JP4544892B2 - 半導体レーザ装置およびその製造方法 - Google Patents

半導体レーザ装置およびその製造方法 Download PDF

Info

Publication number
JP4544892B2
JP4544892B2 JP2004101486A JP2004101486A JP4544892B2 JP 4544892 B2 JP4544892 B2 JP 4544892B2 JP 2004101486 A JP2004101486 A JP 2004101486A JP 2004101486 A JP2004101486 A JP 2004101486A JP 4544892 B2 JP4544892 B2 JP 4544892B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser element
semiconductor
semiconductor layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004101486A
Other languages
English (en)
Other versions
JP2005286244A (ja
Inventor
靖之 別所
雅幸 畑
大二朗 井上
勤 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004101486A priority Critical patent/JP4544892B2/ja
Priority to US11/076,963 priority patent/US20050218420A1/en
Priority to CNA2008100089378A priority patent/CN101232152A/zh
Priority to CNB2005100537718A priority patent/CN100459333C/zh
Publication of JP2005286244A publication Critical patent/JP2005286244A/ja
Priority to US12/821,826 priority patent/US20100260227A1/en
Application granted granted Critical
Publication of JP4544892B2 publication Critical patent/JP4544892B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4043Edge-emitting structures with vertically stacked active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は波長の異なる複数の光を出射可能な半導体レーザ装置およびその製造方法に関する。
従来より、CD(コンパクトディスク)/CD−R(コンパクトディスク−レコーダブル)ドライブには、光源として波長780nm程度の赤外光を出射する半導体レーザ素子(赤外半導体レーザ素子)が用いられてきた。また、DVD(デジタルバーサタイルディスク)ドライブには、光源として波長650nm程度の赤色光を出射する半導体レーザ素子(赤色半導体レーザ素子)が用いられてきた。
一方、近年、波長405nm程度の青紫色光を用いて記録および再生可能なDVDの開発が進められている。このようなDVDの記録および再生のために、波長405nm程度の青紫色光を出射する半導体レーザ素子(青紫色半導体レーザ素子)を用いたDVDドライブも同時に開発が進められている。このDVDドライブにおいては、従来のCD/CD−RおよびDVDに対する互換性が必要とされる。
この場合、DVDドライブに赤外光、赤色光および青紫色光をそれぞれ出射する複数の光ピックアップ装置を設ける方法、または1つの光ピックアップ装置内に赤外半導体レーザ素子、赤色半導体レーザ素子および青紫色半導体レーザ素子を設ける方法により、従来のCD、DVDおよび新しいDVDに対する互換性が実現される。しかしながら、これらの方法では部品点数の増加を招くため、DVDドライブの小型化、構成の簡単化および低コスト化が困難となる。
このような部品点数の増加を防止するために、赤外半導体レーザ素子と赤色半導体レーザ素子とを1チップに集積化した半導体レーザ素子が実用化されている。
赤外半導体レーザ素子および赤色半導体レーザ素子はともにGaAs基板上に形成されるため1チップ化が可能であるが、青紫色半導体レーザ素子はGaAs基板上に形成されないため、青紫色半導体レーザ素子を赤外半導体レーザ素子および赤色半導体レーザ素子とともに1チップに集積化することは非常に困難である。
そこで、赤色半導体レーザ素子のチップを作製するとともに、青紫色半導体レーザ素子のチップを作製し、青紫色半導体レーザ素子のチップ上に赤色半導体レーザ素子のチップを積み重ねた構造を有する集積型半導体発光装置が提案されている(特許文献1参照)。
特開2002−118331号公報
しかしながら、上記の集積型半導体発光装置の駆動時においては、赤色半導体レーザ素子の放熱が青紫色半導体レーザ素子を介して行われるので、集積型半導体発光装置自体の放熱を効率よく行うことが困難である。これにより、十分な放熱が行われないことによる集積型半導体発光装置の信頼性の低下が指摘されている。
本発明の目的は、複数の半導体レーザ素子の放熱を効率的に行うことが可能で、かつ信頼性の高い半導体レーザ装置およびその製造方法を提供することである。
第1の発明に係る半導体レーザ装置は、第1の基板上に第1の波長の光を出射する第1の半導体層を有する第1の半導体レーザ素子と、第2の基板上に第2の波長の光を出射する第2の半導体層を有する第2の半導体レーザ素子とを備え、第1および第2の波長はそれぞれ異なり、第1の基板の一面と垂直な方向において第1の半導体レーザ素子の発光点と重ならないように、第2の半導体レーザ素子が第1の半導体レーザ素子上に積層されたものである。
第1の発明に係る半導体レーザ装置においては、第1の基板の一面と垂直な方向において第1の半導体レーザ素子の発光点と重ならないように、第2の半導体レーザ素子が第1の半導体レーザ素子上に積層される。
これにより、第1の半導体レーザ素子の発光点で発生される熱が、第2の半導体レーザ素子に妨げられることなく効率的に放熱される。また、第2の半導体レーザ素子により発生される熱が、第1の半導体レーザ素子の発光点に妨げられることなく効率的に放熱される。その結果、温度特性が向上し、信頼性が向上する。
第1の半導体レーザ素子は上段面および下段面からなる段差を有し、第1の半導体層の発光点は、上段面の下方に設けられ、第2の半導体レーザ素子は、第1の半導体レーザ素子の下段面上に積層されてもよい。
この場合、第1の半導体レーザ素子の下段面上に第2の半導体レーザ素子が積層されることにより、第1の半導体レーザ素子の上段面と、積層された第2の半導体レーザ素子の上面とを略面一にすることができる。それにより、第1の半導体レーザ素子の上段面および第2の半導体レーザ素子の上面を、平坦な放熱体に接触させることが可能となる。その結果、平坦で、かつ安価な放熱体を用いることができるので、製造コストを低減することができる。
また、第1の半導体レーザ素子の第1の半導体層の発光点が上段面の下方に位置し、第2の半導体レーザ素子の第2の半導体層の発光点が下段面の上方に位置することにより、第1の基板の一面に平行な方向に第1の半導体レーザ素子の発光点および第2の半導体レーザ素子の発光点を並べることができる。それにより、半導体レーザ装置および光ピックアップ装置の設計が容易となる。
第2の半導体レーザ素子は、第2の半導体層側が第1の半導体層側に位置するように第1の半導体レーザ素子上に積層されてもよい。この場合、第2の半導体層側が第1の半導体層側に位置するように、第2の半導体レーザ素子が第1の半導体レーザ素子上に積層されることにより、第1の半導体レーザ素子と第2の半導体レーザ素子の発光点間の間隔が短くなる。これにより、第1および第2の半導体レーザ素子の発光点をともに半導体レーザ装置の中心に近づけることができる。その結果、例えば、レーザ光をレンズ等で集光する場合に第1および第2の半導体レーザ素子の光の取り出し効率がともに向上する。
第1の半導体層および第2の半導体層のいずれか一方は、窒化物系半導体からなってもよい。この場合、第1の半導体層または第2の半導体層のいずれか一方が熱伝導率の高い窒化物系半導体からなるので、第1の半導体レーザ素子または第2の半導体レーザ素子のいずれか一方の半導体層の放熱性が向上する。それにより、第1の半導体レーザ素子または第2の半導体レーザ素子のいずれか一方の温度特性が向上し、信頼性が向上する。また、短波長の青紫色のレーザ光を出射することができる。
第1の半導体層の発光点に重なる第1の半導体レーザ素子上の領域および第1の半導体レーザ素子とは反対側の第2の半導体レーザ素子の面に接するように放熱体が設けられてもよい。
この場合、第1の半導体層の発光点に重なる第1の半導体レーザ素子上の領域および第1の半導体レーザ素子とは反対側の第2の半導体レーザ素子の面に放熱体が設けられることにより、第1の半導体層の発光点において発生された熱および第2の半導体レーザ素子の第2の半導体層の発光点において発生された熱が、効率よく放熱体に伝達される。それにより、第1および第2の半導体レーザ素子の放熱性が向上し、信頼性が向上する。
第3の基板上に第3の波長の光を出射する第3の半導体層を有する第3の半導体レーザ素子をさらに備え、第3の半導体レーザ素子は、第1の基板の一面に平行な方向において第1の半導体レーザ素子の発光点に重なる領域を除いて第1の半導体レーザ素子の上に積層されてもよい。
この場合、第1の基板の一面に平行な方向において第1の半導体レーザ素子の発光点に重ならないように、第1の半導体レーザ素子上に第3の半導体レーザ素子が積層される。
これにより、第1の半導体レーザ素子の発光点で発生される熱が、第3の半導体レーザ素子に妨げられることなく効率的に放熱される。また、第3の半導体レーザ素子により発生される熱が、第1の半導体レーザ素子の発光点に妨げられることなく効率的に放熱される。その結果、温度特性が向上し、信頼性が向上する。
第2の発明に係る半導体レーザ装置の製造方法は、第1の基板上に第1の波長の光を出射する複数の第1の発光点を有するように第1の半導体層を形成する工程と、第1の基板と異なる材料からなる第2の基板上に第1の波長と異なる第2の波長の光を出射する複数の第2の発光点を有するように第2の半導体層を形成する工程と、第1の半導体層上に第2の半導体層が積層されるように第1の基板と第2の基板とを接合する工程と、複数の第1の発光点の上方における第1の半導体層の領域が露出するように第2の基板および第2の半導体層をエッチングする工程と、第1の基板、第1の半導体層、第2の基板および第2の半導体層の積層構造を複数の半導体レーザ装置に分割する工程とを備えたものである。
第2の発明に係る半導体レーザ装置の製造方法においては、第1の基板上に複数の第1の発光点を有するように第1の半導体層が形成され、第1の基板上に複数の第2の発光点を有するように第2の半導体層が形成され、第1の半導体層上に第2の半導体層が積層されるように第1の基板と第2の基板とが接合され、複数の第1の発光点の上方における第1の半導体層の領域が露出するように第2の基板および第2の半導体層がエッチングされ、第1の基板、第1の半導体層、第2の基板および第2の半導体層の積層構造が複数の半導体レーザ装置に分割される。
これにより、第1の基板の一面に平行な方向において第1の半導体レーザ素子の発光点に重ならないように、第1の半導体レーザ素子上に第2の半導体レーザ素子を積層した半導体レーザ装置を得ることができる。
この半導体レーザ装置においては、第1の半導体レーザ素子の第1の発光点で発生される熱が、第2の半導体レーザ素子に妨げられることなく効率的に放熱される。また、第2の半導体レーザ素子の第2の発光点により発生される熱が、第1の半導体レーザ素子の発光点に妨げられることなく効率的に放熱される。その結果、温度特性が向上し、信頼性が向上する。
本発明に係る半導体レーザ装置においては、第1の基板の一面と垂直な方向において第1の半導体レーザ素子の発光点に重ならないように、第2の半導体レーザ素子が第1の半導体レーザ素子上に積層される。
これにより、第1の半導体レーザ素子の発光点で発生される熱が、第2の半導体レーザ素子に妨げられることなく効率的に放熱される。また、第2の半導体レーザ素子により発生される熱が、第1の半導体レーザ素子の発光点に妨げられることなく効率的に放熱される。その結果、温度特性が向上し、信頼性が向上する。
以下、本発明の一実施の形態に係る半導体レーザ装置およびその製造方法について説明する。
(第1の実施の形態)
図1は第1の実施の形態に係る半導体レーザ装置の一例を示す模式的断面図である。
本実施の形態に係る半導体レーザ装置1000Aは、波長約400nmのレーザ光を出射する半導体レーザ素子(以下、青紫色半導体レーザ素子と呼ぶ。)1、波長約650nmのレーザ光を出射する半導体レーザ素子(以下、赤色半導体レーザ素子と呼ぶ。)2を備える。
本実施の形態において、青紫色半導体レーザ素子1はGaN基板上に半導体層を形成することにより作製される。赤色半導体レーザ素子2はGaAs基板上に半導体層を形成することにより作製される。詳細は後述する。
図1に示すように、青紫色半導体レーザ素子1において、上面にはp電極12が形成され、下面にはn電極15が形成されている。青紫色半導体レーザ素子1にはp型半導体とn型半導体との接合面であるpn接合面10が形成されている。
赤色半導体レーザ素子2の上面にはn電極23が形成され、下面にはp電極22が形成されている。赤色半導体レーザ素子2にはp型半導体とn型半導体との接合面であるpn接合面20が形成されている。
青紫色半導体レーザ素子1のp電極12の上面の一部にはんだ膜Hが形成されている。赤色半導体レーザ素子2のp電極22がはんだ膜Hを介してp電極12上に接合されている。はんだ膜Hの形成されないp電極12の一部は露出している。
これにより、青紫色半導体レーザ素子1のp電極12と赤色半導体レーザ素子2のp電極22とが電気的に接続される。それにより、青紫色半導体レーザ素子1のp電極12および赤色半導体レーザ素子2のp電極22が共通の電極となっている。
図1においては、矢印X,Y,Zで示すように互いに直交する3方向をX方向、Y方向およびZ方向とする。X方向およびY方向は、青紫色半導体レーザ素子1および赤色半導体レーザ素子2のpn接合面10,20に平行な方向である。Z方向は青紫色半導体レーザ素子1および赤色半導体レーザ素子2のpn接合面10,20に垂直な方向である。
青紫色半導体レーザ素子1のp電極12とn電極15との間に電圧が印加されることにより、pn接合面10における所定の領域(以下、青紫色発光点と呼ぶ。)11から波長約400nmのレーザ光がX方向に出射される。この青紫色発光点11は、Y方向において赤色半導体レーザ素子2の接合位置と異なる箇所に位置している。
赤色半導体レーザ素子2のp電極22とn電極23との間に電圧が印加されることにより、pn接合面20における所定の領域(以下、赤色発光点と呼ぶ。)21から波長約650nmのレーザ光がX方向に出射される。
図2は図1の半導体レーザ装置1000Aをヒートシンク上に組み立てた際の模式的断面図である。図1の半導体レーザ装置1000Aを光ピックアップ装置に用いる場合、図2に示すように、半導体レーザ装置1000AをAlN、SiC、Siまたはダイヤモンド等の熱伝導性に優れた絶縁性材料からなるヒートシンク500上に取り付ける。
ここで、図2のヒートシンク500の上面には段差が設けられている。ヒートシンク500の上段面および下段面にはそれぞれパターニング電極61,62が形成されている。パターニング電極61,62は互いに電気的に分離されている。
パターニング電極61,62の上面の一部にははんだ膜Hが形成されている。青紫色半導体レーザ素子1のp電極12および赤色半導体レーザ素子2のp電極22がはんだ膜Hを介して上段面のパターニング電極61に接合され、赤色半導体レーザ素子2のn電極23がはんだ膜Hを介して下段面のパターニング電極62に接合されている。
これにより、青紫色半導体レーザ素子1のp電極12、赤色半導体レーザ素子2のp電極22およびヒートシンク500のパターニング電極61が電気的に接続されている。また、赤色半導体レーザ素子2のn電極23とヒートシンク500のパターニング電極62とが電気的に接続されている。
この状態で、ワイヤ1WR,2WR,3WRを用いて青紫色半導体レーザ素子1のp電極12およびn電極15ならびに赤色半導体レーザ素子2のp電極22およびn電極23の配線を行う。
青紫色半導体レーザ素子1のp電極12および赤色半導体レーザ素子2のp電極22と電気的に接続されるパターニング電極61はワイヤ1WRにより図示しない駆動回路に接続される。青紫色半導体レーザ素子1のn電極15は、ワイヤ2WRにより図示しない駆動回路に接続される。赤色半導体レーザ素子2のn電極23に接合されるパターニング電極62はワイヤ3WRにより図示しない駆動回路に接続される。
ワイヤ1WRとワイヤ2WRとの間に電圧を印加することにより青紫色半導体レーザ素子1を駆動することができ、ワイヤ1WRとワイヤ3WRとの間に電圧を印加することにより赤色半導体レーザ素子2を駆動することができる。このように、青紫色半導体レーザ素子1および赤色半導体レーザ素子2をそれぞれ独立に駆動することができる。
本実施の形態に係る半導体レーザ装置1000Aの製造方法について説明する。図3〜図6は第1の実施の形態に係る半導体レーザ装置の製造方法の一例を示す模式的工程断面図である。図3〜図6においても、図1のX,Y,Z方向が定義されている。
図3(a)に示すように、青紫色半導体レーザ素子1を作製するために、n−GaN基板1sの一方の面上に積層構造を有する半導体層1tを形成する。また、赤色半導体レーザ素子2を青紫色半導体レーザ素子1上に接合するために、p電極12を形成した後、半導体層1t上の所定の領域に、Au−Snからなるはんだ膜Hを形成する。
半導体層1t上のY方向における所定の箇所には、X方向に延びる断面凸状のリッジ部(図示せず)が形成されている。半導体層1tのリッジ部の下方には青紫色半導体レーザ素子1の青紫色発光点11が形成される。はんだ膜Hの形成される所定の領域は青紫色発光点11の上方を除いて設定される。青紫色半導体レーザ素子1のn電極15は後の工程で形成される。
図3(b)に示すように、赤色半導体レーザ素子2を作製するために、n−GaAs基板50の一方の面上にAlGaAsからなるエッチングストップ層51を形成し、エッチングストップ層51上にn−GaAsコンタクト層5を形成する。
そして、n−GaAsコンタクト層5上にAlGaInP系の積層構造を有する半導体層2tを形成する。さらに、半導体層2t上の一部にp電極22を形成する。赤色半導体レーザ素子2のn電極23は後の工程で形成される。
半導体層2t上のY方向における所定の箇所には、X方向に延びる断面凸状のリッジ部(図示せず)が形成されている。半導体層2tのリッジ部の下方には赤色半導体レーザ素子2の赤色発光点21が形成される。p電極22は少なくともリッジ部の上方に形成されている。
次に、図4(c)に示すように、半導体層1t上のp電極12の所定の領域(はんだ膜Hの形成された領域)に、半導体層2t上に形成されたp電極22をはんだ膜Hを介して接合する。
なお、このとき、n−GaN基板1sおよびn−GaAs基板50はともに約300〜500μm程度の厚みを有する。これにより、n−GaN基板1sおよびn−GaAs基板50の取り扱いが容易となり、p電極12へのp電極22の接合が容易に行われる。
また、青紫色半導体レーザ素子1のn−GaN基板1sは透明である。これにより、p電極12へのp電極22の接合位置をn−GaN基板1sを通して目視により確認することができる。それにより、青紫色半導体レーザ素子1上の赤色半導体レーザ素子2の位置決めが容易となる。その結果、正確な発光点の位置精度を得ることができる。
なお、本実施の形態において、青紫色半導体レーザ素子1の基板はn−GaN基板1sに限らず、他の導電性かつ透光性の基板を用いてもよい。この場合、上述のように、青紫色半導体レーザ素子1上の赤色半導体レーザ素子2の位置決めが容易となり、発光点の位置精度が正確となる。
図4(d)に示すように、n−GaAs基板50をエッチングまたは研磨等により所定の薄さに加工した後、エッチングストップ層51までエッチングする。
その後、図5(e)に示すように、エッチングストップ層51が除去された後、半導体層2tの上方におけるn−GaAsコンタクト層5上の領域にn電極23をパターニングして形成する。
次に、図5(f)に示すように、半導体層1tの青紫色発光点11の上方に位置するn−GaAsコンタクト層5および半導体層2tをエッチングする。このエッチングは、半導体層1t上のp電極12が露出するまで行う。これにより、赤色半導体レーザ素子2が作製される。赤色半導体レーザ素子2の構造の詳細は後述する。
そして、図6(g)に示すように、n−GaN基板1sを研磨により薄くした後、n−GaN基板1sの下面に、n電極15を形成する。これにより、青紫色半導体レーザ素子1が作製される。青紫色半導体レーザ素子1の構造の詳細は後述する。
なお、上記の図3〜図6の説明において、青紫色半導体レーザ素子1のn−GaN基板1sおよび半導体層1tはY方向に延びており、青紫色発光点11は所定の間隔で複数形成される。また、赤色半導体レーザ素子2のn−GaAsコンタクト層5および半導体層2tはY方向に延びており、赤色発光点21は所定の間隔で複数形成される。
最後に、上記のように作製された青紫色半導体レーザ素子1および赤色半導体レーザ素子2をY方向にへき開により棒状に分離して、共振器端面を形成する。共振器端面に保護膜を形成した後、チップ状にさらに細かく、X方向に沿って裁断する。これにより、本実施の形態に係る半導体レーザ装置1000Aが完成する。
図7に基づいて青紫色半導体レーザ素子1の構造の詳細について作製方法とともに説明する。
図7は青紫色半導体レーザ素子1の構造の詳細を説明するための模式的断面図である。以下の説明においても、図1と同様にX方向、Y方向およびZ方向を定義する。
青紫色半導体レーザ素子1の製造時においては、上述のようにn−GaN基板1s上に積層構造を有する半導体層1tが形成される。
図7(a)に示すように、n−GaN基板1s上には、積層構造を有する半導体層1tとして、n−GaN層101、n−AlGaNクラッド層102、n−GaN光ガイド層103、MQW(多重量子井戸)活性層104、アンドープAlGaNキャップ層105、アンドープGaN光ガイド層106、p−AlGaNクラッド層107およびアンドープGaInNコンタクト層108が順に形成される。これら各層の形成は、例えば、MOCVD法(有機金属化学気相成長法)により行われる。
図7(b)に示すように、MQW活性層104は4つのアンドープGaInN障壁層104aと3つのアンドープGaInN井戸層104bとが、交互に積層された構造を有する。
ここで、例えば、n−AlGaNクラッド層102のAl組成は0.15であり、Ga組成は0.85である。n−GaN層101、n−AlGaNクラッド層102およびn−GaN光ガイド層103にはSiがドープされている。
また、アンドープGaInN障壁層104aのGa組成は0.95であり、In組成は0.05である。アンドープGaInN井戸層104bのGa組成は0.90であり、In組成は0.10である。p−AlGaNキャップ層105のAl組成は0.30であり、Ga組成は0.70である。
さらに、p−AlGaNクラッド層107のAl組成は0.15であり、Ga組成は0.85である。p−AlGaNクラッド層107にはMgがドープされている。アンドープGaInNコンタクト層108のGa組成は0.95であり、In組成は0.05である。
上記の半導体層1tのうち、p−AlGaNクラッド層107には、X方向に延びるストライプ状のリッジ部Riが形成される。p−AlGaNクラッド層107のリッジ部Riは約1.5μmの幅を有する。
アンドープGaInNコンタクト層108は、p−AlGaNクラッド層107のリッジ部Riの上面に形成される。
p−AlGaNクラッド層107およびアンドープGaInNコンタクト層108の上面に、SiO2 からなる絶縁膜4が形成され、アンドープGaInNコンタクト層108上に形成された絶縁膜4がエッチングにより除去される。そして、外部に露出したアンドープGaInNコンタクト層108上にPd/Pt/Auからなるp電極110が形成される。さらに、p電極110の上面および絶縁膜4の上面を覆うように、スパッタ法、真空蒸着法または電子ビーム蒸着法によりp電極12が形成される。
このように、n−GaN基板1sの一面側に積層構造を有する半導体層1tが形成される。さらに、n−GaN基板1sの他面側にはTi/Pt/Auからなるn電極15が形成される。
この青紫色半導体レーザ素子1では、リッジ部Riの下方におけるMQW活性層104の位置に青紫色発光点11が形成される。なお、本例では、MQW活性層104が図1のpn接合面10に相当する。
図8に基づいて赤色半導体レーザ素子2の構造の詳細について作製方法とともに説明する。
図8は赤色半導体レーザ素子2の構造の詳細を説明するための模式的断面図である。以下の説明においても、図1と同様にX方向、Y方向およびZ方向を定義する。また、本実施の形態では、赤色半導体レーザ素子2はn−GaAsコンタクト層5上に半導体層2tを形成することにより作製するとしているが、以下の説明では、n−GaAsコンタクト層5に代えてn−GaAs基板5X上に半導体層2tを形成する。このn−GaAs基板5XにはSiがドープされている。
図8(a)に示すように、n−GaAs基板5X上には、積層構造を有する半導体層2tとして、n−GaAs層201、n−AlGaInPクラッド層202、アンドープAlGaInP光ガイド層203、MQW(多重量子井戸)活性層204、アンドープAlGaInP光ガイド層205、p−AlGaInP第1クラッド層206、p−InGaPエッチングストップ層207、p−AlGaInP第2クラッド層208およびp−コンタクト層209が順に形成される。これら各層の形成は、例えば、MOCVD法(有機金属化学気相成長法)により行われる。
図8(b)に示すように、MQW活性層204は2つのアンドープAlGaInP障壁層204aと3つのアンドープInGaP井戸層204bとが、交互に積層された構造を有する。
ここで、例えば、n−AlGaInPクラッド層202のAl組成は0.70であり、Ga組成は0.30であり、In組成は0.50であり、P組成は0.50である。n−GaAs層201およびn−AlGaInPクラッド層202にはSiがドープされている。
アンドープAlGaInP光ガイド層203のAl組成は0.50であり、Ga組成は0.50であり、In組成は0.50であり、P組成は0.50である。
また、アンドープAlGaInP障壁層204aのAl組成は0.50であり、Ga組成は0.50であり、In組成は0.50であり、P組成は0.50である。アンドープInGaP井戸層204bのIn組成は0.50であり、Ga組成は0.50である。アンドープAlGaInP光ガイド層205のAl組成は0.50であり、Ga組成は0.50であり、In組成は0.50であり、P組成は0.50である。
さらに、p−AlGaInP第1クラッド層206のAl組成は0.70であり、Ga組成は0.30であり、In組成は0.50であり、P組成は0.50である。p−InGaPエッチングストップ層207のIn組成は0.50であり、Ga組成は0.50である。
p−AlGaInP第2クラッド層208のAl組成は0.70であり、Ga組成は0.30であり、In組成は0.50であり、P組成は0.50である。
p−コンタクト層209は、p−GaInP層とp−GaAs層との積層構造を有する。このp−GaInPのGa組成は0.5であり、In組成は0.5である。
なお、上記したAlGaInP系材料の組成は、一般式(Ala Gab 0.5 Inc d で表した時のaがAl組成であり、bがGa組成であり、cがIn組成であり、dがP組成である。
p−AlGaInP第1クラッド層206、p−InGaPエッチングストップ層207、p−AlGaInP第2クラッド層208およびp−コンタクト層209のp−GaInPおよびp−GaAsにはZnがドープされている。
上記において、p−InGaPエッチングストップ層207上へのp−AlGaInP第2クラッド層208の形成は、p−InGaPエッチングストップ層207の一部(中央部)にのみ行われる。そして、p−AlGaInP第2クラッド層208の上面にp−コンタクト層209が形成される。
これにより、上記の半導体層2tのうち、p−AlGaInP第2クラッド層208およびp−コンタクト層209により、X方向に延びるストライプ状のリッジ部Riが形成される。p−AlGaInP第2クラッド層208およびp−コンタクト層209からなるリッジ部Riは約2.5μmの幅を有する。
p−InGaPエッチングストップ層207の上面、p−AlGaInP第2クラッド層208の側面ならびにp−コンタクト層209の上面および側面に、SiO2 からなる絶縁膜210が形成され、p−コンタクト層209上に形成された絶縁膜210がエッチングにより除去される。そして、外部に露出したp−コンタクト層209上にCr/Auからなるp電極211が形成される。さらに、p電極211の上面および絶縁膜210の上面を覆うように、スパッタ法、真空蒸着法または電子ビーム蒸着法によりp電極22が形成される。
このように、n−GaAs基板5Xの一面側に積層構造を有する半導体層2tが形成される。さらに、n−GaAs基板5Xの他面側にはAuGe/Ni/Auからなるn電極23が形成される。
この赤色半導体レーザ素子2では、リッジ部Riの下方におけるMQW活性層204の位置に赤色発光点21が形成される。なお、本例では、MQW活性層204が図1のpn接合面20に相当する。
以上、本実施の形態に係る半導体レーザ装置1000Aにおいては、n−GaN基板1sの一面と垂直なZ方向において青紫色半導体レーザ素子1の青紫色発光点11に重ならないように、赤色半導体レーザ素子2が青紫色半導体レーザ素子1上に積層されている。
これにより、図2に示すように半導体レーザ装置1000Aをヒートシンク500上に取り付けた場合に青紫色半導体レーザ素子1の青紫色発光点11で発生される熱が、赤色半導体レーザ素子2に妨げられることなくヒートシンク500に効率的に放熱される。また、赤色半導体レーザ素子2により発生される熱が、青紫色半導体レーザ素子1に妨げられることなくヒートシンク500に効率的に放熱される。その結果、温度特性が向上し、信頼性が向上する。
また、本実施の形態において、赤色半導体レーザ素子2は、半導体層2t側が半導体層1t側に位置するように青紫色半導体レーザ素子1上に積層されている。この場合、半導体層2t側が半導体層1t側に位置するように、赤色半導体レーザ素子2が青紫色半導体レーザ素子1上に積層されることにより、青紫色半導体レーザ素子1と赤色半導体レーザ素子2の発光点間の間隔が短くなる。これにより、青紫色半導体レーザ素子1および赤色半導体レーザ素子2の発光点をともに半導体レーザ装置1000Aの中心に近づけることができる。その結果、例えば、レーザ光をレンズ等で集光する場合に青紫色半導体レーザ素子1および赤色半導体レーザ素子2の光の取り出し効率がともに向上する。
さらに、上記では、半導体層1tは、窒化物系半導体から形成されている。この場合、半導体層1tが熱伝導率の高い窒化物系半導体からなるので、青紫色半導体レーザ素子1の半導体層1tの放熱性が向上する。それにより、青紫色半導体レーザ素子1の温度特性が向上し、信頼性が向上する。また、短波長の青紫色のレーザ光を出射することができる。
本実施の形態において、半導体レーザ装置1000Aは青紫色半導体レーザ素子1および赤色半導体レーザ素子2を集積することにより作製している。しかしながら、これに限らず、集積される半導体レーザ素子の数に制限はない。また、複数の半導体レーザ素子は、他の波長の光を出射する半導体レーザ素子であってもよい。
図2に示すように、本実施の形態では、半導体レーザ装置1000Aをヒートシンク500上に取り付けているが、半導体レーザ装置1000Aは、AlN、SiC、Siもしくはダイヤモンド等の絶縁性材料またはCu、CuWもしくはAl等の導電性材料からなるヒートシンク500上に取り付けられてもよい。なお、本実施の形態において、ヒートシンク500は絶縁性材料から形成されることが好ましい。ヒートシンク500に導電性材料を用いる場合には、表面に絶縁性膜を形成する必要がある。
半導体レーザ装置1000Aのパッケージとしては、金属製のキャンパッケージまたは樹脂製のフレームパッケージ等を用いてもよく、半導体レーザ装置1000Aを収納できるものであればよい。
(第2の実施の形態)
図9は第2の実施の形態に係る半導体レーザ装置をヒートシンク上に組み立てた際の模式的断面図である。以下の説明においても、図1と同様にX方向、Y方向およびZ方向を定義する。
第2の実施の形態に係る半導体レーザ装置1000Bは以下の点で第1の実施の形態に係る半導体レーザ装置1000Aと構造が異なる。
図9に示すように、本実施の形態では、青紫色半導体レーザ素子1の一方の面側に上段面Jおよび下段面Gからなる段差が設けられている。また、青紫色半導体レーザ素子1には、一方の面側に上段面Jから下段面Gに連続的に延びるp電極12が形成され、他方の面側にn電極15が形成されている。
青紫色半導体レーザ素子1においては、Z方向における上段面Jと下段面Gとの間の所定の箇所にY方向に延びるpn接合面10が形成され、pn接合面10の所定の領域に青紫色発光点11が形成される。
下段面Gの一部にははんだ膜Hが形成されており、青紫色半導体レーザ素子1の下段面Gははんだ膜Hを介して赤色半導体レーザ素子2のp電極22と接合されている。
赤色半導体レーザ素子2においては、青紫色半導体レーザ素子1に形成されたpn接合面10と略面一となるようにpn接合面20が形成されている。これにより、青紫色発光点11および赤色発光点21がY方向に並ぶように形成される。
また、赤色半導体レーザ素子2は青紫色半導体レーザ素子1の下段面Gに接合されることにより、その反対側の面(n電極23)が、X方向およびY方向において、青紫色半導体レーザ素子1の上段面Jと略面一となっている。
一方、半導体レーザ装置1000Bの組み立て対象となるヒートシンク500は、X方向およびY方向に平坦な上面を有し、その一部に2つのパターニング電極61,62が互いに分離された状態で形成されている。なお、上述のようにヒートシンク500は少なくとも表面が絶縁性材料により形成されているので、パターニング電極61,62は互いに電気的に分離されている。
パターニング電極61の一部にはんだ膜Hが形成され、パターニング電極62の一部にはんだ膜Hが形成されている。
これにより、青紫色半導体レーザ素子1のp電極12の上段面Jがはんだ膜Hを介してパターニング電極61に接合されている。また、青紫色半導体レーザ素子1に接合された赤色半導体レーザ素子2のn電極23がはんだ膜Hを介してパターニング電極62に接合されている。
上述のように、青紫色半導体レーザ素子1のp電極12は、上段面Jから下段面Gへ連続的に形成されている。
これにより、青紫色半導体レーザ素子1のp電極12、赤色半導体レーザ素子2のp電極22およびパターニング電極61が電気的に接続されている。また、赤色半導体レーザ素子2のn電極23およびパターニング電極62が電気的に接続されている。
この状態で、ワイヤ1WR,2WR,3WRを用いて青紫色半導体レーザ素子1のp電極12およびn電極15ならびに赤色半導体レーザ素子2のp電極22およびn電極23の配線が行われている。
青紫色半導体レーザ素子1のp電極12および赤色半導体レーザ素子2のp電極22と接合するパターニング電極61はワイヤ1WRにより図示しない駆動回路に接続される。青紫色半導体レーザ素子1のn電極15は、ワイヤ2WRにより図示しない駆動回路に接続される。赤色半導体レーザ素子2のn電極23と接合するパターニング電極62はワイヤ3WRにより図示しない駆動回路に接続される。
ワイヤ1WRとワイヤ2WRとの間に電圧を印加することにより青紫色半導体レーザ素子1を駆動することができ、ワイヤ1WRとワイヤ3WRとの間に電圧を印加することにより赤色半導体レーザ素子2を駆動することができる。このように、青紫色半導体レーザ素子1および赤色半導体レーザ素子2をそれぞれ独立に駆動することができる。
以上、本実施の形態に係る半導体レーザ装置1000Bにおいて、青紫色半導体レーザ素子1は上段面Jおよび下段面Gからなる段差を有し、半導体層1tの青紫色発光点11は、上段面JのZ方向における所定の位置に設けられ、赤色半導体レーザ素子2は、青紫色半導体レーザ素子1の下段面G上に積層されている。
この場合、青紫色半導体レーザ素子1の下段面G上に赤色半導体レーザ素子2が積層されることにより、青紫色半導体レーザ素子1の上段面Jと、積層された赤色半導体レーザ素子2のn電極23側の面とを略面一にすることができる。それにより、青紫色半導体レーザ素子1の上段面Jおよび赤色半導体レーザ素子2のn電極23側の面を、平坦なヒートシンク500上に接触させることが可能となっている。その結果、平坦で、かつ安価なヒートシンクを用いることができるので、半導体レーザ装置1000Bおよび光ピックアップ装置の製造コストを低減することができる。
また、青紫色半導体レーザ素子1の半導体層1tの青紫色発光点11がZ方向において上段面Jと下段面Gとの間に位置し、赤色半導体レーザ素子2の半導体層2tの赤色発光点21がZ方向において青紫色半導体レーザ素子1の上段面Jと下段面Gとの間に位置することにより、n−GaN基板1sの一面に平行な方向に青紫色半導体レーザ素子1の青紫色発光点11および赤色半導体レーザ素子2の赤色発光点21を並べることができる。それにより、半導体レーザ装置1000Bおよび光ピックアップ装置の設計が容易となる。
本実施の形態において、赤色半導体レーザ素子2はヒートシンク500上に直接的に接合されているので、放熱性が向上している。また、青紫色半導体レーザ素子1についても、ヒートシンク500上に直接的に接合されるとともに、青紫色発光点11がヒートシンク500とp電極12との接合部の近傍に位置しているので放熱性が向上している。
本実施の形態では、上記のように青紫色半導体レーザ素子1が段差を有し、青紫色半導体レーザ素子1の下段面Gに赤色半導体レーザ素子2が接合されるとしているが、これに限らず、図10に示すように、段差を有する赤色半導体レーザ素子2の下段面Gに青紫色半導体レーザ素子1が接合されてもよい。
図10は第2の実施の形態の他の例に係る半導体レーザ装置をヒートシンク上に組み立てた際の模式的断面図である。
この場合においても、青紫色半導体レーザ素子1および赤色半導体レーザ素子2の放熱性が向上される。なお、青紫色発光点11と赤色発光点21との位置関係が逆になる。
(第3の実施の形態)
図11は第3の実施の形態に係る半導体レーザ装置をヒートシンク上に組み立てた際の模式的断面図である。以下の説明においても、図1と同様にX方向、Y方向およびZ方向を定義する。
第3の実施の形態に係る半導体レーザ装置1000Cは以下の点で第1の実施の形態に係る半導体レーザ装置1000Aと構造が異なる。
図11に示すように、本実施の形態では、赤色半導体レーザ素子2のp電極22上の一部に、はんだ膜Hを介して青紫色半導体レーザ素子1のp電極12が接合されている。
ヒートシンク500の上段面に形成されたパターニング電極61に、はんだ膜Hを介して赤色半導体レーザ素子2のp電極22が接合されている。ヒートシンク500の下段面に形成されたパターニング電極62に、はんだ膜Hを介して青紫色半導体レーザ素子1のn電極15が接合されている。
赤色半導体レーザ素子2の半導体層2tの赤色発光点21は、青紫色半導体レーザ素子1との接合部からY方向に離間された箇所に形成される。これにより、本実施の形態においても、赤色発光点21において発生される熱が青紫色半導体レーザ素子1に妨げられることなくヒートシンク500の上段面へ放熱されるので、赤色半導体レーザ素子2の放熱性が向上している。
また、青紫色発光点11において発生される熱が赤色半導体レーザ素子2に妨げられることなくヒートシンク500の下段面へ放熱されるので、青紫色半導体レーザ素子1の放熱性が向上している。
(第4の実施の形態)
図12は第4の実施の形態に係る半導体レーザ装置をヒートシンク上に組み立てた際の模式的断面図である。以下の説明においても、図1と同様にX方向、Y方向およびZ方向を定義する。
第4の実施の形態に係る半導体レーザ装置1000Dは以下の点で第1の実施の形態に係る半導体レーザ装置1000Aと構造が異なる。
この半導体レーザ装置1000Dは、青紫色半導体レーザ素子1および赤色半導体レーザ素子2とともに波長約780nmのレーザ光を出射する半導体レーザ素子(以下、赤外半導体レーザ素子と呼ぶ。)3を含む。
赤外半導体レーザ素子3はGaAs基板上に半導体層を形成することにより作製される。
図12に示すように、赤外半導体レーザ素子3において、一方の面にはp電極32が形成され、他方の面にはn電極33が形成されている。赤外半導体レーザ素子3にはp型半導体とn型半導体との接合面であるpn接合面30が形成されている。pn接合面30の所定の箇所で赤外発光点31が形成される。
また、本実施の形態では、青紫色半導体レーザ素子1のp電極12上の一部に、はんだ膜Hを介して赤色半導体レーザ素子2のp電極22および赤外半導体レーザ素子3のp電極32が接合されている。
ここで、青紫色半導体レーザ素子1への赤色半導体レーザ素子2および赤外半導体レーザ素子3の接合部は、青紫色半導体レーザ素子1の青紫色発光点11からY方向に離間した位置に設定されている。
ヒートシンク500はX方向に断面凸状に形成されている。ヒートシンク500の凸状部の上段面にはパターニング電極61が形成されており、はんだ膜Hを介して青紫色半導体レーザ素子1のp電極12が接合されている。
ヒートシンク500の凸状部の一方側(Y方向)の下段面にはパターニング電極62が形成されており、はんだ膜Hを介して赤色半導体レーザ素子2のn電極23が接合されている。
ヒートシンク500の凸状部の他方側(Y方向)の下段面にはパターニング電極63が形成されており、はんだ膜Hを介して赤外半導体レーザ素子3のn電極33が接合されている。
ヒートシンク500のパターニング電極61はX方向の所定の位置で露出している。露出したパターニング電極61はワイヤ1WRにより図示しない駆動回路に接続されている。パターニング電極61は青紫色半導体レーザ素子1のp電極12、赤色半導体レーザ素子2のp電極22および赤外半導体レーザ素子3のp電極32と電気的に接続されている。
第1の実施の形態と同様に、青紫色半導体レーザ素子1のn電極15は、ワイヤ2WRにより図示しない駆動回路に接続される。赤色半導体レーザ素子2のn電極23と接合するパターニング電極62はワイヤ3WRにより図示しない駆動回路に接続される。赤外半導体レーザ素子3のn電極33と接合するパターニング電極63はワイヤ4WRにより図示しない駆動回路に接続される。
ワイヤ1WRとワイヤ2WRとの間に電圧を印加することにより青紫色半導体レーザ素子1を駆動することができ、ワイヤ1WRとワイヤ3WRとの間に電圧を印加することにより赤色半導体レーザ素子2を駆動することができる。また、ワイヤ1WRとワイヤ4WRとの間に電圧を印加することにより赤外半導体レーザ素子3を駆動することができる。このように、青紫色半導体レーザ素子1、赤色半導体レーザ素子2および赤外半導体レーザ素子3をそれぞれ独立に駆動することができる。
本実施の形態に係る半導体レーザ装置1000Dにおいては、赤色半導体レーザ素子2および赤外半導体レーザ素子3が、Y方向において青紫色半導体レーザ素子1の青紫色発光点11に重なる領域を除いて青紫色半導体レーザ素子1上に接合されている。
これにより、青紫色半導体レーザ素子1の青紫色発光点11で発生される熱が、赤色半導体レーザ素子2および赤外半導体レーザ素子3に妨げられることなく効率的に放熱される。
また、赤色半導体レーザ素子2および赤外半導体レーザ素子3により発生される熱が、青紫色半導体レーザ素子1の青紫色発光点11に妨げられることなく効率的に放熱される。その結果、温度特性が向上し、信頼性が向上する。
以上、第1〜第4の実施の形態において、n−GaN基板1sは第1の基板に相当し、波長約400nmのレーザ光は第1の波長の光に相当し、半導体層1tは第1の半導体層に相当し、青紫色半導体レーザ素子1は第1の半導体レーザ素子に相当する。
また、n−GaAsコンタクト層5、n−GaAs基板50,5Xは第2の基板に相当し、波長約650nmのレーザ光は第2の波長の光に相当し、半導体層2tは第2の半導体層に相当し、赤色半導体レーザ素子2は第2の半導体レーザ素子に相当する。
さらに、n−GaAsコンタクト層5、n−GaAs基板50,5Xは第3の基板に相当し、波長約780nmのレーザ光は第3の波長の光に相当し、半導体層3tは第3の半導体層に相当し、赤外半導体レーザ素子3は第3の半導体レーザ素子に相当する。
また、青紫色発光点11、赤色発光点21および赤外発光点31は発光点に相当し、上段面Jは上段面に相当し、下段面Gは下段面に相当し、ヒートシンク500は放熱体に相当する。
本発明に係る半導体レーザ装置およびその製造方法は、複数種類の光学記録媒体の記録および再生を行うための光ピックアップ装置、表示装置、光源等およびその製造に有効に利用できる。
第1の実施の形態に係る半導体レーザ装置の一例を示す模式的断面図である。 図1の半導体レーザ装置をヒートシンク上に組み立てた際の模式的断面図である。 第1の実施の形態に係る半導体レーザ装置の製造方法の一例を示す模式的工程断面図である。 第1の実施の形態に係る半導体レーザ装置の製造方法の一例を示す模式的工程断面図である。 第1の実施の形態に係る半導体レーザ装置の製造方法の一例を示す模式的工程断面図である。 第1の実施の形態に係る半導体レーザ装置の製造方法の一例を示す模式的工程断面図である。 青紫色半導体レーザ素子の構造の詳細を説明するための模式的断面図である。 赤色半導体レーザ素子の構造の詳細を説明するための模式的断面図である。 第2の実施の形態に係る半導体レーザ装置をヒートシンク上に組み立てた際の模式的断面図である。 第2の実施の形態の他の例に係る半導体レーザ装置をヒートシンク上に組み立てた際の模式的断面図である。 第3の実施の形態に係る半導体レーザ装置をヒートシンク上に組み立てた際の模式的断面図である。 第4の実施の形態に係る半導体レーザ装置をヒートシンク上に組み立てた際の模式的断面図である。
符号の説明
1 青紫色半導体レーザ素子
2 赤色半導体レーザ素子
3 赤外半導体レーザ素子
5 n−GaAsコンタクト層
11 青紫色発光点
21 赤色発光点
31 赤外発光点
500 ヒートシンク
50,5X n−GaAs基板
1s n−GaN基板
1t,2t,3t 半導体層
J 上段面
G 下段面

Claims (6)

  1. 第1の基板上に第1の波長の光を出射する第1の半導体層が形成された第1の半導体レーザ素子と、
    第2の基板上に第2の波長の光を出射する第2の半導体層が形成された第2の半導体レーザ素子とを備え、
    前記第1および第2の波長はそれぞれ異なり、前記第1および第2の基板の材料はそれぞれ異なり、
    前記第2の半導体レーザ素子が、前記第1の基板の前記第1の半導体層が形成された上面と垂直な方向において前記第1の半導体レーザ素子の発光点と重ならないように、前記第1の半導体レーザ素子の前記第1の半導体層上に積層され、
    前記第1の半導体層上の前記発光点から前記垂直な方向の位置に電極が形成され、
    前記第1の半導体レーザ素子は上段面および下段面からなる段差を有し、前記第1の半導体層の発光点は、前記上段面の下方に設けられ、
    前記第2の半導体レーザ素子は、前記第1の半導体レーザ素子の下段面上に積層されたことを特徴とする半導体レーザ装置。
  2. 第1の基板上に第1の波長の光を出射する第1の半導体層が形成された第1の半導体レーザ素子と、
    第2の基板上に第2の波長の光を出射する第2の半導体層が形成された第2の半導体レーザ素子とを備え、
    前記第1および第2の波長はそれぞれ異なり、前記第1および第2の基板の材料はそれぞれ異なり、
    前記第2の半導体レーザ素子が、前記第1の基板の前記第1の半導体層が形成された上面と垂直な方向において前記第1の半導体レーザ素子の発光点と重ならないように、前記第1の半導体レーザ素子の前記第1の半導体層上に積層され、
    前記第1の半導体層上の前記発光点から前記垂直な方向の位置に電極が形成され、
    前記第1の半導体レーザ素子の前記電極上および前記第1の半導体レーザ素子とは反対側の前記第2の半導体レーザ素子の面に接するように放熱体が設けられたことを特徴とする半導体レーザ装置。
  3. 前記第2の半導体レーザ素子は、前記第2の半導体層側が前記第1の半導体層側に位置するように前記第1の半導体レーザ素子上に積層されたことを特徴とする請求項1または2記載の半導体レーザ装置。
  4. 前記第1の半導体層および前記第2の半導体層のいずれか一方は、窒化物系半導体からなることを特徴とする請求項1〜3のいずれかに記載の半導体レーザ装置。
  5. 第3の基板上に第3の波長の光を出射する第3の半導体層を有する第3の半導体レーザ素子をさらに備え、
    前記第3の半導体レーザ素子は、前記第1の基板の前記上面と垂直な方向において前記第1の半導体レーザ素子の発光点と重なる領域を除いて前記第1の半導体レーザ素子の上に積層されたことを特徴とする請求項1〜のいずれかに記載の半導体レーザ装置。
  6. 第1の基板上に第1の波長の光を出射する第1の半導体層が形成された第1の半導体レーザ素子と、
    第2の基板上に第2の波長の光を出射する第2の半導体層が形成された第2の半導体レーザ素子とを備え、
    前記第2の半導体レーザ素子が、前記第1の基板の前記第1の半導体層が形成された上面と垂直な方向において前記第1の半導体レーザ素子の発光点と重ならないように、前記第1の半導体レーザ素子の前記第1の半導体層上に積層された半導体レーザ装置の製造方法であって、
    第1の基板上に第1の波長の光を出射する複数の第1の発光点を有するように第1の半導体層を形成する工程と、
    前記第1の半導体層の前記複数の第1の発光点上の位置に電極を形成する工程と、
    前記第1の基板と異なる材料からなる第2の基板上に前記第1の波長と異なる第2の波長の光を出射する複数の第2の発光点を有するように第2の半導体層を形成する工程と、
    前記第1の半導体層上に前記第2の半導体層が積層されるように前記第1の基板と前記第2の基板とを接合する工程と、
    前記複数の第1の発光点の上方における前記第1の半導体層上の電極が露出するように前記第2の基板および前記第2の半導体層をエッチングする工程と、
    前記第1の基板、前記第1の半導体層、前記第2の基板および前記第2の半導体層の積層構造を複数の半導体レーザ装置に分割する工程とを備えたことを特徴とする半導体レーザ装置の製造方法。
JP2004101486A 2004-03-30 2004-03-30 半導体レーザ装置およびその製造方法 Expired - Fee Related JP4544892B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004101486A JP4544892B2 (ja) 2004-03-30 2004-03-30 半導体レーザ装置およびその製造方法
US11/076,963 US20050218420A1 (en) 2004-03-30 2005-03-11 Semiconductor laser apparatus and fabrication method thereof
CNA2008100089378A CN101232152A (zh) 2004-03-30 2005-03-11 半导体激光器装置
CNB2005100537718A CN100459333C (zh) 2004-03-30 2005-03-11 半导体激光器装置和它的制造方法
US12/821,826 US20100260227A1 (en) 2004-03-30 2010-06-23 Semiconductor laser apparatus and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101486A JP4544892B2 (ja) 2004-03-30 2004-03-30 半導体レーザ装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2005286244A JP2005286244A (ja) 2005-10-13
JP4544892B2 true JP4544892B2 (ja) 2010-09-15

Family

ID=35050153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101486A Expired - Fee Related JP4544892B2 (ja) 2004-03-30 2004-03-30 半導体レーザ装置およびその製造方法

Country Status (3)

Country Link
US (2) US20050218420A1 (ja)
JP (1) JP4544892B2 (ja)
CN (2) CN101232152A (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4568133B2 (ja) * 2004-03-30 2010-10-27 三洋電機株式会社 半導体レーザ装置および光装置
JP4660224B2 (ja) * 2004-03-30 2011-03-30 三洋電機株式会社 半導体レーザ装置
JP4614715B2 (ja) * 2004-08-31 2011-01-19 三洋電機株式会社 半導体レーザ装置およびその製造方法
JP4950557B2 (ja) * 2005-05-31 2012-06-13 三洋電機株式会社 半導体発光装置
EP1932188A4 (en) * 2005-10-07 2011-06-22 Osram Sylvania Inc THERMAL DISSIPATOR LED LIGHT TRANSMITTER
JP4711838B2 (ja) * 2006-01-27 2011-06-29 株式会社東芝 多波長半導体レーザ装置
JP4930322B2 (ja) * 2006-11-10 2012-05-16 ソニー株式会社 半導体発光素子、光ピックアップ装置および情報記録再生装置
JP5227666B2 (ja) * 2007-06-18 2013-07-03 三洋電機株式会社 半導体レーザ装置およびその製造方法
US8275013B2 (en) 2007-06-18 2012-09-25 Sanyo Electric Co., Ltd. Semiconductor laser device and method of manufacturing the same
JP2010056185A (ja) * 2008-08-27 2010-03-11 Sanyo Electric Co Ltd 半導体レーザ装置
JP2010067868A (ja) * 2008-09-12 2010-03-25 Sanyo Electric Co Ltd 半導体レーザ装置およびその製造方法
JP5282605B2 (ja) * 2009-02-25 2013-09-04 日亜化学工業株式会社 半導体レーザ装置、及びその製造方法
JP5488881B2 (ja) * 2009-09-30 2014-05-14 ソニー株式会社 発光装置およびその製造方法
JP2011077339A (ja) * 2009-09-30 2011-04-14 Sony Corp 半導体レーザ
KR20160038094A (ko) * 2014-09-26 2016-04-07 코닝정밀소재 주식회사 발광 다이오드의 색변환용 기판 및 그 제조방법
JP6315014B2 (ja) * 2016-03-23 2018-04-25 日亜化学工業株式会社 半導体装置の製造方法
US10916914B2 (en) * 2017-05-17 2021-02-09 Mitsubishi Electric Corporation Light module
US11411369B2 (en) * 2018-04-03 2022-08-09 Mitsubishi Electric Corporation Method for manufacturing semiconductor device
US11621253B2 (en) * 2018-11-02 2023-04-04 Seoul Viosys Co., Ltd. Light emitting device
US11876343B2 (en) 2021-05-18 2024-01-16 Trumpf Photonics, Inc. Laser diode packaging platforms
US11557874B2 (en) * 2021-05-18 2023-01-17 Trumpf Photonics, Inc. Double-sided cooling of laser diodes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846280A (ja) * 1994-07-26 1996-02-16 Mitsubishi Electric Corp 半導体発光装置
JPH11112091A (ja) * 1997-09-30 1999-04-23 Victor Co Of Japan Ltd 半導体レーザ装置
JP2000252593A (ja) * 1999-03-03 2000-09-14 Pioneer Electronic Corp 2波長半導体レーザ素子及びその製造方法
JP2001230502A (ja) * 2000-02-15 2001-08-24 Sony Corp 発光装置およびそれを用いた光装置
JP2002299750A (ja) * 2001-04-04 2002-10-11 Matsushita Electric Ind Co Ltd 半導体レーザ装置およびその製造方法
JP2004207480A (ja) * 2002-12-25 2004-07-22 Pioneer Electronic Corp 半導体レーザ装置及びその製造方法
JP2005209950A (ja) * 2004-01-23 2005-08-04 Pioneer Electronic Corp 集積型半導体発光素子及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355382A (en) * 1993-11-22 1994-10-11 Xerox Corporation Composite laser array support
US5402436A (en) * 1993-12-29 1995-03-28 Xerox Corporation Nonmonolithic array structure of multiple beam diode lasers
JP3419930B2 (ja) * 1994-12-21 2003-06-23 三菱電機株式会社 半導体レーザ装置とこの半導体レーザ装置を備えた光ディスク装置
US5920766A (en) * 1998-01-07 1999-07-06 Xerox Corporation Red and blue stacked laser diode array by wafer fusion
US6780661B1 (en) * 2000-04-12 2004-08-24 Finisar Corporation Integration of top-emitting and top-illuminated optoelectronic devices with micro-optic and electronic integrated circuits
JP2002118331A (ja) * 2000-10-06 2002-04-19 Toshiba Corp 集積型半導体発光装置及びその製造方法
JP2002217499A (ja) * 2001-01-19 2002-08-02 Sharp Corp 半導体レーザ素子、その製造方法、およびそれを用いた光ピックアップ
JP4148664B2 (ja) * 2001-02-02 2008-09-10 三洋電機株式会社 窒化物系半導体レーザ素子およびその形成方法
JP4660224B2 (ja) * 2004-03-30 2011-03-30 三洋電機株式会社 半導体レーザ装置
JP2006128602A (ja) * 2004-03-30 2006-05-18 Sanyo Electric Co Ltd 半導体レーザ装置およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846280A (ja) * 1994-07-26 1996-02-16 Mitsubishi Electric Corp 半導体発光装置
JPH11112091A (ja) * 1997-09-30 1999-04-23 Victor Co Of Japan Ltd 半導体レーザ装置
JP2000252593A (ja) * 1999-03-03 2000-09-14 Pioneer Electronic Corp 2波長半導体レーザ素子及びその製造方法
JP2001230502A (ja) * 2000-02-15 2001-08-24 Sony Corp 発光装置およびそれを用いた光装置
JP2002299750A (ja) * 2001-04-04 2002-10-11 Matsushita Electric Ind Co Ltd 半導体レーザ装置およびその製造方法
JP2004207480A (ja) * 2002-12-25 2004-07-22 Pioneer Electronic Corp 半導体レーザ装置及びその製造方法
JP2005209950A (ja) * 2004-01-23 2005-08-04 Pioneer Electronic Corp 集積型半導体発光素子及びその製造方法

Also Published As

Publication number Publication date
US20050218420A1 (en) 2005-10-06
CN1677780A (zh) 2005-10-05
CN101232152A (zh) 2008-07-30
US20100260227A1 (en) 2010-10-14
JP2005286244A (ja) 2005-10-13
CN100459333C (zh) 2009-02-04

Similar Documents

Publication Publication Date Title
JP4660224B2 (ja) 半導体レーザ装置
JP4544892B2 (ja) 半導体レーザ装置およびその製造方法
US7535945B2 (en) Semiconductor laser apparatus and method of manufacturing the same
JP4466503B2 (ja) 半導体レーザ
JP4671728B2 (ja) 半導体レーザ装置および光ピックアップ装置
US8275013B2 (en) Semiconductor laser device and method of manufacturing the same
US7333525B2 (en) Integrated semiconductor light-emitting device and method for manufacturing same
US7817694B2 (en) Semiconductor laser apparatus and manufacturing method thereof
US7916766B2 (en) Semiconductor laser device and manufacturing method thereof
US7672351B2 (en) Semiconductor laser apparatus
JP2002118331A (ja) 集積型半導体発光装置及びその製造方法
JP2007035854A (ja) 半導体レーザアレイ及び半導体レーザ装置
JP5227666B2 (ja) 半導体レーザ装置およびその製造方法
JP4219147B2 (ja) 多波長レーザ装置
JP2005327826A (ja) 集積型半導体レーザ装置、集積型半導体レーザ装置の製造方法、集積型半導体発光装置、集積型半導体発光装置の製造方法、光学ピックアップ装置および光ディスク装置
JP2011023754A (ja) 半導体レーザ装置
JP2011023754A5 (ja)
KR20040005269A (ko) 두 파장 레이저다이오드 및 그 제조방법
JP2011165708A (ja) 半導体レーザ装置の製造方法および半導体レーザ装置
JP2010067868A (ja) 半導体レーザ装置およびその製造方法
JP2010056185A (ja) 半導体レーザ装置
JP2006060105A (ja) 半導体発光装置およびそれを用いた光装置
JP2010258467A (ja) 半導体レーザ装置および光ピックアップ装置
JP2001244561A (ja) 半導体発光装置及び半導体発光装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees