JP4895439B2 - スタティック型メモリ - Google Patents

スタティック型メモリ Download PDF

Info

Publication number
JP4895439B2
JP4895439B2 JP2001195914A JP2001195914A JP4895439B2 JP 4895439 B2 JP4895439 B2 JP 4895439B2 JP 2001195914 A JP2001195914 A JP 2001195914A JP 2001195914 A JP2001195914 A JP 2001195914A JP 4895439 B2 JP4895439 B2 JP 4895439B2
Authority
JP
Japan
Prior art keywords
word line
voltage
power supply
cell
storage node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001195914A
Other languages
English (en)
Other versions
JP2003016786A (ja
Inventor
知晃 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2001195914A priority Critical patent/JP4895439B2/ja
Publication of JP2003016786A publication Critical patent/JP2003016786A/ja
Application granted granted Critical
Publication of JP4895439B2 publication Critical patent/JP4895439B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、半導体記憶装置に関し、より特定的には、スタティックランダムアクセスメモリ(以下、SRAMと称する。)の書込および読出に関する。
【0002】
【従来の技術】
データの書込、保持、および読出が随時可能なメモリデバイスであるランダムアクセスメモリ(RAM:Random Access Memory)は、記憶データの保持にリフレッシュ動作が必要なダイナミックRAM(DRAM:Dynamic Random Access Memory)と、リフレッシュ動作が不要なスタティックRAM(SRAM:Static Random Access Memory)とに大別される。
【0003】
図14は、SRAMのメモリセルの構成の一例を示す回路図である。図14には、6個のMOSトランジスタで形成されるいわゆるCMOSメモリセルが示される。
【0004】
図14を参照して、MOSトランジスタQP1,QP2,QN1,QN2は、記憶ノードNmおよび/Nmの信号レベルを保持するための、2個のCMOSインバータを形成する。なお、MOSトランジスタQN1,QN2は、ドライバトランジスタと称する。記憶ノードNmおよび/Nmに対するデータの書込および読出は、ワード線WLの活性化(Hレベル)に応答するアクセストランジスタQN3およびQN4のオンによって、記憶ノードNmおよび/Nmとビット線BLおよび/BLとがそれぞれ結合されることによって実行される。
【0005】
ワード線WLが非活性化(Lレベル)されて、アクセストランジスタQN3およびQN4がオフしている場合には、記憶ノードNmおよび/Nmに保持されるデータレベルに応じて、それぞれのCMOSインバータにおいて、それぞれ異なる導電型のMOSトランジスタがオンする。これにより、メモリセルに保持されるデータレベルに応じて、記憶ノードNmおよび/NmはデータのHレベルに対応する電源電圧VDDおよびデータのLレベルに対応する接地電圧VSSのいずれか一方ずつと選択的に結合される。これにより、周期的にワード線WLをオンしてリフレッシュ動作を実行することなく、メモリセル内にデータを保持することが可能となる。
【0006】
図15は、SRAMのメモリセルの別の構成の一例を示す回路図である。図15には、4個のMOSトランジスタと2個の高抵抗R1およびR2で形成されるいわゆる高抵抗負荷型メモリセルが示される。
【0007】
図15を参照して、MOSトランジスタQN1,QN2は、記憶ノードNmおよび/Nmの信号レベルを保持する。高抵抗R1およびR2は、電源電圧VDDと記憶ノードNmおよび/Nmとの間にそれぞれ並列に接続されている。なお、MOSトランジスタQN1,QN2は、ドライバトランジスタと称する。記憶ノードNmおよび/Nmに対するデータの書込および読出は、ワード線WLの活性化(Hレベル)に応答するアクセストランジスタQN3およびQN4のオンによって、記憶ノードNmおよび/Nmとビット線BLおよび/BLとがそれぞれ結合されることによって実行される。動作については、上述したCMOSメモリセルと同様である。なお、以下においては、CMOSメモリセルについて説明するが、高抵抗負荷型メモリセルにおいても置換可能である。
【0008】
上述のSRAMのメモリセルを設計するときには、メモリセルの安定性を考慮する必要があり、1つの基準として、メモリセル内のアクセストランジスタQN3(QN4)とドライバトランジスタQN1(QN2)の電流駆動力の比(以下、β比と称す。)を基準として設計が行なわれる。
【0009】
β比は、以下の式により計算することができる。
【0010】
【数1】
Figure 0004895439
【0011】
ここで、IDは、ドライバトランジスタQN1(QN2)の電流駆動力、IAは、アクセストランジスタQN3(QN4)の電流駆動力である。
【0012】
一般的にβ比が大きいほどメモリセルの安定性は、高くなるため、設計時にドライバトランジスタのゲート幅を広げたりアクセストランジスタのゲート長を長くすることによってそれぞれの電流駆動力を変えることにより、β比を大きくすることができる。しかし、このような処理を施した場合、メモリセルの占める面積は増大してしまう問題がある。
【0013】
このような問題を回避するために、特開平2−3171号,特開平2−265097号には、メモリセルのサイズを変化させること無くワード線に供給する電圧を読出時においては、低下させ、書込時には増加させるワード線駆動回路を用いることによりメモリセルの安定性を高める方式が提案されている。
【0014】
図16は、上述のワード線駆動回路を用いたメモリセルアレイの一般的な回路構成である。
【0015】
各メモリセルの構成は、図14と同様の構成であるのでその詳細な説明は繰り返さない。
【0016】
各メモリセルMCは、行状にビット線対BL0および/BL0〜BLnおよび/BLn(n:自然数。以下、総称して、ビット線対BLおよび/BLと称する)およびワード線WL0〜WLm(m:自然数。以下、総称して、ワード線WLと称する)に対応して配置され、各ワード線WLには、それぞれワード線駆動回路WDが配置されている。また、各ビット線対BLおよび/BLは、入出力制御回路IOCTと接続されており、入出力制御回路IOCTは、選択カラムにおいて指定されたメモリセルMCに対する書込または読出を制御する。
【0017】
この方式は、読出時においては、ワード線駆動回路WDにより選択されたワード線WLに供給する電圧を低下させ、メモリセルMCのアクセストランジスタのゲートに低電圧を与えることにより、アクセストランジスタの電流駆動力IAを減少させ、β比を増加させている。一方、書込時には、ワード線駆動回路WDによりワード線に供給する電圧を増加させることによりアクセストランジスタの電流駆動力IAを増加させることにより書込マージンを確保するものである。
【0018】
【発明が解決しようとする課題】
しかし、図16のメモリセルアレイにおける書込動作時において、ビット線対BL0および/BL1が選択カラムとして選択され、ワード線WL0と接続されたメモリセルMCに書込をする場合を考える。他のカラムは、非選択状態である。ここで、書込のためにワード線WL0に高電圧が供給されるとワード線WL0と接続されたメモリセルMCのそれぞれのアクセストランジスタのゲートに高電圧が供給され、選択、非選択に関係無くアクセストランジスタが導通する。
【0019】
ここで、アクセストランジスタのゲートに高電圧が供給されるため書込のマージンが高い。一方、高電圧によりアクセストランジスタの電流駆動力IAが大きいためβ比が小さくなっており非選択のカラムにあるメモリセルのデータを書換えるすなわちデータ破壊を起こしてしまう可能性が高い。
【0020】
本発明の目的は、書込または読出においてデータ破壊を起こすことなく、メモリセルの安定性を高めることを目的とする。
【0021】
【課題を解決するための手段】
本発明のスタティック型メモリは、行列状に配置される複数のメモリセルと、複数のメモリセルの行にそれぞれ対応して設けられる複数のワード線と、複数のメモリセルの列にそれぞれ対応して設けられる複数のビット線とを含むメモリセルアレイと、複数のワード線にそれぞれ対応して設けられ、各々は、対応するワード線が選択されると当該対応するワード線にハイレベルを供給し、対応するワード線が非選択のときはローレベルを供給する複数のワード線制御回路と、複数のメモリセルの列にそれぞれ対応して設けられ、各々は対応する列に配置されたメモリセルに接続され、メモリセルの電源となる電圧を供給する複数の電源線と、複数の電源線に接続され、複数の電源線のそれぞれの電圧を制御するセル電圧制御回路とを備える。複数のワード線のうちデータの書込みを対象に選択されたワード線にハイレベルが供給されるとき、セル電圧制御回路は、複数の電源線のうち非選択の列に対応する電源線には当該選択されたワード線に供給されるハイレベルの電圧よりも高い電圧を供給し、複数の電源線のうち選択された列に対応する電源線の電圧を非選択の列に対応する電源線の電圧よりも小さくする
【0022】
好ましくは、複数のワード線のうちデータの読出しを対象に選択されたワード線にハイレベルを供給しているとき、セル電圧制御回路は、複数の電源線のそれぞれに、データの読出しを対象に選択されたワード線のハイレベルの電圧よりも高い電圧を供給するように制御する
【0023】
特に、データの読出しを対象に選択されたワード線には、データの書き込みを対象に選択されたワード線と同じ電圧のハイレベルを供給する。
【0024】
好ましくは、セル電圧制御回路は、複数の電源にそれぞれ接続される複数のセル電源制御ユニットを有する。各セル電源制御ユニットは、その接続される電源線と電源電圧を受けるノードとの間を電気的に導通し又は非導通とする第1のトランジスタと、その接続される電源線と電源電圧よりも低い電圧を受けるノードとの間を電気的に導通し又は非導通にする第2のトランジスタとを有する。第1のトランジスタが導通するときは第2のトランジスタは非導通であり、第1のトランジスタが非導通のときは第2のトランジスタは導通する。
【0025】
好ましくは、複数のメモリセルの各々は、その入力が第1の記憶ノードに接続され、その出力が第2の記憶ノードに接続される第1のインバータと、その入力が第2の記憶ノードに接続され、その出力が第1の記憶ノードに接続される第2のインバータと、そのメモリセルの配置される行に対応して設けられたワード線にゲートが接続され、第1の記憶ノードとそのメモリセルの配置される列に対応するビット線対の一方とを電気的に導通させる第1のN型トランジスタと、そのメモリセルの配置される行に対応して設けられたワード線にゲートが接続され、第2の記憶ノードとそのメモリセルの配置される列に対応するビット線対の他方とを電気的に導通させる第2のN型トランジスタとを有する。複数のメモリセルの各々において、第1及び第2のインバータは、その配置される列に対応して設けられた電源線に接続されている
【0026】
特に、複数のメモリセルの各々において、第1のインバータは、メモリセルの配置される列に対応して設けられた電源線にそのソースが接続され、第2の記憶ノードにそのドレインが接続され、第1の記憶ノードにそのゲートが接続される第1のP型トランジスタと、第2の記憶ノードにそのドレインが接続され、第1の記憶ノードにそのゲートが接続される第3のN型トランジスタとを有する。第2のインバータは、メモリセルの配置される列に対応して設けられた電源線にそのソースが接続され、第1の記憶ノードにそのドレインが接続され、第2の記憶ノードにそのゲートが接続される第2のP型トランジスタと、第1の記憶ノードにそのドレインが接続され、第2の記憶ノードにそのゲートが接続される第4のN型トランジスタとを有する
【0030】
【発明の実施の形態】
本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付しその説明は繰返さない。
【0031】
(実施の形態1)
図1は、本発明の実施の形態1に従う半導体記憶装置1000の構成を示す概略ブロック図である。
【0032】
半導体記憶装置1000は、SRAMに代表される、リフレッシュ動作を実行することなく記憶データを保持することが可能なスタティック型のメモリデバイスである。
【0033】
図1を参照して、半導体記憶装置1000は、行アドレス信号RA0〜RAi(i:自然数)を受ける行アドレス端子6と、列アドレス信号CA0〜CAj(j:自然数)を受ける列アドレス端子7と、読出/書込制御信号/W、チップセレクト信号/CS、アウトプットイネーブル信号/OE等の制御信号を受ける制御信号端子8と、入力データDを受けるデータ入力端子13と、出力データQを出力するデータ出力端子14と、接地電圧GNDおよび電源電圧VDDをそれぞれ受ける電源端子1および2とを備える。電源電圧VDDよび接地電圧GNDは、半導体記憶装置1000の各内部回路に伝達される。
【0034】
半導体記憶装置1000は、制御信号に応答して、半導体記憶装置1000の内部動作を制御するコントロール回路12と、列状に配置された複数のブロックメモリセルを有するメモリセルアレイ5と、行アドレス信号RA0〜RAiをデコードしてメモリセル行の選択を実行する行選択回路3と、列アドレス信号CA0〜CAjをデコードしてメモリセル列の選択を実行する列選択回路11と、列選択回路11の列選択結果に基づいて、データ信号線4と結合する入出力制御回路9と、データ信号線4とデータ入力端子13およびデータ出力端子14との間でデータの授受を実行するデータ入出力回路10とを備える。
【0035】
入出力制御回路9は、データ信号線4により入力される入力データDをメモリセルアレイ5に書込むためのライトドライバや、入出力線4に伝達される読出データを増幅するためのアンプ回路等を含む。
【0036】
半導体記憶装置1000は、電源投入時において、アドレス信号によって選択されたメモリセルに対してデータの読出および書込動作を実行する動作状態と、各メモリセルにおいてデータ保持を実行するスタンバイ状態との2つの状態を有する。
【0037】
図2は、メモリセルアレイ5、入出力制御回路9および行選択回路3に含まれるワード線制御回路WC0〜WCm、の回路構成を示す図である。
【0038】
メモリセルアレイ5は、ワード線WL0〜WLmと、ビット線対BL0および/BL0〜BLnおよび/BLnと、メモリセルMCとを含む。各メモリセルMCの回路構成は、図14で示したのと同様なのでその詳細な説明は繰り返さない。なお、図15で示したメモリセルMCとも置換可能である。各メモリセルMCは、行列状に配置され、行に対応してワード線WL0〜WLmおよび列に対応してビット線対BL0および/BL0〜BLnおよび/BLnが配置されている。また、入出力制御回路9は、各ビット線対BLおよび/BLと接続され、入出力制御回路9を介して各ビット線対BLおよび/BLごとのデータの入出力が、データ信号線4として機能する入出力線IO0〜IOnのそれぞれと行なわれる。
【0039】
図3は、ワード線制御回路WC0の回路構成を示す図である。
他のワード線制御回路WC1〜WCmの回路構成については、ワード線制御回路WC0の回路構成と同様なのでその詳細な説明は繰り返さない。
【0040】
ワード線制御回路WC0は、PチャンネルMOSトランジスタ101,102,104と、NチャンネルMOSトランジスタ105と、インバータ103とを含む。
【0041】
PチャンネルMOSトランジスタ104およびNチャンネルMOSトランジスタ105は、ノードN1と接地電圧GNDとの間に直列に接続され、その接続点は、ワード線WL0と接続される。また、それぞれのゲートは、ワード線選択信号EW0を受ける。PチャンネルMOSトランジスタ101は、高電圧VDDとノードN1との間に接続され、そのゲートは、選択信号SEW0を受ける。PチャンネルMOSトランジスタ102は、低電圧VDD#とノードN1との間にPチャンネルMOSトランジスタ101と並列に接続され、そのゲートは、インバータ103を介して選択信号SEW0の反転信号を受ける。
【0042】
ワード線制御回路WC0の回路動作について図4のテーブルを用いて説明する。ワード線WL0が選択される場合、ワード線選択信号EW0は、「L」レベルであり、非選択の場合、ワード線選択信号EW0は、「H」レベルである。
【0043】
ここで、ワード線WL0が選択されて読出を行なう場合には、選択信号SEW0を「H」レベルに設定する。PチャンネルMOSトランジスタ102のゲートには、インバータ103により選択信号SEW0の反転信号である「L」レベルが入力されるので、PチャンネルMOSトランジスタ102がオンとなり「H’」レベルである低電圧VDD#がワード線WL0に供給される。すなわち、ワード線WL0に接続されている各メモリセル内の各アクセストランジスタのゲートに低電圧が供給され、各アクセストランジスタにおける電流駆動力IAが減少するため、β比が増加する。したがって、各メモリセルMCの安定性が高くなり、読出におけるデータ破壊を回避することができる。
【0044】
一方、書込を行なう場合には、選択信号SEW0を「L」レベルにする。PチャンネルMOSトランジスタ101のゲートに選択信号SEW0の「L」レベルが入力され、PチャンネルMOSトランジスタ102がオンとなり「H」レベルすなわち高電圧VDDがワード線WL0に供給される。
【0045】
データの書込時には、前述したようにワード線WL0と接続された複数のメモリセルMCすべてのアクセストランジスタの電流駆動力IAが増加するため、非選択である書込を行なわないメモリセルMCについても誤書込が行なわれる可能性が非常に高い。
【0046】
そこで、再び図2を参照して、本発明の実施の形態1では、各列毎に選択、非選択を実行するのではなく各列に対するビット線対BLおよび/BL毎に入出力線IO0(〜IOn)をそれぞれ設けることにより各列のそれぞれに対して書込または、読出を同時に実行する入出力制御回路9を設ける構成となっている。
【0047】
この構成により、各列に対する選択および非選択を無くしてすべてのビット線対BL0および/BL0〜BLnおよび/BLnを選択することによりデータの書込時における非選択メモリセルの誤動作を防止し、各メモリセルMCの安定性を高めることができる。
【0048】
(実施の形態2)
図5は、実施の形態2に従う、ワード線制御回路WC0と置換可能なワード線制御回路WC0Aの回路構成を示す図である。なお、ワード線制御回路WC0Aは、ワード線制御回路WC1〜WCmとも置換可能である。
【0049】
ワード線制御回路WC0Aは、インバータ110と、トランスファーゲート111とを含む。
【0050】
インバータ110とトランスファーゲート111とは、直列に接続され、その終端は、ワード線WL0と接続されている。インバータ110は,ワード線選択信号EW0を受ける。トランスファーゲート111のゲートは、一方に電源電圧VDDを受け他方に、選択信号SEW0を受けて動作する。
【0051】
ワード線制御回路WC0Aの回路動作について図6のテーブルを用いて説明する。ワード線選択信号EW0が「L」レベルの場合、ワード線WL0が選択される。ワード線選択信号EW0は、「H」レベルの場合ワード線WL0は、非選択となる。ここで、ワード線WL0が選択されて読出を行なう場合には、選択信号SEW0を「H」レベルにし、書込を行なう場合には、選択信号SEW0を「L」レベルにする。
【0052】
すなわち、読出時には、選択信号SEW0を「H」レベルにし、トランスファーゲート111をオフにすることにより、ワード線WL0の電圧レベルがトランスファーゲートの閾値電圧Vthの分電圧レベルが下がり、「H’」レベル(H’=VDD−Vth)となる。一方、書込時には、選択信号SEW0を「L」レベルにし、ワード線WL0の電圧レベルを「H」レベルすなわち高電圧VDDを供給する。
【0053】
この構成にすることにより、低電圧VDD#を用いることなく低電圧を生成することによってワード線制御回路WC0Aの回路構成を簡素化することができレイアウト面積も小さくすることができる。
【0054】
(実施の形態3)
図7は、実施の形態3に従うメモリセルアレイ5#および入出力制御回路9の回路構成を示す図である。
【0055】
実施の形態1と異なる点は、メモリセルアレイ5をメモリセルアレイ5#に置換した点にあり、特に、ワード線制御回路WCをメモリセルアレイ5#内に設けた点にある。その他の回路構成については、実施の形態1で説明したのと同様なのでその詳細な説明は繰り返さない。
【0056】
本発明の実施の形態3の目的は、実施の形態1と異なり、すべてのビット線対BL0および/BL0〜BLnおよび/BLnを用いてデータ読出または書込を行なうのではなく、メモリセルアレイを一定領域ごとに分割することにより、分割によって生じた一単位領域のみを指定してデータの読出または書込をすることである。
【0057】
メモリセルアレイ5#は、ワード線WL0〜WLm(以下、総称してワード線WLと称する)と、複数のメモリセルMCを含む、セルブロックCBL0〜CBL_k(k:自然数。以下、総称してセルブロックCBLとする。)と列選択線SC0〜SCk(以下、総称して列選択線SCと称する。)と、ビット線帯20とを含む。各セルブロックCBLは、列状に配置され、行に対応して各ワード線WLおよび列に対応して各列選択線SCがそれぞれ設けられている。
【0058】
ここで、各列選択線SCおよび各ワード線WLに対応して設けられるセルブロックCBLの一部分を含む単位領域をセルユニットCUとする。
【0059】
図7では、列選択線SC0およびワード線WL0に対応して設けられるセルユニットCU0について図示しているが、他の部分においても同様の構成となるので詳細な説明は繰り返さない。
【0060】
入出力制御回路9は、いずれか1つのセルブロックCBLを選択してN+1bitのデータを読出して、データ信号線4として機能する入出力線IO0〜IOnにデータを送信する。また、入出力線IO0〜IOnからのデータを受けて、選択されたいずれかのセルブロックCBLにN+1bitのデータの書込を行なう。ビット線帯20は、各セルブロックCBLと入出力制御回路9との間において、各セルブロックCBLに配置されているメモリセルMCに対応して列状に配置されている複数のビット線対の集合体である。本回路では、N+1ビットのデータの授受がそれぞれの各セルブロックCBLと行なわれるため、ビット線帯20は、N+1個のビット線対BLおよび/BLを有している。
【0061】
図8は、セルユニットCU0の回路構成を示す図である。
セルユニットCU0は、列状に配置された、列選択線SC0と、ビット線対BL0および/BL0〜BLnおよび/BLnと、行状に配置された、ワード線WL0およびサブワード線SWと、サブワード線SWおよび各ビット線対BL0および/BL0(〜BLnおよび/BLn)と接続されるメモリセルMCと、NAND回路201、ワード線制御回路WC0とを含む。なお、N+1bitのデータの書込または読出が行なわれるためメモリセルMCの個数は、N+1個である。
【0062】
NAND回路201は、ワード線WL0および列選択線SC0との入力を受けてワード線制御回路WC0に信号を伝達する。ワード線制御回路WC0は、NAND回路201からの信号を受けて動作し、サブワード線SWに信号を伝達する。ワード線制御回路WC0は、実施の形態1で示したのと同様なのでその詳細な説明は繰り返さない。
【0063】
セルユニットCU0の回路動作について説明する。
ワード線WL0が選択されて「H」レベルとなり、セルブロックCBL0以外のセルブロックCBLが選択されている場合には列選択線SC0が「L」レベルであるため、NAND回路201の出力信号は、「H」レベルである。したがって、ワード線制御回路WC0は駆動しないためサブワード線SWには、「L」レベルを伝達し、セルユニットCU0のメモリセルMCは、動作しない。一方、セルブロックCBL0が選択されている場合には列選択線SC0が「H」レベルとなるため、NAND回路201の出力信号は、「L」レベルである。したがって、ワード線制御回路WC0が駆動するためサブワード線の電圧レベルは、書込または読出によりそれぞれ「H」レベルまたは「H’」レベルとなり、セルユニットCU0のサブワード線SWと接続されるすべてのメモリセルMCに対して、書込または読出が行なわれる。なお、本発明の実施の形態3の構成と異なり、ワード線WLを用いずそれぞれのサブワード線SWが独立に行選択回路3と接続され、書込または読出の指示が行なわれる場合も考えられるが、本発明のほうがワード線WLを設けることにより回路構成を簡易にすることができる点で効率的である。
【0064】
本実施の形態3によるメモリセルアレイ5#の構成により、メモリセルを分割し、セルブロックCBLごとに書込または読出を実行するため、ワード線制御回路WCを用いた場合であっても他のセルブロックCBLにおけるメモリセルMCに対する誤書込や読出によるデータ破壊を防止することができる。
【0065】
(実施の形態4)
図9は、本発明の実施の形態4に従うメモリセルアレイ5#1、ワード線制御回路WC#0〜WC#m(以下、総称して、ワード線制御回路WC#と称する。)およびセル電圧制御回路400の回路構成を示す図である。各ワード線制御回路WC#は、行選択回路3#に含まれ、セル電圧制御回路400は、入出力制御回路9に含まれる。
【0066】
本発明の実施の形態4は、列毎に配置されたメモリセルMCのセル電圧を可変にすることにより書込または読出におけるメモリセルMCの安定性を図ることを目的とする。
【0067】
メモリセルアレイ5#1は、メモリセルアレイ5と比較して異なる点は、各列に対応してメモリセルの電圧信号線V0〜Vm(以下、総称して、電圧信号線Vと称する。)を配置した点にある。その他の回路構成については、実施の形態1で説明したのと同様なのでその詳細な説明は繰り返さない。
【0068】
セル電圧制御回路400は、セル電圧制御ユニットVC0〜VCn(以下、総称して、セル電圧制御ユニットVCと称す。)を含み、各セル電圧制御ユニットVCは、それぞれ電圧信号線V0〜Vmを通して、各列に対応するメモリセルMCにセル電圧を供給する。
【0069】
図10は、ワード線制御回路WC#0の回路構成を示す図である。ここで、ワード線制御回路WC#0は、他のワード線制御回路WC#0からWC#mの回路構成と同様であり、その詳細な説明は繰り返さない。
【0070】
ワード線制御回路WC#0は、実施の形態1および2で説明したワード線制御回路WC0およびWC#Aと異なる点は、書込時および読出時ともにワード線W0に供給する電圧を低電圧にする点にある。
【0071】
ワード線制御回路WC#0は、PチャンネルMOSトランジスタ500およびNチャンネルMOSトランジスタ501とを含む。PチャンネルMOSトランジスタ500およびNチャンネルMOSトランジスタ501は、低電圧VDD#と接地電圧GNDとの間に接続され、その接続点は、ワード線WL0と接続されている。また、それぞれのゲートは、ワード線選択信号EW0を受ける。
【0072】
ワード線制御回路WC#0の回路動作について説明する。
ワード線選択信号EW0が「L」レベルの場合にワード線WL0が選択される。すなわち、PチャンネルMOSトランジスタ500がオンし、低電圧VDD#がワード線WL0に供給される。一方、ワード線選択信号EW0が「H」レベルの場合には、NチャンネルMOSトランジスタ501がオンし、ワード線WL0には、接地電圧GND(「L」レベル)が供給されワード線WL0は、非選択である。かかる構成にすることにより、アクセストランジスタに供給される電圧は、書込または読出ともに低電圧となる。したがって、アクセストランジスタの電流駆動力IAが小さくなるためβ比が上がり書込および読出ともに安定性が保証される。
【0073】
図11は、ワード線制御回路WC#0の変形例であるワード線制御回路WC##0の回路構成を示す図である。
【0074】
ワード線制御回路WC##0は、インバータ502およびNチャンネルMOSトランジスタ503とを含む。
【0075】
インバータ502およびNチャンネルMOSトランジスタ503は、直列に接続され、その終端は、ワード線WL0と接続される。インバータ502は、ワード線選択信号EW0の入力を受ける。NチャンネルMOSトランジスタ503のゲートは、電源電圧VDDを受ける。
【0076】
ワード線制御回路WC##0の回路動作について説明する。
ワード線選択信号EW0が「L」レベルのときワード線WL0が選択される。その電圧レベルは、NチャンネルMOSトランジスタ503の閾値電圧Vth分下がりVDD−Vthの電圧がワード線WL0に供給される。一方、ワード線選択信号EW0が「H」レベルのときワード線WL0は、非選択である。
【0077】
この回路構成により、低電圧VDD#を用いることなく低電圧を内部発生させることができ、回路の簡素化とともにレイアウト面積を小さくすることができる。
【0078】
次に、セル電圧制御回路400に含まれるセル電圧制御ユニットVC0について説明する。ここでは,セル電圧制御ユニットVC0について取り上げるがその他のセル電圧制御ユニットVC1〜VCnについても同様でありその詳細な説明は繰り返さない。
【0079】
図12は、セル電圧制御ユニットVC0の回路構成を示す図である。
セル電圧制御ユニットVC0は、列状に配置されているメモリセルMCのセル電圧を可変にすることを目的とする。
【0080】
セル電圧制御ユニットVC0は、PチャンネルMOSトランジスタ600および602と、インバータ601とを含む。
【0081】
PチャンネルMOSトランジスタ600および602は、低電圧VDD#および高電圧VDDのそれぞれと電圧信号線V0との間に並列に接続される。PチャンネルMOSトランジスタ600のゲートは、電圧選択信号SV0(以下、総称して、電圧選択信号SVと称する。)を受ける。PチャンネルMOSトランジスタ602のゲートは、インバータ601を介して電圧選択信号SV0を受ける。
【0082】
セル電圧制御ユニットVC0の回路動作について説明する。
電圧選択信号SV0が「L」レベルの時には、PチャンネルMOSトランジスタ600がオンし、電圧信号線V0に低電圧VDD#が供給される。一方、電圧選択信号SV0が「H」レベルの時には、高電圧VDDが供給される。
【0083】
したがって、高電圧VDDをセル電圧として用いた場合には、高電圧VDDが供給される各メモリセルMCのドライバトランジスタの電流駆動力IDが上がるためβ比が大きくなる。一方、低電圧VDD#をセル電圧として用いた場合には、低電圧が供給される各メモリセルMCのドライバトランジスタの電流駆動力IDが下がるためB比が小さくなる。
【0084】
図13は、セル電圧制御ユニットVC0の変形例であるセル電圧制御ユニットVC#0の回路構成を示す図である。
【0085】
セル電圧制御ユニットVC#0は、インバータ603およびトランスファーゲート604を含む。
【0086】
トランスファーゲート604は、高電圧VDDと電圧信号線V0との間に設けられ、そのゲートはともに、インバータ603を介して電圧選択信号SV0の反転信号を受ける。
【0087】
セル電圧制御ユニットVC#0の回路動作について説明する。
電圧選択信号SV0が「H」レベルの場合、電圧信号線V0に供給される電圧は、高電圧VDDである。一方、電圧選択信号SV0が「L」レベルの場合、電圧信号線V0に供給される電圧は、トランスファーゲート604がオフであるため閾値電圧Vth分下がり、VDD−Vthの電圧を電圧信号線V0に供給する。
【0088】
かかる構成により、別に低電圧VDD#を設けることなく低電圧を生成することができ回路の簡素化およびレイアウト面積を小さくすることができる。
【0089】
再び図9を参照して、本発明の実施の形態4の回路動作について説明する。
ここで、ワード線WL0およびビット線対BL0および/BL0と接続されているメモリセルMCの書込および読出に注目する。
【0090】
ワード線WL0を選択する場合、ワード線選択信号EW0は、「L」レベルである。この場合、低電圧VDD#がワード線WL0に供給される。
【0091】
ここで、データ読出について考えると、各セル電圧制御ユニットVCに供給する電圧選択信号SVを「H」レベルにすることにより、高電圧VDDが電圧信号線V0〜Vmに供給され選択されたワード線WL0と接続された各メモリセルMCのβ比が増加する。したがって、メモリセルMCは、さらに安定性が保証され読出によるデータ破壊は生じない。
【0092】
次にデータ書込について考える。ここで、上述したβ比について再び考えるとβ比が増加すればそれだけメモリセルの安定性は保証されデータ破壊が起こる可能性は低くなるが、その反面あまりに高すぎると、書込が困難になる。
【0093】
そこで、書込の対象であるセル電圧制御回路400のセル電圧制御ユニットVC0については、電圧選択信号SV0を「L」レベルにすることにより、電圧信号線V0の電圧を低電圧VDD#に設定する。一方、書き込みの対象で無いセル電圧制御ユニットVC1〜VCmについては、各電圧選択信号SVを「H」レベルにすることにより電圧信号線V1〜Vmの電圧を高電圧VDDに設定する。
【0094】
かかる構成により書込の対象であるメモリセルMCに対しては、β比を下げて書込を容易にし、他の非選択のメモリセルMCに対しては、β比を上げることにより誤書込を防ぐことができる。
【0095】
本発明の実施の形態4によりメモリセルMCのセル電圧を読出、書込によって、変化させることにより、選択的にメモリセルMCの安定性と書込マージンを高めることができる。また書込時以外は、メモリセルMCのセル電圧を低電圧に低下させておくことにより、スタンバイ時のリーク電流を低減させることができる。
【0096】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0097】
【発明の効果】
請求項1および9記載の半導体記憶装置によれば、選択されたワード線と接続されているワード線制御回路の電圧を高電圧または低電圧にすることにより選択ワード線に接続されている複数の選択メモリセルのデータの書込または読出の安定性を高め、データ破壊が起こらないようにすることができる。
【0098】
請求項2および9記載の半導体記憶装置によれば、各ブロック毎に書込または読出を指示するため、各ブロックにおける選択ワード線に接続されている複数の選択メモリセルのデータの書込または読出の安定性を高め、データ破壊が起こらないようにすることができる。
【0099】
請求項3記載の半導体記憶装置によれば、各ブロックの各々において、同一の行を構成する、ワード線に対応するメインワード線と、各ブロックにおいて配置されるブロック選択線をもちいることによって、効率的に、各ブロックにおけるワード線を指定することができ、回路構成を請求項3よりも簡易にすることができる。
【0100】
請求項4記載の半導体記憶装置によれば、書込時にワード線制御回路の電圧を高電圧、読出時に低電圧とすることにより選択ワード線に接続されている複数の選択メモリセルのデータの書込または読出の安定性をさらに高めることができる。
【0101】
請求項5記載の半導体記憶装置によれば、ワード線制御回路が、電圧降下部を有することにより、低電圧源を用いることなく高電圧から低電圧を生成することができ回路構成を簡易にすることができる。
【0102】
請求項6および9記載の半導体記憶装置によれば、選択されたワード線と接続されているワード線制御回路と、列状に配置されたメモリセルの電源電圧を供給する電源電圧制御回路を設けることにより、選択ワード線に接続されている選択メモリセルのデータの書込または読出の安定性を高めることができる。
【0103】
請求項7記載の半導体記憶装置によれば、ワード線制御回路の電圧を書込および読出時にはともに第2の電源電圧にし、電源電圧制御回路は、選択メモリセルに対して書込時には、第2の電源電圧を供給し、読出時には、第1の電源電圧を供給し、非選択メモリセルに対しては,書込時には、第1の電源電圧を読出時にも第1の電源電圧を供給することにより、メモリセルの書込または読出における安定性をさらに高めることができる。
【0104】
請求項8記載の半導体記憶装置によれば、初期状態において、列毎のメモリセルのそれぞれに第2の電源電圧を供給することにより、各メモリセルにおけるリーク電流を低減することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1に従う半導体記憶装置1000の構成を示す概略ブロック図である。
【図2】 メモリセルアレイ5、入出力制御回路9および行選択回路3に含まれるワード線制御回路WC0〜WCm、の回路構成を示す図である。
【図3】 ワード線制御回路WC0の回路構成を示す図である。
【図4】 ワード線制御回路WC0の回路動作のテーブルを示す図である。
【図5】 実施の形態2に従う、ワード線制御回路WC0と置換可能なワード線制御回路WC0Aの回路構成を示す図である。
【図6】 ワード線制御回路WC0Aの回路動作のテーブルを示す図である。
【図7】 実施の形態3に従うメモリセルアレイ5#および入出力制御回路9の回路構成を示す図である。
【図8】 セルユニットCU0の回路構成を示す図である。
【図9】 本発明の実施の形態4に従うメモリセルアレイ5#1、ワード線制御回路WC#0〜WC#mおよびセル電圧制御回路400の回路構成を示す図である。
【図10】 ワード線制御回路WC#0の回路構成を示す図である。
【図11】 ワード線制御回路WC#0の変形例であるワード線制御回路WC##0の回路構成を示す図である。
【図12】 セル電圧制御ユニットVC0の回路構成を示す図である。
【図13】 セル電圧制御ユニットVC0の変形例であるセル電圧制御ユニットVC#0の回路構成を示す図である。
【図14】 SRAMのメモリセルの構成の一例を示す回路図である。
【図15】 SRAMのメモリセルの構成の他の一例を示す回路図である。
【図16】 ワード線駆動回路を用いたメモリセルアレイの一般的な回路構成である。
【符号の説明】
3 行選択回路、5 メモリセルアレイ、9 入出力制御回路、10 データ入出力回路、11 列選択回路、12 コントロール回路、1000 半導体記憶装置、400 セル電圧制御回路。

Claims (6)

  1. 行列状に配置される複数のメモリセルと、前記複数のメモリセルの行にそれぞれ対応して設けられる複数のワード線と、前記複数のメモリセルの列にそれぞれ対応して設けられる複数のビット線とを含むメモリセルアレイと、
    前記複数のワード線にそれぞれ対応して設けられ、各々は、対応するワード線が選択されると当該対応するワード線にハイレベルを供給し、対応するワード線が非選択のときはローレベルを供給する複数のワード線制御回路と、
    前記複数のメモリセルの列にそれぞれ対応して設けられ、各々は対応する列に配置されたメモリセルに接続され、メモリセルの電源となる電圧を供給する複数の電源線と、
    前記複数の電源線に接続され、前記複数の電源線のそれぞれの電圧を制御するセル電圧制御回路とを備え、
    前記複数のワード線のうちデータの書込みを対象に選択されたワード線にハイレベルが供給されるとき、前記セル電圧制御回路は、前記複数の電源線のうち非選択の列に対応する電源線には当該選択されたワード線に供給されるハイレベルの電圧よりも高い電圧を供給し、前記複数の電源線のうち選択された列に対応する電源線の電圧を前記非選択の列に対応する電源線の電圧よりも小さくする、スタティック型メモリ
  2. 前記複数のワード線のうちデータの読出しを対象に選択されたワード線にハイレベルを供給しているとき、前記セル電圧制御回路は、前記複数の電源線のそれぞれに、前記データの読出しを対象に選択されたワード線のハイレベルの電圧よりも高い電圧を供給するように制御する、請求項1に記載のスタティック型メモリ
  3. 前記データの読出しを対象に選択されたワード線には、前記データの書き込みを対象に選択されたワード線と同じ電圧のハイレベルを供給する、請求項2記載のスタティック型メモリ
  4. 前記セル電圧制御回路は、前記複数の電源にそれぞれ接続される複数のセル電源制御ユニットを有し、
    各セル電源制御ユニットは、
    その接続される電源線と電源電圧を受けるノードとの間を電気的に導通し又は非導通とする第1のトランジスタと、
    その接続される電源線と前記電源電圧よりも低い電圧を受けるノードとの間を電気的に導通し又は非導通にする第2のトランジスタとを有し、
    前記第1のトランジスタが導通するときは前記第2のトランジスタは非導通であり、前記第1のトランジスタが非導通のときは前記第2のトランジスタは導通する、請求項1記載のスタティック型メモリ
  5. 前記複数のメモリセルの各々は、
    その入力が第1の記憶ノードに接続され、その出力が第2の記憶ノードに接続される第1のインバータと、
    その入力が前記第2の記憶ノードに接続され、その出力が前記第1の記憶ノードに接続される第2のインバータと、
    そのメモリセルの配置される行に対応して設けられたワード線にゲートが接続され、前記第1の記憶ノードとそのメモリセルの配置される列に対応するビット線対の一方とを電気的に導通させる第1のN型トランジスタと、
    そのメモリセルの配置される行に対応して設けられたワード線にゲートが接続され、前記第2の記憶ノードとそのメモリセルの配置される列に対応するビット線対の他方とを電気的に導通させる第2のN型トランジスタとを有し、
    前記複数のメモリセルの各々において、前記第1及び第2のインバータは、その配置される列に対応して設けられた電源線に接続されている、請求項1乃至4のいずれか一項に記載のスタティック型メモリ
  6. 前記複数のメモリセルの各々において、
    前記第1のインバータは、
    メモリセルの配置される列に対応して設けられた電源線にそのソースが接続され、前記第2の記憶ノードにそのドレインが接続され、前記第1の記憶ノードにそのゲートが接続される第1のP型トランジスタと、
    前記第2の記憶ノードにそのドレインが接続され、前記第1の記憶ノードにそのゲートが接続される第3のN型トランジスタとを有し、
    前記第2のインバータは、
    メモリセルの配置される列に対応して設けられた電源線にそのソースが接続され、前記第1の記憶ノードにそのドレインが接続され、前記第2の記憶ノードにそのゲートが接続される第2のP型トランジスタと、
    前記第1の記憶ノードにそのドレインが接続され、前記第2の記憶ノードにそのゲートが接続される第4のN型トランジスタとを有する、請求項5記載のスタティック型メモリ
JP2001195914A 2001-06-28 2001-06-28 スタティック型メモリ Expired - Fee Related JP4895439B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001195914A JP4895439B2 (ja) 2001-06-28 2001-06-28 スタティック型メモリ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001195914A JP4895439B2 (ja) 2001-06-28 2001-06-28 スタティック型メモリ

Publications (2)

Publication Number Publication Date
JP2003016786A JP2003016786A (ja) 2003-01-17
JP4895439B2 true JP4895439B2 (ja) 2012-03-14

Family

ID=19033813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001195914A Expired - Fee Related JP4895439B2 (ja) 2001-06-28 2001-06-28 スタティック型メモリ

Country Status (1)

Country Link
JP (1) JP4895439B2 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005293751A (ja) * 2004-04-01 2005-10-20 Nippon Telegr & Teleph Corp <Ntt> 半導体メモリ
JP4553185B2 (ja) 2004-09-15 2010-09-29 ルネサスエレクトロニクス株式会社 半導体集積回路装置
JP2006190424A (ja) * 2005-01-07 2006-07-20 Nec Electronics Corp 半導体集積回路装置
JP5225453B2 (ja) * 2005-05-23 2013-07-03 ルネサスエレクトロニクス株式会社 半導体装置
CN1956098A (zh) * 2005-08-02 2007-05-02 株式会社瑞萨科技 半导体存储装置
JP2007172715A (ja) * 2005-12-20 2007-07-05 Fujitsu Ltd 半導体記憶装置およびその制御方法
JP5076462B2 (ja) * 2005-12-28 2012-11-21 ソニー株式会社 半導体メモリデバイス
JP2007234073A (ja) * 2006-02-27 2007-09-13 Fujitsu Ltd 半導体記憶装置
JP5119489B2 (ja) * 2006-03-07 2013-01-16 公益財団法人新産業創造研究機構 半導体記憶装置
US7292495B1 (en) * 2006-06-29 2007-11-06 Freescale Semiconductor, Inc. Integrated circuit having a memory with low voltage read/write operation
JP5057739B2 (ja) * 2006-10-03 2012-10-24 株式会社東芝 半導体記憶装置
JP5068088B2 (ja) * 2007-02-26 2012-11-07 ルネサスエレクトロニクス株式会社 半導体記憶装置
JP5130570B2 (ja) * 2007-06-19 2013-01-30 ルネサスエレクトロニクス株式会社 半導体記憶装置
JP2009020957A (ja) * 2007-07-12 2009-01-29 Renesas Technology Corp 半導体記憶装置
JP5263495B2 (ja) * 2008-01-25 2013-08-14 ルネサスエレクトロニクス株式会社 スタティック型半導体記憶装置
JP2009272023A (ja) * 2008-05-12 2009-11-19 Toshiba Corp 半導体記憶装置
JP5245543B2 (ja) 2008-05-28 2013-07-24 富士通株式会社 半導体記憶装置
JP2009259395A (ja) * 2009-08-06 2009-11-05 Semiconductor Energy Lab Co Ltd 表示装置及び電子機器
US9865330B2 (en) * 2010-11-04 2018-01-09 Qualcomm Incorporated Stable SRAM bitcell design utilizing independent gate FinFET
JP2011146121A (ja) * 2011-03-23 2011-07-28 Fujitsu Semiconductor Ltd 半導体記憶装置およびその制御方法
JP2013041663A (ja) * 2012-10-01 2013-02-28 Renesas Electronics Corp 半導体集積回路装置
JP5586038B2 (ja) * 2013-07-25 2014-09-10 ルネサスエレクトロニクス株式会社 半導体集積回路装置
JP2014139860A (ja) * 2014-03-28 2014-07-31 Renesas Electronics Corp 半導体集積回路装置
JP6578655B2 (ja) * 2014-12-08 2019-09-25 株式会社ソシオネクスト 半導体装置
JP2015111489A (ja) * 2015-03-13 2015-06-18 ルネサスエレクトロニクス株式会社 半導体集積回路装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564686A (en) * 1978-11-08 1980-05-15 Nec Corp Memory unit
JPS58211391A (ja) * 1982-05-31 1983-12-08 Toshiba Corp 半導体記憶装置
JPS6383992A (ja) * 1986-09-26 1988-04-14 Nec Corp Lsiメモリ
JPH023171A (ja) * 1988-06-01 1990-01-08 Sony Corp スタティックram
JP2893708B2 (ja) * 1989-04-06 1999-05-24 ソニー株式会社 半導体メモリ装置
JPH03125397A (ja) * 1989-10-11 1991-05-28 Kawasaki Steel Corp 論理定義用メモリ
JP3228759B2 (ja) * 1990-01-24 2001-11-12 セイコーエプソン株式会社 半導体記憶装置及びデータ処理装置
JPH06203570A (ja) * 1992-12-28 1994-07-22 Kawasaki Steel Corp 半導体記憶装置
JP3288189B2 (ja) * 1994-12-12 2002-06-04 三菱電機株式会社 スタティックランダムアクセスメモリ
JP2845187B2 (ja) * 1995-12-21 1999-01-13 日本電気株式会社 半導体記憶装置
JPH1027476A (ja) * 1996-04-08 1998-01-27 Texas Instr Inc <Ti> Sramセル
US6549453B2 (en) * 2001-06-29 2003-04-15 International Business Machines Corporation Method and apparatus for writing operation in SRAM cells employing PFETS pass gates

Also Published As

Publication number Publication date
JP2003016786A (ja) 2003-01-17

Similar Documents

Publication Publication Date Title
JP4895439B2 (ja) スタティック型メモリ
US8493775B2 (en) Semiconductor device
US7420834B2 (en) Semiconductor integrated circuit device
US7826253B2 (en) Semiconductor memory device and driving method thereof
US7088607B2 (en) Static memory cell and SRAM device
JP4993540B2 (ja) 半導体集積回路装置
JP4024975B2 (ja) データ伝送回路
JP3781270B2 (ja) 半導体集積回路装置
JP4005535B2 (ja) 半導体記憶装置
US7697320B2 (en) Semiconductor memory device
JP2002184870A (ja) スタティック型半導体記憶装置
JPH11219589A (ja) スタティック型半導体記憶装置
JP2005302231A (ja) スタティックランダムアクセスメモリ
US5689471A (en) Dummy cell for providing a reference voltage in a memory array
JP4245147B2 (ja) 階層ワード線方式の半導体記憶装置と、それに使用されるサブワードドライバ回路
KR100456990B1 (ko) 반도체기억장치 및 이를 사용한 정보기기
US7489581B2 (en) Semiconductor memory
JP2005078741A (ja) 半導体記憶装置
US6973002B2 (en) Semiconductor integrated circuit comprising sense amplifier activating circuit for activating sense amplifier circuit
US11514973B2 (en) Memory array with multiple power supply nodes and switch controllers for controlling power supply nodes for reliable write operation and method of operation
US8737118B2 (en) Semiconductor memory device and test method therefor
JP2019109954A (ja) 半導体記憶装置
KR100558569B1 (ko) 전력소모를 줄이기 위한 에스램
JPH0883490A (ja) 半導体記憶装置
JP2010080056A (ja) スタティック型半導体記憶装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080414

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees