1−100}面、{11−20}面、{11−22}面、または、{1−101}面となるように形成されている。
また、面内方向によって異なる熱膨張係数を有する基体1として、単結晶以外の材料を用いる場合には、熱膨張係数に異方性を有する結晶が配向することによって、熱膨張係数に異方性を有する材料を用いるようにしてもよい。このような材料としては、たとえば、AlN粒子のc軸方向が配向している多結晶のAlN、および、金属を含浸した黒鉛粒子焼結体からなる炭素および金属の複合材料などがある。このような材料では、主面1aの面内に、粒子の配向している方向と、粒子の配向している方向に対して垂直な方向とが現れるように形成されている。
また、基体1の主面1aの外観は、半導体素子部2が接合される前に、主面1aの面内方向において熱膨張係数の最も大きい方向と、熱膨張係数の最も小さい方向とを区別することができるように形成されていることが好ましい。たとえば、基体1の表面に熱膨張係数の最も大きい方向が認識可能なマークを形成するようにしてもよいし、基体1に電極を形成する場合には、電極の形状や配置により、熱膨張係数の最も大きい方向が認識できるようにしてもよい。たとえば、熱膨張係数の最も大きい方向が認識できるように長辺または短辺の方向を熱膨張係数の最も大きい方向に一致させた2回の回転対称の長方形状に電極を形成するようにしてもよい。ここで、2回の回転対称とは0度から360度まで回転させる間に、2回対称な回転位置があることを意味し、長方形は、この2回の回転対称に該当する。この場合、2回または1回の回転対称のように対称性の低い形状であれば、長方形以外の形状でもよい。また、基体1の外形を熱膨張係数の最も大きい方向が認識可能なように形成するようにしてもよい。すなわち、基体1がサブマウントの場合には、基体1の主面1aを長辺または短辺の方向を熱膨張係数の最も大きい方向に一致させた2回の回転対称の長方形状に形成するようにしてもよいし、基体1が支持基板の場合には、支持基板にオリエンテーションフラットを形成するようにしてもよい。
また、基体1には、半導体素子部2が接着層を介して接合されていてもよいし、半導体素子部2が直接接合されていてもよい。
半導体素子の半導体素子部2は、基体1に接合される主面2aが面内方向において熱膨張係数に異方性を有する。たとえば、図2に示すように、矢印C方向に最も大きい熱膨張係数αELを有するとともに、矢印D方向に最も小さい熱膨張係数αESを有する。また、半導体素子部2は、立方晶以外の斜方晶、正方晶、六方晶、菱面体、単斜晶および三斜晶の結晶構造有する半導体を含む。これらの半導体では、熱膨張係数の異方性が主面2aの面内方向に現れるように、主面2aの面方位が選択されている。たとえば、半導体素子部2が六方晶の半導体からなる場合には、主面2aが(0001)面以外の(H、K、−H−K、L)面、たとえば、{1−100}面、{11−20}面、{11−22}面、または、{1−101}面となるように形成されている。なお、主面2aは、本発明の「第1の面」の一例である。
半導体素子部2の半導体としては、たとえば、ウルツ鉱構造を有するGaN、AlN、InN、BNおよびTlN、または、これらの混晶からなる窒化物系半導体や、α−SiCや、ウルツ鉱構造を有するZnOおよびZnSなどを用いることができる。たとえば、GaN、InN、およびGaInNを用いて、主面2aが(H、K、−H−K、L)面となるように形成されている場合には、面内で熱膨張係数が最も大きい方向は、[K、−H、H−K、0]方向となる。また、GaN、InN、およびGaInNを用いて、主面2aが(H、K、−H−K、0)面となるように形成されている場合には、面内で熱膨張係数が最も大きい方向は、[K、−H、H−K、0]方向となり、熱膨張係数が最も小さい方向は、[0001]方向となる。
また、半導体素子部2の主面2aの外観は、基体1に接合される前に、主面2aの面内方向において熱膨張係数の最も大きい方向と、熱膨張係数の最も小さい方向とを区別することができるように形成されていることが好ましい。たとえば、半導体素子部2の表面に熱膨張係数の最も大きい方向が認識可能なマークを形成するようにしてもよいし、半導体素子部2に電極を形成する場合には、電極の形状や配置により熱膨張係数の最も大きい方向が認識可能なようにしてもよい。たとえば、長辺または短辺の方向を熱膨張係数の最も大きい方向に一致させた2回の回転対称の長方形状に電極を形成するようにしてもよい。また、半導体素子部2の外形を熱膨張係数の最も大きい方向が認識可能なように形成するようにしてもよい。すなわち、半導体素子部2の主面2aを長辺または短辺の方向を熱膨張係数の最も大きい方向に一致させた2回の回転対称の長方形状に形成するようにしてもよい。また、半導体素子が端面出射型の半導体レーザ素子の場合には、半導体レーザ素子の導波路の延びる方向により、熱膨張係数の最も大きい方向を認識可能なようにしてもよい。
また、半導体素子部2は、基板を含んでいてもよい。pn接合型の半導体素子では、半導体素子部2がp型層とn型層との積層構造を含んでいてもよい。pn接合型の半導体発光素子では、半導体素子部2がp型層とn型層との間に発光層を含んでいてもよく、発光層がアンドープであってもよい。また、発光層は、単層または単一量子井戸(SQW)構造や、多重量子井戸(MQW)構造であってもよい。
また、発光層には、歪みが印加されていてもよい。この場合、発光層がウルツ鉱構造を有するとともに、発光層の主面が(0001)面以外の(H、K、−H−K、L)面、たとえば、{1−100}面、{11−20}面、{11−22}面、または、{1−101}面となるように形成することによって、発光層に発生するピエゾ電場を低減することが可能である。したがって、発光効率を向上させることが可能である。また、発光層の材料としては、GaInNを用いることができる。
また、p型層およびn型層は、活性層よりバンドギャップの大きいクラッド層などを含んでいてもよい。半導体レーザ素子の場合には、クラッド層と活性層との間に、クラッド層のバンドギャップより小さく、活性層のバンドギャップより大きいバンドギャップを有する光ガイド層を形成するようにしてもよい。また、活性層とは反対側のクラッド層上にコンタクト層を形成するようにしてもよい。なお、コンタクト層は、クラッド層よりバンドギャップが小さいことが好ましい。また、クラッド層の材料としては、GaNおよびAlGaNなどを用いることができる。
ここで、本発明では、半導体素子部2が基体1に、半導体素子部2の主面2aの最も大きい熱膨張係数(αEL)の方向が、基体1の主面1aの最も小さい熱膨張係数(αSS)の方向よりも最も大きい熱膨張係数(αSL)の方向側に近くなるように接合されている。より好ましくは、図2に示すように、半導体素子部2の主面2aの最も大きい熱膨張係数(αEL)の方向(矢印C方向)が、基体1の主面1aの最も大きい熱膨張係数(αSL)の方向(矢印A方向)と実質的に一致するように半導体素子部2が基体1に接合されている。
また、本発明では、基体1と半導体素子部2との各方向の熱膨張係数の間には、αSL≧αEL>αSSまたはαSL>αES≧αSSまたはαEL≧αSL>αESまたはαEL>αSS≧αESのうち少なくともいずれか一つの関係が成り立っていることが好ましく、この場合、基体1と半導体素子部2との面内(主面1aおよび主面2a)の熱膨張係数の差をさらに小さくすることができる。ただし、基体1と半導体素子部2との各方向の熱膨張係数が、αSL>αSS≧αEL>αESまたはαEL>αES≧αSL>αSSの場合にも、本発明の効果を有する。
また、上記に加えて、半導体素子部2の主面2aを長方形状に形成する場合、|αSL−αEL|>|αSS−αES|であれば、長辺の方向の熱膨張係数がαESとなるように半導体素子部2を長方形に形成するか、|αSL−αEL|<|αSS−αES|であれば、長辺の方向の熱膨張係数がαELとなるように半導体素子部2を長方形に形成することが好ましい。このように構成することにより、半導体素子部の短辺方向に比べて歪みが発生しやすい長辺方向に歪みが発生するのを効果的に抑制することができる。
以下、上記した本発明の概念を具体化した本発明の実施形態を図面に基づいて説明する。
(第1実施形態)
図3は、本発明の第1実施形態による半導体レーザ素子の構造を示した平面図である。図4は、図3の2000−2000線に沿った断面図であり、図5は、図3の3000−3000線に沿った断面図である。図6は、図3に示した一実施形態による半導体レーザ素子の発光層の構造を示した断面図である。まず、図3〜図6を参照して、第1実施形態による半導体レーザ素子の構造について説明する。なお、第1実施形態では、半導体素子の一例である半導体レーザ素子に本発明を適用した場合について説明する。また、第1実施形態による半導体レーザ素子の発振波長は、約410nmであり、レーザ光の偏光は、TMモードである。なお、図3〜図5において、添字GaNの前に記載されている結晶方位は半導体素子部10の結晶方位であり、添字6H−SiCの前に記載されている結晶方位は支持基板30の結晶方位である。また、図3および図4においては、半導体素子部10のオフ角度を省略した半導体素子部10の結晶方位を示した。
第1実施形態による半導体レーザ素子は、図3〜図5に示すように、半導体素子部10と、支持基板30と、放熱部材としてのサブマウント40とを備えている。なお、支持基板30およびサブマウント40は、本発明の「基体」の一例である。
ここで、第1実施形態では、半導体素子部10は、ウルツ鉱構造を有する窒化物系半導体からなる。この半導体素子部10は、図5に示すように、[000−1]方向に約0.3°オフ(傾斜)された実質的に(11−20)面を有する一方主面(半導体素子部10のp型コンタクト層17側の上表面全体)10aおよび他方主面(n型コンタクト層11の裏面)10bを有している。また、半導体素子部10には、図3および図4に示すように、劈開面からなる一対の共振器面50が形成されている。この共振器面50は、(1−100)面および(−1100)面により構成されている。また、レーザ光の出射面側の共振器面50には、反射率約5%の誘電体多層膜が形成されているとともに、反対側の共振器面50には、反射率約95%の誘電体多層膜が形成されている。また、半導体素子部10の長さ(共振器長)L1は、約600μmであり、幅W1は、約400μmである。また、半導体素子部10は、後述する半田層23を介して支持基板30に接合されている。なお、一方主面10aおよび他方主面10bは、本発明の「第1の面」の一例であり、半田層23は、本発明の「接着層」の一例である。
また、半導体素子部10は、図4および図5に示すように、約5μmの厚みを有するGaNからなるn型コンタクト層11を含んでいる。n型コンタクト層11の上面上には、約400nmの厚みを有するとともに、SiがドープされたAl0.07Ga0.93Nからなるn型クラッド層12が形成されている。n型クラッド層12の上面上には、半導体素子部10の幅W1(図5参照)よりも小さい約4.5μmの幅を有する発光層13が形成されている。
この発光層13は、図6に示すように、n型クラッド層12の上面上に、約5nmの厚みを有するとともに、SiがドープされたAl0.16Ga0.84Nからなるn型キャリアブロック層13aが形成されている。n型キャリアブロック層13aの上面上には、約100nmの厚みを有するSiがドープされたGaNからなるn型光ガイド層13bが形成されている。n型光ガイド層13bの上面上には、約20nmの厚みを有するアンドープのIn0.02Ga0.98Nからなる4つの障壁層13cと、約3nmの厚みを有するアンドープのIn0.15Ga0.85Nからなる3つの量子井戸層13dとが交互に積層された多重量子井戸(MQW)活性層13eが形成されている。
また、発光層13の上面上には、図4および図5に示すように、約100nmの厚みを有するMgがドープされたGaNからなるp型光ガイド層14が形成されている。p型光ガイド層14の上面上には、約20nmの厚みを有するとともに、MgがドープされたAl0.16Ga0.84Nからなるp型キャップ層15が形成されている。p型キャップ層15の上面上には、凸部および凸部以外の平坦部を有するMgがドープされたAl0.07Ga0.93Nからなるp型クラッド層16が形成されている。このp型クラッド層16の凸部の膜厚は、約400nmであり、p型クラッド層16の凸部以外の平坦部の膜厚は、約80nmである。また、p型クラッド層16の凸部の上面上には、約10nmの厚みを有するとともに、MgがドープされたIn0.02Ga0.98Nからなるp型コンタクト層17が形成されている。これにより、p型クラッド層16の凸部およびp型コンタクト層17によって、電流通路となるリッジ部18が形成されている。このリッジ部18は、約1.5μmの幅を有するとともに、約380nmの高さを有する。また、リッジ部18は、[1−100]方向に延びるように形成されている。
また、p型コンタクト層17の上面上には、下層から上層に向かって、約5nmの厚みを有するPt層と、約100nmの厚みを有するPd層と、約150nmの厚みを有するAu層とにより構成されるp側オーミック電極19が形成されている。n型クラッド層12およびp型クラッド層16の凸部以外の平坦部の上面上と、発光層13、p型光ガイド層14、p型キャップ層15、p型クラッド層16、p型コンタクト層17およびp側オーミック電極19の側面上とには、約250nmの厚みを有するSiNからなる絶縁膜20が形成されている。絶縁膜20の上面上およびp側オーミック電極19の上面上には、下層から上層に向かって、約100nmの厚みを有するTi層と、約100nmの厚みを有するPd層と、約3μmの厚みを有するAu層とにより構成されるp側パッド電極21が形成されている。このp側パッド電極21は、約125μmの幅W2(図5参照)を有する。また、p側パッド電極21の上面上には、約100nmの厚みを有するSiOからなる絶縁膜22が形成されている。絶縁膜20の上面上には、p側パッド電極21および絶縁膜22を覆うようにAuSnからなる導電性の半田層23が形成されている。また、絶縁膜22は、半田層23とp側オーミック電極19との反応を抑制する機能を有する。
また、第1実施形態では、図4に示すように、半導体素子部10の共振器面50の支持基板30側の端部近傍には、半田層23が存在しない領域である空隙部60が形成されている。なお、この半田層23が存在しない領域である空隙部60は、図3に示すように、共振器面50から内側に約25μmの間隔(L2)を隔てた領域まで形成されている。また、支持基板30の側端面は、後述する素子分割時のダイシングにより、共振器面50から内側に約20μmの長さ(L3)分だけずれた位置に形成されている。
また、第1実施形態では、半導体素子部10は、GaNの割合が最も大きいことにより、熱膨張係数がGaNの熱膨張係数に近くなるように構成されている。このため、GaNが、(11−20)面の面内において、[1−100]方向に最も大きい約5.59×10−6−1の熱膨張係数を有するとともに、[0001]方向に最も小さい約3.17×10−6−1の熱膨張係数を有する。したがって、半導体素子部10は、実質的に(11−20)面を有する一方主面10aおよび他方主面10bの面内方向において、[1−100]方向に最も大きい約5.59×10−6−1近傍の熱膨張係数を有するとともに、[0001]方向に最も小さい約3.17×10−6−1近傍の熱膨張係数を有するように構成されている。
また、第1実施形態では、支持基板30は、窒素がドープされたn型の6H−SiCからなる。また、支持基板30は、(1−100)面を有する主面30aを有している。また、支持基板30は、(1−100)面を有する主面30aの面内方向において、[0001]方向に最も大きい約4.7×10−6−1の熱膨張係数を有するとともに、[11−20]方向に最も小さい約4.3×10−6−1の熱膨張係数を有する。また、支持基板30の主面30aには、支持基板30の[0001]方向が半導体素子部10の[1−100]方向に一致するとともに、支持基板30の[11−20]方向が半導体素子部10の[0001]方向と実質的に一致するように、半導体素子部10の一方主面10aが半田層23を介して接合されている。なお、主面30aは、本発明の「第2の面」の一例である。
また、半導体素子部10のn型コンタクト層11の裏面側には、図4および図5に示すように、n型コンタクト層11側から順番に、n側オーミック電極と、n側バリア金属と、n側パッド電極とにより構成されるn側電極24が形成されている。また、n側電極24を構成するn側オーミック電極は、Alからなり、n側バリア金属は、PtまたはTiなどからなる。また、n側バリア金属は、n側オーミック電極とn側パッド電極との反応を抑制する機能を有する。
また、第1実施形態では、サブマウント40は、Alを含浸した黒鉛粒子焼結体により構成される炭素および金属の複合材料からなる。また、サブマウント40は、約300μmの厚み、約1200μmの長さL4および約800μmの幅W3を有する直方体である。また、サブマウント40は、導電性を有するとともに、主面40aを有する。また、サブマウント40の長さ方向(長辺方向)は、矢印E方向と平行であり、幅方向(短辺方向)は、矢印F方向と平行である。ここで、サブマウント40は、黒鉛結晶面と垂直な面がサブマウント40の主面40aとなり、矢印E方向が黒鉛結晶面と垂直方向に、矢印F方向が黒鉛結晶面と平行な方向になるように加工されている。したがって、サブマウント40は、主面40aの面内方向において、黒鉛結晶面と垂直な方向(矢印E方向)に最も大きい約7×10−6−1の熱膨張係数を有するとともに、黒鉛結晶面と平行な方向(矢印F方向)に最も小さい約4×10−6−1の熱膨張係数を有する。なお、このサブマウント40のヤング率は、黒鉛結晶面と垂直な方向が6GPaであり、黒鉛結晶面と平行な方向が17GPaである。したがって、サブマウント40のヤング率は、半導体素子部10のヤング率よりも小さくなるように構成されている。また、サブマウント40の主面40aには、半導体素子部10の[1−100]方向が矢印E方向に一致するとともに、半導体素子部10の[0001]方向が矢印F方向と実質的に一致するように、半導体素子部10の他方主面10bが半田層70を介して接合されている。なお、炭素および金属の複合材料として、たとえば、東洋炭素社製のMIC30Aを使用する。また、主面40aは、本発明の「第2の面」の一例であり、半田層70は、本発明の「接着層」の一例である。
第1実施形態では、上記のように、(11−20)面を有する他方主面10bの面内方向において、[1−100]方向に最も大きい約5.59×10−6−1近傍の熱膨張係数を有するとともに、[0001]方向に最も小さい約3.17×10−6−1近傍の熱膨張係数を有する半導体素子部10と、主面40aの面内方向において、矢印E方向に最も大きい約7×10−6−1の熱膨張係数を有するとともに、矢印F方向に最も小さい約4×10−6−1の熱膨張係数を有するサブマウント40とを設け、かつ、半導体素子部10の[1−100]方向が矢印E方向に一致するとともに、半導体素子部10の[0001]方向が矢印F方向と実質的に一致するように、半導体素子部10の他方主面10bを半田層70を介してサブマウント40の主面40aに接合するように構成することによって、半導体素子部10の他方主面10bの最も大きい熱膨張係数を有する方向と、サブマウント40の主面40aの最も大きい熱膨張係数を有する方向とを一致させることができるので、半導体素子部10の他方主面10bとサブマウント40の主面40aとの熱膨張係数の違いを小さくすることができる。これにより、半導体素子部10をサブマウント40に接合するときの温度と半導体レーザ素子の動作時の温度との違いに起因して、半導体素子部10の他方主面10bに歪みが発生するのを抑制することができる。その結果、半導体レーザ素子の素子特性が低下するのを抑制することができる。また、第1実施形態では、サブマウント40のヤング率が半導体素子部10のヤング率よりも小さいことによって、半導体素子部10の他方主面10bに歪みが発生するのをさらに抑制することができる。
また、第1実施形態では、(1−100)面を有する主面30aの面内方向において、[0001]方向に最も大きい約4.7×10−6−1の熱膨張係数を有するとともに、[11−20]方向に最も小さい約4.3×10−6−1の熱膨張係数を有する支持基板30と、(11−20)面を有する一方主面10aの面内方向において、[1−100]方向に最も大きい約5.59×10−6−1近傍の熱膨張係数を有するとともに、[0001]方向に最も小さい約3.17×10−6−1近傍の熱膨張係数を有する半導体素子部10とを設け、かつ、半導体素子部10の[1−100]方向が支持基板30の[0001]方向に一致するとともに、半導体素子部10の[0001]方向が支持基板30の[11−20]方向と実質的に一致するように、半導体素子部10の一方主面10aを半田層23を介して支持基板30の主面30aに接合するように構成することによって、半導体素子部10の一方主面10aの最も大きい熱膨張係数を有する方向と、支持基板30の主面30aの最も大きい熱膨張係数を有する方向とを一致させることができるので、半導体素子部10の一方主面10aと支持基板30の主面30aとの熱膨張係数の違いを小さくすることができる。これにより、半導体素子部10を支持基板30に接合するときの温度と半導体レーザ素子の動作時の温度との違いに起因して、半導体素子部10の一方主面10aに歪みが発生するのを抑制することができる。その結果、半導体レーザ素子の素子特性が低下するのをより抑制することができる。
また、第1実施形態では、半導体素子部10の長辺方向である[1−100]方向の熱膨張係数と支持基板30の[0001]方向の熱膨張係数との差を、半導体素子部10の短辺方向である[0001]方向の熱膨張係数と支持基板30の[11−20]方向の熱膨張係数との差よりも小さくすることによって、半導体素子部10の半導体素子部10の短辺方向(幅方向)に比べて歪みが発生しやすい長辺方向(長さ方向)に歪みが発生するのを効果的に抑制することができる。
また、第1実施形態では、支持基板30と半導体素子部10とを接合する半田層23が存在しない領域である空隙部60を有するように構成することによって、その半田層23の存在しない領域である空隙部60により、半導体素子部10の共振器面50の支持基板30側の端部近傍に、支持基板30と半導体素子部10とが離間された領域を形成することができる。これにより、共振器面50の支持基板30側の端部に隣接して半田層23および支持基板30が設けられる場合と異なり、支持基板30の劈開性の影響を受けることなく、半導体素子部10を劈開することができる。したがって、6H−SiCからなる支持基板30の共振器面50と平行な(0001)面が劈開性を有しない場合にも、半導体素子部10の劈開面の平坦性を向上させることができる。
また、第1実施形態では、支持基板30および半田層23を、導電性を有するように構成することによって、導電性を有する半田層23を介して、導電性を有する支持基板30と半導体素子部10とを接合することができるので、半導体素子部10と支持基板30とを電気的に接続することができる。
図7〜図15は、本発明の第1実施形態による半導体レーザ素子の製造プロセスを説明するための図である。次に、図3〜図15を参照して、第1実施形態による半導体レーザ素子の製造プロセスについて説明する。なお、図7〜図11には、図5と同じ方向の断面図が示されており、図13〜図15には、図4と同じ方向の断面図が示されている。
まず、図7に示すように、[000−1]方向に0.3°オフ(傾斜)された(11−20)面を主面とするGaN基板71の上面上に、SiO膜からなるマスク72を形成する。このマスク72は、通常のリソグラフィ技術を用いて、直径約2μmの開口部72aを約10μmの間隔の周期で三角格子状のパターンを有するように形成する。そして、GaN基板71およびマスク72によって、選択成長下地73が構成される。なお、GaN基板71は、本発明の「成長用基板」の一例である。
次に、有機金属気相エピタキシー(MOCVD)法を用いて、選択成長下地73の上面上に、GaN基板71を約1100℃の成長温度に保持した状態で、n型コンタクト層11およびn型クラッド層12を順次成長させる。次に、GaN基板71を約800℃の成長温度に保持した状態で、n型クラッド層12の上面上に、発光層13、p型光ガイド層14およびp型キャップ層15を順次成長させる。次に、GaN基板71を約1100℃の成長温度に保持した状態で、p型キャップ層15の上面上に、約400nmの厚みを有するp型クラッド層16を成長させる。そして、GaN基板71を約800℃の成長温度に保持した状態で、p型クラッド層16の上面上に、p型コンタクト層17を成長させる。その後、GaN基板71を約900℃の温度に保持した状態で、N雰囲気中においてアニールすることにより、p型窒化物半導体層のアクセプタを活性化し、所定の正孔濃度を得る。
次に、真空蒸着法などを用いて、p型コンタクト層17の上面上に、p側オーミック電極19および約0.25μmの厚みを有するSiOからなる絶縁膜20aを順次形成した後、パターニングすることにより、図8に示されたような形状のp側オーミック電極19および絶縁膜20aが得られる。なお、p側オーミック電極19は、p型コンタクト層17側から、約5μmの厚みを有するPt層と、約100μmの厚みを有するPd層と、約150nmの厚みを有するAu層とが積層されることにより形成される。
次に、図9に示すように、絶縁膜20aをマスクとして、Cl系ガスによるドライエッチングを行うことにより、p型コンタクト層17およびp型クラッド層16の一部を除去することによって、[1−100]方向に延びるリッジ部18を形成する。このリッジ部18の幅は、約1.5μmであり、リッジ部18の高さは約380nmである。次に、図10に示すように、フォトリソグラフィ技術とドライエッチング技術とを用いて、発光層13、p型光ガイド層14、p型キャップ層15およびp型クラッド層16の平坦部の一部をエッチングすることにより、発光層13、p型光ガイド層14、p型キャップ層15およびp型クラッド層16を約4.5μmの幅を有するようにパターニングする。
次に、図11に示すように、n型クラッド層12の上面、発光層13の側面、p型光ガイド層14の側面、p型キャップ層15の側面、p型クラッド層16の平坦部の側面、p型クラッド層16の平坦部の上面、リッジ部18の側面および絶縁膜20aの上面を覆うように、約250nmの厚みを有するSiNからなる絶縁膜20を形成した後、p側オーミック電極19上の絶縁膜20および20aのみを除去する。そして、p側オーミック電極19および絶縁膜20の上面上に、下層から上層に向かって、約100nmの厚みを有するTi層、約100nmの厚みを有するPd層および約3μmの厚みを有するAu層からなるp側パッド電極21を形成する。その後、p側パッド電極21の上面上に、約100nmの厚みを有するSiOからなる絶縁膜22を形成する。
ここで、第1実施形態では、図12に示すように、支持基板30の主面30aに半田層23が予め[11−20]方向に延びる縞状にパターニングされている。そして、支持基板30の[11−20]方向に延びる半田層23の縞状のパターンと、半導体素子部10の[1−100]方向に延びるリッジ部18とが直交するように、支持基板30に半導体素子部10を貼り合わせる。これにより、支持基板30の[0001]方向が半導体素子部10の[1−100]方向に一致するとともに、支持基板30の[11−20]方向が半導体素子部10の[0001]方向と実質的に一致するように、半導体素子部10の一方主面10aが半田層23を介して支持基板30の主面30aに接合される。また、半導体素子部10と支持基板30との接合(融着)の際に、図13に示すように、半田層23が存在しない領域である空隙部60が存在するように接合されている。その後、選択成長下地73をドライエッチング技術により除去して、n型コンタクト層11の支持基板30と反対側の全面を露出させることにより、図14に示すような形状が得られる。
なお、第1実施形態では、支持基板30に縞状にパターニングされた半田層23と、半導体素子部10のリッジ部18とを用いて、支持基板30と半導体素子部10との貼り合わせの際のアライメントを行うようにしたが、支持基板30と選択成長下地73とにオリエンテーションフラットを形成するとともに、そのオリエンテーションフラットが一致するように貼り合わせの際のアライメントを行うようにしてもよい。具体的には、選択成長下地73に(1−100)面のオリエンテーションフラットを形成するとともに、支持基板30に(0001)面のオリエンテーションフラットを形成することにより、選択成長下地73の(1−100)面と支持基板30の(0001)面とが一致するように貼り合わせの際のアライメントを行うようにしてもよい。
その後、n型コンタクト層11の裏面に、n型コンタクト層11側からn側オーミック電極、n側バリア金属およびn側パッド電極を順次形成することにより、n側電極24を形成する。
そして、図12および図15に示すように、支持基板30の主面30aに対して垂直となる半導体素子部10の面にスクライブ溝(図示せず)を設けて、超音波により半導体素子部10の(1−100)面で劈開を行う。
ここで、第1実施形態では、半導体素子部10の劈開は、劈開面となる領域の支持基板30側の端部近傍に半田層23が存在しない領域である空隙部60の位置で、半導体素子部10の劈開面に沿って行うようにする。その後、支持基板30のみを、約40μmの幅(L5)でダイシングすることにより、半導体素子部10の素子分割を行う。
その後、サブマウント40の主面40aの上面上に、サブマウント40の長辺方向(矢印E方向)と半導体素子部10のリッジ部18の延びる方向(共振器方向)とが一致するように、半導体素子10の他方主面10bを半田層70を介して接合する。これにより、サブマウント40の主面40aには、半導体素子部10の[1−100]方向が矢印E方向に一致するとともに、半導体素子部10の[0001]方向が矢印F方向と実質的に一致するように、半導体素子部10の他方主面10bが半田層70を介して接合される。このようにして、図3〜図5に示した第1実施形態による半導体レーザ素子が形成される。
(第2実施形態)
図16は、本発明の第2実施形態によるGaN系半導体レーザ素子の構造を示した平面図であり、図17は、図16の4000−4000線に沿った断面図である。図16および図17を参照して、この第2実施形態では、上記第1実施形態と異なり、支持基板を用いない構造のGaN系半導体レーザ素子について説明する。なお、第2実施形態では、半導体素子の一例であるGaN系半導体レーザ素子に本発明を適用した場合について説明する。また、第2実施形態によるGaN系半導体レーザ素子の発振波長は、約410nmである。
第2実施形態によるGaN系半導体レーザ素子は、図16および図17に示すように、半導体素子部110と、サブマウント140とを備えている。なお、サブマウント140は、本発明の「基体」の一例である。
半導体素子部110は、約100μmの厚みを有するとともに、Siがドープされたn型のGaNからなるn型GaN基板130を含んでいる。また、n型GaN基板130は、(11−22)面を有する主面130aを有している。また、n型GaN基板130の両側端部には、[1−100]方向に延びるとともに、約0.5μmの深さおよび約20μmの幅を有する段差部131が形成されている。
n型GaN基板130のサブマウント140側の表面上には、約400nmの厚みを有するとともに、Siがドープされたn型Al0.07Ga0.93Nからなるn型クラッド層111が形成されている。n型クラッド層111のサブマウント140側の表面上には、活性層112が形成されている。この活性層112は、約20nmの厚みを有するアンドープIn0.02Ga0.98Nからなる4層の障壁層と、約3nmの厚みを有するアンドープIn0.15Ga0.85Nからなる3層の井戸層とが交互に積層されたMQW構造を有する。
活性層112のサブマウント140側の表面上には、約20nmの厚みを有するとともに、Mgがドープされたp型Al0.16Ga0.84Nからなるp型キャップ層113が形成されている。p型キャップ層113のサブマウント140側の表面上には、凸部および凸部以外の平坦部を有するとともに、Mgがドープされたp型Al0.07Ga0.93Nからなるp型クラッド層114が形成されている。このp型クラッド層114の平坦部の厚みは、約10nmであり、凸部の厚みは、約330nmである。また、p型クラッド層114の凸部は、約1.75μmの幅を有するとともに、n型GaN基板130の一方の段差部131の側面から中央部側に約50μm(図17のW4)隔てて形成されている。
p型クラッド層114の凸部の上面上には、約80nmの厚みを有するとともに、Mgがドープされたp型In0.02Ga0.98Nからなるp型コンタクト層115が形成されている。このp型コンタクト層115と、p型クラッド層114の凸部とによりリッジ部116が構成されている。このリッジ部116は、[1−100]方向に延びるように形成されている。
また、リッジ部116を構成するp型コンタクト層115のサブマウント140側の表面上には、サブマウント140と反対側からサブマウント140側に向かって、約5nmの厚みを有するPt層と、約100nmの厚みを有するPd層と、約150nmの厚みを有するAu層とにより構成されるp側オーミック電極117が形成されている。p側オーミック電極117のサブマウント140側の表面以外の領域の表面上には、約250nmの厚みを有するSiO膜(絶縁膜)からなる電流狭窄層118が形成されている。電流狭窄層118の表面上の所定領域には、p型オーミック電極117のサブマウント140側の表面に接触するように、サブマウント140と反対側からサブマウント140に向かって、約100nmの厚みを有するTi層と、約100nmの厚みを有するPd層と、約3μmの厚みを有するAu層とからなるp側パッド電極119が形成されている。
また、n型GaN基板130のサブマウント140とは反対側の表面上には、n側オーミック電極と、n側バリア金属と、n側パッド電極とにより構成されるn側電極120が形成されている。
また、半導体素子部110には、[1−100]方向に延びるリッジ部116の両端部に、(1−100)面および(−1100)面の劈開面からなる共振器面110aが形成されている。
ここで、第2実施形態では、半導体素子部110は、(11−22)面を有する主面(半導体素子部110のp型コンタクト層115側の表面全体)110bの面内方向において、長辺方向である[1−100]方向に最も大きい約5.59×10−6−1近傍の熱膨張係数を有するとともに、短辺方向である[1−100]方向と垂直な方向に最も小さい約4×10−6−1近傍の熱膨張係数を有するように構成されている。なお、主面110bは、本発明の「第1の面」の一例である。
また、第2実施形態では、サブマウント140は、導電性を有するとともに、(11−20)面を主面140aとする単結晶のAlNからなる。また、サブマウント140は、約300μmの厚み、約1200μmの長さおよび約800μmの幅を有する直方体である。また、サブマウント140の長さ方向(長辺方向)は、[1−100]方向と平行であり、幅方向(短辺方向)は、[0001]方向と平行である。また、サブマウント140は、主面140aの面内方向において、[1−100]方向に最も小さい約4.2×10−6−1の熱膨張係数を有するとともに、[0001]方向に最も大きい約5.3×10−6−1の熱膨張係数を有する。また、サブマウント140の主面140a上には、サブマウント140の幅方向(短辺方向)と半導体素子部110のリッジ部116の延びる方向(共振器方向)とが一致するように、半導体素子110のリッジ部116側の主面110bがAuSnなどからなる半田層150を介してジャンクションダウン方式で接合されている。これにより、サブマウント140の主面140aには、半導体素子部110の[1−100]方向がサブマウント140の[0001]方向に一致するように、半導体素子部110の主面110bが半田層150を介して接合されている。なお、主面140aは、本発明の「第2の面」の一例であり、半田層150は、本発明の「接着層」の一例である。
第2実施形態では、上記のように、(11−22)面を有する主面110bの面内方向において、[1−100]方向に最も大きい約5.59×10−6−1近傍の熱膨張係数を有するとともに、[1−100]方向と垂直な方向に最も小さい約4×10−6−1近傍の熱膨張係数を有する半導体素子部110と、(11−20)面を有する主面140aの面内方向において、[1−100]方向に最も小さい約4.2×10−6−1の熱膨張係数を有するとともに、[0001]方向に最も大きい約5.3×10−6−1の熱膨張係数を有するサブマウント140とを設け、かつ、半導体素子部110の最も熱膨張係数の大きい[1−100]方向がサブマウント140の最も熱膨張係数の大きい[0001]方向と一致するように、半導体素子部110の主面110bを半田層150を介してサブマウント140の主面140aに接合するように構成することによって、半導体素子部110の主面110bの最も大きい熱膨張係数を有する方向と、サブマウント140の主面140aの最も大きい熱膨張係数を有する方向とを一致させることができるので、半導体素子部110の主面110bとサブマウント140の主面140aとの熱膨張係数の違いを小さくすることができる。これにより、半導体素子部110をサブマウント140に接合するときの温度とGaN系半導体レーザ素子の動作時の温度との違いに起因して、半導体素子部110の主面110bに歪みが発生するのを抑制することができる。その結果、GaN系半導体レーザ素子の素子特性が低下するのを抑制することができる。
また、第2実施形態では、n型GaN基板130の両側端部に、[1−100]方向に延びる段差部131を形成することによって、n型クラッド層111を横方向成長させることができるので、AlGaNからなるn型クラッド層111の格子定数がGaNからなるn型GaN基板130の格子定数に比べて小さいことに起因して、AlGaNからなるn型クラッド層111に歪みが生じてクラックが発生しやすくなるのを抑制することができる。
なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。
(第3実施形態)
図18および図19は、本発明の第3実施形態による発光ダイオード(LED)素子の構造を示した図である。図18および図19を参照して、第3実施形態によるLED素子の構造について説明する。なお、第3実施形態では、半導体素子の一例であるLED素子に本発明を適用した場合について説明する。また、第3実施形態による発光ダイオード素子のピーク波長は、約480nmである。
第3実施形態によるLED素子は、図18および図19に示すように、支持基板200と、LED素子部210とを備えている。なお、支持基板200は、本発明の「基体」の一例であり、LED素子部210は、本発明の「半導体素子部」の一例である。
支持基板200は、約300μmの厚みを有するとともに、平面的に見て一辺が約400μmの長さを有する正方形状に形成されている。また、支持基板200は、Alを含浸した黒鉛粒子焼結体により構成される炭素および金属の複合材料からなる。また、支持基板200は、導電性を有する。ここで、支持基板200は、黒鉛結晶面と垂直な面が支持基板200の主面200aとなり、矢印G方向が黒鉛結晶面と垂直方向に、矢印H方向が黒鉛結晶面と平行な方向になるように加工されている。したがって、支持基板200は、主面200aの面内方向において、黒鉛結晶面と垂直な方向(矢印G方向)に最も大きい約7×10−6−1の熱膨張係数を有するとともに、黒鉛結晶面と平行な方向(矢印H方向)に最も小さい約4×10−6−1の熱膨張係数を有する。なお、炭素および金属の複合材料として、たとえば、東洋炭素社製のMIC30Aを使用する。また、主面200aは、本発明の「第2の面」の一例である。
支持基板200の主面200aの上面上には、約3μmの厚みを有するAuSnからなる導電性の半田層220が形成されている。半田層220の上面上には、p側パッド電極221およびp側オーミック電極222が形成されている。なお、半田層220は、本発明の「接着層」の一例である。
ここで、第3実施形態では、LED素子部210は、ウルツ鉱構造を有する窒化物系半導体からなる。このLED素子部210は、[000−1]方向に約0.3°オフ(傾斜)された実質的に(1−100)面を有する主面210aを有している。ここで、LED素子部210は、(1−100)面を有する主面210aの面内方向において、[11−20]方向に最も大きい約5.59×10−6−1近傍の熱膨張係数を有するとともに、[0001]方向に最も小さい約3.17×10−6−1近傍の熱膨張係数を有する。また、支持基板200の主面200aには、支持基板200の黒鉛結晶面と垂直な方向(矢印G方向)がLED素子部210の[11−20]方向に一致するとともに、支持基板200の黒鉛結晶面と平行な方向(矢印H方向)がLED素子部210の[0001]方向に一致するように、LED素子部210の主面210aが半田層220を介して接合されている。なお、主面210aは、本発明の「第1の面」の一例である。
p側オーミック電極222の上面上には、約100nmの厚みを有するとともに、MgがドープされたGaNからなるp型コンタクト層211が形成されている。p型コンタクト層211の上面上には、約20nmの厚みを有するとともに、MgがドープされたAl0.05Ga0.95Nからなるキャップ層212が形成されている。キャップ層212の上面上には、約3nmの厚みを有するとともに、SiがドープされたIn0.25Ga0.75Nからなる単一量子井戸発光層213が形成されている。単一量子井戸発光層213の上面上には、約3μmの厚みを有するとともに、SiがドープされたGaNからなるn型コンタクト層214が形成されている。
また、n型コンタクト層214の上面上には、n側透光性オーミック電極223が形成されている。n側透光性オーミック電極223の上面上の所定領域には、約125μmの直径を有するn側パッド電極224が形成されている。
なお、第3実施形態の効果は、上記第1実施形態と同様である。
(第4実施形態)
図20は、本発明の第4実施形態によるGaN系半導体レーザ素子の構造を示した平面図である。図21は、図20の5000−5000線に沿った断面図である。図20および図21を参照して、この第4実施形態では、上記第1実施形態と異なり、支持基板を用いない構造のGaN系半導体レーザ素子について説明する。なお、第4実施形態では、半導体素子の一例であるGaN系半導体レーザ素子に本発明を適用した場合について説明する。また、第4実施形態によるGaN系半導体レーザ素子の発振波長は、約410nmである。
第4実施形態によるGaN系半導体レーザ素子は、図20および図21に示すように、半導体素子部310と、サブマウント340とを備えている。なお、サブマウント340は、本発明の「基体」の一例である。
半導体素子部310は、約100μmの厚みを有するとともに、Siがドープされたn型のGaNからなるn型GaN基板330を含んでいる。また、n型GaN基板330は、(1−100)面を有する主面330aを有している。リッジ部316は、[0001]方向に延びるように形成されている。また、半導体素子部310には、[0001]方向に延びるリッジ部316の両端部に、(0001)面および(000−1)面の劈開面からなる共振器面310aが形成されている。また、半導体素子部310の長さ(共振器長)L1は、約900μmであり、幅W1は、約200μmである。
ここで、第4実施形態では、半導体素子部310は、(1−100)面を有する主面310bの面内方向において、短辺方向である[−1−120]方向に最も大きい約5.59×10−6−1近傍の熱膨張係数を有するとともに、長辺方向である[0001]方向に最も小さい約3.17×10−6−1近傍の熱膨張係数を有するように構成されている。なお、主面310bは、本発明の「第1の面」である。
また、第4実施形態では、n型GaN基板330の裏面側の共振器面310aから約10μmの長さL2を除く部分には、n側電極120が形成されている。すなわち、n型GaN基板330の裏面の形状が長方形であることと、共振器面310a近傍にn側電極120が形成されていないことにより、主面310bの面内で熱膨張係数の最も大きい方向と、熱膨張係数の最も小さい方向とを区別できるように、半導体素子部310の外観が形成されている。なお、半導体素子部310のその他の構造は、上記第2実施形態と同様である。
また、第4実施形態では、サブマウント340は、Alを含浸した黒鉛粒子焼結体により構成される炭素および金属の複合材料からなる。また、サブマウント340は、約300μmの厚み、約1200μmの長さL4および約800μmの幅W3を有する直方体である。また、サブマウント340の長辺方向は、矢印F方向と平行であり、短辺方向は、矢印E方向と平行である。ここで、サブマウント340は、黒鉛結晶面と垂直な面がサブマウント340の主面340aとなり、矢印E方向が黒鉛結晶面と垂直な方向に加工されているとともに、矢印F方向が黒鉛結晶面と平行な方向に加工されている。したがって、サブマウント340は、主面340aの面内方向において、黒鉛結晶面と垂直な方向(矢印E方向)に最も大きい約7×10−6−1の熱膨張係数を有するとともに、黒鉛結晶面と平行な方向(矢印F方向)に最も小さい約4×10−6−1の熱膨張係数を有する。
また、サブマウント340の主面340a上には、AuSnなどからなるAuSnなどからなる半田層150が形成されている。半田層150には、約200μmの幅W4と、約50μmの長さL5を有する長方形の切り欠きが形成されている。すなわち、サブマウント340の主面340aの形状が長方形であることと、半田層150に長方形の切り欠きが形成されていることにより、主面340aの面内で熱膨張係数の最も大きい方向と、熱膨張係数の最も小さい方向とを区別できるように、サブマウント340の外観が形成されている。
また、第4実施形態では、サブマウント340の主面340a上には、サブマウント340の短辺方向と半導体素子部310のリッジ部316の延びる方向(共振器方向)とが一致するように、半導体素子部310のリッジ部316側の主面310bが半田層150を介してジャンクションダウン方式で接合されている。これにより、サブマウント340の主面340aには、半導体素子部310の[0001]方向がサブマウント340のF方向に一致するように、半導体素子部310の主面310bが半田層150を介して接合されている。なお、主面340aは、本発明の「第2の面」の一例であり、半田層150は、本発明の「接着層」の一例である。
第4実施形態では、上記のように、(1−100)面を有する主面310bの面内方向において、[−1−120]方向に最も大きい約5.59×10−6−1近傍の熱膨張係数を有するとともに、[0001]方向に最も小さい約3.17×10−6−1近傍の熱膨張係数を有する半導体素子部310と、F方向に最も小さい約4×10−6−1の熱膨張係数を有するとともに、E方向に最も大きい約7×10−6−1の熱膨張係数を有するサブマウント340とを設け、かつ、半導体素子部310の最も熱膨張係数の小さい[0001]方向がサブマウント340の最も熱膨張係数の小さいF方向と一致するように、半導体素子部310の主面310bを半田層150を介してサブマウント340の主面340aに接合するように構成することによって、半導体素子部310の主面310bの最も小さい熱膨張係数を有する方向と、サブマウント340の主面340aの最も小さい熱膨張係数を有する方向とを一致させることができるので、半導体素子部310の主面310bとサブマウント340の主面340aとの熱膨張係数の違いを小さくすることができる。
また、第4実施形態では、半導体素子部310の長辺方向である[0001]方向の熱膨張係数とサブマウント340のF方向の熱膨張係数との差を、半導体素子部310の短辺方向である[−1−120]方向の熱膨張係数とサブマウント340のE方向の熱膨張係数との差よりも小さくすることによって、半導体素子部310の短辺方向(幅方向)に比べて歪みが発生しやすい長辺方向(長さ方向)に歪みが発生するのを効果的に抑制することができる。
なお、第4実施形態のその他の効果は、上記第1実施形態と同様である。
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
たとえば、上記第1〜第4実施形態では、半導体レーザ素子および発光ダイオード素子に本発明を適用する例を示したが、本発明はこれに限らず、その他の半導体素子にも適用可能である。
また、上記第1〜第4実施形態では、半導体素子部およびLED素子部の材料として窒化物系半導体を用いる例を示したが、本発明はこれに限らず、半導体素子部およびLED素子部の材料としてZnOなどのウルツ構造を有する半導体を用いるようにしてもよい。
また、上記第1〜第4実施形態では、面内方向によって異なる熱膨張係数を有する材料としてSiCや、炭素および金属の複合材料などを用いる例を示したが、本発明はこれに限らず、斜方晶、正方晶および六方晶などの結晶構造を有することにより、面内方向によって異なる熱膨張係数を有する材料を用いるようにしてもよい。
また、上記第1〜第4実施形態では、主面として(11−20)面または(1−100)面などを用いる例を示したが、本発明はこれに限らず、主面として(H、K、−H−K、0)面を用いてもよいし、(H、K、−H−K、0)面から数度程度オフした面を用いてもよい。
また、上記第1〜第4実施形態では、接着層としてAuSnなどからなる半田層を用いる例を示したが、本発明はこれに限らず、AuSn以外からなる半田層を接着層として用いてもよい。たとえば、InSn、SnAgCu、SnAgBi、SnAgCuBi、SnAgBiIn、SnZn、SnCu、SnBiおよびSnZnBiなどからなる半田を接着層として用いてもよい。また、導電性ペーストなどの材料を接着層として用いてもよい。
本発明の概念を説明するための平面図である。 図1の1000−1000線に沿った断面図である。 本発明の第1実施形態による半導体レーザ素子の構造を示した平面図である。 図3の2000−2000線に沿った断面図である。 図3の3000−3000線に沿った断面図である。 図3に示した一実施形態による半導体レーザ素子の発光層の構造を示した断面図である。 本発明の第1実施形態による半導体レーザ素子の製造プロセスを説明するための断面図である。 本発明の第1実施形態による半導体レーザ素子の製造プロセスを説明するための断面図である。 本発明の第1実施形態による半導体レーザ素子の製造プロセスを説明するための断面図である。 本発明の第1実施形態による半導体レーザ素子の製造プロセスを説明するための断面図である。 本発明の第1実施形態による半導体レーザ素子の製造プロセスを説明するための断面図である。 本発明の第1実施形態による半導体レーザ素子の製造プロセスを説明するための平面図である。 本発明の第1実施形態による半導体レーザ素子の製造プロセスを説明するための断面図である。 本発明の第1実施形態による半導体レーザ素子の製造プロセスを説明するための断面図である。 本発明の第1実施形態による半導体レーザ素子の製造プロセスを説明するための断面図である。 本発明の第2実施形態によるGaN系半導体レーザ素子の構造を示した平面図である。 図16の4000−4000線に沿った断面図である。 本発明の第3実施形態による発光ダイオード素子の構造を示した平面図である。 本発明の第3実施形態による発光ダイオード素子の構造を示した断面図である。 本発明の第4実施形態によるGaN系半導体レーザ素子の構造を示した平面図である。 図20の5000−5000線に沿った断面図である。
符号の説明
1 基体
1a、30a、40a、140a、200a、340a 主面(第2の面)
2、10、110、310 半導体素子部
2a、110b、210a、310b 主面(第1の面)
10a 一方主面(第1の面)
10b 他方主面(第1の面)
23、70、150、220 半田層(接着層)
30、200 支持基板(基体)
40、140、340 サブマウント(基体)
71 GaN基板(成長用基板)
210 LED素子部(半導体素子部)

Claims (10)

  1. 第1の面を有するとともに、前記第1の面の面内方向において異なる熱膨張係数を有する複数の方向を含む半導体素子部と、
    第2の面を有するとともに、前記第2の面の面内方向において異なる熱膨張係数を有する複数の方向を含み、かつ、前記半導体素子部の第1の面が前記第2の面と接合された基体とを備え、
    前記半導体素子部の第1の面における熱膨張係数の最も大きい方向が、前記基体の第2の面における熱膨張係数の最も小さい方向よりも最も大きい方向側に近くなるように、前記基体に対して前記半導体素子部が接合されている、半導体素子。
  2. 前記半導体素子部の第1の面の面内方向における熱膨張係数の最も大きい方向は、前記基体の第2の面の面内方向における熱膨張係数の最も大きい方向と実質的に一致する、請求項1に記載の半導体素子。
  3. 前記半導体素子部の第1の面の面内方向における最も大きい熱膨張係数および最も小さい熱膨張係数がそれぞれαELおよびαESであり、
    前記基体の第2の面の面内方向における最も大きい熱膨張係数および最も小さい熱膨張係数がそれぞれαSLおよびαSSである場合、
    前記基体と前記半導体素子部との各方向の熱膨張係数の間には、少なくともαSL≧αEL>αSSまたはαSL>αES≧αSSまたはαEL≧αSL>αESまたはαEL>αSS≧αESのうちのいずれか一つの関係が成り立っている、請求項1または2に記載の半導体素子。
  4. 前記半導体素子部の第1の面の面内方向における最も大きい熱膨張係数および最も小さい熱膨張係数がそれぞれαELおよびαESであり、
    前記基体の第2の面の面内方向における最も大きい熱膨張係数および最も小さい熱膨張係数がそれぞれαSLおよびαSSである場合、
    |αSL−αEL|>|αSS−αES|であれば、長辺の方向の熱膨張係数がαESとなるように前記半導体素子部の第1の面が長方形状に形成され、
    |αSL−αEL|<|αSS−αES|であれば、長辺の方向の熱膨張係数がαELとなるように前記半導体素子部の第1の面が長方形状に形成されている、請求項1または2に記載の半導体素子。
  5. 前記半導体素子部の第1の面の面内方向における熱膨張係数の最も大きい方向と、前記半導体素子部の第1の面の面内方向における熱膨張係数の最も小さい方向とを区別できるように、前記半導体素子部の外観が形成されている、請求項1〜3のいずれか1項に記載の半導体素子。
  6. 前記半導体素子部の前記第1の面の形状が、略長方形に形成されている、請求項1〜3のいずれか1項に記載の半導体素子。
  7. 前記半導体素子部は、前記第1の面を有するとともに、六方晶構造またはウルツ鉱構造を有する半導体層を含み、
    前記第1の面は、HおよびKの少なくともいずれか一方が0ではない整数とした場合に、実質的に(H、K、−H−K、0)面である、請求項1〜6のいずれか1項に記載の半導体素子。
  8. 前記基体の第2の面と、前記半導体素子部の第1の面とを接合するための接着層をさらに備える、請求項1〜7のいずれか1項に記載の半導体素子。
  9. 第1の面を有するとともに、前記第1の面の面内方向において異なる熱膨張係数を有する複数の方向を含む半導体素子部を形成する工程と、
    第2の面を有するとともに、前記第2の面の面内方向において異なる熱膨張係数を有する複数の方向を含む基体の前記第2の面に、前記第1の面における熱膨張係数の最も大きい方向が前記第2の面における熱膨張係数の最も小さい方向よりも最も大きい方向側に近くなるように、前記半導体素子部の前記第1の面を接合する工程とを備える、半導体素子の製造方法。
  10. 前記半導体素子部を形成する工程は、面内方向において異なる熱膨張係数を有する複数の方向を含む成長用基板の表面上に、前記第1の面の面内方向において異なる熱膨張係数を有する複数の方向を含む前記半導体素子部を成長する工程を含む、請求項9に記載の半導体素子の製造方法。
JP2007204962A 2006-08-11 2007-08-07 半導体素子およびその製造方法 Active JP5113446B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007204962A JP5113446B2 (ja) 2006-08-11 2007-08-07 半導体素子およびその製造方法
CN2007800297641A CN101501947B (zh) 2006-08-11 2007-08-08 半导体元件和其制造方法
US12/161,358 US20100219419A1 (en) 2006-08-11 2007-08-08 Semiconductor element and method for manufacturing the same
PCT/JP2007/065483 WO2008018482A1 (fr) 2006-08-11 2007-08-08 Élément semi-conducteur et son procédé de fabrication

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006219101 2006-08-11
JP2006219101 2006-08-11
JP2007204962A JP5113446B2 (ja) 2006-08-11 2007-08-07 半導体素子およびその製造方法

Publications (2)

Publication Number Publication Date
JP2008066717A JP2008066717A (ja) 2008-03-21
JP5113446B2 true JP5113446B2 (ja) 2013-01-09

Family

ID=39033011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007204962A Active JP5113446B2 (ja) 2006-08-11 2007-08-07 半導体素子およびその製造方法

Country Status (4)

Country Link
US (1) US20100219419A1 (ja)
JP (1) JP5113446B2 (ja)
CN (1) CN101501947B (ja)
WO (1) WO2008018482A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100998008B1 (ko) * 2007-12-17 2010-12-03 삼성엘이디 주식회사 소자 형성용 기판의 제조방법 및 질화물계 반도체 레이저다이오드의 제조방법
JP2009231820A (ja) * 2008-02-29 2009-10-08 Sanyo Electric Co Ltd 半導体レーザ素子およびその製造方法
JP2009253062A (ja) * 2008-04-08 2009-10-29 Sanyo Electric Co Ltd 半導体素子の製造方法および半導体素子
JP4775455B2 (ja) * 2009-02-17 2011-09-21 住友電気工業株式会社 Iii族窒化物半導体レーザ、及びiii族窒化物半導体レーザを作製する方法
JPWO2011007874A1 (ja) * 2009-07-17 2012-12-27 電気化学工業株式会社 Ledチップ接合体、ledパッケージ、及びledパッケージの製造方法
JP5284472B2 (ja) 2009-07-22 2013-09-11 パナソニック株式会社 発光ダイオード
US8580593B2 (en) * 2009-09-10 2013-11-12 Micron Technology, Inc. Epitaxial formation structures and associated methods of manufacturing solid state lighting devices
US8187901B2 (en) 2009-12-07 2012-05-29 Micron Technology, Inc. Epitaxial formation support structures and associated methods
JP5128722B2 (ja) 2010-05-18 2013-01-23 パナソニック株式会社 半導体チップおよび半導体チップの製造方法
JP4932976B2 (ja) * 2010-05-18 2012-05-16 パナソニック株式会社 半導体チップおよびその製造方法
CN107611065B (zh) * 2010-11-15 2021-02-26 应用材料公司 附着材料和半导体腔室部件
US9166364B2 (en) * 2011-02-14 2015-10-20 Spectrasensors, Inc. Semiconductor laser mounting with intact diffusion barrier layer
JP5379216B2 (ja) * 2011-11-29 2013-12-25 住友電気工業株式会社 Iii族窒化物半導体レーザ
JP5565402B2 (ja) * 2011-12-16 2014-08-06 住友電気工業株式会社 光モジュール、窒化物半導体レーザ装置、サブマウント
JP2013236010A (ja) 2012-05-10 2013-11-21 Mitsubishi Electric Corp 半導体装置
WO2013175697A1 (ja) 2012-05-22 2013-11-28 パナソニック株式会社 窒化物半導体発光装置
US9088135B1 (en) 2012-06-29 2015-07-21 Soraa Laser Diode, Inc. Narrow sized laser diode
DE102013216527A1 (de) * 2013-08-21 2015-02-26 Osram Opto Semiconductors Gmbh Laserbauelement und Verfahren zum Herstellen eines Laserbauelements
WO2017038448A1 (ja) * 2015-09-02 2017-03-09 ソニー株式会社 窒化物半導体素子
JP6988268B2 (ja) * 2017-03-27 2022-01-05 ウシオ電機株式会社 半導体レーザ装置
US10840671B2 (en) * 2017-03-27 2020-11-17 Ushio Denki Kabushiki Kaisha Semiconductor laser device
JP6431631B1 (ja) * 2018-02-28 2018-11-28 株式会社フィルネックス 半導体素子の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129188A (ja) * 1987-11-16 1989-05-22 Toshiba Corp 核融合装置の炉壁
JP3461632B2 (ja) * 1995-08-28 2003-10-27 三菱電機株式会社 半導体レーザ装置
JPH10335750A (ja) * 1997-06-03 1998-12-18 Sony Corp 半導体基板および半導体装置
US6649265B1 (en) * 1998-11-11 2003-11-18 Advanced Materials International Company, Ltd. Carbon-based metal composite material, method for preparation thereof and use thereof
JP2001267881A (ja) * 2000-03-17 2001-09-28 Fujitsu Media Device Kk 弾性表面波デバイス及びこれを用いた通信装置、並びにアンテナデュプレクサ
JP4060511B2 (ja) * 2000-03-28 2008-03-12 パイオニア株式会社 窒化物半導体素子の分離方法
JP2002134822A (ja) * 2000-10-24 2002-05-10 Sharp Corp 半導体発光装置およびその製造方法
JP2003258365A (ja) * 2001-12-25 2003-09-12 Furukawa Electric Co Ltd:The 半導体レーザ装置、半導体レーザモジュールおよび半導体レーザ装置の製造方法
US6967982B2 (en) * 2001-12-25 2005-11-22 The Furukawa Electric Co., Ltd. Semiconductor laser device with a strain reduction cushion function, semiconductor laser module, and semiconductor laser device fabrication method
US6845111B2 (en) * 2002-09-20 2005-01-18 Hrl Laboratories, Llc Laser apparatus with improved thermal stress resistance
WO2004109796A1 (ja) * 2003-06-03 2004-12-16 Murata Manufacturing Co., Ltd. 電子部品装置
JP2005191209A (ja) * 2003-12-25 2005-07-14 Matsushita Electric Ind Co Ltd 半導体レーザ装置およびその製造方法
JP2005223165A (ja) * 2004-02-06 2005-08-18 Sanyo Electric Co Ltd 窒化物系発光素子
US7348201B2 (en) * 2005-02-03 2008-03-25 United States Of America As Represented By The Secretary Of The Army Creation of anisotropic strain in semiconductor quantum well
US20080008216A1 (en) * 2006-07-07 2008-01-10 Newport Corporation Laser device including heat sink with insert to provide a tailored coefficient of thermal expansion
US20080008217A1 (en) * 2006-07-07 2008-01-10 Newport Corporation Laser device including heat sink with a tailored coefficient of thermal expansion

Also Published As

Publication number Publication date
WO2008018482A1 (fr) 2008-02-14
US20100219419A1 (en) 2010-09-02
CN101501947A (zh) 2009-08-05
JP2008066717A (ja) 2008-03-21
CN101501947B (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
JP5113446B2 (ja) 半導体素子およびその製造方法
JP3599896B2 (ja) 半導体レーザ素子および半導体レーザ素子の製造方法
US7974322B2 (en) Nitride semiconductor laser diode
US8085825B2 (en) Method of fabricating semiconductor laser diode apparatus and semiconductor laser diode apparatus
JP4988179B2 (ja) 酸化亜鉛系化合物半導体素子
JP4924185B2 (ja) 窒化物半導体発光素子
WO2013021464A1 (ja) 窒化物半導体紫外線発光素子
JP2009081374A (ja) 半導体発光素子
JP2008252069A (ja) 半導体レーザ素子の製造方法および半導体レーザ素子
JP2009141132A (ja) 発光素子及び発光素子の製造方法
JP2008288527A (ja) レーザ発光装置
US20070274360A1 (en) Semiconductor laser element and semiconductor laser device
US20070075320A1 (en) Semiconductor laser device and method of fabricating semiconductor laser device
US7885304B2 (en) Nitride-based semiconductor laser device and method of manufacturing the same
JPWO2009057254A1 (ja) 半導体レーザ装置
JP2953326B2 (ja) 窒化ガリウム系化合物半導体レーザ素子の製造方法
JP2007266574A (ja) 半導体レーザ素子及び半導体レーザ素子の製造方法
JP4802314B2 (ja) 窒化物半導体発光素子とその製造方法
WO2004086580A1 (ja) 半導体レーザおよびその製造方法
JP2000216502A (ja) 窒化物半導体素子の製造方法
JP2002261370A (ja) 窒化物系半導体素子の作製方法
JP5172388B2 (ja) 窒化物系半導体発光ダイオードおよびその製造方法
JP5245031B2 (ja) 窒化物系半導体層の形成方法
JP4994656B2 (ja) 光半導体素子の製造方法
JP2012138416A (ja) Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5113446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250