JP4265725B2 - 限流装置および限流機能を有する回路遮断器 - Google Patents
限流装置および限流機能を有する回路遮断器 Download PDFInfo
- Publication number
- JP4265725B2 JP4265725B2 JP2000592847A JP2000592847A JP4265725B2 JP 4265725 B2 JP4265725 B2 JP 4265725B2 JP 2000592847 A JP2000592847 A JP 2000592847A JP 2000592847 A JP2000592847 A JP 2000592847A JP 4265725 B2 JP4265725 B2 JP 4265725B2
- Authority
- JP
- Japan
- Prior art keywords
- mover
- contact
- arc
- current limiting
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H77/00—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting
- H01H77/02—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism
- H01H77/10—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrodynamic opening
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/70—Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
- H01H33/98—Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being initiated by an auxiliary arc or a section of the arc, without any moving parts for producing or increasing the flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H77/00—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting
- H01H77/02—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism
- H01H2077/025—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with pneumatic means, e.g. by arc pressure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H71/00—Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
- H01H71/02—Housings; Casings; Bases; Mountings
- H01H71/025—Constructional details of housings or casings not concerning the mounting or assembly of the different internal parts
- H01H71/0257—Strength considerations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H73/00—Protective overload circuit-breaking switches in which excess current opens the contacts by automatic release of mechanical energy stored by previous operation of a hand reset mechanism
- H01H73/02—Details
- H01H73/18—Means for extinguishing or suppressing arc
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H77/00—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting
- H01H77/02—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism
- H01H77/06—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electromagnetic opening
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H77/00—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting
- H01H77/02—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism
- H01H77/10—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrodynamic opening
- H01H77/107—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrodynamic opening characterised by the blow-off force generating means, e.g. current loops
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H77/00—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting
- H01H77/02—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism
- H01H77/10—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrodynamic opening
- H01H77/107—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrodynamic opening characterised by the blow-off force generating means, e.g. current loops
- H01H77/108—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrodynamic opening characterised by the blow-off force generating means, e.g. current loops comprising magnetisable elements, e.g. flux concentrator, linear slot motor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/30—Means for extinguishing or preventing arc between current-carrying parts
- H01H9/302—Means for extinguishing or preventing arc between current-carrying parts wherein arc-extinguishing gas is evolved from stationary parts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/30—Means for extinguishing or preventing arc between current-carrying parts
- H01H9/34—Stationary parts for restricting or subdividing the arc, e.g. barrier plate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/30—Means for extinguishing or preventing arc between current-carrying parts
- H01H9/34—Stationary parts for restricting or subdividing the arc, e.g. barrier plate
- H01H9/342—Venting arrangements for arc chutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/30—Means for extinguishing or preventing arc between current-carrying parts
- H01H9/44—Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet
- H01H9/446—Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet using magnetisable elements associated with the contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/30—Means for extinguishing or preventing arc between current-carrying parts
- H01H9/46—Means for extinguishing or preventing arc between current-carrying parts using arcing horns
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Arc-Extinguishing Devices That Are Switches (AREA)
- Breakers (AREA)
- Emergency Protection Circuit Devices (AREA)
Description
【発明の属する技術分野】
この発明は、限流動作時にアークを発生する限流装置および限流機能を有する回路遮断器に関するものである。
【0002】
【従来の技術】
図147は例えば特許文献1(特公平1−43973号公報)に示された従来の回路遮断器を示す斜視図および部分断面図であり、図において、1130は、導体1290により遮断器部1140と電気的直列接続される限流素子部、1001は可動接点1002と磁性材料からなる支持体1711を有する上記限流素子部1130の可動子、1005は固定接点1006を有する上記限流素子部1130の固定子であり、上記可動子1001と上記固定子1005とにより接触子対である接点対を構成する。1280は上記接触子対と電気的直列に接続された励磁コイル、1018は上記接触子対に適切な接触圧力を発生させる付勢手段である可動子接圧バネである。1015は端子部、1045はハンドル、1721は可とう導体、1095はバネ受座、1110は排気穴、1135はピストン、1300はパッキンである。図148は図147の右側面図である。
【0003】
通常通電時には、回路遮断器には遮断器部1140、導体1290、励磁コイル1280、可動子1001、固定子1005、端子部1015の経路で電流が流れる。限流素子部1130が限流動作を行うべき大きさの電流が流れると、可動接点1002と固定接点1006との間の電磁反発力により接点が開極しアークが発生する。このアークにより接点間の圧力が上昇するので、可動子1001のピストン1135がバネ1018の力に抗して押し動かされる。さらに、可動子1001の一部は磁性材料の支持体1711により構成されているので、コイルプランジャを構成する励磁コイル1280からも同時にその開極を支援する力を受ける。この可動子1が開極方向に移動するときに、可動接点背面側の気体が排気穴1110より排気され、アークにより上昇した圧力が付加的に排出される。そして、可動子接圧バネ1018の力に抗して開極を保持するのに十分な圧力を維持できなくなるまで開極が保持される。
【0004】
続いて、限流素子部を通過する電流が減少し、アークの圧力がある値以下に減少すると、可動子接圧バネ1018の力により可動子1は閉極動作を開始する。この時、閉極過程を遅延させるために、排気穴1110は開極方向に対して鋭角をなすように設けられており、排気の流体抵抗を大きくしている。また、この排気穴1110の方向は、開極動作時の排気の流体抵抗が小さくなる傾斜となる。上記のように構成した限流素子部1130では、主に接点1002、1006間に発生する電気抵抗と励磁コイル1280のインダクタンスとにより、回路を流れる事故電流が限流される。この接点対はシリンダー状の狭い空間に設けられているので、限流動作時に発生するアークの圧力が上昇し、アークの抵抗率が高くなる。従って、限流に必要な高いアーク電圧が得られる。上記のように限流された電流は、最終的に限流素子部と直列接続されている遮断部1140により遮断される。
【0005】
図149は、例えば特許文献2(特公平8−8048号公報)に示された従来の3極の限流ユニットを示す部分断面図であり、この限流ユニット1200は、図150に示すように、標準回路遮断器1300と筺体同士を連接することにより限流遮断器(限流機能を有する回路遮断器)を構成する。図151は、上記限流遮断器の内部構成が分かるように、筺体側壁の一部を切り欠いた部分断面図である。限流ユニット1200内部の各極には、図152に示すような直列接続された接触子対である接点対が2対配置されている。図153は、図152に示した2対の接触子対の構成が分かるように主要部品を分解した斜視図である。
【0006】
図149乃至図153において、1001a、1001bは可動接点1002a、1002bと可動アーム1004a、1004bにてそれぞれ構成される第1可動子および第2可動子、1005a、1005bは固定接点1006a、1006bと固定導体1007a、1007bにてそれぞれ構成される第1固定子および第2固定子である。これら第1可動子1001aと第1固定子1005a、および第2可動子1001bと第2固定子1005bはそれぞれ接触子対である接点対を形成している。1015a、1015b、1015cは筺体の一方の面に設けられた端子部、1016a、1016b、1016cは上記筺体の反対の面に設けられた端子部であり、第1固定子1005aが端子部1016aと、第2固定子1005bが接続導体1014を介して端子部1015aとそれぞれ接続されており、第1可動子1001aと第2可動子1001bは、可動接点1002a、1002bと反対側の端部にて可撓導体1072により相互に電気的に接続されている。
【0007】
従って、電路は、端子部1016a、固定導体1007a、固定接点1006a、可動接点1002a、可動アーム1004a、可とう導体1072、可動アーム1004b、可動接点1002b、固定接点1006b、固定導体1007b、接続導体1014、端子部1015aの経路で構成されており、2対の接触子対が電気的に直列接続されている。上記両接触子対は筺体の両端に設けられた端子部1015a、1016aを結ぶ面(筺体の底面)に対してほぼ垂直方向に配置される隔壁1100を対称面としてほぼ面対称に隔離して配置されている。第1可動子1001a、第2可動子1001bは、隔壁1100を貫通する回転軸1013にて回転自在に支持されており、第1可動子1001aおよび第2可動子1001bは、ひねりバネ1011aおよび1011b(図示せず)にて、各々第1固定子1005aおよび第2固定子1005b側へと付勢されている。上記両接触子対の接点が設けられている先端部に対向する位置に馬蹄型の消弧板1019aおよび1019b(図示せず)がそれぞれ配置されている。
【0008】
通常開閉および過負荷電流遮断時には、標準回路遮断器1300にて開閉動作および遮断動作が行われ、限流ユニット1200は動作しない。一方、短絡電流等の大電流が発生すると、限流ユニット1200内に設けた2対の接触子対が、固定導体1007aと可動アーム1004aおよび固定導体1007bと可動アーム1004bにそれぞれ流れるほぼ平行かつ逆方向の電流による電磁反発力によってバネ1011a、1011bの付勢力に打ち勝って高速開極する。また、接続導体1014に流れる電流も、両可動子1001a、1001bを開極させる方向の磁界成分を発生させる。
【0009】
この両接点対の高速開極に伴い、2点直列のアークが発生し、急速にアーク電圧が立ち上がる。この素早いアーク電圧の立ち上がりにより、短絡電流が急激に小さく絞られ、電流ピークが抑えられる。2つの接点対間に発生した2つのアークは、固定導体1007aもしくは1007b、可動アーム1004aもしくは1004bおよび接続導体1014を流れる電流の作用により、各々消弧板1019a、1019b側へと引き伸ばされ、冷却、分断される。これにより、事故電流はさらに小さく絞られ、急速に電流零点へと向かう。以上のような限流ユニット1200の限流動作により、小さく絞られた事故電流は、限流ユニット1200と直列接続された標準回路遮断器1300により遮断される。電流遮断後、両可動子1001a、1001bはバネ1011a、1011bの付勢力により閉成状態に復帰する。
【0010】
【特許文献1】
【0011】
特公平1−43973号公報
【0012】
【特許文献2】
【0013】
特公平8−8048号公報
【0014】
【発明が解決しようとする課題】
以上のような限流ユニット1200の限流動作時において、第1可動子1001aと第2可動子1001bに働く電磁反発力は、両接触子対が隔壁1100を対称面とした面対称配置となっているので、ほぼ均等な値となり、上記両接触子対の開極速度はほぼ同じとなる。そのため、第1の可動子1001aと第2の可動子1001bを接続する可とう導体1072にはねじれの力が発生しない。また、隔壁1100で仕切られた2つの空間で処理するアークエネルギーがほぼ等しくなるので、一方の空間に配置された部材、例えば、可動接点、固定接点、消弧板等が他方の空間に配置された同等部材より大幅に消耗することはない。
【0015】
ところで、図150に示すように、限流ユニット1200と標準回路遮断器1300を直接接続して限流遮断器を構成する場合、限流ユニット1200の長さLが長いと限流遮断器の全体長が長くなりすぎ、配電盤等への収納性が低下することがある。そこで、従来の限流ユニットでは、筺体両端に設けた端子部を結ぶ面に対して接触子対の長手方向がほぼ直交するように配置し、かつ、2対の接触子対を幅方向に並置することにより、限流遮断器の長手方向の長さが長くなることを最小限に抑えている。また、配電盤等への収納性を考慮すれば、限流ユニット1200の幅Wおよび高さHは、標準回路遮断器1300の幅および高さと同等以下の方がよいことは明かである。しかし、限流ユニット1200と標準回路遮断器1300との接続を考慮すれば、限流ユニット1200の幅Wを標準回路遮断器1300の幅と同一とした方がよい。
【0016】
図147および図148に示すような従来の回路遮断器の限流素子部では、可動接点が常に狭い筒状の空間内にあるため、アーク発生に伴い上記空間内に充満する電極金属蒸気により電流遮断時の接点間の絶縁回復が十分得られない。また、可動子のブレにより可動接点が筒状の壁面に接触しやすく、壁面での絶縁破壊の可能性が高い。このような理由により、上記限流素子部単独では電流の遮断機能を得ることが困難であり、別途電流を遮断する機能を有する遮断部を設ける必要がある。そのため、回路遮断器全体のサイズが大きくなり、構造が複雑になり、コストが高くなるという問題がある。
【0017】
また、前述のように限流素子部1130と遮断部1140を直列に接続すると、遮断器全体のインピーダンスが大きくなる。特に、限流素子部1130には限流動作時の可動子1001の開極を助けるために励磁コイル1280を設けており、インピーダンスが高い構成となっている。このような高インピーダンスの回路遮断器では、大きな通電ロスや通電による異常温度上昇が発生しやすい。従って、大きな通電容量を必要とする場合、この従来の回路遮断器を用いることができないという問題点があった。
【0018】
さらに、従来の回路遮断器の限流素子部1130では、可動子1001の開極動作が直線的に行われるため、接点開離距離を確保ために可動子1001が開閉動作する方向(接点の開閉動作方向)のサイズが大きくなりやすい。図147に示すように、上記方向のサイズは、端子部、固定子、可動子、可動子が移動する空間、可とう導体を収納する空間、および、筺体壁厚の合計となる。よって、可動子が直動する方向のサイズに制限がある場合には、十分な開離距離を確保できず、高圧力を効果的にアーク電圧上昇に結び付けられないという問題があった。
【0019】
また、前述のように高圧力を効果的にアーク電圧上昇に結び付けられないと、不必要な圧力上昇が生じ、これを押さえ込むため、非常に大きな筺体強度が必要となるという問題が生じる。
【0020】
また、図149乃至図153に示す限流装置に於いて、上述のように、限流ユニットの幅寸法に制限がある場合、限流ユニット長さ寸法を小さくするために2対の接触子対を幅方向に並置する構成では、筺体側面の壁厚を、十分な機械的強度を持つ厚さにすることが困難となる。従って、限流動作時に発生するアークによる内圧上昇により筺体が破損するという問題がある。また、たとえ機械的強度の強い材料を用いて筺体破損を防止したとしても、筺体コストが上昇するという問題がある。
【0021】
また、高い限流性能を得るために2対の接触子対を直列接続しているので、通電時の接点接触面での発熱が2倍となるとともに、限流ユニット内での電路長が長くなり外部電線への熱伝導が低下するので、通電時の異常温度上昇が発生しやすく、通電容量の大きな回路には適用し難いという問題点があった。
【0022】
また、2対の接触子対を直列接続し、かつ2つの消弧装置を有しているので部品点数が増え、コストが高くなるという問題点があった。
【0023】
また、従来の限流装置と耐溶着性の低い電磁開閉器を用いて回路を構成した場合、短絡遮断時の接点浮き上がりに起因する接点溶着が発生することがあり、これを防止するため耐溶着性を考慮した設計がなされている電磁開閉器を用いる必要がある。従って、従来の限流装置を超える限流性能を実現できれは、回路に直列接続された電磁開閉器の耐溶着性能を低下させることができ、電磁開閉器のコスト低減につながるので、一層の限流性能向上が求められているという問題点があった。
【0024】
この発明は上述のような問題点を解消するためになされたもので、1つの消弧装置にて優れた限流機能と遮断機能を有する低コストの限流装置を得ることを目的としている。
【0025】
さらに、この発明は、限流性能に優れかつインピーダンスの小さな限流機能を有する限流装置を得ることを目的としている。
【0026】
さらに、この発明は、接点開閉動作方向の寸法が短い小型の限流装置を得ることを目的としている。
【0027】
さらに、この発明は、限流性能向上に効果的に結びつかない遮断時の筺体内圧上昇を抑え、上記筺体に必要とされる強度を低減することを可能にした限流装置を得ようとするものである。
【0028】
この発明は上述のような問題点を解消するためになされたもので、1つの消弧装置にて優れた限流機能と遮断機能を有する低コストの回路遮断器を得ることを目的としている。
【0029】
さらに、この発明は、限流性能に優れ、かつインピーダンスの小さな限流機能を有する回路遮断器を得ることを目的としている。
【0030】
さらに、この発明は、接点開閉動作方向の寸法が短い小型の限流機能を有する回路遮断器を得ることを目的としている。
【0031】
さらに、この発明は、限流性能向上に効果的に結びつかない遮断時の筺体内圧上昇を抑え、上記筺体に必要とされる強度を低減することを可能にした限流機能を有する回路遮断器を得ようとするものである。
【0032】
また、この発明は上述のような問題点を解消するためになされたもので、優れた限流機能を有し、かつ限流動作時の内圧上昇による筺体割れが発生し難い限流装置を得ることを目的としている。
【0033】
また、この発明は、限流性能に優れ、かつ通電時の異常温度上昇が生じ難い、通電の信頼性に優れた限流装置を得ることを目的としている。
【0034】
また、この発明は、限流性能に優れ、かつ部品点数の少ない限流装置を得ることを目的としている。
【0035】
また、この発明は、限流性能が一層向上した限流装置を得ることを目的としている。
【0036】
【課題を解決するための手段】
この発明に係る限流装置は、各々一端部に接点を有し一対の接触子対を形成する第1、第2の接触子、上記接触子対に接触圧を与える付勢手段、閉成状態の上記接点の周りを筒状に取り囲む筒状絶縁物を備え、上記第1、第2の接触子のうち少なくとも一方の接触子を他端部にて回転自在に支持し、接点の閉成状態においては、上記第1、第2の接触子に互いにほぼ対向して逆方向の電流が流れる電路が形成され、かつ、上記第1、第2の接触子の接点を有する一端部が上記筒状絶縁物が囲む筒状空間内に位置し、接点の開成状態においては、上記回転自在に支持された接触子のうち少な付くともどちらか一方の接点が上記筒状空間外に位置するように構成したものである。
【0037】
また、可動接点と可動アームとからなり可動子回転軸を中心として回転する可動子、上記可動接点と接点対をなす固定接点と上記可動アームにほぼ対向する固定導体とからなる固定子、閉成状態の上記接点対の周りを筒状に取り囲む筒状絶縁物、および、上記接点対に接触圧を与える付勢手段を備え、上記可動アームは可動アーム水平部と可動アーム垂直部にてほぼL字状に形成され、接点の閉成状態においては、上記可動アーム水平部が上記固定導体とほぼ平行かつ逆方向の電流が流れるように配置され、かつ、上記可動接点を有する可動子先端部および上記固定接点を有する固定子先端部が上記筒状絶縁物が囲む筒状空間内に位置し、接点の開成状態においては、上記可動接点が上記筒状空間外に位置するように構成したものである。
【0038】
また、導体をほぼU字状に曲げてその一端を可動子回転軸から遠い側の端子部に接続するとともに、そのU字形状の他端の内側に固定接点を設けて可動子に対する固定子となし、かつ、上記固定子の固定接点が設けられている1片が閉成状態の可動アーム水平部にほぼ対向する固定導体を形成し、上記固定子には、可動子の回転軌跡と交差する部位に可動子の開閉を許すスリットを設け、また、可動子の開成時に可動接点から見渡せる固定子の固定接点以外の部位を絶縁物で覆ったものである。
【0039】
また、可動子回転軸より遠い側の端子部に接続された導体からなる固定子に、可動子接点と接点対をなす固定接点を有し、かつ、可動子の可動アーム水平部に対向して可動アームに流れる電流と逆方向の電流が流れる固定導体を形成するとともに、この固定導体の両側に配置され端子部から固定導体に電流を導く電路上に磁性体コアを配置したものである。
【0040】
また、固定導体を、固定接点よりも可動アーム水平部により近づくように屈曲させたものである。
【0041】
また、可動接点と可動アームとからなり可動子回転軸を中心として回転する可動子、上記可動接点と接点対をなす反発接点と上記可動アームにほぼ対向する反発アームとからなり反発子回転軸を中心として回転する反発子、閉成状態の上記接点対の周りを筒状に取り囲む筒状絶緑物、上記接点対に接触圧を発生させる付勢手段、および主たる開口部が上記筒状絶縁物が囲む筒状空間に連通して形成され、上記反発子を収納する蓄圧空間を備え、上記反発アームは反発アーム水平部と反発アーム垂直部とによりほぼL字状に形成され、閉成状態においては、上記反発アーム水平部が上記可動アームの一部とほぼ平行で反対方向の電流が流れるように配置され、かつ、上記可動接点を有する可動子先端部および上記反発接点を有する反発子先端部が上記筒状空間内に位置し、開成状態においては、上記可動子先端部が上記筒状空間外に位置するように構成したものである。
【0042】
また、反発子に電流を供給する電路を上記反発子の反可動子側に設け、上記電路の少なくとも反発子先端部と対向する部位に反発子開極軌跡を含む面に沿って反発子の幅とほぼ同幅のスリットを設けたものである。
【0043】
また、反発子に電流を供給する電路を反発子の開極軌跡を含む面と交差して配置し、上記電路には反発子もしく可動子の開閉動作を許すスリットを設け、上記電路を、反発アーム水平部よりも可動アームに近い位置に配置し、かつ、反発アーム水平部とほぼ平行かつ逆方向の電流が流れるよう構成したものである。
【0044】
また、絶縁物筐体内に収納され、可動接点と、ほぼL字状の可動アームとからなり、回転軸を中心として回転する可動子、上記可動接点と接点対をなす固定接点と、閉成時に上記可動アームの一部とはぼ平行に配置され、かつ可動アームと反対方向に電流が流れる電路とからなる固定子、閉成状態の上記接点対の周りを筒状空間で取り囲む筒状絶縁物、上記接点対に接触圧を与える付勢手段、上記可動子の先端と対向する位置に配設された消弧板、および上記絶縁物筐体の反対側面に設けられそれぞれ上記可動子および固定子に接続されている端子部を備え、上記固定子は上記両端子部を結ぶ線に対してほぼ垂直に配置され、閉成状態においては上記接点対が上記筒状空間内に位置し、開成状態においては上記可動接点が上記筒状空間外に位置するように構成したものである。
【0045】
また、端子部は絶縁物筐体の底面より高い位置に設けられ、可動子および固定子は、互いに平行する電路から屈曲する電路を経てそれぞれ可動子および固定子から遠い側の端子部に接続されるよう構成したものである。
【0046】
また、可動子と固定子の接点対を2組設け、これら接点対を電気的に直列に接続し、かつ相互に隔壁で隔てたものである。
【0047】
また、閉成状態の接点対の周りを筒状に取り囲む筒状絶縁物の、可動子回転軸と反対側の壁の高さを、可動子回転軸側の壁の高さより高くしたものである。
【0048】
また、可動子、固定子もしくは反発子、および閉成状態の接点対の周りを筒状 に取り囲む筒状絶縁物を筐体に収納し、上記筐体の可動接点からみて可動子回転軸と反対側の面に排気口を設け、上記排気口を、面積が上記筐体の上記排気口を含む面の半分以下の面積で、かつ、開成状態の可動接点に近接する位置に配置したものである。
【0049】
また、可動子の先端と対向する位置に配置された消弧板と、固定子への通電導体に延設されたアークランナーとを有し、このアークランナーの端部を筒状絶縁物の可動子回転軸と反対側の部位から消弧板側に露出させたものである。
【0050】
また、可動子と対向し可動子と逆向きの電流が流れる固定導体の部位を、可動子に近接するように屈曲させたものである。
【0051】
また、可動子への通電導体に接続され、先端部が消弧板近傍に達する転流電極を閉成状態の可動子の背後に設けたものである。
【0052】
この発明に係る限流機能を有する回路遮断器は、可動接点と可動アームとからなり可動子回動軸を中心として回転する可動子、上記可動接点と接点対をなす固定接点と上記可動アームにほぼ対向する固定導体とからなる固定子、閉成状態の上記接点対の周りを筒状に取り囲む筒状絶縁物、および上記接点対に接触圧を与えるバネを備え、閉成状態において上記接点対が上記筒状絶縁物が囲む筒状空間内に位置し、開成状態において上記可動接点が上記筒状空間外に位置するように構成したものである。
【0053】
また、可動アームは、可動アーム水平部と可動アーム垂直部にてほぼL字状に形成され、閉成状態において可動アーム水平部が固定導体とほぼ平行に位置し、かつ上記可動アーム水平部には固定導体と反対方向の電流が流れるように構成したものである。
【0054】
また、筒状絶縁物で形成される筒状空間の内壁面にアークとの接触面積を増やすひだを設けたものである。
【0055】
また、筒状空間を形成する筒状絶縁物の材質を、接点対を取り囲む部分とそれ以外の部分とで変え、接点対を取り囲む部分の絶縁物をアークにより大量の蒸気を発生しやすい材質としたものである。
【0056】
また、筒状空間の内壁を、可動子先端の回転軌跡に沿わせた形状としたものである。
【0057】
また、筒状空間に位置する固定子は、固定接点だけが筒状空間に露出するよう、固定接点の周囲を絶縁物で覆ったものである。
【0058】
また、閉成状態の接点対の周りを筒状に取り囲む筒状絶縁物の、可動子回転中心と反対側の壁の高さを、可動子回転中心側の壁高さより高くしたものである。
【0059】
また、固定子を形成する固定導体と可動子に通電する導体の一部を平行かつ近接して配置し、通電時に上記両導体に流れる電流方向が一致するようにしたものである。
【0060】
また、固定導体と、可動子に通電する導体とを、可動子が回転する軌跡を含む面において平行に配置したものである。
【0061】
また、固定導体と、可動子に通電する導体とを囲むコアを設け、上記コアの両極を閉成状態の可動アーム水平部に対向するように配置したものである。
【0062】
また、固定導体と、可動子に通電する導体と、可動子とを囲むコアを設けたものである。
【0063】
また、可動子、固定子、および固定接点の周りを筒状に取り囲む筒状絶縁物を筺体に収納し、上記筺体の可動接点からみて可動子回転中心と反対側の面に排気口を設け、上記排気口は、面積が上記筺体の上記排気口を含む面の半分以下の面積で、かつ、開成状態の可動接点に近接する位置に配置されているものである。
【0064】
また、可動子への通電導体に延設され先端が消弧板上方の排気口近傍に達する転流電極を備え、上記転流電極には、可動子の回動を許すスリットを設け、可動子開成位置において可動接点が転流電極に近接するようにしたものである。
【0065】
また、可動子の開極軌跡にほぼ沿う位置に、筺体の外部上方または下方から筺体を挟み込むか、または筺体を取り囲むコアを設けたものである。
【0066】
また、固定接点を、筒状空間に連通する蓄圧空間内に配置したものである。
【0067】
また、固定接点の周りの固定導体の一部を絶縁物で覆ったものである。
【0068】
また、蓄圧空間を固定子の上方のみに設けたものである。
【0069】
また、可動子の先端と対向する位置に配置された消弧板と、固定子の固定接点側端部に接続されたアークランナーとを有し、上記アークランナーの先端部を筒状絶縁物の可動子回転中心と反対側の部位から上記消弧板側に露出させたものである。
【0070】
また、アークランナーの先端部を周囲の筒状絶縁物の上面より低くしたものである。
【0071】
また、固定接点が位置する筒状空間と、アークランナー先端を取り囲むアークランナー筒状空間とを管路で連通したものである。
【0072】
また、可動アームの形状をほぼ鈎型にしたものである。
【0073】
また、可動アームの形状をほぼS字状にしたものである。
【0074】
また、固定接点表面から見渡せる可動アームの可動接点より可動子回転中心側の部位を絶縁物にて覆ったものである。
【0075】
また、固定導体の可動アームと対向する部位を可動アーム側へ屈曲し、可動アームとの平行部分を形成したものである。
【0076】
また、可動子の先端と対向する位置に配置される消弧板と、消弧板の上方で、開成位置にある可動子の消弧板側端面に近接する対向電極とを備えたものである。
【0077】
また、可動子の先端と対向する位置に配置される消弧板を有し、かつ、筒状絶縁物が形成する筒状空間の可動子側開口部が上記消弧板方向を向くよう、筒状空間の内壁の可動子回転中心側の壁の高さを可動子回転中心と反対側の壁の高さより高くしたものである。
【0078】
また、複数の馬蹄形の消弧板を有し、上記消弧板の馬蹄形中央部内面の部位が、筒状絶縁物の可動子回転中心と反対側の壁面を延長した面と、上記可動子先端部が描く軌跡との間に位置するように構成したものである。
【0079】
また、固定接点を有する固定導体をコ字状に曲げて可動子回転中心から遠い側に引き出すとともに、上記固定導体の可動子の回転軌跡と交差する部位に可動子の閉成を許すスリットを設けたものである。
【0080】
また、可動子と対向し可動子と逆向きの電流が流れる固定導体の部位を、可動子に近接するように屈曲させたものである。
【0081】
また、開成状態の可動接点から見渡せる固定導体を絶縁物で覆ったものである。
【0082】
また、固定導体を可動子回転中心から遠い側に引き出すものにおいて、固定導体の一部が可動子と対向し、この対向部分に流れる電流の向きが可動子の電流と逆になるように配置したものである。
【0083】
更に、この発明に係る限流装置は、絶縁物筺体内に収納され、可動接点と、ほぼL字状の可動アームとからなり、回転軸を中心として回転する可動子、上記可動接点と接点対をなす固定接点と、閉成時に上記可動アームの一部とほぼ平行に配置され、かつ可動アームと反対方向に電流が流れる電路とからなる固定子、閉成状態の上記接点対の周りを筒状空間で取り囲む筒状絶縁物、上記接点対に接触圧を与える付勢手段、開成状態の可動接点と対向する位置に配設された消弧板、および上記絶縁物筺体の反対側面に設けられそれぞれ上記可動子および固定子に接続されている端子部を備え、閉成状態においては上記接点対が上記筒状空間内に位置し、開成状態においては上記可動接点が上記筒状空間外に位置するように構成したものである。
【0084】
また、端子部を絶縁物筺体の底面より高い位置に設けたものである。
【0085】
また、可動子および固定子は、互いに平行する電路からほぼU字状に屈曲する電路を経てそれぞれ可動子および固定子に近い側の端子部に接続されるよう構成したものである。
【0086】
また、可動子および固定子は、互いに平行する電路から屈曲する電路を経てそれぞれ可動子および固定子から遠い側の端子部に接続されるよう構成したものである。
【0087】
また、固定子への通電導体に延設されたアークランナーを有し、このアークランナーの先端を消弧板側に絶縁物から露出させたものである。
【0088】
また、アークランナーの周囲にアークランナー筒状空間を形成する絶縁物を設けたものである。
【0089】
また、可動子への通電導体に接続され、先端部が消弧板近傍に達する転流電極を可動子の背後に設けたものである。
【0090】
また、転流電極に可動子の開成時の回動を許すスリットを設け、可動子開成位置において可動接点が上記転流電極に近接するようにしたものである。
【0091】
また、筒状絶縁物の筒状空間が消弧板側に向かって広がる形状にしたものである。
【0092】
また、筒状絶縁物が形成する筒状空間の開口端が消弧板方向を向くよう、筒状空間の内壁の可動子回転中心から遠い側の壁の高さを可動子回転中心に近い側の壁の高さより低くしたものである。
【0093】
また、筒状空間を形成する筒状絶縁物の材質を、接点対を取り囲む部分とそれ以外の部分とで変え、接点対を取り囲む部分の絶縁物をアークにより大量の蒸気を発生しやすい材質としたものである。
【0094】
また、筒状空間の内壁を、可動子先端の回転軌跡に沿わせた断面形状にしたものである。
【0095】
また、筒状空間に位置する固定子の部位において、固定接点だけが筒状空間に露出するよう固定接点の周囲を絶縁物で覆ったものである。
【0096】
また、筒状絶縁物が形成する筒状空間の開口端において、筒状空間の内壁の可動子回転中心に近い側の壁の高さを、可動子回転中心から遠い側の壁の高さより低くしたものである。
【0097】
また、閉成状態において固定子と対向し上記固定子と逆向きの電流が流れる可動アームの一部が、上記固定子に近接するよう上記可動アームを屈曲させたものである。
【0098】
また、閉成状態の可動子と対向し可動子と逆向きの電流が流れる固定子の固定導体を、可動子に近接するよう屈曲させたものである。
【0099】
また、固定接点表面から見渡せる可動アームの可動接点より可動子回動中心側の部位を絶縁物にて覆ったものである。
【0100】
また、可動子と固定子の接点対を2組設け、これら接点対を電気的に直列に接続し、かつ相互に隔壁で隔てたものである。
【0101】
また、回路遮断器の長手方向に筺体同士を連接して回路遮断器と一体化したものである。
【0102】
【発明の実施の形態】
実施の形態1.
【0103】
以下、この発明の実施の形態1を図について説明する。図1は、実施の形態1に係る閉成状態の回路遮断器の主要部を示す斜視図であり、内部構成が分かるように筒状絶縁物25と固定導体12を覆う絶縁物である絶縁カバー28の一部を切り取っている。図1において、1は、可動接点2とこの可動接点2が固着されている可動アーム垂直部3とこの可動アーム垂直部3とほぼ直交する可動アーム水平部4により構成されるほぼL字状の可動子である。この可動子1は、反発接点8と反発アーム垂直部9と反発アーム水平部10とにより構成される反発子7と1対の接点対をなしており、可動子1と反発子7とは、それぞれバネ18とバネ21により互いに接触する方向に付勢されている。反発子7は、可動子1よりアーム長が短く、慣性モーメントが小さく構成されている。また、可動子1は可動子回転軸13を中心に、反発子7は反発子回転軸23を中心に、それぞれ回動自在に支持されている。可動子1は、摺動接触子14および接続導体17を介して端子15と電気的に接続されている。一方、反発子7は、可とう導体11および固定導体12を介して端子16と電気的に接続されている。
【0104】
図1中に示された複数の矢印は、通電時の電流経路を示しており、可動アーム水平部4の電流と反発アーム水平部10の電流は、ほぼ平行かつ反対方向になるよう構成されている。また、可動子1と反発子7の閉成状態において、反発接点8とその近傍の反発アーム垂直部9の部位、および、可動接点2とその近傍の可動アーム垂直部3の部位は、筒状絶縁物25により囲まれた筒状空間26内に配置され、両接触子の開成状態においては、可動接点2が筒状空間26から外れるように構成されている。さらに、反発子7は、筒状絶縁物25と絶縁カバー28等により構成され、筒状空間26以外に開口部がない蓄圧空間27内に配置される。
【0105】
ここで、アーク式限流機能を有する回路遮断器内で限流遮断動作時に発生する比較的短ギャップの大電流アークの高圧力下でのアーク電圧上昇条件について述べる。図2に示す実験装置にて、数cm以下の短ギャップ大電流アークの雰囲気圧Pを変化させてアーク電圧変化を測定した結果を図3のグラフに示す。図2において、400は1対の丸棒状の電極、401は密閉容器、402は交流電圧、403は投入スイッチ、404は加圧用ボンベである。
【0106】
図2の実験装置では、丸棒状の1対の電極400を対向させてアークを発生させているので、電極間距離はアーク長Lと等しくなる。図3(a)より明らかなように、アーク電流値が比較的小さい場合、アーク雰囲気圧Pが高くなるとアーク電圧は殆どのアーク長Lにおいて高くなる。一方、図3(b)に示すように、アーク電流値が比較的大きい場合、アーク雰囲気圧Pが高くなってもアーク電圧はアーク長Lが比較的長い場合を除いて殆ど変化しない。図3に示した雰囲気圧Pが高い場合のアーク電圧V(P=高)と雰囲気圧Pが低い場合のアーク電圧V(P=低)との比Rをとり、グラフ化すると図4に示すようになる。
【0107】
図4より明らかなように、アーク電流値が比較的小さい場合のアーク電圧上昇率Rは、アーク長が長いほど高い。一方、アーク電流値が比較的大きい場合のアーク電圧上昇率Rは、アーク長がある値以上にならないと殆ど増加しないことが分かる。以上より、短ギャップ大電流アークにおいて、アーク雰囲気圧を上げることによりアーク電圧を効果的に上げるための条件とは、(a)アーク電流が比較的小さい、(b)アーク長が長いという2つを同時に満足する必要がある。
【0108】
短絡等の事故が発生した場合、事故発生直後から回路電流は急激に増大する。従って、上記2つの条件を満たして高い雰囲気圧にてアーク電圧を上げて事故電流を限流するには、(1)少なくともアーク発生直後(事故発止直後)に高圧雰囲気をつくる、(2)アーク電流が比較的小さい時(事故発生直後)にアーク長を長くする必要がある。事故電流が増大した後では、雰囲気圧を上げてもあまり限流性能は向上しない。さらに、事故電流が増大した後の高圧雰囲気は、限流性能向上にあまり寄与しないだけでなく、筺体等の破損の原因となる。
【0109】
図1に示した限流器では、短絡事故等の発生により通過電流が急激に増大すると、接点接触面での電流集中による電磁反発力F1と前述の可動アーム水平部4の電流と反発アーム水平部10のほぼ平行かつ反対方向の電流による電磁反発力F2により、バネ18、21による接圧に抗して接点が開極し、接点間にアークが発生する。この状態を図5に示す。アークの発生に伴い、上記接点接触面での電流集中による電磁反発力F1は消滅するが、可動アーム水平部4の電流と反発アーム水平部10のほぼ平行かつ反対方向の電流による電磁反発力F2は引き続き可動子1を開極方向へと回動させる。可動子1と反発子7に働く主な開極電磁力は、作用、反作用の関係となり大きさがほぼ等しい。しかし、反発子7の慣性モーメントが可動子1より小さいため、可動子1より反発子7の方が素早く回動する。つまり、反発子7を用いることにより、可動子1のみにて開極動作を行う場合より、大幅に開極速度を向上させることができる。
【0110】
また、図中に白塗りの矢印で示すように、アーク発生に伴い、アークの熱により筒状絶縁物25の内面から大量の蒸気が発生し、筒状絶縁物25に囲まれた筒状空間26に高圧雰囲気が発生する。この筒状空間26の高圧の発生により、図中に黒塗りの矢印で示すように、可動子1および反発子7は圧力差による開極力Fpを受ける。この圧力差による開極力Fpと上記電磁力F2により可動子1および反発子7が高速に回動し、接点が高速開極する。この高速開極によりアーク長が高圧雰囲気中にて急激に伸びるのでアーク電圧が急速に立ち上がり、事故電流がピーク値をむかえる。
【0111】
前述の電流ピーク時刻前後の大電流アークが発生した状態を、図6に示す。図中の白抜きの矢印で示すように、大電流アーク発生中に筒状空間26にて発生した高圧の蒸気は、蓄圧空間27へと流れ込み、蓄圧空間内の圧力を高める。この蓄積された圧力により、アーク消滅前から電流遮断後にかけて上記蓄圧空間27から筒状空間26を通って筒状絶縁物25外へ放出される流れが生じる。この様子を示したのが、図7である。同図では、可動子1がほぼ最大開極位置まで回動しており、可動接点2が筒状空間26外に位置し、電流遮断直前、すなわちアーク消滅直前の状態を示している。
【0112】
蓄圧空間27から筒状空間26を通って外部へ放出される流れを白塗りの矢印で示している。この矢印の流れはノズル状となっている筒状空間26で最も速くなり、この高速の流れでアークの熱を奪い去りアークの消滅を促進する。このアーク消滅促進作用により、遮断前の電流が素早く絞りこまれるので、限流性能のもう1つの指標である通過エネルギーが減少する。さらに、この流れにより、上記高温のガスおよび溶融物を外部へと排出するので、筒状空間26の絶縁が急速に回復されるとともに、反発接点8表面への溶融物付着を防止できる。
【0113】
ところで、図7に示したように可動子1が最大開極位置に達した状態では既に電流ピークを過ぎて、十分な大きさのアーク電圧を発生しており、事故電流は急速に減少し零点をむかえる。この時、可動接点2は筒状絶縁物25に囲まれた狭い空間外にいるので、可動接2点近傍の電極金属蒸気を通常の手段(例えば、絶縁物からの蒸気流、グリッド等)にて容易に拡散もしくは冷却させることができ、電極間の十分な絶縁回復により電流を遮断することは容易である。また、可動子1がブレても筒状絶縁物25内面に触れることがないので、沿面絶縁破壊による再点弧が生じることもない。この最大開極位置近傍にて可動子1を拘束し再閉極を妨げる手段(例えば、ラッチ機構、リンク機構等)を付加すれば、限流性能に優れた回路遮断器を得ることができる。さらに、前述の蓄圧空間27から筒状空間26を通って噴出する流れにより、筒状空間26の出口と可動接点2間に漂う、比較的高温の金属蒸気や粒子を吹き飛ばすことができるので、接点間の遮断直後の絶縁回復が一層促進され、電流遮断後の再点弧を防止できる。
【0114】
上記のように本実施の形態では、筒状絶縁物25を用いた高圧雰囲気と高速開極手段を併用しているが、優れた限流性能を得るためには上記併用が不可欠である。図8では、(a)高速開極手段を用いない場合と、(b)高速開極手段を用いた場合の筒状絶縁物の効果を示している。同図において、tsは事故発生時刻、t0は接点開極時刻、V0は接点間の電極降下電圧、破線は電源電圧波形である。図8(a)は、高速開極手段を用いない場合であり、アーク電圧が電源電圧に追い付いた時刻t1(筒状絶縁物有の時)、t2(筒状絶縁物なしの時)に電流ピークIp1、Ip2をそれぞれむかえる。高速開極手段を用いないと、事故電流の立上りに比べアーク長さの立上りが遅いので、筒状絶縁物25にて高圧雰囲気を作り出しても、アーク長が短くアーク電圧が上昇する上記条件を満たすことが難しい。従って、図8(a)では、筒状絶縁物を用いても、電流ピークIpの改善の度合い△I=Ip2−Ip1は小さい。
【0115】
一方、図8(b)に示す高速開極手段を用いた場合では、事故電流が大きくなる前にアーク長が十分長くなるので、高圧雰囲気にてアーク電圧が上昇する上記条件を満たすことができる。アーク電圧が電源電圧に追い付いた時刻t1’(筒状絶縁物有の時)、t2’(筒状絶縁物なしの時)の電流ピークIpをそれぞれIp1’、Ip2’とすると、電流ピークIpの改善の度合い△Ip’=Ip2’−Ip1’は、高速開極手段を用いなかった場合の電流ピークIpの改善の度合い△Ipより劇的に大きいことが分かる。
【0116】
また、本実施の形態では、図59に示した従来例と異なり、可動子の開極を助けるための励磁コイルを設ける必要がないので、低インピーダンスの限流性能に優れた限流器が得られ、大きな通電容量が求められる回路への適用が可能となるる。
【0117】
さらに、可動子1および反発子7を回動させて開極するため、接点対が開閉する方向の必要寸法は、蓄圧空間27下部壁厚さ、反発アーム垂直部9、反発接点8厚さ、接点最大開離距離、可動接点2厚さ、および、可動アーム垂直部3の和となり、従来の直動型限流器より上記方向の必要寸法を小さくすることができる。従って、外形寸法に制限がある場合でも、高圧力を効果的にアーク電圧上昇に結び付けるのに必要な開極距離を容易に確保できる。
【0118】
なお、図1に示した実施の形態では、可動子1および反発子7をほぼL字状としたが、事故電流遮断時に可動子1より素早く開極する反発子7のみほぼL字状とし、可動子1は通常のほぼ棒状形状としてもよい。このような構成をとると、反発子7の高速開極によって高い限流性能が得られるのみならず、ほぼL字状可動子1を用いた場合と比較して、可動子側先端部のアークスポットが可動子回転軸13と反対側の端面へと移動しやすくなり、遮断直前のアークが引き伸ばされるので、過負荷電流遮断や直流遮断性能が向上する。
【0119】
実施の形態2.
【0120】
次に、この発明の実施の形態2を図について説明する。図9は、本実施の形態の筒状絶縁物25、反発子7、可動子1等の主要部を示す部分断面図であり、図中、可動子1の回転中心より最も遠い部位が開極動作により描く軌跡を一点鎖線にて、反発子7の回転中心より最も遠い部位が開極動作により描く軌跡を破線にてそれぞれ表している。筒状絶縁物25の可動子1および反発子7先端部に対向する面は、この一点鎖線および破線に一定の間隙を持つように円弧状に形成されている。一般に、可動子1の回転軸13は接点接触面より上方に、反発子7の回転軸23は接点接触面より下方にそれぞれ設けられるので、上記可動子1および反発子7の軌跡は接点接触位置より可動子回転軸13および反発子回転軸23から遠くなる方向へと膨らむ。そのため、図1に示すように、筒状絶縁物25の可動子1および反発子7先端部に対向する面を垂直とすると、上記面を接点接触位置より離れた位置に配置する必要があり筒状絶縁物25に囲まれる容積が大きくなる。そのため、十分高い高圧雰囲気を発生するのに時間がかかる場合がある。そこで、図9のように、可動子1および反発子7先端部の軌跡に沿って筒状絶縁物25の内面を形成すれば、筒状絶縁物25に囲まれる容積を小さくでき、限流性能が向上する。
【0121】
また、図9では、筒状空間26を囲む絶縁物の壁の内、可動子回転軸13および反発子回転軸23と反対側の壁長さを上記可動子および反発子回転中心側の壁長さより長くしている。遮断動作時に接点間に発生するアークには、可動アーム水平部4および反発アーム水平部10を流れる電流により、可動子および反発子回転中心と反対側に電磁駆動力が発生する。従って、筒状空間26内にあるアークは上記可動子および反発子回転中心と反対側の壁により強く触れる。また、可動子1および反発子7を高速開極するためには慣性モーメントを小さくした方が有利であるが、筒状絶縁物25の筒長さにより決まる可動アーム垂直部3および反発アーム垂直部9が長くなると、可動子1および反発子7の慣性モーメントはそれぞれ増加する。そこで、図9に示すように、上記可動子および反発子回転中心と反対側の壁長さを上記可動子および反発子回転中心側の壁長さより長くすることにより、可動アーム垂直部3および反発アーム垂直部9の長さを短くして慣性モーメントを低減でき、かつ、十分な筒状絶縁物蒸気を発生さて十分な高圧雰囲気を作ることができるので、限流性能がより向上する。
【0122】
また、図9では、可動アーム水平部4の可動接点2側の部分を、4a、4b、および4cの部位にて構成し、反発アーム水平部10の反発接点8側の部分を、10a、10b、および10cの部位にて構成している。このような構成とすると、同図中に黒塗りの矢印で示すように、閉成状態における可動アーム水平部4の一部4cと反発アーム水平部10の一部10cのほぼ平行かつ反対方向の電流間の距離が短くなり電磁反発力が増大するので、開極速度が向上する。
【0123】
実施の形態3.
【0124】
以下、この発明の実施の形態3を図について説明する。図10は、本実施の形態の筒状絶縁物25、反発子7、可動子1等の主要部を示す部分断面図であり、筒状絶縁物25は、筒内面を形成する絶縁物25aとその周りの絶縁物25bとにより構成される。上記絶縁物25aは、アークに暴露されると即座に大量の蒸気を発生する性質を有する材料、例えば、ガラス繊維などの強化材を少量もしくはまったく含まない樹脂材にて成形され、上記絶縁物25bは、機械的強度に優れた強化樹脂もしくはセラミックにて成形されている。このような構成とすると、上記筒内で発生する高圧力に機械的に耐えられない材料を筒内面の材料として用いることができるので、機械的特性に関係なく大量の蒸気を発生する物質を適用でき、限流性能が向上する。
実施の形態4.
【0125】
以下、この発明の実施の形態4を図について説明する。図11は、本実施の形態の筒状絶縁物25、反発子7、可動子1、馬蹄形の消弧板31等の主要部を示す部分断面図である。消弧板31は、筒状絶縁物25の上部空間に、可動子1の先端部の面に対向するよう設けられている。また、筒状絶縁物25の可動子1側開口部において、筒状空間26を囲む筒状絶縁物25の可動子回転軸13と反対側の壁高さを可動子回転軸13側の壁高さより低くなるよう構成している。このような構成とすると、同図中に白塗りの矢印で示すように、遮断動作時における可動接点2が筒状空間26から出た後、筒状空間26から消弧板31方向へとホットガスの流れが生じ、アークが消弧板31に触れやすくなる。従って、アークを消弧板31にて効果的に冷却できるので、遮断動作後半において事故電流を急速に絞り込み、遮断時間を短くすることができる。その結果、限流性能の1つの指標である通過エネルギーの低減につながる。
実施の形態5.
【0126】
以下、この発明の実施の形態5を図について説明する。図12は、本実施の形態の反発子7を示す斜視図、図13は、本実施の形態の筒状絶縁物25、反発子7、可動子1等の主要部を示す部分断面図である。図12に示す反発子7では、少なくとも閉成状態の可動接点2から見渡せる、反発接点8より反発子回転軸23側の反発アームの面を絶縁物29により覆っている。このような反発子を用いると、図13に示すように、事故電流遮断時の大電流アーク発生時点において、筒状空間26に充満したアークから上記絶縁物29へホットガスが吹き付けるとともに強いアーク光が当たり(図中、黒塗りの矢印で示す)、上記絶縁物29から大量の蒸気が発生する(図中、白塗りの矢印で示す)。従って、蓄圧空間27に蓄積される圧力が上昇し、電流遮断前後の蓄圧空間27から筒状空間26を通って流れる気流の流速が速くなり、前述のアーク消滅作用、筒状絶縁物内外空間の絶縁回復作用、反発接点表面への溶融物付着防止作用が向上する。
実施の形態6.
【0127】
以下、この発明の実施の形態6を図について説明する。図14は、本実施の形態の可動子1を示す斜視図、図15は、筒状絶縁物25、反発子7、可動子1等の主要部を示す断面説明図である。図14に示す可動子1は、可動接点2、可動アーム垂直部3、可動アーム水平部の各部位4a、4b、4c、および、可動子アーム部の少なくとも閉成状態の反発接点8から見渡せる面を覆う絶縁物30により構成され、ほぼ鈎型の形状となる。このように、可動子1をほぼ鈎型とすることにより、筒状絶縁物25を用いる場合においても、閉成状態の反発アーム水平部10と上記可動アーム水平部の一部4cとの距離を近付けることができ、電磁開極力を強化できることは前述の通りである。
【0128】
しかし、図15に示すように、可動子1の回転角θが大きくなると、可動子1を鈎型にすることによりアークが可動アーム水平部に触れ、電流が分流する可能性が高くなる。このようにアークが可動アームに触れると、可動アームが溶融して細くなり開閉に耐えうる十分な機械的強度を維持できなくなるのみならず、遮断動作後半のアーク電圧が低下して、限流性能が悪化する。そこで、少なくとも閉成状態の反発接点8から見渡せる、可動アームの可動接点2より可動子回転軸13側の部位を絶縁物30にて覆う必要がある。このような可動アームへの分流は、可動子1の回転角θがさらに大きくなると、実施の形態1で示したほぼL字状の可動子においても生じることがあり、上記のような可動アームの絶縁が必要となる。
実施の形態7.
【0129】
次に、この発明の実施の形態7を図について説明する。図16は、配線用遮断器のユニット化された消弧装置を示す斜視図であり、構成部品は消弧ユニット筺体本体36と消弧ユニット筺体蓋37により収納され、全体で消弧ユニット39を構成する。図17に示すように、複数の上記消弧ユニット39をクロスバー40により連結し、上記クロスバー40を介して接点を開閉させる機構部41、異常電流を検出し上記機構部41を動作させるリレー部42、および上記機構部41を手動で動作させるハンドル45を付加し、これらをベース43とカバー44にて収納すれば配線用遮断器となる。このように各構成部品をユニット化し、これらを組み合わせて配線用遮断器を構成するようにすれば、組立が簡単となりコスト低減が可能となる。
【0130】
前述のように消弧装置を消弧ユニット筺体本体36と消弧ユニット筺体蓋37内に収納することにより、遮断動作時の配線用遮断器内の圧力上昇をベース43およびカバー44で直接受けることがなくなる。上記消弧ユニット筺体の受圧面積は、上記ベース43およびカバー44の受圧面積より小さい。そのため、たとえ上記ベース43およびカバー44と同一材料、同一肉厚の消弧ユニット筺体を用いても、より大きな内圧上昇に耐えることができ、アーク雰囲気圧を上げてアーク電圧を上昇させる限流手法を用いるのに適している。また、従来、遮断動作時の内圧上昇に耐えるため、機械的強度の大きな高価なモールド材にてベースおよびカバーを構成していたが、消弧ユニット筺体を用いることにより、圧力を受ける筺体の材料の量を減らすことができコスト低減が可能となる。
【0131】
図16に示した消弧ユニット39の内部構成を示すため、構成部品の一部を断面にした斜視図を図18に示す。また、図19に閉成状態における通電部品以外を省略した斜視図を示す。図19には、可動アーム水平部4、反発アーム水平部10、および導体水平部34における電流方向を矢印にて示している。端子部15と可動子1を電気的に接続する導体の一部である導体水平部34は、固定導体12とほぼ平行かつ同方向の電流が流れるように接続されており、反発子7が回動する面から左右方向にずれた位置に配置されている。
【0132】
続いて、本実施の形態の動作について説明する。通常の開閉動作はハンドル45を手動にて操作することにより行う。上記ハンドル操作により、機構部41、クロスバー40を介してロータ35が回動し、可動子1が開閉動作する。また、過負荷電流遮断時には、リレー部42が異常電流を検出し、リレー部42よりとリップ信号が機構部41へ伝わり、機構部41が動作してロータ35が回動し可動子1が引き上げられ接点が開極する。しかし、短絡事故等の大電流遮断時には、上記ロータ35の回動に先立ち、接点接触部への電流集中による電磁反発力F1と、図19に示す可動アーム水平部4の電流と反発アーム水平部10のほぼ平行かつ反対方向の電流による電磁反発力F2との和Ftにより反発子7がバネ21による接圧に抗して開極動作を開始する。
【0133】
同時に、可動アーム水平部4の電流と導体水平部34のほぼ平行かつ反対方向の電流による電磁反発力F3の開極方向の分力F3’と上記電磁反発力の和Ftとの和の力Ft’により、可動子1が開極動作を開始する。この両接触子の開極動作において、慣性モーメントの小さい反発子7の方が可動子1より高速開極することは実施の形態1と同様である。上記開極動作に伴い、接点間にアークが発生し、上記接点接触面での電流集中による電磁反発力F1は消滅するが、上記電磁反発力F2は可動子1および反発子7を、上記電磁反発力の分力F3’は可動子1を、引き続きそれぞれ開極方向へと回動させる。また、アーク発生に伴い、アークの熱により筒状絶縁物25の内面から大量の蒸気が発生し、可動子1および反発子7を開極させる圧力差に起因する力Fpが生じる。これらの力により、反発子7および可動子1が高速に回動し、接点が高速開極する。この高速開極によりアーク長が高圧雰囲気中にて急激に伸びるのでアーク電圧が急速に立ち上がり、事故電流がピーク値をむかえる。
【0134】
電流ピーク後、可動子1はさらに回動し接点間距離が増大する。この接点間距離の増大により、アーク電圧がさら大きくなり事故電流は急速に零へと向かう。事故電流が小さく絞られると、導体垂直部33を流れる電流による吸引力と馬蹄形の鉄製消弧板31の吸引力により、アークが消弧板31に引き込まれ、アークが分断、冷却され消弧される。このとき可動接点2は筒状絶縁物25に囲まれる空間外にあり、接点間の絶縁が十分回復しているので、電極間に電源電圧が印加されても電流が再び流れることはなく、遮断動作が完了する。さらに、実施の形態1と同様に、大電流アーク中に蓄圧空間27に蓄積された圧力により筒状空間26を通って筒状空間26外へと流れる気流が発生し、筒状空間26内外の絶縁回復が促進されるので、遮断時間が短くなるとともに再点弧が防止される。また、上記電流ピーク以降の長い接点間距離による高いアーク電圧が遮断時間を大幅に短くする。従って、限流性能を示す指標の一つである通過エネルギーI2 t(電流の二乗の時間積分)が小さくなる。
【0135】
ところで、本実施の形態では、排気口38が接点2、接点8間からみて消弧板31側のみに設けられている。このような配置をとると、電流遮断動作時において、アーク電流の増加に伴い筺体内のアークよりロータ35側の空間に圧力が蓄積される。アーク電流がピークをむかえアーク電流値が減少していくと、上記蓄積された圧力により電極間ではロータ35側から排気口38側へと気流が生じ、アークを消弧板31へと引き伸ばす。さらに、電流零点近傍では、上記流れによる接点間の荷電粒子を吹き飛ばす作用で、接点間の絶縁回復が大幅に改善される。従って、高電圧の回路に適用しても遮断失敗が起こり難い信頼性の高い回路遮断器を得ることができる。
【0136】
この蓄積圧による気流の絶縁回復作用は、電流遮断時の上記気流の流速が大きいほど大きい。流速を大きくするには、蓄積圧を上げるか流路断面を小さくすればよく、そのために排気口38面積を小さくする必要がある。本実施の形態では、比較的面積の小さい排気口38を開成状態の可動接点2側に設けている。筒状絶縁物25を用いて限流性能を向上させる場合、反発接点8側アークスポット近傍のアークは蓄圧空間27内にあるので、上記ロータ35側空間の蓄積圧による気流にてアークを構成する金属粒子を吹き飛ばすことはできない。一方、可動接点2側アークスポット近傍のアークは、電流遮断時には上記蓄圧空間27外に位置しており、上記気流の作用を受けやすい。よって、比較的面積の小さい排気口38を開成状態の可動接点2側に設けることにより、効果的に電流遮断時の電極間の絶縁回復を確保できる。
【0137】
なお、上記図18、図19に示した実施の形態では、反発子7の回転軸23を蓄圧空間27を形成する絶縁物にて直接保持している。また、導体水平部34は、反発子7が回動する面から横方向にずれた位置において閉成状態の反発アーム水平部10とほぼ並置されている。このような導体配置をとる場合、事故電流遮断時に働く導体水平部34の電流と反発アーム水平部10の電流の間の電磁吸引力により、反発子7に非常に大きなブレの力が加わり、回転軸23が変形するか回転軸を保持している部材が破損する場合がある。そこで、図20に示すように、金属等の機械的強度の大きな保持枠46を別途設け、反発子回転軸23を保持すれば上記保持部材の破損を防止できる。また、上記保持枠46を磁性体にて構成すれば、導体水平部34の磁束を吸収して、反発子7に電磁吸引に起因するブレの力が生じないようにできるので、上記回転軸23の破損を防止できる。さらに、反発子7、回転軸23、および反発子7に接圧を与えるバネ21を上記保持枠46にて保持するように構成すれば、反発子部をユニット化でき組立性が向上する。
実施の形態8.
【0138】
前述のように、実施の形態7の導体配置では、導体水平部34が反発子7および可動子1が回動する軌跡を含む面上からずれた位置に配置される。従って、反発子7および可動子1には接点開離方向に直行するブレの力がそれぞれ働き、反発子7および可動子1の開極速度を低下させる要因となる。この発明では、閉成状態において筒状絶縁物内に可動アーム垂直部および反発アーム垂直部が挿入されるので、上記ブレの力により可動子もしくは反発子が左右にブレた場合、可動子もしくは反発子と筒状絶縁物が接触する可能性が大きい。このような接触が生じれば、開極速度は大幅に低下する。また、遮断動作時に上記ブレの力により可動子、可動子回転軸、反発子、もしくは、反発子回転軸等が大きく変形すれば、再投入不能となる。
【0139】
本実施の形態8はこのような問題を解決したもので、その構成を図21に示す。同図に示すように、導体水平部34の中心線を、可動子1および反発子7が回動する軌跡を含む面上に閉成状態の反発アーム水平部10とほぼ平行に配置している。このような導体配置をとると、可動アーム水平部4と導体水平部34とにそれぞれ流れる反対方向の電流による電磁反発力、および反発アーム水平部10と上記導体水平部34とにそれぞれ流れる同方向の電流による電磁吸引力のどちらにも上記ブレの力成分が生じない。
【0140】
また、上記導体配置をとると、図22に示すように、反発子7には反発アーム水平部10に流れる電流と可動アーム水平部4を流れる電流の間の電磁反発力のみならず、反発アーム水平部10に流れる電流と導体水平部34を流れる電流の間の電磁吸引力を事故電流遮断時の開極力として利用できる。図23は、遮断動作初期の状態を示しており、慣性モーメントの小さい反発子7が可動子1より速く回動することは、実施の形態1と同様である。このように、反発子7が回動すると、可動子1と反発子7をそれぞれ流れる反発電磁力を発生する電流間の距離が遠くなり、上記電磁反発力は低減する。しかし、反発子7と導体水平部34との距離が逆に近くなるので、反発子7と導体水平部34をそれぞれ流れる電流による電磁吸引力が増大する。よって、反発子7は最大開極位置に到達するまで常に大きな電磁開極力を受け、開極速度がさらに高速となり、事故電流ピーク値が低減される。
【0141】
図24は、さらに遮断動作が進み、反発子7および可動子1が最大開極位置に達した状態を示す。この状態では、反発子7と導体水平部34との距離が最小となっており、反発子7が導体水平部34を流れる電流により強く吸引されている。従って、高速開極した反発子7が蓄圧空間27を形成する絶縁物25に衝突して跳ね返され接点間距離(言い換えれば、アーク長)が小さくなる現象を最小限に抑えるとともに、電流遮断直前まで反発子7を付勢手段である接圧バネの力に抗して最大開極位置に保つことができ、遮断動作後半における接点間距離をより長い状態で保持できる。これにより、電圧ピーク以後も高いアーク電圧を維持でき、遮断時間が大幅に短縮できるとともに、電流遮断時および遮断後に接点間の十分な絶縁回復を確保でき、電圧の高い回路においても適用できる高性能の限流遮断器が得られる。
【0142】
なお、本実施の形態では、導体水平部34を反発子7が回動する軌跡を含む面上に配置したが、可動接点2が反発接点8より開離する方向を上方としたとき、開成状態の反発アーム水平部10より下方に、かつ、閉成状態の上記反発アーム水平部10とほぼ平行に導体水平部34を設ければ、たとえ上記反発アーム水平部10が上記軌跡を含む面の左右どちらかにずれた位置にあっても、前述の反発子を吸引して開極速度を高める効果および反発子を最大開極位置にて保持する効果が得られる。
実施の形態9.
【0143】
次に、この発明の実施の形態9を図について説明する。図25は本実施の形態の主要部を示す斜視図であり、保持枠46の一部を切り欠いて示している。本実施の形態における導体配置は、実施の形態8と同様であり、導体水平部34は、反発子7が描く軌跡を含む面上に配置されている。反発子7は、回転軸23を介して、非磁性体の断面コの字状の保持枠46に回動自在に保持されている。また、反発子7に接圧を与えるバネ21は、端部が上記保持枠46に設けたバネ掛け22に係合されており、反発子7、回転軸23、バネ21、保持枠46にて、反発子部ユニットを形成していることは、実施の形態7と同様である。
【0144】
このように、保持枠46を非磁性体にて構成すれば、導体水平部34を流れる電流が作る反発子7および可動子1の開極を促進する磁束成分を遮蔽することがなく、大きな電磁力が働く反発子7を確実に保持するために保持枠46を用いる場合においても、実施の形態8と同様の高速開極が得られ、限流性能が低下することがない。
実施の形態10.
【0145】
次に、この発明の実施の形態10を図について説明する。図26は本実施の形態の主要部を示す斜視図であり、保持枠46’の一部を切り欠いて示している。本実施の形態における導体配置は、実施の形態8と同様であり、導体水平部34は、反発子7が描く軌跡を含む面上に配置されている。反発子7は、回転軸23を介して、磁性体の保持枠46’に回動自在に保持されている。また、反発子7に接圧を与えるバネ21は、端部が保持枠46’に設けたバネ掛け22に係合されている。磁性体の保持枠46’は、実施の形態9とは異なり、反発子7のみならず導体水平部34を抱え込むように配置されている。
【0146】
このように、反発子7および導体水平部34を抱え込む保持枠46’を磁性体にて構成すれば、導体水平部34を流れる電流が作る反発子7の開極を促進する磁束成分を増大させることができ、反発子7の開極速度が向上する。
実施の形態11.
【0147】
次に、この発明の実施の形態11を図について説明する。図27は本実施の形態の消弧ユニットを示す斜視図であり、消弧ユニット筺体本体36、消弧ユニット筺体蓋37を挟み込むように、積層された馬蹄形のコア50、51がそれぞれ配置されている。コア50は、少なくとも消弧ユニット内の開成状態の可動子1(図示せず)を挟み込む位置に設けられ、コア51は、少なくとも消弧ユニット内の開成状態の反発子7(図示せず)を挟み込む位置に設けられている。
【0148】
このような構成を用いると、遮断動作時の可動子1の開極電磁力をコア50にて、また、反発子7の開極電磁力をコア51にてそれぞれ強化でき、開極速度が向上する。また、消弧ユニット筺体を外部より挟み込むように、コア50、51を配置しているので、遮断時の筺体内圧上昇による筺体にかかる力を上記コアにて受けることができ、筺体の破損を防止できる。さらに、消弧ユニット筺体本体36と消弧ユニット筺体蓋37との接合をコア50、51にて行うことができるので、ネジ等の接合部品を省略することが可能とる。また、筺体によりコア内面の絶縁を兼ねることができ、コアへのアークタッチを防止できる。
実施の形態12.
【0149】
次に、この発明の実施の形態12を図について説明する。図28(a)は本実施の形態の主要部を示す部分断面図であり、図28(b)は、図28(a)に示した消弧板31より下の部位の上面図である。図28(a)では、過負荷電流遮断時の電流遮断直前の状態を示しており、反発子7は回動しておらず、可動子1のみが機構部41(図示せず)の動作により開極している。過負荷遮断等の比較的小電流遮断においては、蓄圧空間27に圧力を蓄積できないので、電流遮断時に蓄圧空間27から筒状空間26を通り噴出する気流の流れを形成することができず、気流の流れによるアーク消弧作用を利用できない。そのため、過負荷電流遮断時には、アークを消弧板31に触れさせて冷却して消弧する必要がある。しかし、この発明では、筒状絶縁物25を用いて高圧雰囲気を作り出しアーク電圧を上げる手法を用いているため、必然的に可動子1先端部は端部に接点2が固着した棒状形状となる。
【0150】
そのため、可動子側アークスポットは、可動子先端の消弧板側の端面に移動し難い。そこで、本実施の形態では、馬蹄形の消弧板31の切欠き部の位置L2を、筒状絶縁物25に囲まれる空間26の可動子回転中心(図示せず)と反対側の端面の位置L1より、可動子回転中心側に設けている。ただし、上記切欠き部の位置L2が、図中に一点鎖線で示す可動子1先端部が描く軌跡と交わると消弧板31が可動子1の回動を妨げるので、上記切欠き部の位置L2は、上記一点鎖線と上記位置L1のと間に位置する必要がある。このように構成するとアークが消弧板31に触れやすくなり、過負荷電流遮断においても十分な遮断性能が得られる。
【0151】
また、図28(b)に示すように、反発子回転中心と反対側の筒状絶縁物25の部位を外側から囲むように馬蹄形のコア52設けると、反発接点8近傍のアークが上記コア52側に引き付けられるので、一層アークが消弧板31に触れやすくなる。
【0152】
ところで、可動子側のアークスポットが可動子1の消弧板31側の端面に移動し難いことは、短絡遮断等の大電流遮断時にも同様である。そのため、遮断動作後半になってもアークは消弧板31に触れにくく、消弧板31のアーク冷却効果を有効に利用できないので、アークの熱により消弧ユニット筺体内圧が高くなり、筺体割れが発生しやすい。従って、本実施の形態の構成によりアークを消弧板31に触れやすくすることは、短絡遮断時の内圧上昇を抑制し、割れを防止する効果もある。
実施の形態13.
【0153】
次に、この発明の実施の形態13を図について説明する。図29は本実施の形態における消弧ユニット内部を示す斜視図であり、図30は、図29の反発子7近傍の導体配置を示す斜視図である。図30中の矢印は電流の流れを示している。本実施の形態では、実施の形態7、実施の形態8と異なり、端子部15に電路53a、53b、53c、53d、および可とう導体11を経由して反発子7が接続され、可動子1は摺動接触子14を経由して端子部16と接続される。上記電路53a、53b、53c、53d、および可とう導体11の電路53d側の部位は、筒状絶縁物25と一体に形成された絶縁物54にて、両接点2、8間に発生するアークから見渡せる部位を覆っている。また、電路53b、53c、53dには反発子7の幅にほぼ等しい幅のスリット56を設けており、アーク柱が発生し引き伸ばされる軌跡を含む面の左右にずれた位置に電路を設けている。
【0154】
このような構成とすると、実施の形態8で示した電磁開極力を発生する導体水平部に相当する電路がなくなり、実施の形態8と比較すると開極速度は低下する。しかし、消弧室内の導体長を短くできるのでコスト低減が可能であり、さらに構造が簡単となり組立性が向上する。また、実施の形態7、実施の形態8の導体水平部に相当する消弧ユニット内を横断する導体がないので、導体間の絶縁距離を確保しやすい。また、主に電路53b、53c、53dを流れる電流は、接点間に発生したアークを消弧板31の反対側へと押し戻す力を発生し、アークが上記消弧板31に触れ難くするが、本実施の形態ではスリット56を設けることにより上記電路53b、53c、53dのアークを押し戻す作用を最小限に抑えている。
実施の形態14.
【0155】
次に、この発明の実施の形態14を図について説明する。図31は本実施の形態における消弧ユニット内部を示す斜視図であり、図32は、図31の反発子7近傍の導体配置を示す斜視図である。図32中の矢印は電流の流れを示している。本実施の形態では、実施の形態7、実施の形態8と異なり、端子部15に電路53a、53b、および可とう導体11を経由して反発子7が接続され、可動子1は摺動接触子14を経由して端子部16と接続される。上記電路53a、53b、および可とう導体11の電路53b側の部位は、筒状絶縁物25と一体に形成された絶縁物54にて、両接点2、8間に発生するアークから見渡せる部位を覆っている。また、電路53bには可動子1の回動を妨げないようにスリット56を設けている。電路53a、53bは、反発子7より上方に配置される。
【0156】
このような構成とすると、消弧室内の導体長を短くできるのでコスト低減が可能であること、構造が簡単となり組立性が向上すること、実施の形態7、実施の形態8の導体水平部に相当する消弧ユニット内を横断する導体がないので、導体間の絶縁距離を確保しやすいことは、実施の形態13と同様である。さらに、電路53bを流れる電流が、閉成状態の反発アーム水平部10を流れる電流と反対方向かつほぼ平行となるので、反発子7の開極電磁力を実施の形態13より向上させることができる。さらに、可とう導体11を流れる上下方向の電流も、反発子7の電磁開極力を強める磁束成分を発生させる。よって、反発子7の開極速度が増大し、限流性能が向上する。
実施の形態15.
【0157】
以下、この発明の実施の形態15を図について説明する。図33は、実施の形態15に係る限流装置の主要部を示す斜視図であり、内部構成が分かるように筒状絶縁物25と絶縁カバー28の一部を切り取っている。図34は、図33に示すものの外観を示す斜視図である。図33において、1は、可動接点2と可動接点2が固着されている可動アーム垂直部3と可動アーム垂直部3とほぼ直交する可動アーム水平部4とにより構成されるほぼL字状の可動子である。この可動子1は、固定接点6と固定導体12により構成される固定子5と1対をなしており、可動子1は付勢手段である可動子接圧バネ18により固定子5方向に付勢されている。また、可動子1は、可動子回転軸13を中心に回転自在に支持されており、摺動接触子14および接続導体17を介して端子15と電気的に接続されている。一方、固定子5は筒状絶縁物25と絶縁カバー28とによって固定接点6近傍と端子部16との接続部近傍を除いて覆われている。図中に示された複数の矢印は、通電時の電流経路を示しており、可動アーム水平部4の電流と固定導体12の電流は、ほぼ平行かつ反対方向になるよう構成されている。
【0158】
図33に示した限流装置では、短絡事故等の発生により通過電流が急激に増大すると、接点接触面での電流集中による電磁反発力F1と前述の可動アーム水平部4の電流と固定導体12のほぼ平行かつ反対方向の電流による電磁反発力F2により、可動子接圧バネ18による接圧に抗して接点が開極し、接点間にアークAが発生する。この状態を図35に示す。アークの発生に伴い、上記接点接触面での電流集中による電磁反発力F1は消滅するが、可動アーム水平部4の電流と固定導体12のほぼ平行かつ反対方向の電流による電磁反発力F2は引き続き可動子1を開極方向へと回転させる。
【0159】
また、図36に示すように、アーク発生に伴い、アークの熱により筒状絶縁物25の内面から大量の蒸気が発生し、筒状絶縁物25に囲まれた筒状空間26に高圧雰囲気が発生する。この筒状空間26の高圧の発生により、可動子1は圧力差による開極力Fpを受ける。この圧力差による開極力Fpと上記電磁力F2により可動子1が高速に回転し、接点が高速開極する。この高速開極によりアーク長が高圧雰囲気中にて急激に伸びるのでアーク電圧が急速に立ち上がり、事故電流がピーク値をむかえる。
【0160】
図35の状態からさらに可動子1が回転し、最大開極位置に達した状態を図37に示す。この状態では既に電流ピークを過ぎており、十分な大きさのアーク電圧を発生しているので、事故電流は零点をむかえる。このとき、可動接点2は筒状絶縁物25に囲まれた狭い空間外にあるので、可動接点2近傍の電極金属蒸気を通常の手段(例えば、絶縁物からの蒸気流、グリッド等)にて容易に拡散もしくは冷却させることができ、電極間の十分な絶縁回復により電流を遮断することは容易である。また、可動子1がブレても筒状絶縁物25内面に触れることがないので、沿面絶縁破壊による再点弧が生じることもない。この最大開極位置近傍にて可動子1を拘束し再閉極を妨げる手段(例えば、ラッチ機構、リンク機構等)を付加すれば、限流性能に優れた限流装置を得ることができる。
【0161】
また、本実施の形態では、図147に示した従来例と異なり、可動子の開極を助けるための励磁コイルを設ける必要がないので、低インピーダンスの限流性能に優れた限流性能が得られ、大きな通電容量が求められる回路への適用が可能となる。
【0162】
さらに、可動子1を回転させて開極するため、可動接点2が開閉する方向の必要寸法は、固定導体12の厚さ、固定接点6の厚さ、可動子1が移動する空間、可動接点2の厚さ、および、可動アーム垂直部3の和となり、従来の直動型限流器より上記方向の必要寸法を小さくすることができる。従って、外形寸法に制限がある場合でも、高圧力を効果的にアーク電圧上昇に結び付けるのに必要な開極距離を容易に確保できる。
実施の形態16.
【0163】
次に、この発明の実施の形態16を図38にて説明する。図38では、端子部15に直接固定子5が接続され、可動子1は摺動接触子14を経由して端子16によりリレー部と電気的に接続される。また、図39に示す固定子5は、閉成状態の可動アーム水平部とほぼ平行かつ反対方向の電流が流れる電路86cを有している。固定子5は、筒状絶縁物25と一体に形成された絶縁物85にて、固定接点6近傍を除く少なくとも開成状態の可動接点2から見渡せる部位を覆っている。
【0164】
閉成状態の可動アーム水平部4とほぼ平行かつ反対方向の電流が流れる電路として、電路86cがある。電路86bが作る磁場も可動子1の開極電磁力に寄与するが、これとは別に、消弧室内の導体長を短くできるのでコスト低減が可能であり、さらに構造が簡単となり組立性が向上する。また、絶縁距離を確保しやすい。
実施の形態17.
【0165】
この発明の実施の形態17を、図40、図41に示す。図40は、本実施の形態の固定子5を示す図であり、図39の固定子5の上下方向の電路86bの一部を水平方向の電路86c’と上下方向の電路86dに置き換えている。図41は、閉成状態の可動子1、図40に示した固定子5、筒状絶縁物25、および筒状絶縁物25と一体に成形されている固定子を覆う絶縁物85を示した断面図であり、図中、矢印にて電流方向を示している。同図から明らかなように、図40の固定子形状を用いることにより、可動アーム水平部4と固定子1の電路86c’が大幅に近付き、事故電流の遮断時の電磁開極力が図39に示す実施の形態16より増大する。
実施の形態18.
【0166】
この発明の実施の形態18を図42に示す。図42は、筒状絶縁物25と固定子5の固定接点6側の端部と可動子1の可動接点2側先端部を示す部分断面図であり、筒状空間26を囲む筒状絶縁物25の壁の内、可動子回転軸と反対側の壁高さを可動子回転軸側の壁高さより高くしている。遮断動作時に接点間に発生するアークには、固定導体12および可動アーム水平部4を流れる電流により、可動子回転軸と反対側に電磁駆動力が発生する。従って、筒状空間26内にあるアークは上記可動子回転軸と反対側の壁により強く触れる。また、可動子1を高速開極するためには可動子1の慣性モーメントを小さくした方が有利であるが、筒状絶縁物25の筒高さにより決まる可動アーム垂直部3が長くなると、可動子慣性モーメントは増加する。そこで、図42に示すように、可動子回転軸と反対側の壁高さを可動子回転軸側の壁高さより高くすることにより、可動アーム垂直部3の長さを短くして慣性モーメントを低減し、かつ、十分な筒状絶縁物蒸気を発生さて十分な高圧雰囲気を作ることができ、限流性能がより向上する。
実施の形態19.
【0167】
図43にこの発明の実施の形態19を示す。同図では、閉成状態のほぼL字状の可動子1と、可動アーム水平部4と対向する固定導体12の部位12aが可動アーム水平部4に近づくように曲げられた固定子5が示されている。このように、固定導体12側を可動アームへと近付けることにより電磁反発力を強化することができる。さらに、本実施の形態では、可動子1がほぼL字状のままのため可動子の慣性モーメントが大きくなることはなく、高速開極が可能となる。
実施の形態20.
【0168】
この発明の実施の形態20を図44に示す。図44は、消弧室ユニット内の構成を示す部分断面斜視図であり、5は固定子、25は筒状絶縁物、88は磁束遮蔽板、89は後述する可動子1の左右に設けたコアである。
【0169】
まず、本実施の形態の特徴の一つである固定子形状について説明する。図45は、図44の固定子形状を示す部分断面図であり、電路は、端子部15、電路86f、86e、86c’、86d、86c、固定接点6の順で構成されている。この固定子5には、電路86e、86fの電流が作る、可動子の開極を妨げる磁場成分を少なくするため、スリット87を設けて電路86e、86fを可動子が回転する軌跡を含む面から左右にずれた位置に配置している。しかし、閉成状態の可動アーム水平部4とほぼ平行かつ反対方向の電流が流れる電路が、86c’、86d、86cにて構成されており、ほぼL字状の可動子の可動アーム水平部と上記電路86c’の距離が近づく。従って、短絡遮断動作時の可動子に働く電磁反発力がより大きくなり開極速度が向上する。
【0170】
また、本実施の形態の固定子形状では、固定接点近傍で接点開極方向(上下方向)成分の電流が流れる電路86dを設けている。この電路86dの電流の上下方向成分は、接点間に発生したアークと逆方向となり、アークを端子部15側へと押し出す。従って、接点間に発生したアークは筒状絶縁物25の端子部側壁面へと押し付けられ、筒状絶縁物壁面からの蒸気によるアーク冷却作用が向上する。
【0171】
ところで、図45には、固定子5の他に一部断面をとった磁束遮蔽板88と電路86eの上部に設けられた一対のコア89の一方を示している。磁束遮蔽板88およびコア89は鉄などの磁性体にて構成されており、筒状絶縁物25と一体形成された絶縁物等により接点間に発生するアークに直接触れないよう配置されている。磁束遮蔽板88は、主に、電路86fを流れる電流が発生する磁束(可動子の開極を妨げ、かつ、アークを可動子回転軸側へと押し戻す作用をする)を遮蔽する役割をはたしている。一方、コア89は、電路86c’、86d、86cの電流が作る、可動子を開極させる磁場成分を強化するとともに、電路86eを流れる電流が作る可動子の開極を妨げる磁束を遮蔽する役割をになっている。
【0172】
磁束遮蔽板88およびコア89のように、ある電路の急激に増大する事故電流が発生する磁束を遮蔽する場合、磁性体中を流れる渦電流は磁束の侵入を阻止する方向に働くので、磁性体の導電率は大きくてもよい。従って、磁気抵抗を減らして電磁力を増大させるために用いられるコアのように積層したり、高価な絶縁体のコアを用いなくても、安価な鉄板にて磁束遮蔽板88およびコア89を構成しても可動子に働く電磁開極力を大きく改善できる利点がある。
【0173】
図46に示すコア89’は、図45に示したコア89の変形例であり、可動子の左右に設けた1対のコアを可動子が開極する方向側の端部にてつないだほぼU字状をしており、電磁開極力を強化させる効果が高くなる。また、図47に示す89”は、磁束遮蔽板88とコア89を一体化した変形例であり、コア89の端子部15側端部が電路86fに近接するように構成されており、上記端部に電路86fの電流による磁束が吸収される。
実施の形態21.
【0174】
この発明の実施の形態21を図48に示す。図48は、本実施の形態の固定子5と一対のコア89”の一方を示す斜視図であり、固定接点6の左右に設けられている電路86eの一方を切り欠いている。その他の部品については、図示していないが、基本的に図44と同様な構成である。
【0175】
図48の固定子形状は、図45に示したものと比較して、電路86eの配置が異なり、電路86eが電路86cより上方に設けられており、電路86eの中心線は接点接触面より上方に位置している。このような構成では、電路86c’が閉成状態の可動アーム水平部と近付き電磁開極力が強化されること、電路86dの電流によりアークが筒状絶縁物の端子部15側の壁面に押し付けられアーク冷却効果が向上することは、実施の形態20と同様であるが、電路86eが接点接触面より上方に位置することから、電路86eの電流による電磁駆動力により固定接点側のアークスポットが上記壁面側へと移動しやすくなる。また、電路86eを上方へ配置することにより、可動子の開極を妨げかつアークを可動子回転軸側へと押し戻す作用をする電路86fが必然的に短くなるので、可動子開極速度の向上およびアークを上記壁面へ押し付ける作用が向上する。
実施の形態22.
【0176】
図49はこの発明の実施の形態22に係る3極限流装置を示す斜視図であり、内部構成が分かるように筺体36の一部を切り取って示している。この3極限流装置は、回路遮断器と直列接続して用いることにより、3極限流遮断器を構成することができる。図50は、図49の3極限流装置の閉成状態の1極分の導体構成と筒状絶縁物25および絶縁カバー28を示す斜視図であり、筒状絶縁物25および絶縁カバー28は導電部を構成する部分の形状が分かるように一部を切り取って示している。
【0177】
図49において、1は可動子、25は閉成時の接点対を囲む筒状絶縁物、28は固定子を覆う絶縁カバー、14は摺動接触子、18は接点対に接触圧を与える付勢手段である可動子接圧バネ、19はバネ掛け、13は可動子1の回転軸、17は接続導体、15a、15b、15c、16aは端子部、31は消弧板、38は排気口、36は絶縁物筺体である。
【0178】
図50において、1は、可動接点2と、この可動接点2が固着されている可動アーム垂直部3と、この可動アーム垂直部3とほぼ直交する可動アーム水平部4とにより構成されるほぼL字状の可動子である。この可動子1は、固定接点6と、固定導体12とにより構成される固定子5と1対の接触子対をなしており、可動子1は接触圧を与える付勢手段である可動子接圧バネ18により固定子5に対して付勢されている。可動子1は、可動子回転軸13を中心に回転自在に支持されており、摺動接触子14および接続導体17を介して端子部15aと電気的に接続されている。一方、固定子5は筒状絶縁物25と絶縁カバー28とによって、固定接点6近傍と端子部16aとの接続部近傍を除いて覆われている。図中に示した複数の矢印は、通電時の電流経路を示しており、可動アーム水平部4の電流と固定導体12の電流は、ほぼ平行かつ反対方向に流れる。閉成状態の接触子対は、端子部15a、16aを結ぶ線にほぼ直交するように配置されている。
【0179】
図49、図50に示した限流装置では、短絡事故等の発生により通過電流が急激に増大すると、接点接触面での電流集中による電磁反発力F1と、前述の可動アーム水平部4の電流と固定導体12の電流による電磁反発力F2により、可動子接圧バネ18による付勢力に抗して接点が開極し、接点間にアークAが発生する。この状態の接点対近傍の様子を図51に示す。アークの発生に伴い、上記接点接触面での電流集中による電磁反発力F1は消滅するが、可動アーム水平部4の電流と固定導体12の電流による電磁反発力F2は引き続き可動子1を開極方向へと回動させる。
【0180】
また、図51に示すように、アーク発生に伴い、アークの熱により筒状絶縁物25の内面から大量の蒸気が発生し、筒状絶縁物25に囲まれた筒状空間26に高圧雰囲気が発生する。この筒状空間26の高圧の発生により、可動子1は圧力差による開極力Fpを受ける。この圧力差による開極力Fpと上記電磁力F2により可動子1が高速に回動し、接点が高速開極する。この高速開極によりアーク長が高圧雰囲気中にて急激に伸びるのでアーク電圧が急速に立ち上がり、事故電流がピーク値をむかえる。
【0181】
ところで、実施の形態では、可動子開極直後にアーク雰囲気圧を高圧にするために固定接点6を取り囲むように筒状絶縁物25を配置している。接点間に発生するアークの熱により固定接点近傍に配置した絶縁物から大量の蒸気を発生させる配置は、例えば、特開平7−22061号公報の図16、図17に示されている。しかし、この先行例では、固定接点近傍に配置される絶縁物は、閉成状態の可動子を左右から挟み込む形状をしており、絶縁物から発生した蒸気は即座に閉成状態の可動子先端側および可動子回動中心側へと流れ出し、アーク雰囲気を十分高圧にすることはできない。アーク電圧を急激に立上げるには、開極初期のアークを固定接点と可動接点と筒状絶縁物に囲まれる筒状空間に閉込める必要があり、アーク電圧立ち上がり速度向上の大幅な向上には、固定接点を囲む絶縁物形状を筒状にすることが不可欠である。
【0182】
図51の状態からさらに可動子1が回動し、最大開極位置に達した状態を図52に示す。この状態では、可動接点2は筒状空間26外に位置しており、十分な大きさのアーク電圧を発生している。さらに、図52中に矢印で示すように、筒状空間26からアーク柱の軸方向に沿った絶縁物蒸気の流れ(白塗り矢印で示す)がアークの熱を奪ってアークを冷却するので、アーク抵抗がより高くなり、事故電流は急速に零点へと向う。従って、限流性能の指標の一つである通過エネルギーをより小さくできる。
【0183】
また、図49に示すように、可動子開極方向側(筒状絶縁物25の開口部側)の筐体壁に排気口38を設けることにより、図52中に白塗り矢印で示した絶縁物蒸気の流れを速くでき、可動接点2近傍の電極金属蒸気を容易に吹き飛ばすことができる。これにより電極間に電流を遮断するのに十分な絶縁回復を生じさせることも可能であり、遮断能力の低い回路遮断器を直列接続して用いても、確実に電流を遮断できる信頼性の高い限流装置を得ることができる。
【0184】
また、上述のように電流ピーク後の遮断動作後半において、可動接点2を筒状空間26外に移動させることにより、アーク電圧の上昇に効果的に結びつかない筒状絶縁物25からの蒸気発生を制限し、内圧が必要以上増大することを防止できる。
【0185】
ところで、本実施の形態では、1対の接触子にて高い限流性能が得られるので、低インピーダンスの限流性能に優れた限流装置が得られ、大きな通電容量が求められる回路への適用が容易となる。
【0186】
また、本実施の形態では、高い限流性能を得るのに1対の接触子しか用いないので、筐体側壁の肉厚を厚くでき、安価な材料にて筐体をつくることができる。しかし逆に、本実施の形態によれば、アークによる筺体内圧の上昇が抑えられているため、筺体壁の肉厚を薄くして、2組の接点対を直列に接続した導体配置を用いることも可能であり、この場合、限流動作時に筒状空間内にて2つの直列アークが発生し、より限流性能が向上する。
実施の形態23.
【0187】
次に、この発明の実施の形態23を図53について説明する。図53は本実施の形態に係る限流装置の内部構成を示す断面図であり、バネ等は図示を省略している。本実施の形態が図49に示す実施の形態と異なるのは、端子部15、16が筺体36の取り付け面(底部)91からH’だけ高い位置に設けられている点である。このため、本実施の形態では、可動子1のアームと固定子5との平行配置電路部分を確保しかつ端子部15、16との接続をするために、固定導体12の下部をU字状に曲げて端子部16に接続するとともに、可動子1は可撓導体11を用いこれをほぼU字状に曲げて端子部15に接続している。
【0188】
ところで、限流装置を回路遮断器に直接連接する場合、限流装置と回路遮断器の端子部が直接係合するように限流装置の端子部を取付け面よりH’だけ高い位置に設ける必要がある。また、配電盤への収納性を考慮すれば、限流装置の高さHは、回路遮断器高さと同等もしくは低い方がよいことは明かである。このような外形の制限のもと、閉成状態の可動子1と固定子5とに、高速開極に必要なほぼ平行かつ反対方向の電路(以下、反発電路と呼ぶ)を十分な長さ設けるためには、図53に示すように、固定導体12をほぼU字状にして固定子側の電路を取付け面91側で折り返すと共に、可動子回転軸13を端子部15、16の高さより取付け面91側の低い位置に設ける必要がある。
【0189】
上記のような構成を用いると、上述のような外形の制限がある場合でも限流性能を得るために必要な反発電路長を得ることができる。しかし、図53中、白塗りの矢印で示す電流成分が発生する磁界が可動子の高速開極を妨げるよう作用するので、実施の形態22と同じ反発電路長の場合、実施の形態22より開極速度が低下する。そこで、上記高さHおよび端子部高さH’の制限下において、実施の形態22より可動子の開極速度をさらに高めたのが次の実施の形態24である。
実施の形態24.
【0190】
この発明の実施の形態24を図54に示す。図54は本実施の形態の限流装置の内部構成を示す断面図であり、バネ等は図示を省略している。本実施の形態では、実施の形態23と異なり、可動子1は可撓導体11にて遠い側、すなわち固定子5の背後に設けられた端子部16に、また、固定子5は固定導体12を延長して遠い側、すなわち可動子1の背後に設けられた端子部15にそれぞれ電気的に接続されている。固定接点6と端子部15を電気的に接続する固定導体12は、電路12a、12b、12cで構成されている。12aは反発電路を形成する電路、12bは一端が電路12aに接続され、閉成状態の可動子1の可動アームと直交して可動子1の下方に配置される電路、12cは電路12bの他端と端子部15を結ぶ電路である。
【0191】
ここで、閉成状態の接触子対の反発電路部は、端子部15、16を結ぶ線にほぼ直交するように配置されており、可動子先端部に対向する位置に複数の馬蹄形の消弧板31が設けられている。また、固定子5の固定接点6が固着されている端部側の固定導体は上方へと延長されており、延長された導体92に絶縁物カバー28aから消弧板31側に露出するアークランナー79が設けられている。
【0192】
上記のような電路配置では、閉成状態において、固定導体12を流れる電流が作る全ての磁界が可動子1を開極させる方向に作用するので、短絡遮断時には可動子1がより高速開極する。従って、上記電路構成を、高圧雰囲気を発生させる手段である筒状絶縁物25と併用することによりアーク電圧の立上りを大幅に改善でき、限流性能が一層向上する。
【0193】
一方、本実施の形態では、短絡遮断時に筒状絶縁物25内にてアークを発生させるため、固定接点6側のアークスポットが筒状絶縁物25の内径にて制限され、電流密度が上昇する。これにより固定接点6の損耗が大きくなる場合があり、可能な限流動作回数が制限される。本実施の形態では、前述のように、固定接点6の上方にアークAが転流するアークランナー79が設けられており、可動子1が回動して可動接点2が筒状空間26外に移動した限流動作後半において、可動接点2側のアーク噴き出し方向は固定接点6から消弧板31側へと向きを変える。また、アークは固定導体12a、12b、12cおよび可動子1を流れる電流により、消弧板31方向へ電磁力を受ける。これらのアーク駆動力により、固定子6側のアークスポットは、固定接点6からアークランナー79へと移動する。従って、固定接点6および筒状絶縁物25の消耗が抑えられ、繰返し使用可能な耐久性に優れた限流装置が得られる。
【0194】
さらに、図55に示すように、アークがアークランナー79に転流することによりアークが消弧板31により強く触れ、アークの熱が消弧板31の蒸発潜熱により奪われアーク温度が低下するので、遮断動作後半の筐体内圧上昇を低減できる。一般に配線用遮断器で用いられるモールド材の衝撃応力に対する機械強度は、静的応力に対する機械強度より大きい。従って、遮断動作後半における筐体内圧の低下は、モールド材で作成された筐体の割れを防止する効果がある。
【0195】
前述のように、アークランナー79に固定接点6側のアークスポットを転流させることにより固定接点6の消耗を低減できるが、アークランナー79にアークが転流した瞬間に固定接点6近傍のアークが筒状空間26外へと移動し、筒状空間26の高圧雰囲気にて高められていたアーク電圧が低下する。このアーク電圧の低下が電流ピーク以前に生じると、電流ピークが大幅に増大し、限流性能が大幅に低下する。また、たとえ上記アーク電圧の低下が電流ピーク以後に生じても、限流動作後半の電流の減少速度が低下して遮断時間が長くなり、通過エネルギーが大きくなることがある。このような問題を解決したのが、次の実施の形態25である。
実施の形態25.
【0196】
本発明の実施の形態25を、図56に示す。図56に示す実施の形態25では、アークランナー79の周りの絶縁カバー28bを筒状にして、アークランナー筒状空間26aを形成している。このようにすると、可動子1が回動して可動接点2が筒状空間26から出ても、すぐには固定接点側アークスポットがアークランナー79へと転流せず、筒状空間26内での高圧雰囲気を利用したアーク電圧上昇を有効に利用でき、電流ピークを小さく抑えることができる。また、アークがアークランナー79に転流した後も、アークランナー79が筒状の絶縁カバー28bに囲まれたアークランナー筒状空間26内にあるため、アーク電圧が低下することがなく、遮断時間を短縮でき、通過エネルギーの低減につながる。
実施の形態26.
【0197】
この発明では、例えば図50に示すように、筒状絶縁物25内で開極初期にアークを発生させるために可動子1の先端部はほぼL字状の形状になされている。そのため、可動子1側のアークスポットは可動接点2から可動子1の消弧板側の端面に移動し難いので、遮断動作後半になっても可動子側アーク噴き出し方向が消弧板方向へ向かず、アークが消弧板31に触れにくい。よって、消弧板31のアーク冷却効果を有効に利用できず、限流動作後半において、アーク電圧上昇に結びつかない不必要な筺体内圧上昇をまねく場合がある。
【0198】
そこで、本実施の形態26では、図57に示すように、一端が接続導体17に電気的に接続され、他端が消弧板31側へと延びる、可動子1とほぼ同電位の、転流電極75を可動子1の背後に設け、可動接点2側のアークスポットが転流電極75に転流して消弧板31方向へと移動するように構成している。また、上述の実施の形態と同様に、固定子5側もアークスポットがアークランナーにより消弧板31側へと転流する構成としており、アークは消弧板31により確実に分断、冷却される。従って、限流動作後半における不必要な筺体内圧上昇を防止できる。
実施の形態27.
【0199】
前述のように、この発明では、可動子先端部はほぼL字状の形状となっているため、可動子1側のアークスポットは可動子1の消弧板側の端面に移動し難い。従って、可動子側のアークスポット近傍の電流は、可動接点2に集中し、可動接点2の消耗が大きくなりやすい。そこで、本実施の形態では、図58に示すように、転流電極75aに開成状態の可動子1の先端部が入り込むスリット94を設け、図56に示す棒状転流電極75と比較して、可動接点側アークスポットを限流動作中の比較的早い時期に確実に転流電極75aに転流させる構成としている。
【0200】
転流電極75aに転流したアークは、消弧板31の吸引作用と固定子5および転流電極75aを流れる電流による電磁駆動力により転流電極75a先端部へと駆動されてアーク長が急速に伸び、アーク電圧が上昇する。このような比較的早い時点での可動子1から転流電極75aへの転流により、可動接点2の損耗は実施の形態25のものより大幅に低減でき、限流装置の耐久性が向上する。
実施の形態28.
【0201】
以下、この発明の実施の形態28を図について説明する。図59は、実施の形態28に係る閉成状態の回路遮断器の主要部を示す斜視図であり、内部構成が分かるように筒状絶縁物108と絶縁カバー109の一部を切り取っている。図60は、図59に示すものの外観を示す斜視図である。図59において、101は、可動接点102と可動接点102が固着されている可動アーム垂直部103と可動アーム垂直部103とほぼ直交する可動アーム水平部104とにより構成されるほぼL字状の可動子である。この可動子101は、固定接点106と固定導体107により構成される固定子105と1対をなしており、可動子101はバネ111により固定子105方向に付勢されている。また、可動子101は、可動子回転軸113を中心に回転自在に支持されており、摺動接触子110および接続導体114を介して端子115と電気的に接続されている。一方、固定子105は筒状絶縁物108と絶縁カバー109とによって固定接点106近傍と端子部116との接続部近傍を除いて覆われている。図中に示された複数の矢印は、通電時の電流経路を示しており、可動アーム水平部104の電流と固定導体107の電流は、ほぼ平行かつ反対方向になるよう構成されている。
【0202】
ここで、先述の実施の形態1の説明文中にて図2,図3および図4を用いて示したように、アーク式限流機能を有する回路遮断器内で限流遮断時に発生する比較的短ギャップの大電流アークの高圧力下でのアーク電圧上昇条件について述べる。図61に示す実験装置にて、数cm以下の短ギャップ大電流アークの雰囲気圧Pを変化させてアーク電圧変化を測定した結果を図4のグラフに示す。図61の実験装置では、丸棒状の電極400を対向させてアークを発生させているので、電極間距離はアーク長Lと等しくなる。図62(a)より明らかなように、アーク電流値が比較的小さい場合、アーク雰囲気圧Pが高くなるとアーク電圧は殆どのアーク長Lにおいて高くなる。一方、図62(b)に示すように、アーク電流値が比較的大きい場合、アーク雰囲気圧Pが高くなってもアーク電圧はアーク長Lが比較的長い場合を除いて殆ど変化しない。
【0203】
図62に示した、雰囲気圧Pが高い場合のアーク電圧V(P=高)と雰囲気圧Pが低い場合のアーク電圧V(P=低)との比Rをとり、グラフ化すると図63に示すようになる。図63より明らかなように、アーク電流値が比較的小さい場合のアーク電圧上昇率Rは、アーク長が長いほど高い。一方、アーク電流値が比較的大きい場合のアーク電圧上昇率Rは、アーク長がある値以上にならないと殆ど増加しないことが分かる。以上より、短ギャップ大電流アークにおいて、アーク雰囲気圧を上げることによりアーク電圧を効果的に上げるための条件とは、(a)アーク電流が比較的小さい、(b)アーク長が長い、という2つを同時に満足することである。
【0204】
短絡等の事故が発生した場合、事故発生直後から回路電流は急激に増大する。従って、上記2つの条件を満たして高い雰囲気圧にてアーク電圧を上げて事故電流を限流するには、(1)少なくともアーク発生直後(事故発生直後)に高圧雰囲気をつくる、(2)アーク電流が比較的小さいとき(事故発生直後)にアーク長を長くする、必要がある。事故電流が増大した後では、雰囲気圧を上げてもあまり限流性能は向上しない。さらに、事故電流が増大した後の高圧雰囲気は、限流性能向上にあまり寄与しないだけでなく、筺体等の破損の原因となる。
【0205】
図59に示した回路遮断器では、短絡事故等の発生により通過電流が急激に増大すると、接点接触面での電流集中による電磁反発力F1と前述の可動アーム水平部104の電流と固定導体7のほぼ平行かつ反対方向の電流による電磁反発力F2により、バネ111による接圧に抗して接点が開極し、接点間にアークAが発生する。この状態を図64に示す。アークの発生に伴い、上記接点接触面での電流集中による電磁反発力F1は消滅するが、可動アーム水平部104の電流と固定導体107のほぼ平行かつ反対方向の電流による電磁反発力F2は引き続き可動子101を開極方向へと回転させる。
【0206】
また、図65に示すように、アーク発生に伴い、アークの熱により筒状絶縁物108の内面から大量の蒸気が発生し、筒状絶縁物8に囲まれた筒状空間118に高圧雰囲気が発生する。この筒状空間118の高圧の発生により、可動子101は圧力差による開極力Fpを受ける。この圧力差による開極力Fpと上記電磁力F2により可動子101が高速に回転し、接点が高速開極する。この高速開極によりアーク長が高圧雰囲気中にて急激に伸びるのでアーク電圧が急速に立ち上がり、事故電流がピーク値を迎える。
【0207】
上記のように本実施の形態では、筒状絶縁物108を用いた高圧雰囲気と高速開極手段を併用しているが、優れた限流性能を得るためには上記併用が不可欠である。図66には、(a)高速開極手段を用いない場合と、(b)高速開極手段を用いた場合の筒状絶縁物108の効果を示している。同図において、tsは事故発生時刻、t0は接点開極時刻、V0は接点間の電極降下電圧、破線は電源電圧波形である。図66(a)は、高速開極手段を用いない場合であり、アーク電圧が電源電圧に追いついた時刻t1(筒状絶縁物有のとき)、t2(筒状絶縁物なしのとき)に電流ピークIp1、Ip2をそれぞれむかえる。高速開極手段を用いないと、事故電流の立上りに比べアーク長さの立上りが遅いので、筒状絶縁物108にて高圧雰囲気を作り出しても、アーク長が短くアーク電圧が上昇する上記条件を満たすことが難しい。
【0208】
従って、図66(a)では、筒状絶縁物8を用いても、電流ピークIpの改善の度合い△Ip=Ip2−Ip1は小さい。一方、図66(b)に示す高速開極手段を用いた場合では、事故電流が大きくなる前にアーク長が十分長くなるので、高圧雰囲気にてアーク電圧が上昇する上記条件を満たすことができる。アーク電圧が電源電圧に追いついた時刻t1’(筒状絶縁物有のとき)、t2’(筒状絶縁物なしのとき)の電流ピークIpをそれぞれIp1’、Ip2’とすると、電流ピークIpの改善の度合い△Ip’=Ip2’−Ip1’は、高速開極手段を用いなかった場合の電流ピークIpの改善の度合い△Ipより劇的に大きいことが分かる。
【0209】
ところで、この発明では、可動子1の開極直後にアーク雰囲気圧を高圧にするために固定接点105を取り囲むように筒状絶縁物108を配置している。接点間に発生するアークの熱により固定接点近傍に配置した絶縁物から大量の蒸気を発生させる配置は、例えば、特開平7−22061号公報の図16、図17に示されている。しかし、前述の先行例では、固定接点近傍に配置される絶縁物は、閉成状態の可動子を左右から挟み込むほぼコの字状の形状をしており、絶縁物から発生した蒸気は即座に閉成状態の可動子先端側および可動子回転中心側へと流れ出し、アーク雰囲気を十分高圧にすることはできない。アーク電圧を急激に立上げるには、開極初期のアークを固定接点と可動接点と筒状絶縁物に囲まれる空間に閉じ込める必要があり、アーク電圧立ちあがり速度向上の大幅な向上には、固定接点を囲む絶縁物形状を筒状にすることが不可欠である。
【0210】
図64の状態からさらに可動子101が回転し、最大開極位置に達した状態を図67に示す。この状態では既に電流ピークを過ぎており、十分な大きさのアーク電圧を発生しているので、事故電流は零点をむかえる。このとき、可動接点102は筒状絶縁物108に囲まれた狭い空間外にあるので、可動接点102近傍の電極金属蒸気を通常の手段(例えば、絶縁物からの蒸気流、グリッド等)にて容易に拡散もしくは冷却させることができ、電極間の十分な絶縁回復により電流を遮断することは容易である。また、可動子101がブレても筒状絶縁物108内面に触れることがないので、沿面絶縁破壊による再点弧が生じることもない。この最大開極位置近傍にて可動子101を拘束し再閉極を妨げる手段(例えば、ラッチ機構、リンク機構等)を付加すれば、限流性能に優れた回路遮断器を得ることができる。
【0211】
また、本実施の形態では、図147および図148に示した従来例と異なり、可動子の開極を助けるための励磁コイルを設ける必要がないので、低インピーダンスの限流性能に優れた限流性能が得られ、大きな通電容量が求められる回路への適用が可能となる。
【0212】
さらに、可動子101を回転させて開極するため、可動接点102が開閉する方向の必要寸法は、固定導体107の厚さ、固定接点106の厚さ、可動子101が移動する空間、可動接点102の厚さ、および、可動アーム垂直部103の和となり、従来の直動型限流器より上記方向の必要寸法を小さくすることができる。従って、外形寸法に制限がある場合でも、高圧力を効果的にアーク電圧上昇に結び付けるのに必要な開極距離を容易に確保できる。
実施の形態29.
【0213】
この発明の実施の形態29を図68に示す。図68は、筒状絶縁物108と固定子105の固定接点106側の端部を示す部分断面斜視図であり、筒状絶縁物108の筒内面に図68(a)では縦方向の、図68(b)では横方向のひだをそれぞれ設けている。このように筒状空間内面のアークに触れる面積を増やすと、遮断動作時に筒状絶縁物108から発生する蒸気量が増え、より高い高圧力雰囲気を素早く形成できるので限流性能が向上する。
実施の形態30.
【0214】
この発明の実施の形態30を図69に示す。図69は、筒状絶縁物108と固定子105の固定接点106側の端部を示す部分断面図であり、筒状絶縁物108は、筒状空間118内面を形成する絶縁物108aとその周りの絶縁物108bとにより構成される。絶縁物108aは、アークに暴露されると即座に大量の蒸気を発生する性質を有する材料、例えばガラス繊維などの強化材を少量もしくはまったく含まない樹脂材にて成形され、絶縁物108bは、機械的強度に優れた強化樹脂もしくはセラミックにて成形されている。このような構成とすると、筒状空間118内で発生する高圧力に機械的に耐えられない材料を筒状空間内面の材料として用いることができるので、機械的特性に関係なく大量の蒸気を発生する物質を適用でき、限流性能が向上する。
実施の形態31.
【0215】
この発明の実施の形態31を図70に示す。図70は、筒状絶縁物108と固定子105の固定接点106側の端部と可動子101の可動接点102側先端部を示す部分断面図であり、図中、可動子101の回転中心より最も遠い部位が開極動作により描く軌跡を破線にて表している。筒状絶縁物108の可動子101先端部に対向する面は、この破線に一定の間隙を持つように形成される。一般に、可動子101の回転中心は接点接触面より上方に設けられるので、可動子101の軌跡は固定接点6の位置より可動子回転中心の反対側へと膨らむ。そのため、図59に示すように、筒状絶縁物108の可動子先端部に対向する面を垂直とすると、上記面を固定接点106より離れた位置に配置する必要があり筒状絶縁物108に囲まれる容積が大きくなる。そのため、十分高い高圧雰囲気を発生するのに時間がかかる場合がある。
【0216】
そこで、可動子101先端部の軌跡に沿って筒状絶縁物108の内面を形成すれば、筒状絶縁物108に囲まれる容積を小さくでき、限流性能が向上する。また、図70では、可動子101先端部の軌跡に沿って筒状絶縁物108の内面を形成しているが、このように弧状の面を形成しなくても、図71に示すように、筒状空間118の固定接点側の幅D2より反対側の幅D1を大きくすれば、図59に示す筒状絶縁物108より筒状空間118内の容積を低減でき、限流性能を向上させることができる。以上のように、筒状空間内の容積をできるだけ小さくして限流性能を向上させるには、筒状空間の固定接点側の筒断面積より反対側の筒断面積を大きくする必要があることがわかる。
実施の形態32.
【0217】
この発明の実施の形態32を図72に示す。図72は、筒状絶縁物108と固定子105の固定接点106側の端部と可動子101の可動接点102側先端部を示す部分断面図であり、固定子105の端部の固定接点106の周りを筒状絶縁物108の筒状空間118内面側に張出した部位108cにて覆っている。筒状絶縁物108に囲まれる筒状空間118は、一般に、可動子1の開閉動作時の軌跡やブレを考慮して固定接点接触面より大きな断面を有する。そのため、上記部位108cを設けない場合、可動子101側から固定接点106接触面をみると、固定接点106の周りに固定導体107の一部が露出して見える。遮断動作時にアークが発生すると、固定接点側のアークスポットはこの露出部まで広がる。一方、部位108cがあると、固定子側のアークスポットは固定接点106の面積に制限を受け、部位108cがない場合より固定接点近傍のアーク径が絞られアーク電圧が上昇する。また、部位108cから発生する絶縁物蒸気の分だけ蒸気発生量力が増え、十分な高圧雰囲気を素早く形成できるので、限流性能が向上する。
実施の形態33.
【0218】
この発明の実施の形態33を図73に示す。図73は、筒状絶縁物108と固定子105の固定接点106側の端部と可動子101の可動接点102側先端部を示す部分断面図であり、筒状空間118を囲む筒状絶縁物108の壁の内、可動子回転中心と反対側の壁高さを可動子回転中心側の壁高さより高くしている。遮断動作時に接点間に発生するアークには、固定導体107および可動アーム水平部104を流れる電流により、可動子回転中心と反対側に電磁駆動力が発生する。従って、筒状空間118内にあるアークは上記可動子回転中心と反対側の壁により強く触れる。また、可動子101を高速開極するためには可動子101の慣性モーメントを小さくした方が有利であるが、筒状絶縁物108の筒高さにより決まる可動アーム垂直部103が長くなると、可動子慣性モーメントは増加する。そこで、図73に示すように、可動子回転中心と反対側の壁高さを可動子回転中心側の壁高さより高くすることにより、可動アーム垂直部103の長さを短くして慣性モーメントを低減し、かつ、十分な筒状絶縁物蒸気を発生さて十分な高圧雰囲気を作ることができ、限流性能がより向上する。
実施の形態34.
【0219】
次に、この発明の実施の形態34を図74について説明する。図74は、配線用遮断器のユニット化された回路遮断器主要部を示す斜視図であり、その消弧装置構成部品は消弧ユニット筺体本体123と消弧ユニット筺体蓋124により収納され、全体で消弧ユニット125を構成する。なお、119は消弧板、120は複数の消弧板119を保持する消弧側板、126は排気口である。図75に示すように、複数の上記消弧ユニット125をクロスバー127により連結し、クロスバー127を介して接点を開閉させる機構部128、異常電流を検出し機構部128を動作させるリレー部129、および機構部128を手動で動作させるハンドル132を付加し、これらをベース130とカバー131にて収納すれば配線用遮断器となる。このように各構成部品をユニット化し、これらを組み合わせて配線用遮断器を構成するようにすれば、組立が簡単となりコスト低減が可能となる。
【0220】
前述のように消弧装置を消弧ユニット筺体本体123およびユニット筺体蓋124内に収納することにより、遮断動作時の配線用遮断器内の圧力上昇をベース130およびカバー131で直接受けることがなくなる。上記消弧ユニット筺体の受圧面積は、ベース130およびカバー131の受圧面積より小さい。そのため、たとえベース130およびカバー131と同一材料、同一肉厚の消弧ユニット筺体を用いても、より大きな内圧上昇に耐えることができ、アーク雰囲気圧を上げてアーク電圧を上昇させる限流手法を用いるのに適している。また、従来、遮断動作時の内圧上昇に耐えるため、機械的強度の大きな高価なモールド材にてベースおよびカバーを構成していたが、消弧ユニット筺体を用いることにより、圧力を受ける筺体の材料の量を減らすことができコスト低減が可能となる。
【0221】
図74に示した消弧ユニット125の内部構成を示すため、構成部品の一部の断面を取った開成状態の斜視図を図76に示す。また、図77に閉成状態における通電部品以外を省略した斜視図を、図78に図77の断面Cにおける通電部品の断面図をそれぞれ示す。また、図77に、可動アーム水平部104、固定導体107、および導体121における電流方向を矢印にて示している。
【0222】
本実施の形態では、通常の開閉動作はハンドル132を手動にて操作することにより行う。ハンドル132の操作により、機構部128、クロスバー127を介してロータ122が回転し、可動子101が開閉動作する。また、過負荷電流遮断時には、リレー部129が異常電流を検出し、リレー部129よりトリップ信号が機構部128へ伝わり、機構部128が動作してロータ122が回転し可動子101が引き上げられ接点が開極する。しかし、短絡事故等の大電流遮断時には、ロータ122の回転に先立ち、接点接触部への電流集中による電磁反発力F1と、図78に示す可動アーム水平部4の電流と固定導体107のほぼ平行かつ反対方向の電流による電磁反発力F2と可動アーム水平部104の電流と導体121のほぼ平行かつ反対方向の電流による電磁反発力F3の開極方向の分力(F3・cosθ)の和Ftとにより、バネ111による接圧に抗して接点が開極し、接点間にアークが発生する。アークの発生に伴い、上記接点接触面での電流集中による電磁反発力F1は消滅するが、電磁反発力F2および電磁反発力F3の分力は引き続き可動子101を開極方向へと回転させる。また、アーク発生に伴い、アークの熱により筒状絶縁物108の内面から大量の蒸気が発生し、可動子101を押し上げる開極力Fpが生じる。これらの力により、可動子101が高速に回転し、接点が高速開極する。この高速開極によりアーク長が高圧雰囲気中にて急激に伸びるのでアーク電圧が急速に立ち上がり、事故電流がピーク値をむかえる。
【0223】
電流ピーク後、可動子101はさらに回転し接点間距離が増大する。この接点間距離の増大により、アーク電圧がさらに大きくなり事故電流は急速に零へと向かう。事故電流が小さく絞られると、アークは鉄製の消弧板119に引き込まれ、アークが分断、冷却され消弧される。このとき可動接点102は筒状絶縁物108に囲まれる筒状空間外にあり、接点間の絶縁が十分回復しているので、電極間に電源電圧が印加きれても電流が再び流れることはなく、遮断動作が完了する。上記電流ピーク以降の長い接点間距離による高いアーク電圧により遮断時間は大幅に短くなる。従って、限流性能を示す指標の一つである通過エネルギーI2 t(電流の二乗の時間積分)が小さくなる。
【0224】
ところで、本実施の形態では、排気口126が接点102、106間からみて消弧板119側のみに設けられている。このような配置をとると、電流遮断動作時において、アーク電流の増加に伴い筺体内のアークよりロータ122側の空間に圧力が蓄積される。アーク電流がピークをむかえアーク電流値が減少していくと、上記蓄積された圧力により電極間ではロータ122側から排気口126側へと気流が生じ、アークを消弧板119へと引き伸ばす。さらに、電流零点近傍では、上記流れによる接点間の荷電粒子を吹き飛ばす作用で、接点間の絶縁回復が大幅に改善される。従って、高電圧の回路に用いても遮断失敗が起こり難い信頼性の高い回路遮断器を得ることができる。
【0225】
この蓄積圧による気流の絶縁回復作用は、電流遮断時の上記気流の流速が大きいほど大きい。流速を大きくするには、蓄積圧を上げるか流路断面を小さくすればよく、そのために排気口面積を小さくする必要がある。本実施の形態では、比較的面積の小さい排気口126を開成状態の可動接点101側に設けている。筒状絶縁物108を用いて限流性能を向上させる場合、固定接点106側アークスポット近傍のアークは筒状絶縁物8にて拘束されるので、上記ロータ側空間の蓄積圧による気流にてアークを構成する金属粒子を吹き飛ばすことはできない。一方、可動子側アークスポット近傍のアークは、電流遮断時には筒状絶縁物108外に位置しており、上記気流の作用を受けやすい。よって、比較的面積の小さい排気口126を開成状態の可動接点側に設けることにより、効果的に電流遮断時の電極間の絶縁回復を確保できる。
実施の形態35.
【0226】
図77、図78に示した導体配置では、固定導体107は、可動子101が回転する軌跡を含む面上に配置されているが、端子部115と摺動接触子110を電気的に接続する導体121は、上記軌跡を含む面上からずれた位置に配置される。従って、可動子101には接点開離方向に直行するブレの力(F3・sinθ)が働き、可動子101の開極速度を低下させる要因となる。例えば、この発明では、閉成状態において筒状絶縁物108内に可動アーム垂直部103が挿入されるので、上記ブレの力により可動子101が左右にブレた場合、可動子101と筒状絶縁物108が接触する可能性が大きい。このような接触が生じれば、開極速度は大幅に低下する。また、遮断動作時に上記ブレの力により可動子101もしくは可動子回転軸113等が大きく変形すれば、再投入不能となる。
【0227】
このような問題を解決した実施の形態を、図79、図80に示す。なお、図80は、図79中の断面Cにおける断面図である。図79、図80に示すように、固定導体107と導体121を上記軌跡を含む面に対して左右対称に配置すれば、可動アーム水平部104と固定導体107との電磁反発力のブレ成分(F2・sinθ)と、可動アーム水平部104と導体121との電磁反発力のブレ成分(F3・sinθ)とが互いに打ち消しあい、導体電流間の電磁反発力は、開極方向のみの力(Ft=(F2+F3)・cosθ)となる。よって、可動子101のブレを防ぎ、開閉動作の信頼性を高めることができる。
実施の形態36.
【0228】
図81、図82に実施の形態36を示す。なお、図82は、図81中の断面Cにおける断面図である。この実施の形態では、固定導体107と導体121の中心線を上記軌跡を含む面上に閉成状態の可動アーム水平部104とほぼ平行に配置しており、可動アーム104と固定導体107とにそれぞれ流れる反対方向の電流による電磁反発力F2、および導体121と固定導体107とにそれぞれ流れる反対方向の電流による電磁反発力F3のどちらにも上記ブレの力成分が生じない。
【0229】
ところで、可動子101に電磁反発力を発生させる電流が流れる固定導体107と導体121の配置は、実施の形態34、実施の形態35、および実施の形態36でそれぞれ異なる。一般に、可動アーム水平部104と固定導体107もしくは導体121との距離が小さいほど、電磁反発力が大きくなり接点開極速度を大きくすることができる。しかし、図78、図80、図82に示した可動アーム水平部104と固定導体107の上下方向の距離L1は、主に筒状絶縁物108の筒高さにより決定され、固定導体107と導体121との距離L2は、両導体間に必要な絶縁距離と導体の断面形状により決定される。さらにこれら寸法は、配線用遮断器筺体強度、適用回路電圧、定格通電電流等の条件により決定される。例えば、筒状絶縁物8の高さを高くするとアークに触れる絶縁物の面積が増大し、消弧ユニット筺体内圧が上昇するので、上記筺体強度により筒状絶縁物8が制限を受ける。また、絶縁距離は回路電圧に、導体断面積は通電容量によりそれぞれ制限を受ける。よって、配線用遮断器の機種により、最も大きな電磁開極力を得られる導体配置が異なる。
【0230】
図83には、実施の形態34、実施の形態35、および実施の形態36の電磁反発力を発生させる導体を簡略化して表している。同図中、Z軸方向が閉成状態から接点が開離する方向、Z軸上の点P0(Z=L1)が閉成状態の可動アーム水平部104の電流中心位置、Z=0が固定導体7の上下方向の中心位置、ZX平面が可動子101が描く軌跡を含む面にそれぞれ相当する。図83(a)が実施の形態34に、図83(b)が実施の形態35に、図83(c)が実施の形態36にそれぞれ相当しており、固定導体107および導体121を流れる電流により生じる点P0(Z=L1)における磁場の内、可動アーム水平部104に開極方向の電磁力を発生させる磁場成分の磁束密度をByとしている。固定導体107および導体121の電路が十分長く、固定導体107および導体121を流れる電流を導体中心線上の線電流で近似すると、上記磁束密度Byはそれぞれ図83に示された式で表せる。
【0231】
上記式より、電流Iおよび閉成状態の可動アーム水平部高さ位置L1が(a)〜(c)で等しい場合に、固定導体107と導体121間距離L2を変化させたときの上記磁束密度Byの変化を計算し、図84にプロットしている。同図より、L2<L1の領域では(b)(a)(c)の順に、L1<L2<(√5−1)×L1の領域では(b)(c)(a)の順に、(√5−1)×L1<L2<√2×L1の領域では(c)(b)(a)の順に、L2>√2×L1の領域では(c)(a)(b)の順に磁束密度Byが大きくなることが分かる。以上より、筺体の強度やサイズの制限がなく筒状絶縁物の筒高さを十分にとれる場合(L1が十分大きい場合)、実施の形態36のように固定導体107と導体121を上下に配置するより、実施の形態34もしくは実施の形態35のように左右に導体を配置する方がより強い開極力を得られるといえる。一方、筺体強度の制限等により上記筒高さが低い場合は、実施の形態36のように上下に導体を配置する方がより強い開極力を得られるといえる。
【0232】
ところで、図85、図86、図87にそれぞれ示すように、L2は、実施の形態34、実施の形態35では絶縁距離aと導体幅bの和に、実施の形態9では絶縁距離aと導体厚さcの和となる。一般に、端子部15と導体21をプレス加工等にて一体成形する場合、(導体幅b)>(導体厚さc)となり、実施の形態36のL2より実施の形態34および実施の形態35のL2の方が大きくなる。前述の図83に示した式より、実施の形態34より実施の形態36の電磁開極力を発生させる磁場成分Byが大きくなる条件を求めると、c<((a+b)2 /L1)−aとなる。同様に、実施の形態36が実施の形態35より大きなByを発生させる条件はc<((2×L1×(a+b)2 /((a+b)2 −4×L12 ))−2となる。導体断面積s=b×cが実施の形態34と実施の形態36、もしくは、実施の形態35と実施の形態36とで等しい場合、上記2つの式は、導体断面横s、絶縁距離a、閉成状態の可動アーム水平部と固定導体の高さ方向の距離L1、材料の板厚cにて表すことができる。
【0233】
以上より、cが十分小さい場合(例えば、非常に薄い板厚の材料をプレス加工して導体を作る場合)、実施の形態36のように固定導体107と導体121を上下に配置する方が、実施の形態34もしくは実施の形態35のように左右に導体を配置するより強い開極力を得られるといえる。一方、比較的厚い板厚cを用いる場合は、実施の形態34もしくは実施の形態35のように左右に導体を配置する方がより強い開極力を得られるといえる。
実施の形態37.
【0234】
図88は実施の形態37を示す部分断面斜視図である。同図に示す遮断器は、図76に示したものと転流電極137を除き同じ構成となっている。転流電極137は、摺動接触子110と電気的に接続されており、摺動接触子110から排気口126側へと延びており、途中、開成状態の可動子101が入り込むスリット部を有している。転流電極137の排気口126側端部は消弧板119の上部に位置し、上記スリットの排気口側端部は、開成状態の可動子101の可動接点側端部と対向するように設けられている。
【0235】
図76に示した実施の形態では、筒状絶縁物108内で開極初期にアークを発生させるために可動子101はほぼL字状の形状となっている。そのため、可動子側のアークスポットは可動子101の消弧板側の端面に移動し難く、遮断動作後半になっても可動子側アークが噴出し方向が消弧板方向へ向かず、アークが消弧板119に触れにくい。よって、消弧板119のアーク冷却効果を有効に利用できず、アークの熱により消弧ユニット筺体内圧が高くなり、筺体割れが発生しやすい。そこで、図88に示すように、転流電極137を配置すると、可動子101がフル開極した後の遮断動作後半において、可動子側アークスポットが可動子101から転流電極137に転流し排気口126側へと移動するので、アークを効果的に消弧板119に触れさせることができる。よって、アークは消弧板119により冷却され温度が低下するので、消弧ユニット筺体内圧が低下する。
実施の形態38.
【0236】
次に、この発明の実施の形態38を図89について説明する。図89は、本実施の形態の回路遮断器の閉成状態の導体配置と開極電磁力を強化する磁性体のコア133を示す斜視図であり、筒状絶縁物、接圧発生手段、消弧装置、筺体等は省略している。図示していないが、筒状絶縁物108は、閉成状態の固定接点106、可動接点102、および可動アーム垂直部103を囲むように配置され、事故発生時に導体を流れる電流間の電磁力により開極し、接点間に発生する高圧力雰囲気中のアークの電圧により限流を行うことは実施の形態34と同様である。図90は、可動子101が回転する面に垂直、かつ、固定導体107が伸びる方向に垂直な面にて、コア133および可動アーム水平部104、導体107、121の断面を示す図である。図89、図90に示すように、コア133は、導体121と直交する面方向に積層され、導体121と固定導体107とを囲むように配置され、かつ、コア133の突起部134の間に閉成状態の可動アーム水平部104が挟まれるよう構成されている。
【0237】
上記構成を用いると、導体121と固定導体107を流れる電流が作る磁束を閉成状態の可動アーム水平部104に集中させることができるので、事故電流遮断動作初期の電磁開極力が強化され、開極速度が向上する。そのため、筒状絶縁物蒸気によって形成された高圧雰囲気をアーク電圧の上昇に効果的に結びつけることができ、限流性能が改善される。また、図89に示すように、薄板を積層してコア133を形成すると、コア133に発生する渦電流を低減することができ、事故電流の立上りが急激な遮断動作初期においてもコア133により磁束を可動アーム水平部104に効率的に集中させることができる。
実施の形態39.
【0238】
ところで、図90に示したコア形状の場合、開極動作により可動子101が回転して可動アームがコア133に囲まれる空間外に移動すると、固定導体107および導体121を流れる電流が作る磁束をコア133が遮蔽してしまうので、可動子101に働く開極電磁力はコア133を用いることにより減少してしまう。
【0239】
そこで、本実施の形態では、図91に示すように、可動子101が回転した後も可動アームがコア133に囲まれる空間内に位置するように高さ寸法を高くしたコの字状のコアを用いると、可動子回転後の可動子101の電磁開極力も強化できる。このように、可動子101がフル開極状態となっても比較的大きな電磁開極力が働くようにすれば、可動子101のフル開極位置を決めるストッパ(図示せず)に可動子101が跳ね返される距離を小さくでき、上記跳返りに起因するアーク電圧の低下を抑えることができる。なお、図91では上に開いたコの字状コアを示したが、図92に示した下に開いたコの字状コア、もしくは、図93に示した全周を囲むコアにおいても、同様な効果が得られる。
実施の形態40.
【0240】
また、図94に示すように、消弧ユニット筺体本体123、消弧ユニット筺体蓋124を挟み込むように、例えば図92の形状のコア133を配置すれば、遮断時の筺体内圧上昇による筺体にかかる力をコア133にて受けることができ、筺体の破損を防止できる。また、消弧ユニット筺体本体123と消弧ユニット筺体蓋124との結合をコア133にて行うことできるので、ネジ等の接続部品を省略することが可能となる。また、筺体によりコア内面の絶縁を兼ねることができ、コア133へのアークタッチを防止できる。なお、図94では、消弧ユニット上部側に図92に示すコアを配置したが、図90、図91、図93に示す形状のコアを消弧ユニット下部側からまたは全周に筺体を挟み込むように配置しても、上記筺体破損防止、上記接続部品省略、上記コア内面の絶縁の効果が同様に得られる。
実施の形態41.
【0241】
実施の形態28、実施の形態34に示した筒状絶縁物108内の筒状空間118は一方が固定子により塞がれている。そのため、事故電流遮断後、上記空間に電極金属蒸気等の高温のガスおよび溶融物が残りやすい。これらは、筒状空間118の絶縁回復を妨げて再点弧の原因となる。さらに固定接点表面に上記溶融物が付着すると、遮断後の再通電時の異常温度上昇の原因となる。
【0242】
図95は、本実施の形態41の筒状絶縁物108の断面、閉成状態の可動子101の可動接点側の一部、および固定子5の固定接点側の一部を示す図である。筒状絶縁物108には、筒状空間118とつながる蓄圧空間135を設けている。図95に示すように、蓄圧空間135を筒状絶縁物108の固定接点106側に設ければ、大電流アーク発生中に蓄圧空間135に蓄えられた圧力により、アーク消滅前から電流遮断後にかけて蓄圧空間135から筒状空間118を通って筒状絶縁物108外へ放出される流れが生じる。この様子を示したのが、図96、図97である。図96は、遮断動作時に発生する大電流アークにより蓄圧空間135に圧力が蓄積されている状態を示している。図97は、電流遮断直前、すなわちアーク消滅直前の状態を示しており、蓄圧空間135から筒状空間118を通って外部へ放出される流れを矢印で示している。この矢印の流れはノズル状となっている筒状空間118で最も速くなり、この高速の流れでアークの熱を奪い去りアークの消滅を促進する。さらに、この流れにより、上記高温のガスおよび溶融物を外部へと排出するので、筒状空間118の絶縁が急速に回復されるとともに、固定接点表面への溶融物付着を防止できる。
実施の形態42.
【0243】
図98に実施の形態41の固定子105の斜視図を示す。同図では、固定接点106の周りの固定導体107の部位を絶縁物136にて覆っている。このように固定接点の周りに絶縁物136を配置すると大電流アーク発生時に絶縁物136より蒸気が発生し蓄圧空間135に蓄積される圧力が高くなるので、電流遮断時の筒状空間118を通過する流れが強くなり、上記アーク消滅作用、上記絶縁回復作用、および上記固定接点表面への溶融物付着を防止する作用が増す。
実施の形態43.
【0244】
図99に、実施の形態43の固定子105部分の断面図を示す。同図では、図95の実施の形態と異なり、蓄圧空間135を固定子105の固定接点106と反対側の面側に設けず、固定接点106の周りに設けている。このような配置にしても、図95の実施の形態と同様な効果が得られ、かつ、組立が簡単となる。
実施の形態44.
【0245】
実施の形態28、実施の形態34に示した固定子にはアークランナー等の固定子側アークスポットが移動する部品が設けられていないので、固定子側アークスポットは常に固定接点上に存在する。そのため、遮断動作後半においてもアークが消弧板に触れにくく、消弧板のアーク冷却効果を有効に利用できず、アークの熱により消弧ユニット筺体内圧が高くなり、筺体割れが発生しやすい。
【0246】
そこで、本実施の形態44では、図100に示すように、固定子5の固定接点側端部と電気的に接続されたアークランナー38を設け、アークランナー38の固定子5との接続端部と反対の先端部38aを固定接点6より消弧板19側の位置に筒状絶縁物8より露出するよう構成している。このように、アークランナー38を設けると、遮断動作時の可動接点2が筒状絶縁物8に囲まれる空間18外に回転した後に、図42に示すように、固定子側アークスポットがアークランナー38の先端部38aに移動するので、アークを効果的に消弧板19に触れさせることができる。これにより、アークは消弧板19により冷却され温度が低下し消弧ユニット筺体内圧上昇が抑えられる。この内圧抑制により筺体強度を下げることができ、コスト低減が可能となる。
実施の形態45.
【0247】
図100に示した実施の形態では、筒状空間118とアークランナー先端部138aとの間の筒状絶縁物108の高さが、アークランナーの先端部138aより低く構成されている。このような構成では、可動接点102が筒状空間118から出た瞬間に、固定接点106と可動接点102間で流れていた電流の一部がアークランナー先端138aと可動接点102間で流れ出す分流状態となり、アーク電圧が低下することがある。このアーク電圧の低下が電流ピーク以前に生じると、電流ピークが大幅に増大し、限流性能が大幅に低下する。また、上記分流状態から、アークランナー先端部138aと可動接点102間のみで電流が流れる転流状態となっても、固定子側アークスポットが絶縁物に囲まれた筒状空間118の外に移動するので、固定接点106と可動接点102間にアークがあるときよりアーク電圧が低下し、遮断時間が長くなり、通過エネルギーが大きくなる。
【0248】
そこで、本実施の形態45では、図101に示すように、アークランナー先端部138aを筒状絶縁物108の高さより低くし、アークランナー先端部138aの周りの絶縁物をすり鉢状になるよう構成している。このように構成すると、可動子101が回転して可動接点102が筒状空間118から出ても、すぐには分流状態とならず、高圧雰囲気を利用したアーク電圧上昇を有効に利用でき、電流ピークを小さく抑えることができる。また、アークがアークランナー138に転流した後も、アークランナー先端部138aがすり鉢状の絶縁物に囲まれたアークランナー筒状空間139内にあるため、アーク電圧が低下することがなく、遮断時間を短縮でき、通過エネルギーの低減につながる。
実施の形態46.
【0249】
図102に実施の形態46を示す。本実施の形態では、固定接点106が配置される筒状空間118とアークランナー先端部138aが配置されるすり鉢状のアークランナー筒状空間139を比較的断面の小さな管路140にて連通させている。このように構成すると、電流遮断時に筒状空間118内に発生するホットガスの一部が、管路140を通ってアークランナー先端部138aを囲むアークランナー筒状空間139に充満する。短絡電流等の大電流遮断時には、大量のホットガスが発生し消弧ユニット筺体内に充満するので、管路40を経て空間39に到達したホットガスの影響は顕著に現れない。よって、実施の形態18とほぼ同様の特性を示す。しかし、過負荷電流等の比較的小さな電流遮断時には、消弧ユニット筺体内に充満するほど大量のホットガスが発生しない。そのため、管路40を経てアークランナー筒状空間39に到達したホットガスにより、アークランナー先端部38a近辺は他の部分より導電性が高い状態となっており、管路40がない場合に比べアークのアークランナー38への転流が促進される。従って、遮断動作開始後の早い時期にアークがアークランナー38へと移り、消弧板19にて冷却、分断されるので、遮断時間が短くなるとともに固定接点6の損耗を低減できる。
実施の形態47.
【0250】
次に、この発明の実施の形態47を図103について説明する。図103は、本実施の形態の可動子1を示す斜視図であり、可動子1は、可動接点2、可動アーム垂直部3、可動アーム水平部4a、4b、4c、および可動子アーム部の固定接点側の面を覆う絶縁物41により構成され、ほぼ鈎型の形状となる。このように、可動子1をほぼ鈎型とすることにより、筒状絶縁物8を用いる場合においても、閉成状態の固定導体7と可動アーム水平部4cとの距離を近付けることができる。
【0251】
図105は、本実施の形態の閉成状態の可動子1、固定子5、および筒状絶縁物8を示す図であり、図中、電流の流れを矢印にて表している。同図より明らかなように、事故電流発生時に電磁開極力を発生する固定導体7と可動アーム水平部4cをそれぞれ流れる反対方向の電流が、例えば図1に示すL型可動子を用いる場合より一層近付き、電磁反発力が増大し、開極速度が向上する。
【0252】
しかし、図104に示すように、可動子1の回転角θが大きくなると、可動子1を鈎型にすることによりアークが可動アーム部に触れ、分流する可能性が高くなる。このようにアークが可動アームに触れると、可動アームが溶融して細くなり開閉に耐え得る十分な機械的強度を維持できなくなるのみならず、遮断動作後半のアーク電圧が低下して、限流性能が悪化する。そこで、少なくとも固定接点6表面から見渡せる可動アームの可動接点2より可動子回転中心側の部位を絶縁物41にて覆う必要がある。このような可動アームへの分流は、可動子1の回転角θが大きくなると実施の形態28で示したほぼL字状の可動子においても生じることがあり、上記のような可動アームの絶縁が必要となる。
実施の形態48.
【0253】
図106にこの発明の実施の形態21を示す。通常、可動子1の回転中心は機構部の開閉動作を伝える部品、例えばロータ22に支持される。従って、固定子5と可動子回転軸13の距離はある値以上に小さくできない。そこで、図106に示すように、可動子1の形状をほぼS字状として、図103に示すほぼ鈎型の可動子より屈曲部を1つ増やせば、可動アーム水平部4cと固定導体7との距離を遠ざけることなく、ロータ22にて可動子回転軸13を保持できるので、回転軸13が固定導体7より遠い場合でも事故電流発生時に大きな電磁開極力を得ることができる。
実施の形態49.
【0254】
図107にこの発明の実施の形態49を示す。同図では、閉成状態のほぼL字状の可動子101と、可動アーム水平部104と対向する固定導体107の部位が可動アーム水平部104に近づくように曲げられた固定子105が示されている。このように、固定導体107側を可動アームへと近付けても実施の形態43と同様の効果がある。さらに、本実施の形態では、可動子101がほぼL字状となるので、実施の形態47もしくは実施の形態48に示した、ほぼ鈎型可動子もしくはほぼS字状可動子より慣性モーメントを小さくできるので、より高速開極が可能となる。
実施の形態50.
【0255】
実施の形態37の説明で述べたように、図76に示した実施の形態では、ほぼL字状の可動子形状を用いているため、可動子側のアークスポットは可動子101の消弧板側の端面に移動し難く、遮断動作後半になっても消弧板119に触れにくい。そのため、消弧板のアーク冷却効果を有効に利用できず、アークの熱により消弧ユニット筺体内圧が高くなり、筺体割れが発生しやすい。これを防止するためには、アークを消弧板に触れさせて冷却し、素早く消弧する必要がある。
【0256】
図108に示す本実施の形態では、フル開極位置の可動子101の先端部の上方に対向電極142を設けることにより、アークスポットをL字状可動子101の消弧板側端面に移動させ、アークを効果的に消弧板119に触れさせている。
【0257】
また、本実施の形態では、筒状空間118を囲む筒状絶縁物108の可動子回転中心と反対側の壁高さを可動子回転中心側の壁高さより低くなるよう、すなわち、筒状空間118の上面を消弧板119側に向ける構成としている。このような構成とすると、図109に示すように、遮断動作時の筒状空間118から可動接点が出た直後に、筒状空間118から消弧板119方向へと図中矢印で示すホットガスの流れが生じ、アークが消弧板119に触れやすくなるので、アークを素早く冷却、消弧することができる。
【0258】
なお、図108では、板状の対向電極142を用いたが、図110に示すように、一辺が可動子101の消弧板側端面に対向するように配置されたL字状の対向電極142を用いても、アークスポットをL字状可動子101の消弧板側端面に移動させることができる。
実施の形態51.
【0259】
上記実施の形態50では、対向電極を用いてアークを消弧板に触れさせたが、図111に示すように、馬蹄形の消弧板119の切欠き部の中心位置M2を、筒状絶縁物108に囲まれる筒状空間118の可動子回転中心と反対側の端面位置M1より、可動子回転中心側に設けると、対向電極を用いることなくアークを消弧板119に触れさせることが可能となる。ただし、上記切欠き部の位置M2が、図中に一点鎖線で示す可動子先端部が描く軌跡と交わると消弧板119が可動子1の回転を妨げるので、上記切欠き部の位置M2は、上記一点鎖線と上記位置M1のと間に位置する必要がある。
【0260】
また、図111では、筒状絶縁物108を可動子回転中心と反対側から馬蹄形コア143にて囲んでいる。このコア143により、比較的電流の小さい過負荷電流のアークや短絡電流遮断動作時の電流遮断直前の小電流のアークは、可動子回転中心と反対側の筒状空間118内壁に押し付けられるので、消弧板119に冷却されるとともに、筒状空間118内壁から発生する蒸気によっても冷却され、確実に遮断される。
実施の形態52.
【0261】
次に、この発明の実施の形態52を図112にて説明する。図112では、実施の形態51と異なり、端子部115に直接固定子105が接続され、可動子101は摺動接触子110を経由して端子116によりリレー部と電気的に接続される。また、図113に示す固定子105は、特開平6−20547号公報に開示されている従来の固定子形状を有しており、閉成状態の可動アーム水平部とほぼ平行かつ反対方向の電流が流れる電路145cを有している。固定子155は、筒状絶縁物108と一体に形成された絶縁物146にて、固定接点106近傍を除く少なくとも開成状態の可動接点102から見渡せる部位を覆っている。
【0262】
実施の形態51では、閉成状態の可動アーム水平部104とほぼ平行かつ反対方向の電流が流れる電路として固定導体107と導体121が配置されたが、本実施の形態では、電路145cが先述の電路に相当する。さらに、電路145bが作る磁場も可動子101の開極電磁力に寄与する。また、消弧室内の導体長を短くできるのでコスト低減が可能であり、さらに構造が簡単となり組立性が向上する。また、絶縁距離を確保しやすい。
実施の形態53.
【0263】
この発明の実施の形態53を、図114、図115に示す。図114は、本実施の形態の固定子105を示す図であり、図113の固定子105の上下方向の電路145bの一部を水平方向の電路145c’と上下方向の電路145dに置き換えている。図115は、閉成状態の可動子1、図114に示した固定子105、筒状絶縁物108、および筒状絶縁物108と一体に成形されている固定子を覆う絶縁物146を示した断面図であり、図中、矢印にて電流方向を示している。同図から明らかなように、図114の固定子形状を用いることにより、可動アーム水平部104と固定子101の電路145c’が大幅に近付き、事故電流の遮断時の電磁開極力が図113に示す実施の形態より増大する。
実施の形態54.
【0264】
この発明の実施の形態54を図116に示す。また、同図の固定子形状を図117に示す。図117に示す固定子においても、図113の実施の形態と同様に、閉成状態の可動アーム水平部104とほぼ平行かつ反対方向の電流が流れる電路145cを有している。しかし、電路145e、145fの電流は、可動子101の開極を妨げる方向の磁場を発生する。この開極を妨げる磁場の影響を最小限に抑えるため、固定子にスリット147を設け、電路145e、145fを可動アーム101が回転する軌跡を含む面から左右にずれた位置に配置している。このような構成とすると、図113の実施の形態より開極速度が遅くなり限流性能が低下するが、固定子105の加工が簡単となるとともに材料費も低減でき、安価な限流機能を有した遮断器を実現できる。なお、図118に示す固定子形状を用いても同様の効果がある。
実施の形態55.
【0265】
図119はこの発明の実施の形態55に係る3極限流装置を示す斜視図であり、内部構成が分かるように筺体230の一部を切り取って示している。この3極限流装置は、図150に示した従来例と同様に、回路遮断器と直列接続して用いることにより、3極限流遮断器を構成することができる。図120は、図119の3極限流装置の閉成状態の1極分の導体構成と筒状絶縁物8および絶縁カバー209を示す斜視図であり、筒状絶縁物208および絶縁カバー209は導電部を構成する部分の形状が分かるように一部を切り取って示している。
【0266】
図119において、201は可動子、208は閉成時の接点対を囲む筒状絶縁物、209は固定子を覆う絶縁カバー、210は摺動接触子、211は接点対に接触圧を与える付勢手段であるバネ、212はバネ掛け、213は可動子201の回転軸、214は接続導体、215a、215b、215c、216aは端子部、219は消弧板、226は排気口、230は絶縁物筺体である。
【0267】
図120において、201は、可動接点202と、この可動接点202が固着されている可動アーム垂直部203と、この可動アーム垂直部203とほぼ直交する可動アーム水平部204とにより構成されるほぼL字状の可動子である。この可動子201は、固定接点206と、固定導体207とにより構成される固定子205と1対の接触子対をなしており、可動子201は接触圧を与える付勢手段であるバネ211により固定子205に対して付勢されている。可動子201は、可動子回転軸213を中心に回転自在に支持されており、摺動接触子210および接続導体214を介して端子部215aと電気的に接続されている。一方、固定子205は筒状絶縁物208と絶縁カバー209とによって、固定接点206近傍と端子部216aとの接続部近傍を除いて覆われている。図中に示された複数の矢印は、通電時の電流経路を示しており、可動アーム水平部204の電流と固定導体207の電流は、ほぼ平行かつ反対方向に流れる。閉成状態の接触子対は、端子部215a、216aを結ぶ線にほぼ直交するように配置されている。
【0268】
ここで、先述の実施の形態1の説明文で図2乃至図4を用いて示したように、アーク式限流装置内で限流遮断動作時に発生する比較的短ギャップの大電流アークのアーク電圧を高圧力下で効果的に上げるための条件とは、図121に示す実験装置にて、数cm以下の短ギャップ大電流アークの雰囲気圧Pを変化させてアーク電圧変化を測定した結果を図4のグラフに示す。図121の実験装置では、丸棒状の電極を対向させてアークを発生させているので、電極間距離はアーク長Lと等しくなる。図122(a)より明らかなように、アーク電流値が比較的小さい場合、アーク雰囲気圧Pが高くなるとアーク電圧は殆どのアーク長Lにおいて高くなる。一方、図122(b)に示すように、アーク電流値が比較的大きい場合、アーク雰囲気圧Pが高くなってもアーク電圧はアーク長Lが比較的長い場合を除いて殆ど変化しない。
【0269】
図122に示した雰囲気圧Pが高い場合のアーク電圧V(P−高)と雰囲気圧Pが低い場合のアーク電圧V(P−低)との比Rをとり、グラフ化すると図123に示すようになる。図123より明らかなように、アーク電流値が比較的大きい場合のアーク電圧上昇率Rは、アーク長が長いほど高い。一方、アーク電流値が比較的大きい場合のアーク電圧上昇率Rは、アーク長がある値以上にならないと殆ど増加しないことが分かる。以上より、短ギャップ大電流アークにおいて、アーク雰囲気圧を上げることによりアーク電圧を効果的に上げるための条件とは、(a)アーク電流が比較的小さい、(b)アーク長が長い、という2つを同時に満足することである。
【0270】
短絡等の事故が発生した場合、事故発生直後から回路電流は急激に増大する。従って、上記2つの条件を満たして高い雰囲気圧にてアーク電圧を上げて事故電流を限流するには、(1)少なくともアーク発生直後(事故発生直後)に高圧雰囲気を作る、(2)アーク電流が比較的小さいとき(事故発生直後)にアーク長を長くする、必要がある。事故電流が増大した後では、雰囲気圧を上げてもあまり限流性能は向上しない。さらに、事故電流が増大した後の高圧雰囲気は、限流性能向上にあまり寄与しないだけでなく、筺体等の破損の原因となる。
【0271】
図119、図120に示した限流装置では、短絡事故等の発生により通過電流が急激に増大すると、接点接触面での電流集中による電磁反発力F1と、前述の可動アーム水平部204の電流と固定導体207の電流による電磁反発力F2により、バネ211による付勢力に抗して接点が開極し、接点間にアークAが発生する。この状態の接点対近傍の様子を図124に示す。アークの発生に伴い、上記接点接触面での電流集中による電磁反発力F1は消滅するが、可動アーム水平部4の電流と固定導体207の電流による電磁反発力F2は引き続き可動子201を開極方向へと回動させる。
【0272】
また、図124に示すように、アーク発生に伴い、アークの熱により筒状絶縁物208の内面から大量の蒸気が発生し、筒状絶縁物208に囲まれた筒状空間218に高圧雰囲気が発生する。この筒状空間218の高圧の発生により、可動子201は圧力差による開極力Fpを受ける。この圧力差による開極力Fpと上記電磁力F2により可動子201が高速に回動し、接点が高速開極する。この高速開極によりアーク長が高圧雰囲気中にて急激に伸びるのでアーク電圧が急速に立ち上がり、事故電流がピーク値をむかえる。
【0273】
上記のように本実施の形態では、筒状絶縁物208と自己電流による電磁開閉力を用いて高圧雰囲気と高速開極手段の併用を実現しているが、優れた限流性能を得るためには上記併用が不可欠である。図125では、(a)高速開極手段を用いない場合と、(b)高速開極手段を用いた場合の筒状絶縁物の効果を示している。同図において、tsは事故発生時刻、t0は接点開極時刻、V0は接点間の電極降下電圧、破線は電源電圧波形である。図125(a)は、高速開極手段を用いない場合であり、アーク電圧が電源電圧に追い付いた時刻t1(筒状絶縁物有のとき)、t2(筒状絶縁物無しのとき)に電流ピークIp1、Ip2をそれぞれむかえる。高速開極手段を用いないと、事故電流の立上りに比べアーク長さの立上りが遅いので、筒状絶縁物にて高圧雰囲気を作り出しても、アーク長が短くアーク電圧が上昇する上記条件を満たすことが難しい。従って、図125(a)では、筒状絶縁物を用いても、電流ピークIpの改善の度合いΔIp=Ip2−Ip1は小さい。
【0274】
一方、図125(b)に示す高速開極手段を用いた場合では、事故電流が大きくなる前にアーク長が十分長くなるので、高圧雰囲気にてアーク電圧が上昇する上記条件を満たすことができる。アーク電圧が電源電圧に追い付いた時刻t1’(筒状絶縁物有のとき)、t2’(筒状絶縁物無しのとき)の電流ピークIpを夫々Ip1’、Ip2’とすると、電流ピークIpの改善の度合いΔIp’=Ip2’−Ip1’は、高速開極手段を用いなかった場合の電流ピークIpの改善の度合いΔIpより劇的に大きいことが分かる。
【0275】
ところで、この発明では、可動子開極直後にアーク雰囲気圧を高圧にするために固定接点206を取り囲むように筒状絶縁物208を配置している。接点間に発生するアークの熱により固定接点近傍に配置した絶縁物から大量の蒸気を発生させる配置は、例えば、特開平7−22061号公報の図16、図17に示されている。しかし、このの先行例では、固定接点近傍に配置される絶縁物は、閉成状態の可動子を左右から挟み込む形状をしており、絶縁物から発生した蒸気は即座に閉成状態の可動子先端側および可動子回動中心側へと流れ出し、アーク雰囲気を十分高圧にすることはできない。アーク電圧を急激に立上げるには、開極初期のアークを固定接点と可動接点と筒状絶縁物に囲まれる筒状空間に閉込める必要があり、アーク電圧立ち上がり速度向上の大幅な向上には、固定接点を囲む絶縁物形状を筒状にすることが不可欠である。
【0276】
図124の状態からさらに可動子201が回動し、最大開極位置に達した状態を図126に示す。この状態では、可動接点202は筒状空間218外に位置しており、十分な大きさのアーク電圧を発生している。さらに、図126中に矢印で示すように、筒状空間218からアーク柱の軸方向に沿った絶縁物蒸気の流れ(白塗り矢印で示す)がアークの熱を奪ってアークを冷却するので、アーク抵抗がより高くなり、事故電流は急速に零点へと向う。従って、限流性能の指標の一つである通過エネルギーをより小さくできる。
【0277】
また、図119に示すように、可動子開極方向側(筒状絶縁物208の開口部側)の筐体壁に排気口226を設けることにより、図126中に白塗り矢印で示した絶縁物蒸気の流れを速くでき、可動接点2近傍の電極金属蒸気を容易に吹き飛ばすことができる。これにより電極間に電流を遮断するのに十分な絶縁回復を生じさせることも可能であり、遮断能力の低い回路遮断器を直列接続して用いても、確実に電流を遮断できる信頼性の高い限流装置を得ることができる。
【0278】
また、上述のように電流ピーク後の遮断動作後半において、可動接点202を筒状空間218外に移動させることにより、アーク電圧の上昇に効果的に結びつかない筒状絶縁物208からの蒸気発生を制限し、内圧が必要以上増大することを防止できる。
【0279】
ところで、本実施の形態では、図149に示した2対の接触子をもつ従来例と異なり、1対の接触子にて高い限流性能が得られるので、低インピーダンスの限流性能に優れた限流装置が得られ、大きな通電容量が求められる回路への適用が容易となる。
【0280】
また、図150に示した従来例のように、限流装置を回路遮断器と直接接続して用いる場合、配電盤への収納性を考慮すれば、限流装置の幅Wは、回路遮断器の幅Wと同等もしくは短い方がよいことは明かである。従来の2対の接触子対を並置する構成では、このような幅Wの制限を満たすために可動子が回動する面と平行な筐体側壁の厚さを厚くできず、短絡遮断時の内圧上昇による破損を防止するため、薄肉で強度の強い高価な絶縁材を用いて筐体を作成していた。しかし、本実施の形態では、高い限流性能を得るのに1対の接触子しか用いないので、上記のような幅Wの制限がある場合においても、上記筐体側壁の肉厚を厚くできるので、安価な材料にて筐体をつくることができる。逆に、本実施の形態によれば、アークによる筺体内圧の上昇が抑えられているため、筺体壁の肉厚を薄くして2対の接点対を用いることも可能である。
実施の形態56.
【0281】
次に、この発明の実施の形態56を図127について説明する。図127は実施の形態56に係る限流装置の内部構成を示す断面図であり、バネ等は図示を省略している。本実施の形態が図119に示す実施の形態55と異なるのは、端子部215、216が筺体230の取り付け面(底部)296からH’だけ高い位置に設けられている点である。このため、本実施の形態では、可動子201のアームと固定子205との平行配置電路部分を確保しかつ端子部215、216との接続をするために、固定導体207の下部をU字状に曲げて端子部216に接続するとともに、可動子201は可とう導体272を用いこれをほぼU字状に曲げて端子部215に接続している。
【0282】
ところで、図150に示した従来例のように、限流装置を回路遮断器に直接連接する場合、限流装置と回路遮断器の端子部が直接係合するように限流装置の端子部を取付け面よりH’だけ高い位置に設ける必要がある。また、配電盤への収納性を考慮すれば、限流装置の高さHは、回路遮断器高さと同等もしくは低い方がよいことは明かである。このような外形の制限のもと、閉成状態の可動子201と固定子205とに、高速開極に必要なほぼ平行かつ反対方向の電路(以下、反発電路と呼ぶ)を十分な長さ設けるためには、図127に示すように、固定導体7をほぼU字状にして固定子側の電路を取付け面296側で折り返すと共に、可動子回転軸213を端子部215、216の高さより取付け面296側の低い位置に設ける必要がある。
【0283】
上記のような構成を用いると、上述のような外形の制限がある場合でも限流性能を得るために必要な反発電路長を得ることができる。しかし、図127中、白塗りの矢印で示す電流成分が発生する磁界が可動子の高速開極を妨げるよう作用するので、実施の形態55と同じ反発電路長の場合、実施の形態55より開極速度が低下する。そこで、上記高さHおよび端子部高さH’の制限下において、実施の形態55より可動子の開極速度をさらに高めたのが次の実施の形態57である。
実施の形態57.
【0284】
本発明の実施の形態57を図128に示す。図128は実施の形態57の限流装置の内部構成を示す断面図であり、バネ等は図示を省略している。本実施の形態では、実施の形態56と異なり、可動子201は可とう導体272にて遠い側、すなわち固定子205の背後に設けられた端子部216に、また、固定子205は固定導体207を延長して遠い側、すなわち可動子201の背後に設けられた端子部215にそれぞれ電気的に接続されている。固定接点206と端子部215を電気的に接続する固定導体207は、電路207a、207b、207cで構成されている。207aは反発電路を形成する電路、207bは一端が電路207aに接続され、閉成状態の可動子201の可動アームと直交して可動子201の下方に配置される電路、207cは電路207bの他端と端子部215を結ぶ電路である。
【0285】
ここで、閉成状態の接触子対の反発電路部は、端子部215、216を結ぶ線にほぼ直交するように配置されており、可動子先端部に対向する位置に複数の馬蹄形の消弧板219が設けられている。また、固定子205の固定接点206が固着されている端部側の固定導体は上方へと延長されており、延長された導体238に絶縁物カバー209aから消弧板219側に露出するアークランナー234が設けられている。
【0286】
上記のような電路配置では、閉成状態において、固定導体7を流れる電流がつくる全ての磁界が可動子201を開極させる方向に作用するので、短絡遮断時には可動子201がより高速開極する。従って、上記電路構成を、高圧雰囲気を発生させる手段である筒状絶縁物8と併用することによりアーク電圧の立上りを大幅に改善でき、限流性能が一層向上する。
【0287】
ところで、本発明では、短絡遮断時に筒状絶縁物208内にてアークを発生させるため、固定接点206側のアークスポットが筒状絶縁物208の内径にて制限され、電流密度が上昇する。これにより固定接点206の損耗が大きくなる場合があり、可能な限流動作回数が制限される。しかし、本実施の形態57では、前述のように、固定接点206の上方にアークAが転流するアークランナー234が設けられており、図129に示すように、可動子201が回動して可動接点202が筒状空間218外に移動した限流動作後半において、可動接点202側のアーク噴き出し方向は固定接点206から消弧板219側へと向きを変える。また、アークは固定導体207a、207b、207cおよび可動子201を流れる電流により、消弧板219方向へ電磁力を受ける。これらのアーク駆動力により、固定子205側のアークスポットは、固定接点206からアークランナー234へと移動する。従って、固定接点206および筒状絶縁物208の消耗が抑えられ、繰返し使用可能な耐久性に優れた限流装置が得られる。
【0288】
さらに、図129に示すように、アークがアークランナー234に転流することによりアークが消弧板219により強く触れ、アークの熱が消弧板219の蒸発潜熱により奪われアーク温度が低下するので、遮断動作後半の筐体内圧上昇を低減できる。一般に配線用遮断器で用いられるモールド材の衝撃応力に対する機械強度は、静的応力に対する機械強度より大きい。従って、遮断動作後半における筐体内圧の低下は、モールド材で作成された筐体の割れを防止する効果がある。
【0289】
前述のように、アークランナー234に固定接点206側のアークスポットを転流させることにより固定接点206の消耗を低減できるが、アークランナー234にアークが転流した瞬間に固定接点206近傍のアークが筒状空間218外へと移動し、筒状空間218の高圧雰囲気にて高められていたアーク電圧が低下する。このアーク電圧の低下が電流ピーク以前に生じると、電流ピークが大幅に増大し、限流性能が大幅に低下する。また、たとえ上記アーク電圧の低下が電流ピーク以後に生じても、限流動作後半の電流の減少速度が低下して遮断時間が長くなり、通過エネルギーが大きくなることがある。このような問題を解決したのが、次の実施の形態58である。
実施の形態58.
【0290】
本発明の実施の形態58を図130に示す。図130に示す実施の形態58では、アークランナー234の周りの絶縁カバー209aを筒状にして、アークランナー筒状空間239を形成している。このようにすると、可動子201が回動して可動接点202が筒状空間218から出ても、すぐには固定接点側アークスポットがアークランナー234へと転流せず、筒状空間218内での高圧雰囲気を利用したアーク電圧上昇を有効に利用でき、電流ピークを小さく抑えることができる。また、アークがアークランナー234に転流した後も、アークランナー234が筒状の絶縁カバー209aに囲まれたアークランナー筒状空間239内にあるため、アーク電圧が低下することがなく、遮断時間を短縮でき、通過エネルギーの低減につながる。
実施の形態59.
【0291】
本発明では、例えば図120に示すように、筒状絶縁物208内で開極初期にアークを発生させるために可動子201の先端部はほぼL字状の形状になされている。そのため、可動子201側のアークスポットは可動接点202から可動子201の消弧板側の端面に移動し難いので、遮断動作後半になっても可動子側アーク噴き出し方向が消弧板方向へ向かず、アークが消弧板219に触れにくい。よって、消弧板219のアーク冷却効果を有効に利用できず、限流動作後半において、アーク電圧上昇に結びつかない不必要な筺体内圧上昇をまねく場合がある。
【0292】
そこで、本実施の形態59では、図131に示すように、一端が接続導体214に電気的に接続され、他端が消弧板219側へと延びる、可動子21とほぼ同電位の、転流電極237を可動子201の背後に設け、可動接点202側のアークスポットが転流電極237に転流して消弧板219方向へと移動するように構成している。また、実施の形態57、実施の形態58と同様に、固定子205側もアークスポットがアークランナーにより消弧板219側へと転流する構成としており、アークは消弧板219により確実に分断、冷却される。従って、限流動作後半における不必要な筺体内圧上昇を防止できる。
実施の形態60.
【0293】
前述のように、本発明では、可動子先端部はほぼL字状の形状となっているため、可動子201側のアークスポットは可動子201の消弧板側の端面に移動し難い。従って、可動子側のアークスポット近傍の電流は、可動接点202に集中し、可動接点202の消耗が大きくなりやすい。そこで、本実施の形態60では、図132に示すように、転流電極237aに開成状態の可動子201の先端部が入り込むスリット247を設け、図131に示す棒状転流電極237と比較して、可動接点側アークスポットを限流動作中の比較的早い時期に確実に転流電極237aに転流させる構成としている。
【0294】
転流電極237aに転流したアークは、消弧板219の吸引作用と固定子205および転流電極237aを流れる電流による電磁駆動力により転流電極237a先端部へと駆動されてアーク長が急速に伸び、アーク電圧が上昇する。このような比較的早い時点での可動子201から転流電極237aへの転流により、可動接点202の損耗は実施の形態59のものより大幅に低減でき、限流装置の耐久性が向上する。
実施の形態61.
【0295】
本発明の実施の形態61を図133に示す。図133は、固定子5の固定接点6側端部近傍と可動子201の先端部と消弧板219とを示す部分断面図であり、可動子201は、開極動作途中の位置にある。その他は図示してないが、図119に示した実施形態と基本的に同一構成である。図133に示した筒状絶縁物208は、筒状空間218の開放端側に向かって広がるような形状になされ、可動子回転中心(回転軸213、図示せず)から遠い側の筒状絶縁物壁がラッパ状に広がるように構成されている。この筒状絶縁物208の形状により、筒状空間218内で発生した高圧蒸気の流れが、図中の矢印で示すように、消弧板219側へと流れるので、接点間のアークがこの蒸気流により消弧板219へと引き伸ばされる。
【0296】
このアークを蒸気流で消弧板219へと導く作用は、図で示すように、可動子回転中心から遠い側の筒状絶縁物壁の高さを可動子回転中心に近い側の壁高さより低くすることにより強化される。このように、消弧板219によるアーク冷却効果を有効に利用できる構成とすれば、アークの熱により消弧ユニット筐体内圧が高くなることを防止でき、筐体の機械的強度を下げることができるので、コスト低減につながる。
実施の形態62.
【0297】
本発明の実施の形態62を図134に示す。図134は、筒状絶縁物208と固定子205の固定接点側の端部を示す部分断面図であり、筒状絶縁物208は、筒内面を形成する絶縁物208aとその周りの絶縁物208bとにより構成される。絶縁物208aは、アークに暴露されると即座に大量の蒸気を発生する性質を有する材料、例えば、ガラス繊維などの強化材を少量しかもしくはまったく含まない樹脂材にて成形され、絶縁物208bは、機械的強度に優れた強化樹脂もしくはセラミックにて成形される。
【0298】
このような構成にすると、筒状空間218で発生する高圧力に機械的に耐えられない材料を筒内面の材料として用いることができるので、筒状絶縁物208として機械的特性に関係なく大量の蒸気を発生する物質を適用でき、開極初期の筒状空間218内の圧力上昇速度を高めることができ、アーク電圧が急激に立ち上がるので、限流性能が向上する。
実施の形態63.
【0299】
本発明の実施の形態63を図135に示す。図135は、筒状絶縁物208と固定子205の固定接点側の端部と可動子201の可動接点側先端部を示す部分断面図であり、図中、可動子201の回動中心より最も遠い部位が開極動作により描く軌跡を破線にて表している。筒状絶縁物208の、可動子先端部に対向する面は、この破線に一定の間隙を持つように形成される。
【0300】
一般に、可動子201の回転中心は接点接触面より上方(固定子から遠い側)に設けられるので、可動子201の軌跡は固定接点位置より可動子回転中心より遠い側へと膨らむ。そのため、もし筒状絶縁物208の可動子先端部に対向する面を垂直とすると、上記面を固定接点206から離れた位置に配置する必要があり、筒状絶縁物208に囲まれる筒状空間218の容積が大きくなる。そのため、十分高い高圧雰囲気をつくるのに時間がかかる場合がある。そこで、上記可動子先端部の軌跡に沿って筒状絶縁物208の内面を形成すれば、同一開極距離における筒状空間218の容積を小さくでき、上記空間の圧力上昇速度を高められ、アーク電圧が急激に立ち上がるので、限流性能が向上する。
実施の形態64.
【0301】
本発明の実施の形態64を図136に示す。図136は、筒状絶縁物208と固定子205の固定接点側の端部と可動子201の可動接点側先端部を示す部分断面図であり、固定子205の端部の固定接点206の周りを、筒状絶縁物208の筒内面側に張出した絶縁部位208cにて覆っている。その他は図示してないが、図119に示した実施形態と基本的に同一構成である。
【0302】
筒状絶縁物208に囲まれる筒状空間218は、一般に、可動子201の開閉動作時の軌跡やブレを考慮して固定接点206の接触面より大きな断面を有する。そのため、絶縁部位208cを設けない場合、可動子201側から固定接点206の接触面を見ると、固定接点206の周りに固定導体207の一部が露出して見える。遮断動作時にアークが発生すると、固定接点側のアークスポットはこの露出部まで広がる。これに対して、絶縁部位208cがあると、固定子側のアークスポットは固定接点206の面積による制限を受け、絶縁部位208cが無い場合より固定接点近傍のアーク径が絞られ、アーク電圧が上昇する。また、絶縁部位208cから発生する絶縁物蒸気の分だけ蒸気発生量が増え、十分な高圧雰囲気を素早く形成できるので、限流性能が向上する。
実施の形態65.
【0303】
本発明の実施の形態65を図137に示す。図137は、筒状絶縁物208と固定子205の固定接点側の端部と可動子201の可動接点側先端部を示す部分断面図であり、筒状空間218を囲む筒状絶縁物208の壁の内、可動子回転中心に近い側の壁高さを可動子回転中心から遠い側の壁高さより低くしている。その他は図示してないが、図119に示した実施形態と基本的に同一構成である。
【0304】
遮断動作時に接点間に発生するアークには、固定導体207および可動アーム水平部204を流れる電流により、可動子回動中心と反対側に電磁駆動力が発生する。従って、筒状空間218内にあるアークは可動子回転中心から遠い側の壁により強く触れる。また、可動子201を高速開極するためには、可動子201の慣性モーメントを小さくした方が有利であるが、筒状絶縁物208の筒高さにより決まる可動アーム垂直部203が長くなると、可動子慣性モーメントは増加する。そこで、図137に示すように、筒状絶縁物208の可動子回転中心に近い側の壁高さを、可動子回転中心から遠い側の壁高さより低くすることにより、可動アーム垂直部203の長さを短くして慣性モーメントを低減し、かつ、十分な筒状絶縁物蒸気を発生させて十分な高圧雰囲気を作ることができ、限流性能をより向上させることができる。
実施の形態66.
【0305】
次に、本発明の実施の形態66を図138に示す。図138は、本実施の形態の可動子201を示す斜視図であり、可動子201は、可動接点202、可動アーム垂直部203、部位204c、204d、204eにて成る可動アーム水平部204、および、可動子アーム部の固定接点側の面を覆う絶縁物241により構成され、ほぼ鉤型の形状となる。このように、可動子201をほぼ鉤型とすることにより、筒状絶縁物を用いる場合においても、閉成状態の固定導体と可動アーム水平部204eとの距離を近付けることができる。なお、その他は図示しないが、図119に示した実施形態と基本的に同一構成である。
【0306】
図139は、本実施の形態の閉成状態の可動子201、固定子205、および筒状絶縁物208を示す図であり、図中、電流の流れを矢印にて表している。同図より明らかなように、事故電流発生時に電磁開極力を発生する固定導体207と可動アーム水平部204eをそれぞれ流れる反対方向の電流が、例えば図120に示すL型可動子を用いる場合より一層近付き、電磁反発力が増大し、開極速度が向上する。
【0307】
しかし、図140に示すように、可動子201の開成状態の回転角θが大きくなると、可動子201を鉤型にすることによりアークが可動アーム部に触れ、分流する可能性が高くなる。このようにアークが可動アームに触れると、可動アームが溶融して細くなり開閉に耐えうる十分な機械的強度を維持できなくなるのみならず、遮断動作後半のアーク電圧が低下して、限流性能が悪化する。そこで、少なくとも固定接点206表面から見渡せる可動アームの可動接点より可動子回動中心側の部位を絶縁物241にて覆う必要がある。このような可動アームへの分流は、可動子201の回転角θが大きくなると実施の形態55で示したほぼL字状の可動子においても生じることがあり、上記のような可動アームの絶縁が必要となる。
実施の形態67.
【0308】
図141に本発明の実施の形態67を示す。通常、可動子201の回転中心近傍には、可動子を回転自在に、かつ電気的に接続する部品が配置される。例えば、図120に示した実施の形態では、摺動接触子210が配置されている。また、図120に示すように、ひねりバネ211にて接圧を発生する場合、可動子回転中心近傍にはバネが配置される。従って、固定子205と可動子回転軸213の距離は、ある値以上に小さくできない。
【0309】
そこで、図141に示すように、可動子201の形状をほぼS字状に屈曲して、図139に示すほぼ鉤型の可動子より屈曲部を1つ増やせば、可動アーム水平部204eと固定導体207との距離を遠ざけることなく、上記摺動接触部およびひねりバネ等を配置できるので、回転軸213が固定導体207より離れている場合でも事故電流発生時に大きな電磁開極力を得ることができる。なお、その他は図示してないが、図119に示した実施形態と基本的に同一構成である。
実施の形態68.
【0310】
図142に本発明の実施の形態68を示す。同図では、閉成状態のほぼL字状の可動子201と、可動アーム水平部204と対向する固定導体207の部位が可動アーム水平部204に近づくように曲げられた固定子205が示されている。なお、その他は図示してないが、図119に示した実施形態と基本的に同一構成である。このように、固定導体側を可動アーム204へと近付けても実施の形態67と同様な効果がある。さらに、本例では、可動子201がほぼL字状となるので、実施の形態66もしくは実施の形態67に示したほぼ鉤型の可動子もしくはほぼS字状の可動子より慣性モーメントを小さくできるので、より高速開極が可能となる。
実施の形態69.
【0311】
実施の形態55では、1対の接触子対を有する限流装置を示したが、従来例の図152および153に示すような2対の接触子対を有する導体配置にて、両可動子先端部をほぼL字状とし、両固定接点の周りに図2で示したような筒状絶縁物を配置し、限流動作時に筒状空間内にて2つの直列アークを発生させれば、より限流性能が向上する。これにより回路に直列接続された電磁開閉器を保護する能力が高まるので、電磁開閉器の耐溶着性を下げることができ、配電系統全体としてコストを低減することができる。
【0312】
なお、実施の形態55乃至実施の形態69に示した限流装置を、この限流装置にて小さく絞られた電流を遮断する能力を有する回路遮断器の長手方向に連接することにより、限流性能に優れた回路遮断器が得られる。このとき、図150、151に示した従来例と同様に、限流装置の幅寸法および高さ寸法を上記回路遮断器と同一以下とすれば、配電盤への収納性が向上する。
実施の形態70.
【0313】
この発明の実施の形態70を図143乃至図145に示す。図143は、筒状絶縁物225の形状および固定子205に延接された延長導体292にて構成されるアークランナ279を除き、基本的に図38に示した実施の形態16と同様である。図143の筒状絶縁物225の筒断面は、実施の形態16と果なり、端子部215側に広がつた形状をしている。また、固定子5の固定接点側瑞部には、端子部215側へとのびるアークランナ79が設けられている。
【0314】
ところで、例えば、図38に示した実施の形態16のように、筒状絶縁物225の筒断面を固定接点206と略同じとすると、短絡電流近断時には、接点間にアーク発生した時の筒状空間内の圧力の上昇が大きいので、アーク電圧が急速に立ち上がり、優れた限流性能が得られる。この優れた限流性能により、遮断器の通過エネルギーが小さくなるので、接点対や消孤板の損耗が従来より減る。しかし、回路電圧が比較的高い回路では、アーク電圧による限流作用が顕著に現れ難いことがある。このような場合、遮断器を通過するエネルギーをアーク電圧にて小さく押さえられず、接点対や消孤板の損耗が大きくなり、遮断後の再通電や繰り返し遮断ができないことがある。特に、図38に示した実施の形態16のように、筒断面積が比較的小さい筒状絶縁物を用いると、固定子側アークスポットが高圧雰囲気中で常に固定接点上にあり、事故電流を充分絞り込めないと固定接点の損耗が劇的に増加する。また、固定子側アークランナが常に固定子上にあると、定格電流遮断等の比較的小電流の多頻度遮断においても固定接点の消耗が大きく、回路遮断器の通電開閉寿命が制限されることがある。
【0315】
そこで、本実施の形態では、筒状絶縁物225の筒状空間を端子部215側へと広げ、且つ、固定接点206のアークスポットが移動するアークランナ279を設けている。このような構成とすると、図144に示すように、開極直後に発生したアークは、電路286bおよび286cの電流による電磁駆動力と、同図中黒矢印で示す筒状絶縁物の可動子回転中心213側の筒壁面から発生する蒸気流の力とにより、端子部215側へと素早く押し出されるので、先述の固定接点206の損耗が押さえられる。さらに、図145に示すように、開極距離がある程度大きくなると、固定子側アークスポットがアークランナ279の先端部に移動するのでアークが馬蹄形の鉄製消孤板219に触れやすくなる。そのため、アーク温度が低下し、筺体内圧の上昇が押さえられる。また、比較的小電流の多頻度の通電開閉にともなう筒状絶縁物の筒壁面の炭化や変質にともなう沿面抵抗の低下が発生した場合でも、消孤板にアークが十分引き込まれるので、消孤板による消孤作用にて電流を遮断することができ、遮断の信頼性が向上する。
【0316】
図143乃至図145では、略J字状の固定子形状を示したが、図59、114、44、48に示した固定子の固定接点側端部にアークランナを追加し、前記アークランナ側に広がった筒状絶縁物と組み合わせることにより、同様の効果が得られる。特に、固定接点近傍の可動子回転中心側にアークと反対方向の電流成分を有する電流が流れる電路286dが設けられている図40、44、48では、電路286dの電流によるアークヘの電磁駆動力が強く、開極直後の早い時点でアークがアークランナヘと移動するので、接点消耗改善効果がより大きい。
【0317】
ところで、このように筒断面積を大きくすると、筒状空間の内圧上昇が遅くなり、図38に示した比較的小さな筒状断面を有する筒状絶縁物を用いた場合と比較すると、開極直後のアーク電圧の上昇速度が低下する。しかし、従来の可動子の左右に絶縁物を配置し、この絶縁物からの冷却蒸気を利用してアーク電圧を上昇させる手法と比較すれば、開極初期においては、アークが可動子回転中心側の筒壁面にふれ、アークがアークランナに移動後は、端子部215側の筒壁面に押し付けられるので、筒状空間内圧は従来より高くなり、アーク電圧の上昇速度も従来と比較すれば速くなる。また、図143に示すように、両接触子対は消孤ユニット筺体本体236、消孤ユニット筺体蓋237(図示せず)内にあり、筒状空間226で発生したアークにより圧力上昇は直ちに外部へと排出されず、前記筺体236、237内の内圧を上昇させる。従って、筒状絶縁物を樹脂等の比較的分解温度の低い絶縁物にて構成して筒状絶縁物より充分な蒸気を発生させれば、アーク電圧を上昇させて限流性能を向上させるのに十分な圧力上昇を得ることができる。
実施の形態71.
【0318】
この発明の実施の形態71を図146に示す。本実施の形態は、図146に示した消孤板219aを除いて基本的に実施の形態70と同様である。図146は、事故電流遮断動作中の開極距離がある程度大きくなった時点の接点対近傍の状態を示している。図146に示すように、開極距離がある程度大きくなる電流ピーク以降の遮断動作後半において、固定子側アークスポットはアークランナ279の先端部に移動する。このとき筒状空間内の端子部215側に消孤板219aを設けておくと、アークが筒状空間内の消孤板にふれてアーク温度が低下し、筺体内圧の上昇が押さえられる。従つて、筺体に求められる機械的強度を低くでき、筺体が安価となる。
【0319】
【発明の効果】
以上のように、この発明によれば、1つの消弧装置にて優れた限流機能を有する低コストな限流装置を得ることができるとともに、限流性能に優れかつインピーダンスが小さく、接点開閉方向の寸法が小さくできる。
【0320】
また、限流性能向上に効果的に結びつかない遮断時の筺体内圧上昇を抑え筺体に必要とされる強度を低減可能な限流機能を有する限流装置を得ることができる。
【0321】
また、筺体の両側面に設けられた端子部の高さ位置にかかわらず、電磁反発力を発生するような可動子、固定子の電路配置としているため、高速開極が可能となる。
【0322】
また、アークランナーや転流電極を設けることにより接点消耗を減じ、繰り返しの使用にも耐える信頼性の高い限流装置を得ることができる。
【0323】
また、筺体の反対側面に設けられたそれぞれの端子部の高さを回路遮断器の端子位置と合わせて端子同士を直結することにより、回路遮断器と一体に連接して限流遮断器を得ることが容易である。
【0324】
更に、この発明によれば、1つの消弧装置にて優れた限流機能と遮断機能を有する低コストな回路遮断器を得ることができるとともに、限流性能に優れかつインピーダンスが小さく、接点開閉方向の寸法が小さく、また、限流性能向上に効果的に結びつかない遮断時の筺体内圧上昇を抑え筺体に必要とされる強度を低減可能な限流機能を有する回路遮断器を得ることができる。
【0325】
また、可動子の開閉動作が筒状絶縁物に妨げられることがなく、限流性能に優れ、かつ開閉の信頼性の高い限流機能を有する遮断器が得られる。
【0326】
また、筒状絶縁物が可動子の閉極を妨げないように可動子回転中心側の絶縁壁の高さを低くしても、アーク電圧を上昇させるのに十分な高圧雰囲気が発生し、優れた限流性能が得られる。
【0327】
また、アークが消弧板に触れやすくなり、電流を確実に遮断できる信頼性の高い限流機能を有する遮断器が得られる。
【0328】
また、非常に大きな電磁開極力が得られ、開極速度が大幅に向上して限流性能に優れた限流機能を有する遮断器が得られる。
【0329】
また、確実に電流を遮断でき、絶縁破壊に起因する再点弧が生じにくい信頼性の高い限流機能を有する回路遮断器が得られる。
【0330】
また、遮断動作後半に固定接点の周りを筒状に取り囲む絶縁物から露出するアークランナー先端部に固定接点側のアークスポットが転流し、アークが消弧板に触れやすくなり、アークが確実に冷却、消弧され、電流を確実に遮断できる信頼性の高い限流機能を有する回路遮断器が得られる。
【0331】
また、アーク消弧時に蓄圧空間内に蓄積した圧力による排気口へと流れる高速の気流が生じ、接点間の金属蒸気等の導電率の高いホットガスを吹き飛ばし、電極間の絶縁を急速に回復させるので、確実に電流を遮断でき、絶縁破壊に起因する再点弧が生じにくい信頼性の高い限流機能を有する回路遮断器が得られる。
【0332】
また、電流遮断動作中に可動アームがアークにより溶融することがなく、可動子の機械強度の低下を防ぐことができる。
【0333】
なおまた、この発明によれば、閉成状態において可動接点と固定接点を筒状絶縁物による筒状空間内に配置し、開成状態においては可動接点が筒状空間外に成るよう配置したため、アーク発生初期の雰囲気圧が高められ、少ない部品点数の簡単な構成で遮断性能を向上させ、不必要な筺体内圧の上昇を抑えることができる。
【0334】
また、筒状絶縁物の筒状空間の形状、材質をいろいろに変えることにより、アークの消弧板への誘導を確実にしてアーク冷却効果を有効に利用でき、また、アークによる蒸気発生を容易にして、筒状空間内の圧力の立上り速度を高め、アーク電圧を急速に立ち上がらせることにより、筐体内圧が高くなることを防止できる効果がある。
【0335】
また、筺体の両側面に設けられた端子部の高さ位置にかかわらず、電磁反発力を発生するような可動子、固定子の電路配置としているため、高速開極が可能となる。
【0336】
また、アークランナーや転流電極を設けることにより接点消耗を減じ、繰り返しの使用にも耐える信頼性の高い限流装置を得ることができる。
【0337】
また、筺体の反対側面に設けられたそれぞれの端子部の高さを回路遮断器の端子位置と合わせて端子同士を直結することにより、回路遮断器と一体に連接して限流遮断器を得ることが容易である。
【0338】
本発明にかかる限流装置およびそれを用いて限流機能を持つ回路遮断器は、回路を短絡電流等の大事故電流から保護する装置として有用である。
【図面の簡単な説明】
【図1】 この発明の実施の形態1に係る限流機能を有する回路遮断器の主要部を示す部分断面斜視図である。
【図2】 アーク電圧の基礎的特性を測定する実験装置を示す構成図である。
【図3】 雰囲気圧力のアーク電圧への影響を示すグラフである。
【図4】 電流値のアーク電圧への影響を示すグラフである。
【図5】 実施の形態1の動作を説明する部分断面図である。
【図6】 実施の形態1の動作を説明する部分断面図である。
【図7】 実施の形態1の動作を説明する部分断面図である。
【図8】 実施の形態1の効果を示すグラフである。
【図9】 この発明の実施の形態2に係る限流機能を有する回路遮断器の主要部を示す部分断面図である。
【図10】 この発明の実施の形態3に係る限流機能を有する回路遮断器の主要部を示す部分断面図である。
【図11】 この発明の実施の形態4に係る限流機能を有する回路遮断器の主要部を示す部分断面図である。
【図12】 この発明の実施の形態5に係る限流機能を有する回路遮断器の反発子を示す斜視図である。
【図13】 この発明の実施の形態5に係る限流機能を有する回路遮断器の主要部を示す部分断面図である。
【図14】 この発明の実施の形態6に係る限流機能を有する回路遮断器の可動子を示す斜視図である。
【図15】 実施の形態6の主要部の動作を説明する説明図である。
【図16】 この発明の実施の形態7に係る限流機能を有する回路遮断器の消弧ユニットを示す分解斜視図である。
【図17】 この発明の実施の形態7に係る限流機能を有する回路遮断器を示す分解斜視図である。
【図18】 実施の形態7の消弧ユニット内部構造を示す部分断面斜視図である。
【図19】 実施の形態7の導体配置を示す斜視図である。
【図20】 実施の形態7の反発子ユニットの変形例を示す斜視図である。
【図21】 この発明の実施の形態8に係る限流機能を有する回路遮断器の導体配置を示す斜視図である。
【図22】 実施の形態8の動作を説明する主要部の部分断面図である。
【図23】 実施の形態8の動作を説明する主要部の部分断面図である。
【図24】 実施の形態8の動作を説明する主要部の部分断面図である。
【図25】 この発明の実施の形態9に係る限流機能を有する回路遮断器の反発子ユニットを示す斜視図である。
【図26】 この発明の実施の形態10に係る限流機能を有する回路遮断器の反発子ユニットを示す斜視図である。
【図27】 この発明の実施の形態11に係る限流機能を有する回路遮断器の消弧ユニットを示す斜視図である。
【図28】 この発明の実施の形態12に係る限流機能を有する回路遮断器の主要部を示す断面図(a)および消弧板より下方を示す平面図(b)である。
【図29】 この発明の実施の形態13に係る限流機能を有する回路遮断器の消弧ユニット内部構造を示す部分断面斜視図である。
【図30】 実施の形態13の反発子近傍の導体配置を示す斜視図である。
【図31】 この発明の実施の形態14に係る限流機能を有する回路遮断器の消弧ユニット内部構造を示す部分断面斜視図である。
【図32】 実施の形態14の反発子近傍の導体配置を示す斜視図である。
【図33】 この発明の実施の形態15に係る限流装置の主要部を示す部分断面斜視図である。
【図34】 実施の形態15に係限流装置の主要部を示す斜視図である。
【図35】 実施の形態15の動作を説明する部分断面斜視図である。
【図36】 実施の形態15の動作を説明する部分断面図である。
【図37】 実施の形態15の動作を説明する部分断面斜視図である。
【図38】 この発明の実施の形態16に係る限流装置の消弧ユニットを示す部分断面斜視図である。
【図39】 図38の固定子形状を示す斜視図である。
【図40】 この発明の実施の形態17に係る限流装置の固定子形状を示す斜視図である。
【図41】 実施の形態17の動作を説明する部分断面図である。
【図42】 この発明の実施の形態18に係る限流装置の筒状絶縁物を示す断面図である。
【図43】 この発明の実施の形態19に係る限流装置の可動子、固定子、および筒状絶縁物を示す断面図である。
【図44】 この発明の実施の形態20に係る限流装置の消弧ユニットを示す部分断面斜視図である。
【図45】 図44の固定子形状を示す斜視図である。
【図46】 実施の形態20のコアの別の形状を示す斜視図である。
【図47】 実施の形態20のコアのさらに別の形状を示す斜視図である。
【図48】 この発明の実施の形態21に係る限流装置の固定子形状を示す斜視図である。
【図49】 この発明の実施の形態22に係る3極限流装置を示す部分断面斜視図である。
【図50】 図49に示す3極限流装置の1極分の主要部を示す部分断面斜視図である。
【図51】 実施の形態22の動作を説明する部分断面図である。
【図52】 実施の形態22の動作を説明する部分断面斜視図である。
【図53】 この発明の実施の形態23に係る限流装置を示す断面図である。
【図54】 この発明の実施の形態24に係る限流装置を示す断面図である。
【図55】 実施の形態24の動作を説明する断面図である。
【図56】 この発明の実施の形態25に係る限流装置の接触子部分を示す部分断面図である。
【図57】 この発明の実施の形態26に係る限流装置の主要部を示す部分断面斜視図である。
【図58】 この発明の実施の形態27に係る限流装置の主要部を示す部分断面斜視図である。
【図59】 この発明の実施の形態28に係る回路遮断器の主要部を示す部分断面斜視図である。
【図60】 実施の形態28に係る回路遮断器の主要部を示す斜視図である。
【図61】 アーク電圧の基礎的特性測定する実験装置を示す回路構成図である。
【図62】 雰囲気圧力のアーク電圧への影響を示すグラフである。
【図63】 電流値のアーク電圧への影響を示すグラフである。
【図64】 実施の形態28の動作を説明する部分断面斜視図である。
【図65】 実施の形態28の動作を説明する部分断面図である。
【図66】 実施の形態28の効果を説明するグラフである。
【図67】 実施の形態28の動作を説明する部分断面斜視図である。
【図68】 この発明の実施の形態29に係る回路遮断器の筒状絶縁物を示す部分断面斜視図である。
【図69】 この発明の実施の形態30に係る回路遮断器の筒状絶縁物を示す断面図である。
【図70】 この発明の実施の形態31に係る回路遮断器の筒状絶縁物を示す断面図である。
【図71】 実施の形態31の別の形状の筒状絶縁物を示す断面図である。
【図72】 この発明の実施の形態32に係る回路遮断器の筒状絶縁物を示す断面図である。
【図73】 この発明の実施の形態33に係る回路遮断器の筒状絶縁物を示す断面図である。
【図74】 この発明の実施の形態34に係る回路遮断器の消弧ユニットを示す斜視図である。
【図75】 実施の形態34に係る回路遮断器の構成を示す分解斜視図である。
【図76】 実施の形態34に係る回路遮断器の消弧ユニット内部を示す部分断面斜視図である。
【図77】 実施の形態34に係る回路遮断器の導体配置を示す斜視図である。
【図78】 図77の断面Cにおける断面図である。
【図79】 この発明の実施の形態35に係る回路遮断器の導体配置を示す斜視図である。
【図80】 図79の断面Cにおける断面図である。
【図81】 この発明の実施の形態36に係る回路遮断器の導体配置を示す斜視図である。
【図82】 図81の断面Cにおける断面図である。
【図83】 導体配置の違いによる電磁開極力の違いを説明するための斜視図である。
【図84】 導体配置の違いによる電磁開極力の違いを説明するためのグラフである。
【図85】 図78に示した各導体断面間の距離関係を示す図である。
【図86】 図80に示した各導体断面間の距離関係を示す図である。
【図87】 図82に示した各導体断面間の距離関係を示す図である。
【図88】 実施の形態37に係る回路遮断器の消弧ユニット内部を示す部分断面斜視図である。
【図89】 この発明の実施の形態38に係る回路遮断器の導体配置および磁性体コアを示す斜視図である。
【図90】 図89の磁性体コア部分における断面図である。
【図91】 この発明の実施の形態39に係る回路遮断器の磁性体コア部分における断面図である。
【図92】 実施の形態39に係る回路遮断器の別の磁性体コア部分における断面図である。
【図93】 実施の形態39に係る回路遮断器の別の磁性体コア部分における断面図である。
【図94】 この発明の実施の形態40に係る回路遮断器の消弧ユニットを示す斜視図である。
【図95】 この発明の実施の形態41に係る回路遮断器の筒状絶縁物を示す断面図である。
【図96】 実施の形態41の動作を説明する図である。
【図97】 実施の形態41の動作を説明する図である。
【図98】 この発明の実施の形態42に係る回路遮断器の固定接点部分を示す斜視図である。
【図99】 この発明の実施の形態43に係る回路遮断器の筒状絶縁物を示す断面図である。
【図100】 この発明の実施の形態44に係る回路遮断器の主要部を示す部分断面図である。
【図101】 この発明の実施の形態45に係る回路遮断器の主要部を示す部分断面図である。
【図102】 この発明の実施の形態46に係る回路遮断器の主要部を示す部分断面図である。
【図103】 この発明の実施の形態47に係る回路遮断器の可動子を示す斜視図である。
【図104】 実施の形態47の動作を説明する図である。
【図105】 実施の形態47の閉成状態の可動子と固定子の位置関係を示す部分断面図である。
【図106】 この発明の実施の形態48に係る回路遮断器の可動子、固定子、および筒状絶縁物を示す断面図である。
【図107】 この発明の実施の形態49に係る回路遮断器の可動子、固定子、および筒状絶縁物を示す断面図である。
【図108】 この発明の実施の形態50に係る回路遮断器の主要部を示す部分断面図である。
【図109】 実施の形態50の筒状空間の作用を説明する部分断面図である。
【図110】 実施の形態50に係る回路遮断器の主要部を示す部分断面図である。
【図111】 この発明の実施の形態51に係る回路遮断器の主要部を示す部分断面図である。
【図112】 この発明の実施の形態52に係る回路遮断器の消弧ユニットを示す部分断面斜視図である。
【図113】 図112の固定子形状を示す斜視図である。
【図114】 この発明の実施の形態53に係る回路遮断器の固定子形状を示す斜視図である。
【図115】 実施の形態53の動作を説明する部分断面図である。
【図116】 この発明の実施の形態54に係る回路遮断器の消弧ユニットを示す部分断面斜視図である。
【図117】 図116の固定子形状を示す斜視図である。
【図118】 実施の形態54の固定子の別の形状を示す斜視図である。
【図119】 この発明の実施の形態55に係る3極限流装置を示す部分断面斜視図である。
【図120】 図119に示す3極限流装置の1極分の主要部を示す部分断面斜視図である。
【図121】 アーク電圧の基礎的特性を測定する実験装置を示す構成図である。
【図122】 雰囲気圧力のアーク電圧への影響を示したグラフである。
【図123】 電流値のアーク電圧への影響を示したグラフである。
【図124】 実施の形態56の動作を説明する部分断面図である。
【図125】 実施の形態56の効果を示すグラフである。
【図126】 実施の形態56の動作を説明する部分断面斜視図である。
【図127】 この発明の実施の形態56に係る限流装置を示す断面図である。
【図128】 この発明の実施の形態57に係る限流装置を示す断面図である。
【図129】 実施の形態3の動作を説明する断面図である。
【図130】 この発明の実施の形態58に係る限流装置の接触子部分を示す部分断面図である。
【図131】 この発明の実施の形態59に係る限流装置の主要部を示す部分断面斜視図である。
【図132】 この発明の実施の形態60に係る限流装置の主要部を示す部分断面斜視図である。
【図133】 この発明の実施の形態61に係る限流装置の接触子部分を示す部分断面図である。
【図134】 この発明の実施の形態62に係る限流装置の接触子部分を示す部分断面図である。
【図135】 この発明の実施の形態63に係る限流装置の接触子部分を示す部分断面図である。
【図136】 この発明の実施の形態64に係る限流装置の接触子部分を示す部分断面図である。
【図137】 この発明の実施の形態65に係る限流装置の接触子部分を示す部分断面図である。
【図138】 この発明の実施の形態66に係る限流装置の可動子を示す斜視図である。
【図139】 実施の形態66に係る限流装置の接触子部分を示す部分断面図である。
【図140】 実施の形態66の動作を説明する部分断面図である。
【図141】 この発明の実施の形態67に係る限流装置の接触子部分を示す部分断面図である。
【図142】 この発明の実施の形態68に係る限流装置の接触子部分を示す部分断面図である。
【図143】 この発明の実施の形態70に係る限流装置の消弧ユニットを示す部分断面斜視図である。
【図144】 実施の形態70の主要部の動作を説明する説明図である。
【図145】 実施の形態70の主要部の動作を説明する説明図である。
【図146】 この発明の実施の形態71に係る限流装置の主要部の動作を説明する説明図である。
【図147】 従来の限流機能付き遮断器を示す部分断面正面図である。
【図148】 従来の限流機能付き遮断器の側面図である。
【図149】 従来の3極限流ユニットを示す部分断面図である。
【図150】 図149の限流ユニットを標準回路遮断器に一体接続して構成される限流遮断器の正面図である。
【図151】 図150の限流遮断器の部分断面側面図である。
【図152】 図149に示す3極限流ユニットの1極の主要部の斜視図である。
【図153】 図152に示した2対の接触子対の分解斜視図である。
Claims (66)
- 各々一端部に接点を有し一対の接点対を形成する第1、第2の接触子、上記接点対に接触圧を与える付勢手段、閉成状態の上記接点対の周りを筒状に取り囲む筒状絶縁物を備え、上記第1、第2の接触子のうち少なくとも一方の接触子を他端部にて回転自在に支持し、接点の閉成状態においては、上記第1、第2の接触子に互いにほぼ対向して逆方向の電流が流れる電路が形成され、かつ、上記第1、第2の接触子の接点を有する一端部が上記筒状絶縁物が囲む筒状空間内に位置し、接点の開成状態においては、上記回転自在に支持された接触子のうち少なくともいずれか一方の接点が上記筒状空間外に位置するように構成したことを特徴とする限流装置。
- 上記第1、第2の接触子の一方が、可動接点と可動アームとからなり可動子回転軸を中心として回転する可動子であり、上記第1、第2の接触子の他方が、上記可動接点と接点対をなす固定接点と上記可動アームにほぼ対向する固定導体とからなる固定子であり、上記可動アームは可動アーム水平部と可動アーム垂直部にてほぼL字状に形成され、接点の閉成状態においては、上記可動アーム水平部が上記固定導体とほぼ平行かつ逆方向の電流が流れるように配置され、かつ、上記可動接点を有する可動子先端部および上記固定接点を有する固定子先端部が上記筒状絶縁物が囲む筒状空間内に位置し、接点の開成状態においては、上記可動接点が上記筒状空間外に位置するように構成したことを特徴とする請求項1記載の限流装置。
- 導体をほぼU字状に曲げてその一端を可動子回転軸から遠い側の端子部に接続するとともに、そのU字形状の他端の内側に固定接点を設けて可動子に対する固定子となし、かつ、上記固定子の固定接点が設けられている1片が閉成状態の可動アーム水平部にほぼ対向する固定導体を形成し、上記固定子には、可動子の回転軌跡と交差する部位に可動子の開閉を許すスリットを設け、また、可動子の開成時に可動接点から見渡せる固定子の固定接点以外の部位を絶縁物で覆ったことを特徴とする請求項2記載の限流装置。
- 可動子回転軸より遠い側の端子部に接続された導体からなる固定子に、可動子接点と接点対をなす固定接点を有し、かつ、可動子の可動アーム水平部に対向して可動アームに流れる電流と逆方向の電流が流れる固定導体を形成するとともに、この固定導体の両側に配置され端子部から固定導体に電流を導く電路上に磁性体コアを配置したことを特徴とする請求項2記載の限流装置。
- 固定導体を、固定接点よりも可動アーム水平部により近づくように屈曲させたことを特徴とする請求項4記載の限流装置。
- 上記第1、第2の接触子の一方が、可動接点と可動アームとからなり可動子回転軸を中心として回転する可動子であり、上記第1、第2の接触子の他方が、上記可動接点と接点対をなす反発接点と上記可動アームにほぼ対向する反発アームとからなり反発子回転軸を中心として回転する反発子であり、上記限流装置はさらに、主たる開口部が上記筒状絶縁物が囲む筒状空間に連通して形成され、上記反発子を収納する蓄圧空間を備え、上記反発アームは反発アーム水平部と反発アーム垂直部とによりほぼL字状に形成され、閉成状態においては、上記反発アーム水平部が上記可動アームの一部とほぼ平行で反対方向の電流が流れるように配置され、かつ、上記可動接点を有する可動子先端部および上記反発接点を有する反発子先端部が上記筒状空間内に位置し、開成状態においては、上記可動子先端部が上記筒状空間外に位置するように構成したことを特徴とする請求項1記載の限流装置。
- 反発子に電流を供給する電路を上記反発子の反可動子側に設け、上記電路の少なくとも反発子先端部と対向する部位に反発子開極軌跡を含む面に沿って反発子の幅とほぼ同幅のスリットを設けたことを特徴とする請求項6記載の限流装置。
- 反発子に電流を供給する電路を反発子の開極軌跡を含む面と交差して配置し、上記電路には反発子もしく可動子の開閉動作を許すスリットを設け、上記電路を、反発アーム水平部よりも可動アームに近い位置に配置し、かつ、上記反発アーム水平部とほぼ平行かつ逆方向の電流が流れるよう構成したことを特徴とする請求項6記載の限流装置。
- 上記第1、第2の接触子の一方が、絶縁物筐体内に収納され、可動接点と、ほぼL字状の可動アームとからなり、回転軸を中心として回転する可動子であり、上記第1、第2の接触子の他方が、上記可動接点と接点対をなす固定接点と、閉成時に上記可動アームの一部とほぼ平行に配置され、かつ可動アームと反対方向に電流が流れる電路とからなる固定子であり、上記限流装置はさらに、上記可動子の先端と対向する位置に配設された消弧板、および上記絶縁物筐体の反対側面に設けられそれぞれ上記可動子および固定子に接続されている端子部を備え、上記固定子は上記両端子部を結ぶ線に対してほぼ垂直に配置され、閉成状態においては上記接点対が上記筒状空間内に位置し、開成状態においては上記可動接点が上記筒状空間外に位置するように構成したことを特徴とする請求項1記載の限流装置。
- 端子部は絶縁物筐体の底面より高い位置に設けられ、可動子および固定子は、互いに平行する電路から屈曲する電路を経てそれぞれ可動子および固定子から遠い側の端子部に接続されるよう構成したことを特徴とする請求項9記載の限流装置。
- 可動子と固定子の接点対が2組設けられ、これら接点対は電気的に直列に接続され、かつ相互に隔壁で隔てられていることを特徴とする請求項9記載の限流装置。
- 閉成状態の接点対の周りを筒状に取り囲む筒状絶縁物の、可動子回転軸と反対側の壁の高さを、可動子回転軸側の壁の高さより高くしたことを特徴とする請求項2、請求項6、および請求項9のいずれか一項記載の限流装置。
- 可動子、固定子もしくは反発子、および閉成状態の接点対の周りを筒状に取り囲む筒状絶縁物を筐体に収納し、上記筐体の可動接点からみて可動子回転軸と反対側の面に排気口を設け、上記排気口は、面積が上記筐体の上記排気口を含む面の半分以下の面積で、かつ、開成状態の可動接点に近接する位置に配置されていることを特徴とする請求項2、請求項6、および請求項9のいずれか一項記載の限流装置。
- 可動子の先端と対向する位置に配置された消弧板と、固定子への通電導体に延設されたアークランナーとを有し、このアークランナーの端部を筒状絶縁物の可動子回転軸と反対側の部位から消弧板側に露出させたことを特徴とする請求項2または請求項9記載の限流装置。
- 可動子と対向し可動子と逆向きの電流が流れる固定導体の部位を、可動子に近接するように屈曲させたことを特徴とする請求項2または請求項9記載の限流装置。
- 可動子への通電導体に接続され、先端部が消弧板近傍に達する転流電極を閉成状態の可動子の背後に設けたことを特徴とする請求項2または請求項9記載の限流装置。
- 可動接点と可動アームとからなり可動子回動軸を中心として回転する可動子、上記可動接点と接点対をなす固定接点と上記可動アームにほぼ対向する固定導体とからなる固定子、閉成状態の上記接点対の周りを筒状に取り囲む筒状絶縁物、および上記接点対に接触圧を与える付勢手段を備え、閉成状態において上記接点対が上記筒状絶縁物が囲む筒状空間内に位置し、開成状態において上記可動接点が上記筒状空間外に位置するように構成したことを特徴とする限流機能を有する回路遮断器。
- 可動アームは、可動アーム水平部と可動アーム垂直部にてほぼL字状に形成され、閉成状態において可動アーム水平部が固定導体とほぼ平行に位置し、かつ上記可動アーム水平部には固定導体と反対方向の電流が流れるように構成したことを特徴とする請求項17記載の限流機能を有する回路遮断器。
- 筒状絶縁物で形成される筒状空間の内壁面にアークとの接触面積を増やすひだを設けたことを特徴とする請求項17記載の限流機能を有する回路遮断器。
- 筒状空間を形成する筒状絶縁物の材質を、接点対を取り囲む部分とそれ以外の部分とで変え、接点対を取り囲む部分の絶縁物をアークにより大量の蒸気を発生しやすい材質としたことを特徴とする請求項17記載の限流機能を有する回路遮断器。
- 筒状空間の内壁を、可動子先端の回転軌跡に沿わせた形状としたことを特徴とする請求項17記載の限流機能を有する回路遮断器。
- 筒状空間に位置する固定子は、固定接点だけが筒状空間に露出するよう、固定接点の周囲を絶縁物で覆ったことを特徴とする請求項17記載の限流機能を有する回路遮断器。
- 閉成状態の接点対の周りを筒状に取り囲む筒状絶縁物の、可動子回転中心と反対側の壁の高さを、可動子回転中心側の壁の高さより高くしたことを特徴とする請求項17記載の限流機能を有する回路遮断器。
- 固定子を形成する固定導体と可動子に通電する導体の一部を平行かつ近接して配置し、通電時に上記両導体に流れる電流方向が一致するようにしたことを特徴とする請求項17記載の限流機能を有する回路遮断器。
- 固定導体と、可動子に通電する導体とを、可動子が回転する軌跡を含む面において平行に配置したことを特徴とする請求項24記載の限流機能を有する回路遮断器。
- 固定導体と、可動子に通電する導体とを囲むコアを設け、上記コアの両極を閉成状態の可動アーム水平部に対向するように配置したことを特徴とする請求項24記載の限流機能を有する回路遮断器。
- 固定導体と、可動子に通電する導体と、可動子とを囲むコアを設けたことを特徴とする請求項24記載の限流機能を有する回路遮断器。
- 可動子、固定子、および固定接点の周りを筒状に取り囲む筒状絶縁物を筺体に収納し、上記筺体の可動接点からみて可動子回転中心と反対側の面に排気口を設け、上記排気口は、面積が上記筺体の上記排気口を含む面の半分以下の面積で、かつ、開成状態の可動接点に近接する位置に配置されていることを特徴とする請求項17記載の限流機能を有する回路遮断器。
- 可動子への通電導体に延設され先端が消弧板上方の排気口近傍に達する転流電極を備え、上記転流電極には、可動子の回動を許すスリットを設け、可動子開成位置において可動接点が転流電極に近接するようにしたことを特徴とする請求項28記載の限流機能を有する回路遮断器。
- 可動子の開極軌跡にほぼ沿う位置に、筺体の外部上方または下方から筺体を挟み込むか、または筺体を取り囲むコアを設けたことを特徴とする請求項28記載の限流機能を有する回路遮断器。
- 固定接点を、筒状空間に連通する蓄圧空間内に配置したことを特徴とする請求項17記載の限流機能を有する回路遮断器。
- 固定接点の周りの固定導体の一部を絶縁物で覆ったことを特徴とする請求項31記載の限流機能を有する回路遮断器。
- 蓄圧空間を固定子の上方のみに設けたことを特徴とする請求項31記載の限流機能を有する回路遮断器。
- 可動子の先端と対向する位置に配置された消弧板と、固定子の固定接点側端部に接続されたアークランナーとを有し、上記アークランナーの先端部を筒状絶縁物の可動子回転中心と反対側の部位から上記消弧板側に露出させたことを特徴とする請求項17載の限流機能を有する回路遮断器。
- アークランナーの先端部を周囲の筒状絶縁物の上面より低くしたことを特徴とする請求項34記載の限流機能を有する回路遮断器。
- 固定接点が位置する筒状空間と、アークランナー先端を取り囲むアークランナー筒状空間とを管路で連通したことを特徴とする請求項35記載の限流機能を有する回路遮断器。
- 可動アームの形状をほぼ鈎型にしたことを特徴とする請求項17記載の限流機能を有する回路遮断器。
- 可動アームの形状をほぼS字状にしたことを特徴とする請求項17記載の限流機能を有する回路遮断器。
- 固定接点表面から見渡せる可動アームの可動接点より可動子回転中心側の部位を絶縁物にて覆ったことを特徴とする請求項18、請求項37および請求項38のいずれか一項記載の限流機能を有する回路遮断器。
- 固定導体の可動アームと対向する部位を可動アーム側へ屈曲し、可動アームとの平行部分を形成したことを特徴とする請求項17記載の限流機能を有する回路遮断器。
- 可動子の先端と対向する位置に配置される消弧板と、消弧板の上方で、開成位置にある可動子の消弧板側端面に近接する対向電極とを備えたことを特徴とする請求項17記載の限流機能を有する回路遮断器。
- 可動子の先端と対向する位置に配置される消弧板を有し、かつ、筒状絶縁物が形成する筒状空間の可動子側開口部が上記消弧板方向を向くよう、筒状空間の内壁の可動子回転中心側の壁の高さを可動子回転中心と反対側の壁の高さより高くしたことを特徴とする請求項17記載の限流機能を有する回路遮断器。
- 複数の馬蹄形の消弧板を有し、上記消弧板の馬蹄形中央部内面の部位が、筒状絶縁物の可動子回転中心と反対側の壁面を延長した面と、上記可動子先端部が描く軌跡との間に位置するように構成したことを特徴とする請求項17記載の限流機能を有する回路遮断器。
- 固定接点を有する固定導体をコ字状に曲げて可動子回転中心から遠い側に引き出すとともに、上記固定導体の可動子の回転軌跡と交差する部位に可動子の閉成を許すスリットを設けたことを特徴とする請求項17記載の限流機能を有する回路遮断器。
- 可動子と対向し可動子と逆向きの電流が流れる固定導体の部位を、可動子に近接するように屈曲させたことを特徴とする請求項44記載の限流機能を有する回路遮断器。
- 開成状態の可動接点から見渡せる固定導体を絶縁物で覆ったことを特徴とする請求項44または請求項45記載の限流機能を有する回路遮断器。
- 固定導体を可動子回転中心から遠い側に引き出すものにおいて、固定導体の一部が可動子と対向し、この対向部分に流れる電流の向きが可動子の電流と逆になるように配置したことを特徴とする請求項17記載の限流機能を有する回路遮断器。
- 絶縁物筺体内に収納され、可動接点と、ほぼL字状の可動アームとからなり、回転軸を中心として回転する可動子、上記可動接点と接点対をなす固定接点と、閉成時に上記可動アームの一部とほぼ平行に配置され、かつ可動アームと反対方向に電流が流れる電路とからなる固定子、閉成状態の上記接点対の周りを筒状空間で取り囲む筒状絶縁物、上記接点対に接触圧を与える付勢手段、開成状態の可動接点と対向する位置に配設された消弧板、および上記絶縁物筺体の反対側面に設けられそれぞれ上記可動子および固定子に接続されている端子部を備え、閉成状態においては上記接点対が上記筒状空間内に位置し、開成状態においては上記可動接点が上記筒状空間外に位置するように構成したことを特徴とする限流装置。
- 端子部が絶縁物筺体の底面より高い位置に設けられていることを特徴とする請求項48記載の限流装置。
- 可動子および固定子は、互いに平行する電路からほぼU字状に屈曲する電路を経てそれぞれ可動子および固定子に近い側の端子部に接続されるよう構成したことを特徴とする請求項49記載の限流装置。
- 可動子および固定子は、互いに平行する電路から屈曲する電路を経てそれぞれ可動子および固定子から遠い側の端子部に接続されるよう構成したことを特徴とする請求項49記載の限流装置。
- 固定子への通電導体に延設されたアークランナーを有し、このアークランナーの先端を消弧板側に絶縁物から露出させたことを特徴とする請求項48記載の限流装置。
- アークランナーの周囲にアークランナー筒状空間を形成する絶縁物を設けたことを特徴とする請求項52記載の限流装置。
- 可動子への通電導体に接続され、先端部が消弧板近傍に達する転流電極を可動子の背後に設けたことを特徴とする請求項48または請求項52記載の限流装置。
- 転流電極に可動子の開成時の回動を許すスリットを設け、可動子開成位置において可動接点が上記転流電極に近接するようにしたことを特徴とする請求項54記載の限流装置。
- 筒状絶縁物の筒状空間が消弧板側に向かって広がる形状にしたことを特徴とする請求項48記載の限流装置。
- 筒状絶縁物が形成する筒状空間の開口端が消弧板方向を向くよう、筒状空間の内壁の可動子回転中心から遠い側の壁の高さを可動子回転中心に近い側の壁の高さより低くしたことを特徴とする請求項48記載の限流装置。
- 筒状空間を形成する筒状絶縁物の材質を、接点対を取り囲む部分とそれ以外の部分とで変え、接点対を取り囲む部分の絶縁物をアークにより大量の蒸気を発生しやすい材質としたことを特徴とする請求項48記載の限流装置。
- 筒状空間の内壁を、可動子先端の回転軌跡に沿わせた断面形状にしたことを特徴とする請求項48記載の限流装置。
- 筒状空間に位置する固定子の部位において、固定接点だけが筒状空間に露出するよう固定接点の周囲を絶縁物で覆ったことを特徴とする請求項48記載の限流装置。
- 筒状絶縁物が形成する筒状空間の開口端において、筒状空間の内壁の可動子回転中心に近い側の壁の高さを、可動子回転中心から遠い側の壁の高さより低くしたことを特徴とする請求項48記載の限流装置。
- 閉成状態において固定子と対向し上記固定子と逆向きの電流が流れる可動アームの一部が、上記固定子に近接するよう上記可動アームを屈曲させたことを特徴とする請求項48記載の限流装置。
- 閉成状態の可動子と対向し可動子と逆向きの電流が流れる固定子の固定導体を、可動子に近接するよう屈曲させたことを特徴とする請求項48記載の限流装置。
- 固定接点表面から見渡せる可動アームの可動接点より可動子回動中心側の部位を絶縁物にて覆ったことを特徴とする請求項48または請求項63記載の限流装置。
- 可動子と固定子の接点対が2組設けられ、これら接点対は電気的に直列に接続され、かつ相互に隔壁で隔てられていることを特徴とする請求項48記載の限流装置。
- 回路遮断器の長手方向に筺体同士を連接して一体化したことを特徴とする請求項48乃至請求項65のいずれか一項記載の限流装置。
Applications Claiming Priority (9)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP37246298 | 1998-12-28 | ||
| JP10-372462 | 1998-12-28 | ||
| JP11-10745 | 1999-01-19 | ||
| JP1074599 | 1999-01-19 | ||
| JP11-69986 | 1999-03-16 | ||
| JP6998699 | 1999-03-16 | ||
| JP24006699 | 1999-08-26 | ||
| JP11-240066 | 1999-08-26 | ||
| PCT/JP1999/007303 WO2000041202A1 (en) | 1998-12-28 | 1999-12-24 | Current limiter and circuit breaker with current-limiting function |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPWO2000041202A1 JPWO2000041202A1 (ja) | 2002-05-08 |
| JP4265725B2 true JP4265725B2 (ja) | 2009-05-20 |
Family
ID=27455452
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000592847A Expired - Fee Related JP4265725B2 (ja) | 1998-12-28 | 1999-12-24 | 限流装置および限流機能を有する回路遮断器 |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US6373014B1 (ja) |
| EP (1) | EP1069584B1 (ja) |
| JP (1) | JP4265725B2 (ja) |
| KR (1) | KR100348564B1 (ja) |
| CN (1) | CN1199216C (ja) |
| DE (1) | DE69937107T2 (ja) |
| TW (1) | TW501157B (ja) |
| WO (1) | WO2000041202A1 (ja) |
Families Citing this family (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6573815B1 (en) | 1999-12-02 | 2003-06-03 | Mitsubishi Denki Kabushiki Kaisha | Circuit breaker |
| US7138597B2 (en) * | 2004-11-12 | 2006-11-21 | Eaton Corporation | Circuit breaker with arc gas propelled movable contact and opposed arc cutoff shutters |
| CA2510681C (en) * | 2005-06-28 | 2007-03-20 | Vassili Rozine | Device and a method for advanced protection from short circuit current |
| JP4522362B2 (ja) * | 2005-12-21 | 2010-08-11 | 三菱電機株式会社 | 回路遮断器 |
| US7716816B2 (en) * | 2006-09-22 | 2010-05-18 | Rockwell Automation Technologies, Inc. | Method of manufacturing a switch assembly |
| US7551050B2 (en) * | 2006-09-22 | 2009-06-23 | Rockwell Automation Technologies, Inc. | Contactor assembly with arc steering system |
| DE112007003283T5 (de) | 2007-01-24 | 2010-02-04 | Siemens Aktiengesellschaft | Doppelunterbrechungskontaktsystem für einen Niederspannungsleistungsschalter und das Doppelunterbrechungskontaktsystem umfassender Kompaktleistungsschalter |
| US8164018B2 (en) * | 2009-03-23 | 2012-04-24 | Siemens Industry, Inc. | Circuit breaker arc chambers and methods for operating same |
| JP5474207B2 (ja) | 2010-04-19 | 2014-04-16 | カーリング テクノロジーズ、 インコーポレイテッド | 向上した消弧性能を有する回路安全装置 |
| JP5307779B2 (ja) * | 2010-08-31 | 2013-10-02 | 富士電機機器制御株式会社 | 電磁開閉器 |
| CN102005345B (zh) * | 2010-11-11 | 2012-11-21 | 江苏辉能电气有限公司 | 一种塑壳低压断路器的灭弧模块 |
| US8487721B2 (en) * | 2011-01-06 | 2013-07-16 | General Electric Company | Circuit interruption device and method of assembly |
| WO2013017159A1 (en) * | 2011-08-01 | 2013-02-07 | Alstom Technology Ltd | Current limiter |
| US9401251B2 (en) | 2012-05-16 | 2016-07-26 | General Electric Company | Molded case circuit breaker |
| CN102903576B (zh) * | 2012-10-27 | 2015-06-03 | 东莞市三友联众电器有限公司 | 磁保持继电器的簧片开关组件 |
| US9129761B2 (en) * | 2012-12-20 | 2015-09-08 | Eaton Electrical Ip Gmbh & Co. Kg | Switching device suitable for direct current operation |
| CN104064895A (zh) * | 2013-03-22 | 2014-09-24 | 富士康(昆山)电脑接插件有限公司 | 端子模组及其制造方法 |
| JP6277795B2 (ja) * | 2014-03-14 | 2018-02-14 | オムロン株式会社 | 電磁継電器 |
| MX359544B (es) * | 2014-03-27 | 2018-10-02 | Schneider Electric Usa Inc | Contacto de conmutador de cuchilla con porcion de alta resistencia. |
| CN105742092B (zh) * | 2014-07-28 | 2018-11-02 | 宁波高新区天都科技有限公司 | 互补性电路消弧方法和功率扩展方法及其基础结构 |
| US10833555B2 (en) * | 2015-11-27 | 2020-11-10 | Foundation Of Soongsil University Industry Cooperation | Motor for reducing a repulsive force |
| DE102016216392A1 (de) | 2016-08-31 | 2018-03-01 | Siemens Aktiengesellschaft | Schalteinheit für einen elektrischen Schalter und elektrischer Schalter |
| CN107359058B (zh) * | 2017-05-12 | 2019-04-16 | 中科电力装备集团有限公司 | 一种变压器中隔离开关用动静触头结构 |
| DE102017129657A1 (de) * | 2017-07-10 | 2019-01-10 | Dehn + Söhne Gmbh + Co. Kg | Anordnung zur nicht-reversiblen Detektion und Anzeige von elektrischen Überströmen oder Stromgrenzwerten mittels eines vorkonfektionierten Leiters |
| JP7304799B2 (ja) * | 2019-11-28 | 2023-07-07 | 東京エレクトロン株式会社 | 基板処理装置および配管アセンブリ |
| CN116601734A (zh) * | 2020-07-22 | 2023-08-15 | 吉加瓦有限责任公司 | 悬浮式熔丝装置 |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0554783A (ja) * | 1991-08-27 | 1993-03-05 | Matsushita Electric Works Ltd | 回路遮断器 |
| JPH0668738A (ja) * | 1992-08-21 | 1994-03-11 | Mitsubishi Electric Corp | 開閉器 |
| JPH08287813A (ja) * | 1995-04-19 | 1996-11-01 | Mitsubishi Electric Corp | 限流素子および配線用遮断器 |
| JPH0992123A (ja) * | 1995-09-22 | 1997-04-04 | Fuji Electric Co Ltd | 回路遮断器 |
| JPH09171757A (ja) * | 1997-01-10 | 1997-06-30 | Hitachi Ltd | 回路遮断器 |
| JPH10269923A (ja) * | 1997-03-25 | 1998-10-09 | Mitsubishi Electric Corp | 限流装置 |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0658785B2 (ja) * | 1985-06-12 | 1994-08-03 | 株式会社東芝 | 回路しや断器 |
| JPS6443973A (en) | 1987-08-11 | 1989-02-16 | Agency Ind Science Techn | Solid electrolyte fuel cell electrode |
| JPH088048A (ja) | 1994-06-21 | 1996-01-12 | Sekisui Chem Co Ltd | 高周波誘導加熱装置 |
| JP3352560B2 (ja) * | 1995-03-13 | 2002-12-03 | 寺崎電気産業株式会社 | 回路遮断器 |
-
1999
- 1999-12-24 CN CNB998054399A patent/CN1199216C/zh not_active Expired - Fee Related
- 1999-12-24 DE DE69937107T patent/DE69937107T2/de not_active Expired - Lifetime
- 1999-12-24 EP EP99961389A patent/EP1069584B1/en not_active Expired - Lifetime
- 1999-12-24 WO PCT/JP1999/007303 patent/WO2000041202A1/ja not_active Ceased
- 1999-12-24 KR KR1020007009469A patent/KR100348564B1/ko not_active Expired - Fee Related
- 1999-12-24 JP JP2000592847A patent/JP4265725B2/ja not_active Expired - Fee Related
- 1999-12-27 TW TW088122985A patent/TW501157B/zh not_active IP Right Cessation
-
2000
- 2000-08-17 US US09/641,268 patent/US6373014B1/en not_active Expired - Lifetime
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0554783A (ja) * | 1991-08-27 | 1993-03-05 | Matsushita Electric Works Ltd | 回路遮断器 |
| JPH0668738A (ja) * | 1992-08-21 | 1994-03-11 | Mitsubishi Electric Corp | 開閉器 |
| JPH08287813A (ja) * | 1995-04-19 | 1996-11-01 | Mitsubishi Electric Corp | 限流素子および配線用遮断器 |
| JPH0992123A (ja) * | 1995-09-22 | 1997-04-04 | Fuji Electric Co Ltd | 回路遮断器 |
| JPH09171757A (ja) * | 1997-01-10 | 1997-06-30 | Hitachi Ltd | 回路遮断器 |
| JPH10269923A (ja) * | 1997-03-25 | 1998-10-09 | Mitsubishi Electric Corp | 限流装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20010085202A (ko) | 2001-09-07 |
| KR100348564B1 (ko) | 2002-08-14 |
| TW501157B (en) | 2002-09-01 |
| EP1069584A4 (en) | 2002-11-27 |
| CN1298548A (zh) | 2001-06-06 |
| CN1199216C (zh) | 2005-04-27 |
| EP1069584A1 (en) | 2001-01-17 |
| US6373014B1 (en) | 2002-04-16 |
| DE69937107D1 (de) | 2007-10-25 |
| EP1069584B1 (en) | 2007-09-12 |
| WO2000041202A1 (en) | 2000-07-13 |
| DE69937107T2 (de) | 2008-06-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4265725B2 (ja) | 限流装置および限流機能を有する回路遮断器 | |
| JPWO2000041202A1 (ja) | 限流装置および限流機能を有する回路遮断器 | |
| JP2009054389A (ja) | 回路遮断器 | |
| JP4360013B2 (ja) | 回路遮断器 | |
| JP2003197053A (ja) | 消弧装置及びそれを用いた車載用開閉器 | |
| JP3099690B2 (ja) | 回路遮断器 | |
| JP3997818B2 (ja) | 配線用回路しゃ断器 | |
| JP3955702B2 (ja) | 回路遮断器 | |
| EP0054834A1 (en) | Arc restricting device for a circuit breaker | |
| JPS60189130A (ja) | 複合型遮断装置 | |
| JP3959677B2 (ja) | 回路遮断器 | |
| JP2996808B2 (ja) | 開閉器 | |
| JP2633959B2 (ja) | 回路遮断器 | |
| JP4140204B2 (ja) | 限流機構およびそれを備えた回路遮断器 | |
| KR880001790Y1 (ko) | 회로차단기 | |
| JP4058967B2 (ja) | 回路しゃ断器 | |
| CN1156865C (zh) | 电路断路器 | |
| JPH0135390Y2 (ja) | ||
| JP3513210B2 (ja) | 限流遮断器 | |
| JPH0135389Y2 (ja) | ||
| JPS63264829A (ja) | 開閉器 | |
| JPS6226724A (ja) | ガス遮断器 | |
| JPH0218515Y2 (ja) | ||
| JPH0156491B2 (ja) | ||
| JP2001155616A (ja) | 回路遮断器 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051013 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080916 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081117 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081216 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090114 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090210 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090210 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 4265725 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120227 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130227 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130227 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140227 Year of fee payment: 5 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |