JPWO2018110263A1 - 複合黒鉛粒子、その製造方法及びその用途 - Google Patents

複合黒鉛粒子、その製造方法及びその用途 Download PDF

Info

Publication number
JPWO2018110263A1
JPWO2018110263A1 JP2018556536A JP2018556536A JPWO2018110263A1 JP WO2018110263 A1 JPWO2018110263 A1 JP WO2018110263A1 JP 2018556536 A JP2018556536 A JP 2018556536A JP 2018556536 A JP2018556536 A JP 2018556536A JP WO2018110263 A1 JPWO2018110263 A1 JP WO2018110263A1
Authority
JP
Japan
Prior art keywords
mass
composite graphite
carbon material
graphite particles
powdered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018556536A
Other languages
English (en)
Inventor
文香 井門
大輔 香野
俊介 吉岡
安顕 脇坂
明央 利根川
大輔 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of JPWO2018110263A1 publication Critical patent/JPWO2018110263A1/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明は、人造黒鉛からなる芯材と、非粉体状の非晶質炭素材料及び粉体状の導電性炭素材料を含み、前記芯材を被覆する被覆層とを有する複合黒鉛粒子であって、前記芯材の質量に対する前記非粉体状の非晶質炭素材料の質量の割合が0.2〜3.8質量%であり、前記芯材の質量に対する前記粉体状の導電性炭素材料の質量の割合が0.3〜5.0質量%である複合黒鉛粒子;人造黒鉛100質量部に対し非晶質炭素前駆体0.3〜5.0質量部及び粉体状の導電性炭素材料0.3〜5.0質量部を加え、剪断力を作用させながら混合し、得られた混合物を600〜1300℃で焼成することを含む前記複合黒鉛粒子の製造方法;前記複合黒鉛粒子を含有する電極層を有する電極シート;及び前記電極シートを負極として含むリチウムイオン二次電池を提供する。本発明のチウムイオン二次電池は内部抵抗値が低く、入出力特性に優れ、サイクル特性が良好である。

Description

本発明は、複合黒鉛粒子、その製造方法及びその用途に関するものである。より詳細には、本発明は、内部抵抗値が低く入出力特性に優れ、サイクル特性が良好なリチウムイオン二次電池などを得ることができる負極材料として有用な複合黒鉛粒子、その製造方法及びこの複合黒鉛粒子を用いた電極シート及びリチウムイオン二次電池に関するものである。
携帯電子機器などの電源としてリチウムイオン二次電池が使用されている。リチウムイオン二次電池は、当初、電池容量が足りないこと、充放電サイクル寿命が短いことなど課題が多くあった。現在ではそのような課題を一つずつ克服して、リチウムイオン二次電池の用途は携帯電話、ノートブック型パソコン、デジタルカメラなどの弱電機器から、電動工具、電動自転車といったパワーを必要とする強電機器にも適用範囲が広がってきている。さらに、リチウムイオン二次電池は、自動車の動力源への利用が特に期待されており、電極材料、セル構造などの研究開発が盛んに進められている。中でもハイブリッド自動車(HEV)等の需要から、高入出力(急速充放電)特性のリチウムイオン二次電池が求められるようになってきた。それに伴い、リチウムイオン二次電池の負極活物質にも高入出力特性が要求されるようになった。入出力特性を向上させるために様々な工夫がされた負極材料がHEV等の電池に使用されているが、さらなる特性の向上が求められているのが現状である。
リチウムイオン二次電池の負極材料として、炭素系材料や金属系材料の開発が行われている。炭素系材料には、黒鉛などの結晶化度の高い炭素材料と、アモルファスカーボンなどの結晶化度の低い炭素材料とがある。これらはいずれもリチウムイオンの挿入脱離反応が可能であることから、負極活物質に用いることができる。
高結晶性の炭素材料によって得られる電池は、高容量ではあるが、サイクル劣化が著しいことが知られている。一方、低結晶性の炭素材料によって得られる電池は、内部抵抗値が比較的低く且つ安定なサイクル特性を有するが、電池容量が低いことが知られている。
低結晶性炭素材料及び高結晶性炭素材料の短所を相互に補うことを狙って、低結晶性炭素材料と高結晶性炭素材料とを複合化することが提案されている。
例えば、特許文献1には、天然黒鉛とピッチを混合して不活性ガス雰囲気下において、900〜1100℃で熱処理を行うことにより、天然黒鉛の表面を非晶質炭素で被覆する技術が開示されている。
特許文献2には、芯材となる炭素材料をタールまたはピッチに浸漬させ、それを乾燥または900〜1300℃で熱処理する技術が開示されている。
特許文献3には、天然黒鉛または鱗状人造黒鉛を造粒して得られる黒鉛粒子の表面をピッチなどの炭素前駆体で被覆後、不活性ガス雰囲気下で700〜2800℃の温度範囲で焼成させる技術が開示されている。
さらに、特許文献4には、黒鉛の(002)面の平均面間隔d002が0.3356nm、ラマン分光法により測定した1360cm-1ピーク強度(I1360)と1580cm-1ピーク強度(I1580)の比I1360/I1580(R値:本明細書のID/IGに同じ)が約0.07、結晶子のc軸方向の厚みLcが約50nmである鱗片状黒鉛を機械的外力で造粒球状化して得られる球状黒鉛粒子に、フェノール樹脂などの樹脂の加熱炭化物を被覆してなる複合黒鉛粒子を負極活物質として用いることが開示されている。
特開2005−285633号公報 特許第2976299号公報(US2004/151837A1) 特許第3193342号公報(US6403259B1) 特開2004−210634号公報
従来のリチウムイオン二次電池では、前述のような複合黒鉛粒子が広く用いられてきた。しかしながら芯材として用いられる天然黒鉛は、その構造からサイクル特性が悪く、高入出力かつ高耐久性が求められるHEV用電池の部材としては適さない。一方でコークス等の前駆体を高温で黒鉛化することで得られる人造黒鉛は、天然黒鉛と比較してサイクル特性が良いものが多い。しかしながらHEV用電源としてのリチウムイオン電池には、従来のリチウムイオン電池と比較して高い入出力特性が求められるため、要求特性を満足するような負極材料は未だ開発されていないのが現状である。
本発明の目的は、内部抵抗値が低く、入出力特性に優れ、サイクル特性が良好なリチウムイオン二次電池を得ることができる負極材料としての複合黒鉛粒子、その製造方法、及びこの複合黒鉛粒子を用いた電極シート及びリチウムイオン二次電池を提供するものである。
すなわち、本発明は以下の構成からなる。
[1] 人造黒鉛からなる芯材と、非粉体状の非晶質炭素材料及び粉体状の導電性炭素材料を含み、前記芯材を被覆する被覆層とを有する複合黒鉛粒子であって、前記芯材の質量に対する前記非粉体状の非晶質炭素材料の質量の割合が0.2〜3.8質量%であり、前記芯材の質量に対する前記粉体状の導電性炭素材料の質量の割合が0.3〜5.0質量%である複合黒鉛粒子。
[2] 前記芯材の質量に対する前記非粉体状の非晶質炭素材料の質量の割合が0.2〜2.3質量%である前記1に記載の複合黒鉛粒子。
[3] 前記芯材の質量に対する前記粉体状の導電性炭素材料の質量の割合が0.3〜3.0質量%である前記1または2に記載の複合黒鉛粒子。
[4] 前記粉体状の導電性炭素材料がカーボンブラックである前記1〜3のいずれか1項に記載の複合黒鉛粒子。
[5] ラマン分光スペクトルで測定される1360cm-1付近にあるピークのピーク強度(ID)と1580cm-1付近にあるピークのピーク強度(IG)との比ID/IG(R値)が0.10〜1.00である前記1〜4のいずれか1項に記載の複合黒鉛粒子。
[6] 窒素吸着に基づくBET比表面積が1.5〜10.0m2/gである前記1〜5のいずれか1項に記載の複合黒鉛粒子。
[7] 前項1〜6のいずれか1項に記載の複合黒鉛粒子の製造方法であって、人造黒鉛100質量部に対し、非晶質炭素前駆体0.3〜5.0質量部及び粉体状の導電性炭素材料0.3〜5.0質量部を加え、剪断力を作用させながら混合し、得られた混合物を600〜1300℃で焼成することを含むことを特徴とする複合黒鉛粒子の製造方法。
[8] 前記非晶質炭素前駆体が、石油系ピッチ、石炭系ピッチ、フェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、セルロース樹脂、ポリスチレン樹脂、ポリイミド樹脂及びエポキシ樹脂からなる群から選ばれる少なくとも1種の化合物である前記7に記載の複合黒鉛粒子の製造方法。
[9] 前記非晶質炭素前駆体が石油系ピッチである前記8に記載の複合黒鉛粒子の製造方法。
[10] 前記1〜6のいずれか1項に記載の複合黒鉛粒子、バインダー及び溶媒を含有するペースト。
[11] さらに粉体状の導電性炭素材料を含む前記10に記載のペースト。
[12] 集電体と、前記1〜6のいずれか1項に記載の複合黒鉛粒子を含有する電極層とを有する積層体からなる電極シート。
[13] さらに前記電極層に粉体状の導電性炭素材料を含む前記12に記載の電極シート。
[14] 前記12または13に記載の電極シートを負極として含むリチウムイオン二次電池。
本発明に係る複合黒鉛粒子は、黒鉛粒子を覆う非粉体状の非晶質炭素材料の被覆層中にカーボンブラック等の粉体状の導電性炭素材料が含まれているため、電極層における電子伝導性が向上する。また導電性炭素材料はリチウムイオンとの反応性が高く、リチウムイオンとの有効反応面積が増加する。従って、本発明に係る複合黒鉛粒子を用いて得られるリチウムイオン二次電池は入出力特性が向上する。すなわち、大電流時の充放電特性が良好である。また、カーボンブラックが非粉体状の非晶質炭素材料で覆われているため、電解液がカーボンブラックで還元されることがなく、電池の初期効率の低下が抑制され、サイクル特性も良好である。
[複合黒鉛粒子]
本発明に係る好ましい実施形態の複合黒鉛粒子は、黒鉛からなる芯材と、非粉体状の非晶質炭素材料及び粉体状の導電性炭素材料を含み、芯材を被覆する被覆層とを有する。
芯材を構成する黒鉛は、コークス、石炭、ピッチ等の黒鉛前駆体、または黒鉛を熱処理(黒鉛化処理)して得られる人造黒鉛である。黒鉛前駆体としては、取り扱いが容易である点でコークスまたは石炭が好ましい。
コークスは生コークスまたはか焼コークスを用いることができる。コークスの原料としては、例えば石炭ピッチ、石油ピッチ、及びこれらの混合物等を用いることができる。中でも、特定の条件下でディレイドコーキング処理により得られる生コークスを、さらに不活性ガス雰囲気下で加熱することにより得られるか焼コークスが好ましい。
黒鉛化処理の温度は、通常、2500℃以上3500℃以下、好ましくは2800℃以上3500℃以下、より好ましくは2800℃以上3300℃以下である。処理温度が2500℃未満の場合は、得られるリチウムイオン二次電池の放電容量が低下する。黒鉛化処理は不活性雰囲気下で行うことが好ましい。黒鉛化処理時間は、処理量や黒鉛化炉のタイプ等に応じて適宜選択すればよく、特に限定されるものではない。黒鉛化処理時間は、例えば10分間〜100時間程度である。また、黒鉛化処理は、例えばアチソン式黒鉛化炉などを用いて行うことができる。
芯材を構成する人造黒鉛は、(002)面の平均面間隔(d002)が、好ましくは0.3354〜0.3370nmであり、より好ましくは0.3354〜0.3360である。また、結晶子のc軸方向の厚み(Lc)は、好ましくは50nm以上であり、より好ましくは100nm以上である。
002及びLcは、既知の方法により粉末X線回折法を用いて測定することができる(稲垣道夫、「炭素」、1963、No.36、25−34頁;Iwashita et al.,Carbon vol.42(2004),p.701−714参照)。
芯材を覆う被覆層は非粉体状の非晶質炭素材料と粉体状の導電性炭素材料を含む。非粉体状の非晶質炭素材料は石炭系ピッチ、石油系ピッチ、樹脂等を前駆体として、これを熱処理して得られる。上記樹脂としては、フェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、セルロース樹脂、ポリスチレン樹脂、ポリイミド樹脂及びエポキシ樹脂からなる群から選択される少なくとも1種の化合物が挙げられる。これらの前駆体のうち石炭系ピッチ及び石油系ピッチが安価で残炭率が高く、被覆層の前駆体として使用した際の電池特性が良い点で好ましい。石炭系ピッチと石油系ピッチでは、高い初期効率が得られる点及び有害性が低い点で石油系ピッチがより好ましい。また、等方性ピッチ及び異方性ピッチのいずれも使用可能である。中でも特に軟化点が100℃以上300℃以下の高軟化点のピッチが取り扱い易くより好ましい。
粉体状の導電性炭素材料はカーボンブラックまたは炭素繊維であり、具体的には、アセチレンブラック、ケッチェンブラック等のカーボンブラック、及びカーボンナノチューブ、カーボンナノファイバー等の炭素繊維を用いることができる。これらのうちカーボンブラックが黒鉛粒子表面を均一に被覆しやすく、また安価であるため好ましい。
本発明に係る好ましい実施形態における芯材の質量に対する非粉体状の非晶質炭素材料の質量の割合は0.2〜3.8質量%であり、好ましくは0.2〜2.3質量%であり、より好ましくは0.4〜1.5質量%である。上記非粉体状の非晶質炭素材料の質量割合が高すぎる場合は、複合黒鉛粒子を活物質として含む負極をプレスした際の負極活物質層の密度が著しく低下し、前記負極を用いたリチウムイオン二次電池の放電容量が低下する傾向がある。また、上記非粉体状の非晶質炭素材料の質量割合が低すぎる場合は、粉体状の導電性炭素材料が芯材表面に付着しないか、あるいは粉体状の導電性炭素材料が露出するため電池の初期効率が低下する傾向がある。
芯材の質量に対する粉体状の導電性炭素材料の質量の割合は0.3〜5.0質量%であり、好ましくは0.3〜3.0質量%であり、より好ましくは0.5〜2.0質量%であり、さらに好ましくは0.5〜1.5質量%である。上記粉体状の導電性炭素材料の質量割合が高すぎる場合は、複合黒鉛粒子を活物質として含む負極をプレスした際の負極活物質層の密度が著しく低下し、前記負極を用いたリチウムイオン二次電池の初期効率が低下する傾向がある。また、上記粉体状の導電性炭素材料の質量割合が低すぎる場合は、導電性向上及びリチウムイオンとの有効反応面積増加の効果が得られない傾向がある。
混合黒鉛粒子における上記粉体状の非晶質炭素材料の質量割合を得るためには、芯材(人造黒鉛粒子)と非晶質炭素前駆体及び粉体状の導電性炭素材料を混合した後の焼成における非晶質炭素前駆体の残炭率を考慮して、非晶質炭素前駆体の質量割合は最終的に被覆層として形成される非粉体状の非晶質炭素材料の質量割合より多めに設定する。具体的には、芯材である人造黒鉛100質量部に対して混合する非晶質炭素前駆体の質量割合は0.3〜5.0質量部であり、好ましくは0.2〜3.0質量部であり、より好ましくは0.5〜2.0質量部である。
一方、粉体状の導電性炭素材料については焼成による減量がないため、芯材である人造黒鉛100質量部に対して混合する質量割合は上記の混合黒鉛粒子における芯材の質量に対する粉体状の導電性炭素材料の質量の割合と同じである。具体的には、芯材である人造黒鉛100質量部に対して混合する粉体状の導電性炭素材料の質量割合は0.3〜5.0質量部であり、好ましくは0.3〜3.0質量部であり、より好ましくは0.5〜2.0質量部であり、より一層好ましくは0.5〜1.5質量部である。
人造黒鉛からなる芯材の表面に非粉体状の非晶質炭素材料と粉体状の導電性炭素材料を含む被覆層を形成するためには、先ず芯材の人造黒鉛、非晶質炭素材料の前駆体及び粉体状の導電性炭素材料を、剪断力を加えながら混合し、芯材に非粉体状の非晶質炭素材料と粉体状の導電性炭素材料を付着させる。混合方法は特に限定されず、乾式混合及び湿式混合のいずれをも用いることができるが、乾式混合による方法が好ましい。
上記の混合を行うための混合機は特に限定されるものではないが、剪断力を加えるように混合を行うと、芯材の表面に粉体状の導電性炭素材料が凝集することなく均一に分散して付着する。また、さらに衝撃、圧縮などの機械的エネルギーを与えることにより、非晶質炭素前駆体及び粉体状の導電性炭素材料からなる表面被覆層の安定化が期待できる。すなわち、剪断力と衝撃、圧縮などの機械的エネルギーが同時にかかる装置による混合が好ましい。例えば、高速旋回流により粉体に剪断力・衝撃が加わる高速撹拌機や、混合羽根と容器内壁間の間隔が狭く粉体が容器内壁に押し付けられるような構造を持つ乾式混合機などが好ましい。このような混合機としては、メカノフュージョン(登録商標、ホソカワミクロン(株)製)、ノビルタ(登録商標、ホソカワミクロン(株)製)、サイクロミックス(登録商標、ホソカワミクロン(株)製)、コンポジ(登録商標、日本コークス工業(株)製)、マルチパーパスミキサー(日本コークス工業社製)、メカノハイブリッド(登録商標、日本コークス工業(株)製)、ハイブリダイゼーションシステム(登録商標、(株)奈良機械製作所製)、シータ・コンポーザ((株)徳寿工作所製)やメカノミル(岡田精工(株)製)等を挙げることができる。一方、容器回転型のV型混合機、コーン型混合機及び水平円筒型混合機、ならびに、混合羽根の回転速度が小さいリボンミキサー、スクリューミキサー及びパドルミキサーなどは上記混合の目的には適さない。
次いで、人造黒鉛からなる芯材、非晶質炭素材料前駆体及び粉体状の導電性炭素材料の混合物を、600〜1300℃、好ましくは600〜1100℃、より好ましくは800〜1100℃で焼成する。この焼成によって非晶質炭素材料前駆体が炭素化し、芯材の表面に非粉体状の非晶質炭素材料と粉体状の導電性炭素材料を含む被覆層が形成される。
上記焼成の温度が低すぎると、炭素化が十分に進まず被覆層に水素原子や酸素原子が残留し、電池特性が低下する傾向がある。一方、焼成の温度が高すぎると、被覆層の芯材への密着力が弱く、被覆層が剥がれやすい傾向になり、また非晶質炭素材料前駆体の結晶性が高くなり過ぎて充電特性が低下する傾向がある。
焼成は非酸化性雰囲気で行うことが好ましい。非酸化性雰囲気としては、アルゴンガス、窒素ガスなどの不活性ガスを充満させた雰囲気が挙げられる。焼成のための熱処理時間は、製造規模に応じて適宜選択すればよい。例えば、30〜300分間、好ましくは45〜150分間である。
本発明に係る好ましい実施形態の複合黒鉛粒子は、ラマン分光スペクトルで測定される1360cm-1付近(1300〜1400cm-1)にあるピークのピーク強度(ID)と1580cm-1付近(1580〜1620cm-1)にあるピークのピーク強度(IG)との比ID/IG(R値)は、好ましくは0.10〜1.00、より好ましくは0.10〜0.50、さらに好ましくは0.10〜0.30である。ここで、1580cm-1付近に観察されるピークはGバンドと呼ばれ、sp2結合に対応し、黒鉛の六角網面構造が存在することを示す。また、1360cm-1付近に観察されるピークはDバンドと呼ばれ、sp3結合に対応し、黒鉛の六角網面構造に欠陥があることを示す。ピーク強度比ID/IGが0.10以上の場合は、黒鉛粒子表面に非粉体状の非晶質炭素材料及び粉体状の導電性炭素材料からなる被覆層が均一に形成されて、出力の向上効果が得られる。また、ピーク強度比ID/IGが1.00以下の場合は、被覆層が過剰に厚く形成されることがなく、電極をプレスした際の負極活物質層の密度の低下が起こらず、電池として良好な放電容量やサイクル特性等が得られる。
本発明に係る好ましい実施形態の複合黒鉛粒子のBET比表面積は、好ましくは1.0〜10.0m2/g、より好ましくは1.0〜7.0m2/g、さらに好ましくは1.0〜5.0m2/gである。BET比表面積が1.0m2/g以上の場合は、複合黒鉛粒子を負極活物質とした電池内部において、複合黒鉛粒子と電解液の接触面積が小さくなり過ぎず適度に確保され、良好な入出力特性が得られる。また、BET比表面積が10.0m2/g以下の場合は、複合黒鉛粒子と電解液との反応面積が大きくなり過ぎず、電解液を過剰に還元することによる電池の初期効率やサイクル特性の低下が起こらない。
本発明に係る好ましい実施形態の複合黒鉛粒子は、レーザー回折法によって測定される体積基準累積粒度分布における50%粒子径(D50)が、好ましくは5μm以上30μm以下、より好ましくは5μm以上20μm以下である。被覆層の厚さは数nm〜数十nm程度であるため、複合黒鉛粒子のD50は芯材の黒鉛粒子のD50とほとんど変わらない。
[ペースト]
本発明に係る好ましい実施形態の負極ペースト(スラリー)は、前記複合黒鉛粒子とバインダーと溶媒とを含むものである。ペーストは前記複合黒鉛粒子とバインダーと溶媒とを混練することによって得られる。ペーストは、必要に応じて、シート状、ペレット状などの形状に成形することができる。
また本発明に係る好ましい実施形態の負極ペーストは、前記複合黒鉛粒子とバインダーと溶媒に加え、粉体状の導電性炭素材料を含むことが好ましい。負極ペースト、従って負極シート、ペレットなどに粉体状の導電性炭素材料を含むことで、複合黒鉛粒子間の接点抵抗を低下させる効果がある。
負極ペーストに含まれる粉体状の導電性炭素材料の混合比率は複合黒鉛粒子とバインダーと粉体状の導電性炭素材料の合計を100質量部とすると、0.2質量部〜5.0質量部が好ましい。より好ましくは0.2質量部〜1.0質量部である。粉体状の導電性炭素材料の質量比が大きすぎる場合、前記負極ペーストを成形した負極シートをプレスした際の負極活物質層の密度が著しく低下する。また前記負極シートを用いたリチウムイオン二次電池の初期効率が低下する傾向がある。これは粉体状の導電性炭素材料の不可逆容量が大きいためである。
負極ペーストに含まれる粉体状の導電性炭素材料はカーボンブラックまたは炭素繊維であり、具体的には、アセチレンブラック、ケッチェンブラック等のカーボンブラック、及びカーボンナノチューブ、カーボンナノファイバー等の炭素繊維を用いることができる。これらのうちカーボンブラックが安価であるため好ましい。
本発明に係る好ましい実施形態のペーストは電池の電極、特に負極を作製するために好適に使用される。
バインダーとしては、例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンターポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、イオン伝導率の大きな高分子化合物などが挙げられる。イオン伝導率の大きな高分子化合物としては、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリルなどが挙げられる。複合黒鉛粒子とバインダーとの混合比率は、複合黒鉛粒子100質量部に対して、バインダーを0.5〜20質量部用いることが好ましい。
溶媒は、特に制限はなく、N−メチル−2−ピロリドン、ジメチルホルムアミド、イソプロパノール、水などが挙げられる。溶媒として水を使用するバインダーの場合は、増粘剤を併用することが好ましい。増粘剤としてはカルボキシメチルセルロース(CMC)、メチルセルロース、ポリアクリル酸、ポリエチレングリコール等が例示される。溶媒の量は集電体に塗布しやすいような粘度となるように調整される。
[電極シート]
本発明に係る好ましい実施形態の電極シートは、集電体と、本発明に係る複合黒鉛粒子を含有する電極層とを有する積層体からなる。電極シートは、例えば、本発明に係るペーストを集電体上に塗布し、乾燥し、加圧成形することによって得られる。
集電体としては、例えば、アルミニウム、ニッケル、銅などからなる箔、メッシュなどが挙げられる。集電体表面には導電性層が設けられていてもよい。導電性層は、通常、導電性付与剤とバインダーとを含む。
ペーストの塗布方法は特に制限されない。ペーストの塗布厚(乾燥時)は、通常50〜200μmである。塗布厚が大きくなり過ぎると、規格化された電池容器に負極を収容できなくなることがある。
加圧成形法としては、ロール加圧、プレス加圧などの成形法を挙げることができる。加圧成形するときの圧力は約100MPa〜約300MPa(1〜3t/cm2程度)が好ましい。このようにして得られる負極は、リチウムイオン二次電池に好適である。
[リチウムイオン二次電池]
本発明に係る好ましい実施形態のリチウムイオン二次電池は、本発明に係る電極シートを負極として含むものである。
リチウムイオン二次電池を具体例に挙げて、本発明の実施態様における電池または二次電池を説明する。リチウムイオン二次電池は、正極と負極とが電解液または電解質の中に浸漬された構造をしたものである。負極には本発明の実施態様における電極が用いられる。
リチウムイオン二次電池の正極には、正極活物質として、通常、リチウム含有遷移金属酸化物が用いられ、好ましくはTi、V、Cr、Mn、Fe、Co、Ni、Mo、またはWから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムの遷移金属元素に対するモル比が0.3〜2.2の化合物が用いられる。また、より好ましくはV、Cr、Mn、Fe、Co、またはNiから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物である。
なお、主として含有する遷移金属に対し30モル%未満の範囲でAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを含有していても良い。上記の正極活物質の中で、一般式LixMO2(MはCo、Ni、Fe、Mnの少なくとも1種、0<x≦1.2、またはLiy24(Nは少なくともMnを含む。0.02≦y≦2)で表わされるスピネル構造を有する材料の少なくとも1種を用いることが好ましい。
さらに、正極活物質はLiya1-a2(MはCo、Ni、Fe、Mnの少なくとも1種、DはCo、Ni、Fe、Mn、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、B、Pの中のM以外の少なくとも1種、y=0.02〜1.2、a=0.5〜1)を含む材料、またはLiz(Mnb1-b24(EはCo、Ni、Fe、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、B、Pの少なくとも1種、b=1〜0.2、z=0〜2)で表わされるスピネル構造を有する材料の少なくとも1種を用いることが特に好ましい。
具体的な正極活物質としては、LixCoO2、LixNiO2、LixFeO2、LixMnO2、LixCoaNi1-a2、LixCob1-bz、LixCobFe1-b2、LixMn24、LixMncCo2-c4、LixMncNi2-c4、LixMnc2-c4、LixMncFe2-c4(ここでx=0.02〜1.2、a=0.1〜0.9、b=0.8〜0.98、c=1.6〜1.96、z=2.01〜2.3。)等が挙げられる。最も好ましいリチウム含有遷移金属酸化物としては、LixCoO2、LixNiO2、LixFeO2、LixMnO2、LixCoaNi1-a2、LixMn24、LixCob1-bz(x=0.02〜1.2、a=0.1〜0.9、b=0.9〜0.98)等が挙げられる。なお、xの値は充放電開始前の値であり、充放電により増減する。
正極活物質の体積基準累積粒度分布における50%粒子径(D50)は特に限定されないが、0.1〜50μmが好ましく、0.5〜30μmの粒子の体積が全体積の95%以上であることが好ましい。粒径3μm以下の粒子群の占める体積が全体積の18%以下であり、かつ15μm以上25μm以下の粒子群の占める体積が、全体積の18%以下であることがより好ましい。
正極活物質の比表面積は特に限定されないが、BET法で0.01〜50m2/gが好ましく、0.2m2/g〜1m2/gがより好ましい。また正極活物質5gを蒸留水100mlに溶かしたときの上澄み液のpHとしては7以上12以下が好ましい。
リチウムイオン二次電池では正極と負極との間にセパレータを設けることがある。セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルムまたはそれらを組み合わせたものなどを挙げることができる。
本発明の実施態様におけるリチウムイオン二次電池を構成する電解液及び電解質としては公知の有機電解液、無機固体電解質、高分子固体電解質が使用できるが、電気伝導性の観点から有機電解液が好ましい。
有機電解液としては、ジエチルエーテル、ジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールフェニルエーテル、1,2−ジメトキシエタン等のエーテル;ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、N,N−ジメチルプロピオンアミド、ヘキサメチルホスホリルアミド等のアミド;ジメチルスルホキシド、スルホラン等の含硫黄化合物;メチルエチルケトン、メチルイソブチルケトン等のジアルキルケトン;エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、2−メトキシテトラヒドロフラン、1,3−ジオキソラン等の環状エーテル;エチレンカーボネート、プロピレンカーボネート等のカーボネート;γ−ブチロラクトン;N−メチルピロリドン;アセトニトリル、ニトロメタン等の有機溶媒の溶液が好ましい。より好ましくはエチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、プロピレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン等のエステル類、ジオキソラン、ジエチルエーテル、ジエトキシエタン等のエーテル類、ジメチルスルホキシド、アセトニトリル、テトラヒドロフラン等が挙げられ、より一層好ましくはエチレンカーボネート、プロピレンカーボネート等のカーボネート系非水溶媒を用いることができる。これらの溶媒は、単独でまたは2種以上を混合して使用することができる。
これらの溶媒の溶質(電解質)には、リチウム塩が使用される。一般的に知られているリチウム塩にはLiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCl、LiCF3SO3、LiCF3CO2、LiN(CF3SO22等がある。
高分子固体電解質としては、ポリエチレンオキサイド誘導体及び該誘導体を含む重合体、ポリプロピレンオキサイド誘導体及び該誘導体を含む重合体、リン酸エステル重合体、ポリカーボネート誘導体及び該誘導体を含む重合体等が挙げられる。
なお、上記以外の電池構成上必要な部材の選択についてはなんら制約を受けるものではない。
以下に実施例、比較例を挙げて、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、複合黒鉛粒子の物性、負極特性及び電池特性は以下の方法で測定し評価した。
(1)d002
粉末X線回折装置((株)リガク製、SmartLab(登録商標)IV)で、CuKα線にて出力30kV、200mAでX線回折ピークを測定した。002回折ピークからJIS R 7651に従ってd002を算出した。
(2)ID/IG(R値)
日本分光社製NRS−5100を用いて、波長532nm及び出力7.4mWのアルゴンレーザを試料に照射し、ラマン散乱光を分光器で測定した。測定されたラマン分光スペクトルから、1360cm-1付近(1300〜1400cm-1)にあるピークのピーク強度(ID)と1580cm-1付近(1580〜1620cm-1)にあるピークのピーク強度(IG)との比ID/IGを算出した。
(3)比表面積
窒素吸着量の測定に基づきBET法により算出した。
(4)粒子径
レーザー回折式粒度分布測定装置(マルバーン製、マスターサイザー)を用いて、体積基準累積粒度分布における50%粒子径(D50)を求めた。
(5)負極シートの作製
複合黒鉛粒子97質量部に、スチレンブタジエンゴム(SBR)分散水溶液(固形分比40%)とカルボキシメチルセルロース(CMC、日本製紙(株)製、MAC−350−HC)2質量%水溶液を固形分換算で各々1.5質量部となるように加え、プラネタリーミキサーにて混練し、ペースト原液とした。
ペースト原液にN−メチルピロリドン(NMP)を加え、粘度を調整してペーストを得た。ペーストをドクターブレードにより高純度銅箔上に塗布して120℃で1時間真空乾燥し、負極シートを得た。塗布の量は、複合黒鉛粒子の量が6〜7mg/cm2となる量とした。
(6)コインセルの作製
得られた負極シートを直径16mmの円形に打ち抜き、約300MPa(約3t/cm2)の圧力で10秒間圧縮し、プレスした負極シートを得た。
アルゴンガスで充満され、露点が−75℃以下に制御されたグローブボックス内に前記打ち抜いた負極シートを導入した。負極シートをコインセルケース(宝泉(株)製CR2320)に置き電解液(1M LiPF6 エチレンカーボネート(EC):メチルエチルカーボネート(MEC)=40:60〔体積比〕)を浸透させた。その上に直径20mmに切り出したポリプロプレン製フィルム微多孔膜、直径17.5mmに切り出した1.7mm厚のリチウム箔の順に載せた。その上から、ガスケットを取り付けたキャップをし、カシメ機によりかしめてコインセルを作製した。
(7)電池の初期効率
作製したコインセルをグローブボックスから取り出し、24時間室温で静置した。その後、作製したコインセルで前記作用極の充放電試験を25℃に設定した恒温槽内で行った。
始めに、開回路電圧が0.002Vとなるまで0.05Cの電流を流した後、0.002Vに維持し、電流値が25.4μAに低下した時点で停止させることで作用極の充電容量を測定した。次に、開回路電圧が1.5Vとなるまで0.05Cで電流を流すことで放電容量を測定した。
この充放電サイクルにおける初回充電容量及び初回放電容量に基づき、下式にて初期効率を算出した。
(初期効率)=(初回放電容量)/(初回充電容量)
(8)ラミネートセルの作製
露点−80℃以下の乾燥アルゴンガス雰囲気下に保ったグローブボックス内で下記の操作を実施した。
正極材料Li(Ni,Mn,Co)O2(Umicore社製)90質量部に、カーボンブラックC45(TIMCAL社製)2質量部、カーボンブラックKS6L(TIMCAL社製)3質量部、及びポリフッ化ビニリデン(クレハ製、KFポリマー W#1300)5質量部(固形分)を混合した。その後、これにN−メチル−2−ピロリドン(キシダ化学製)を加えて混錬し、ペーストを得た。
自動塗工機を用いて、前記ペーストをクリアランス200μmのドクターブレードで20μm厚のアルミニウム箔に塗工して、正極を作製した。
ラミネート外装材の中に、上記負極と正極とをポリプロピレン製セパレータ(東燃化学(株)製、セルガード2400)を介して積層した。次に、電解液を注入し、真空中でヒートシールを行い、評価用のラミネートセルを得た。
(9)電池のサイクル特性
ラミネートセルを用いて試験を行った。充電はレストポテンシャルから上限電圧を4.15Vとして定電流値50mA(2C相当)でCCモード充電を行ったのち、CVモードでカットオフ電流値1.25mAで充電を行った。
放電は下限電圧2.8Vとして、CCモードで50mAの放電を行った。
上記条件で、25℃の恒温槽中で100サイクル充放電を繰り返して放電容量を測定し、1サイクル時の放電容量に対する100サイクル時の放電容量を100サイクル時の容量維持率とした。
(10)電池の内部抵抗(DC−IR)
初期電池容量の測定で得られた電池容量を基準として1Cの電流量を求めた(1C=25mAh)。満充電状態から3時間30分、0.1CでCC放電を行い(SOCが50%になる)、30分休止後、25mAで5秒放電したときの電圧降下量ΔVからオームの法則:R[Ω]=ΔV[V]/0.025[A]により内部抵抗(DC−IR)を測定した。
実施例1
粉砕した石炭系か焼ニードルコークスを3000℃で黒鉛化して人造黒鉛(d002=0.3356nm)を得、前記人造黒鉛100質量部に対して石油系ピッチ(軟化点:230℃、灰分:0.1質量%以下、残炭率:73.5%)0.5質量部及びカーボンブラックC65(TIMCAL社製)0.5質量部をノビルタ(登録商標、ホソカワミクロン(株)製)を用い、剪断力を加えながら混合した。得られた混合物を1100℃で焼成し、人造黒鉛からなる芯材と、非粉体状の非晶質炭素材料及び粉体状の導電性炭素物質(カーボンブラック)を含み、前記芯材を被覆する被覆層とを有する複合黒鉛粒子を得た。得られた前記複合黒鉛粒子のBET比表面積、ラマンID/IG(R値)、粒子径D50を測定した。複合化条件を表1に、複合黒鉛粒子の物性の測定結果を表2に示す。
なお、芯材に対する非粉体状の非晶質炭素材料の質量割合は、芯材黒鉛に対するピッチの混合比率に残炭率を乗じたものを用いた。また、芯材に対するカーボンブラックの質量割合は、芯材黒鉛に対するカーボンブラックの混合比率を用いた。
得られた複合黒鉛粒子を用いて上記記載の負極の作製方法で負極を作製し、さらに上記記載の方法でコインセル及びラミネートセルを作製して電池特性(初期効率、内部抵抗、サイクル特性)を測定した。結果を表2に示す。
実施例2
負極のペースト原液の組成を複合黒鉛粒子96.5質量部、スチレンブタジエンゴム(SBR)分散水溶液とカルボキシメチルセルロース(CMC)水溶液を固形分換算で各々1.5質量部、カーボンブラック0.5質量部として負極シートを作製した以外は実施例1と同様の方法でコインセル及びラミネートセルを作製して電池特性を測定した。結果を表1及び表2に示す。
実施例3
人造黒鉛100質量部に対して混合するカーボンブラックの割合を1.0質量部とした以外は実施例1と同様の方法で複合黒鉛粒子を得た。この複合黒鉛粒子の物性、及びこれを用いて作製した電池の電池特性を測定した。結果を表1及び表2に示す。
実施例4
人造黒鉛100質量部に対して混合する石油系ピッチの割合を3.0質量部、カーボンブラックの割合を3.0質量部とした以外は実施例1と同様の方法で複合黒鉛粒子を得た。この複合黒鉛粒子の物性、及びこれを用いて作製した電池の電池特性を測定した。結果を表1及び表2に示す。
実施例5
人造黒鉛100質量部に対して混合する石油系ピッチの割合を5.0質量部、カーボンブラックの割合を5.0質量部とした以外は実施例1と同様の方法で複合黒鉛粒子を得た。この複合黒鉛粒子の物性、及びこれを用いて作製した電池の電池特性を測定した。結果を表1及び表2に示す。
比較例1
人造黒鉛にカーボンブラックを混合しない以外は実施例1と同様の方法で複合黒鉛粒子を得た。この複合黒鉛粒子の物性、及びこれを用いて作製した電池の電池特性を測定した。結果を表1及び表2に示す。
比較例2
人造黒鉛にカーボンブラックを混合しない以外は実施例2と同様の方法で複合黒鉛粒子を得た。この複合黒鉛粒子の物性、及びこれを用いて作製した電池の電池特性を測定した。結果を表1及び表2に示す。
比較例3
人造黒鉛100質量部に対して石油系ピッチ18.0質量部及びカーボンブラック20.0質量部を混合した以外は実施例1と同様の方法で複合黒鉛粒子を得た。この複合黒鉛粒子の物性、及びこれを用いて作製した電池の電池特性を測定した。結果を表1及び表2に示す。
比較例4
人造黒鉛100質量部に対して混合する石油系ピッチの割合を8.0質量部、カーボンブラックの割合を8.0質量部とした以外は実施例1と同様の方法で複合黒鉛粒子を得た。この複合黒鉛粒子の物性、及びこれを用いて作製した電池の電池特性を測定した。結果を表1及び表2に示す。
比較例5
人造黒鉛100質量部に対して混合するカーボンブラックの割合を0.1質量部とした以外は実施例1と同様の方法で複合黒鉛粒子を得た。この複合黒鉛粒子の物性、及びこれを用いて作製した電池の電池特性を測定した。結果を表1及び表2に示す。
比較例6
人造黒鉛100質量部に対して混合する石油系ピッチの割合を0.1質量部、カーボンブラックの割合を1.0質量部とした以外は実施例1と同様の方法で複合黒鉛粒子を得た。この複合黒鉛粒子の物性、及びこれを用いて作製した電池の電池特性を測定した。結果を表1及び表2に示す。
比較例7
芯材黒鉛材料として機械的処理により球状化された天然黒鉛(d002=0.3355nm)を用いた。球状化された天然黒鉛と石油系ピッチ及びカーボンブラックを混合した以外は実施例1と同様の方法で複合黒鉛粒子を得た。この複合黒鉛粒子の物性、及びこれを用いて作製した電池の電池特性を測定した。結果を表1及び表2に示す。
比較例8
負極のペースト原液の組成を複合黒鉛粒子96.5質量部、スチレンブタジエンゴム(SBR)分散水溶液とカルボキシメチルセルロース(CMC)水溶液を固形分換算で各々1.5質量部、カーボンブラック0.5質量部として負極シートを作製した以外は比較例8と同様の方法でコインセル及びラミネートセルを作製して電池特性を測定した。結果を表1及び表2に示す。
Figure 2018110263
Figure 2018110263
表1及び表2に示す結果から、実施例1と比較例1、または実施例2と比較例2とを比較すると、複合黒鉛粒子の表面被覆層にカーボンブラックを含む場合、内部抵抗が低くなることがわかる。電池の内部抵抗が低下するため、大電流充放電でも大きな容量を発現でき、電池の出力が向上する。
また、実施例1と実施例2を比較すると、複合黒鉛粒子の表面被覆層だけでなく負極ペースト(すなわち負極シート)にもカーボンブラックを含む場合、内部抵抗の低減効果がより高くなることがわかる。
一方サイクル特性については、実施例1と比較例1を比較すると、カーボンブラックを黒鉛粒子に複合させることによる初期効率及び100サイクル時の容量維持率の低下はほとんどなく、芯材の人造黒鉛の高耐久性を保持できることがわかる。
実施例1、実施例4及び実施例5を比較すると、複合黒鉛粒子の被覆層に含まれる石油系ピッチを前駆体とする非晶質炭素及びカーボンブラックの量が多いほど複合黒鉛粒子表面のラマンR値は大きくなり、電池の内部抵抗が小さくなることが分かる。一方、100サイクル時の容量維持率は高く、高耐久性を維持している。
しかしながら実施例3と比較例3または比較例4を比較すると、複合黒鉛粒子の被覆層に含まれるカーボンブラックの量が過多であると、電池の初期効率及びサイクル特性が著しく悪化し、リチウムイオン二次電池の負極材料として不適であることがわかる。また、電池の内部抵抗は実施例5が最も低い値を示した。複合黒鉛粒子に含まれる非晶質炭素及びカーボンブラックの質量が過多である場合、カーボンブラックの質量の増加による内部抵抗の低減効果は小さいことがわかる。
実施例1と比較例5を比較すると、複合黒鉛粒子の被覆層に含まれるカーボンブラックの量が過少である場合、カーボンブラック添加による内部抵抗の低減効果が得られないことがわかる。
実施例3と比較例6を比較すると、複合黒鉛粒子の被覆層に含まれる石油系ピッチを前駆体とする非晶質炭素の量が過少である場合、電池の初期効率とサイクル特性が低下した。これは、カーボンブラックが黒鉛表面に付着しないか、あるいはカーボンブラックが非晶質炭素材料に被覆されずに露出するためと考えられる。
実施例1と比較例7、または実施例2と比較例8を比較すると、複合黒鉛粒子の芯材に天然黒鉛を用いた場合、人造黒鉛粒子を用いた場合に比べてサイクル特性が著しく悪化することがわかる。このため、天然黒鉛は本発明に関わる複合黒鉛粒子の芯材としては適さない。
混合黒鉛粒子における上記粉体状の非晶質炭素材料の質量割合を得るためには、芯材(人造黒鉛粒子)と非晶質炭素前駆体及び粉体状の導電性炭素材料を混合した後の焼成における非晶質炭素前駆体の残炭率を考慮して、非晶質炭素前駆体の質量割合は最終的に被覆層として形成される非粉体状の非晶質炭素材料の質量割合より多めに設定する。具体的には、芯材である人造黒鉛100質量部に対して混合する非晶質炭素前駆体の質量割合は0.3〜5.0質量部であり、好ましくは0.2〜3.0質量部であり、より好ましくは0.5〜2.0質量部である。
一方、粉体状の導電性炭素材料については焼成による減量がないため、芯材である人造黒鉛100質量部に対して混合する質量割合は上記の混合黒鉛粒子における芯材の質量に対する粉体状の導電性炭素材料の質量の割合と同じである。具体的には、芯材である人造黒鉛100質量部に対して混合する粉体状の導電性炭素材料の質量割合は0.3〜5.0質量部であり、好ましくは0.3〜3.0質量部であり、より好ましくは0.5〜2.0質量部であり、より一層好ましくは0.5〜1.5質量部である。
参考例
人造黒鉛100質量部に対して混合する石油系ピッチの割合を5.0質量部、カーボンブラックの割合を5.0質量部とした以外は実施例1と同様の方法で複合黒鉛粒子を得た。この複合黒鉛粒子の物性、及びこれを用いて作製した電池の電池特性を測定した。結果を表1及び表2に示す。
Figure 2018110263
Figure 2018110263
一方サイクル特性については、実施例1と比較例1を比較すると、カーボンブラックを黒鉛粒子に複合させることによる初期効率及び100サイクル時の容量維持率の低下はほとんどなく、芯材の人造黒鉛の高耐久性を保持できることがわかる。
実施例1、実施例4及び参考例5を比較すると、複合黒鉛粒子の被覆層に含まれる石油系ピッチを前駆体とする非晶質炭素及びカーボンブラックの量が多いほど複合黒鉛粒子表面のラマンR値は大きくなり、電池の内部抵抗が小さくなることが分かる。一方、100サイクル時の容量維持率は高く、高耐久性を維持している。
しかしながら実施例3と比較例3または比較例4を比較すると、複合黒鉛粒子の被覆層に含まれるカーボンブラックの量が過多であると、電池の初期効率及びサイクル特性が著しく悪化し、リチウムイオン二次電池の負極材料として不適であることがわかる。また、電池の内部抵抗は参考例5が最も低い値を示した。複合黒鉛粒子に含まれる非晶質炭素及びカーボンブラックの質量が過多である場合、カーボンブラックの質量の増加による内部抵抗の低減効果は小さいことがわかる。

Claims (14)

  1. 人造黒鉛からなる芯材と、非粉体状の非晶質炭素材料及び粉体状の導電性炭素材料を含み前記芯材を被覆する被覆層とを有する複合黒鉛粒子であって、前記芯材の質量に対する前記非粉体状の非晶質炭素材料の質量の割合が0.2〜3.8質量%であり、前記芯材の質量に対する前記粉体状の導電性炭素材料の質量の割合が0.3〜5.0質量%である複合黒鉛粒子。
  2. 前記芯材の質量に対する前記非粉体状の非晶質炭素材料の質量の割合が0.2〜2.3質量%である請求項1に記載の複合黒鉛粒子。
  3. 前記芯材の質量に対する前記粉体状の導電性炭素材料の質量の割合が0.3〜3.0質量%である請求項1または2に記載の複合黒鉛粒子。
  4. 前記粉体状の導電性炭素材料がカーボンブラックである請求項1〜3のいずれか1項に記載の複合黒鉛粒子。
  5. ラマン分光スペクトルで測定される1360cm-1付近にあるピークのピーク強度(ID)と1580cm-1付近にあるピークのピーク強度(IG)との比ID/IG(R値)が0.10〜1.00である請求項1〜4のいずれか1項に記載の複合黒鉛粒子。
  6. 窒素吸着に基づくBET比表面積が1.0〜10.0m2/gである請求項1〜5のいずれか1項に記載の複合黒鉛粒子。
  7. 請求項1〜6のいずれか1項に記載の複合黒鉛粒子の製造方法であって、人造黒鉛100質量部に対し、非晶質炭素前駆体0.3〜5.0質量部及び粉体状の導電性炭素材料0.3〜5.0質量部を加え、剪断力を作用させながら混合し、得られた混合物を600〜1300℃で焼成することを含むことを特徴とする複合黒鉛粒子の製造方法。
  8. 前記非晶質炭素前駆体が、石油系ピッチ、石炭系ピッチ、フェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、セルロース樹脂、ポリスチレン樹脂、ポリイミド樹脂及びエポキシ樹脂からなる群から選ばれる少なくとも1種の化合物である請求項7に記載の複合黒鉛粒子の製造方法。
  9. 前記非晶質炭素前駆体が石油系ピッチである請求項8に記載の複合黒鉛粒子の製造方法。
  10. 請求項1〜6のいずれか1項に記載の複合黒鉛粒子、バインダー及び溶媒を含有するペースト。
  11. さらに粉体状の導電性炭素材料を含む請求項10に記載のペースト。
  12. 集電体と、請求項1〜6のいずれか1項に記載の複合黒鉛粒子を含有する電極層とを有する積層体からなる電極シート。
  13. さらに前記電極層に粉体状の導電性炭素材料を含む請求項12に記載の電極シート。
  14. 請求項12または13に記載の電極シートを負極として含むリチウムイオン二次電池。
JP2018556536A 2016-12-12 2017-11-27 複合黒鉛粒子、その製造方法及びその用途 Pending JPWO2018110263A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016240394 2016-12-12
JP2016240394 2016-12-12
PCT/JP2017/042420 WO2018110263A1 (ja) 2016-12-12 2017-11-27 複合黒鉛粒子、その製造方法及びその用途

Publications (1)

Publication Number Publication Date
JPWO2018110263A1 true JPWO2018110263A1 (ja) 2019-10-24

Family

ID=62558319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018556536A Pending JPWO2018110263A1 (ja) 2016-12-12 2017-11-27 複合黒鉛粒子、その製造方法及びその用途

Country Status (4)

Country Link
US (1) US20190334173A1 (ja)
JP (1) JPWO2018110263A1 (ja)
CN (1) CN110072810A (ja)
WO (1) WO2018110263A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210074999A1 (en) * 2019-09-05 2021-03-11 TeraWatt Technology Inc. Systems and Methods of Making Solid-State Batteries and Associated Solid-State Battery Anodes
KR20220064385A (ko) * 2019-12-03 2022-05-18 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 복합 흑연 재료 및 이의 제조 방법, 이차 전지 및 장치
JP2021152996A (ja) * 2020-03-24 2021-09-30 東海カーボン株式会社 リチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極材の製造方法
JP7263284B2 (ja) * 2020-03-24 2023-04-24 東海カーボン株式会社 リチウムイオン二次電池用負極材の製造方法
JP7201635B2 (ja) * 2020-03-24 2023-01-10 東海カーボン株式会社 リチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極材の製造方法
JP7201634B2 (ja) * 2020-03-24 2023-01-10 東海カーボン株式会社 リチウムイオン二次電池用負極材の製造方法およびリチウムイオン二次電池用負極材の製造材料
CN113871580B (zh) * 2020-06-30 2023-08-08 比亚迪股份有限公司 石墨复合材料及其制备方法、负极材料及电池
CN115395003B (zh) * 2022-10-28 2023-02-28 溧阳紫宸新材料科技有限公司 一种负极材料及其制备方法与应用
CN116344888A (zh) * 2023-05-31 2023-06-27 深圳大学 一种负极浆料及其制备方法和半固态悬浮液流电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5413645B2 (ja) * 2009-03-13 2014-02-12 東海カーボン株式会社 リチウム二次電池用負極材の製造方法
CN103620836B (zh) * 2011-06-30 2016-03-23 三洋电机株式会社 非水电解质二次电池及其制造方法
WO2014030720A1 (ja) * 2012-08-23 2014-02-27 三菱化学株式会社 非水系電解液二次電池用炭素材、非水系電解液二次電池用負極、非水系電解液二次電池、及び非水系電解液二次電池用炭素材の製造方法
JP6609959B2 (ja) * 2015-03-27 2019-11-27 三菱ケミカル株式会社 非水系二次電池用複合炭素材、及び、非水系二次電池

Also Published As

Publication number Publication date
US20190334173A1 (en) 2019-10-31
CN110072810A (zh) 2019-07-30
WO2018110263A1 (ja) 2018-06-21

Similar Documents

Publication Publication Date Title
CN109314228B (zh) 硫碳复合物及包含其的锂硫电池
JP6528826B2 (ja) 非水系二次電池用炭素材並びにそれを用いた負極及びリチウムイオン二次電池
JP5270050B1 (ja) 複合黒鉛粒子およびその用途
US8748036B2 (en) Non-aqueous secondary battery
CN107710463B (zh) 锂-硫电池用正极、其制造方法以及包含其的锂-硫电池
JPWO2018110263A1 (ja) 複合黒鉛粒子、その製造方法及びその用途
JP5245592B2 (ja) 非水電解質二次電池用負極材、ならびにリチウムイオン二次電池及び電気化学キャパシタ
KR101522911B1 (ko) 리튬계 2차 전지용 음극, 탄소계 음극 활물질의 제조 방법, 리튬계 2차 전지 및 그 용도
EP3457474A1 (en) Sulfur-carbon composite, preparation method therefor, and lithium-sulfur battery comprising same
JP5611453B2 (ja) リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池
JP6188158B2 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池用負極スラリー、およびリチウムイオン二次電池
KR20180017975A (ko) 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
EP3667779A2 (en) Sulfur-carbon composite, preparation method thereof, and lithium secondary battery comprising same
JP2007141677A (ja) 複合黒鉛及びそれを用いたリチウム二次電池
JP4818498B2 (ja) 非水電解質二次電池
EP3767715B1 (en) Sulfur-carbon composite, preparation method thereof, positive electrode for lithium secondary battery and lithium secondary battery comprising same
JP6614439B2 (ja) 蓄電素子用負極及び蓄電素子
KR101044577B1 (ko) 고전압 리튬 이차 전지
CN115152048A (zh) 非水电解质二次电池用负极和非水电解质二次电池
JP5567232B1 (ja) 複合炭素粒子およびそれを用いたリチウムイオン二次電池
JP2023130538A (ja) 電気化学素子用正極添加剤、電気化学素子正極用組成物、電気化学素子用正極およびこれを含む電気化学素子
JP2021051854A (ja) 非水電解質二次電池の製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190403

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191218