JP5110776B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP5110776B2
JP5110776B2 JP2005144867A JP2005144867A JP5110776B2 JP 5110776 B2 JP5110776 B2 JP 5110776B2 JP 2005144867 A JP2005144867 A JP 2005144867A JP 2005144867 A JP2005144867 A JP 2005144867A JP 5110776 B2 JP5110776 B2 JP 5110776B2
Authority
JP
Japan
Prior art keywords
region
trench
forming
ion implantation
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005144867A
Other languages
English (en)
Other versions
JP2006049826A (ja
JP2006049826A5 (ja
Inventor
智光 理崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2005144867A priority Critical patent/JP5110776B2/ja
Priority to US11/155,960 priority patent/US7242058B2/en
Priority to TW094120810A priority patent/TWI380444B/zh
Priority to KR1020050057911A priority patent/KR101152451B1/ko
Publication of JP2006049826A publication Critical patent/JP2006049826A/ja
Publication of JP2006049826A5 publication Critical patent/JP2006049826A5/ja
Application granted granted Critical
Publication of JP5110776B2 publication Critical patent/JP5110776B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7825Lateral DMOS transistors, i.e. LDMOS transistors with trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7851Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with the body tied to the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本発明は、高駆動能力が要求される横型のMOSトランジスタを含む半導体装置の製造方法に関わる。
時代とともにMOSトランジスタは進歩する微細加工技術を駆使することにより、MOSトランジスタの能力を下げずにより小さく作成できるようになった。高駆動能力が必要とされる半導体素子においてもその流れは例外ではなく、高駆動能力を実現するために微細加工技術を駆使することにより単位平面積当たりのオン抵抗の低減が図られてきた。しかしながら、半導体素子を微細化することによって生じる耐圧の低下は、微細加工による更なる駆動能力の向上に歯止めをかけていることも事実である。この微細化と耐圧のトレードオフを打破するために、これまでさまざまな構造の半導体素子が提案されており、現在主流の半導体素子である高耐圧かつ高駆動能力を有するパワーMOSトランジスタを例にすると、トレンチゲートMOSトランジスタがあげられる。前記トレンチゲートMOSトランジスタは高耐圧かつ高駆動能力を有するMOSトランジスタの中でも最も集積度の高いものでる。しかしながら、前記トレンチゲートMOSトランジスタは基板の深さ方向に電流を流す縦型MOS構造であり、素子単体としては非常に優れた性能を有しているが、ICとのオンチップ化には不利である。ICとのオンチップ化を考慮すると、やはり従来の横型MOS構造を選ばざるを得ない。
従来、横型MOS構造のMOSトランジスタの耐圧を低下させずに更に単位面積当たりのオン抵抗を低減する方法として、ゲート部を凸部と凹部を有するトレンチ構造にすることによってゲート幅を稼ぐ横型トレンチゲート型トランジスタが考案されている(例えば、特許文献1参照)。この従来技術の概念図を図2に示す。ここで、図2(a)は前記MOSトランジスタの平面図、図2(b)は(a)の線分2A-2A'に沿った断面図、図2(c)は(a)の線分2B-2B'に沿った断面図、図2(d)は(a)の線分2C-2C'に沿った断面図である。ここで図2(a)において図を見易くするためトレンチ外部のゲート電極003とゲート絶縁膜004は透明にしてある。太線はゲート電極003のエッジを示している。この発明はゲート電極003をトレンチ構造にすることにより横型MOS構造の単位平面積当たりのゲート幅を拡げオン抵抗を低減する発明である。
特許3405681号公報 (第11頁、図2)
しかし、上記の発明にも2つの課題がある。
(1)1つ目の課題を示す。図3は図2のソース領域001もしくはドレイン領域002のみを取出した鳥瞰図である。ここでゲート酸化膜004とゲート電極003は図示していない。図3のソース領域001もしくはドレイン領域002において、点線で表したトレンチ壁に接した極表面の色の濃い部分がチャネル部と接する部分020である。このチャネル部と接する部分020はトレンチ壁に接触しているソース領域001もしくはドレイン領域002の極表面全てに存在する。つまり、図2の構造においてソース領域001もしくはドレイン領域002と前記チャネル部の接触面積は寸法d1、w1、l 2の長さによって決定される。前記接触面積が小さい場合、その部分が図4(d)の電流019が示すようにボトルネックとなり(電流密度がソース領域及びドレイン領域で密となり)、オン抵抗低減を阻害する。前記接触面積を大きくするには寸法d1、w1、l2の長さを長く取ればよい。まず、寸法d1について考えると、ソース領域及びドレイン領域を通常のイオン注入によって形成した場合のソース領域001及びドレイン領域002の深さである寸法d1は一般に数千Aと浅く、深くするには限界がある。前記トレンチの凸部幅を変えずに前記トレンチの凹部幅である寸法w1を長くすると、単位平面積あたりの前記トレンチ数が減少し垂直な接触面積が減少することとなり、ゲート幅が短くなるため寸法w1を長くすることができない。
ソース領域及001又はドレイン領域002と前記トレンチとのオーバーラップ長であるl2を長くする方法に関しては、ゲート長を変化させずにl2を長くした場合、その分の面積が増大してしまうことは言うまでも無い。さらに、ソース領域001及びドレイン領域002がゲート電極003を利用したセルフアラインによって形成されるとすると、l2を長くするためには、l1を短くするか、ソース領域001及びドレイン領域002の不純物が拡散される長さを長くする方法が考えられるが、l1を短くするには限界があるため、結局不純物拡散によってl2を長くする方法しかない。しかしながら、この方法もまた、長さに限界があることは言うまでも無く、また、過度の不純物拡散によって生じるソース領域001又はドレイン領域002の低濃度化などのリスクもあり、現実的には困難である。つまり、従来技術ではMOSトランジスタの前記オン抵抗を小さくするために、素子平面積を変えず前記接触面積を増加させることは難しい。
(2)2つ目の課題は、トレンチ深さに限界があることである。トレンチ深さを深くすることで単位平面積あたりのゲート幅を更に増加させる事が可能であるが、それはウェル領域005内に限った話で、一般的方法で作成するウェル領域005の深さには限界があるため、ウェル領域005の深さ以上にトレンチを深くすることはできない。仮にウェル領域005の深さ以上にトレンチを深くすると、基板に電流が漏れてしまう。
本発明は、上記の2つの課題を解決し、長さ方向がゲート長方向と平行なトレンチに形成されたゲート電極を有し、単位平面積当たり大きなゲート幅を有する高駆動能力横型のMOSトランジスタの駆動能力を、平面的な素子面積を増加させずに、低オン抵抗の高駆動能力横型のMOSトランジスタを実現する。
(1)半導体基板の表面に長さ方向がゲート長方向と平行なトレンチが形成された第1トレンチ領域と、前記第1トレンチ領域の凹部底面と同一平面に前記第1トレンチ領域の長さ方向の両端に接して設けられた第2トレンチ領域および第3トレンチ領域と、前記第1トレンチ領域および前記第2トレンチ領域と前記第3トレンチ領域の少なくとも1領域に形成された第2導電型のウェル領域と、前記第1トレンチ領域に設けられたゲート絶縁膜と、前記ゲート絶縁膜上に接して設けられたゲート電極と、前記第1トレンチと前記第2トレンチ領域と前記第3トレンチ領域に前記ウェル領域より浅く設けられた第1導電型のソース領域とドレイン領域を有する半導体装置とした。
(2)DDD構造を有する(1)に記載の半導体装置とした。
(3)LDMOS構造を有する(1)に記載の半導体装置とした。
(4)前記第1トレンチ領域の凸部の幅が1000A程度の(1)から(3)に記載のいずれかの半導体装置とした。
(5)ツインウェル技術を併合した(1)から(4)に記載のいずれかの半導体装置とした。
(6)導電型を反転した(1)から(5)に記載のいずれかの半導体装置とした。
(7)(1)から(6)に記載の半導体装置において、前記トレンチ領域形成後に多方向からによる斜めイオン注入によって前記ウェル領域を形成する半導体装置の製造法とした。
(8)(1)から(6)に記載の半導体装置において、前記トレンチ領域形成後に多方向からによる斜めイオン注入によって前記ソース領域と前記ドレイン領域を形成する半導体装置の製造法とした。
(9)(1)から(6)に記載の半導体装置において、前記半導体基板の表面にイオン注入によって第2導電型半導体領域を作成する工程と、前記半導体基板の表面に半導体をエピタキシャル成長させる工程と、前記のエピタキシャル成長させた半導体表面にイオン注入によって第2導電型半導体領域を作成する工程により、前記ウェル領域を作成する工程を有する半導体装置の製造法とした。
本発明によれば、ゲート電極にトレンチが形成されたMOSトランジスタにおいて、トランジスタのチャネル部の1終端の全面がソース領域と、前記チャネル部の他端の全面がドレイン領域と十分に接触しているので、前記接触面積が大きくなり、トランジスタのオン抵抗が低減する。
更に、本発明によれば、DDDやLDMOSなどの構造を採用するといった従来技術との併合が可能であるため、容易に耐圧の向上が図れる。
更に、本発明によれば、第1トレンチ領域の凸部の幅を1000A程度にすることによって、MOSがオン状態になる際に凸部内部が全て空乏化し、サブスレッショルド特性が向上する。したがってソース・ドレイン間のリークが減少し、閾値を下げることが可能となり、結果的に更に駆動能力を向上させることが可能となる。
更に、本発明によれば、ツインウェル技術を利用することにより、1チップで高駆動能力を有するCMOS構造を作成することも、IC混載も容易に可能となる。
更に、本発明によれば、トレンチ形成直後に多方向からの斜めイオン注入によってウェル領域を形成するため、ウェル領域は凹部底面よりも深く形成される。従って、トレンチ形状を作成する前にウェル領域を作る手法よりトレンチ深さを深くすることができ、単位平面積あたりのゲート幅を増加させることが可能となる。
更に、本発明によれば、トレンチ形成直後に多方向からの斜めイオン注入によってソース領域およびドレイン領域を形成するため、ウェル領域は凹部底面よりも深く形成される。従って、トレンチ形状を作成する前にソース領域およびドレイン領域を作る手法よりトレンチ深さを深くすることができ、チャネルとの接触面積が増加しトランジスタのオン抵抗が低減する。
更に、本発明によれば、半導体基板表面とエピタキシャル膜間にイオン注入によって作成された第2導電型半導体領域と、前記エピタキシャル膜にトレンチ構造を作成した後に斜めイオン注入によって作成された第2導電型半導体領域を、熱拡散によって繋げることにより、更にウェルを深くすることが可能となる。したがって、更に凹部底部を深くすることができ、単位平面あたりのゲート幅を更に増加させることが可能となる。
図1は本発明の代表的な実施例である。ここで、図1(a)は平面図、図1(b)は(a)の線分1A-1A'に沿った断面図、図1(c)は(a)の線分1A-1A'および線分2B-2B'に沿って切断した時の鳥瞰図である。ここで図1(a)において、図を見易くするためトレンチ外部のゲート電極003とゲート絶縁膜004は透明にしてある。太線はゲート電極003のエッジを示している。また、図1(c)はソース領域001から見た図であるが、線分1A-1A'を中心に左右対称の構造であるため、ドレイン領域002からみた図も図1(c)と同じ図となる。なお、本発明の実施例の説明では、理解しやすくするために、左右対称としたが、左右対称は本発明を実施するのに必要となる事項ではない。
以下に、製造工程に従い図1に示したMOSトランジスタの構造及び製造方法を説明する。図4は図1に示すMOSトランジスタの製造工程を図1(c)と同じ見方で描いたもので、ドレイン領域002は、ソース領域001と同構造として省略している。
まず初めに第1導電型例えばN型もしくは第2導電型例えばP型の半導体基板006の表面を図4(a)に示すようにエッチングし凹部底面008を有する第1トレンチ領域013と、第2トレンチ領域014及び第3トレンチ領域015を作成する。その後、多方向から斜めイオン注入および不純物拡散を行い、トランジスタのチャネルを形成する第2導電型例えばP型のウェル領域005を第1トレンチ領域013、第2トレンチ領域014及び第3トレンチ領域015に形成する。ここでウェル領域005を作成する為のイオン注入は、図7(a)に示すように前記トレンチ領域作成直後に多方向からの斜めイオン注入によって行われる。左右の斜めイオン注入017によってトレンチ側面とトレンチ上面にイオンが注入され、図示していない手前と奥からの斜めイオン注入によってトレンチ上面と底面にイオンが注入される。その後の熱拡散によって図7(b)に示すようにトレンチ底部より深くなるようにウェル領域005を形成する。ウェル領域005を作成した後にトレンチ領域を作成する手法よりも確実にトレンチを深く形成することができるので、単位面積あたりのゲート幅を増加させることが可能となり、前述の課題の一つが解決できる。
ただし、上記の方法でもトレンチ深さに限界はある。斜めイオン注入の角度θを変えずに単純にトレンチ深さを深くすると、図8(a)に示すようにトレンチ底部領域のトレンチ側面にイオンが注入されない部分が生じ、熱拡散をしても図8(b)に示すようにウェル領域005がトレンチ全体を囲まなくなる。一方、トレンチ底部領域のトレンチ側面にイオンが注入されるように斜めイオン注入角度θを小さくすると、図9に示すようにトレンチ側面にイオンが十分に注入されず熱拡散後のウェルのイオン濃度プロファイルが一定でなくなる。
しかし、前記斜めイオン注入とエピタキシャル技術を組み合わせることで、トレンチ深さを上記限界以上に深くすることが可能となる。図10(a)のように、半導体基板006の表面にイオン注入を施し、その後図10(b)のようにエピタキシャル成長により半導体膜を堆積させる。その後図10(c)のようにトレンチ構造を作成し、図10(d)のように多方向からによる斜めイオン注入を行う。エピタキシャル層と半導体基板間にイオン注入層が存在する為、熱拡散を施すことにより図10(e)に示すようにトレンチ全体を囲むウェルを形成することが可能となる。この手法を用いれば、さらにトレンチ深さを深くすることが可能となり、更に単位面積あたりのゲート幅を増加させることが可能となる。
次に、図4(b)に示すように、基板表面を熱酸化し、ゲート絶縁膜004を形成し、その上からゲート電極003を形成する例えばポリシリコン膜を堆積させ、図4(c)に示すようなゲート電極003を残し選択的にエッチングをする。
次に、イオン注入および不純物拡散を行い、ゲート電極003を利用しセルフアラインによって、ゲート電極に覆われていない第1トレンチと第2トレンチ領域と第3トレンチ領域に第1導電型例えばN型のソース領域001とドレイン領域002を図4(d)に示すような構造に作成する。ここで、多方向からの斜めイオン注入をすることで、凸部007と凹部008部を含む凹凸構造表面全体にソース領域001とドレイン領域002を形成するため、ゲート電極005下のトランジスタのチャネル部の両終端全面がソース領域001と直接接続するので、前記チャネル部とソース領域001及びドレイン領域002と接触面積が大きく、接触抵抗が低減され前述のもう一つの課題が解決できる。
次に、図4(e)に示すように、前期半導体基板の表面全体を覆うように絶縁膜009を堆積させた後、ソース領域001及びドレイン領域002上の絶縁膜009の一部をエッチングし、ソース領域001とドレイン領域002の一部を露出させる。
次に、図4(f)に示すように、前期半導体基板の表面全体を覆うように電極膜を堆積させた後、ソース領域001及びドレイン領域002電気的に接続する電極膜010を残し、他の前記電極膜をエッチングで除去する。
最後に、図4(f)に示す構造表面に図示していないパッシベーション膜を形成し、ソース領域001、ゲート電極003、ドレイン領域002にコンタクトホールを作成し、それぞれの電極を取出し低オン抵抗の高駆動能力横型のMOSトランジスタが完成する。
前記MOSトランジスタの作成条件や前記MOSトランジスタの素子動作条件にもよるが、第1トレンチ領域の凸部の幅を1000A程度にすることによって、MOSがオン状態になる際に凸部内部が全て空乏化し、サブスレッショルド特性が向上する。したがってソース・ドレイン間のリークが減少し、閾値を下げることが可能となり、結果的に更に駆動能力を向上させることが可能となる。以上が、本発明の基本構造及び基本製造法である。
以上、本発明実施例を所謂プレーナMOSトランジスタを用いて説明した。一方、前記プレーナ型MOSにおいて、耐圧向上のため、さまざまな構造が存在する。本発明に関しても同様に、DDD(Double Diffused Drain)構造のものや、LDMOS(Lateral Double diffused MOS)構造などの従来技術を本発明に利用すると、容易に耐圧向上が図れる。以下ではこれらについて説明する。
図5は、DDD構造を有する本発明実施例である。本実施例2が実施例1と異なるのは、ソース領域001とドレイン領域002を形成する前に、第3トレンチ領域015のみ開口して、後工程で形成されるドレイン領域002を包含する低濃度拡散領域011を形成することである。これにより、高耐圧かつ低オン抵抗の高駆動能力MOSトランジスタが完成する。
図6は、LDMOS構造を有する本発明実施例である。本実施例3が実施例1と異なるのは、ソース領域001とドレイン領域002を形成する前に、第2トレンチ領域14のみ開口して、後工程で形成されるドレイン領域002を包含せずソース領域001を包含するボディ領域012を形成することである。これにより、高耐圧かつ低オン抵抗の高駆動能力MOSトランジスタが完成する。
以上が、第1導電型をN型として、第2導電型をP型としたNMOSトランジスタ構造の本発明実施例である。本発明実施例の構造を利用することにより、一般的なプレーナ型MOSトランジスタと同等の耐圧を維持したまま、単位平面積あたりの駆動能力を向上させることが可能となり、ウェル領域005の深さを気にせずに凹部底面008を深くすることできるので、更に駆動能力を向上させることが可能となる。また、凸部上面との凹部底面のギャップを大きくすることにより自動的にソース領域001及びドレイン領域002とウェル領域との接触抵抗も下がるため、効率よく単位平面積あたりの駆動能力を向上させることができる。上記の実施例において、導電型を反転することによってPMOSトランジスタ構造も同様に作成することができることは言うまでも無い。また、PMOSトランジスタを形成するNウェル領域とNMOSトランジスタを形成するPウェル領域を形成するツインウェル手法を用いれば、1チップで高駆動能力を有するCMOS構造を作成することも容易に可能となる。
さらに、本発明は上記の実施形態に限定されるものではなく、本発明はその要旨を逸脱しない範囲で変形して実施できる。
本発明の実施例基本構造を示す図。
(a)平面図。
(b)図1(a)の線分1A-1A'の断面図。
(c)図1(a)の線分1A-1A'および線分1B-1B'を切断した状態の鳥瞰図。
従来の実施例を示す図。
(a)平面図。
(b)図2(a)の線分2A-2A'の断面図。
(c)図2(a)の線分2B-2B'の断面図。矢印は電流を示す。
(d)図2(a)の線分2C-2C'の断面図。矢印は電流を示す。
図2のソース領域001もしくはドレイン領域002の鳥瞰図。 本発明の製造工程を示した鳥瞰図。 DDD構造を有する本発明実施例の鳥瞰図。 LDMOS構造を有する本発明実施例の鳥瞰図。 トレンチ深さが比較的浅い場合の断面図。
(a)多方向斜めイオン注入直後の断面図。
(b)他方高斜めイオン注入後、イオンを熱拡散した断面図。
トレンチ深さが深くイオン注入角度θが大きい場合の断面図。
(a)多方向斜めイオン注入直後の断面図。
(b)他方高斜めイオン注入後、イオンを熱拡散した断面図。
トレンチ深さが深くイオン注入角度θが小さいイオン注入直後の断面図。 エピタキシャル技術と斜めイオン注入法を用いたウェルの作成法 (a)半導体基板表面にイオン注入を施した断面図。
(b)図10(a)の基板表面にエピタキシャル成長によって半導体膜を形成した断面図。
(c)図10(b)にトレンチ構造を形成した断面図。
(d)図10(c)に多方向斜めイオン注入を施した断面図。
(e)図10(d)に熱拡散を施した断面図。
符号の説明
001 ソース領域
002 ドレイン領域
003 ゲート電極
004 ゲート絶縁膜
005 ウェル領域
006 半導体基板
007 凸部
008 凹部
009 絶縁膜
010 電極膜
011 低濃度拡散領域
012 ボディ領域
013 第1トレンチ領域
014 第2トレンチ領域
015 第3トレンチ領域
016 イオン注入されたイオン
017 イオン注入の方向
018 エピタキシャル成長による半導体膜
019 電流
020 チャネル部と接している部分

Claims (3)

  1. 半導体基板に複数本のトレンチを形成する工程と、
    前記複数本のトレンチを形成する工程のあとに、前記トレンチよりも深い第一導電型のウェル領域を形成する工程と、
    前記ウェル領域を形成する工程のあとに、前記トレンチが形成する凹凸部の表面にゲート絶縁膜を設ける工程と、
    前記ゲート絶縁膜を介して前記トレンチ内部を埋め込むとともに、前記トレンチ両端を除く前記凹凸部において、前記ゲート絶縁膜上にゲート電極を設ける工程と、
    前記ゲート電極を設ける工程のあとに、前記ゲート電極膜の下部を除く前記ウェル領域において、前記ウェル領域の深さより浅く、2つの第二導電型半導体層であるソース領域およびドレイン領域を設ける工程と、
    前記ゲート電極膜と前記ソース領域および前記ドレイン領域を覆う層間絶縁膜を堆積する工程と、
    前記ゲート電極膜が露出しないように前記ゲート電極膜の上部および側面以外の前記層間絶縁膜を除去し前記ソース領域およびドレイン領域を露出させる工程と、
    前記露出したソース領域およびドレイン領域を覆うとともに、それらが接触しないように、電極膜を堆積させる工程と、
    を有し、
    前記ソース領域およびドレイン領域を設ける工程は、多方向からの斜めイオン注入によって前記ソース領域およびドレイン領域にある前記凹凸部をつないでいる側面にも第二導電型の不純物を拡散する工程である半導体装置の製造方法。
  2. 前記ウェル領域を形成する工程は、前記トレンチの形成後に多方向からの斜めイオン注入によって前記第一導電型のウェル領域を形成する工程である請求項記載の半導体装置の製造方法。
  3. 前記ウェル領域を形成する工程は、前記半導体基板の表面にイオン注入によって第2導電型半導体領域を作成する工程と、前記半導体基板の表面に半導体をエピタキシャル成長させる工程と、前記のエピタキシャル成長させた半導体表面にイオン注入によって第2導電型半導体領域を作成する工程と、からなる請求項記載の半導体装置の製造方法。
JP2005144867A 2004-07-01 2005-05-18 半導体装置の製造方法 Expired - Fee Related JP5110776B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005144867A JP5110776B2 (ja) 2004-07-01 2005-05-18 半導体装置の製造方法
US11/155,960 US7242058B2 (en) 2004-07-01 2005-06-17 Lateral semiconductor device using trench structure and method of manufacturing the same
TW094120810A TWI380444B (en) 2004-07-01 2005-06-22 Lateral semiconductor device using trench structure and method of manufacturing the same
KR1020050057911A KR101152451B1 (ko) 2004-07-01 2005-06-30 트렌치 구조를 이용한 횡형 반도체 장치 및 그 제조 방법

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004195887 2004-07-01
JP2004195887 2004-07-01
JP2005144867A JP5110776B2 (ja) 2004-07-01 2005-05-18 半導体装置の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012193987A Division JP5486654B2 (ja) 2004-07-01 2012-09-04 半導体装置

Publications (3)

Publication Number Publication Date
JP2006049826A JP2006049826A (ja) 2006-02-16
JP2006049826A5 JP2006049826A5 (ja) 2008-03-27
JP5110776B2 true JP5110776B2 (ja) 2012-12-26

Family

ID=35512992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005144867A Expired - Fee Related JP5110776B2 (ja) 2004-07-01 2005-05-18 半導体装置の製造方法

Country Status (4)

Country Link
US (1) US7242058B2 (ja)
JP (1) JP5110776B2 (ja)
KR (1) KR101152451B1 (ja)
TW (1) TWI380444B (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060071270A1 (en) * 2004-09-29 2006-04-06 Shibib Muhammed A Metal-oxide-semiconductor device having trenched diffusion region and method of forming same
EP1892750B1 (en) * 2006-08-23 2012-11-28 Imec Method for doping a fin-based semiconductor device
JP2008053468A (ja) * 2006-08-24 2008-03-06 Seiko Instruments Inc トレンチ構造を利用した横型高駆動能力半導体装置
JP2008192985A (ja) 2007-02-07 2008-08-21 Seiko Instruments Inc 半導体装置、及び半導体装置の製造方法
JP5165954B2 (ja) * 2007-07-27 2013-03-21 セイコーインスツル株式会社 半導体装置
JP5314949B2 (ja) * 2007-07-27 2013-10-16 セイコーインスツル株式会社 半導体装置の製造方法
US8236648B2 (en) * 2007-07-27 2012-08-07 Seiko Instruments Inc. Trench MOS transistor and method of manufacturing the same
JP5159365B2 (ja) * 2008-02-26 2013-03-06 セイコーインスツル株式会社 半導体装置およびその製造方法
JP5341639B2 (ja) 2009-06-26 2013-11-13 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
JPWO2012099142A1 (ja) 2011-01-18 2014-06-30 千寿製薬株式会社 保存効力を有するブロムフェナク水性液剤組成物
JP5486673B2 (ja) * 2012-12-26 2014-05-07 セイコーインスツル株式会社 半導体装置
US9997599B2 (en) * 2013-10-07 2018-06-12 Purdue Research Foundation MOS-based power semiconductor device having increased current carrying area and method of fabricating same
DE102014104589B4 (de) * 2014-04-01 2017-01-26 Infineon Technologies Ag Halbleitervorrichtung und integrierte Schaltung
US9601578B2 (en) * 2014-10-10 2017-03-21 Globalfoundries Inc. Non-planar vertical dual source drift metal-oxide semiconductor (VDSMOS)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4569701A (en) * 1984-04-05 1986-02-11 At&T Bell Laboratories Technique for doping from a polysilicon transfer layer
JPH02134871A (ja) * 1988-11-15 1990-05-23 Mitsubishi Electric Corp 半導体装置
JP2994670B2 (ja) * 1989-12-02 1999-12-27 忠弘 大見 半導体装置及びその製造方法
JPH04276662A (ja) * 1991-03-05 1992-10-01 Kawasaki Steel Corp 半導体装置の製造方法
JP3017838B2 (ja) * 1991-06-06 2000-03-13 株式会社東芝 半導体装置およびその製造方法
JPH05110083A (ja) * 1991-10-15 1993-04-30 Oki Electric Ind Co Ltd 電界効果トランジスタ
JP3311070B2 (ja) * 1993-03-15 2002-08-05 株式会社東芝 半導体装置
JPH06302818A (ja) * 1993-04-16 1994-10-28 Kawasaki Steel Corp 半導体装置
JPH08264764A (ja) * 1995-03-22 1996-10-11 Toshiba Corp 半導体装置
JPH0923011A (ja) * 1995-07-05 1997-01-21 Hitachi Ltd 半導体装置及びその製造方法
JP3405681B2 (ja) * 1997-07-31 2003-05-12 株式会社東芝 半導体装置
DE19908809B4 (de) * 1999-03-01 2007-02-01 Infineon Technologies Ag Verfahren zur Herstellung einer MOS-Transistorstruktur mit einstellbarer Schwellspannung
US6461918B1 (en) * 1999-12-20 2002-10-08 Fairchild Semiconductor Corporation Power MOS device with improved gate charge performance
JP2002026311A (ja) * 2000-07-04 2002-01-25 Miyazaki Oki Electric Co Ltd Soi型mos素子およびその製造方法
US6661050B2 (en) * 2002-03-20 2003-12-09 Taiwan Semiconductor Manufacturing Co., Ltd Memory cell structure with trench capacitor and method for fabrication thereof
JP3927111B2 (ja) * 2002-10-31 2007-06-06 株式会社東芝 電力用半導体装置
US6861701B2 (en) * 2003-03-05 2005-03-01 Advanced Analogic Technologies, Inc. Trench power MOSFET with planarized gate bus
JP4829473B2 (ja) * 2004-01-21 2011-12-07 オンセミコンダクター・トレーディング・リミテッド 絶縁ゲート型半導体装置およびその製造方法

Also Published As

Publication number Publication date
US20060001085A1 (en) 2006-01-05
JP2006049826A (ja) 2006-02-16
TWI380444B (en) 2012-12-21
US7242058B2 (en) 2007-07-10
KR20060049250A (ko) 2006-05-18
TW200611409A (en) 2006-04-01
KR101152451B1 (ko) 2012-06-01

Similar Documents

Publication Publication Date Title
JP5110776B2 (ja) 半導体装置の製造方法
JP4976658B2 (ja) 半導体装置の製造方法
JP4860929B2 (ja) 半導体装置およびその製造方法
JP5767430B2 (ja) 半導体装置および半導体装置の製造方法
JP5567711B2 (ja) 半導体装置
JP5486654B2 (ja) 半導体装置
JP2006059940A (ja) 半導体装置
JP2006019518A (ja) 横型トレンチmosfet
TWI445171B (zh) Semiconductor device and manufacturing method thereof
JP2009206268A (ja) 半導体装置及びその製造方法
JP5442951B2 (ja) 半導体装置の製造方法
JP2015141925A (ja) 半導体装置およびその製造方法
JP2009146999A (ja) 半導体装置
JP2009016480A (ja) 半導体装置、及び半導体装置の製造方法
TWI760453B (zh) 半導體裝置之製造方法
JP2009049260A (ja) トレンチ構造を利用した横型高駆動能力半導体装置
JPWO2007034547A1 (ja) トレンチゲートパワーmosfet
JP2008053468A (ja) トレンチ構造を利用した横型高駆動能力半導体装置
JP5486673B2 (ja) 半導体装置
JP7508764B2 (ja) 超接合炭化珪素半導体装置および超接合炭化珪素半導体装置の製造方法
JP2005085975A (ja) 半導体装置
JP2009259968A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120904

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5110776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees