JP4584351B2 - リチウムイオン電池用正極活物質、同正極活物質を用いた二次電池用正極及び二次電池正極を用いたリチウムイオン二次電池 - Google Patents

リチウムイオン電池用正極活物質、同正極活物質を用いた二次電池用正極及び二次電池正極を用いたリチウムイオン二次電池 Download PDF

Info

Publication number
JP4584351B2
JP4584351B2 JP2010504361A JP2010504361A JP4584351B2 JP 4584351 B2 JP4584351 B2 JP 4584351B2 JP 2010504361 A JP2010504361 A JP 2010504361A JP 2010504361 A JP2010504361 A JP 2010504361A JP 4584351 B2 JP4584351 B2 JP 4584351B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium ion
oil absorption
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010504361A
Other languages
English (en)
Other versions
JPWO2010064504A1 (ja
Inventor
隆一 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Application granted granted Critical
Publication of JP4584351B2 publication Critical patent/JP4584351B2/ja
Publication of JPWO2010064504A1 publication Critical patent/JPWO2010064504A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/10One-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/19Oil-absorption capacity, e.g. DBP values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、リチウムイオン電池用の正極活物質に関するもので、特に電池としての良好な機能を保有させると共に、優れた塗布性を有するリチウムイオン電池用正極活物質、同正極活物質を用いた二次電池用正極及び同二次電池用正極を用いたリチウムイオン二次電池に関する。
近年、高エネルギー密度電池として、非水系のリチウム二次電池の需要が急速に高まっている。このリチウム二次電池は、正極及び負極並びに、これらの電極間に介在する電解質を保持したセパレータの、3つの基本要素から構成されている。
正極及び負極として、活物質、導電材、結合材及び、必要に応じて可塑剤を分散媒に混合分散させたスラリーを金属箔や金属メッシュ等の集電体に担持させて使用されている。
リチウムイオン電池の正極活物質として、一般的にリチウム含有遷移金属酸化物が用いられている。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)等であり、特性改善(高容量化、サイクル特性改善、保存特性改善、内部抵抗低減、充放電特性改善)や安全性を高めるために、これらを複合化することが進められている。(特許文献1、特許文献2、特許文献3、特許文献4参照)。
最近、車載用やロードレベリング用といった大型用途では、これまでの携帯電話用やパソコン用とは異なった特性が求められ、車載用では高容量、低抵抗が、ロードレベリングでは高容量、長寿命が要求されている。
これらの特性を発現させるためには、粉体特性はもとより重要であるが、電極の製造上の課題として、塗布性は重要な因子である。少量レベルの試験で所定の特性が得られても、量産時の塗布性に問題があれば、材料として採用されないこととなる。
しかしながら、従来のリチウムイオン電池の正極活物質としては、特性改善(高容量化、サイクル特性改善、保存特性改善、内部抵抗低減、充放電特性改善)や安全性を高めることが目的で、塗布性に関心を持つ例がなかった。
上記の通り、正極活物質の塗布性は、非常に重要なことであり、たとえリチウムイオン電池の正極活物質自体が、高容量化、サイクル特性、保存特性、内部抵抗低減、充放電特性が良好であったとしても、塗布性が悪いと、集電体と正極活物質との密着が不十分で空隙が生じたり、また充放電サイクルの過程で、剥れたり空隙を生じやすくなり、抵抗値が上がり、結果として電池容量を十分に得ることができず、電池のサイクル寿命を十分に確保できないという問題が発生する。
塗工に関する技術が記載された文献として、次の特許文献がある(特許文献5参照)が、その内容は若干の記載があるに過ぎない。すなわち、この特許文献5は、リチウムイオン電池用正極活物質について吸油量を規定した先行技術として、リチウムチタン酸化物を正極活物質とし、吸油量が100g当り30g以上、60g以下とし、かつ、平均粒径1〜50um、比表面積0.5〜10m2/g、粒子投影像の円形度が0.950以上とする技術が主として紹介されている。
そして、形状が不均一となり流動性が悪くなることにより、電極作製時の導電剤や結着剤との混合時のハンドリングが悪く、均一混合が困難になること、電解液の吸収・保持が不十分であり、集電体への塗工が難しいため、サイクル特性に優れた電池が作製できないという課題を挙げ、このために二次粒子の形状を粒径の整った球状とすることで、ハンドリングが良好で集電体への塗工を良好にすること、さらに規定の範囲の吸油量とすることで、電解液を吸収、保持しやすくなり、サイクル特性に優れた電池を作製できるとされている。
そして、塗布性のうち塗工に関する部分は、正極活物質の形状を球状とすることが有効であることが若干紹介されているに過ぎない(同文献5段落[0027]参照)。
また、この場合は、吸油量は専らサイクル特性に寄与することに注目されているだけで、吸油量と塗布性との関連はない。
特開平1−294364号公報 特開平11−307094号公報 特開2005−285572号公報 特開2003−59490号公報 特開2001−192208号公報
ハイブリッド車等の車載用途あるいはロードレベリング等の据え置き型などの大型用途向けリチウムイオン電池用の正極活物質に関するもので、必要な性能を発現しつつ、塗布性に優れた正極活物質、同正極活物質を用いた二次電池用正極及び同二次電池用正極を用いたリチウムイオン二次電池を提供することを課題とするものである。
上記の課題に鑑み、本発明は以下の発明を提供するものである。
1)JIS K5101-13-1に準拠した方法で測定されたNMP(N-メチルピロリドン)に対する吸油量が、粉末100g当たり30mL以上50mL以下であり、スピネル構造又は層状構造を有するLiaFewNixMnyCozO2(1.0<a/(w+x+y+z)<1.3、0.8<w+x+y+z<1.1)で表され、かつFe, Ni, Mn, Coの成分の内、少なくとも3成分以上を含有することを特徴とするリチウムイオン電池用正極活物質
2)平均粒径が4μm以上8μm以下、比表面積が1.0m2/g以上1.6m2/g以下、タップ密度が1.5g/cm3以上2.1g/cm3以下であることを特徴とする上記1)記載のリチウムイオン電池用正極活物質
3)上記1)又は2)記載の正極活物質を用いたリチウムイオン二次電池用正極
4)上記3)記載のリチウムイオン二次電池用正極を用いたリチウムイオン二次電池
5)リチウムイオン電池が、車載又はロードレベリングなどの大型電池に用いることを特徴とする上記4)記載のリチウムイオン二次電池
本発明のリチウムイオン電池用正極活物質は、JIS K5101-13-1に準拠した方法で測定されたNMP(N-メチルピロリドン)に対する吸油量を、粉末100g当たり30mL以上50mL以下とすることにより、塗布性に優れかつ高い電池特性を有する正極活物質を提供できるという優れた効果を有する。
本発明は、大型用途リチウムイオン電池用正極活物質は、特性の発現もさることながら、その塗布性が重要な因子として認識し、塗布性に関与する吸油量、特に塗布時に多く使用されるNMPに対する吸油量と塗布性、粉体特性および特性発現の関係を規定することにより、塗布性に優れかつ高い電池特性を有する正極活物質を提供するものである。
本発明のリチウムイオン電池用正極活物質は、JIS K5101-13-1に準拠した方法で測定されたNMP(N-メチルピロリドン)に対する吸油量が、粉末100gあたり30mL以上50mL以下であり、スピネル構造又は層状構造を有するLiaFewNixMnyCozO2(1.0<a/(w+x+y+z)<1.3、0.8<w+x+y+z<1.1)で表され、かつFe, Ni, Mn, Coの成分の内、少なくとも3成分以上を含有する。
ここでいう塗布性とは、単にペーストを集電体などに塗布するときの性状を云うのではない。均一にかつ滑らかに塗布できるペーストを使用するのは当然である。
本発明で特に問題とするのは、集電体に均一にかつ表面を滑らかに塗布した後、乾燥してペースト内の溶剤を取り除いたものをプレスして正極とするのであるが、そのプレス後の表面が剥がれたり、凹凸となったりすることを問題とする。すなわち、本発明の塗布性は、塗布した後の接着性、密着性が良好であることを意味するものである。
この場合、集電体と正極活物質との密着性が不十分で空隙が生じたり、あるいは充放電サイクルの過程で剥がれたり空隙が生じやすいため、抵抗値が上がり、電池容量を十分に得ることが出来ず、かつ、電池のサイクル寿命が十分に確保できない。
発明者らは、このような量産時に問題となる塗布性に着目し、電池の特性を満足しつつ、かつ塗布性に優れた粉体特性を詳細に検討した。その結果、JIS K5101-13-1に準拠した方法で測定されたNMP(N-メチルピロリドン)に対する吸油量が特定の範囲内にある所定の組成のリチウム含有遷移金属酸化物を使用することで、高容量かつ低抵抗でサイクル寿命にも優れることを見出した。
吸油量が粉末100g当たり30mL未満であると、下記の実施例に示すように、塗布性が十分でない。また、吸油量が粉末100g当たり50mLを超える場合も同様に塗布性が悪くなる。すなわち適度な吸油量が存在する。
この吸油量が粉末100g当たり30mL以上50mL以下である。従来の粒度分布、比表面積やタップ密度といったバルクの粉体特性では現れてこなかった材料表面の特性を簡便に把握する手段として、吸油量は有効な手段である。
提供する正極材は、リチウム含有遷移金属酸化物である。周期表内の遷移金属の1種または1種以上を有するリチウムとの複合酸化物で、特に遷移金属としてはMn、Fe、Co、Niが好ましい。結晶構造は特に制限する必要はないが、リチウムの挿入・脱離が可能な構造であれば問題ない。通常、スピネル構造若しくは層状構造が好ましい。
また、全金属に対するLiの比率は1.0を超え1.3未満であることが望ましい。1.0以下では安定した結晶構造を保持しにくく、1.3以上では高容量が確保できなくなるからである。すなわち、(1.0<a/(w+x+y+z)<1.3、0.8<w+x+y+z<1.1)とする範囲にすることが必要である。
JIS K5101-13-1による吸油量の測定は以下の方法で行う。一定量のサンプル(5g)をガラス板等の測定板におき、吸収される油(この場合はNMP)をビュレットで一回4、5滴ずつ徐々に加える。その都度、パレットナイフで油をサンプルに練りこむ。
これを繰り返し、油とサンプルの塊ができるまで滴下を続ける。以後、1滴ずつ滴下し、完全に混練するように繰り返す。そして、ペーストが滑らかな硬さになったところを終点とする。このペーストは割れたり、ぼろぼろになったりせずに広げることができ、かつ測定板に軽く付着する程度のものとする。終点までに要する時間は20〜25分間になるようにする。終点までの滴下量をサンプル100gあたりに換算し吸油量とする。
さらに、粉体特性において、平均粒径が4μm以上、8μm以下であり、比表面積が1.0m2/g以上1.6m2/g以下であり、タップ密度が1.5 g/cm3以上2.1 g/cm3以下であることが好ましい。望ましくは、平均粒径が5μm以上7μm以下であり、比表面積が1.1m2/g以上1.5m2/g以下であり、タップ密度が1.6 g/cm3以上2.1 g/cm3以下である。これらの範囲を逸脱すると、高容量を確保しにくくなり、かつ塗布性に影響が現われる場合がある。
すなわち、平均粒径が4μm以上8μm以下、比表面積が1.0m2/g以上1.6m2/g以下、タップ密度が1.5g/cm3以上2.1g/cm3以下とすること、すなわち平均粒径、比表面積、タップ密度を特定の範囲とすることで、さらに高容量、低抵抗、サイクル寿命に優れた材料を得ることが可能となる。
これらの正極活物質を用いて、リチウムイオン電池用の正極を作製し、さらに、この正極を用いてリチウムイオン電池を製造することができる。
以下、実施例及び比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例のみに制限されるものではない。すなわち、本発明の技術思想に含まれる他の態様または変形を包含するものである。
(実施例1及び比較例1)
Ni、Mn、Coの塩化物溶液と炭酸リチウムを使用した湿式法によって前駆体である炭酸塩を作製した。これを乾燥後、酸化処理して、正極材料を作製した。正極材中のLi、Ni、Mn、Co含有量はICPで測定し、Ni:Mn:Co=1:1:1であり、Liと全金属との比(Li/金属比)は1.05であることを確認した。これは、代表的な正極材料である。
酸化処理の条件を種々変更して、表1に示す吸油量の正極材料を作製した。吸油量の測定はJIS K5101-13-1に準拠して行った。
平均粒径はレーザー回折法による粒度分布における50%径とし、比表面積はBET値を、タップ密度は200回タップ後の密度とした。これらの結果を表1に記載した。
Figure 0004584351
この正極材料と導電材としてアセチレンブラック、バインダーとしてポリフッ化ビニリデンを用い、それぞれ85:8:7の割合で秤量し、バインダーを有機溶媒(N-メチルピロリドン)に溶解したものに、材料と導電材を混合してスラリー化し、Al箔上に塗布して乾燥後にプレスして正極とする。
プレス後の塗布の状態を目視で確認し、塗布面の平滑性、塗布の容易さやプレスした膜のはがれの有無等から○×で評価した。プレス後の膜にはがれがなく、膜表面が平滑であるものを○とし、塗布面に筋(すじ)が発生したもの、又は剥がれにより表面に凹凸ができたものは×と判断した。
対極をLiとした評価用の2032型コインセルを作製し、電解液に1M−LiPF6をEC-DMC(1:1)に溶解したものを用いて、充電条件を4.3V、放電条件を3.0Vで充放電を行った。初期放電容量の確認は0.1Cでの充放電での放電容量で確認した。この結果を同様に表1にまとめた。
表1に示す試料番号5A〜10Aが実施例1であり、及び試料番号1B〜4B及び試料番号11Bが比較例1である。
試料番号1B〜4BのNMP吸油量はいずれも20mL/100gであり、塗布性はいずれも×となった。なお、試料番号11BのNMP吸油量は60mL/100gであるが、塗布性は×となった。すなわち、過剰な吸油量は、塗布性は悪いという結果となった。なお、平均粒径、比表面積、タップ密度について、本願請求項2で規定する範囲を外れるものについては、初期放電容量が一層低くなる傾向があり、傾向としては、充放電特性の低下が、塗布性の不良に加算されて悪くなる傾向が見られた。
これに対して、本願発明の範囲にある試料番号5A〜10A(実施例1)のNMP吸油量は、いずれも30mL/100g〜50mL/100gであり、塗布性は何れも良好であり、○となった。なお、平均粒径、比表面積、タップ密度については、本願請求項2で規定する範囲をやや外れるものについては、初期放電容量が若干低くなる傾向があるが、本質的なものでないことが分かる。
すなわち、吸油量が本願発明の範囲に入るものについては、平均粒径、比表面積、タップ密度の若干の変更は、初期放電容量に対して大きく影響しないことが分かる。しかし、平均粒径、比表面積、タップ密度もまた、本願発明の好適な範囲にあることが良いことは云うまでもない。
(実施例2及び比較例2)
Fe、Ni、Mn、Coの塩化物溶液と炭酸リチウムを使用した湿式法によって前駆体である炭酸塩を作製した。これを乾燥後、酸化処理の条件を種々変更して、表2の組成の正極材料LiaFewNixMnyCozO2を作製した。正極材中のLi、Fe、Ni、Mn、Co含有量はICPで測定した。
吸油量の測定はJIS K5101-13-1に準拠して行った。平均粒径はレーザー回折法による粒度分布における50%径とし、比表面積はBET値を、タップ密度は200回タップ後の密度とした。これらの結果を、表2に記載した。
Figure 0004584351
この正極材料と導電材としてアセチレンブラック、バインダーとしてポリフッ化ビニリデンを用い、それぞれ85:8:7の割合で秤量し、バインダーを有機溶媒(N-メチルピロリドン)に溶解したものに、材料と導電材を混合してスラリー化し、Al箔上に塗布して乾燥後にプレスして正極としたものである。
プレス後の塗布の状態を目視で確認し、塗布面の平滑性、塗布の容易さやプレスした膜のはがれの有無等から○×で評価した。プレス後の膜にはがれがなく、膜表面が平滑であるものを○とし、塗布面に筋(すじ)が発生したもの、又は剥がれにより表面に凹凸ができたものは×と判断した。
対極をLiとした評価用の2032型コインセルを作製し、電解液に1M−LiPF6をEC-DMC(1:1)に溶解したものを用いて、充電条件を4.3V、放電条件を3.0Vで充放電を行った。初期放電容量の確認は0.1Cでの充放電での放電容量で確認した。この結果を同様に、表2にまとめた。
表2に示す試料番号21B、23B、27B、29Bが比較例2で、試料番号22A、24A´、25A、26A´、28A´が本願発明に含まれる実施例2である。
試料番号21Bは、a/(w+x+y+z)がやや小さく、吸油量が小さい。この結果、塗布性が劣っている。金属元素とLiの組成(w+x+y+z、a/(w+x+y+z))のいずれかが本願請求項1で規定する範囲を外れるものである。組成が本願発明の範囲から外れる場合は、初期放電容量が低くなる傾向がある。
23B、27B、29Bも同様に吸油量が小さい。この結果、塗布性が劣っている。
これに対して、試料番号22A、24A´、25A、26A´、28A´はいずれも吸油量が大きく、この結果、塗布性が向上している。
すなわち、金属元素とLiの組成(w+x+y+z、a/(w+x+y+z))について、本願請求項1で規定した範囲から外れた場合は、初期放電容量は低くなる傾向がある。金属元素とLiの組成(w+x+y+z、a/(w+x+y+z))組成が本願請求項1で規定する範囲であるものは、充放電容量も高い結果を得ている。なお、平均粒径、比表面積、タップ密度については、試料番号28A´を除き本願請求項2で規定する範囲内であるが、この場合は、初期放電容量が若干低くなる。しかし、それは本質的な問題でないことが分かる。平均粒径、比表面積、タップ密度については、本願請求項2で規定する範囲内にあることが好ましいことは言うまでもない。
組成については請求項範囲内である場合で、金属元素の違いによる影響を、以下の実施例で説明する。
(実施例3及び比較例3)
Ni、Mn、Feの塩化物溶液と炭酸リチウムを使用した湿式法によって前駆体である炭酸塩を作製した。これを乾燥後、酸化処理して、正極材料を作製した。正極材中のLi、Ni、Mn、Fe含有量はICPで測定し、Ni:Mn:Fe=6:3:1であり、Liと全金属との比(Li/金属比)は1.02であることを確認した。
酸化処理の条件を種々変更して、表3に示す吸油量の正極材料を作製した。
吸油量、平均粒径、比表面積およびタップ密度の測定は上記実施例と同様の方法で行い、これらの結果を表3に記載した。
また、正極の製造方法とプレス後の塗布状況の評価及びコインセルでの初期放電容量評価についても上記実施例と同様の方法で行い、この結果を表3にまとめた。
Figure 0004584351
表3に示す試料番号34A、35A、36A´、37A´、38A´、39Aが本願発明に含まれる実施例3である。これに対し、試料番号30B、31B、32B、33B、39Bが比較例3である。
試料番号30B、31B、32B、33Bの比較例3のNMP吸油量はいずれも20mL/100gであり、塗布性はいずれも×となった。なお、39BのNMP吸油量は60mL/100gであるが、塗布性は×となった。すなわち、過剰な吸油量は、塗布性は悪いという結果となった。なお、平均粒径、比表面積、タップ密度について、本願請求項2で規定する範囲を外れるものについては、初期放電容量が一層低くなる傾向があり、傾向としては、充放電特性の低下が、塗布性の不良に加算されて悪くなる傾向が見られた。
これに対して、本願発明の範囲にある試料番号34A、35A、36A´、37A´、38A´、39AのNMP吸油量はいずれも30mL/100g〜50mL/100gであり、塗布性は何れも良好であり、○となった。なお、平均粒径、比表面積、タップ密度については、本願請求項2で規定する範囲をやや外れるものについては、初期放電容量が若干低くなる傾向があるが、本質的なものでないことが分かる。
すなわち、吸油量が本願発明の範囲に入るものについては、平均粒径、比表面積、タップ密度の若干の変更は、初期放電容量に対して大きく影響しないことが分かる。しかし、平均粒径、比表面積、タップ密度もまた、本願発明の好適な範囲にあることが良いことは云うまでもない。
(実施例4及び比較例4)
Ni、Co、Feの塩化物溶液と炭酸リチウムを使用した湿式法によって前駆体である炭酸塩を作製した。これを乾燥後、酸化処理して、正極材料を作製した。正極材中のLi、Ni、Co、Fe含有量はICPで測定し、Ni:Co:Fe=7:2:1であり、Liと全金属との比(Li/金属比)は1.04であることを確認した。
酸化処理の条件を種々変更して、表4に示す吸油量の正極材料を作製した。吸油量、平均粒径、比表面積およびタップ密度の測定は上記実施例と同様の方法で行い、これらの結果を表4に記載した。
また、正極の製造方法とプレス後の塗布状況の評価及びコインセルでの初期放電容量評価についても上記実施例と同様の方法で行い、この結果を表4にまとめた。
Figure 0004584351
表4に示す試料番号44A、45A、46A´、47A´、48A´、49Aが本願発明に含まれる実施例である。これに対して、試料番号40B−43B、49Bは、本願発明から逸脱する比較例である。
試料番号40B−43Bの比較例4のNMP吸油量はいずれも20mL/100gであり、塗布性はいずれも×となった。なお、49B比較例のNMP吸油量は60mL/100gであるが、塗布性は×となった。すなわち、過剰な吸油量は、塗布性は悪いという結果となった。なお、平均粒径、比表面積、タップ密度について、本願請求項2で規定する範囲を外れるものについては、初期放電容量が一層低くなる傾向があり、傾向としては、充放電特性の低下が、塗布性の不良に加算されて悪くなる傾向が見られた。
これに対して、本願発明の範囲にある試料番号44A、45A、46A´、47A´、48A´、49A実施例4のNMP吸油量はいずれも30mL/100g〜50mL/100gであり、塗布性は何れも良好であり、○となった。なお、平均粒径、比表面積、タップ密度については、本願請求項2で規定する範囲をやや外れるものについては、初期放電容量が若干低くなる傾向があるが、本質的なものでないことが分かる。
すなわち、吸油量が本願発明の範囲に入るものについては、平均粒径、比表面積、タップ密度の若干の変更は、初期放電容量に対して大きく影響しないことが分かる。しかし、平均粒径、比表面積、タップ密度もまた、本願発明の好適な範囲にあることが良いことは云うまでもない。
(実施例5及び比較例5)
Mn、Co、Feの塩化物溶液と炭酸リチウムを使用した湿式法によって前駆体である炭酸塩を作製した。これを乾燥後、酸化処理して、正極材料を作製した。正極材中のLi、Mn、Co、Fe含有量はICPで測定し、Mn:Co:Fe=1:8:1であり、Liと全金属との比(Li/金属比)は1.02であることを確認した。
酸化処理の条件を種々変更して、表5に示す吸油量の正極材料を作製した。
吸油量、平均粒径、比表面積およびタップ密度の測定は上記実施例と同様の方法で行い、これらの結果を表5に記載した。
また、正極の製造方法とプレス後の塗布状況の評価及びコインセルでの初期放電容量評価についても上記実施例と同様の方法で行い、この結果を表5にまとめた。
Figure 0004584351
表5に示す試料番号54A、55A、56A´、57A´、58A´、59A´が本願発明に含まれる実施例5である。これに対して、試料番号50B、51B、52B、53B、59Bは比較例5である。
試料番号50B、51B、52B、53B(比較例5)のNMP吸油量はいずれも20mL/100gであり、塗布性はいずれも×となった。なお、この比較例のおける試料番号59BのNMP吸油量は60mL/100gであるが、塗布性は×となった。すなわち、過剰な吸油量は、塗布性は悪いという結果となった。なお、平均粒径、比表面積、タップ密度について、本願請求項2で規定する範囲を外れるものについては、初期放電容量が一層低くなる傾向があり、傾向としては、充放電特性の低下が、塗布性の不良に加算されて悪くなる傾向が見られた。
これに対して、本願発明の範囲にある試料番号54A、55A、56A´、57A´、58A´、59A´のNMP吸油量はいずれも30mL/100g〜50mL/100gであり、塗布性は何れも良好であり、○となった。なお、平均粒径、比表面積、タップ密度については、本願請求項2で規定する範囲をやや外れるものについては、初期放電容量が若干低くなる傾向があるが、本質的なものでないことが分かる。
すなわち、吸油量が本願発明の範囲に入るものについては、平均粒径、比表面積、タップ密度の若干の変更は、初期放電容量に対して大きく影響しないことが分かる。しかし、平均粒径、比表面積、タップ密度もまた、本願発明の好適な範囲にあることが良いことは云うまでもない。
(実施例6及び比較例6)
Fe、Ni、Mn、Coの塩化物溶液と炭酸リチウムを使用した湿式法によって前駆体である炭酸塩を作製した。これを乾燥後、酸化処理して、正極材料を作製した。正極材中のLi、Mn、Co、Fe含有量はICPで測定し、Fe:Ni:Mn:Co=1:6:1:2であり、Liと全金属との比(Li/金属比)は1.05であることを確認した。
酸化処理の条件を種々変更して、表6に示す吸油量の正極材料を作製した。
吸油量、平均粒径、比表面積およびタップ密度の測定は上記実施例と同様の方法で行い、これらの結果を表6に記載した。
また、正極の製造方法とプレス後の塗布状況の評価及びコインセルでの初期放電容量評価についても上記実施例と同様の方法で行い、この結果を表6にまとめた。
Figure 0004584351
表6に示す試料番号64A、65A、66A´、67A´、68A´、69Aが本願発明に含まれる実施例6である。これに対し、試料番号60B、61B、62B、63B、69Bが比較例6である。
試料番号60B、61B、62B、63B(比較例6)のNMP吸油量はいずれも20mL/100gであり、塗布性はいずれも×となった。なお、比較例6に含まれる69BのNMP吸油量は60mL/100gであるが、塗布性は×となった。すなわち、過剰な吸油量は、塗布性は悪いという結果となった。なお、平均粒径、比表面積、タップ密度について、本願請求項2で規定する範囲を外れるものについては、初期放電容量が一層低くなる傾向があり、傾向としては、充放電特性の低下が、塗布性の不良に加算されて悪くなる傾向が見られた。
これに対して、本願発明の範囲にある試料番号64A、65A、66A´、67A´、68A´、69A(実施例6)のNMP吸油量はいずれも30mL/100g〜50mL/100gであり、塗布性は何れも良好であり、○となった。なお、平均粒径、比表面積、タップ密度については、本願請求項2で規定する範囲をやや外れるものについては、初期放電容量が若干低くなる傾向があるが、本質的なものでないことが分かる。
すなわち、吸油量が本願発明の範囲に入るものについては、平均粒径、比表面積、タップ密度の若干の変更は、初期放電容量に対して大きく影響しないことが分かる。しかし、平均粒径、比表面積、タップ密度もまた、本願発明の好適な範囲にあることが良いことは云うまでもない。
以上の実施例と比較例の対比から、本願発明の実施例に示すものは、いずれもリチウムイオン電池正極材用正極活物質として優れた物質であることが分かる。
なお、正極材の組成(w, x, y, z)、導電材の種類(アセチレンブラック、黒鉛など)、バインダーの種類(ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアクリルアミド樹脂など)によらず、吸油量と塗布性は、ほぼ同じ傾向が見られた。
本発明のリチウムイオン電池用正極活物質は、JIS K5101-13-1に準拠した方法で測定されたNMP(N-メチルピロリドン)に対する吸油量を、粉末100g当たり30mL以上50mL以下とすることにより、塗布性に優れかつ高い電池特性を有する正極活物質を提供できるという優れた効果を有するので、今後需要が見込まれる大型用途向けのリチウムイオン電池の正極材にとって有益である。

Claims (5)

  1. JIS K5101-13-1に準拠した方法で測定されたNMP(N-メチルピロリドン)に対する吸油量が、粉末100g当たり30mL以上50mL以下であり、スピネル構造又は層状構造を有するLiaFewNixMnyCozO2(1.0<a/(w+x+y+z)<1.3、0.8<w+x+y+z<1.1)で表され、かつFe, Ni, Mn, Coの成分の内、少なくとも3成分以上を含有することを特徴とするリチウムイオン電池用正極活物質。
  2. 平均粒径が4μm以上8μm以下、比表面積が1.0m2/g以上1.6m2/g以下、タップ密度が1.5g/cm3以上2.1g/cm3以下であることを特徴とする請求項1記載のリチウムイオン電池用正極活物質。
  3. 上記請求項1又は2記載の正極活物質を用いたリチウムイオン二次電池用正極。
  4. 上記請求項3記載のリチウムイオン二次電池用正極を用いたリチウムイオン二次電池。
  5. リチウムイオン電池が、車載又はロードレベリングなどの大型電池に用いることを特徴とする請求項4記載のリチウムイオン二次電池。
JP2010504361A 2008-12-05 2009-10-26 リチウムイオン電池用正極活物質、同正極活物質を用いた二次電池用正極及び二次電池正極を用いたリチウムイオン二次電池 Active JP4584351B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008310555 2008-12-05
JP2008310555 2008-12-05
PCT/JP2009/068339 WO2010064504A1 (ja) 2008-12-05 2009-10-26 リチウムイオン電池用正極活物質、同正極活物質を用いた二次電池用正極及び二次電池正極を用いたリチウムイオン二次電池

Publications (2)

Publication Number Publication Date
JP4584351B2 true JP4584351B2 (ja) 2010-11-17
JPWO2010064504A1 JPWO2010064504A1 (ja) 2012-05-10

Family

ID=42233158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010504361A Active JP4584351B2 (ja) 2008-12-05 2009-10-26 リチウムイオン電池用正極活物質、同正極活物質を用いた二次電池用正極及び二次電池正極を用いたリチウムイオン二次電池

Country Status (7)

Country Link
US (1) US20110065002A1 (ja)
EP (1) EP2365565A4 (ja)
JP (1) JP4584351B2 (ja)
KR (1) KR101250710B1 (ja)
CN (1) CN102067362B (ja)
TW (1) TWI484688B (ja)
WO (1) WO2010064504A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102361359B1 (ko) 2020-09-30 2022-02-14 스미토모 오사카 세멘토 가부시키가이샤 리튬 이온 이차 전지용 정극 재료, 리튬 이온 이차 전지용 정극, 리튬 이온 이차 전지

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9136533B2 (en) 2006-01-20 2015-09-15 Jx Nippon Mining & Metals Corporation Lithium nickel manganese cobalt composite oxide and lithium rechargeable battery
JP5246777B2 (ja) * 2006-07-27 2013-07-24 Jx日鉱日石金属株式会社 リチウム含有遷移金属酸化物ターゲット及びその製造方法並びにリチウムイオン薄膜二次電池
EP2264814A4 (en) * 2008-04-17 2016-08-17 Jx Nippon Mining & Metals Corp POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM-ION BATTERY, POSITIVE ELECTRODE FOR RECHARGEABLE BATTERY, AND LITHIUM-ION BATTERY
CN102246333A (zh) * 2009-09-18 2011-11-16 松下电器产业株式会社 非水电解质二次电池用电极及其制造方法以及非水电解质二次电池
JP5594379B2 (ja) 2013-01-25 2014-09-24 トヨタ自動車株式会社 二次電池用正極、二次電池用正極の製造方法、及び、全固体二次電池
JP6028630B2 (ja) 2013-03-12 2016-11-16 ソニー株式会社 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
KR20160124200A (ko) 2014-03-26 2016-10-26 제이엑스금속주식회사 LiCoO2 스퍼터링 타깃 및 그 제조 방법, 그리고 정극재 박막
US10833328B2 (en) 2014-06-10 2020-11-10 Umicore Positive electrode materials having a superior hardness strength
JP6055453B2 (ja) * 2014-10-20 2016-12-27 住友大阪セメント株式会社 正極材料およびリチウムイオン電池
JP6430427B2 (ja) * 2016-03-17 2018-11-28 Jx金属株式会社 コバルト酸リチウム焼結体及び該焼結体を用いて作製されるスパッタリングターゲット及びコバルト酸リチウム焼結体の製造方法並びにコバルト酸リチウムからなる薄膜
EP4032859A4 (en) * 2019-09-19 2023-10-18 Sumitomo Metal Mining Co., Ltd. ACTIVE MATERIAL OF POSITIVE ELECTRODE FOR LITHIUM-ION SECONDARY BATTERY AND LITHIUM-ION SECONDARY BATTERY
CN114424367A (zh) * 2019-09-19 2022-04-29 住友金属矿山株式会社 锂离子二次电池用正极活性物质以及锂离子二次电池
CN114424369B (zh) * 2019-09-19 2024-10-01 住友金属矿山株式会社 锂离子二次电池用正极活性物质以及锂离子二次电池
CN113285069B (zh) * 2021-05-19 2022-04-12 蜂巢能源科技有限公司 一种铁锰基正极材料及其制备方法和应用
WO2023039748A1 (zh) * 2021-09-15 2023-03-23 宁德新能源科技有限公司 一种电化学装置和电子装置
JP2024115038A (ja) * 2023-02-14 2024-08-26 トヨタ自動車株式会社 非水電解質二次電池
CN118032593B (zh) * 2024-04-10 2024-07-23 瑞浦兰钧能源股份有限公司 一种颗粒辊压粘结强度的评估方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321227A (ja) * 1997-05-23 1998-12-04 Asahi Chem Ind Co Ltd 非水電解質二次電池
JP2001192208A (ja) * 1999-06-03 2001-07-17 Titan Kogyo Kk リチウムチタン複合酸化物及びその製造方法、並びにその用途
JP2005123180A (ja) * 2003-09-26 2005-05-12 Mitsubishi Chemicals Corp リチウム二次電池正極材用リチウム複合酸化物粒子及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2005310421A (ja) * 2004-04-19 2005-11-04 Nikko Materials Co Ltd リチウムイオン二次電池用正極材料
JP2005340186A (ja) * 2004-04-27 2005-12-08 Mitsubishi Chemicals Corp リチウム二次電池正極材料用層状リチウムニッケルマンガンコバルト系複合酸化物粉体及びその製造方法と、それを用いたリチウム二次電池用正極、並びにリチウム二次電池
JP2007280723A (ja) * 2006-04-05 2007-10-25 Hitachi Metals Ltd リチウム二次電池用の正極活物質の製造方法、リチウム二次電池用の正極活物質及びそれを用いた非水系リチウム二次電池

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2699176B2 (ja) 1988-05-20 1998-01-19 日立マクセル 株式会社 リチウム二次電池
TW363940B (en) * 1996-08-12 1999-07-11 Toda Kogyo Corp A lithium-nickle-cobalt compound oxide, process thereof and anode active substance for storage battery
CN1188924C (zh) * 1999-06-21 2005-02-09 株式会社东芝 二次电池用正极活性物质及制法、用其制的非水电解液二次电池、再生电子功能材料及其再生方法
US6677082B2 (en) * 2000-06-22 2004-01-13 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
JP4592931B2 (ja) * 2000-11-30 2010-12-08 Jx日鉱日石金属株式会社 リチウム二次電池用正極材料及び及びその製造方法
EP1225650A3 (en) * 2001-01-23 2003-08-27 Kabushiki Kaisha Toshiba Positive electrode active material and lithium ion secondary battery
WO2002086993A1 (fr) * 2001-04-20 2002-10-31 Yuasa Corporation Matiere active anodique et son procede de production, anode pour pile secondaire a electrolyte non aqueux et pile secondaire a electrolyte non aqueux
US6964828B2 (en) * 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
JP2003059490A (ja) 2001-08-17 2003-02-28 Tanaka Chemical Corp 非水電解質二次電池用正極活物質及びその製造方法
JP4077647B2 (ja) * 2002-04-08 2008-04-16 日鉱金属株式会社 酸化マンガンの製造方法
JP4172622B2 (ja) * 2002-04-11 2008-10-29 日鉱金属株式会社 リチウム含有複合酸化物並びにその製造方法
JP4292761B2 (ja) * 2002-07-23 2009-07-08 日鉱金属株式会社 リチウム二次電池用正極材料の製造方法
TWI279019B (en) * 2003-01-08 2007-04-11 Nikko Materials Co Ltd Material for lithium secondary battery positive electrode and manufacturing method thereof
WO2004102702A1 (ja) * 2003-05-13 2004-11-25 Mitsubishi Chemical Corporation 層状リチウムニッケル系複合酸化物粉体及びその製造方法
JP4740409B2 (ja) * 2003-06-11 2011-08-03 株式会社日立製作所 電気自動車或いはハイブリット自動車用リチウム二次電池
KR100563047B1 (ko) * 2003-07-24 2006-03-24 삼성에스디아이 주식회사 양극 활물질 및 이를 이용한 리튬 2차 전지
CN100492728C (zh) * 2003-09-26 2009-05-27 三菱化学株式会社 用于锂二次电池正极材料的锂复合氧化物颗粒、使用该颗粒的锂二次电池正极以及锂二次电池
EP1667260A4 (en) * 2003-09-26 2007-10-03 Mitsubishi Chem Corp LITHIUM COMPOSITE OXIDE PARTICLE FOR POSITIVE ELECTRODE MATERIAL WITH LITHIUM ACCUMULATOR CONTAINING SAME, POSITIVE ELECTRODE FOR LITHIUM ACCUMULATOR, AND LITHIUM ACCUMULATOR
EP1690838B1 (en) * 2003-11-17 2011-02-16 National Institute of Advanced Industrial Science and Technology Nanocrystal oxide/glass composite mesoporous powder or thin film, process for producing the same, and utilizing the powder or thin film, various devices, secondary battery and lithium storing device
JP2005197002A (ja) * 2003-12-26 2005-07-21 Hitachi Ltd リチウムイオン二次電池
CN100338800C (zh) * 2004-02-17 2007-09-19 比亚迪股份有限公司 一种锂电池正极及其制备方法以及锂离子二次电池
JP4916094B2 (ja) 2004-03-30 2012-04-11 Jx日鉱日石金属株式会社 リチウムイオン二次電池正極材料用前駆体とその製造方法並びにそれを用いた正極材料の製造方法
JP4686998B2 (ja) * 2004-03-30 2011-05-25 パナソニック株式会社 正極活物質の評価方法
ATE523906T1 (de) * 2004-04-27 2011-09-15 Mitsubishi Chem Corp Schicht-lithium-nickel-mangan-kobalt- verbundoxidpulver für das material einer positivelektrode einer lithium-sekundärbatterie, herstellungsprozess dafür, positive elektrode einer lithium-sekundärbatterie daraus und lithium-sekundärbatterie
CN100456535C (zh) * 2004-11-02 2009-01-28 日矿金属株式会社 锂二次电池用正极材料及其制造方法
WO2006085467A1 (ja) * 2005-02-08 2006-08-17 Mitsubishi Chemical Corporation リチウム二次電池及びその正極材料
US9136533B2 (en) * 2006-01-20 2015-09-15 Jx Nippon Mining & Metals Corporation Lithium nickel manganese cobalt composite oxide and lithium rechargeable battery
JP5246777B2 (ja) * 2006-07-27 2013-07-24 Jx日鉱日石金属株式会社 リチウム含有遷移金属酸化物ターゲット及びその製造方法並びにリチウムイオン薄膜二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321227A (ja) * 1997-05-23 1998-12-04 Asahi Chem Ind Co Ltd 非水電解質二次電池
JP2001192208A (ja) * 1999-06-03 2001-07-17 Titan Kogyo Kk リチウムチタン複合酸化物及びその製造方法、並びにその用途
JP2005123180A (ja) * 2003-09-26 2005-05-12 Mitsubishi Chemicals Corp リチウム二次電池正極材用リチウム複合酸化物粒子及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2005310421A (ja) * 2004-04-19 2005-11-04 Nikko Materials Co Ltd リチウムイオン二次電池用正極材料
JP2005340186A (ja) * 2004-04-27 2005-12-08 Mitsubishi Chemicals Corp リチウム二次電池正極材料用層状リチウムニッケルマンガンコバルト系複合酸化物粉体及びその製造方法と、それを用いたリチウム二次電池用正極、並びにリチウム二次電池
JP2007280723A (ja) * 2006-04-05 2007-10-25 Hitachi Metals Ltd リチウム二次電池用の正極活物質の製造方法、リチウム二次電池用の正極活物質及びそれを用いた非水系リチウム二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102361359B1 (ko) 2020-09-30 2022-02-14 스미토모 오사카 세멘토 가부시키가이샤 리튬 이온 이차 전지용 정극 재료, 리튬 이온 이차 전지용 정극, 리튬 이온 이차 전지
EP3978441A1 (en) 2020-09-30 2022-04-06 Sumitomo Osaka Cement Co., Ltd. Positive electrode material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery

Also Published As

Publication number Publication date
TW201025708A (en) 2010-07-01
CN102067362B (zh) 2013-12-25
KR20110025809A (ko) 2011-03-11
EP2365565A1 (en) 2011-09-14
EP2365565A4 (en) 2013-07-03
WO2010064504A1 (ja) 2010-06-10
CN102067362A (zh) 2011-05-18
JPWO2010064504A1 (ja) 2012-05-10
KR101250710B1 (ko) 2013-04-03
US20110065002A1 (en) 2011-03-17
TWI484688B (zh) 2015-05-11

Similar Documents

Publication Publication Date Title
JP4584351B2 (ja) リチウムイオン電池用正極活物質、同正極活物質を用いた二次電池用正極及び二次電池正極を用いたリチウムイオン二次電池
JP7150381B2 (ja) リチウム二次電池用正極活物質、この製造方法及びこれを含むリチウム二次電池
JP6207153B2 (ja) リチウム電池用の正極素材、それから得られる正極、及び該正極を採用したリチウム電池
JP4287901B2 (ja) 非水電解質二次電池用正極活物質、正極及び二次電池
JP3585122B2 (ja) 非水系二次電池とその製造法
JP6129404B2 (ja) リチウム二次電池用負極活物質、この製造方法、及びこれを含むリチウム二次電池
JP2005251716A (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極合剤および非水電解質二次電池
JP6063570B2 (ja) 非水電解質二次電池用正極活物質、並びに該正極活物質を使用した正極及び二次電池
JP2005294011A (ja) 非水電解質二次電池
JPWO2018110263A1 (ja) 複合黒鉛粒子、その製造方法及びその用途
KR20110118225A (ko) 고용량 리튬이차전지의 활성화 방법
JP4740415B2 (ja) 電気自動車或いはハイブリッド自動車用リチウム二次電池
CN112242505A (zh) 非水电解质二次电池
JP2023538082A (ja) 負極およびこれを含む二次電池
JP7125238B2 (ja) 非水電解質二次電池
JP7270833B2 (ja) 高ニッケル電極シートおよびその製造方法
CN107078274B (zh) 锂离子二次电池用正极以及使用该正极的锂离子二次电池
JP2023520193A (ja) リチウム二次電池用の負極活物質、負極およびリチウム二次電池
JP6265521B2 (ja) リチウム二次電池用電極、その製造方法及びそれを利用したリチウム二次電池
JP7143006B2 (ja) 二次電池用負極活物質の製造方法、二次電池用負極及びこれを含むリチウム二次電池
JP2012221951A (ja) リチウム二次電池用負極材及びその製造方法、リチウム二次電池用負極、並びにリチウム二次電池
JP2012185911A (ja) リチウムイオン二次電池用複合正極活物質及びこれを用いたリチウムイオン二次電池
CN112242509A (zh) 非水电解质二次电池
JP5232353B2 (ja) 非水電解質二次電池用電極組成物、これを用いた電極および電池
WO2016080181A1 (ja) リチウムイオン二次電池用正極およびそれを用いたリチウムイオン二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100205

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100205

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

R150 Certificate of patent or registration of utility model

Ref document number: 4584351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250