WO2000041202A1 - Limiteur de courant et disjoncteur avec limitation de courant - Google Patents

Limiteur de courant et disjoncteur avec limitation de courant Download PDF

Info

Publication number
WO2000041202A1
WO2000041202A1 PCT/JP1999/007303 JP9907303W WO0041202A1 WO 2000041202 A1 WO2000041202 A1 WO 2000041202A1 JP 9907303 W JP9907303 W JP 9907303W WO 0041202 A1 WO0041202 A1 WO 0041202A1
Authority
WO
WIPO (PCT)
Prior art keywords
mover
arc
contact
current
current limiting
Prior art date
Application number
PCT/JP1999/007303
Other languages
English (en)
French (fr)
Inventor
Takao Mitsuhashi
Mitsuru Tsukima
Mitsugu Takahashi
Masahiro Fushimi
Kazunori Fukuya
Shiro Murata
Shinji Yamagata
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to EP99961389A priority Critical patent/EP1069584B1/en
Priority to JP2000592847A priority patent/JP4265725B2/ja
Priority to DE69937107T priority patent/DE69937107T2/de
Priority to KR1020007009469A priority patent/KR100348564B1/ko
Publication of WO2000041202A1 publication Critical patent/WO2000041202A1/ja
Priority to US09/641,268 priority patent/US6373014B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H77/00Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting
    • H01H77/02Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism
    • H01H77/10Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrodynamic opening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/98Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being initiated by an auxiliary arc or a section of the arc, without any moving parts for producing or increasing the flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H77/00Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting
    • H01H77/02Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism
    • H01H2077/025Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with pneumatic means, e.g. by arc pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/02Housings; Casings; Bases; Mountings
    • H01H71/025Constructional details of housings or casings not concerning the mounting or assembly of the different internal parts
    • H01H71/0257Strength considerations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H73/00Protective overload circuit-breaking switches in which excess current opens the contacts by automatic release of mechanical energy stored by previous operation of a hand reset mechanism
    • H01H73/02Details
    • H01H73/18Means for extinguishing or suppressing arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H77/00Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting
    • H01H77/02Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism
    • H01H77/06Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electromagnetic opening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H77/00Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting
    • H01H77/02Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism
    • H01H77/10Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrodynamic opening
    • H01H77/107Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrodynamic opening characterised by the blow-off force generating means, e.g. current loops
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H77/00Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting
    • H01H77/02Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism
    • H01H77/10Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrodynamic opening
    • H01H77/107Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrodynamic opening characterised by the blow-off force generating means, e.g. current loops
    • H01H77/108Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrodynamic opening characterised by the blow-off force generating means, e.g. current loops comprising magnetisable elements, e.g. flux concentrator, linear slot motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/302Means for extinguishing or preventing arc between current-carrying parts wherein arc-extinguishing gas is evolved from stationary parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/34Stationary parts for restricting or subdividing the arc, e.g. barrier plate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/34Stationary parts for restricting or subdividing the arc, e.g. barrier plate
    • H01H9/342Venting arrangements for arc chutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/44Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet
    • H01H9/446Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet using magnetisable elements associated with the contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/46Means for extinguishing or preventing arc between current-carrying parts using arcing horns

Definitions

  • the present invention relates to a current limiting device that generates an arc during a current limiting operation and a circuit breaker having a current limiting function.
  • FIG. 147 is a perspective view and a partial cross-sectional view showing a conventional circuit breaker disclosed in, for example, Japanese Patent Publication No. 1-43973, and FIG.
  • the current limiting element portion electrically connected in series with the circuit breaker section 114 by 0, 1001 is the current limiting element having a movable contact 1002 and a support 1171 made of a magnetic material.
  • the mover of the section 1103, 1005 is the stator of the current limiting element section 110 having the fixed contact 106, the mover 1001 and the stator 10 0 and 5 constitute a contact pair.
  • Reference numeral 1280 denotes an excitation coil electrically connected in series with the contact pair
  • reference numeral 108 denotes a mover contact pressure panel for generating an appropriate contact pressure on the contact pair.
  • 1 0 1 5 is a terminal
  • 1 0 4 5 is a handle
  • 1 7 2 1 is a flexible conductor
  • 1 0 9 5 is a spring seat
  • 1 1 10 is an exhaust hole
  • 1 1 3 5 is a button
  • 1300 is a packing.
  • FIG. 148 is a right side view of FIG.
  • the circuit breaker breaker section 1140, conductor 1290, excitation coil 1280, mover 1001, stator 1 005, terminal section 1100 Current flows through path 5.
  • the contact opens due to the electromagnetic repulsion between the movable contact 1 0 2 and the fixed contact 1 0 6.
  • An arc occurs. Since the pressure between the contacts increases due to this arc, the piston 1 135 of the mover 1001 is pushed against the force of the panel 108.
  • the excitation coil 1280 constituting the coil plunger can simultaneously support the opening of the coil. Receive.
  • gas on the back side of the movable contact The gas is exhausted from the exhaust hole 110, and the pressure increased by the arc is additionally exhausted. Then, the opening is maintained until the pressure sufficient to maintain the opening cannot be maintained against the force of the mover contact pressure panel 110-18.
  • the armature 1 starts closing operation by the force of the armature contact pressure panel 108.
  • the exhaust holes 111 are provided at an angle to the opening direction to increase the fluid resistance of the exhaust. Further, the direction of the exhaust holes 1 1 1 0 is inclined such that the fluid resistance of the exhaust during the opening operation is reduced.
  • the circuit is formed mainly by the electric resistance generated between the contacts 1002 and 106 and the inductance of the excitation coil 128. The flowing fault current is limited.
  • FIG. 149 is a partial cross-sectional view showing a conventional three-pole current limiting unit disclosed in Japanese Patent Publication No. 8-80048, for example.
  • a standard current circuit breaker 1300 and a case are connected to each other to form a current limit circuit breaker (a circuit breaker having a current limiting function).
  • FIG. 151 is a partial cross-sectional view in which a part of the side wall of the housing is cut away so that the internal configuration of the current limiting circuit breaker can be seen.
  • two pairs of contactors connected in series as shown in FIG. 152 are arranged.
  • FIG. 153 is an exploded perspective view of main components so that the configuration of the two contact pairs shown in FIG. 152 can be understood.
  • 100 1 a and 100 1 b are movable contacts 100 2 a and 100 2 b and movable arms 100 4 a and 100 4 b.
  • the first mover and the second mover, each composed of the following, 1005a, 1005b are fixed contacts 1006a, 1006b and fixed conductors 1007a, These are the first stator and the second stator, each composed of 1007b.
  • the first mover 1001a and the first stator 1005a, and the second mover 1001b and the second stator 1005b each form a contact pair. Has formed.
  • 1005a, 1005b, and 1105c are terminals provided on one side of the housing, and 11016a, 11016b, and 11016c are the opposite side of the housing.
  • the first stator 1005a is connected to the terminal 101016a
  • the second stator 1005b is connected to the terminal 101005a via the connecting conductor 104.
  • the first mover 1 001a and the second mover 1 001b are electrically connected to each other by the flexible conductor 1072 at the end opposite to the movable contacts 1 002a and 1 002b. It is connected to the.
  • the electric circuit is composed of the terminal section 1061a, fixed conductor 1007a, fixed contact 1006a, movable contact 1002a, movable arm 1004a, flexible conductor 10072, movable arm 1004b, movable. It is composed of the path of contact 10 ⁇ 2b, fixed contact 1006b, fixed conductor 1007b, connection conductor 1004, and terminal section 1005a.Two pairs of contacts are electrically connected in series. It is connected.
  • the above-mentioned pair of contactors symmetrically divides the partition wall 1 100 arranged in a direction substantially perpendicular to the surface (bottom surface of the housing) connecting the terminal portions 115a and 11016a provided at both ends of the housing.
  • the planes are arranged so as to be substantially symmetrical with respect to each other.
  • the first mover 1 001a and the second mover 1 001b are rotatably supported by a rotating shaft 1013 penetrating the partition wall 1 100, and the first mover 1 001a and the second movable
  • the rotor 1 001 b is urged toward the first stator 1005 a and the second stator 1005 b by a twist panel 1101 a and 1101 b (not shown), respectively.
  • Horseshoe-shaped arc-extinguishing plates 11019a and 11019b are respectively arranged at positions opposite to the tips where the contacts of the contactor pairs are provided.
  • the electromagnetic repulsive force acting on the first movable element 1001a and the second movable element 1001b is determined by the two contactor pairs. Since the partition 1100 is a plane-symmetric arrangement with a symmetry plane, the values are substantially equal, and the opening speeds of the two contactor pairs are substantially the same. Therefore, no torsional force is generated in the flexible conductor 1072 connecting the first mover 1001a and the second mover 1001b. Also, since the arc energies to be processed in the two spaces separated by the partition walls 1100 are almost equal, the members arranged in one space, for example, a movable contact, a fixed contact, an arc extinguishing plate, etc.
  • the current limiting unit 1200 when the current limiting unit 12000 and the standard circuit breaker 1300 are directly connected to form a current limiting circuit breaker, the current limiting unit 1200 If the length is too long, the overall length of the current-limiting circuit breaker will be too long, and the storage capacity in the switchboard etc. may decrease. Therefore, in the conventional current limiting unit, the longitudinal direction of the contact pairs is arranged so as to be substantially perpendicular to the surface connecting the terminal portions provided at both ends of the housing, and the two contact pairs are arranged in the width direction. The minimum length of the current-limiting circuit breaker is minimized by juxtaposition.
  • the width W and the height H of the current limiting unit 1200 should be equal to or less than the width and the height of the standard circuit breaker 1300. It is clear that. However, considering the connection between the current-limiting unit 1200 and the standard circuit breaker 130, the width W of the current-limiting unit 1200 is set to the width of the standard circuit breaker 130,000. It is better to be the same. In the current-limiting element part of the conventional circuit breaker as shown in Fig. 147 and Fig. 148, the movable contact is always in a narrow cylindrical space, so that the space is filled with the arc. Insulation recovery between contacts during current interruption due to electrode metal vapor cannot be sufficiently obtained.
  • the movable contact easily comes into contact with the cylindrical wall surface due to the movement of the mover, and there is a high possibility of dielectric breakdown on the wall surface. For these reasons, it is difficult to obtain a current interrupting function by using the current limiting element alone, and it is necessary to separately provide an interrupting section having a function of interrupting the current. Therefore, there is a problem that the size of the entire circuit breaker becomes large, the structure becomes complicated, and the cost increases.
  • the current-limiting element 113 has an excitation coil 128 to assist the opening of the mover 101 during current-limiting operation, and has a high impedance configuration. .
  • a large conduction loss and an abnormal temperature rise due to conduction are likely to occur. Therefore, when a large current carrying capacity is required, there is a problem that the conventional circuit breaker cannot be used.
  • the mover 1001 since the opening operation of the mover 1001 is performed linearly, the mover 1001 is required to secure a contact separation distance.
  • the size of the direction in which the switch opens and closes (contact opening and closing operation direction) is large.
  • the size in the above direction is the sum of the terminal portion, the stator, the mover, the space in which the mover moves, the space for accommodating the flexible conductor, and the thickness of the housing wall. Therefore, if the size of the mover in the direction in which it moves directly is limited, there is a problem that a sufficient separation distance cannot be secured, and high pressure cannot be effectively linked to an increase in arc voltage.
  • high pressure is not effectively linked to an increase in arc voltage, an unnecessary increase in pressure occurs, and a problem arises in that extremely large housing strength is required to suppress the increase.
  • the present invention has been made to solve the above-described problems, and has as its object to obtain a low-cost current limiting device having an excellent current limiting function and an interrupting function with one arc extinguishing device. I have.
  • Another object of the present invention is to obtain a current limiting device having excellent current limiting performance and having a current limiting function with small impedance.
  • Another object of the present invention is to obtain a small current limiting device having a short dimension in the contact opening / closing operation direction.
  • the present invention is intended to provide a current limiting device capable of suppressing an increase in internal pressure of a housing at the time of shutoff which does not effectively lead to an improvement in current limiting performance, and reducing the strength required for the housing. Is what you do.
  • the present invention has been made to solve the above-described problems, and has as its object to obtain a low-cost circuit breaker having an excellent current limiting function and an interrupting function with one arc extinguishing device. .
  • Another object of the present invention is to obtain a circuit breaker having excellent current limiting performance and having a current limiting function with small impedance.
  • Another object of the present invention is to provide a small circuit breaker having a small current limiting function having a short dimension in the contact opening / closing operation direction.
  • the present invention suppresses a rise in the internal pressure of the housing at the time of shutoff which does not effectively lead to an improvement of the current limiting performance, and a circuit interrupter having a current limiting function capable of reducing the strength required for the housing. I want to get a bowl.
  • Another object of the present invention is to provide a current limiting device that has an excellent current limiting function and that is less likely to cause a housing crack due to an increase in internal pressure during a current limiting operation.
  • the purpose is to get.
  • Another object of the present invention is to provide a current limiting device which is excellent in current limiting performance, hardly causes an abnormal temperature rise during energization, and excellent in energization reliability.
  • Another object of the present invention is to obtain a current limiting device having excellent current limiting performance and a small number of components.
  • Another object of the present invention is to obtain a current limiting device with further improved current limiting performance. Disclosure of the invention
  • a current limiting device comprises: first and second contacts each having a contact at one end to form a pair of contacts; means for applying a contact pressure to the contact pair; A cylindrical insulator surrounding the contact point in a cylindrical shape; at least one of the first and second contacts is rotatably supported at the other end; In the formed state, an electric path through which currents in opposite directions flow substantially opposite to each other is formed on the first and second contacts, and one end of the first and second contacts having a contact point of the first and second contacts is formed as described above. It is located in the cylindrical space surrounded by the cylindrical insulator, and when the contacts are open, at least one of the rotatably supported contacts is located outside the cylindrical space. It was done.
  • a movable element comprising a movable contact and a movable arm and rotating about a movable element rotation axis; a fixed contact forming a contact pair with the movable contact; and a fixed contact substantially opposed to the movable arm.
  • a stationary insulator comprising a fixed conductor, a cylindrical insulator surrounding the contact pair in a closed state in a cylindrical shape, and a contact pressure panel for applying a contact pressure to the contact pair, wherein the movable arm is a movable arm
  • the horizontal portion and the vertical portion of the movable arm are formed in a ragged shape, and when the contacts are closed, the horizontal portion of the movable arm is arranged so that current flows in a direction substantially parallel to and opposite to the fixed conductor.
  • a tip end of the mover having the movable contact and a tip end of the stator having the fixed contact are located in a cylindrical space surrounded by the cylindrical insulator. It is configured so as to be located outside the cylindrical space.
  • the conductor is bent into a substantially U-shape, one end of which is connected to the terminal part on the far side from the mover rotation axis, and a fixed contact is provided inside the other end of the u-shape to fix the mover.
  • a fixed conductor of the stator is provided.
  • One piece forms a fixed conductor that roughly faces the horizontal part of the movable arm in a closed state, and the stator has a rotation locus of the movable element.
  • a slit that allows opening and closing of the mover is provided at a location that intersects with the armature, and the portion other than the fixed contact of the stator that can be seen from the movable contact when the mover is opened is covered with an insulator.
  • stator composed of a conductor connected to the terminal portion farther from the rotation axis of the mover has a fixed contact that forms a contact pair with the mover contact, and faces the movable arm horizontal portion of the mover.
  • a magnetic core is arranged on an electric path which is arranged on both sides of the fixed conductor and guides the current from the terminal portion to the fixed conductor.
  • the fixed conductor is bent so as to be closer to the horizontal portion of the movable arm than to the fixed contact.
  • a movable element comprising a movable contact and a movable arm and rotating about a movable element rotation axis; a repulsive contact forming a contact pair with the movable contact; A repulsor that rotates about a tilling axis, a tubular green body that surrounds the contact pair in a closed state in a cylindrical shape, a contact pressure panel that generates a contact pressure at the contact pair, and a main opening that is the cylinder A pressure accumulating space formed to communicate with the cylindrical space surrounded by the resilient material, and accommodating the repulsor;
  • the horizontal portion of the repulsive arm is arranged so that a current in the opposite direction flows substantially parallel to a part of the movable arm, and the tip of the movable element having the movable contact and the tip of the resilient element having the repulsive contact are the cylinder
  • the movable element is located in the cylindrical space, and in the opened state, the tip of the movable element is located outside the cylindrical space
  • an electric path for supplying current to the repulsor is provided on the anti-movable element side of the repulsor, and at least a portion of the electric circuit facing the tip of the repulsor along a surface including the reciprocal electrode opening trajectory.
  • a slit with a width almost the same as the width is provided.
  • an electric circuit for supplying a current to the repulsor is disposed so as to intersect with a plane including the opening trajectory of the repulsor, and a slit is provided on the electric circuit to allow a repulsor or a movable element to open and close.
  • a current flows in a direction substantially parallel to and in the opposite direction to the horizontal portion of the repulsive arm.
  • a movable contact that is housed in an insulator housing includes a movable contact, and a roughly L-shaped movable arm, and that rotates about a rotation axis; a fixed contact that forms a contact pair with the movable contact; A stator that is sometimes arranged substantially parallel to a part of the movable arm and has an electric path through which current flows in the opposite direction to the movable arm, and a cylindrical insulation surrounding the closed contact pair with a cylindrical space.
  • a terminal connected to the stator wherein the stator is disposed substantially perpendicular to a line connecting the two terminals, and in a closed state, the contact pair is located in the cylindrical space.
  • Position, and the movable contact It is obtained by configured to be located outside Jo space.
  • the terminal portion is provided at a position higher than the bottom surface of the insulator casing, and the mover and the stator are connected to terminal portions farther from the mover and the stator, respectively, through a bent electric path from a mutually parallel electric path. It is configured so that:
  • the height of the wall of the cylindrical insulator surrounding the closed contact pair in a cylindrical shape on the side opposite to the mover rotation axis is higher than the height of the wall on the mover rotation axis side. .
  • the mover and stator are ⁇
  • a cylindrical insulator is enclosed in the housing, and an exhaust port is provided on a surface of the housing opposite to the movable shaft when viewed from the movable contact, and the exhaust port has an area of the exhaust port of the housing. The area is less than half the area of the surface that includes, and is located at a position close to the movable contact in the open state.
  • It also has an arc-extinguishing plate arranged at a position facing the tip of the mover, and an arc runner extending from the conductor to the stator.
  • the end of the arc runner is made of a cylindrical insulator. It is exposed to the arc-extinguishing plate side from the part opposite to the mover rotating shaft.
  • a commutation electrode that is connected to the current-carrying conductor to the mover and whose tip reaches the vicinity of the arc-extinguishing plate is provided behind the mover in the closed state.
  • a circuit breaker having a current limiting function includes: a movable element comprising a movable contact and a movable arm, rotating about a movable element rotation axis; a fixed contact forming a contact pair with the movable contact; A stator consisting of a fixed conductor substantially opposing the contact, a cylindrical insulator surrounding the contact pair in a closed state in a cylindrical shape, and a panel for applying a contact pressure to the contact pair in a closed state.
  • the pair of contacts is located in a tubular space surrounded by the tubular insulator, and the movable contact is located outside the tubular space in an open state.
  • the movable arm is formed substantially in a letter shape with the movable arm horizontal portion and the movable arm vertical portion, and in a closed state, the movable arm horizontal portion is positioned substantially parallel to the fixed conductor. Is configured so that current flows in the opposite direction to the fixed conductor.
  • the inner wall surface of the cylindrical space formed of the cylindrical insulator is provided with a pleat for increasing the contact area with the arc.
  • the material of the cylindrical insulator that forms the cylindrical space is changed between the portion surrounding the contact pair and the other portion, and the insulator surrounding the contact pair is made of a material that is likely to generate a large amount of vapor by arcing. It was done.
  • the inner wall of the cylindrical space may be shaped to follow the rotation trajectory of the tip of the mover.
  • the stator located in the cylindrical space has a structure in which the periphery of the fixed contact is covered with an insulator so that only the fixed contact is exposed to the cylindrical space.
  • the height of the wall on the side opposite to the center of rotation of the mover of the cylindrical insulator surrounding the closed contact pair in a cylindrical shape is higher than the wall height on the center of rotation of the mover.
  • a fixed conductor forming a stator and a part of a conductor energizing the mover are arranged in parallel and close to each other so that current directions flowing through the two conductors upon energization match.
  • the fixed conductor and the conductor energizing the mover are arranged in parallel on a plane including the locus of rotation of the mover.
  • a core surrounding the fixed conductor and a conductor for energizing the mover is provided, and both poles of the core are arranged so as to face the movable arm horizontal portion in a closed state.
  • a core is provided that surrounds the fixed conductor, the conductor that energizes the mover, and the mover.
  • a cylindrical insulator surrounding the mover, the stator, and the fixed contact in a cylindrical shape is housed in a housing, and an exhaust port is provided on a surface of the housing opposite to the center of rotation of the mover when viewed from the movable contact.
  • the exhaust port has an area that is equal to or less than half the area of the housing including the exhaust port, and is located at a position close to the movable contact in an open state.
  • a commutation electrode is provided, which extends to the current-carrying conductor to the mover and has a tip reaching the vicinity of the exhaust port above the arc-extinguishing plate.
  • the commutation electrode is provided with a slit that allows the mover to rotate.
  • the movable contact is positioned close to the commutation electrode at the position.
  • the case is sandwiched from above or below the outside of the case, or a core surrounding the case is provided.
  • the fixed contact is arranged in a pressure accumulating space communicating with the cylindrical space.
  • a part of the fixed conductor around the fixed contact is covered with an insulator.
  • the arc extinguishing plate arranged at a position facing the tip of the mover, and an arc runner connected to the fixed contact side end of the stator, and the tip of the arc runner is made of a cylindrical insulator. Exposed to the arc extinguishing plate side from the part opposite to the mover rotation center. The tip of the arcrunner should be lower than the top of the surrounding cylindrical insulator.
  • cylindrical space in which the fixed contact is located and the cylindrical space of the arc runner surrounding the tip of the arc runner communicate with each other through a pipeline.
  • the shape of the movable arm is almost hook-shaped.
  • the shape of the movable arm is almost S-shaped.
  • the portion of the movable arm closer to the center of rotation of the mover than the movable contact overlooking from the surface of the fixed contact is covered with an insulator.
  • a portion of the fixed conductor facing the movable arm is bent toward the movable arm to form a portion parallel to the movable arm.
  • an arc-extinguishing plate is provided at a position facing the tip of the mover, and a counter electrode is provided above the arc-extinguishing plate and close to the arc-extinguishing plate-side end surface of the mover at the open position.
  • an arc extinguishing plate disposed at a position facing the tip of the mover, and an opening of the mover side of the cylindrical space formed by the cylindrical insulator is directed to the direction of the arc extinguishing plate.
  • the height of the inner wall of the cylindrical space on the side of the rotation center of the mover is higher than the height of the wall on the side opposite to the rotation center of the mover.
  • a plurality of horseshoe-shaped arc-extinguishing plates wherein a portion of the arc-extinguishing plate on the inner surface of the horseshoe-shaped central portion extends a wall surface of the cylindrical insulator on the opposite side to the mover rotation center; It is configured to be located between the part and the locus drawn.
  • a fixed conductor having a fixed contact is bent in a U-shape to be drawn away from the center of rotation of the mover, and a slit is provided at a portion of the fixed conductor that intersects with the rotation locus of the mover to allow closing of the mover. It is a thing.
  • the fixed conductor that can be seen from the movable contact in the open state is covered with an insulator.c Also, when the fixed conductor is pulled out to the side far from the rotation center of the mover, a part of the fixed conductor faces the mover. However, the direction of the current flowing through the facing portion is opposite to the direction of the current of the mover.
  • the current limiting device is housed in an insulator case, and has a movable contact and A movable arm that rotates about a rotation axis, a fixed contact that forms a contact pair with the movable contact, and is disposed substantially parallel to a part of the movable arm when closed;
  • a stator comprising an electric path through which a current flows in a direction opposite to the movable arm; a cylindrical insulator surrounding the closed contact pair with a cylindrical space; an urging means for applying a contact pressure to the contact pair;
  • An arc-extinguishing plate disposed at a position facing the movable contact in the state, and terminal portions provided on the opposite side of the insulator casing and connected to the mover and the stator, respectively, in a closed state.
  • the contact pair is located in the tubular space
  • the movable contact is located outside the tubular space in the open state.
  • the terminal portion is provided at a position higher than the bottom surface of the insulator casing.
  • the mover and the stator are configured to be connected to terminal portions on the side closer to the mover and the stator, respectively, through electric paths that are bent substantially U-shaped from electric paths parallel to each other.
  • the mover and the stator are configured to be connected to terminal portions farther from the mover and the stator, respectively, through electric paths that are bent from electric paths that are parallel to each other.
  • arc runner extending from a current-carrying conductor to the stator, and the tip of this arc runner is exposed to the arc-extinguishing plate side from an insulator.
  • an insulator is provided around the air cleaner to form an air cleaner one cylindrical space.
  • a commutation electrode which is connected to a current-carrying conductor to the mover and whose leading end reaches near the arc extinguishing plate, is provided behind the mover.
  • the commutation electrode is provided with a slit for allowing rotation when the mover is opened, so that the movable contact is close to the commutation electrode when the mover is opened.
  • cylindrical space of the cylindrical insulator is formed so as to expand toward the arc-extinguishing plate.
  • the height of the wall of the inner wall of the cylindrical space farther from the center of rotation of the mover is set closer to the center of rotation of the mover so that the opening end of the cylindrical space formed by the cylindrical insulator faces the direction of the arc-extinguishing plate. It is lower than the height of the wall.
  • the material of the cylindrical insulator that forms the cylindrical space is changed between the portion surrounding the contact pair and the other portion, and the insulator surrounding the contact pair is made of a material that is likely to generate a large amount of vapor by arcing. It was done.
  • the inner wall of the cylindrical space has a cross-sectional shape along the rotation locus of the tip of the mover.
  • the periphery of the fixed contact is covered with an insulator so that only the fixed contact is exposed to the cylindrical space.
  • the height of the wall of the inner wall of the cylindrical space that is closer to the center of rotation of the mover is higher than the height of the wall farther from the center of rotation of the mover. It has been lowered.
  • the movable arm may be bent so that a part of the movable arm that faces the stator in the closed state and through which a current flows in the opposite direction to the stator approaches the stator.
  • the fixed conductor of the stator which is opposed to the movable element in the closed state and through which a current flows in the opposite direction to the movable element, is bent so as to be close to the movable element.
  • a portion of the movable arm, which can be seen from the surface of the fixed contact, on the movable member rotation center side of the movable contact is covered with an insulator.
  • the casings are connected to each other in the longitudinal direction of the circuit breaker and integrated with the circuit breaker.
  • FIG. 1 is a partial cross-sectional perspective view showing a main part of a circuit breaker having a current limiting function according to Embodiment 1 of the present invention.
  • FIG. 2 is a configuration diagram showing an experimental device for measuring basic characteristics of arc voltage.
  • Figure 3 is a graph showing the effect of atmospheric pressure on arc voltage.
  • FIG. 4 is a graph showing the effect of the current value on the arc voltage.
  • FIG. 5 is a partial sectional view for explaining the operation of the first embodiment.
  • FIG. 6 is a partial sectional view illustrating the operation of the first embodiment.
  • FIG. 7 is a partial sectional view for explaining the operation of the first embodiment.
  • FIG. 8 is a graph showing the effect of the first embodiment.
  • FIG. 9 is a partial cross-sectional view showing a main part of a circuit breaker having a current limiting function according to Embodiment 2 of the present invention.
  • FIG. 10 is a partial cross-sectional view showing a main part of a circuit breaker having a current limiting function according to Embodiment 3 of the present invention.
  • FIG. 11 is a partial cross-sectional view showing a main part of a circuit breaker having a current limiting function according to Embodiment 4 of the present invention.
  • FIG. 12 is a perspective view showing a repulsor of a circuit breaker having a current limiting function according to Embodiment 5 of the present invention.
  • FIG. 13 is a partial cross-sectional view showing a main part of a circuit breaker having a current limiting function according to Embodiment 5 of the present invention.
  • FIG. 14 is a perspective view showing a mover of a circuit breaker having a current limiting function according to Embodiment 6 of the present invention.
  • FIG. 15 is an explanatory diagram for explaining the operation of the main part of the sixth embodiment.
  • FIG. 16 is an exploded perspective view showing an arc-extinguishing unit of a circuit breaker having a current limiting function according to Embodiment 7 of the present invention.
  • FIG. 17 is an exploded perspective view showing a circuit breaker having a current limiting function according to Embodiment 7 of the present invention.
  • FIG. 18 is a partial cross-sectional perspective view showing the internal structure of the arc-extinguishing unit according to the seventh embodiment.
  • FIG. 19 is a perspective view showing a conductor arrangement according to the seventh embodiment.
  • FIG. 20 is a perspective view showing a modification of the repulsive unit according to the seventh embodiment.
  • FIG. 21 is a perspective view showing a conductor arrangement of a circuit breaker having a current limiting function according to Embodiment 8 of the present invention.
  • FIG. 22 is a partial cross-sectional view of a main part explaining the operation of the eighth embodiment.
  • FIG. 23 is a partial cross-sectional view of a main part explaining the operation of the eighth embodiment.
  • FIG. 24 is a partial cross-sectional view of a main part explaining the operation of the eighth embodiment.
  • FIG. 25 is a circuit breaker having a current limiting function according to Embodiment 9 of the present invention. It is a perspective view which shows a unit.
  • FIG. 26 is a perspective view showing a repulsive unit of a circuit breaker having a current limiting function according to Embodiment 10 of the present invention.
  • FIG. 27 is a perspective view showing an arc-extinguishing unit of a circuit breaker having a current limiting function according to Embodiment 11 of the present invention.
  • FIG. 28 is a cross-sectional view (a) showing a main part of a circuit breaker having a current limiting function according to Embodiment 12 of the present invention, and a plan view (b) showing a portion below an arc-extinguishing plate.
  • FIG. 29 is a partial cross-sectional perspective view showing an internal structure of an arc-extinguishing unit of a circuit breaker having a current limiting function according to Embodiment 13 of the present invention.
  • FIG. 30 is a perspective view showing a conductor arrangement near the repulsor of the thirteenth embodiment.
  • FIG. 31 is a partial cross-sectional perspective view showing an internal structure of an arc-extinguishing unit of a circuit breaker having a current limiting function according to Embodiment 14 of the present invention.
  • FIG. 32 is a perspective view showing a conductor arrangement in the vicinity of the repulsor according to Embodiment 14.
  • FIG. 33 is a partially sectional perspective view showing a main part of the current limiting device according to Embodiment 15 of the present invention.
  • FIG. 34 is a perspective view showing a main part of the flow limiting device according to the fifteenth embodiment.
  • FIG. 35 is a partial sectional perspective view for explaining the operation of the fifteenth embodiment.
  • FIG. 36 is a partial cross-sectional view for explaining the operation of the fifteenth embodiment.
  • FIG. 37 is a partial cross-sectional perspective view illustrating the operation of the fifteenth embodiment.
  • FIG. 38 is a partial cross-sectional perspective view showing an arc-extinguishing unit of the current limiting device according to Embodiment 16 of the present invention.
  • FIG. 39 is a perspective view showing the stator shape of FIG.
  • FIG. 40 is a perspective view showing the shape of the stator of the current limiting device according to Embodiment 17 of the present invention.
  • FIG. 41 is a partial cross-sectional view for explaining the operation of the seventeenth embodiment.
  • FIG. 42 is a cross-sectional view showing a tubular insulator of the current limiting device according to Embodiment 18 of the present invention.
  • FIG. 43 is a cross-sectional view showing the mover, the stator, and the cylindrical insulator of the current limiting device according to Embodiment 19 of the present invention.
  • FIG. 44 is a partial cross-sectional perspective view showing the arc-extinguishing unit of the current limiting device according to Embodiment 20 of the present invention.
  • FIG. 45 is a perspective view showing the stator shape of FIG.
  • FIG. 46 is a perspective view showing another shape of the core according to the twenty-second embodiment.
  • FIG. 47 is a perspective view showing still another shape of the core of the embodiment 20.
  • FIG. 47 is a perspective view showing still another shape of the core of the embodiment 20.
  • FIG. 48 is a perspective view showing a stator shape of the current limiting device according to Embodiment 21 of the present invention.
  • FIG. 49 is a partial cross-sectional perspective view showing a three-limit current limiting device according to Embodiment 22 of the present invention.
  • FIG. 50 is a partial sectional perspective view showing a main part of one pole of the three-pole current limiting device shown in FIG.
  • FIG. 51 is a partial cross-sectional view illustrating the operation of the twenty-second embodiment.
  • FIG. 52 is a partial cross-sectional perspective view for explaining the operation of the twenty-second embodiment.
  • FIG. 53 is a cross-sectional view showing a current limiting device according to Embodiment 23 of the present invention.
  • FIG. 54 is a cross-sectional view showing a current limiting device according to Embodiment 24 of the present invention.
  • FIG. 55 is a cross-sectional view illustrating the operation of the twenty-fourth embodiment.
  • FIG. 56 is a partial cross-sectional view showing a contact portion of the current limiting device according to Embodiment 25 of the present invention.
  • FIG. 57 is a partial cross-sectional perspective view showing a main part of a current limiting device according to Embodiment 26 of the present invention.
  • FIG. 58 is a partial sectional perspective view showing a main part of a current limiting device according to Embodiment 27 of the present invention.
  • FIG. 59 is a partial cross-sectional perspective view showing a main part of a circuit breaker according to Embodiment 28 of the present invention.
  • FIG. 60 is a perspective view showing a main part of a circuit breaker according to Embodiment 28.
  • FIG. 61 is a circuit configuration diagram showing an experimental device for measuring basic characteristics of arc voltage.
  • Figure 62 is a graph showing the effect of atmospheric pressure on arc voltage.
  • Fig. 63 is a graph showing the effect of the current value on the arc voltage.
  • FIG. 64 is a partial cross-sectional perspective view for explaining the operation of the twenty-eighth embodiment.
  • FIG. 65 is a partial cross-sectional view for explaining the operation of the twenty-eighth embodiment.
  • FIG. 66 is a graph illustrating the effect of the twenty-eighth embodiment.
  • FIG. 67 is a partial cross-sectional perspective view for explaining the operation of the twenty-eighth embodiment.
  • FIG. 68 is a partial cross-sectional perspective view showing a tubular insulator of the circuit breaker according to Embodiment 29 of the present invention.
  • FIG. 69 is a cross-sectional view showing a tubular insulator of the circuit breaker according to Embodiment 30 of the present invention.
  • FIG. 70 is a cross-sectional view showing a tubular insulator of the circuit breaker according to Embodiment 31 of the present invention.
  • FIG. 71 is a cross-sectional view showing a cylindrical insulator of another shape according to the embodiment 31.
  • FIG. 72 is a cross-sectional view showing a tubular insulator of the circuit breaker according to Embodiment 32 of the present invention.
  • FIG. 73 is a cross-sectional view showing a tubular insulator of the circuit breaker according to Embodiment 33 of the present invention.
  • FIG. 74 is a perspective view showing an arc-extinguishing unit of a circuit breaker according to Embodiment 34 of the present invention.
  • FIG. 75 is an exploded perspective view showing the configuration of the circuit breaker according to Embodiment 34.
  • FIG. 76 is a partial cross-sectional perspective view showing the inside of the arc-extinguishing unit of the circuit breaker according to Embodiment 34.
  • FIG. 77 is a perspective view showing a conductor arrangement of the circuit breaker according to Embodiment 34.
  • FIG. 78 is a sectional view taken along section C of FIG.
  • FIG. 79 is a perspective view showing a conductor arrangement of a circuit breaker according to Embodiment 35 of the present invention.
  • FIG. 80 is a sectional view taken along section C of FIG.
  • FIG. 81 is a perspective view showing a conductor arrangement of a circuit breaker according to Embodiment 36 of the present invention.
  • FIG. 82 is a sectional view taken along section C of FIG.
  • Fig. 83 is a perspective view for explaining the difference in electromagnetic opening force due to the difference in conductor arrangement.
  • Figure 84 is a graph for explaining the difference in electromagnetic opening force due to the difference in conductor arrangement.o
  • FIG. 85 is a diagram showing the distance relationship between the cross sections of the conductors shown in FIG.
  • FIG. 86 is a diagram showing the distance relationship between the conductor cross sections shown in FIG.
  • FIG. 87 is a diagram showing a distance relationship between the conductor cross sections shown in FIG.
  • FIG. 88 is a partial cross-sectional perspective view showing the inside of the arc-extinguishing unit of the circuit breaker according to Embodiment 37.
  • FIG. 89 is a perspective view showing the conductor arrangement and the magnetic core of the circuit breaker according to Embodiment 38 of the present invention.
  • FIG. 90 is a sectional view of the magnetic core portion of FIG.
  • FIG. 91 is a cross-sectional view of the magnetic core portion of the circuit breaker according to Embodiment 39 of the present invention.
  • FIG. 92 is a cross-sectional view of another magnetic core portion of the circuit breaker according to Embodiment 39.
  • FIG. 93 is a cross-sectional view of another magnetic core portion of the circuit breaker according to Embodiment 39.
  • FIG. 94 is a perspective view showing an arc-extinguishing unit of a circuit breaker according to Embodiment 40 of the present invention.
  • FIG. 95 is a cross-sectional view showing a tubular insulator of the circuit breaker according to Embodiment 41 of the present invention.
  • FIG. 96 is a view for explaining the operation of the embodiment 41.
  • FIG. 97 is a diagram illustrating the operation of the embodiment 41.
  • FIG. 98 is a perspective view showing a fixed contact portion of the circuit breaker according to Embodiment 42 of the present invention.
  • FIG. 99 is a cross-sectional view showing a tubular insulator of the circuit breaker according to Embodiment 43 of the present invention.
  • FIG. 100 is a partial sectional view showing a main part of a circuit breaker according to Embodiment 44 of the present invention.
  • FIG. 101 is a partial sectional view showing a main part of a circuit breaker according to Embodiment 45 of the present invention.
  • FIG. 101 is a partial sectional view showing a main part of a circuit breaker according to Embodiment 45 of the present invention.
  • FIG. 102 is a partial sectional view showing a main part of a circuit breaker according to Embodiment 46 of the present invention.
  • FIG. 103 is a perspective view showing a mover of the circuit breaker according to Embodiment 47 of the present invention.
  • FIG. 104 is a view for explaining the operation of the embodiment 47.
  • FIG. 105 is a partial cross-sectional view showing the positional relationship between the mover and the stator in the closed state according to Embodiment 47.
  • FIG. 106 is a cross-sectional view showing a mover, a stator, and a tubular insulator of a circuit breaker according to Embodiment 48 of the present invention.
  • FIG. 107 is a cross-sectional view showing a mover, a stator, and a tubular insulator of a circuit breaker according to Embodiment 49 of the present invention.
  • FIG. 108 is a partial sectional view showing a main part of a circuit breaker according to Embodiment 50 of the present invention.
  • FIG. 109 is a partial cross-sectional view for explaining the operation of the cylindrical space of the embodiment 50.
  • FIG. 110 is a partial cross-sectional view showing a main part of a circuit breaker according to Embodiment 50.
  • FIG. 11 is a part showing a main part of a circuit breaker according to Embodiment 51 of the present invention. It is a sectional view.
  • FIG. 112 is a partial cross sectional view showing the arc extinguishing unit of the circuit breaker according to Embodiment 52 of the present invention.
  • FIG. 113 is a perspective view showing the stator shape of FIG.
  • FIG. 114 is a perspective view showing a stator shape of a circuit breaker according to Embodiment 53 of the present invention.
  • FIG. 115 is a partial cross-sectional view for explaining the operation of the embodiment 53.
  • FIG. 116 is a partial sectional perspective view showing an arc extinguishing unit of a circuit breaker according to Embodiment 54 of the present invention.
  • FIG. 117 is a perspective view showing the stator shape of FIG.
  • FIG. 118 is a perspective view showing another shape of the stator of the embodiment 54.
  • FIG. 119 is a partial cross-sectional perspective view showing a three-limit current limiting device according to Embodiment 55 of the present invention.
  • FIG. 119 is a partial cross-sectional perspective view showing a three-limit current limiting device according to Embodiment 55 of the present invention.
  • FIG. 120 is a partial cross-sectional perspective view showing a main part of one pole of the three-pole current limiting device shown in FIG.
  • FIG. 12 is a configuration diagram showing an experimental apparatus for measuring basic characteristics of arc voltage.
  • FIG. 122 is a graph showing the effect of atmospheric pressure on arc voltage.
  • FIG. 123 is a graph showing the effect of the current value on the arc voltage.
  • FIG. 124 is a partial sectional view for explaining the operation of the embodiment 56.
  • FIG. 125 is a graph showing the effect of the embodiment 56.
  • FIG. 126 is a partial sectional perspective view for explaining the operation of the embodiment 56.
  • FIG. 127 is a cross-sectional view showing a current limiting device according to Embodiment 56 of the present invention.
  • FIG. 128 is a cross-sectional view showing a current limiting device according to Embodiment 57 of the present invention.
  • FIG. 129 is a cross-sectional view illustrating the operation of the third embodiment.
  • FIG. 130 is a partial cross-sectional view showing a contact portion of the current limiting device according to Embodiment 58 of the present invention.
  • FIG. 13 1 is a partial sectional perspective view showing a main part of a current limiting device according to Embodiment 59 of the present invention.
  • FIG. 132 is a partial cross-sectional perspective view showing a main part of the current limiting device according to Embodiment 60 of the present invention.
  • FIG. 133 is a partial cross-sectional view showing a contact portion of the current limiting device according to Embodiment 61 of the present invention.
  • FIG. 134 is a partial cross-sectional view showing a contact portion of the current limiting device according to Embodiment 62 of the present invention.
  • FIG. 135 is a partial cross-sectional view showing a contact portion of the current limiting device according to Embodiment 63 of the present invention.
  • FIG. 136 is a partial cross-sectional view showing a contact portion of the current limiting device according to Embodiment 64 of the present invention.
  • FIG. 137 is a partial cross-sectional view showing a contact portion of the current limiting device according to Embodiment 65 of the present invention.
  • FIG. 138 is a perspective view showing a mover of the current limiting device according to Embodiment 66 of the present invention. is there.
  • FIG. 139 is a partial cross-sectional view showing a contact portion of the current limiting device according to Embodiment 66.
  • FIG. 140 is a partial cross-sectional view for explaining the operation of the embodiment 66.
  • FIG. 141 is a partial cross-sectional view showing a contact part of a current limiting device according to Embodiment 67 of the present invention.
  • FIG. 142 is a partial cross-sectional view showing a contact portion of the current limiting device according to Embodiment 68 of the present invention.
  • FIG. 144 is a partial cross-sectional perspective view showing the arc-extinguishing unit of the current limiting device according to Embodiment 70 of the present invention.
  • FIG. 144 is an explanatory diagram illustrating the operation of the main part of the 70th embodiment.
  • FIG. 145 is an explanatory diagram for explaining the operation of the main part of the 70th embodiment.
  • FIG. 146 is an explanatory diagram illustrating the operation of the main part of the current limiting device according to Embodiment 71 of the present invention.
  • FIG. 147 is a partial cross-sectional front view showing a conventional circuit breaker with a current limiting function.
  • Fig. 148 is a side view of a conventional circuit breaker with a current limiting function.
  • FIG. 149 is a partial cross-sectional view showing a conventional three-limit flow unit.
  • FIG. 150 is a front view of a current limiting circuit breaker configured by integrally connecting the current limiting unit of FIG. 149 to a standard circuit breaker.
  • FIG. 151 is a partial cross-sectional side view of the current limiting circuit breaker of FIG.
  • FIG. 152 is a perspective view of a main part of one pole of the three-limit flow unit shown in FIG.
  • FIG. 153 is an exploded perspective view of the two contact pairs shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a perspective view showing a main part of the circuit breaker in a closed state according to the first embodiment, which is an insulator covering the cylindrical insulator 25 and the fixed conductor 12 so that the internal configuration can be seen. A part of the insulating cover 28 has been cut off.
  • reference numeral 1 denotes a movable contact 2 and the movable contact 2 is fixed.
  • This is a substantially L-shaped mover composed of a movable arm vertical portion 3 and a movable arm horizontal portion 4 substantially orthogonal to the movable arm vertical portion 3.
  • the mover 1 forms a pair of contact points with a repulsor 7 composed of a repulsion contact point 8, a repulsion arm vertical portion 9, and a repulsion arm horizontal portion 10; Are urged by a panel 18 and a panel 21 in directions to contact each other.
  • the repulsor 7 has a shorter arm length and a smaller moment of inertia than the mover 1.
  • the mover 1 is rotatably supported around a rotor rotation axis 13, and the repulsor 7 is supported rotatably about a repulsor rotation axis 23.
  • the mover 1 is electrically connected to the terminal 15 via the sliding contact 14 and the connection conductor 17.
  • the repellent element 7 is electrically connected to the terminal 16 via the flexible conductor 11 and the fixed conductor 12.
  • a plurality of arrows shown in FIG. 1 indicate current paths during energization, and the current of the movable arm horizontal portion 4 and the current of the repulsive arm horizontal portion 10 are configured to be substantially parallel and in opposite directions. ing.
  • the repulsive contact 8 and the portion of the resilient arm vertical portion 9 in the vicinity thereof, and the movable contact 2 and the portion of the movable arm vertical portion 3 in the vicinity thereof are cylindrical.
  • the movable contact 2 is disposed in the cylindrical space 26 surrounded by the insulator 25 and is configured so that the movable contact 2 is separated from the cylindrical space 26 when both contacts are in an open state.
  • the repulsor 7 is composed of a cylindrical insulator 25 and an insulating cover 28, etc., and is arranged in a pressure accumulating space 27 having no opening other than the cylindrical space 26.
  • FIG. 3 shows the results of measuring the change in arc voltage with the experimental apparatus shown in Fig. 2 while changing the atmospheric pressure P of a short gap large current arc of several cm or less.
  • reference numeral 400 denotes a pair of round bar-shaped electrodes
  • reference numeral 401 denotes a closed container
  • reference numeral 402 denotes an AC voltage
  • reference numeral 403 denotes an input switch
  • reference numeral 404 denotes a pressurizing cylinder.
  • the arc voltage rise rate R when the arc current value is relatively small increases as the arc length increases.
  • the arc voltage rise rate R when the arc current value is relatively large hardly increases unless the arc length exceeds a certain value.
  • the force F2 continues to rotate the mover 1 in the opening direction.
  • the main opening electromagnetic force that acts on the mover 1 and the repulsor 7 has the relation of action and reaction, and their magnitudes are almost equal.
  • the repulsor 7 rotates faster than the mover 1. That is, by using the repulsor 7, the opening speed can be greatly improved as compared with the case where the opening operation is performed only by the mover 1.
  • a large amount of steam is generated from the inner surface of the cylindrical insulator 25 due to the heat of the arc due to the arc, and is surrounded by the cylindrical insulator 25.
  • a high-pressure atmosphere is generated in the cylindrical space 26. Due to the generation of the high pressure in the cylindrical space 26, the mover 1 and the repulsor 7 receive the opening force Fp due to the pressure difference, as indicated by the black arrows in the figure. The movable element 1 and the repulsive element 7 rotate at high speed due to the opening force Fp due to this pressure difference and the electromagnetic force F2, and the contacts open at high speed. This high-speed opening causes the arc length to increase rapidly in a high-pressure atmosphere, causing the arc voltage to rise rapidly and the accident current to reach a peak value.
  • Fig. 6 shows the state where a large current arc occurred before and after the current peak time described above.
  • the high-pressure steam generated in the cylindrical space 26 during the generation of the large current arc flows into the pressure accumulating space 27 and increases the pressure in the pressure accumulating space. Due to the accumulated pressure, a flow is generated from the pressure accumulation space 27 through the cylindrical space 26 to the outside of the cylindrical insulator 25 before the arc is extinguished and after the current is cut off.
  • Figure 7 illustrates this situation.
  • the movable element 1 has rotated to almost the maximum opening position, the movable contact 2 is located outside the cylindrical space 26, and the state just before the current interruption, that is, just before the arc disappears is shown. .
  • the flow discharged from the pressure accumulating space 27 to the outside through the cylindrical space 26 is indicated by white arrows.
  • the flow of the arrow becomes the fastest in the nozzle-shaped cylindrical space 26, and this high-speed flow removes the heat of the arc and promotes the disappearance of the arc. Because of this arc extinction promoting action, the current before shutoff is quickly reduced, and the passing energy, another indicator of current limiting performance, decreases. Further, the high-temperature gas and the molten material are discharged to the outside by this flow, so that the insulation of the cylindrical space 26 is quickly restored, and the adhesion of the molten material to the surface of the repulsive contact 8 can be prevented.
  • a circuit breaker with excellent current limiting performance can be obtained by adding means (for example, a latch mechanism, a link mechanism, etc.) for restraining the mover 1 near the maximum opening position and preventing reclosing.
  • the relatively high-temperature metal vapor and particles floating between the outlet of the cylindrical space 26 and the movable contact 2 are blown off by the flow ejected from the accumulator space 27 through the cylindrical space 26 described above. As a result, insulation recovery immediately after the interruption between the contacts is further promoted, and re-ignition after current interruption can be prevented.
  • FIG. 8 shows the effect of the cylindrical insulator when (a) the high-speed opening means is not used and (b) when the high-speed opening means is used.
  • the arc length becomes sufficiently long before the fault current becomes large. Can be satisfied.
  • the current peaks at time t 1 ′ (with cylindrical insulator) and at time t 2 ′ (without cylindrical insulator) when the arc voltage catches up with the power supply voltage are IP 1 ′ and I p 2 ′, respectively.
  • the required dimensions in the direction in which the contact pair opens and closes are the thickness of the lower wall of the pressure accumulating space 27, the vertical section of the repulsive arm 9, and the thickness of the repulsive contact 8
  • the maximum contact separation distance, the thickness of the movable contact 2, and the sum of the movable arm vertical portion 3 make it possible to make the required dimensions in the above direction smaller than in the conventional direct acting current limiter. Even with restrictions, the opening distance required to effectively couple high pressure to the arc voltage rise can easily be secured.
  • the mover 1 and the repulsive element 7 are substantially L-shaped.However, only the repulsive element 7 that opens more quickly than the movable element 1 when an accident current is interrupted is substantially L-shaped.
  • the mover 1 may have a general substantially rod-like shape. With such a configuration, not only high current limiting performance can be obtained by the high-speed opening of the repulsive element 7, but also compared to the case of using the substantially L-shaped actuator 1, The arc spot easily moves to the end face opposite to the mover rotating shaft 13 and the arc immediately before the interruption is elongated, so that the overload current interruption and the DC interruption performance are improved.
  • Embodiment 2 Embodiment 2
  • FIG. 9 is a partial cross-sectional view showing main parts of the cylindrical insulator 25, the repulsive element 7, the mover 1, etc. of the present embodiment.
  • the part farthest from the rotation center of the mover 1 is opened.
  • the trajectory is drawn by a polar motion ⁇ the trajectory is shown by a dashed line, and the trajectory drawn by the opening operation of the part farthest from the rotation center of the repulsor 7 is shown by a broken line.
  • the surface of the cylindrical insulator 25 facing the movable element 1 and the tip of the repulsive element 7 is formed in an arc shape so as to have a certain gap between the dashed line and the broken line.
  • the rotating shaft 13 of the mover 1 is provided above the contact contact surface, and the rotating shaft 23 of the repulsor 7 is provided below the contact contact surface. It expands in the direction away from the mover rotating shaft 13 and the repulsor rotating shaft 23 from the contact position. Therefore, as shown in Fig. 1, if the surfaces of the cylindrical insulator 25 facing the ends of the mover 1 and the repulsor 7 are vertical, it is necessary to dispose the above surface at a position farther from the contact point. And the volume surrounded by the tubular insulator 25 increases. Therefore, it may take time to generate a sufficiently high pressure atmosphere. Therefore, as shown in FIG. 9, if the inner surface of the cylindrical insulator 25 is formed along the trajectory of the movable element 1 and the repellent element 7, the volume surrounded by the cylindrical insulator 25 can be reduced. Current limiting performance is improved.
  • the length of the wall of the insulator surrounding the cylindrical space 26 on the side opposite to the mover rotation axis 13 and the repulsor rotation axis 23 is set to the length of the mover and the repulsor rotation. It is longer than the center wall.
  • an electromagnetic driving force is generated on the opposite side of the movable element and the repulsor rotation center by the current flowing through the movable arm horizontal section 4 and the repulsive arm horizontal section 10. Therefore, the arc in the cylindrical space 26 more strongly touches the movable member and the wall opposite to the rotation center of the repulsor.
  • the portion of the movable arm horizontal portion 4 on the side of the movable contact 2 is constituted by the portions 4a, 4b, and 4c, and the portion of the resilient arm horizontal portion 10 on the side of the repulsive contact 8 is formed. , 10a, 1Ob, and 10c.
  • a part 4 c of the movable arm horizontal part 4 and a part of the repulsive arm horizontal part 10 10 c in the closed state are indicated by black arrows in FIG. Since the distance between the currents in almost parallel and opposite directions becomes shorter and the electromagnetic repulsion increases, the opening speed increases.
  • FIG. 10 is a partial cross-sectional view showing main parts of the tubular insulator 25, the repulsive element 7, the mover 1, and the like according to the present embodiment, and the tubular insulator 25 forms a cylinder inner surface. It is composed of the insulator 25a and the insulator 25 around it.
  • the above insulator 25a is subject to large amounts of steam immediately upon exposure to the arc. It is molded from a resin material that has the property of generating air, for example, a resin material that does not contain a small amount of a reinforcing material such as glass fiber, and the insulator 25b is a reinforced resin with excellent mechanical strength.
  • FIG. 11 is a partial cross-sectional view showing main parts of a tubular insulator 25, a repulsor 7, a mover 1, a horseshoe-shaped arc-extinguishing plate 31, and the like according to the present embodiment.
  • the arc-extinguishing plate 31 is provided in an upper space of the cylindrical insulator 25 so as to face the surface of the tip of the mover 1. Also, at the opening of the cylindrical insulator 25 on the mover 1 side, the wall height of the cylindrical insulator 25 surrounding the cylindrical space 26 on the side opposite to the mover rotation axis 13 is set to the mover rotation axis 1.
  • FIG. 12 is a perspective view showing a repulsor 7 of the present embodiment
  • FIG. 13 is a portion showing main parts of a tubular insulator 25, a repulsor 7, a mover 1, etc. of the present embodiment. It is sectional drawing.
  • the surface of the repulsion arm which can be seen at least from the closed movable contact 2 and is closer to the repulsor rotation shaft 23 than the repulsion contact 8, is covered with an insulator 29.
  • FIG. 14 is a perspective view showing the mover 1 of the present embodiment
  • FIG. 15 is a cross-sectional explanatory view showing main parts of the tubular insulator 25, the repulsive element 7, the mover 1, and the like.
  • the mover 1 shown in Fig. 14 is composed of a movable contact 2, a movable arm vertical part 3, each part of a movable arm horizontal part 4a, 4b, 4c, and at least a closed repulsive contact of the movable arm. It is composed of an insulator 30 that covers the surface that can be seen from 8, and has a substantially hook shape.
  • FIG. 3 is a perspective view showing the arc extinguishing device which is a unit of the arc extinguishing unit.
  • Construct 9 As shown in FIG. 17, a plurality of arc extinguishing units 39 are connected by a cross bar 40, and a mechanism 41 for opening and closing the contacts via the cross bar 40 detects an abnormal current and detects the abnormal current. Apply the force to the relay part 42 for operating the mechanism part 41 and the handle 45 for manually operating the mechanism part 41, and store them with the base 43 and cover 44 for wiring. Circuit breaker. If each component is unitized in this way and these components are combined to form a circuit breaker for wiring, assembly is simplified and costs can be reduced.
  • the arc extinguishing device is housed in the arc extinguishing unit housing body 36 and the arc extinguishing unit cover 37 so that the pressure rise in the wiring breaker during the breaking operation can be reduced by the base 43 and You will no longer receive it directly at the hippo.
  • the pressure receiving area of the arc extinguishing unit housing is smaller than the pressure receiving area of the base 43 and the cover 44. Therefore, even if the arc-extinguishing unit housing of the same material and the same thickness as the base 43 and the cover 44 is used, it can withstand a larger increase in the internal pressure and raise the arc atmosphere pressure. It is suitable to use the current limiting method of increasing the blocking voltage.
  • the base and cover were made of an expensive mold material with high mechanical strength to withstand the internal pressure rise during the breaking operation, but the pressure was reduced by using the arc-extinguishing unit housing.
  • the amount of housing material to be received can be reduced, and costs can be reduced.
  • FIG. 19 is a perspective view in which components other than the current-carrying parts in the closed state are omitted.
  • current directions in the movable arm horizontal section 4, the repulsion arm horizontal section 10, and the conductor horizontal section 34 are indicated by arrows.
  • the conductor horizontal portion 34 which is a part of the conductor electrically connecting the terminal portion 15 and the mover 1, is connected so that current flows in a direction substantially parallel to and in the same direction as the fixed conductor 12. It is placed upright displaced in the left-right direction from the surface on which the child 7 rotates.
  • Normal opening / closing operation is performed by manually operating the handle 45. Due to the operation of the handle, the rotor 35 rotates through the mechanism 41 and the crossbar 40, and the mover 1 opens and closes. Also, When the overload current is interrupted, the relay section 42 detects an abnormal current, a lip signal is transmitted from the relay section 42 to the mechanism section 41, the mechanism section 41 operates, and the rotor 35 rotates and moves. Child 1 is pulled up and the contacts open.
  • the electromagnetic repulsion F1 due to the concentration of current on the contact portion and the current of the movable arm horizontal portion 4 shown in FIG.
  • the repulsion element 7 starts the opening operation against the contact pressure by the panel 21 due to the sum Ft of the electromagnetic repulsion force F2 due to the current in the substantially parallel and opposite direction of the arm horizontal portion 10.
  • the opening force component F 3 ′ of the electromagnetic repulsion force F 3 due to the current in the movable arm horizontal portion 4 and the current in the substantially parallel and opposite directions of the conductor horizontal portion 3 4 and the sum F t of the above electromagnetic repulsion force
  • the mover 1 starts the opening operation by the sum force F t '.
  • the repulsor 7 having a smaller moment of inertia opens at a higher speed than the mover 1 as in the first embodiment.
  • the mover 1 After the current peak, the mover 1 further rotates and the distance between the contacts increases. Due to this increase in the distance between the contacts, the arc voltage further increases and the fault current rapidly goes to zero.
  • the fault current is reduced to a small value, the arc is drawn into the arc extinguishing plate 31 by the attractive force of the current flowing through the vertical conductor 33 and the attractive force of the horseshoe-shaped iron arc extinguishing plate 31, and the arc is divided and cooled. Is extinguished.
  • the movable contact 2 is out of the space surrounded by the cylindrical insulator 25, and the insulation between the contacts has been sufficiently recovered, so that even when the power supply voltage is applied between the electrodes, the current does not flow again.
  • the shutoff operation is completed.
  • the pressure accumulated in the pressure accumulating space 27 during the high-current arc generates an airflow that flows through the cylindrical space 26 to the outside of the cylindrical space 26, and Insulation inside and outside of space 26 Recovery is accelerated, so that the shut-off time is reduced and re-ignition is prevented.
  • the high arc voltage due to the long contact distance after the current peak significantly shortens the interruption time. Therefore, the passing energy I 2 t (time integral of the square of the current), which is one of the indicators of the current limiting performance, becomes small.
  • the exhaust port 38 is provided only on the arc extinguishing plate 31 side as viewed from between the contact 2 and the contact 8.
  • the insulation recovery effect of the airflow due to the accumulated pressure increases as the flow velocity of the airflow at the time of current interruption increases.
  • To increase the flow velocity it is only necessary to increase the accumulated pressure or reduce the cross-section of the flow path. Therefore, it is necessary to reduce the area of the exhaust port 38.
  • the exhaust port 38 having a relatively small area is provided on the movable contact 2 side in the open state.
  • the arc near the movable contact 2 side arc spot is located outside the pressure accumulating space 27 when current is interrupted, and is easily affected by the air current. Therefore, by providing the exhaust port 38 having a relatively small area on the movable contact 2 side in the open state, the insulation recovery between the electrodes at the time of current interruption can be effectively secured.
  • the rotating shaft 23 of the repulsor 7 is directly held by the insulator forming the pressure accumulating space 27.
  • the conductor horizontal portion 34 is substantially juxtaposed with the closed repulsion arm horizontal portion 10 at a position shifted laterally from the surface on which the repulsor 7 rotates.
  • the electromagnetic attraction force between the current in the conductor horizontal section 34 and the current in the repulsion arm horizontal section 10 that acts when the fault current is interrupted As a result, an extremely large blurring force is applied to the repulsor 7, and the rotating shaft 23 may be deformed or the member holding the rotating shaft may be damaged. Therefore, as shown in FIG.
  • the holding member can be prevented from being damaged.
  • the holding frame 46 is made of a magnetic material, the magnetic flux of the conductor horizontal portion 34 can be absorbed and the repulsor 7 can be prevented from generating a blurring force due to electromagnetic attraction.
  • the shaft 23 can be prevented from being damaged.
  • the repulsive element 7, the rotating shaft 23, and the panel 21 for applying a contact pressure to the repulsive element 7 are configured to be held by the holding frame 46, the repulsive element can be formed into a unit, thereby improving the assembling property. improves.
  • conductor horizontal portion 34 is arranged in an upright position displaced from the plane including the trajectories around which repulsive element 7 and mover 1 rotate. Therefore, the force of the vibration that is orthogonal to the contact opening direction acts on the repulsor 7 and the mover 1, respectively, and causes a reduction in the opening speed of the repulsor 7 and the mover 1.
  • the movable arm vertical portion and the repulsive arm vertical portion are inserted into the tubular insulator in the closed state, when the movable element or the repulsive element moves right and left due to the above-mentioned shaking force, the movable element or the repulsive element repels.
  • Embodiment 8 solves such a problem, and the configuration is shown in FIG.
  • the center line of the conductor horizontal portion 34 is arranged almost in parallel with the closed repulsion arm horizontal portion 10 on the plane including the trajectory of the rotation of the mover 1 and the repulsor 7. ing.
  • the repulsor 7 has an electromagnetic repulsion force between the current flowing through the horizontal portion 10 of the repulsive arm and the current flowing through the horizontal portion 4 of the movable arm.
  • the electromagnetic attraction force between the current flowing through the horizontal portion 10 of the repulsive arm and the current flowing through the horizontal portion 34 of the conductor can be used as the opening force when the fault current is interrupted.
  • FIG. 23 shows a state at the beginning of the breaking operation. The repulsor 7 having a small moment of inertia rotates faster than the mover 1 as in the first embodiment.
  • the repulsive element 7 rotates, the distance between the currents that generate the repulsive electromagnetic force flowing through the mover 1 and the repulsive element 7 increases, and the electromagnetic repulsive force decreases.
  • the distance between the repulsor 7 and the horizontal conductor 34 becomes smaller, the electromagnetic attraction by the current flowing through the repulsor 7 and the horizontal conductor 34 increases. Therefore, the repulsor 7 always receives a large electromagnetic opening force until it reaches the maximum opening position, the opening speed is further increased, and the accident current peak value is reduced.
  • FIG. 24 shows a state in which the breaking operation further proceeds, and the repulsor 7 and the mover 1 reach the maximum opening position.
  • the distance between the repulsor 7 and the horizontal conductor 34 is minimized, and the repulsor 7 is strongly ⁇ attracted by the current flowing through the horizontal conductor 34. Therefore, the phenomenon in which the repulsor 7 that opens at a high speed collides with the insulator 25 that forms the accumulator space 27 and is rebounded to reduce the distance between contacts (in other words, the arc length) is minimized, and the current is interrupted.
  • the repulsor 7 can be maintained at the maximum opening position against the force of the contact pressure panel, and the distance between the contacts in the latter half of the breaking operation can be maintained longer.
  • the conductor horizontal portion 34 is arranged on the surface including the locus of the rotation of the repulsor 7, but when the direction in which the movable contact 2 is separated from the repulsion contact 8 is upward, the conductor is opened.
  • FIG. 25 is a perspective view showing a main part of the present embodiment, in which a part of the holding frame 46 is cut away.
  • the conductor arrangement according to the present embodiment is the same as that of the eighth embodiment, and conductor horizontal portion 34 is arranged on a plane including the locus drawn by repellent element 7.
  • the repulsor 7 is rotatably held by a holding frame 46 of a non-magnetic body having a U-shaped cross section via a rotation shaft 23.
  • the panel 21 for applying a contact pressure to the repulsor 7 has an end engaged with a panel hook 22 provided on the holding frame 46, and the repulsor 7, the rotating shaft 23, the panel 21, and the like.
  • the formation of the repulsion unit in the holding frame 46 is the same as in the seventh embodiment.
  • the holding frame 46 is made of a non-magnetic material, the magnetic flux component that promotes the opening of the repulsor 7 and the mover 1 created by the current flowing through the conductor horizontal portion 34 is not shielded. Even in the case where the holding frame 46 is used to reliably hold the repulsor 7 on which a large electromagnetic force acts, the same high-speed opening as in the eighth embodiment can be obtained, and the current limiting performance does not decrease.
  • FIG. 26 is a perspective view showing a main part of the present embodiment, in which a part of the holding frame 46 ′ is cut away.
  • the conductor arrangement in the present embodiment is the same as that in the eighth embodiment, and conductor horizontal portion 34 is arranged on a surface including repulsion element 7 including a locus.
  • the repulsor 7 is rotatably held by a magnetic material holding frame 46 ′ via a rotating shaft 23.
  • a panel 21 for applying a contact pressure to the repellent element 7 has an end engaged with a panel hook 22 provided on a holding frame 46 ′.
  • the magnetic material holding frame 46 ′ is arranged so as to hold not only the repulsor 7 but also the conductor horizontal portion 34.
  • the holding frame 4 6 ′ that holds the repulsor 7 and the horizontal conductor 34 is made of a magnetic material, a magnetic flux component that promotes the opening of the repulsor 7 generated by the current flowing through the horizontal conductor 34. And the opening speed of the repulsor 7 is improved.
  • FIG. 4 is a perspective view showing the arc-extinguishing unit in a state, in which the horseshoe-shaped cores 50 and 51 stacked so as to sandwich the arc-extinguishing unit main body 36 and the arc-extinguishing unit cover 37, respectively. Are located.
  • the core 50 is provided at least at a position sandwiching the open movable element 1 (not shown) in the arc-extinguishing unit, and the core 51 is at least opened in the arc-extinguishing unit. (Not shown).
  • the opening electromagnetic force of the mover 1 during the breaking operation can be strengthened by the core 50 and the opening electromagnetic force of the repulsor 7 can be strengthened by the core 51. Is improved. Further, since the cores 50 and 51 are arranged so as to sandwich the arc-extinguishing unit housing from the outside, a force applied to the housing due to a rise in the internal pressure of the housing at the time of shutoff can be received by the core. The housing can be prevented from being damaged. Furthermore, since the arc extinguishing unit housing main body 36 and the arc extinguishing unit housing lid 37 can be joined by the cores 50 and 51, joining parts such as screws can be omitted. In addition, the housing can also serve as insulation of the inner surface of the core, thereby preventing contact with the core. Embodiment 1 2.
  • FIG. 28 (a) is a partial cross-sectional view showing a main part of the present embodiment
  • FIG. 28 (b) is a view of a portion below the arc extinguishing plate 31 shown in FIG. 28 (a). It is a top view.
  • Fig. 28 (a) shows the state immediately before the current interruption when the overload current is interrupted. The repulsor 7 is not rotating, and only the mover 1 is the mechanism 4 1 (not shown). Is opened by the operation of.
  • the position L 2 of the notch of the horseshoe-shaped arc extinguishing plate 31 is The space 26 surrounded by the cylindrical insulator 25 is provided closer to the armature rotation center than the position L1 on the end face opposite to the armature rotation center (not shown).
  • the arc extinguishing plate 31 prevents the rotation of the mover 1, so the notch
  • the position L2 of the part must be located between the dashed line and the position 1.
  • the arc easily touches the arc-extinguishing plate 31, and sufficient breaking performance can be obtained even in overload current breaking.
  • FIG. 28 (b) when a horseshoe-shaped core 52 is provided so as to surround the portion of the cylindrical insulator 25 opposite to the center of rotation of the repulsor from the outside, an arc near the repulsion contact 8 is formed. Since the arc is attracted to the core 52 side, the arc is more likely to touch the arc extinguishing plate 31.
  • FIG. 29 is a perspective view showing the inside of the arc-extinguishing unit in the present embodiment
  • FIG. 30 is a perspective view showing the conductor arrangement near the repulsor 7 in FIG.
  • the arrows in FIG. 30 indicate the current flow.
  • the terminal section 15 is connected to the conductors 53a, 53b, 53c, 53d, and the flexible conductor 11 via electric circuits 53a, 53b, 53c, 53d.
  • the repulsor 7 is connected, and the mover 1 is connected to the terminal 16 via the sliding contact 14.
  • the circuits 53a, 53b, 53c, 53d, and the conductor 53d part of the flexible conductor 11 are made of an insulating material integrally formed with the cylindrical insulator 25.
  • the part that can be seen from the arc generated between the two contacts 2 and 8 is covered.
  • a slit 56 with a width almost equal to the width of the repulsor 7 is provided in the electric circuits 53b, 53c and 53d, and an arc column is formed.
  • An electric path is provided at a position shifted left and right on a plane including a trajectory to be stretched.
  • the electric circuit corresponding to the conductor horizontal portion that generates the electromagnetic opening force described in the eighth embodiment is not present, and the opening speed is reduced as compared with the eighth embodiment.
  • the conductor length in the arc-extinguishing chamber can be shortened, the cost can be reduced, and the structure is simplified and the assemblability is improved.
  • the current mainly flowing through the electric circuits 53b, 53c, 53d generates a force that pushes the arc generated between the contacts back to the opposite side of the arc-extinguishing plate 31.
  • the slit 56 is provided to minimize the effect of pushing back the arcs of the electric circuits 53b, 53c, 53d in this embodiment.
  • FIG. 31 is a perspective view showing the inside of the arc-extinguishing unit according to the present embodiment
  • FIG. 32 is a perspective view showing the conductor arrangement near the repulsor 7 in FIG.
  • the arrows in FIG. 32 indicate the current flow.
  • the repulsion element 7 is connected to the terminal section 15 via the electric circuits 53a and 53b and the flexible conductor 11 and is movable.
  • the contact 1 is connected to the terminal 16 via the sliding contact 14.
  • the conductors 53a, 53b, and the conductor 53b side of the flexible conductor 11 are made of an insulator 54 integrally formed with the cylindrical insulator 25, and the two contacts 2, It covers the part that can be seen from the arc generated between the eight.
  • a slit 56 is provided in the electric circuit 53 b so as not to hinder the rotation of the mover 1.
  • the electric circuits 53 a and 53 b are arranged above the repulsor 7.
  • Embodiment 15 With such a configuration, the length of the conductor in the arc-extinguishing chamber can be shortened, so that costs can be reduced, the structure is simplified and the assemblability is improved, and the conductor horizontal in Embodiments 7 and 8 can be used. Since there is no conductor crossing the arc extinguishing unit corresponding to the portion, it is easy to secure the insulation distance between the conductors, as in Embodiment 13. Further, since the current flowing through the circuit 53b is substantially in the opposite direction and substantially parallel to the current flowing through the horizontal portion 10 of the repelling arm in the closed state, the opening electromagnetic force of the repulsor 7 is reduced from that of Embodiment 13. Improvement Can be done. Furthermore, the vertical current flowing through the flexible conductor 11 also generates a magnetic flux component that increases the electromagnetic opening force of the repulsor 7. Therefore, the opening speed of the repulsor 7 is increased, and the current limiting performance is improved. Embodiment 15
  • FIG. 33 is a perspective view showing a main part of the current limiting device according to Embodiment 15 and a part of cylindrical insulator 25 and insulating cover 28 is cut away so that the internal configuration can be seen.
  • FIG. 34 is a perspective view showing the appearance of the one shown in FIG.
  • reference numeral 1 denotes a movable arm vertical part 3 and a movable arm horizontal part 4 which are substantially perpendicular to the movable arm vertical part 3 and the movable arm vertical part 3 when the movable contact 2 and the movable contact point 2 are fixed.
  • the mover 1 forms a pair with a stator 5 composed of a fixed contact 6 and a fixed conductor 12, and the mover 1 is urged in the direction of the stator 5 by a mover contact pressure panel 18.
  • the mover 1 is rotatably supported about a mover rotating shaft 13 and is electrically connected to a terminal 15 via a sliding contact 14 and a connection conductor 17.
  • the stator 5 is covered with the cylindrical insulator 25 and the insulating power bar 28 except for the vicinity of the fixed contact 6 and the vicinity of the connection portion between the terminal portions 16.
  • a plurality of arrows shown in the figure indicate a current path at the time of energization, and the current of the movable arm horizontal portion 4 and the current of the fixed conductor 12 are configured to be almost parallel and in opposite directions. .
  • the electromagnetic repulsion F 1 due to the current concentration at the contact surface of the contact disappears, but the electromagnetic repulsion F due to the current in the movable arm horizontal portion 4 and the current in the substantially parallel and opposite direction of the fixed conductor 1 2 is generated. 2 continues to rotate the mover 1 in the opening direction.
  • a large amount of steam is generated from the inner surface of the cylindrical insulator 25 due to the heat of the arc when the arc is generated, and the cylindrical space 26 surrounded by the cylindrical insulator 25 is formed.
  • a high-pressure atmosphere is generated. Due to the generation of the high pressure in the cylindrical space 26, the mover 1 receives the opening force Fp due to the pressure difference. Due to the opening force Fp due to this pressure difference and the electromagnetic force F2, the mover 1 rotates at high speed, and the contacts open at high speed.
  • This high-speed opening causes the arc length to increase rapidly in a high-pressure atmosphere, causing the arc voltage to rise rapidly and the accident current to reach a peak value.
  • FIG. 37 shows a state where the mover 1 further rotates from the state shown in FIG. 35 and reaches the maximum opening position.
  • the current peak has already passed, and a sufficiently large arc voltage has been generated, so that the fault current reaches the zero point.
  • the electrode metal vapor in the vicinity of the movable contact 2 can be transferred to the ordinary means (for example, vapor flow from the insulator, grid, etc.). It can be cooled easily, and it is easy to interrupt the current by sufficient insulation recovery between the electrodes.
  • the required dimensions in the direction in which the movable contact 2 opens and closes are: the thickness of the fixed conductor 1 2, the thickness of the fixed contact 6, the space in which the movable element 1 moves,
  • the sum of the thickness of the movable contact 2 and the movable arm vertical portion 3 makes it possible to make the required dimension in the above direction smaller than that of the conventional direct acting current limiter. Therefore, even if the external dimensions are limited, the opening distance required to effectively connect the high pressure to the arc voltage rise can be easily secured.
  • stator 5 is directly connected to the terminal 15 and the mover 1 is connected to the terminal 16 via the sliding contact 14. Is electrically connected to the relay section. Further, the stator 5 shown in FIG. 39 has an electric circuit 86c through which a current flows in a direction substantially parallel to and in the opposite direction to the horizontal portion of the movable arm in the closed state.
  • the stator 5 is covered with an insulator 85 integrally formed with the tubular insulator 25 so as to cover at least a portion that can be seen from the open movable contact 2 except for the vicinity of the fixed contact 6.
  • An electric circuit 86 c is provided as an electric circuit through which a current in a direction substantially parallel to and opposite to the horizontal position of the movable arm 4 in the closed state flows.
  • the magnetic field created by the electrical circuit 86b also contributes to the opening electromagnetic force of the mover 1.However, apart from this, the length of the conductor in the arc-extinguishing chamber can be shortened, so that costs can be reduced, and the structure is simpler and assembly is easier. Is improved. Also, it is easy to secure the insulation distance.
  • FIG. FIG. 40 is a diagram showing the stator 5 of the present embodiment, in which a part of the vertical electric circuit 86 b of the stator 5 in FIG. The circuit is replaced by 8 6d.
  • Figure 41 shows the mover 1 in the closed state, the stator 5 shown in Figure 40, the cylindrical insulator 25, and the insulation covering the stator integrally formed with the cylindrical insulator 25. It is sectional drawing which showed thing 85, and shows the electric current direction with the arrow in the figure.
  • the electric circuit 86c 'of the movable arm horizontal part 4 and the stator 1 becomes very close, and the electromagnetic opening force when the fault current is cut off.
  • Embodiment 18 of the present invention is shown in FIG. Fig. 42 is a partial cross-sectional view showing the cylindrical insulator 25, the fixed contact 6 end of the stator 5 and the movable contact 2 end of the mover 1, and the cylinder surrounding the cylindrical space 26.
  • the wall height on the side opposite to the mover rotation axis is higher than the wall height on the mover rotation axis side.
  • an electromagnetic driving force is generated on the opposite side of the rotating shaft of the actuator due to the current flowing through the fixed conductor 12 and the movable arm horizontal portion 4. Therefore, the key in the cylindrical space 26 ⁇ touches the wall on the opposite side of the mover rotation axis more strongly.
  • the movable arm vertical part 3 determined by the cylinder height of the cylindrical insulator 25 is not suitable.
  • the armature moment of inertia increases. Therefore, as shown in Fig. 42, by making the wall height on the side opposite to the mover rotation axis higher than the wall height on the mover rotation axis side, the length of the movable arm vertical part 3 is shortened, and the moment of inertia is reduced. And a sufficient high-pressure atmosphere can be created by generating sufficient cylindrical insulator vapor, thereby further improving the current limiting performance.
  • FIG. 43 shows an embodiment 19 of the present invention.
  • the movable armature 1 in the closed state and the fixed conductor 12 facing the movable arm horizontal portion 4 are bent so that the portion 12 a of the fixed conductor 12 approaches the movable arm horizontal portion 4. 5 is shown.
  • the electromagnetic repulsion can be strengthened by bringing the fixed conductor 12 side closer to the movable arm.
  • the mover 1 since the mover 1 remains substantially L-shaped, the moment of inertia of the mover does not increase, and high-speed opening is possible.
  • Embodiment 20 Embodiment 20.
  • FIG. 44 shows an embodiment 20 of the present invention.
  • Fig. 44 is a partial cross-sectional perspective view showing the configuration inside the arc-extinguishing chamber unit, 5 is a stator, 25 is a cylindrical insulator, 88 is a magnetic flux shielding plate, and 89 is a movable member described later. Cores provided on the left and right of child 1.
  • FIG. 45 is a partial cross-sectional view showing the stator shape of FIG. 44, and the electric circuit is composed of the terminal section 15, the electric circuit 86, the 86 e, 86 c ′, 86 d, 86 c, The fixed contacts 6 are arranged in this order.
  • the stator 5 is provided with slits 87 to reduce the magnetic field components that hinder the opening of the mover, which are created by the currents of the electric circuits 86 e and 86 f.
  • the mover is located at a position shifted left and right from the plane containing the locus of rotation.
  • the current path in which the current almost parallel to and in the opposite direction to the movable arm horizontal portion 4 in the closed state is composed of 86 c ′, 86 d, and 86 c, and the L-shaped movable element is formed.
  • the distance between the horizontal part of the movable arm and the above-mentioned electric circuit 86 c ′ approaches. Therefore, it acts on the mover during short-circuit breaking operation. The repulsive force is larger and the opening speed is improved.
  • FIG. 45 shows, in addition to the stator 5, a magnetic flux shielding plate 88 having a partial cross section and one of a pair of cores 89 provided above the electric circuit 86e.
  • the magnetic flux shielding plate 88 and the core 89 are made of a magnetic material such as iron, and are arranged so as not to directly touch an arc generated between the contacts due to an insulator or the like integrally formed with the cylindrical insulator 25. ing.
  • the magnetic flux shielding plate 88 mainly shields the magnetic flux generated by the current flowing through the electric circuit 86 f (acting to prevent the opening of the movable element and to push the arc back to the rotating shaft side of the movable element). Playing a role.
  • the core 89 strengthens the magnetic field component that opens the mover created by the currents of the circuits 86 c ′, 86 d, and 86 c, and the current of the mover created by the current flowing through the circuit 86 e. It plays a role of shielding magnetic flux that prevents opening.
  • shielding a magnetic flux such as a magnetic flux shielding plate 88 and a core 89, which generates a suddenly increasing fault current in a certain electric circuit, the eddy current flowing in the magnetic material acts in a direction to prevent the penetration of the magnetic flux.
  • the conductivity of the magnetic material may be large.
  • the magnetic flux shielding plate 88 and the core 8 can be formed by using an inexpensive iron plate without laminating like a core used to reduce the magnetic resistance and increasing the electromagnetic force, or without using an expensive insulator core. Even with the configuration of 9, there is an advantage that the electromagnetic opening force acting on the mover can be greatly improved.
  • a core 89 ′ shown in FIG. 46 is a modified example of the core 89 shown in FIG. 45, and a pair of cores provided on the left and right sides of the mover are provided at the ends on the side where the mover opens.
  • the shape is almost U-shaped, and the effect of enhancing the electromagnetic opening force is high.
  • reference numeral 89 "shown in FIG. 47 is a modified example in which the magnetic flux shielding plate 88 and the core 89 are integrated, and the terminal 15 side end of the core 89 is close to the electric circuit 86f.
  • the magnetic flux due to the electric current of the electric circuit 86 f is absorbed in the above-mentioned end portion.
  • Embodiment 21 of the present invention is shown in FIG. FIG.
  • FIG. 48 is a perspective view showing one of the stator 5 and the pair of cores 89 ”of the present embodiment.
  • One of the electric circuits 86 e provided on the left and right of the fixed contact 6 is cut away.
  • the other components are not shown, but have basically the same configuration as in FIG.
  • the configuration of the stator shown in Fig. 48 differs from that shown in Fig. 45 in the arrangement of the electric circuit 86e, and the electric circuit 86e is provided above the electric circuit 86c.
  • the center line of e is located above the contact surface.
  • the electromagnetic opening force is strengthened by approaching the movable arm horizontal portion with the electric circuit 86 c ′ in the closed state, and the electric current in the electric circuit 86 d causes the arc to be formed at the terminal 15 side of the cylindrical insulator.
  • the arc cooling effect is improved by being pressed against the wall of the same as in Embodiment 20, since the electric circuit 86 e is located above the contact contact surface, the electric current of the electric circuit 86 e The arc spot on the fixed contact side is easily moved to the wall side by the electromagnetic driving force. In addition, by arranging the electric circuit 86 e upward, the electric circuit 86 f, which prevents opening of the mover and pushes the arc back to the mover rotating shaft side, is inevitably shortened. The pole speed is improved and the action of pressing the arc against the wall is improved. Embodiment 22.
  • FIG. 49 is a perspective view showing a three-limit current limiting device according to Embodiment 22 of the present invention, in which a part of housing 36 is cut away to show the internal configuration.
  • the three-limit current limiter can be configured in series with a circuit breaker to form a three-limit current limiter.
  • FIG. 50 is a perspective view showing the conductor configuration of one pole in the closed state of the three-pole current limiting device of FIG. 49, the cylindrical insulator 25 and the insulating cover 28, and FIG. 5 and the insulating cover 28 are partially cut away so that the shape of the part constituting the conductive part can be understood.
  • Fig. 49 1 is a mover, 25 is a cylindrical insulator surrounding the contact pair when closed, 28 is an insulating cover covering the stator, 14 is a sliding contact, and 18 is a contact pair.
  • the contact pressure panel of the mover which is a biasing means that gives contact pressure
  • 19 is a panel mount
  • 13 is the rotation axis of the mover 1
  • 17 is the connection conductor
  • 1 6a is a terminal part
  • 31 is an arc extinguishing plate
  • 38 is an exhaust port
  • 36 is an insulator casing.
  • reference numeral 1 denotes a movable contact 2, a movable arm vertical portion 3 to which the movable contact 2 is fixed, and a movable arm horizontal portion 4 substantially orthogonal to the movable arm vertical portion 3. It is a letter-shaped mover.
  • the mover 1 forms a pair of contacts with a stator 5 composed of a fixed contact 6 and a fixed conductor 12, and the mover 1 is a movable means which is an urging means for applying a contact pressure. It is urged against the stator 5 by the child contact pressure panel 18.
  • the mover 1 is rotatably supported about a mover rotating shaft 13 and is electrically connected to the terminal 15 a via the sliding contact 14 and the connection conductor 17. .
  • stator 5 is covered with the cylindrical insulator 25 and the insulating cover 28 except for the vicinity of the fixed contact 6 and the vicinity of the connection between the terminal portion 16a.
  • a plurality of arrows shown in the figure indicate a current path at the time of energization, and the current of the movable arm horizontal portion 4 and the current of the fixed conductor 12 flow in substantially parallel and opposite directions.
  • the contact pair in the closed state is arranged so as to be substantially orthogonal to the line connecting the terminal portions 15a and 16a.
  • FIG. 51 shows the state near the contact pair in this state.
  • a large amount of steam is generated from the inner surface of the cylindrical insulator 25 due to the heat of the arc when the arc is generated, and the cylindrical space 26 surrounded by the cylindrical insulator 25 is formed.
  • a high-pressure atmosphere is generated. Due to the generation of the high pressure in the cylindrical space 26, the mover 1 receives the opening force Fp due to the pressure difference. Due to the opening force Fp due to this pressure difference and the electromagnetic force F2, the mover 1 rotates at a high speed, and the contacts open at a high speed. This high-speed opening causes the arc length to increase rapidly in a high-pressure atmosphere, causing the arc voltage to rise rapidly and the accident current to reach a peak value.
  • the cylindrical insulator 25 is arranged so as to surround the fixed contact 6 in order to increase the arc atmosphere pressure immediately after the opening of the mover. Occurs between contacts
  • An arrangement in which a large amount of steam is generated from an insulator arranged near a fixed contact due to the heat of a rotating arc is shown, for example, in FIGS. 16 and 17 of JP-A-7-22061.
  • the insulator placed near the fixed contact has a shape that sandwiches the closed mover from the left and right, and the steam generated from the insulator immediately turns the closed mover into the closed mover. It flows out to the tip side and the armature rotation center side, and the arc atmosphere cannot be made sufficiently high.
  • it is essential that the insulator surrounding the fixed contact be cylindrical.
  • FIG. 52 shows a state in which the mover 1 further rotates from the state shown in FIG. 51 to reach the maximum opening position.
  • the movable contact 2 is located outside the cylindrical space 26, and generates a sufficiently large arc voltage.
  • the flow of insulator vapor (indicated by the white arrow) from the cylindrical space 26 along the axial direction of the arc column takes away the heat of the arc and cools the arc.
  • the arc resistance becomes higher and the fault current rapidly goes to zero. Therefore, the passing energy, which is one of the indicators of the current limiting performance, can be made smaller.
  • a high current limiting performance can be obtained with a pair of contacts, so that a current limiting device having excellent current limiting performance with low impedance can be obtained, and the present invention is applicable to a circuit that requires a large current carrying capacity.
  • Application becomes easy.
  • only one pair of contacts is used to obtain high current limiting performance, so that the thickness of the side wall of the housing can be increased, and the housing can be made of an inexpensive material.
  • the thickness of the housing wall is reduced, and a conductor arrangement in which two contact pairs are connected in series is used. It is also possible to use it. In this case, when the current limiting operation is performed, two series arcs are generated in the cylindrical space, and the current limiting performance is further improved.
  • FIG. 53 is a cross-sectional view showing the internal configuration of the current limiting device according to the present embodiment, and the panel and the like are not shown.
  • This embodiment is different from the embodiment shown in FIG. 49 in that terminal portions 15 and 16 are provided at a position higher than mounting surface (bottom) 91 of housing 36 by H ′. It is.
  • the lower portion of the fixed conductor 1 2 Is bent into a U-shape and connected to the terminal portion 16, and the movable element 1 is connected to the terminal portion 15 by bending the U-shaped flexible conductor 11 into a substantially U-shape.
  • the terminal of the current limiting device is installed at a position H 'higher than the mounting surface so that the terminal of the current limiting device and the terminal of the circuit breaker are directly engaged.
  • the height H of the current limiting device should be equal to or lower than the height of the circuit breaker, considering the storability of the switchboard.
  • the parallel mover hereafter referred to as the anti-power generation path
  • the anti-power generation path of approximately parallel and opposite directions required for high-speed opening is provided for the mover 1 and stator 5 in the closed state. As shown in Fig.
  • the fixed conductor 12 is roughly U-shaped, the stator-side electric path is folded back on the mounting surface 91, and the mover rotating shaft 13 is connected to the terminal 1 as shown in Fig. 53. It must be installed at a lower position on the mounting surface 91 side than the height of 5, 16.
  • the magnetic field generated by the current component indicated by the white arrow acts to hinder the high-speed opening of the mover. Opening speed from form 22 Decrease. Therefore, in the following Embodiment 24, the opening speed of the mover is further increased as compared with Embodiment 22 under the restrictions of the height H and the terminal portion height H ′. Embodiment 24.
  • Embodiment 24 of the present invention is shown in FIG. FIG. 54 is a cross-sectional view showing the internal configuration of the current limiting device of the present embodiment, and the panel and the like are not shown.
  • the mover 1 is located on the far side of the flexible conductor 11, that is, on the terminal portion 16 provided behind the stator 5, and on the stator 5.
  • the fixed conductor 12 electrically connecting the fixed contact 6 and the terminal portion 15 is composed of electric paths 12a, 12b, and 12c.
  • 1 2a is a circuit forming an anti-power generation path
  • 1 2b is a circuit having one end connected to the circuit 12a and arranged below the mover 1 orthogonal to the movable arm of the mover 1 in the closed state
  • 12 c is a circuit connecting the other end of the circuit 12 b to the terminal 15.
  • the anti-power generation path portion of the contact pair in the closed state is disposed so as to be substantially orthogonal to the line connecting the terminal portions 15 and 16, and a plurality of A horseshoe-shaped arc-extinguishing plate 31 is provided.
  • the fixed conductor 6 on the end of the stator 5 to which the fixed contact 6 is fixed is extended upward, and the extended conductor 9 2 is connected to the insulator cover-28 a from the arc extinguishing plate 3 1 side.
  • An arc runner 79 is provided to be exposed to the user.
  • an arc is generated in the cylindrical insulator 25 when a short circuit is interrupted, so that the arc spot on the fixed contact 6 side is limited by the inner diameter of the cylindrical insulator 25, and the current density Rises.
  • the wear of the fixed contact 6 may be increased, and the number of possible current limiting operations is limited.
  • the arc runner 79 where the arc A is commutated is provided above the fixed contact 6, and the mover 1 is In the latter half of the current-limiting operation in which the movable contact 2 rotates and moves out of the cylindrical space 26, the direction of arc discharge from the movable contact 2 changes from the fixed contact 6 to the arc extinguishing plate 31 side.
  • the arc receives an electromagnetic force in the direction of the arc-extinguishing plate 31 due to the current flowing through the fixed conductors 12 a, 12 b, 12 c and the mover 1.
  • the arc spot on the stator 6 moves from the fixed contact 6 to the arc runner 79. Therefore, consumption of the fixed contact 6 and the cylindrical insulator 25 is suppressed, and a current limiting device with excellent durability that can be used repeatedly can be obtained.
  • the arc is commutated to the arc runner 79, whereby the arc touches the arc extinguishing plate 31 more strongly, and the heat of the arc is taken away by the latent heat of evaporation of the arc extinguishing plate 31. Since the arc temperature drops, the rise in the internal pressure of the housing in the latter half of the shutoff operation can be reduced.
  • the mechanical strength of a molding material used for a circuit breaker for an impact stress is larger than the mechanical strength for a static stress. Therefore, the lowering of the internal pressure of the casing in the latter half of the shut-off operation has an effect of preventing cracking of the casing made of the mold material.
  • the wear of the fixed contact 6 can be reduced by commutating the arc spot on the fixed contact 6 side to the arc runner 79, but the fixed contact 6 is instantaneously transferred when the arc is commutated to the first runner 79.
  • the nearby arc moves to the outside of the cylindrical space 26, and the increased arc voltage in the high-pressure atmosphere of the cylindrical space 26 decreases. If this decrease in arc voltage occurs before the current peak, the current peak will increase significantly, and the current limiting performance will decrease significantly. Further, even if the arc voltage decreases after the current peak, the rate of current decrease in the latter half of the current limiting operation decreases, the cutoff time increases, and the passing energy may increase.
  • the following embodiment 25 has solved such a problem. Embodiment 25.
  • Embodiment 25 of the present invention is shown in FIG.
  • the insulating cover 28b around the arc runner 79 is formed in a cylindrical shape to form an arc runner cylindrical space 26a.
  • the fixed contact side arc spot does not immediately commute to the arc runner 79, and the cylindrical space 2 Arc pressure using high pressure atmosphere in 6
  • the rise in current can be used effectively, and the current peak can be kept small.
  • the tip of the mover 1 has a substantially L-shape in order to generate an arc in the cylindrical insulator 25 at the initial stage of opening. . Therefore, the arc spot on the mover 1 side is unlikely to move from the movable contact 2 to the end face of the mover 1 on the arc extinguishing plate side. It is difficult for the arc to touch the arc-extinguishing plate 31. Therefore, the arc cooling effect of the arc extinguishing plate 31 cannot be effectively used, and in the latter half of the current limiting operation, an unnecessary rise in the internal pressure of the casing that does not lead to an increase in the arc voltage may be caused.
  • one end is electrically connected to the connection conductor 17 and the other end extends to the arc-extinguishing plate 31 side.
  • a commutation electrode 75 of potential is provided behind the mover 1 so that the arc spot on the movable contact 2 side is commutated to the commutation electrode 75 and moves in the direction of the arc extinguishing plate 31. I have.
  • the arc spot is also commutated to the arc extinguishing plate 31 side by the arc runner on the stator 5 side, and the arc is surely divided by the arc extinguishing plate 31 and cooled. Is done. Therefore, an unnecessary increase in the internal pressure of the casing in the latter half of the current limiting operation can be prevented.
  • Embodiment 2 7 7.
  • the tip of the mover since the tip of the mover has a substantially L-shape, the arc spot on the mover 1 does not easily move to the end face of the mover 1 on the arc extinguishing plate side. Therefore, the current near the arc spot on the mover side concentrates on the movable contact 2, and the consumption of the movable contact 2 tends to be large. Therefore, in the present embodiment, as shown in FIG. 58, a slit 94 is provided in the commutation electrode 75 a to allow the tip of the movable element 1 in the open state to enter, and a rod commutation shown in FIG.
  • the movable contact side arc spot is reliably commutated to the commutation electrode 75a relatively early in the current limiting operation.
  • the arc commutated to the commutation electrode 75 a is transferred to the tip of the commutation electrode 75 a by the suction action of the arc extinguishing plate 31 and the electromagnetic driving force generated by the current flowing through the stator 5 and the commutation electrode 75 a.
  • the arc length increases rapidly and the arc voltage rises. Due to the commutation from the mover 1 to the commutation electrode 75a at such a relatively early point, the wear of the movable contact 2 can be significantly reduced as compared with the embodiment 25, and the current limiting device The durability is improved.
  • Embodiment 2 8 8.
  • FIG. 59 is a perspective view showing a main part of the circuit breaker in the closed state according to the embodiment 28.
  • the tubular insulator 108 and the insulating cover 109 are provided so that the internal configuration can be seen. The part of is cut off.
  • FIG. 60 is a perspective view showing the appearance of the one shown in FIG.
  • 101 is substantially perpendicular to the movable arm vertical portion 103 to which the movable contact 102 and the movable contact 102 are fixed and the movable arm vertical portion 103.
  • This is a substantially L-shaped mover constituted by a movable arm horizontal portion 104.
  • This mover 101 forms a pair with a stator 105 composed of a fixed contact 106 and a fixed conductor 107, and the mover 101 is a stator 1 0 It is biased in 5 directions.
  • the mover 101 is rotatably supported about the mover rotating shaft 113, and is electrically connected to the terminal 115 via the sliding contact 110 and the connection conductor 114. Connected.
  • the stator 105 is covered with the cylindrical insulator 108 and the insulating cover 109 except for the vicinity of the fixed contact 106 and the vicinity of the connection portion with the terminal portion 116.
  • a plurality of arrows shown in the figure indicate current paths during energization, and the current of the movable arm horizontal portion 104 and the current of the fixed conductor 107 are configured to be substantially parallel and in opposite directions. ing.
  • FIGS. 2, 3, and 4 in the description of the first embodiment, the comparison that occurs when the current limiting circuit is interrupted in the circuit breaker having the arc-type current limiting function is used.
  • the conditions for increasing the arc voltage under high pressure of a large current arc with a relatively short gap are described.
  • the graph of Fig. 4 shows the results of measuring the arc voltage change with the experimental apparatus shown in Fig. 61 by changing the atmospheric pressure P of a short gap large current arc of several cm or less.
  • the arc is generated with the round rod-shaped electrodes 400 facing each other, so that the distance between the electrodes is equal to the arc length.
  • Figure 6 shows the ratio R of the arc voltage V (P2 high) when the atmospheric pressure P is high and the arc voltage V (P2 low) when the atmospheric pressure P is low, as shown in Fig. 6.
  • Figure 3 shows the ratio R of the arc voltage V (P2 high) when the atmospheric pressure P is high and the arc voltage V (P2 low) when the atmospheric pressure P is low, as shown in Fig. 6.
  • the arc voltage rise rate R when the arc current value is relatively small increases as the arc length increases.
  • the arc voltage rise rate R when the arc current value is comparatively large hardly increases unless the arc length exceeds a certain value.
  • the circuit current rapidly increases immediately after the accident. Therefore, in order to satisfy the above two conditions and raise the arc voltage at a high atmospheric pressure to limit the fault current, (1) at least immediately after the arc occurrence (immediately after the fault occurs), (2) When the arc current is relatively small (immediately after the accident), it is necessary to increase the arc length. After the fault current increases, the current limiting performance does not improve much even if the atmospheric pressure is increased. Furthermore, the high-pressure atmosphere after the increase in the fault current not only does not contribute much to the improvement of the current limiting performance, but also causes damage to the housing and the like.
  • the heat of the arc causes A large amount of steam is generated from the inner surface of 108, and a high-pressure atmosphere is generated in the cylindrical space 118 surrounded by the cylindrical insulator 8. Due to the high pressure generated in the cylindrical space 118, the mover 101 receives the opening force Fp due to the pressure difference. Due to the opening force Fp due to this pressure difference and the electromagnetic force F2, the mover 101 rotates at high speed, and the contacts open at high speed. This high-speed opening causes the arc length to increase rapidly in a high-pressure atmosphere, causing the arc voltage to rise rapidly and causing the accident current to reach a peak value.
  • FIG. 66 shows the effect of the cylindrical insulator 108 when (a) the high-speed opening means is not used and (b) when the high-speed opening means is used.
  • t s is the time of the occurrence of the accident, to is the contact opening time
  • V 0 is the electrode drop voltage between the contacts
  • the dashed line is the power supply voltage waveform.
  • 66 (a) shows the case where the high-speed opening means is not used, and the time when the arc voltage catches up with the power supply voltage is t1 (when there is a cylindrical insulator), and t2 (when there is no cylindrical insulator). At this time, the current peaks I p 1 and I p 2 are met. If the high-speed opening means is not used, the rise of the arc length is slower than the rise of the fault current, so even if a high-pressure atmosphere is created with the cylindrical insulator 108, the arc length will be short and the arc voltage will rise. Difficult to meet the conditions.
  • the cylindrical insulator 108 is arranged so as to surround the fixed contact 105 in order to increase the arc atmosphere pressure immediately after the opening of the mover 1. A large amount of steam is released from the insulator placed near the fixed contact due to the heat of the arc generated between the contacts.
  • the arrangement to be generated is shown, for example, in FIGS. 16 and 17 of Japanese Patent Application Laid-Open No. 7-22061.
  • the insulator disposed near the fixed contact has a substantially U-shape that sandwiches the closed mover from the left and right, and steam generated from the insulator immediately At this time, it flows out to the mover tip side and mover rotation center side in the closed state, and the arc atmosphere cannot be made sufficiently high.
  • FIG. 67 shows a state in which the mover 101 further rotates from the state in FIG. 64 to reach the maximum opening position.
  • the current peak has already passed, and a sufficiently large arc voltage has been generated, so that the fault current reaches the zero point.
  • the electrode metal vapor in the vicinity of the movable contact 102 is supplied by ordinary means (for example, vapor flow from the insulator). , Grids, etc.), and can be easily diffused or cooled, and it is easy to interrupt the current by sufficient insulation recovery between the electrodes.
  • the required dimensions in the direction in which the movable contact 102 opens and closes are the thickness of the fixed conductor 107, the thickness of the fixed contact 106, and the movable element.
  • Embodiment 2 9 9.
  • FIG. 68 shows an embodiment 29 of the present invention.
  • FIG. 68 is a partial cross-sectional perspective view showing an end of the cylindrical insulator 108 and the stator 105 at the fixed contact 106 side, and FIG. 8 (a) has vertical pleats, and Fig. 68 (b) has horizontal pleats. If the area of the inner surface of the cylindrical space that contacts the arc is small, the amount of steam generated from the cylindrical insulator 108 during the breaking operation increases, and a higher pressure atmosphere can be quickly formed, so that the current limiting performance is improved. Is improved. Embodiment 30.
  • Embodiment 30 of the present invention is shown in FIG.
  • FIG. 69 is a partial cross-sectional view showing an end of the cylindrical insulator 108 and the stator 105 at the fixed contact 106 side, and the cylindrical insulator 108 has a cylindrical space 111. 8 It is composed of an insulator 108 a forming the inner surface and an insulator 108 b around the insulator 108 a.
  • the insulator 108a is molded from a material that has the property of generating a large amount of vapor immediately upon exposure to arcs, for example, a resin material that does not contain any or little reinforcing material such as glass fiber.
  • the insulator 108b is made of a reinforced resin having excellent mechanical strength. With such a configuration, a material that cannot mechanically withstand the high pressure generated in the cylindrical space 118 can be used as a material for the inner surface of the cylindrical space. Can be applied, and the current limiting performance is improved.
  • Embodiment 3 1.
  • FIG. 70 shows an embodiment 31 of the present invention.
  • Fig. 70 is a partial cross-sectional view showing the cylindrical insulator 1 08, the fixed contact 106 side end of the stator 1 105, and the movable contact 102 side end of the mover 101.
  • the trajectory drawn by the opening operation of the portion farthest from the rotation center of the mover 101 is indicated by a broken line.
  • the surface of the cylindrical insulator 108 facing the tip of the mover 101 is formed so as to have a certain gap between the broken lines.
  • the trajectory of the mover 101 expands from the position of the fixed contact 6 to the side opposite to the rotation center of the mover. for that reason, As shown in Fig.
  • the inner surface of the cylindrical insulator 108 is formed along the trajectory of the mover 101, the volume surrounded by the cylindrical insulator 108 can be reduced, and the current limiting performance is improved.
  • the inner surface of the cylindrical insulator 108 is formed along the trajectory of the tip of the mover 101, but even if the arc-shaped surface is not formed as shown in FIG. 7 As shown in 1, if the width D 1 on the opposite side of the fixed contact side D 2 of the cylindrical space 1 18 is made larger than the cylindrical insulator 1 08 shown in FIG. The volume inside 18 can be reduced, and the current limiting performance can be improved.
  • Embodiment 32 of the present invention is shown in FIG. Fig. 72 is a partial cross-sectional view showing the cylindrical insulator 108, the fixed contact 106 end of the stator 105, and the end of the movable contact 101 of the mover 101 on the movable contact 102 side.
  • the periphery of the fixed contact 106 at the end of the stator 105 is covered with a portion 108 c projecting toward the inner surface of the cylindrical space 118 of the cylindrical insulator 108.
  • the cylindrical space 118 surrounded by the cylindrical insulator 108 has a cross section larger than the fixed contact contact surface in consideration of the trajectory and blur when the mover 1 is opened and closed.
  • Embodiment 33 of the present invention is shown in FIG. Fig. 73 is a partial cross-sectional view showing the cylindrical insulator 1 08, the fixed contact 106 side end of the stator 105, and the movable contact 102 side end of the mover 101.
  • the wall height on the opposite side to the rotor rotation center is higher than the wall height on the mover rotation center side.
  • the current flowing through the fixed conductor 107 and the movable arm horizontal portion 104 generates an electromagnetic driving force on the side opposite to the mover rotation center.
  • the arc in the cylindrical space 118 is more strongly touched by the wall on the side opposite to the rotation center of the mover. Also, in order to open the mover 101 at a high speed, it is advantageous to reduce the inertia moment of the mover 101, but depending on the height of the cylindrical insulator 108, it is advantageous. As the determined movable arm vertical portion 103 becomes longer, the armature moment of inertia increases. Therefore, as shown in Fig.
  • FIG. Fig. 74 is a perspective view showing the main part of the circuit breaker in the form of a unit of the circuit breaker for wiring.
  • the arc extinguishing device components are the arc extinguishing unit main body 123 and the arc extinguishing unit. It is accommodated by the housing lid 124 and constitutes the arc extinguishing unit 125 as a whole.
  • 1 19 is an arc extinguishing plate
  • 120 is an arc extinguishing side plate holding a plurality of arc extinguishing plates 1 19
  • 1 26 is an exhaust port. As shown in Fig.
  • a plurality of arc extinguishing units 125 are connected by a crossbar 127, and a mechanism part 128 that opens and closes contacts via the crossbar 127 Detect the relay 1 2 9 to operate the mechanism 1 2 8, and operate the mechanism 1 28 manually. Apply the handle 13 2 to the base 1, and apply these to the base 1 3 0 and cover 1 3 1 If it is stored at, it becomes a circuit breaker for wiring. If each component is unitized in this way and combined to form a circuit breaker for wiring, assembly is simplified and costs can be reduced. Becomes
  • the arc extinguishing device is housed in the arc extinguishing unit main body 1 2 3 and the unit extinguisher cover 1 2 4, so that the pressure increase in the circuit breaker for wiring during the shut-off operation can be controlled. 0 and cover 1 3 1 will no longer receive it directly.
  • the pressure receiving area of the arc extinguishing unit housing is smaller than the pressure receiving areas of the base 130 and the cover 131. Therefore, even if an arc-extinguishing unit housing with the same material and the same thickness as the base 130 and the cover 131, the larger internal pressure can be withstood, and the arc atmospheric pressure can be increased.
  • the base and the cover are made of an expensive mold material with high mechanical strength in order to withstand the rise in internal pressure during the shut-off operation.However, pressure is applied by using the arc-extinguishing unit housing. The amount of the material of the housing can be reduced, and the cost can be reduced.
  • FIG. 77 is a perspective view in which components other than the current-carrying parts in the closed state are omitted, and FIG.
  • FIG. 77 is a cross-sectional view of the current-carrying parts in section C in FIG. 77.
  • the current directions in the movable arm horizontal portion 104, the fixed conductor 107, and the conductor 122 are indicated by arrows.
  • the normal opening / closing operation is performed by manually operating the handle 13.
  • the handle 132 By operating the handle 132, the rotor 122 rotates through the mechanism 128 and the crossbar 127, and the mover 101 opens and closes.
  • the relay unit 12 9 detects an abnormal current, a trip signal is transmitted from the relay unit 12 9 to the mechanical unit 1 28, and the mechanical unit 1 28 operates to operate the rotor 1 2 2 Rotates, moving element 101 is lifted, and the contact opens.
  • the electromagnetic repulsion force F1 due to the current concentration on the contact point and the current of the movable arm horizontal part 4 shown in Fig.
  • Due to the sum Ft of the component force in the opening direction (F3.cos0) the contacts are opened by contact with the contact pressure by the panel 1 11 and an arc is generated between the contacts. With the occurrence of the arc, the electromagnetic repulsion F 1 due to the current concentration on the contact surface disappears, but the electromagnetic repulsion F 2 and the electromagnetic repulsion F The component force of 3 continues to rotate the mover 101 in the opening direction.
  • the mover 101 After the current peak, the mover 101 further rotates and the distance between the contacts increases. Due to the increase in the distance between the contacts, the arc voltage further increases, and the fault current rapidly goes to zero. When the fault current is reduced to a small value, the arc is drawn into the arc extinguishing plate 1 19 made of iron, and the arc is divided, cooled, and extinguished. At this time, the movable contact 102 is outside the cylindrical space surrounded by the cylindrical insulator 108, and the insulation between the contacts has been sufficiently recovered, so that even if the power supply voltage can be applied between the electrodes, the current is restored again. There is no flow, and the shutoff operation is completed. Due to the high arc voltage due to the long inter-contact distance after the current peak, the breaking time is significantly shorter. Accordingly, it is an indicator of the current limiting capability pass energy 1 2 t (time integral of the square of the current) is reduced.
  • the exhaust port 126 is provided only on the arc extinguishing plate 119 side when viewed from between the contacts 102 and 106.
  • the insulation recovery effect of the air flow due to the accumulated pressure is almost as large as the flow speed of the air flow at the time of current interruption.
  • the exhaust port area In order to increase the flow velocity, it is necessary to increase the accumulated pressure or reduce the cross section of the flow path. Therefore, it is necessary to reduce the exhaust port area.
  • the exhaust port 126 having a relatively small area is provided on the movable contact 101 side in the open state.
  • the fixed contact 106 side arcs Since the arc in the vicinity of the pot is constrained by the cylindrical insulator 8, it is not possible to blow off the metal particles constituting the arc by an air current due to the accumulated pressure in the rotor side space.
  • the arc near the mover-side arc spot is located outside the cylindrical insulator 108 when current is interrupted, and is easily affected by the above-described airflow. Therefore, by providing the exhaust port 126 having a relatively small area on the movable contact side in the open state, it is possible to effectively ensure insulation recovery between the electrodes at the time of current interruption.
  • Embodiment 3 5 5.
  • the fixed conductor 107 is arranged on the surface including the locus of rotation of the mover 101, but slides with the terminal part 115.
  • the conductor 1 2 1 electrically connecting the contact 1 1 0 is arranged at a position deviated from the plane including the trajectory. Therefore, the force of the blur (F 3 ⁇ sin ⁇ ) acting in the direction perpendicular to the contact opening acts on the mover 101, which causes a decrease in the opening speed of the mover 101.
  • the movable arm vertical portion 103 is inserted into the cylindrical insulator 108 in the closed state, when the mover 101 is moved right and left due to the above-mentioned shaking force, It is highly possible that the mover 101 and the cylindrical insulator 108 come into contact with each other. If such contact occurs, the opening speed will be significantly reduced. Also, if the mover 101 or the mover rotating shaft 113 is greatly deformed by the above-mentioned shaking force during the shut-off operation, it cannot be re-inserted.
  • FIG. 80 is a sectional view taken along section C in FIG.
  • Embodiment 36 is a sectional view taken along section C in FIG.
  • Embodiments 36 are shown in FIG. 81 and FIG. Fig. 82 shows the cross section C in Fig. 81.
  • FIG. In this embodiment, the center line of the fixed conductor 107 and the conductor 122 is arranged substantially in parallel with the movable arm horizontal portion 104 in a closed state on a plane including the above-mentioned trajectory.
  • Electromagnetic repulsion F2 caused by currents flowing in opposite directions flowing through arm 104 and fixed conductor 107, respectively, and electromagnetic repulsion F caused by current flowing in opposite directions flowing through conductors 121 and 107, respectively.
  • Neither of 3 has the above-mentioned blurring force component.
  • the arrangement of the fixed conductor 107 and the conductor 121 in which the current for generating the electromagnetic repulsive force flows in the mover 101 is the same as that of the embodiment 34, the embodiment 35, and the embodiment 36. Each is different. In general, the smaller the distance between the horizontal section 104 of the movable arm and the fixed conductor 107 or the conductor 121, the greater the electromagnetic repulsion force and the higher the contact opening speed. However, the vertical distance L 1 between the movable arm horizontal part 104 and the fixed conductor 107 shown in FIGS. 78, 80 and 82 is mainly determined by the cylinder height of the cylindrical insulator 108.
  • the distance L 2 between the fixed conductor 107 and the conductor 121 is determined by the insulation distance required between the two conductors and the cross-sectional shape of the conductor. Furthermore, these dimensions are determined by conditions such as the strength of the circuit breaker housing for wiring, the applied circuit voltage, and the rated current. For example, if the height of the cylindrical insulator 8 is increased, the area of the insulator that contacts the arc increases, and the internal pressure of the arc-extinguishing unit increases, so the cylindrical insulator 8 is limited by the above-described housing strength. . The insulation distance is limited by the circuit voltage, and the conductor cross section is limited by the current carrying capacity. Therefore, the conductor arrangement that can obtain the largest electromagnetic opening force differs depending on the model of the circuit breaker for wiring.
  • FIG. 83 shows simplified conductors that generate electromagnetic repulsion in Embodiments 34, 35, and 36.
  • the Z axis direction is the direction in which the contacts are separated from the closed state
  • the point P 0 (Z L 1) on the Z axis is in the closed state.
  • the ZX plane corresponds to the plane including the locus drawn by the mover 101.
  • Fig. 83 (a) corresponds to the embodiment 34
  • Fig. 83 (b) corresponds to the embodiment 35
  • Fig. 83 (c) corresponds to the embodiment 36.
  • the magnetic flux density of the magnetic field component that generates an electromagnetic force in the opening direction at the movable arm horizontal part 104 out of the magnetic field at the point P0 (Z2L1) generated by the current flowing through the conductor 107 and the conductor 121 Is B y.
  • Fixed conductor 1 When the current flowing through the fixed conductor 107 and the conductor 122 is approximated by the line current on the conductor center line, the magnetic flux density B y can be expressed by the equation shown in Fig. 83, respectively. .
  • the magnetic flux density By increases in the order of (a) and (b).
  • the fixed conductor 107 and the conductor 112 as in Embodiment 36 are used. It can be said that a stronger opening force can be obtained by arranging the conductors on the left and right as in the thirty-fourth or thirty-fifth embodiments than by arranging the conductors vertically.
  • the above-mentioned cylinder height is low due to the limitation of housing strength or the like, it can be said that stronger conductor opening force can be obtained by arranging the conductors vertically above and below as in Embodiment 36.
  • L2 is the sum of the insulation distance a and the conductor width b in the embodiment 34 and the embodiment 35, and the insulation distance in the embodiment 9 It is the sum of a and conductor thickness c.
  • (conductor width b)> (conductor thickness c) when the terminal portion 15 and the conductor 21 are integrally formed by press working or the like, (conductor width b)> (conductor thickness c), and therefore, Embodiment 34 and Embodiment 34 Form 2 L 2 is larger. The equation shown in FIG.
  • FIG. 88 is a partial cross-sectional perspective view showing Embodiment 37.
  • the circuit breaker shown in the figure has the same configuration as that shown in FIG. 76 except for the commutation electrode 13.
  • the commutation electrode 1 37 is electrically connected to the sliding contact 110 and extends from the sliding contact 110 to the exhaust port 126 side. It has a slit portion into which the mover 101 enters.
  • the end of the commutation electrode 1 37 on the exhaust port 1 26 side is located above the arc-extinguishing plate 1 19, and the end of the slit on the exhaust port side is the movable contact of the movable element 101 in the open state. It is provided so as to face the side end.
  • the mover 101 has a substantially L-shape in order to generate an arc in the cylindrical insulator 108 at the initial stage of opening. Therefore, the arc spot on the mover side is unlikely to move to the end face of the mover 101 on the arc extinguishing plate side, and even in the latter half of the shut-off operation, the direction in which the mover side arc is ejected does not point toward the arc extinguishing plate.
  • FIG. 4 is a perspective view showing a conductor 13 in a closed state of the circuit breaker of the embodiment and a core 13 3 of a magnetic material for enhancing the opening electromagnetic force, and includes a cylindrical insulator, a contact pressure generating means, and an arc extinguishing device. , Housing, etc. are omitted.
  • the tubular insulator 108 is disposed so as to surround the fixed contact 106, the movable contact 102, and the movable arm vertical portion 103 in the closed state.
  • Fig. 90 shows a plane perpendicular to the plane on which the mover 101 rotates, and perpendicular to the direction in which the fixed conductor 107 extends. It is a figure which shows the cross section of 07, 121. As shown in FIGS.
  • the cores 13 3 are stacked in a plane direction orthogonal to the conductors 12 1, are arranged so as to surround the conductors 12 1 and the fixed conductors 10 7, and The movable arm horizontal portion 104 in the closed state is sandwiched between the protrusions 134 of the core 133.
  • the magnetic flux generated by the current flowing through the conductor 1 21 and the fixed conductor 107 can be concentrated in the closed movable arm horizontal section 104, so that the electromagnetic The opening force is strengthened and the opening speed is improved. Therefore, the high-pressure atmosphere formed by the cylindrical insulator vapor can be effectively linked to the increase in the arc voltage, and the current limiting performance is improved. Also, as shown in Fig. 89, when cores 133 are formed by laminating thin plates, the eddy current generated in core 13 33 can be reduced by ⁇ degrees Celsius, and the sudden rise of the fault current can be cut off rapidly. Even in the initial stage, the magnetic flux can be efficiently concentrated on the movable arm horizontal portion 104 by the core 133.
  • Embodiment 3 9 9.
  • FIG. 91 shows the U-shaped core opened at the top, the U-shaped core opened at the bottom shown in FIG. 92, if ⁇ surrounds the entire circumference shown in FIG. Similar effects can be obtained in the core.
  • Embodiment 40 shows the U-shaped core opened at the top, the U-shaped core opened at the bottom shown in FIG. 92, if ⁇ surrounds the entire circumference shown in FIG. Similar effects can be obtained in the core.
  • a core 13 3 having a shape shown in FIG. 92 is arranged so as to sandwich the arc-extinguishing unit housing main body 123 and the arc-extinguishing unit housing lid 124.
  • the core 13 can receive a force applied to the housing due to a rise in the internal pressure of the housing at the time of interruption, and damage to the housing can be prevented.
  • the arc extinguishing unit housing main body 123 and the arc extinguishing unit housing lid 124 can be connected by the core 133, connecting parts such as screws can be omitted. Become.
  • the inner surface of the core can also be insulated by the housing, so that arcing of the core 133 can be prevented.
  • the core shown in FIG. 92 is arranged on the upper side of the arc-extinguishing unit.
  • the core having the shape shown in FIGS. 90, 91, and 93 is placed from the lower side of the arc-extinguishing unit.
  • One of the cylindrical spaces 118 in the cylindrical insulator 108 shown in Embodiments 28 and 34 is closed by the stator. For this reason, after the interruption of the accident current, high-temperature gas such as electrode metal vapor and a molten material tend to remain in the above space. These prevent the insulation recovery of the cylindrical space 118 and cause re-ignition. Further, if the above-mentioned melt adheres to the surface of the fixed contact, it may cause an abnormal temperature rise when re-energizing after the interruption.
  • FIG. 95 shows a cross section of the cylindrical insulator 108 of the present embodiment 41, a part of the movable contact of the mover 101 in the closed state, and a part of the fixed contact of the stator 5.
  • FIG. The cylindrical insulator 108 has a pressure accumulating space 135 connected to the cylindrical space 118. As shown in Fig. 95, if the accumulator space 135 is provided on the fixed contact 106 side of the cylindrical insulator 108, the pressure accumulated in the accumulator space 135 during the occurrence of a large current arc A flow is discharged from the pressure accumulating space 135 to the outside of the cylindrical insulator 108 through the cylindrical space 118 before the arc disappears and after the current is cut off.
  • FIG. 96 shows a state where pressure is accumulated in the pressure accumulating space 135 due to a large current arc generated during the breaking operation.
  • Fig. 97 shows the state immediately before the current interruption, that is, just before the arc disappears, and the flow discharged from the accumulator space 135 to the outside through the cylindrical space 118 is indicated by an arrow. .
  • the flow of the arrow is the fastest in the nozzle-shaped cylindrical space 118, and this high-speed flow removes the heat of the arc and promotes the disappearance of the arc.
  • the high-temperature gas and the melt are discharged to the outside by this flow, so that the insulation of the cylindrical space 118 is quickly restored and the melt is prevented from adhering to the surface of the fixed contact. it can.
  • Embodiment 4 2.
  • FIG. 98 shows a perspective view of the stator 105 of the embodiment 41.
  • FIG. In the figure, the portion of the fixed conductor 107 around the fixed contact 106 is covered with an insulator 136.
  • the insulator 1336 When the insulator 1336 is arranged around the fixed contact in this way, when a large current arc is generated, steam is generated from the insulator 13 and the pressure accumulated in the pressure accumulating space 135 becomes higher. The flow passing through the cylindrical space 118 becomes stronger, and the arc extinguishing action, the insulation recovery action, and the action of preventing the adhesion of the melt to the surface of the fixed contact are increased.
  • FIG. 99 shows a cross-sectional view of the stator 105 according to the embodiment 43.
  • the pressure accumulating space 135 is not provided on the surface of the stator 105 opposite to the fixed contact 106, but is provided around the fixed contact 106. ing. Even with such an arrangement, the same effects as in the embodiment of FIG. 95 can be obtained, and the assembly is simplified.
  • an arc runner 38 electrically connected to the fixed contact side end of the stator 5 is provided, and the stator 5 of the arcrunner 38 is provided.
  • the distal end 38 a opposite to the connection end of the cylindrical contact 8 is configured to be exposed from the cylindrical insulator 8 at a position closer to the arc extinguishing plate 19 than the fixed contact 6.
  • the movable contact 2 at the time of the breaking operation rotates out of the space 18 surrounded by the cylindrical insulator 8, and then, as shown in FIG. Moves to the tip 38 a of the arc runner 38, so that the arc can effectively touch the arc extinguishing plate 19.
  • the height of the cylindrical insulator 108 between the cylindrical space 1 18 and the arc runner tip 1 38 a is the height of the arc runner tip 1 3 It is configured lower than 8a.
  • a part of the current flowing between the fixed contact 106 and the movable contact 102 becomes the tip of the arc runner 1 3
  • a shunt state may flow between 8a and the movable contact 102, and the arc voltage may decrease. If this decrease in arc voltage occurs before the current peak, the current peak will increase significantly and the current limiting performance will decrease significantly.
  • the stator-side arc spot has a cylindrical shape surrounded by an insulator. Since it moves out of the space 1 18, if there is an arc between the fixed contact 106 and the movable contact 102, the arc voltage will decrease, the interruption time will be longer, and the passing energy will increase. Therefore, in Embodiment 45, as shown in FIG. 101, the tip of the arc runner 1 38 a is made lower than the height of the cylindrical insulator 108, and the tip of the air runner 1 38 The vibrant material around a is configured to be mortar-shaped.
  • FIG. 102 shows Embodiment 46.
  • the cylindrical space 1 18 in which the fixed contact 106 is arranged and the mortar-shaped arcrunner cylindrical space 1 39 in which the arc runner tip 1 38 a is arranged are relatively cross-sectional. They are connected by a small pipeline 140. With this configuration, part of the hot gas generated in the cylindrical space 118 when the current is cut off passes through the pipe 140, and the arc runner cylindrical space surrounding the arc runner tip 1338a.
  • FIG. 103 is a four-view diagram showing the mover 1 of the present embodiment.
  • the mover 1 has a movable contact 2 and a movable
  • the arm consists of a vertical arm 3, a movable arm horizontal 4a, 4b, and 4c, and an insulator 41 that covers the fixed contact side of the armature arm.
  • the mover 1 substantially hook-shaped, even when the cylindrical insulator 8 is used, the distance between the fixed conductor 7 in the closed state and the movable arm horizontal portion 4c can be reduced. .
  • FIG. 105 is a diagram showing the mover 1, the stator 5, and the cylindrical insulator 8 in the closed state according to the present embodiment, in which the flow of current is indicated by arrows.
  • currents in opposite directions flowing through the fixed conductor 7 and the movable arm horizontal part 4c which generate the electromagnetic opening force when an accident current occurs, are generated when the L-shaped mover shown in Fig. 1 is used, for example. Approaching further, the electromagnetic repulsion increases, and the opening speed increases.
  • FIG. 106 shows an embodiment 21 of the present invention.
  • the center of rotation of the mover 1 is supported by a component that transmits the opening and closing operations of the mechanism, for example, a rotor 22. Therefore, the distance between the stator 5 and the rotor rotating shaft 13 cannot be made smaller than a certain value. Therefore, as shown in Fig. 106, if the shape of the mover 1 is made substantially S-shaped, and if one bend is added to the almost hook-shaped mover shown in Fig.
  • FIG. 107 shows an embodiment 49 of the present invention.
  • the nearly armature-shaped mover 101 in the closed state and the fixed conductor 107 facing the movable arm horizontal portion 104 are bent so as to approach the movable arm horizontal portion 104.
  • the shown stator 105 is shown.
  • the embodiment 47 is the same as that of the embodiment described in Embodiment 48. Since the moment of inertia can be made smaller than that of the movable armature, a higher speed opening is possible.
  • Embodiment 50 since the moment of inertia can be made smaller than that of the movable armature, a higher speed opening is possible.
  • an arc spot is formed by providing an opposing electrode 142 above the tip of the mover 101 at the fully opened position, so that the arc-shaped mover 101 is formed.
  • the arc is moved to the end face of the arc extinguishing plate to make the arc effectively touch the arc extinguishing plate 1 19.
  • the wall height of the cylindrical insulator 108 surrounding the cylindrical space 118 on the side opposite to the mover rotation center is set to be lower than the wall height on the mover rotation center side. That is, the upper surface of the cylindrical space 118 is directed to the arc extinguishing plate 119 side.
  • a plate-like counter electrode 144 was used, but as shown in FIG.
  • the arc spot can be connected to the L-shaped mover 101 by using the L-shaped counter electrode 142 arranged so that one side faces the arc-extinguishing plate side end face of the mover 101. It can be moved to the end face on the arc-extinguishing plate side.
  • Embodiment 5 1.
  • the arc is brought into contact with the arc-extinguishing plate using the counter electrode.
  • the center position M 2 of the notch of the horseshoe-shaped arc-extinguishing plate 1 19 Is provided on the armature rotation center side from the end surface position M 1 of the cylindrical space 118 surrounded by the cylindrical insulator 108 opposite to the armature rotation center, the arc can be generated without using a counter electrode.
  • the extinguishing plate 1 19 can be touched.
  • the position M 2 of the notch is drawn by the tip of the mover indicated by the dashed line in the figure. ⁇ If the cross section intersects with the trajectory, the arc extinguishing plate 1 19 prevents the mover 1 from rotating.
  • M2 must be located between the dashed line and the position M1.
  • the cylindrical insulator 108 is surrounded by a horseshoe-shaped core 144 from the side opposite to the mover rotation center. Due to this core 14 3, the overload current arc with a relatively small current and the small current arc immediately before the current interruption during the short-circuit current interruption operation are located on the inner wall of the cylindrical space 1 18 opposite to the mover rotation center. Because it is pressed, it is cooled by the arc-extinguishing plate 1 19 and also cooled by steam generated from the inner wall of the cylindrical space 1 18, and is reliably shut off.
  • Embodiment 5 2.
  • stator 105 is directly connected to the terminal section 115, and the mover 101 is connected to the terminal 1 via the sliding contact 110. It is electrically connected to the relay by 16.
  • the stator 105 shown in FIG. 11 has a conventional stator shape disclosed in Japanese Patent Application Laid-Open No. 6-20547, and has a movable arm horizontal in a closed state. It has an electric circuit 145c through which a current almost parallel to and in the opposite direction flows.
  • the stator 155 is made of an insulator 146 integrally formed with the cylindrical insulator 408, and covers at least a portion of the movable contact 702 in an open state except for the vicinity of the fixed contact 506 except for the vicinity of the fixed contact 506. ing.
  • the fixed conductor 107 and the conductor 122 are arranged as an electric path through which a current flows in a direction substantially parallel to and in the opposite direction to the movable arm horizontal portion 104 in the closed state.
  • the electric circuit 145c corresponds to the electric circuit described above.
  • the magnetic field created by the electric circuit 1 45 b also contributes to the opening electromagnetic force of the mover 101. Also, since the conductor length in the arc-extinguishing chamber can be shortened, costs can be reduced, and the structure is simplified and the assemblability is improved. Also, it is easy to secure the insulation distance.
  • Embodiment 53 of the present invention is shown in FIG. 114 and FIG.
  • FIG. 114 is a diagram showing the stator 105 of the present embodiment, and a part of the vertical circuit 144 b of the stator 105 of FIG. 1 4 5 c 'has been replaced with an up and down electric circuit 1 4 5 d.
  • Fig. 115 shows the mover 1 in the closed state, the stator 105 shown in Fig. 114, the cylindrical insulator 108, and the cylindrical insulator 108 formed integrally with it.
  • FIG. 9 is a cross-sectional view showing an insulator covering the stator, in which current directions are indicated by arrows.
  • the stator shape shown in Fig. 114 by using the stator shape shown in Fig. 114, the movable arm horizontal part 104 and the electric circuit 144 c 'of the stator 101 are much closer, and the fault current is cut off.
  • the electromagnetic opening force at this time is greater than in the embodiment shown in FIGS. Em
  • Embodiment 54 of the present invention is shown in FIG.
  • the shape of the stator in the figure is shown in Fig. 117.
  • a current path 145 c through which a current almost parallel to and in the opposite direction to the movable arm horizontal portion 104 in the closed state flows.
  • the currents in the electric circuits 145 e and 145 f generate a magnetic field in a direction that prevents the mover 101 from opening.
  • a slit 147 is provided on the stator, and the electric paths 145e and 145f are moved from the plane including the locus of rotation of the movable arm 101.
  • FIG. 119 is a perspective view showing a three-limit current limiting device according to Embodiment 55 of the present invention, in which a part of housing 230 is cut away to show the internal configuration.
  • the three-pole current limiting device can be connected in series with a circuit breaker to form a three-pole current limiting device.
  • FIG. 120 is a perspective view showing the conductor configuration of one pole in the closed state of the three-pole current limiting device of FIG. 119, the cylindrical insulator 8 and the insulating cover 209, and FIG. A part of the insulating cover 209 is cut away so that the shape of the part constituting the conductive part can be understood.
  • 201 is a mover
  • 208 is a cylindrical insulator surrounding a contact pair when closed
  • 209 is an insulating cover covering a stator
  • 210 is a sliding contact
  • 211 is a contact with a contact pair.
  • 212 is a panel hanging
  • 213 is a rotating shaft of the mover 201
  • 214 is a connecting conductor
  • 216a is a terminal
  • 219 is an arc extinguishing plate
  • 226 is an exhaust port
  • 230 is an insulator casing.
  • reference numeral 201 denotes a movable contact 202, a movable arm vertical portion 203 to which the movable contact 202 is fixed, and a movable arm horizontal portion 204 substantially orthogonal to the movable arm vertical portion 203. It is an L-shaped mover.
  • This mover 201 forms one pair of contacts with a stator 205 composed of a fixed contact 206 and a fixed conductor 207, and the mover 201 is a panel which is a biasing means for applying a contact pressure. It is biased against the stator 205 by 21 1.
  • the mover 201 is rotatably supported around a mover rotating shaft 213, and is electrically connected to a terminal portion 215 a via a sliding contact 210 and a connection conductor 214.
  • the stator 205 is covered by the tubular insulator 208 and the insulating cover 209 except for the vicinity of the fixed contact 206 and the vicinity of the connection between the terminal portion 216a.
  • a plurality of arrows shown in the figure indicate a current path during energization, and the current of the movable arm horizontal portion 204 and the current of the fixed conductor 207 flow in substantially parallel and opposite directions.
  • Fig. 12-1 The conditions for effectively increasing the arc voltage of a large current arc with a relatively short gap generated during a current limiting operation in an arc current limiting device under high pressure are as shown in Fig. 12-1
  • the graph of Fig. 4 shows the result of measuring the arc voltage change by changing the atmospheric pressure P of a short gap large current arc of several cm or less using the device.
  • the arc is generated by facing the rod-shaped electrodes, so that the distance between the electrodes is equal to the arc length L.
  • the electromagnetic repulsion F1 due to the current concentration at the contact surface disappears, but the electromagnetic repulsion F2 due to the current in the movable arm horizontal part 4 and the current in the fixed conductor 2007 remains movable.
  • the child 201 is rotated in the opening direction.
  • a large amount of steam is generated from the inner surface of the cylindrical insulator 208 by the heat of the arc due to the arc, and the cylindrical shape surrounded by the cylindrical insulator 208
  • a high-pressure atmosphere is generated in the space 218. Due to the high pressure generated in the cylindrical space 218, the mover 201 receives an opening force Fp due to the pressure difference.
  • the movable element 201 rotates at high speed due to the opening force Fp due to this pressure difference and the electromagnetic force F2 described above, and the contacts open at high speed.
  • the arc opening length increases rapidly in a high-pressure atmosphere due to this high-speed opening, so that the arc voltage rises rapidly and the fault current reaches a peak value.
  • Fig. 125 shows the effect of the cylindrical insulator when (a) the high-speed opening means is not used and (b) when the high-speed opening means is used.
  • t s is the time of occurrence of the accident
  • t 0 is the time of contact opening
  • V 0 is the electrode drop voltage between the contacts
  • the dashed line is the power supply voltage waveform.
  • 125 (a) shows the case where the high-speed opening means is not used.
  • the time t1 when the arc voltage catches up with the power supply voltage (when there is cylindrical insulation) and t2 (when there is no cylindrical insulation) are shown. At that time, the current peaks I p 1 and I p 2 are changed. Without high-speed opening means, the rise of the arc length is slower than the rise of the fault current, so even if a high-pressure atmosphere is created with a tubular insulator, the arc length is short and the arc voltage rises. It is difficult. Therefore, Fig. 1 2 5
  • the cylindrical insulator 208 is disposed so as to surround the fixed contact 206 so as to increase the arc atmosphere pressure immediately after the mover is opened.
  • An arrangement in which a large amount of vapor is generated from an insulator disposed near a fixed contact due to the heat of an arc generated between the contacts is disclosed in, for example, FIGS. 16 and 17 of Japanese Patent Application Laid-Open No. Hei 7-22061. It has been.
  • the insulator placed in the vicinity of the fixed contact has a shape in which the closed mover is sandwiched from the left and right, and the steam generated from the insulator immediately moves to the closed state.
  • FIG. 126 shows a state where the mover 201 further rotates from the state shown in FIG. 124 to reach the maximum opening position.
  • the movable contact 202 is located outside the cylindrical space 218, and generates a sufficiently large arc voltage.
  • the flow of insulator vapor (indicated by the white arrow) from the cylindrical space 218 along the axial direction of the arc column takes away the heat of the arc and generates the arc. As it cools, the arc resistance becomes higher and the fault current rapidly moves to zero. Therefore, the passing energy, which is one of the indicators of the current limiting performance, can be made smaller.
  • the width W of the current limiting device is It is clear that it is better to be equal to or shorter than the width W of the vessel.
  • the thickness of the side wall of the housing parallel to the plane on which the mover rotates cannot be increased in order to satisfy the limitation of the width W.
  • the housing was made of thin, strong, and expensive insulating material.
  • only one pair of contacts is used to obtain high current limiting performance. Therefore, even when the width W is limited as described above, the thickness of the side wall of the housing is increased.
  • the housing can be made of inexpensive materials.
  • the increase in the internal pressure of the housing due to the arc is suppressed, it is also possible to reduce the wall thickness of the housing and use two contact pairs.
  • Embodiment 5 6.
  • FIG. 127 is a cross-sectional view showing the internal configuration of the current limiting device according to Embodiment 56, and the illustration of panels and the like is omitted.
  • the present embodiment is different from the embodiment 55 shown in FIG. 119 in that the terminals 2 15 and 2 16 are higher than the mounting surface (bottom) 2 96 of the housing 230 by H ′. This is the point provided at the position. For this reason, in the present embodiment, in order to secure a parallel arrangement electric path portion between the arm of the mover 201 and the stator 205, and to connect the arm portions to the terminal portions 215, 216.
  • the lower part of the fixed conductor 207 is bent in a U-shape to connect to the terminal part 216, and the mover 201 is made of a flexible conductor 272 and bent almost in a U-shape. Connected to terminals 2 15.
  • the current limiting device is connected directly to the circuit breaker.
  • the terminal of the current limiting device must be located at a position H 'higher than the mounting surface so that the terminal of the current limiting device and the terminal of the circuit breaker are directly engaged.
  • the height H of the current limiting device should be equal to or lower than the height of the circuit breaker, considering the storability of the switchboard.
  • the closed mover 201 and stator 205 are connected to almost parallel and opposite electric paths (hereinafter referred to as anti-power paths) required for high-speed opening.
  • anti-power paths In order to provide a sufficient length, as shown in Fig.
  • the fixed conductor 7 is roughly U-shaped, the electric path on the stator side is folded back on the mounting surface 296, and the rotor shaft 2 It is necessary to provide 13 at a lower position on the mounting surface 296 side than the height of the terminals 2 15 and 2 16.
  • the magnetic field generated by the current component indicated by the white arrow acts to hinder the high-speed opening of the mover. 5
  • the opening speed is lower than 5. Therefore, in the following embodiment 57, the opening speed of the mover is further increased from the embodiment 55 under the restrictions of the height H and the terminal section height H'.o Form 5 7.
  • Embodiment 57 of the present invention is shown in FIG.
  • FIG. 128 is a cross-sectional view showing the internal configuration of the current limiting device of Embodiment 57, and the panel and the like are not shown.
  • the mover 201 is connected to the far side of the flexible conductor 272, that is, to the terminal section 2 16 provided behind the stator 205.
  • the stator 205 extends from the fixed conductor 207 and is electrically connected to a far side, that is, to a terminal portion 215 provided behind the mover 201.
  • the fixed conductor 207 for electrically connecting the fixed contact 206 and the terminal portion 215 is composed of electric paths 207a, 207b and 207c.
  • 207a is an electric circuit forming an anti-power generation path
  • 207b is connected at one end to the electric circuit 207a, and is orthogonal to the movable arm of the movable element 201 in the closed state.
  • An electric circuit 207 c disposed below is an electric circuit connecting the other end of the electric circuit 207 b and the terminal portion 215.
  • the anti-power generation path portion of the contact pair in the closed state is disposed so as to be substantially perpendicular to the line connecting the terminal portions 25.2.16, and a plurality of A horseshoe-shaped arc extinguishing plate 2 19 is provided.
  • the fixed conductor at the end of the stator 205 to which the fixed contact 206 is fixed is extended upward, and the extended conductor 238 is attached to the insulator cover 209a from the insulator cover 209a.
  • An arc runner 234 exposed on the arc extinguishing plate 219 side is provided.
  • the arc spot on the fixed contact 206 is limited by the inner diameter of the cylindrical insulator 208.
  • the current density increases.
  • the wear of the fixed contact 206 may be increased, and the number of current limiting operations is limited as much as possible.
  • the arc lancer 134 is provided above the fixed contact 206 where the arc A is commutated, and as shown in FIG.
  • the direction of arc discharge on the movable contact 202 side is from the fixed contact 206.
  • the arc receives an electromagnetic force in the direction of the arc-extinguishing plate 219 by a current flowing through the fixed conductors 207a, 207b, 207c and the mover 201.
  • the arc spot on the stator 205 moves from the fixed contact 206 to the arc runner 234. Therefore, consumption of the fixed contact 206 and the cylindrical insulator 208 is suppressed, and a current limiting device excellent in durability that can be used repeatedly can be obtained.
  • the arc is diverted to the arc runner 234, so that the arc touches the arc extinguishing plate 219 and the heat of the arc is reduced by the arc extinguishing plate 219. Since the arc temperature is reduced by the latent heat of vaporization, the rise in the internal pressure of the housing in the latter half of the breaking operation can be reduced. In general, the mechanical strength of a molding material used in a circuit breaker for impact stress is greater than the mechanical strength for static stress. Therefore, in the latter half of the shutoff operation As described above, the arc spot on the fixed contact 206 side is commutated to the arc runner 2 34 by reducing the internal pressure of the housing.
  • FIG. 130 shows an embodiment 58 of the present invention.
  • the insulation cover 209a around the arc runner 234 is formed into a cylindrical shape to form an air cleaner-tube-shaped space 239. I have.
  • the fixed contact-side explosion pot is immediately transferred to the arc runner 234. Therefore, it is possible to effectively utilize the increase in arc voltage using the high-pressure atmosphere in the cylindrical space 218, and to reduce the current peak.
  • the arc runner 230 remains in the arc runner cylindrical space 23 surrounded by the cylindrical insulating cover 209a. As a result, the arc voltage does not decrease, the interruption time can be shortened, and the amount of passing energy is reduced.
  • Embodiment 5 9.
  • the tip of the mover 201 is formed in a substantially L-shape in order to generate an arc in the initial stage of opening of the electrode in the cylindrical insulator 208. ing. Therefore, it is difficult for the arc spot on the mover 201 to move from the movable contact 202 to the end face of the mover 201 on the arc-extinguishing plate side. The direction does not point in the direction of the arc-extinguishing plate, making it difficult for the arc to touch the arc-extinguishing plate 2 19.
  • Embodiment 59 as shown in FIG. 13 1, one end is electrically connected to the connection conductor 2 14, and the other end is extended to the arc-extinguishing plate 2 19 side.
  • a commutation electrode 237 having the same potential is provided behind the mover 201, and the arc spot on the movable contact 202 side is commutated to the commutation electrode 237 to the arc-extinguishing plate 219. It is configured to move to.
  • the stator 205 also has a configuration in which the arc spot is diverted to the arc extinguishing plate 219 side by an arc runner, so that the arc is extinguished.
  • the arc plate 2 19 ensures separation and cooling. Therefore, it is possible to prevent an unnecessary increase in the internal pressure of the casing in the latter half of the flow limiting operation.
  • the tip of the mover since the tip of the mover has a substantially L-shape, the arc spot on the mover 201 side is on the end face of the mover 201 on the arc extinguishing plate side. Difficult to move. Therefore, the current near the arc spot on the mover side concentrates on the movable contact 202, and the wear of the movable contact 202 tends to increase. Therefore, in the present embodiment 60, as shown in FIG. 13 32, a slit 2447 into which the tip of the movable element 201 in the open state enters is inserted into the commutation electrode 237a. As compared with the rod-shaped commutation electrode 237 shown in FIG. 31, the movable contact side arc spot is surely commutated to the commutation electrode 237a relatively early in the current limiting operation.
  • the arc that has been commutated to the commutation electrode 2 37 a is driven by the suction action of the arc extinguishing plate 2 19 and the electromagnetic driving force generated by the current flowing through the stator 205 and the commutation electrode 2 37 a. 7a Driven to the tip, the arc length increases rapidly, and the arc voltage rises. Due to the commutation from the mover 201 to the commutation electrode 237a at such a relatively early point in time, the wear of the movable contact 202 can be significantly reduced as compared with the embodiment 59. The durability of the current limiting device is improved.
  • Embodiment 6 1.
  • FIG. 9 is a partial cross-sectional view showing the vicinity of an end portion on the sixth side, a tip end of a mover 201, and an arc-extinguishing plate 219, and the mover 201 is at a position during an opening operation.
  • the other components are not shown, but have basically the same configuration as the embodiment shown in FIG.
  • the cylindrical insulator 208 shown in FIG. 133 is formed so as to expand toward the open end side of the cylindrical space 218, and the rotation center of the mover (rotating shaft 211, not shown) It is configured so that the cylindrical insulator wall on the side farther from) spreads like a trumpet.
  • the flow of the high-pressure steam generated in the cylindrical space 218 flows to the arc-extinguishing plate 219 side as shown by the arrow in the figure.
  • the arc between them is elongated by the steam flow to the arc extinguishing plate 2 19.
  • FIG. 1 34 is a partial cross-sectional view showing the fixed insulator side end of the cylindrical insulator 208 and the stator 205.
  • the cylindrical insulator 208 is an insulator forming the inner surface of the cylinder. It is composed of 208 a and its surrounding insulator 208 b.
  • the insulator 208a is made of a material that has the property of generating a large amount of steam immediately upon exposure to an arc, for example, molded from a resin material that contains a small amount of reinforcing material such as glass fiber and does not contain any.
  • the insulator 208 b is made of a reinforced resin having excellent mechanical strength.
  • FIG. 135 is a partial cross-sectional view showing the fixed insulator side end of the cylindrical insulator 208, the stator 205, and the movable contact side tip of the mover 201.
  • the trajectory drawn by the opening operation of the part farthest from the rotation center of the child 201 is indicated by a broken line.
  • the surface of the cylindrical insulator 208 facing the tip of the mover is formed to have a certain gap between the broken lines.
  • FIG. 13 36 is a partial cross-sectional view showing the fixed insulator side end of the cylindrical insulator 208 and the stator 205 and the movable contact side tip of the mover 201.
  • the periphery of the fixed contact 206 at the end of No. 5 is covered with an insulating portion 208 c that protrudes toward the inner surface of the cylindrical insulator 208.
  • the other components are not shown, but have basically the same configuration as the embodiment shown in FIG.
  • the cylindrical space 218 surrounded by the cylindrical insulator 208 has a larger cross section than the contact surface of the fixed contact 206 in consideration of the trajectory and blur during the opening / closing operation of the mover 201. c Therefore, when the insulating part 208 c is not provided, when the contact surface of the fixed contact 206 is viewed from the mover 201 side, a part of the fixed conductor 206 around the fixed contact 206 is It looks exposed. When an arc is generated during the breaking operation, the arc spot on the fixed contact side spreads to this exposed part.
  • Embodiment 135 of the present invention is shown in FIG. Fig. 13 37 is a partial cross-sectional view showing the fixed insulator side end of the cylindrical insulator 208 and the stator 205 and the movable contact side tip of the mover 201.
  • the wall height of the wall of the cylindrical insulator 202 surrounding the 18 is closer to the center of rotation of the mover than to the wall farther from the center of rotation of the mover.
  • the other components are not shown, but have basically the same configuration as the embodiment shown in FIG. In the arc generated between the contacts at the time of the breaking operation, an electromagnetic driving force is generated on the opposite side of the movable member rotation center by the current flowing through the fixed conductor 207 and the movable arm horizontal portion 204.
  • the arc in the cylindrical space 218 touches the wall farther from the rotation center of the mover. Also, in order to open the mover 201 at high speed, it is advantageous to reduce the moment of inertia of the mover 201, but the movable arm determined by the cylinder height of the cylindrical insulator 208 is advantageous. As the vertical part 203 becomes longer, the moment of inertia of the mover increases. Therefore, as shown in FIG.
  • FIG. 138 is a perspective view showing the mover 201 of the present embodiment.
  • the mover 201 has a movable contact 202, a movable arm vertical part 203, and a part 204. It is composed of a movable arm horizontal part 204 composed of c, 204 d and 204 e, and an insulator 241 covering the fixed contact side surface of the armature arm. Becomes Thus, the mover 201 is almost hook-shaped Thus, even when a cylindrical insulator is used, the distance between the fixed conductor in the closed state and the movable arm horizontal portion 204 e can be reduced.
  • the other components are not shown, but have basically the same configuration as the embodiment shown in FIG.
  • FIG. 13 9 is a diagram showing the mover 201, the stator 205, and the tubular insulator 208 in the closed state of the present embodiment.
  • the flow of current is indicated by arrows. Is shown.
  • currents in opposite directions flowing through the fixed conductor 207 and the movable arm horizontal portion 204 e, which generate an electromagnetic opening force when an accident current occurs are shown in, for example, the L-shape shown in FIG. It comes closer than when using a mover, increases the electromagnetic repulsion, and improves the opening speed.
  • FIG. 141 shows an embodiment 67 of the present invention.
  • a part for rotatably and electrically connecting the mover is arranged near the rotation center of the mover 201.
  • a sliding contact 210 is provided in the embodiment shown in FIG. 120.
  • the panel is arranged near the center of rotation of the mover. Therefore, the distance between the stator 205 and the rotor rotating shaft 213 cannot be made smaller than a certain value.
  • the shape of the mover 201 is bent roughly into an S-shape, and if one more bent portion is added than the almost hook-shaped mover shown in Fig. 139, the movable Arm horizontal
  • the sliding contact part and twist panel can be arranged without increasing the distance between 204 e and the fixed conductor 207, so even if the rotating shaft 213 is far from the fixed conductor 207, an accident can occur. A large electromagnetic opening force can be obtained when a current is generated.
  • the other components are not shown, but have basically the same configuration as the embodiment shown in FIG. Embodiment 6 8.
  • FIG. 142 shows an embodiment 68 of the present invention.
  • Note c is the stator 2 0 5 bent into shown, others not shown, an embodiment is basically the same configuration shown in FIG. 1 1 9.
  • the embodiment 66 is the same as the embodiment shown in Embodiment 67. Since the moment of inertia can be made smaller than that of the mover, higher speed opening is possible.
  • the current limiting device having one pair of contacts is shown, but in the conductor arrangement having two pairs of contacts as shown in FIGS.
  • the ends of the two movers are made ragged, and a cylindrical insulator as shown in Fig. 2 is placed around both fixed contacts, and two series arcs are formed in the cylindrical space during the current limiting operation. If it occurs, the current limiting performance will be further improved.
  • the ability to protect the electromagnetic switch connected in series to the circuit is increased, so that the welding resistance of the electromagnetic switch can be reduced, and the cost of the entire power distribution system can be reduced.
  • Embodiment 70 the current limiting device described in any one of Embodiments 55 to 69 can be connected in the longitudinal direction of a circuit breaker having a capability of interrupting a small current by using the current limiting device. A circuit breaker with excellent current limiting performance can be obtained. At this time, if the width and height of the current limiting device are the same or less than the above-mentioned circuit breaker, as in the conventional example shown in Figs. I do.
  • Embodiment 70 Embodiment 70.
  • Embodiment 70 of the invention is shown in FIGS. Fig. 14 3 basically shows Fig. 3 except for the shape of the cylindrical insulator 2 25 and the coil runner 2 79 composed of the extension conductor 2 92 extending from the stator 205.
  • This is the same as Embodiment 16 shown in FIG.
  • the cylindrical cross section of the cylindrical insulator 225 of FIG. 144 is the same as that of the embodiment 16 and has a shape spreading to the terminal portion 215 side.
  • the stator 5 has a fixed contactor-side portion provided with an air runner 79 extending to the terminal portion 211 side.
  • the cylindrical space of the cylindrical insulator 225 is expanded to the terminal portion 215 side, and the arc cleaner 279 where the arc spot of the fixed contact 206 moves is provided.
  • the arc generated immediately after opening the electrode is the electromagnetic driving force due to the currents of the electric circuits 286b and 286c, and the black arrow in the figure. Due to the force of the steam flow generated from the cylinder wall of the mover rotation center 2 13 side of the cylindrical insulator shown in the figure, it is quickly pushed out to the terminal section 2 15 side, so that the aforementioned fixed contact 206 is worn out. It is suppressed.
  • the arc on the stator side moves to the tip of the core runner 279, making it easier for the arc to touch the horseshoe-shaped iron extinction plate 219.
  • the arc temperature decreases, and the rise in the internal pressure of the housing is suppressed.
  • the arc of the creepage resistance is sufficiently drawn into the extinguishing plate, even if the surface of the cylindrical insulator is carbonized or deteriorated due to deterioration of the creepage resistance due to deterioration.
  • the current can be interrupted by the extinction effect of the extinction plate, and the reliability of the interruption is improved.
  • the stator shape is approximately J-shaped, but the arc runner is attached to the fixed contact side end of the stator shown in FIGS. 59, 114, 44, and 48.
  • a similar effect can be obtained by adding the above and combining it with the cylindrical insulator spread on the arcrunner side.
  • the electric circuit 286 d in which the current having the current component in the opposite direction to the arc flows is provided near the mover rotation center near the fixed contact. Electromagnetic driving force to the arc by the current d is strong, and the arc moves to the arc runner immediately after opening, so the effect of reducing contact wear is greater.
  • both contact pairs are located in the isolated unit housing main body 23 6 and the isolated unit housing cover 23 7 (not shown), and have a cylindrical space. Due to the arc generated in 226, the pressure increase is not immediately discharged to the outside, but the internal pressure in the housings 236, 237 is increased.
  • Embodiment 7 1.
  • Embodiment 71 of the invention is shown in FIG. This embodiment is basically the same as the embodiment 70 except for the extinguishing plate 219a shown in FIG. Fig. 146 shows the state near the contact pair when the opening distance during the fault current interruption operation has increased to some extent. As shown in Fig. 146, the stator side arc spot moves to the tip of the arc runner 279 in the latter half of the breaking operation after the current peak at which the opening distance increases to some extent.
  • a low-cost current limiting device having an excellent current limiting function can be obtained with one arc extinguishing device, and the current limiting performance is excellent and the impedance is improved. And the dimensions in the contact opening and closing direction are small.
  • the current limit breaker is connected integrally with the circuit breaker. Is easy to get.
  • a low-cost circuit breaker having an excellent current limiting function and an interrupting function with a single arc extinguishing device, and is excellent in current limiting performance and impedance.
  • a circuit breaker With a small size in the contact opening / closing direction, and a current limiting function that can reduce the strength required for the housing by suppressing the rise in internal pressure of the housing at the time of shutoff, which is not effective in improving current limiting performance A circuit breaker can be obtained.
  • the switching operation of the mover is not hindered by the cylindrical insulator, so that a circuit breaker having excellent current limiting performance and a highly reliable current limiting function can be obtained.
  • a high-pressure atmosphere sufficient to raise the arc voltage is generated, which is excellent. Current limiting performance.
  • the arc easily touches the arc-extinguishing plate, and a circuit breaker with high reliability and a current limiting function that can reliably cut off the current can be obtained.
  • circuit breaker having a reliable current limiting function that can reliably cut off the current and does not easily cause re-ignition due to dielectric breakdown.
  • the arc contact on the fixed contact side is diverted to the tip of the clamper exposed from the insulator surrounding the fixed contact in a cylindrical shape around the fixed contact, making it easier for the arc to touch the arc-extinguishing plate and ensuring the arc. In this way, a highly reliable circuit breaker that is cooled, extinguished, and reliably shuts off the current can be obtained.
  • the movable contact and the fixed contact are arranged in the cylindrical space formed by the cylindrical insulator in the closed state, and the movable contact is arranged outside the cylindrical space in the open state.
  • the atmospheric pressure at the beginning of arc generation can be increased, the breaking performance can be improved with a simple configuration with a small number of parts, and unnecessary rise in the internal pressure of the housing can be suppressed.
  • the arc can be guided to the arc-extinguishing plate, and the arc cooling effect can be used effectively.
  • the effect of preventing the internal pressure of the housing from increasing can be prevented.
  • the electric circuit arrangement of the mover and the stator that generates electromagnetic repulsion force enables high-speed opening.
  • the current limit breaker is connected integrally with the circuit breaker. Is easy to get. Industrial applicability
  • a current limiting device according to the present invention and a circuit breaker having a current limiting function using the same are useful as a device for protecting a circuit from a large accident current such as a short circuit current.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Breakers (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

明 細 書 限流装置および限流機能を有する回路遮断器 枝術分野
この発明は、 限流動作時にアークを発生する限流装置および限流機能を有する 回路遮断器に関するものである。 背景技術
図 1 4 7は例えば特公平 1—4 3 9 7 3号公報に示された従来の回路遮断器を 示す斜視図および部分断面図であり、 図において、 1 1 3 0は、 導体 1 2 9 0に より遮断器部 1 1 4 0と電気的直列接続される限流素子部、 1 0 0 1は可動接点 1 0 0 2と磁性材料からなる支持体 1 7 1 1を有する上記限流素子部 1 1 3 0の 可動子、 1 0 0 5は固定接点 1 0 0 6を有する上記限流素子部 1 1 3 0の固定子 であり、 上記可動子 1 0 0 1 と上記固定子 1 0 0 5とにより接触子対を構成する 。 1 2 8 0は上記接触子対と電気的直列に接続された励磁コイル、 1 0 1 8は上 記接触子対に適切な接触圧力を発生させる可動子接圧パネである。 1 0 1 5は端 子部、 1 0 4 5はハンドル、 1 7 2 1は可とう導体、 1 0 9 5はバネ受座、 1 1 1 0は排気穴、 1 1 3 5はビス卜ン、 1 3 0 0はパッキンである。 図 1 4 8は図 1 4 7の右側面図である。
通常通電時には、 回路遮断器には遮断器部 1 1 4 0、 導体 1 2 9 0、 励磁コィ ル 1 2 8 0、 可動子 1 0 0 1、 固定子 1 0 0 5、 端子部 1 0 1 5の経路で電流が 流れる。 限流素子部 1 1 3 0が限流動作を行うべき大きさの電流が流れると、 可 動接点 1 0 0 2と固定接点 1 0 0 6との間の電磁反発力により接点が開極しァー クが発生する。 このアークにより接点間の圧力が上昇するので、 可動子 1 0 0 1 のピストン 1 1 3 5がパネ 1 0 1 8の力に抗して押し動かされる。 さらに、 可動 子 1 0 0 1の一部は磁性材料の支持体 1 7 1 1により構成されているので、 コィ ルプランジャを構成する励磁コィル 1 2 8 0からも同時にその開極を支援する力 を受ける。 この可動子 1が開極方向に移動するときに、 可動接点背面側の気体が 排気穴 1 1 1 0より排気され、 アークにより上昇した圧力が付加的に排出される 。 そして、 可動子接圧パネ 1 0 1 8の力に抗して開極を保持するのに十分な圧力 を維持できなくなるまで開極が保持される。
続いて、 限流素子部を通過する電流が減少し、 アークの圧力がある値以下に減 少すると、 可動子接圧パネ 1 0 1 8の力により可動子 1は閉極動作を開始する。 この時、 閉極過程を遅延させるために、 排気穴 1 1 1 0は開極方向に対して銳角 をなすように設けられており、 排気の流体抵抗を大きくしている。 また、 この排 気穴 1 1 1 0の方向は、 開極動作時の排気の流体抵抗が小さくなる傾斜となる。 上記のように構成した限流素子部 1 1 3 0では、 主に接点 1 0 0 2、 1 0 0 6間 に発生する電気抵抗と励磁コイル 1 2 8 0のインダク夕ンスとにより、 回路を流 れる事故電流が限流される。 この接点対はシリンダ一状の狭い空間に設けられて いるので、 限流動作時に発生するアークの圧力が上昇し、 アークの抵抗率が高く なる。 従って、 限流に必要な高いアーク電圧が得られる。 上記のように限流され た電流は、 最終的に限流素子部と直列接続されている遮断部 1 1 4 0により遮断 される。
図1 4 9は、 例えば特公平 8— 8 0 4 8号公報に示された従来の 3極の限流ュ ニットを示す部分断面図であり、 この限流ユニッ ト 1 2 0 0は、 図 1 5 0に示す ように、 標準回路遮断器 1 3 0 0と筐体同士を連接することにより限流遮断器 ( 限流機能を有する回路遮断器) を構成する。 図 1 5 1は、 上記限流遮断器の内部 構成が分かるように、 筐体側壁の一部を切り欠いた部分断面図である。 限流ュニ ッ卜 1 2 0 0内部の各極には、 図 1 5 2に示すような直列接続された接触子対が 2対配置されている。 図 1 5 3は、 図 1 5 2に示した 2対の接触子対の構成が分 かるように主要部品を分解した斜視図である。
図 1 4 9乃至図 1 5 3において、 1 0 0 1 a、 1 0 0 1 bは可動接点 1 0 0 2 a、 1 0 0 2 bと可動アーム 1 0 0 4 a、 1 0 0 4 bにてそれぞれ構成される第 1可動子および第 2可動子、 1 0 0 5 a、 1 0 0 5 bは固定接点 1 0 0 6 a、 1 0 0 6 bと固定導体 1 0 0 7 a、 1 0 0 7 bにてそれぞれ構成される第 1固定子 および第 2固定子である。 これら第 1可動子 1 0 0 1 aと第 1固定子 1 0 0 5 a 、 および第 2可動子 1 0 0 1 bと第 2固定子 1 0 0 5 bはそれぞれ接触子対を形 成している。 1 01 5 a、 1 01 5 b, 1 01 5 cは筐体の一方の面に設けられ た端子部、 1 01 6 a、 1 01 6 b、 1 01 6 cは上記筐体の反対の面に設けら れた端子部であり、 第 1固定子 1 005 aが端子部 1 01 6 aと、 第 2固定子 1 005 bが接続導体 1 01 4を介して端子部 1 01 5 aとそれぞれ接続されてお り、 第 1可動子 1 001 aと第 2可動子 1 001 bは、 可動接点 1 002 a、 1 002 bと反対側の端部にて可撓導体 1 072により相互に電気的に接続されて いる。
従って、 電路は、 端子部 1 01 6 a、 固定導体 1 007 a、 固定接点 1 006 a、 可動接点 1 002 a、 可動アーム 1 004a、 可とう導体 1 072、 可動ァ —ム 1 004 b、 可動接点 1 0◦ 2 b、 固定接点 1 006 b、 固定導体 1 007 b、 接続導体 1 01 4、 端子部 1 01 5 aの経路で構成されており、 2対の接触 子対が電気的に直列接続されている。 上記両接触子対は筐体の両端に設けられた 端子部 1 01 5 a、 1 01 6 aを結ぶ面 (筐体の底面) に対してほぼ垂直方向に 配置される隔壁 1 1 00を対称面としてほぼ面対称に隔離して配置されている。 第 1可動子 1 001 a、 第 2可動子 1 001 bは、 隔壁 1 1 00を貫通する回転 軸 1 01 3にて回転自在に支持されており、 第 1可動子 1 001 aおよび第 2可 動子 1 001 bは、 ひねりパネ 1 01 1 aおよび 1 01 1 b (図示せず) にて、 各々第 1固定子 1 005 aおよび第 2固定子 1 005 b側へと付勢されている。 上記両接触子対の接点が設けられている先端部に対向する位置に馬蹄型の消弧板 1 01 9 aおよび 1 01 9 b (図示せず) がそれぞれ配置されている。
通常開閉および過負荷電流遮断時には、 標準回路遮断器 1 300にて開閉動作 および遮断動作が行われ、 限流ュニッ 卜 1 200は動作しない。 一方、 短絡電流 等の大電流が発生すると、 限流ュニッ 卜 1 200内に設けた 2対の接触子対が、 固定導体 1 007 aと可動アーム 1 004 aおよび固定導体 1 007 bと可動ァ —ム 1 004 bにそれぞれ流れるほぼ平行かつ逆方向の電流による電磁反発力に よってパネ 1 01 1 a、 1 01 1 bの付勢力に打ち勝って高速開極する。 また、 接続導体 1 014に流れる電流も、 両可動子 1 001 a、 1 001 bを開極させ る方向の磁界成分を発生させる。
この両接点対の高速開極に伴い、 2点直列のアークが発生し、 急速にアーク電 圧が立ち上がる。 この素早いアーク電圧の立ち上がりにより、 短絡電流が急激に 小さ〈絞られ、 電流ピークが抑えられる。 2つの接点対間に発生した 2つのァ一 クは、 固定導体 1 0 0 7 aもし〈は 1 0 0 7 b、 可動アーム 1 0 0 4 aもし〈は 1 0 0 4 bおよび接続導体 1 0 1 4を流れる電流の作用により、 各々消弧板 1 0 1 9 a、 1— 1 9 b側へと引き伸ばされ、 冷却、 分断される。 これにより、 事故 電流はさらに小さく絞られ、 急速に電流零点へと向かう。 以上のような限流ュニ ッ卜 1 2 0 0の限流動作により、 小さく絞られた事故電流は、 限流ュニッ卜 1 2 0 0と直列接続された標準回路遮断器 1 3 0 0により遮断される。 電流遮断後、 両可動子 1 0 0 1 a、 1 0 0 1 bはパネ 1 0 1 1 a、 1 0 1 1 bの付勢力により 閉成状態に復帰する。
以上のような限流ュニッ卜 1 2 0 0の限流動作時において、 第 1可動子 1 0 0 1 aと第 2可動子 1 0 0 1 bに働く電磁反発力は、 両接触子対が隔壁 1 1 0 0を 対称面とした面対称配置となっているので、 ほぼ均等な値となり、 上記両接触子 対の開極速度はほぼ同じとなる。 そのため、 第 1の可動子 1 0 0 1 aと第 2の可 動子 1 0 0 1 bを接続する可とう導体 1 0 7 2にはねじれの力が発生しない。 ま た、 隔壁 1 1 0 0で仕切られた 2つの空間で処理するアークエネルギーがほぼ等 しくなるので、 一方の空間に配置された部材、 例えば、 可動接点、 固定接点、 消 弧板等が他方の空間に配置された同等部材より大幅に消耗することはない。 ところで、 図 1 5 0に示すように、 限流ユニット 1 2 0 0と標準回路遮断器 1 3 0 0を直接接続して限流遮断器を構成する場合、 限流ュニッ卜 1 2 0 0の長さ しが長いと限流遮断器の全体長が長くなりすぎ、 配電盤等への収納性が低下する ことがある。 そこで、 従来の限流ュニッ卜では、 筐体両端に設けた端子部を結ぶ 面に対して接触子対の長手方向がぼぼ直交するように配置し、 かつ、 2対の接触 子対を幅方向に並置することにより、 限流遮断器の長手方向の長さが長くなるこ とを最小限に抑えている。 また、 配電盤等への収納性を考慮すれば、 限流ュニッ 卜 1 2 0 0の幅 Wおよび高さ Hは、 標準回路遮断器 1 3 0 0の幅および高さと同 等以下の方がよいことは明かである。 しかし、 限流ュニッ 卜 1 2 0 0と標準回路 遮断器 1 3 0 0との接続を考慮すれば、 限流ュニッ 卜 1 2 0 0の幅 Wを標準回路 遮断器 1 3 0 0の幅と同一とした方がよい。 図 1 4 7および図 1 4 8に示すような従来の回路遮断器の限流素子部では、 可 動接点が常に狭い筒状の空間内にあるため、 アーク発生に伴い上記空間内に充満 する電極金属蒸気により電流遮断時の接点間の絶縁回復が十分得られない。 また 、 可動子のブレにより可動接点が筒状の壁面に接触しやすく、 壁面での絶縁破壊 の可能性が高い。 このような理由により、 上記限流素子部単独では電流の遮断機 能を得ることが困難であり、 別途電流を遮断する機能を有する遮断部を設ける必 要がある。 そのため、 回路遮断器全体のサイズが大き〈なり、 構造が複雑になり 、 コストが高くなるという問題がある。
また、 前述のように限流素子部 1 1 3 0と遮断部 1 1 4 0を直列に接続すると 、 遮断器全体のインピーダンスが大きくなる。特に、 限流素子部 1 1 3 0には限 流動作時の可動子 1 0 0 1の開極を助けるために励磁コイル 1 2 8 0を設けてお り、 インピーダンスが高い構成となっている。 このような高インピーダンスの回 路遮断器では、 大きな通電ロスや通電による異常温度上昇が発生しやすい。 従つ て、 大きな通電容量を必要とする場合、 この従来の回路遮断器を用いることがで きないという問題点があった。
さらに、 従来の回路遮断器の限流素子部 1 1 3 0では、 可動子 1 0 0 1の開極 動作が直線的に行われるため、 接点開離距離を確保ために可動子 1 0 0 1が開閉 動作する方向 (接点の開閉動作方向) のサイズが大き〈なりやすい。 図1 4 7に 示すように、 上記方向のサイズは、 端子部、 固定子、 可動子、 可動子が移動する 空間、 可とう導体を収納する空間、 および、 筐体壁厚の合計となる。 よって、 可 動子が直動する方向のサイズに制限がある場合には、 十分な開離距離を確保でき ず、 高圧力を効果的にアーク電圧上昇に結び付けられないという問題があった。 また、 前述のように高圧力を効果的にアーク電圧上昇に結び付けられないと、 不必要な圧力上昇が生じ、 これを押さえ込むため、 非常に大きな筐体強度が必要 となるという問題が生じる。
また、 図 1 4 9乃至図 1 5 3に示す限流装置に於いて、 上述のように、 限流ュ ニッ卜の幅寸法に制限がある場合、 限流ュニッ 卜長さ寸法を小さくするために 2 対の接触子対を幅方向に並置する構成では、 筐体側面の壁厚を、 十分な機械的強 度を持つ厚さにすることが困難となる。 従って、 限流動作時に発生するアークに よる内圧上昇により筐体が破損するという問題がある。 また、 たとえ機械的強度 の強い材料を用いて筐体破損を防止したとしても、 筐体コストが上昇するという 問題がある。
また、 高い限流性能を得るために 2対の接触子対を直列接続しているので、 通 電時の接点接触面での発熱が 2倍となるとともに、 限流ュニッ卜内での電路長が 長くなり外部電線への熱伝導が低下するので、 通電時の異常温度上昇が発生しや すく、 通電容量の大きな回路には適用し難いという問題点があつた。
また、 2対の接触子対を直列接続し、 かつ 2つの消弧装置を有しているので部 品点数が増え、 コス卜が高くなるという問題点があった。
また、 従来の限流装置と耐溶着性の低い電磁開閉器を用いて回路を構成した場 合、 短絡遮断時の接点浮き上がりに起因する接点溶着が発生することがあり、 こ れを防止するため耐溶着性を考慮した設計がなされている電磁開閉器を用いる必 要がある。 従って、 従来の限流装置を超える限流性能を実現できれは、 回路に直 列接続された電磁開閉器の耐溶着性能を低下させることができ、 電磁開閉器のコ ス卜低減につながるので、 一層の限流性能向上が求められているという問題点が あった。
この発明は上述記のような問題点を解消するためになされたもので、 1つの消 弧装置にて優れた限流機能と遮断機能を有する低コス卜の限流装置を得ることを 目的としている。
さらに、 この発明は、 限流性能に優れかつインピーダンスの小さな限流機能を 有する限流装置を得ることを目的としている。
さらに、 この発明は、 接点開閉動作方向の寸法が短い小型の限流装置を得るこ とを目的としている。
さらに、 この発明は、 限流性能向上に効果的に結びつかない遮断時の筐体内圧 上昇を抑え、 上記筐体に必要とされる強度を低減することを可能にした限流装置 を得ようとするものである。
この発明は上述のような問題点を解消するためになされたもので、 1つの消弧 装置にて優れた限流機能と遮断機能を有する低コス卜の回路遮断器を得ることを 目的としている。 さらに、 この発明は、 限流性能に優れ、 かつインピーダンスの小さな限流機能 を有する回路遮断器を得ることを目的としている。
さらに、 この発明は、 接点開閉動作方向の寸法が短い小型の限流機能を有する 回路遮断器を得ることを目的としている。
さらに、 この発明は、 限流性能向上に効果的に結びつかない遮断時の筐体内圧 上昇を抑え、 上記筐体に必要とされる強度を低減することを可能にした限流機能 を有する回路遮断器を得ようとするものである。
また、 この発明は上述のような問題点を解消するためになされたもので、 優れ た限流機能を有し、 かつ限流動作時の内圧上昇による筐体割れが発生し難い限流 装置を得ることを目的としている。
また、 この発明は、 限流性能に優れ、 かつ通電時の異常温度上昇が生じ難い、 通電の信頼性に優れた限流装置を得ることを目的としている。
また、 この発明は、 限流性能に優れ、 かつ部品点数の少ない限流装置を得るこ とを目的としている。
また、 この発明は、 限流性能が一層向上した限流装置を得ることを目的として いる。 発明の開示
この発明に係る限流装置は、 各々一端部に接点を有し一対の接触子対を形成す る第 1、 第 2の接触子、 上記接触子対に接触圧を与える手段、 閉成状態の上記接 点の周りを筒状に取り囲む筒状絶縁物を備え、 上記第 1、 第 2の接触子のうち少 なくとも一方の接触子を他端部にて回転自在に支持し、 接点の閉成状態において は、 上記第 1、 第 2の接触子に互いにほぼ対向して逆方向の電流が流れる電路が 形成され、 かつ、 上記第 1、 第 2の接触子の接点を有する一端部が上記筒状絶縁 物が囲む筒状空間内に位置し、 接点の開成状態においては、 上記回転自在に支持 された接触子のうち少なくともどちらか一方の接点が上記筒状空間外に位置する ように構成したものである。
また、 可動接点と可動アームとからなり可動子回転軸を中心として回転する可 動子、 上記可動接点と接点対をなす固定接点と上記可動アームにほぼ対向する固 定導体とからなる固定子、 閉成状態の上記接点対の周りを筒状に取り囲む筒状絶 縁物、 および、 上記接点対に接触圧を与える接圧パネを備え、 上記可動アームは 可動アーム水平部と可動アーム垂直部にてぼぼし字状に形成され、 接点の閉成状 態においては、 上記可動アーム水平部が上記固定導体とほぼ平行かつ逆方向の電 流が流れるように配置され、 かつ、 上記可動接点を有する可動子先端部および上 記固定接点を有する固定子先端部が上記筒状絶縁物が囲む筒状空間内に位置し、 接点の開成状態においては、 上記可動接点が上記筒状空間外に位置するように構 成したものである。
また、 導体をほぼ U字状に曲げてその一端を可動子回転軸から遠い側の端子部 に接続するとともに、 その u字形状の他端の内側に固定接点を設けて可動子に対 する固定子となし、 かつ、 上記固定子の固定接点が設けられている 1片が閉成状 態の可動アーム水平部にぼぼ対向する固定導体を形成し、 上記固定子には、 可動 子の回転軌跡と交差する部位に可動子の開閉を許すスリツ卜を設け、 また、 可動 子の開成時に可動接点から見渡せる固定子の固定接点以外の部位を絶縁物で覆つ たものである。
また、 可動子回転軸より遠い側の端子部に接続された導体からなる固定子に、 可動子接点と接点対をなす固定接点を有し、 かつ、 可動子の可動アーム水平部に 対向して可動アームに流れる電流と逆方向の電流が流れる固定導体を形成すると ともに、 この固定導体の両側に配置され端子部から固定導体に電流を導く電路上 に磁性体コァを配置したものである。
また、 固定導体を、 固定接点よりも可動アーム水平部により近づくように屈曲 させたものである。
また、 可動接点と可動アームとからなり可動子回転軸を中心として回転する可 動子、 上記可動接点と接点対をなす反発接点と上記可動アームにほぼ対向する反 発アームとからなり反発子回耘軸を中心として回転する反発子、 閉成状態の上記 接点対の周りを筒状に取り囲む筒状絶緑物、 上記接点対に接触圧を発生させる接 圧パネ、 および主たる開口部が上記筒状絶縁物が囲む筒状空間に連通して形成さ れ、 上記反発子を収納する蓄圧空間を備え、 上記反発アームは反発アーム水平部 と反発アーム垂直部とによりほぼし字状に形成され、 閉成状態においては、 上記 反発アーム水平部が上記可動アームの一部とほぼ平行で反対方向の電流が流れる ように配置され、 かつ、 上記可動接点を有する可動子先端部および上記反発接点 を有する反発子先端部が上記筒状空間内に位置し、 開成状態においては、 上記可 動子先端部が上記筒状空間外に位置するように構成したものである。
また、 反発子に電流を供給する電路を上記反発子の反可動子側に設け、 上記電 路の少なくとも反発子先端部と対向する部位に反発子開極軌跡を含む面に沿って 反発子の幅とほぼ同幅のスリッ 卜を設けたものである。
また、 反発子に電流を供給する電路を反発子の開極軌跡を含む面と交差して配 置し、 上記電路には反発子もしく可動子の開閉動作を許すスリツ 卜を設け、 上記 電路を、 反発アーム水平部よりも可動アームに近い位置に配置し、 かつ、 反発ァ ーム水平部とほぼ平行かつ逆方向の電流が流れるよう構成したものである。 また、 絶縁物筐体内に収納され、 可動接点と、 ぼぼ L字状の可動アームとから なり、 回転軸を中心として回転する可動子、 上記可動接点と接点対をなす固定接 点と、 閉成時に上記可動アームの一部とはぼ平行に配置され、 かつ可動アームと 反対方向に電流が流れる電路とからなる固定子、 閉成状態の上記接点対の周りを 筒状空間で取り囲む筒状絶縁物、 上記接点対に接触圧を与える付勢手段、 上記可 動子の先端と対向する位置に配設された消弧板、 および上記絶縁物筐体の反対側 面に設けられそれぞれ上記可動子および固定子に接続されている端子部を備え、 上記固定子は上記両端子部を結ぶ線に対してほぼ垂直に配置され、 閉成状態にお いては上記接点対が上記筒状空間内に位置し、 開成状態においては上記可動接点 が上記筒状空間外に位置するように構成したものである。
また、 端子部は絶縁物筐体の底面より高い位置に設けられ、 可動子および固定 子は、 互いに平行する電路から屈曲する電路を経てそれぞれ可動子および固定子 から遠い側の端子部に接続されるよう構成したものである。
また、 可動子と固定子の接点対を 2組設け、 これら接点対を電気的に直列に接 続し、 かつ相互に隔壁で隔てたものである。
また、 閉成状態の接点対の周りを筒状に取り囲む筒状絶縁物の、 可動子回転軸 と反対側の壁の高さを、 可動子回転軸側の壁の高さより高く したものである。 また、 可動子、 固定子もし〈は反発子、 および閉成状態の接点対の周りを筒状 に取り囲む筒状絶縁物を筐体に収納し、 上記筐体の可動接点からみて可動子回転 軸と反対側の面に排気口を設け、 上記排気口を、 面積が上記筐体の上記排気口を 含む面の半分以下の面積で、 かつ、 開成状態の可動接点に近接する位置に配置し たものである。
また、 可動子の先端と対向する位置に配置された消弧板と、 固定子への通電導 体に延設されたアークランナーとを有し、 このアークランナーの端部を筒状絶縁 物の可動子回転軸と反対側の部位から消弧板側に露出させたものである。
また、 可動子と対向し可動子と逆向きの電流が流れる固定導体の部位を、 可動 子に近接するように屈曲させたものである。
また、 可動子への通電導体に接続され、 先端部が消弧板近傍に達する転流電極 を閉成状態の可動子の背後に設けたものである。
この発明に係る限流機能を有する回路遮断器は、 可動接点と可動アームとから なり可動子回動軸を中心として回転する可動子、 上記可動接点と接点対をなす固 定接点と上記可動ァ一厶にほぼ対向する固定導体とからなる固定子、 閉成状態の 上記接点対の周りを筒状に取り囲む筒状絶縁物、 および上記接点対に接触圧を与 えるパネを備え、 閉成状態において上記接点対が上記筒状絶縁物が囲む筒状空間 内に位置し、 開成状態において上記可動接点が上記筒状空間外に位置するように 構成したものである。
また、 可動アームは、 可動アーム水平部と可動アーム垂直部にてほぼし字状に 形成され、 閉成状態において可動アーム水平部が固定導体とほぼ平行に位置し、 かつ上記可動アーム水平部には固定導体と反対方向の電流が流れるように構成し たものである。
また、 筒状絶縁物で形成される筒状空間の内壁面にアークとの接触面積を増や すひだを設けたものである。
また、 筒状空間を形成する筒状絶縁物の材質を、 接点対を取り囲む部分とそれ 以外の部分とで変え、 接点対を取り囲む部分の絶縁物をアークにより大量の蒸気 を発生しやすい材質としたものである。
また、 筒状空間の内壁を、 可動子先端の回転軌跡に沿わせた形状としたもので める。 また、 筒状空間に位置する固定子は、 固定接点だけが筒状空間に露出するよう、 固定接点の周囲を絶縁物で覆ったものである。
また、 閉成状態の接点対の周りを筒状に取り囲む筒状絶縁物の、 可動子回転中 心と反対側の壁の高さを、 可動子回転中心側の壁高さより高く したものである。 また、 固定子を形成する固定導体と可動子に通電する導体の一部を平行かつ近 接して配置し、 通電時に上記両導体に流れる電流方向が一致するようにしたもの tある。
また、 固定導体と、 可動子に通電する導体とを、 可動子が回転する軌跡を含む 面において平行に配置したものである。
また、 固定導体と、 可動子に通電する導体とを囲むコアを設け、 上記コアの両 極を閉成状態の可動アーム水平部に対向するように配置したものである。
また、 固定導体と、 可動子に通電する導体と、 可動子とを囲むコアを設けたも のである。
また、 可動子、 固定子、 および固定接点の周りを筒状に取り囲む筒状絶縁物を 筐体に収納し、 上記筐体の可動接点からみて可動子回転中心と反対側の面に排気 口を設け、 上記排気口は、 面積が上記筐体の上記排気口を含む面の半分以下の面 積で、 かつ、 開成状態の可動接点に近接する位置 (こ配置されているものである。 また、 可動子への通電導体に延設され先端が消弧板上方の排気口近傍に達する 転流電極を備え、 上記転流電極には、 可動子の回動を許すスリツ 卜を設け、 可動 子開成位置において可動接点が転流電極に近接するようにしたものである。
また、 可動子の開極軌跡にほぼ沿う位置に、 筐体の外部上方または下方から筐 体を挟み込む化、 または筐体を取り囲むコアを設けたものである。
また、 固定接点を、 筒状空間に連通する蓄圧空間内に配置したものである。 また、 固定接点の周りの固定導体の一部を絶縁物で覆つたものである。
また、 蓄圧空間を固定子の上方のみに設けたものである。
また、 可動子の先端と対向する位置に配置された消弧板と、 固定子の固定接点 側端部に接続されたアークランナーとを有し、 上記アークランナーの先端部を筒 状絶縁物の可動子回転中心と反対側の部位から上記消弧板側に露出させたもので また、 アークランナーの先端部を周囲の筒状絶縁物の上面より低くしたもので める。
また、 固定接点が位置する筒状空間と、 アークランナー先端を取り囲むアーク ランナ一筒状空間とを管路で連通したものである。
また、 可動アームの形状をほぼ鈎型にしたものである。
また、 可動アームの形状をほぼ S字状にしたものである。
また、 固定接点表面から見渡せる可動アームの可動接点より可動子回転中心側 の部位を絶縁物にて覆つたものである。
また、 固定導体の可動アームと対向する部位を可動アーム側へ屈曲し、 可動ァ ー厶との平行部分を形成したものである。
また、 可動子の先端と対向する位置に配置される消弧板と、 消弧板の上方で、 開成位置にある可動子の消弧板側端面に近接する対向電極とを備えたものである c また、 可動子の先端と対向する位置に配置される消弧板を有し、 かつ、 筒状絶 縁物が形成する筒状空間の可動子側開口部が上記消弧板方向を向くよう、 筒状空 間の内壁の可動子回転中心側の壁の高さを可動子回転中心と反対側の壁の高さよ り高くしたものである。
また、 複数の馬蹄形の消弧板を有し、 上記消弧板の馬蹄形中央部内面の部位が、 筒状絶縁物の可動子回転中心と反対側の壁面を延長した面と、 上記可動子先端部 が描く軌跡との間に位置するように構成したものである。
また、 固定接点を有する固定導体をコ字状に曲げて可動子回転中心から遠い側 に引き出すとともに、 上記固定導体の可動子の回転軌跡と交差する部位に可動子 の閉成を許すスリットを設けたものである。
また、 可動子と対向し可動子と逆向きの電流が流れる固定導体の部位を、 可動 子に近接するように屈曲させたものである。
また、 開成状態の可動接点から見渡せる固定導体を絶縁物で覆つたものである c また、 固定導体を可動子回転中心から遠い側に引き出すものにおいて、 固定導 体の一部が可動子と対向し、 この対向部分に流れる電流の向きが可動子の電流と 逆になるように配置したものである。
更に、 この発明に係る限流装置は、 絶縁物筐体内に収納され、 可動接点と、 ほ ぼ L字状の可動アームとからなり、 回転軸を中心として回転する可動子、 上記可 動接点と接点対をなす固定接点と、 閉成時に上記可動アームの一部とほぼ平行に 配置され、 かつ可動アームと反対方向に電流が流れる電路とからなる固定子、 閉 成状態の上記接点対の周りを筒状空間で取り囲む筒状絶縁物、 上記接点対に接触 圧を与える付勢手段、 開成状態の可動接点と対向する位置に配設された消弧板、 および上記絶縁物筐体の反対側面に設けられそれぞれ上記可動子および固定子に 接続されている端子部を備え、 閉成状態におし、ては上記接点対が上記筒状空間内 に位置し、 開成状態においては上記可動接点が上記筒状空間外に位置するように 構成したものである。
また、 端子部を絶縁物筐体の底面より高い位置に設けたものである。
また、 可動子および固定子は、 互いに平行する電路からほぼ U字状に屈曲する 電路を経てそれぞれ可動子および固定子に近い側の端子部に接続されるよう構成 したものである。
また、 可動子および固定子は、 互いに平行する電路から屈曲する電路を経てそ れぞれ可動子および固定子から遠い側の端子部に接続されるよう構成したもので あ 。
また、 固定子への通電導体に延設されたアークランナーを有し、 このアークラ ンナ一の先端を消弧板側に絶縁物から露出させたものである。
また、 ァ一クランナ一の周囲にァ一クランナ一筒状空間を形成する絶縁物を設 けたものである。
また、 可動子への通電導体に接続され、 先端部が消弧板近傍に達する転流電極 を可動子の背後に設けたものである。
また、 転流電極に可動子の開成時の回動を許すスリツ卜を設け、 可動子開成位 置において可動接点が上記転流電極に近接するようにしたものである。
また、 筒状絶縁物の筒状空間が消弧板側に向かって広がる形状にしたものであ ο
また、 筒状絶縁物が形成する筒状空間の開口端が消弧板方向を向くよう、 筒状 空間の内壁の可動子回転中心から遠い側の壁の高さを可動子回転中心に近い側の 壁の高さより低くしたものである。 また、 筒状空間を形成する筒状絶縁物の材質を、 接点対を取り囲む部分とそれ 以外の部分とで変え、 接点対を取り囲む部分の絶縁物をアークにより大量の蒸気 を発生しやすい材質としたものである。
また、 筒状空間の内壁を、 可動子先端の回転軌跡に沿わせた断面形状にしたも のである。
また、 筒状空間に位置する固定子の部位において、 固定接点だけが筒状空間に 露出するよう固定接点の周囲を絶縁物で覆ったものである。
また、 筒状絶縁物が形成する筒状空間の開口端において、 筒状空間の内壁の可 動子回転中心に近い側の壁の高さを、 可動子回転中心から遠い側の壁の高さより 低く したものである。
また、 閉成状態において固定子と対向し上記固定子と逆向きの電流が流れる可 動アームの一部が、 上記固定子に近接するよう上記可動アームを屈曲させたもの あ 。
また、 閉成状態の可動子と対向し可動子と逆向きの電流が流れる固定子の固定 導体を、 可動子に近接するよう屈曲させたものである。
また、 固定接点表面から見渡せる可動アームの可動接点より可動子回動中心側 の部位を絶縁物にて覆ったものである。
また、 可動子と固定子の接点対を 2組設け、 これら接点対を電気的に直列に接 続し、 かつ相互に隔壁で隔てたものである。
また、 回路遮断器の長手方向に筐体同士を連接して回路遮断器と一体化したも のである。 図面の簡単な説明
図 1はこの発明の実施の形態 1に係る限流機能を有する回路遮断器の主要部を 示す部分断面斜視図である。
図 2はアーク電圧の基礎的特性を測定する実験装置を示す構成図である。 図 3は雰囲気圧力のアーク電圧への影響を示すグラフである。
図 4は電流値のァ―ク電圧への影響を示すグラフである。
図 5は実施の形態 1の動作を説明する部分断面図である。 図 6は実施の形態 1の動作を説明する部分断面図である。
図 7は実施の形態 1の動作を説明する部分断面図である。
図 8は実施の形態 1の効果を示すグラフである。
図 9はこの発明の実施の形態 2に係る限流機能を有する回路遮断器の主要部を 示す部分断面図である。
図 1 0はこの発明の実施の形態 3に係る限流機能を有する回路遮断器の主要部 を示す部分断面図である。
図 1 1はこの発明の実施の形態 4に係る限流機能を有する回路遮断器の主要部 を示す部分断面図である。
図 1 2はこの発明の実施の形態 5に係る限流機能を有する回路遮断器の反発子 を示す斜視図である。
図 1 3はこの発明の実施の形態 5に係る限流機能を有する回路遮断器の主要部 を示す部分断面図である。
図 1 4はこの発明の実施の形態 6に係る限流機能を有する回路遮断器の可動子 を示す斜視図である。
図 1 5は実施の形態 6の主要部の動作を説明する説明図である。
図 1 6はこの発明の実施の形態 7に係る限流機能を有する回路遮断器の消弧ュ ニッ卜を示す分解斜視図である。
図 1 7はこの発明の実施の形態 7に係る限流機能を有する回路遮断器を示す分 解斜視図である。
図 1 8は実施の形態 7の消弧ュニッ 卜内部構造を示す部分断面斜視図である。 図 1 9は実施の形態 7の導体配置を示す斜視図である。
図 2 0は実施の形態 7の反発子ュニッ 卜の変形例を示す余 4視図である。
図 2 1はこの発明の実施の形態 8に係る限流機能を有する回路遮断器の導体配 置を示す斜視図である。
図 2 2は実施の形態 8の動作を説明する主要部の部分断面図である。
図 2 3は実施の形態 8の動作を説明する主要部の部分断面図である。
図 2 4は実施の形態 8の動作を説明する主要部の部分断面図である。
図 2 5はこの発明の実施の形態 9に係る限流機能を有する回路遮断器の反発子 ュニッ 卜を示す斜視図である。
図 2 6はこの発明の実施の形態 1 0に係る限流機能を有する回路遮断器の反発 子ュニッ 卜を示す斜視図である。
図 2 7はこの発明の実施の形態 1 1に係る限流機能を有する回路遮断器の消弧 ュニッ 卜を示す斜視図である。
図 2 8はこの発明の実施の形態 1 2に係る限流機能を有する回路遮断器の主要 部を示す断面図 (a ) および消弧板より下方を示す平面図 (b ) である。
図 2 9はこの発明の実施の形態 1 3に係る限流機能を有する回路遮断器の消弧 ュニッ 卜内部構造を示す部分断面斜視図である。
図 3 0は実施の形態 1 3の反発子近傍の導体配置を示す斜視図である。
図 3 1はこの発明の実施の形態 1 4に係る限流機能を有する回路遮断器の消弧 ュニッ 卜内部構造を示す部分断面斜視図である。
図 3 2は実施の形態 1 4の反発子近傍の導体配置を示す斜視図である。
図 3 3はこの発明の実施の形態 1 5に係る限流装置の主要部を示す部分断面斜 視図である。
図 3 4は実施の形態 1 5に係限流装置の主要部を示す斜視図である。
図 3 5は実施の形態 1 5の動作を説明する部分断面斜視図である。
図 3 6は実施の形態 1 5の動作を説明する部分断面図である。
図 3 7は実施の形態 1 5の動作を説明する部分断面斜視図である。
図 3 8はこの発明の実施の形態 1 6に係る限流装置の消弧ュニッ 卜を示す部分 断面斜視図である。
図 3 9は図 3 8の固定子形状を示す余 4視図である。
図 4 0はこの発明の実施の形態 1 7に係る限流装置の固定子形状を示す斜視図 である。
図 4 1は実施の形態 1 7の動作を説明する部分断面図である。
図 4 2はこの発明の実施の形態 1 8に係る限流装置の筒状絶縁物を示す断面図 ' る。
図 4 3はこの発明の実施の形態 1 9に係る限流装置の可動子、 固定子、 および 筒状絶縁物を示す断面図である。 図 4 4はこの発明の実施の形態 2 0に係る限流装置の消弧ュニッ 卜を示す部分 断面斜視図である。
図 4 5は図 4 4の固定子形状を示す斜視図である。
図 4 6は実施の形態 2 0のコアの別の形状を示す斜視図である。
図 4 7は実施の形態 2 0のコアのさらに別の形状を示す斜視図である。
図 4 8はこの発明の実施の形態 2 1に係る限流装置の固定子形状を示す斜視図
Ctoる。
図 4 9はこの発明の実施の形態 2 2に係る 3極限流装置を示す部分断面斜視図 あ 。
図 5 0は図 4 9に示す 3極限流装置の 1極分の主要部を示す部分断面斜視図で おる。
図 5 1は実施の形態 2 2の動作を説明する部分断面図である。
図 5 2は実施の形態 2 2の動作を説明する部分断面斜視図である。
図 5 3はこの発明の実施の形態 2 3に係る限流装置を示す断面図である。 図 5 4はこの発明の実施の形態 2 4に係る限流装置を示す断面図である。 図 5 5は実施の形態 2 4の動作を説明する断面図である。
図 5 6はこの発明の実施の形態 2 5に係る限流装置の接触子部分を示す部分断 面図である。
図 5 7はこの発明の実施の形態 2 6に係る限流装置の主要部を示す部分断面斜 視図である。
図 5 8はこの発明の実施の形態 2 7に係る限流装置の主要部を示す部分断面斜 視図である。
図 5 9はこの発明の実施の形態 2 8に係る回路遮断器の主要部を示す部分断面 斜視図である。
図 6 0は実施の形態 2 8に係る回路遮断器の主要部を示す斜視図である。 図 6 1はアーク電圧の基礎的特性測定する実験装置を示す回路構成図である。 図 6 2は雰囲気圧力のアーク電圧への影響を示すグラフである。
図 6 3は電流値のアーク電圧への影響を示すグラフである。
図 6 4は実施の形態 2 8の動作を説明する部分断面斜視図である。 図 6 5は実施の形態 2 8の動作を説明する部分断面図である。
図 6 6は実施の形態 2 8の効果を説明するグラフである。
図 6 7は実施の形態 2 8の動作を説明する部分断面斜視図である。
図 6 8はこの発明の実施の形態 2 9に係る回路遮断器の筒状絶縁物を示す部分 断面斜視図である。
図 6 9はこの発明の実施の形態 3 0に係る回路遮断器の筒状絶縁物を示す断面 図である。
図 7 0はこの発明の実施の形態 3 1に係る回路遮断器の筒状絶縁物を示す断面 図である。
図 7 1は実施の形態 3 1の別の形状の筒状絶縁物を示す断面図である。
図 7 2はこの発明の実施の形態 3 2に係る回路遮断器の筒状絶縁物を示す断面 図である。
図 7 3はこの発明の実施の形態 3 3に係る回路遮断器の筒状絶縁物を示す断面 図である。
図 7 4はこの発明の実施の形態 3 4に係る回路遮断器の消弧ュニッ卜を示す斜 視図である。
図 7 5は実施の形態 3 4に係る回路遮断器の構成を示す分解斜視図である。 図 7 6は実施の形態 3 4に係る回路遮断器の消弧ュニッ 卜内部を示す部分断面 斜視図である。
図 7 7は実施の形態 3 4に係る回路遮断器の導体配置を示す斜視図である。 図 7 8は図 7 7の断面 Cにおける断面図である。
図 7 9はこの発明の実施の形態 3 5に係る回路遮断器の導体配置を示す斜視図 あ ^ o
図 8 0は図 7 9の断面 Cにおける断面図である。
図 8 1はこの発明の実施の形態 3 6に係る回路遮断器の導体配置を示す斜視図 'あ ^ 0
図 8 2は図 8 1の断面 Cにおける断面図である。
図 8 3は導体配置の違いによる電磁開極力の違いを説明するための斜視図であ る o 図 8 4は導体配置の違し、による電磁開極力の違いを説明するためのグラフであ る o
図 8 5は図 7 8に示した各導体断面間の距離関係を示す図である。
図 8 6は図 8 0に示した各導体断面間の距離関係を示す図である。
図 8 7は図 8 2に示した各導体断面間の距離関係を示す図である。
図 8 8は実施の形態 3 7に係る回路遮断器の消弧ュニッ 卜内部を示す部分断面 斜視図である。
図 8 9はこの発明の実施の形態 3 8に係る回路遮断器の導体配置および磁性体 コアを示す余 4視図である。
図 9 0は図 8 9の磁性体コア部分における断面図である。
図 9 1はこの発明の実施の形態 3 9に係る回路遮断器の磁性体コア部分におけ る断面図である。
図 9 2は実施の形態 3 9に係る回路遮断器の別の磁性体コア部分における断面 図である。
図 9 3は実施の形態 3 9に係る回路遮断器の別の磁性体コア部分における断面 図である。
図 9 4はこの発明の実施の形態 4 0に係る回路遮断器の消弧ュニッ卜を示す斜 視図である。
図 9 5はこの発明の実施の形態 4 1に係る回路遮断器の筒状絶縁物を示す断面 図である。
図 9 6は実施の形態 4 1の動作を説明する図である。
図 9 7は実施の形態 4 1の動作を説明する図である。
図 9 8はこの発明の実施の形態 4 2に係る回路遮断器の固定接点部分を示す斜 視図である。
図 9 9はこの発明の実施の形態 4 3に係る回路遮断器の筒状絶縁物を示す断面 図である。
図 1 0 0はこの発明の実施の形態 4 4に係る回路遮断器の主要部を示す部分断 面図である。
図 1 0 1はこの発明の実施の形態 4 5に係る回路遮断器の主要部を示す部分断 面図である。
図 1 0 2はこの発明の実施の形態 4 6に係る回路遮断器の主要部を示す部分断 面図である。
図 1 0 3はこの発明の実施の形態 4 7に係る回路遮断器の可動子を示す斜視図 ある o
図 1 0 4は実施の形態 4 7の動作を説明する図である。
図 1 0 5は実施の形態 4 7の閉成状態の可動子と固定子の位置関係を示す部分 断面図である。
図 1 0 6はこの発明の実施の形態 4 8に係る回路遮断器の可動子、 固定子、 お よび筒状絶縁物を示す断面図である。
図 1 0 7はこの発明の実施の形態 4 9に係る回路遮断器の可動子、 固定子、 お よび筒状絶縁物を示す断面図である。
図 1 0 8はこの発明の実施の形態 5 0に係る回路遮断器の主要部を示す部分断 面図である。
図 1 0 9は実施の形態 5 0の筒状空間の作用を説明する部分断面図である。 図 1 1 0は実施の形態 5 0に係る回路遮断器の主要部を示す部分断面図である c 図 1 1 1はこの発明の実施の形態 5 1に係る回路遮断器の主要部を示す部分断 面図である。
図 1 1 2はこの発明の実施の形態 5 2に係る回路遮断器の消弧ユニットを示す 部分断面余 4視図である。
図 1 1 3は図 1 1 2の固定子形状を示す斜視図である。
図 1 1 4はこの発明の実施の形態 5 3に係る回路遮断器の固定子形状を示す斜 視図である。
図 1 1 5は実施の形態 5 3の動作を説明する部分断面図である。
図 1 1 6はこの発明の実施の形態 5 4に係る回路遮断器の消弧ユニットを示す 部分断面斜視図である。
図 1 1 7は図 1 1 6の固定子形状を示す斜視図である。
図 1 1 8は実施の形態 5 4の固定子の別の形状を示す斜視図である。
図 1 1 9はこの発明の実施の形態 5 5に係る 3極限流装置を示す部分断面斜視 図である。
図 1 2 0は図 1 1 9に示す 3極限流装置の 1極分の主要部を示す部分断面斜視 図である。
図 1 2 1はアーク電圧の基礎的特性を測定する実験装置を示す構成図である。 図 1 2 2は雰囲気圧力のアーク電圧への影響を示したグラフである。
図 1 2 3は電流値のアーク電圧への影響を示したグラフである。
図 1 2 4は実施の形態 5 6の動作を説明する部分断面図である。
図 1 2 5は実施の形態 5 6の効果を示すグラフである。
図 1 2 6は実施の形態 5 6の動作を説明する部分断面斜視図である。
図 1 2 7はこの発明の実施の形態 5 6に係る限流装置を示す断面図である。 図 1 2 8はこの発明の実施の形態 5 7に係る限流装置を示す断面図である。 図 1 2 9は実施の形態 3の動作を説明する断面図である。
図 1 3 0はこの発明の実施の形態 5 8に係る限流装置の接触子部分を示す部分 断面図である。
図 1 3 1はこの発明の実施の形態 5 9に係る限流装置の主要部を示す部分断面 斜視図である。
図 1 3 2はこの発明の実施の形態 6 0に係る限流装置の主要部を示す部分断面 斜視図である。
図 1 3 3はこの発明の実施の形態 6 1に係る限流装置の接触子部分を示す部分 断面図である。
図 1 3 4はこの発明の実施の形態 6 2に係る限流装置の接触子部分を示す部分 断面図である。
図 1 3 5はこの発明の実施の形態 6 3に係る限流装置の接触子部分を示す部分 断面図である。
図 1 3 6はこの発明の実施の形態 6 4に係る限流装置の接触子部分を示す部分 断面図である。
図 1 3 7はこの発明の実施の形態 6 5に係る限流装置の接触子部分を示す部分 断面図である。
図 1 3 8はこの発明の実施の形態 6 6に係る限流装置の可動子を示す斜視図で ある。
図 1 3 9は実施の形態 6 6に係る限流装置の接触子部分を示す部分断面図であ る o
図 1 4 0は実施の形態 6 6の動作を説明する部分断面図である。
図 1 4 1はこの発明の実施の形態 6 7に係る限流装置の接触子部分を示す部分 断面図である。
図 1 4 2はこの発明の実施の形態 6 8に係る限流装置の接触子部分を示す部分 断面図である。
図 1 4 3はこの発明の実施の形態 7 0に係る限流装置の消弧ュニッ卜を示す部 分断面斜視図である。
図 1 4 4は実施の形態 7 0の主要部の動作を説明する説明図である。
図 1 4 5は実施の形態 7 0の主要部の動作を説明する説明図である。
図 1 4 6はこの発明の実施の形態 7 1に係る限流装置の主要部の動作を説明す る説明図である。
図 1 4 7は従来の限流機能付き遮断器を示す部分断面正面図である。
図 1 4 8は従来の限流機能付き遮断器の側面図である。
図 1 4 9は従来の 3極限流ュニッ 卜を示す部分断面図である。
図 1 5 0は図1 4 9の限流ュニッ 卜を標準回路遮断器に一体接続して構成され る限流遮断器の正面図である。
図 1 5 1は図 1 5 0の限流遮断器の部分断面側面図である。
図 1 5 2は図 1 4 9に示す 3極限流ュニッ 卜の 1極の主要部の斜視図である。 図 1 5 3は図1 5 2に示した 2対の接触子対の分解斜視図である。 発明を実施するための最良の形態
実施の形態 1 .
以下、 この発明の実施の形態 1を図について説明する。 図 1は、 実施の形態 1 に係る閉成状態の回路遮断器の主要部を示す斜視図であり、 内部構成が分かるよ うに筒状絶縁物 2 5と固定導体 1 2を覆う絶縁物である絶縁カバー 2 8の一部を 切り取つている。 図 1において、 1は、 可動接点 2とこの可動接点 2が固着され ている可動アーム垂直部 3とこの可動アーム垂直部 3とほぼ直交する可動アーム 水平部 4により構成されるほぼ L字状の可動子である。 この可動子 1は、 反発接 点 8と反発アーム垂直部 9と反発アーム水平部 1 0とにより構成される反発子 7 と 1対の接点対をなしており、 可動子 1 と反発子 7とは、 それぞれパネ 1 8とバ ネ 2 1により互いに接触する方向に付勢されている。 反発子 7は、 可動子 1より アーム長が短く、 慣性モーメントが小さく構成されている。 また、 可動子 1は可 動子回転軸 1 3を中心に、 反発子 7は反発子回転軸 2 3を中心に、 それぞれ回動 自在に支持されている。可動子 1は、 摺動接触子 1 4および接続導体 1 7を介し て端子 1 5と電気的に接続されている。 一方、 反発子 7は、 可とう導体 1 1およ び固定導体 1 2を介して端子 1 6と電気的に接続されている。
図 1中に示された複数の矢印は、 通電時の電流経路を示しており、 可動アーム 水平部 4の電流と反発アーム水平部 1 0の電流は、 ほぼ平行かつ反対方向になる よう構成されている。 また、 可動子 1 と反発子 7の閉成状態において、 反発接点 8とその近傍の反発アーム垂直部 9の部位、 および、 可動接点 2とその近傍の可 動アーム垂直部 3の部位は、 筒状絶縁物 2 5により囲まれた筒状空間 2 6内に配 置され、 両接触子の開成状態においては、 可動接点 2が筒状空間 2 6から外れる ように構成されている。 さらに、 反発子 7は、 筒状絶縁物 2 5と絶縁カバー 2 8 等により構成され、 筒状空間 2 6以外に開口部がない蓄圧空間 2 7内に配置され る o
ここで、 アーク式限流機能を有する回路遮断器内で限流遮断動作時に発生する 比較的短ギャップの大電流アークの高圧力下でのアーク電圧上昇条件について述 ベる。 図 2に示す実験装置にて、 数 c m以下の短ギャップ大電流アークの雰囲気 圧 Pを変化させてアーク電圧変化を測定した結果を図 3のグラフに示す。 図 2に おいて、 4 0 0は 1対の丸棒状の電極、 4 0 1は密閉容器、 4 0 2は交流電圧、 4 0 3は投入スィッチ、 4 0 4は加圧用ボンベである。
図 2の実験装置では、 丸棒状の 1対の電極 4 0 0を対向させてアークを発生さ せているので、 電極間距離はアーク長 Lと等し〈なる。 図 3 ( a ) より明らかな ように、 アーク電流値が比較的小さい場合、 アーク雰囲気圧 Pが高〈なるとァ一 ク電圧は殆どのアーク長 Lにおいて高くなる。一方、 図 3 ( b ) に示すように、 アーク電流値が比較的大きい場合、 アーク雰囲気圧 Pが高くなつてもアーク電圧 はアーク長 Lが比較的長い場合を除いて殆ど変化しない。 図 3に示した雰囲気圧 Pが高い場合のアーク電圧 V ( P =高) と雰囲気圧 Pが低い場合のアーク電圧 V ( P =低) との比 Rをとり、 グラフ化すると図 4に示すようになる。
図 4より明らかなように、 アーク電流値が比較的小さい場合のァ一ク電圧上昇 率 Rは、 アーク長が長いほど高い。 一方、 アーク電流値が比較的大きい場合のァ —ク電圧上昇率 Rは、 アーク長がある値以上にならないと殆ど増加しないことが 分かる。 以上より、 短ギャップ大電流アークにおいて、 アーク雰囲気圧を上げる ことによりアーク電圧を効果的に上げるための条件とは、 (a ) アーク電流が比 較的小さい、 (b ) アーク長が長いという 2つを同時に満足する必要がある。 短絡等の事故が発生した場合、 事故発生直後から回路電流は急激に増大する。 従って、 上記 2つの条件を満たして高い雰囲気圧にてアーク電圧を上げて事故電 流を限流するには、 ( 1 ) 少なくともアーク発生直後 (事故発止直後) に高圧雰 囲気をつくる、 (2 ) アーク電流が比較的小さい時 (事故発生直後) にアーク長 を長くする必要がある。事故電流が増大した後では、 雰囲気圧を上げてもあまり 限流性能は向上しない。 さらに、 事故電流が増大した後の高圧雰囲気は、 限流性 能向上にあまり寄与しないだけでなく、 筐体等の破損の原因となる。
図 1に示した限流器では、 短絡事故等の発生により通過電流が急激に増大する と、 接点接触面での電流集中による電磁反発力 F 1 と前述の可動アーム水平部 4 の電流と反発アーム水平部 1 0のほぼ平行かつ反対方向の電流による電磁反発力 F 2により、 パネ 1 8、 2 1による接圧に杭して接点が開極し、 接点間にアーク が発生する。 この状態を図 5に示す。 アークの発生に伴い、 上記接点接触面での 電流集中による電磁反発力 F 1は消滅するが、 可動アーム水平部 4の電流と反発 アーム水平部 1 0のぼぼ平行かつ反対方向の電流による電磁反発力 F 2は引き続 き可動子 1を開極方向へと回動させる。 可動子 1 と反発子 7に働く主な開極電磁 力は、 作用、 反作用の関係となり大きさがぼぼ等しい。 しかし、 反発子 7の慣性 モーメントが可動子 1より小さいため、 可動子 1より反発子 7の方が素早く回動 する。 つまり、 反発子 7を用いることにより、 可動子 1のみにて開極動作を行う 場合より、 大幅に開極速度を向上させることができる。 また、 図中に白塗りの矢印で示すように、 アーク発生に伴い、 アークの熱によ り筒状絶縁物 2 5の内面から大量の蒸気が発生し、 筒状絶縁物 2 5に囲まれた筒 状空間 2 6に高圧雰囲気が発生する。 この筒状空間 2 6の高圧の発生により、 図 中に黒塗りの矢印で示すように、 可動子 1および反発子 7は圧力差による開極力 F pを受ける。 この圧力差による開極力 F pと上記電磁力 F 2により可動子 1お よび反発子 7が高速に回動し、 接点が高速開極する。 この高速開極によりアーク 長が高圧雰囲気中にて急激に伸びるのでアーク電圧が急速に立ち上がり、 事故電 流がピーク値をむかえる。
前述の電流ピーク時刻前後の大電流アークが発生した状態を、 図 6に示す。 図 中の白抜きの矢印で示すように、 大電流アーク発生中に筒状空間 2 6にて発生し た高圧の蒸気は、 蓄圧空間 2 7へと流れ込み、 蓄圧空間内の圧力を高める。 この 蓄積された圧力により、 アーク消滅前から電流遮断後にかけて上記蓄圧空間 2 7 から筒状空間 2 6を通って筒状絶縁物 2 5外へ放出される流れが生じる。 この様 子を示したのが、 図 7である。 同図では、 可動子 1がほぼ最大開極位置まで回動 しており、 可動接点 2が筒状空間 2 6外に位置し、 電流遮断直前、 すなわちァ— ク消滅直前の状態を示している。
蓄圧空間 2 7から筒状空間 2 6を通って外部へ放出される流れを白塗りの矢印 で示している。 この矢印の流れはノズル状となっている筒状空間 2 6で最も速く なり、 この高速の流れでアークの熱を奪い去りアークの消滅を促進する。 このァ ーク消滅促進作用により、 遮断前の電流が素早く絞りこまれるので、 限流性能の もう 1つの指標である通過エネルギーが減少する。 さらに、 この流れにより、 上 記高温のガスおよび溶融物を外部へと排出するので、 筒状空間 2 6の絶縁が急速 に回復されるとともに、 反発接点 8表面への溶融物付着を防止できる。
ところで、 図 7に示したように可動子 1が最大開極位置に達した状態では既に 電流ピークを過ぎて、 十分な大きさのアーク電圧を発生しており、 事故電流は急 速に減少し零点をむかえる。 この時、 可動接点 2は筒状絶縁物 2 5に囲まれた狭 い空間外にいるので、 可動接 2点近傍の電極金属蒸気を通常の手段 (例えば、 絶 縁物からの蒸気流、 グリッ ド等) にて容易に拡散もしくは冷却させることができ、 電極間の十分な絶縁回復により電流を遮断することは容易である。 また、 可動子 1がブレても筒状絶縁物 2 5内面に触れることがないので、 沿面絶縁破壊による 再点弧が生じることもない。 この最大開極位置近傍にて可動子 1を拘束し再閉極 を妨げる手段 (例えば、 ラッチ機構、 リンク機構等) を付加すれば、 限流性能に 優れた回路遮断器を得ることができる。 さら (こ、 前述の蓄圧空間 2 7から筒状空 間 2 6を通って噴出する流れにより、 筒状空間 2 6の出口と可動接点 2間に漂う、 比較的高温の金属蒸気や粒子を吹き飛ばすことができるので、 接点間の遮断直後 の絶縁回復が一層促進され、 電流遮断後の再点弧を防止できる。
上記のように本実施の形態では、 筒状絶縁物 2 5を用いた高圧雰囲気と高速開 極手段を併用しているが、 優れた限流性能を得るためには上記併用が不可欠であ る。 図 8では、 ( a ) 高速開極手段を用いない場合と、 ( b ) 高速開極手段を用 いた場合の筒状絶縁物の効果を示している。 同図において、 t sは事故発生時刻、 t oは接点開極時刻、 V 0は接点間の電極降下電圧、 破線は電源電圧波形である c 図 8 ( a ) は、 高速開極手段を用いない場合であり、 アーク電圧が電源電圧に追 い付いた時刻 t 1 (筒状絶縁物有の時) 、 t 2 (筒状絶縁物なしの時) に電流ピ —ク I p 1、 I p 2をそれぞれむかえる。 高速開極手段を用いないと、 事故電流 の立上りに比べアーク長さの立上りが遅いので、 筒状絶縁物 2 5にて高圧雰囲気 を作り出しても、 アーク長が短くアーク電圧が上昇する上記条件を満たすことが 難しい。従って、 図 8 ( a ) では、 筒状絶縁物を用いても、 電流ピーク I pの改 善の度合い△ I = I p 2— I p 1は小さい。
一方、 図 8 ( b ) に示す高速開極手段を用いた場合では、 事故電流が大きくな る前にァーク長が十分長〈なるので、 高圧雰囲気にてァ一ク電圧が上昇する上記 条件を満たすことができる。 アーク電圧が電源電圧に追い付いた時刻 t 1 ' (筒 状絶縁物有の時) 、 t 2 ' (筒状絶縁物なしの時) の電流ピークェ pをそれぞれ I P 1 ' 、 I p 2 ' とすると、 電流ピーク I pの改善の度合い Δ Ι p ' = I p 2 ' — I p 1 ' は、 高速開極手段を用いなかった場合の電流ピーク I pの改善の 度合い Δ Ι pより劇的に大きいことが分かる。
また、 本実施の形態では、 図 5 9に示した従来例と異なり、 可動子の開極を助 けるための励磁コイルを設ける必要がないので、 低インピーダンスの限流性能に 優れた限流器が得られ、 大きな通電容量が求められる回路への適用が可能となる る o
さらに、 可動子 1および反発子 7を回動させて開極するため、 接点対が開閉す る方向の必要寸法は、 蓄圧空間 2 7下部壁厚さ、 反発アーム垂直部 9、 反発接点 8厚さ、 接点最大開離距離、 可動接点 2厚さ、 および、 可動アーム垂直部 3の和 となり、 従来の直動型限流器より上記方向の必要寸法を小さくすることができる 従って、 外形寸法に制限がある場合でも、 高圧力を効果的にアーク電圧上昇に結 び付けるのに必要な開極距離を容易に確保できる。
なお、 図 1に示した実施の形態では、 可動子 1および反発子 7をほぼ L字状と したが、 事故電流遮断時に可動子 1より素早く開極する反発子 7のみほぼし字状 とし、 可動子 1は通常のほぼ棒状形状としてもよい。 このような構成をとると、 反発子 7の高速開極によって高い限流性能が得られるのみならず、 ほぼし字状可 動子 1を用いた場合と比較して、 可動子側先端部のアークスポッ 卜が可動子回転 軸 1 3と反対側の端面へと移動しやすくなり、 遮断直前のアークが引き伸ばされ るので、 過負荷電流遮断や直流遮断性能が向上する。 実施の形態 2 .
次に、 この発明の実施の形態 2を図について説明する。 図 9は、 本実施の形態 の筒状絶縁物 2 5、 反発子 7、 可動子 1等の主要部を示す部分断面図であり、 図 中、 可動子 1の回転中心より最も遠い部位が開極動作により描〈軌跡を一点鎖線 にて、 反発子 7の回転中心より最も遠い部位が開極動作により描く軌跡を破線に てそれぞれ表している。筒状絶縁物 2 5の可動子 1および反発子 7先端部に対向 する面は、 この一点鎖線および破線に一定の間隙を持つように円弧状に形成され ている。 一般に、 可動子 1の回転軸 1 3は接点接触面より上方に、 反発子 7の回 転軸 2 3は接点接触面より下方にそれぞれ設けられるので、 上記可動子 1および 反発子 7の軌跡は接点接触位置より可動子回転軸 1 3および反発子回転軸 2 3か ら遠くなる方向へと膨らむ。 そのため、 図 1に示すように、 筒状絶縁物 2 5の可 動子 1および反発子 7先端部に対向する面を垂直とすると、 上記面を接点接触位 置より離れた位置に配置する必要があり筒状絶縁物 2 5に囲まれる容積が大きく なる。 そのため、 十分高い高圧雰囲気を発生するのに時間がかかる場合がある。 そこで、 図 9のように、 可動子 1および反発子 7先端部の軌跡に沿って筒状絶縁 物 2 5の内面を形成すれば、 筒状絶縁物 2 5に囲まれる容積を小さ〈でき、 限流 性能が向上する。
また、 図 9では、 筒状空間 2 6を囲む絶縁物の壁の内、 可動子回転軸 1 3およ び反発子回転軸 2 3と反対側の壁長さを上記可動子および反発子回転中心側の壁 長さより長く している。 遮断動作時に接点間に発生するアークには、 可動アーム 水平部 4および反発アーム水平部 1 0を流れる電流により、 可動子および反発子 回転中心と反対側に電磁駆動力が発生する。 従って、 筒状空間 2 6内にあるァー クは上記可動子および反発子回転中心と反対側の壁により強く触れる。 また、 可 動子 1および反発子 7を高速開極するためには慣性モーメントを小さくした方が 有利であるが、 筒状絶縁物 2 5の筒長さにより決まる可動アーム垂直部 3および 反発アーム垂直部 9が長くなると、 可動子 1および反発子 7の慣性モーメントは それぞれ増加する。 そこで、 図 9に示すように、 上記可動子および反発子回転中 心と反対側の壁長さを上記可動子および反発子回転中心側の壁長さより長〈する ことにより、 可動ァ一厶垂直部 3および反発アーム垂直部 9の長さを短く して慣 性モーメントを低減でき、 かつ、 十分な筒状絶縁物蒸気を発生さて十分な高圧雰 囲気を作ることができるので、 限流性能がより向上する。
また、 図 9では、 可動アーム水平部 4の可動接点 2側の部分を、 4 a、 4 b , および 4 cの部位にて構成し、 反発アーム水平部 1 0の反発接点 8側の部分を、 1 0 a、 1 O b、 および 1 0 cの部位にて構成している。 このような構成とする と、 同図中に黒塗りの矢印で示すように、 閉成状態における可動ァ―厶水平部 4 の一部 4 cと反発アーム水平部 1 0の一部 1 0 cのほぼ平行かつ反対方向の電流 間の距離が短くなり電磁反発力が増大するので、 開極速度が向上する。 実施の形態 3 .
以下、 この発明の実施の形態 3を図について説明する。 図 1 0は、 本実施の形 態の筒状絶縁物 2 5、 反発子 7、 可動子 1等の主要部を示す部分断面図であり、 筒状絶縁物 2 5は、 筒内面を形成する絶縁物 2 5 aとその周りの絶縁物 2 5 と により構成される。 上記絶縁物 2 5 aは、 アークに暴露されると即座に大量の蒸 気を発生する性質を有する材料、 例えば、 ガラス繊維などの強化材を少量もしく はまった〈含まない樹脂材にて成形され、 上記絶縁物 2 5 bは、 機械的強度に優 れた強化樹脂もしくはセラミックにて成形されている。 このような構成とすると、 上記筒内で発生する高圧力に機械的に耐えられない材料を筒内面の材料として用 いることができるので、 機械的特性に関係な〈大量の蒸気を発生する物質を適用 でき、 限流性能が向上する。 実施の形態 4 .
以下、 この発明の実施の形態 4を図について説明する。 図 1 1は、 本実施の形 態の筒状絶縁物 2 5、 反発子 7、 可動子 1、 馬蹄形の消弧板 3 1等の主要部を示 す部分断面図である。 消弧板 3 1は、 筒状絶縁物 2 5の上部空間に、 可動子 1の 先端部の面に対向するよう設けられている。 また、 筒状絶縁物 2 5の可動子 1側 開口部において、 筒状空間 2 6を囲む筒状絶縁物 2 5の可動子回転軸 1 3と反対 側の壁高さを可動子回転軸 1 3側の壁高さより低くなるよう構成している。 この ような構成とすると、 同図中に白塗りの矢印で示すように、 遮断動作時における 可動接点 2が筒状空間 2 6から出た後、 筒状空間 2 6から消弧板 3 1方向へとホ ッ卜ガスの流れが生じ、 アークが消弧板 3 1に触れやすくなる。 従って、 アーク を消弧板 3 1にて効果的に冷却できるので、 遮断動作後半において事故電流を急 速に絞り込み、 遮断時間を短くすることができる。 その結果、 限流性能の 1つの 指標である通過エネルギーの低減につながる。 実施の形態 5 .
以下、 この発明の実施の形態 5を図について説明する。 図 1 2は、 本実施の形 態の反発子 7を示す斜視図、 図 1 3は、 本実施の形態の筒状絶縁物 2 5、 反発子 7、 可動子 1等の主要部を示す部分断面図である。 図 1 2に示す反発子 7では、 少なくとも閉成状態の可動接点 2から見渡せる、 反発接点 8より反発子回転軸 2 3側の反発アームの面を絶縁物 2 9により覆っている。 このような反発子を用い ると、 図 1 3に示すように、 事故電流遮断時の大電流アーク発生時点において、 筒状空間 2 6に充満したアークから上記絶縁物 2 9へホッ卜ガスが吹き付けると ともに強いアーク光が当たり (図中、 黒塗りの矢印で示す) 、 上記絶縁物 2 9か ら大量の蒸気が発生する (図中、 白塗りの矢印で示す) 。従って、 蓄圧空間 2 7 に蓄積される圧力が上昇し、 電流遮断前後の蓄圧空間 2 7から筒状空間 2 6を通 つて流れる気流の流速が速くなり、 前述のアーク消減作用、 筒状絶縁物内外空間 の絶縁回復作用、 反発接点表面への溶融物付着防止作用が向上する。 実施の形態 6 .
以下、 この発明の実施の形態 6を図について説明する。 図 1 4は、 本実施の形 態の可動子 1を示す斜視図、 図 1 5は、 筒状絶縁物 2 5、 反発子 7、 可動子 1等 の主要部を示す断面説明図である。 図 1 4に示す可動子 1は、 可動接点 2、 可動 アーム垂直部 3、 可動アーム水平部の各部位 4 a、 4 b、 4 c、 および、 可動子 アーム部の少なくとも閉成状態の反発接点 8から見渡せる面を覆う絶縁物 3 0に より構成され、 ほぼ鈎型の形状となる。 このように、 可動子 1をほぼ鈎型とする ことにより、 筒状絶縁物 2 5を用いる場合においても、 閉成状態の反発アーム水 平部 1 0と上記可動アーム水平部の一部 4 cとの距離を近付けることができ、 電 磁開極力を強化できることは前述の通りである。
しかし、 図 1 5に示すように、 可動子 1の回転角 0が大き〈なると、 可動子 1 を鈎型にすることによりアークが可動アーム水平部に触れ、 電流が分流する可能 性が高〈なる。 このようにアークが可動アームに触れると、 可動アームが溶融し て細〈なり開閉に耐えうる十分な機械的強度を維持できなくなるのみならず、 遮 断動作後半のアーク電圧が低下して、 限流性能が悪化する。 そこで、 少なくとも 閉成状態の反発接点 8から見渡せる、 可動ァ—ムの可動接点 2より可動子回転軸 1 3側の部位を絶縁物 3 0にて覆う必要がある。 このような可動アームへの分流 は、 可動子 1の回転角 0がさらに大きくなると、 実施の形態 1で示したほぼ L字 状の可動子においても生じることがあり、 上記のような可動アームの絶縁が必要 となる。 実施の形態 7 .
次に、 この発明の実施の形態 7を図について説明する。 図 1 6は、 配線用遮断 器のュニッ 卜化された消弧装置を示す斜視図であり、 構成部品は消弧ュニッ卜筐 体本体 3 6と消弧ュニッ 卜筐体蓋 3 7により収納され、 全体で消弧ュニッ卜 3 9 を構成する。 図 1 7に示すように、 複数の上記消弧ュニッ 卜 3 9をクロスバー 4 0により連結し、 上記クロスバー 4 0を介して接点を開閉させる機構部 4 1、 異 常電流を検出し上記機構部 4 1を動作させるリレー部 4 2、 および上記機構部 4 1を手動で動作させるハンドル 4 5を付力□し、 これらをべ一ス 4 3とカバ一 4 4 にて収納すれば配線用遮断器となる。 このように各構成部品をユニット化し、 こ れらを組み合わせて配線用遮断器を構成するようにすれば、 組立が簡単となりコ ス卜低減が可能となる。
前述のように消弧装置を消弧ュニット筐体本体 3 6と消弧ュニッ 卜筐体蓋 3 7 内に収納することにより、 遮断動作時の配線用遮断器内の圧力上昇をベース 4 3 およびカバ一 4 4で直接受けることがなくなる。 上記消弧ュニッ 卜筐体の受圧面 積は、 上記べ一ス 4 3およびカバー 4 4の受圧面積より小さい。 そのため、 たと え上記ベース 4 3およびカバ— 4 4と同一材料、 同一肉厚の消弧ュニッ 卜筐体を 用いても、 より大きな内圧上昇に耐えることができ、 アーク雰囲気圧を上げてァ —ク電圧を上昇させる限流手法を用いるのに適している。 また、 従来、 遮断動作 時の内圧上昇に耐えるため、 機械的強度の大きな高価なモールド材にてベースお よびカバ一を構成していたが、 消弧ュニッ卜筐体を用いることにより、 圧力を受 ける筐体の材料の量を減らすことができコスト低減が可能となる。
図 1 6に示した消弧ュニッ卜 3 9の内部構成を示すため、 構成部品の一部を断 面にした斜視図を図 1 8に示す。 また、 図 1 9に閉成状態における通電部品以外 を省略した余 4視図を示す。 図 1 9には、 可動アーム水平部 4、 反発アーム水平部 1 0、 および導体水平部 3 4における電流方向を矢印にて示している。端子部 1 5と可動子 1を電気的に接続する導体の一部である導体水平部 3 4は、 固定導体 1 2とほぽ平行かつ同方向の電流が流れるように接続されており、 反発子 7が回 動する面から左右方向にずれた ί立置に配置されている。
続いて、 本実施の形態の動作について説明する。通常の開閉動作はハンドル 4 5を手動にて操作することにより行う。 上記ハンドル操作により、 機構部 4 1、 クロスバー 4 0を介してロータ 3 5が回動し、 可動子 1が開閉動作する。 また、 過負荷電流遮断時には、 リレー部 4 2が異常電流を検出し、 リレー部 4 2よりと リップ信号が機構部 4 1へ伝わり、 機構部 4 1が動作してロータ 3 5が回動し可 動子 1が引き上げられ接点が開極する。 しかし、 短絡事故等の大電流遮断時には、 上記ロータ 3 5の回動に先立ち、 接点接触部への電流集中による電磁反発力 F 1 と、 図 1 9に示す可動アーム水平部 4の電流と反発アーム水平部 1 0のほぼ平行 かつ反対方向の電流による電磁反発力 F 2との和 F tにより反発子 7がパネ 2 1 による接圧に抗して開極動作を開始する。
同時に、 可動アーム水平部 4の電流と導体水平部 3 4のほぼ平行かつ反対方向 の電流による電磁反発力 F 3の開極方向の分力 F 3 ' と上記電磁反発力の和 F t との和の力 F t ' により、 可動子 1が開極動作を開始する。 この両接触子の開極 動作において、 慣性モーメントの小さい反発子 7の方が可動子 1より高速開極す ることは実施の形態 1 と同様である。 上記開極動作に伴い、 接点間にアークが発 生し、 上記接点接触面での電流集中による電磁反発力 F 1は消滅するが、 上記電 磁反発力 F 2は可動子 1および反発子 7を、 上記電磁反発力の分力 F 3 ' は可動 子 1を、 引き続きそれぞれ開極方向へと回動させる。 また、 アーク発生に伴い、 アークの熱により筒状絶縁物 2 5の内面から大量の蒸気が発生し、 可動子 1およ び反発子 7を開極させる圧力差に起因する力 F pが生じる。 これらの力により、 反発子 7および可動子 1が高速に回動し、 接点が高速開極する。 この高速開極に よりアーク長が高圧雰囲気中にて急激に伸びるのでアーク電圧が急速に立ち上が り、 事故電流がピーク値をむかえる。
電流ピーク後、 可動子 1はさらに回動し接点間距離が増大する。 この接点間距 離の増大により、 アーク電圧がさら大きくなり事故電流は急速に零へと向かう。 事故電流が小さく絞られると、 導体垂直部 3 3を流れる電流による吸引力と馬蹄 形の鉄製消弧板 3 1の吸引力により、 アークが消弧板 3 1に引き込まれ、 アーク が分断、 冷却され消弧される。 このとき可動接点 2は筒状絶縁物 2 5に囲まれる 空間外にあり、 接点間の絶縁が十分回復しているので、 電極間に電源電圧が印加 されても電流が再び流れることはなく、 遮断動作が完了する。 さらに、 実施の形 態 1 と同様に、 大電流アーク中に蓄圧空間 2 7に蓄積された圧力により筒状空間 2 6を通って筒状空間 2 6外へと流れる気流が発生し、 筒状空間 2 6内外の絶縁 回復が促進されるので、 遮断時間が短くなるとともに再点弧が防止される。 また、 上記電流ピーク以降の長い接点間距離による高いアーク電圧が遮断時間を大幅に 短くする。 従って、 限流性能を示す指標の一つである通過エネルギー I 2 t (電 流の二乗の時間積分) が小さくなる。
ところで、 本実施の形態では、 排気口 3 8が接点 2、 接点 8間からみて消弧板 3 1側のみに設けられている。 このような配置をとると、 電流遮断動作時におい て、 アーク電流の増加に伴い筐体内のァ—クよりロータ 3 5側の空間に圧力が蓄 積される。 アーク電流がピークをむかえアーク電流値が減少していくと、 上記蓄 積された圧力により電極間ではロータ 3 5側から排気口 3 8側へと気流が生じ、 アークを消弧板 3 1へと引き伸ばす。 さらに、 電流零点近傍では、 上記流れによ る接点間の荷電粒子を吹き飛ばす作用で、 接点間の絶縁回復が大幅に改善される。 従って、 高電圧の回路に適用しても遮断失敗が起こり難い信頼性の高い回路遮断 器を得ることができる。
この蓄積圧による気流の絶縁回復作用は、 電流遮断時の上記気流の流速が大き いほど大きい。 流速を大き〈するには、 蓄積圧を上げるか流路断面を小さ〈すれ ばよく、 そのために排気口 3 8面積を小さくする必要がある。本実施の形態では、 比較的面積の小さい排気口 3 8を開成状態の可動接点 2側に設けている。 筒状絶 縁物 2 5を用いて限流性能を向上させる場合、 反発接点 8側アークスポッ卜近傍 のアークは蓄圧空間 2 7内にあるので、 上記ロータ 3 5側空間の蓄積圧による気 流にてアークを構成する金属粒子を吹き飛ばすことはできない。 一方、 可動接点 2側アークスポッ卜近傍のアークは、 電流遮断時には上記蓄圧空間 2 7外に位置 しており、 上記気流の作用を受けやすい。 よって、 比較的面積の小さい排気口 3 8を開成状態の可動接点 2側に設けることにより、 効果的に電流遮断時の電極間 の絶縁回復を確保できる。
なお、 上記図 1 8、 図 1 9に示した実施の形態では、 反発子 7の回転軸 2 3を 蓄圧空間 2 7を形成する絶縁物にて直接保持している。 また、 導体水平部 3 4は、 反発子 7が回動する面から横方向にずれた位置において閉成状態の反発アーム水 平部 1 0とほぼ並置されている。 このような導体配置をとる場合、 事故電流遮断 時に働く導体水平部 3 4の電流と反発アーム水平部 1 0の電流の間の電磁吸引力 により、 反発子 7に非常に大きなブレの力が加わり、 回転軸 2 3が変形するか回 転軸を保持している部材が破損する場合がある。 そこで、 図 2 0に示すように、 金属等の機械的強度の大きな保持枠 4 6を別途設け、 反発子回転軸 2 3を保持す れば上記保持部材の破損を防止できる。 また、 上記保持枠 4 6を磁性体にて構成 すれば、 導体水平部 3 4の磁束を吸収して、 反発子 7に電磁吸引に起因するブレ の力が生じないようにできるので、 上記回転軸 2 3の破損を防止できる。 さらに、 反発子 7、 回転軸 2 3、 および反発子 7に接圧を与えるパネ 2 1を上記保持枠 4 6にて保持するように構成すれば、 反発子部をュニッ卜化でき組立性が向上する。 実施の形態 8 .
前述のように、 実施の形態 7の導体配置では、 導体水平部 3 4が反発子 7およ び可動子 1が回動する軌跡を含む面上からずれたィ立置に配置される。従って、 反 発子 7および可動子 1には接点開離方向に直行するブレの力がそれぞれ働き、 反 発子 7および可動子 1の開極速度を低下させる要因となる。 この発明では、 閉成 状態において筒状絶緣物内に可動アーム垂直部および反発アーム垂直部が挿入さ れるので、 上記ブレの力により可動子もしくは反発子が左右にブレた場合、 可動 子もしくは反発子と筒状絶縁物が接触する可能性が大きい。 このような接触が生 じれば、 開極速度は大幅に低下する。 また、 遮断動作時に上記ブレの力により可 動子、 可動子回転軸、 反発子、 もしくは、 反発子回転軸等が大きく変形すれば、 再投入不能となる。
本実施の形態 8はこのような問題を解決したもので、 その構成を図 2 1に示す。 同図に示すように、 導体水平部 3 4の中心線を、 可動子 1および反発子 7が回動 する軌跡を含む面上に閉成状態の反発アーム水平部 1 0とほぼ平行に配置してい る。 このような導体配置をとると、 可動アーム水平部 4と導体水平部 3 4とにそ れぞれ流れる反対方向の電流による電磁反発力、 および反発アーム水平部 1 0と 上記導体水平部 3 4とにそれぞれ流れる同方向の電流による電磁吸引力のどちら にも上記ブレの力成分が生じない。
また、 上記導体配置をとると、 図 2 2に示すように、 反発子 7には反発アーム 水平部 1 0に流れる電流と可動アーム水平部 4を流れる電流の間の電磁反発力の みならず、 反発アーム水平部 1 0に流れる電流と導体水平部 3 4を流れる電流の 間の電磁吸引力を事故電流遮断時の開極力として利用できる。 図 2 3は、 遮断動 作初期の状態を示しており、 慣性モーメントの小さい反発子 7が可動子 1より速 く回動することは、 実施の形態 1 と同様である。 このように、 反発子 7が回動す ると、 可動子 1 と反発子 7をそれぞれ流れる反発電磁力を発生する電流間の距離 が遠くなり、 上記電磁反発力はィ氐減する。 しかし、 反発子 7と導体水平部 3 4と の距離が逆に近くなるので、 反発子 7と導体水平部 3 4をそれぞれ流れる電流に よる電磁吸引力が増大する。 よって、 反発子 7は最大開極位置に到達するまで常 に大きな電磁開極力を受け、 開極速度がさらに高速となり、 事故電流ピーク値が 低減される。
図 2 4は、 さらに遮断動作が進み、 反発子 7および可動子 1が最大開極位置に 達した状態を示す。 この状態では、 反発子 7と導体水平部 3 4との距離が最小と なっており、 反発子 7が導体水平部 3 4を流れる電流により強〈吸引されている。 従って、 高速開極した反発子 7が蓄圧空間 2 7を形成する絶縁物 2 5に衝突して 跳ね返され接点間距離 (言い換えれば、 アーク長) が小さくなる現象を最小限に 抑えるとともに、 電流遮断直前まで反発子 7を接圧パネの力に抗して最大開極位 置に保つことができ、 遮断動作後半における接点間距離をより長い状態で保持で きる。 これにより、 電圧ピーク以後も高いアーク電圧を維持でき、 遮断時間が大 幅に短縮できるとともに、 電流遮断時および遮断後に接点間の十分な絶縁回復を 確保でき、 電圧の高し、回路においても適用できる高性能の限流遮断器が得られる。 なお、 本実施の形態では、 導体水平部 3 4を反発子 7が回動する軌跡を含む面 上に配置したが、 可動接点 2が反発接点 8より開離する方向を上方としたとき、 開成状態の反発アーム水平部 1 0より下方に、 かつ、 閉成状態の上記反発アーム 水平部 1 0とほぼ平行に導体水平部 3 4を設ければ、 たとえ上記反発アーム水平 部 1 0が上記軌 Kl^を含む面の左右どちらかにずれた位置にあっても、 前述の反発 子を吸引して開極速度を高める効果および反発子を最大開極位置にて保持する効 果が得られる。 実施の形態 9 . 次に、 この発明の実施の形態 9を図について説明する。 図 2 5は本実施の形態 の主要部を示す斜視図であり、 保持枠 4 6の一部を切り欠いて示している。 本実 施の形態における導体配置は、 実施の形態 8と同様であり、 導体水平部 3 4は、 反発子 7が描く軌跡を含む面上に配置されている。 反発子 7は、 回転軸 2 3を介 して、 非磁性体の断面コの字状の保持枠 4 6に回動自在に保持されている。 また、 反発子 7に接圧を与えるパネ 2 1は、 端部が上記保持枠 4 6に設けたパネ掛け 2 2に係合されており、 反発子 7、 回転軸 2 3、 パネ 2 1、 保持枠 4 6にて、 反発 子部ュニッ 卜を形成していることは、 実施の形態 7と同様である。
このように、 保持枠 4 6を非磁性体にて構成すれば、 導体水平部 3 4を流れる 電流が作る反発子 7および可動子 1の開極を促進する磁束成分を遮蔽することが なく、 大きな電磁力が働く反発子 7を確実に保持するために保持枠 4 6を用いる 場合においても、 実施の形態 8と同様の高速開極が得られ、 限流性能が低下する ことがない。 実施の形態 1 0 .
次に、 この発明の実施の形態 1 0を図について説明する。 図 2 6は本実施の形 態の主要部を示す斜視図であり、 保持枠 4 6 ' の一部を切り欠いて示している。 本実施の形態における導体配置は、 実施の形態 8と同様であり、 導体水平部 3 4 は、 反発子 7が描〈軌跡を含む面上に配置されている。 反発子 7は、 回転軸 2 3 を介して、 磁性体の保持枠 4 6 ' に回動自在に保持されている。 また、 反発子 7 に接圧を与えるパネ 2 1は、 端部が保持枠 4 6 ' に設けたパネ掛け 2 2に係合さ れている。磁性体の保持枠 4 6 ' は、 実施の形態 9とは異なり、 反発子 7のみな らず導体水平部 3 4を抱え込むように配置されている。
このように、 反発子 7および導体水平部 3 4を抱え込む保持枠 4 6 ' を磁性体 にて構成すれば、 導体水平部 3 4を流れる電流が作る反発子 7の開極を促進する 磁束成分を増大させることができ、 反発子 7の開極速度が向上する。 実施の形態 1 1 .
次に、 この発明の実施の形態 1 1 を図について説明する。 図 2 7は本実施の形 態の消弧ュニッ 卜を示す斜視図であり、 消弧ュニッ 卜筐体本体 3 6、 消弧ュニッ 卜筐体蓋 3 7を挟み込むように、 積層された馬蹄形のコア 5 0、 5 1がそれぞれ 配置されている。 コア 5 0は、 少なくとも消弧ュニッ 卜内の開成状態の可動子 1 (図示せず) を挟み込む位置に設けられ、 コア 5 1は、 少なくとも消弧ュニッ 卜 内の開成状態の反発子 7 (図示せず) を挟み込む位置に設けられている。
このような構成を用いると、 遮断動作時の可動子 1の開極電磁力をコア 5 0に て、 また、 反発子 7の開極電磁力をコア 5 1にてそれぞれ強化でき、 開極速度が 向上する。 また、 消弧ユニット筐体を外部より挟み込むように、 コア 5 0、 5 1 を配置しているので、 遮断時の筐体内圧上昇による筐体にかかる力を上記コアに て受けることができ、 筐体の破損を防止できる。 さらに、 消弧ュニット筐体本体 3 6と消弧ュニヅト筐体蓋 3 7との接合をコア 5 0、 5 1にて行うことができる ので、 ネジ等の接合部品を省略することが可能とる。 また、 筐体によりコア内面 の絶縁を兼ねることができ、 コアへのァ一クタツチを防止できる。 実施の形態 1 2 .
次に、 この発明の実施の形態 1 2を図について説明する。 図 2 8 ( a ) は本実 施の形態の主要部を示す部分断面図であり、 図 2 8 ( b ) は、 図 2 8 ( a ) に示 した消弧板 3 1より下の部位の上面図である。 図 2 8 ( a ) では、 過負荷電流遮 断時の電流遮断直前の状態を示しており、 反発子 7は回動しておらず、 可動子 1 のみが機構部 4 1 (図示せず) の動作により開極している。過負荷遮断等の比較 的小電流遮断においては、 蓄圧空間 2 7に圧力を蓄積できないので、 電流遮断時 に蓄圧空間 2 7から筒状空間 2 6を通り噴出する気流の流れを形成することがで きず、 気流の流れによるアーク消弧作用を利用できない。 そのため、 過負荷電流 遮断時には、 アークを消弧板 3 1に触れさせて冷却して消弧する必要がある。 し かし、 この発明では、 筒状絶縁物 2 5を用いて高圧雰囲気を作り出しアーク電圧 を上げる手法を用いているため、 必然的に可動子 1先端部は端部に接点 2が固着 した棒状形状となる。
そのため、 可動子側アークスポッ卜は、 可動子先端の消弧板側の端面に移動し 難い。 そこで、 本実施の形態では、 馬蹄形の消弧板 3 1の切欠き部の位置 L 2を、 筒状絶縁物 2 5に囲まれる空間 2 6の可動子回転中心 (図示せず) と反対側の端 面の位置 L 1より、 可動子回転中心側に設けている。 ただし、 上記切欠き部の位 置 L 2が、 図中に一点鎖線で示す可動子 1先端部が描く軌跡と交わると消弧板 3 1が可動子 1の回動を妨げるので、 上記切欠き部の位置 L 2は、 上記一点鎖線と 上記位置し 1のと間に位置する必要がある。 このように構成するとアークが消弧 板 3 1に触れやすくなり、 過負荷電流遮断においても十分な遮断性能が得られる。 また、 図 2 8 ( b ) に示すように、 反発子回転中心と反対側の筒状絶縁物 2 5 の部位を外側から囲むように馬蹄形のコア 5 2設けると、 反発接点 8近傍のァ一 クが上記コア 5 2側に引き付けられるので、 一層アークが消弧板 3 1に触れやす くなる。
ところで、 可動子側のアークスポッ 卜が可動子 1の消弧板 3 1側の端面に移動 し難いことは、 短絡遮断等の大電流遮断時にも同様である。 そのため、 遮断動作 後半になってもアークは消弧板 3 1に触れにく く、 消弧板 3 1のアーク冷却効果 を有効に利用できないので、 アークの熱により消弧ュニッ卜筐体内圧が高〈なり、 筐体割れが発生しやすい。従って、 本実施の形態の構成によりアークを消弧板 3 1に触れやすくすることは、 短絡遮断時の内圧上昇を抑制し、 割れを防止する効 果もある。 実施の形態 1 3 .
次に、 この発明の実施の形態 1 3を図について説明する。 図 2 9は本実施の形 態における消弧ュニッ 卜内部を示す斜視図であり、 図 3 0は、 図 2 9の反発子 7 近傍の導体配置を示す斜視図である。 図 3 0中の矢印は電流の流れを示している。 本実施の形態では、 実施の形態 7、 実施の形態 8と異なり、 端子部 1 5に電路 5 3 a、 5 3 b、 5 3 c、 5 3 d、 および可とう導体 1 1を経由して反発子 7が接 続され、 可動子 1は摺動接触子 1 4を経由して端子部 1 6と接続される。 上記電 路 5 3 a、 5 3 b、 5 3 c、 5 3 d、 および可とう導体 1 1の電路 5 3 d側の部 位は、 筒状絶縁物 2 5と一体に形成された絶緣物 5 4にて、 両接点 2、 8間に発 生するアークから見渡せる部位を覆っている。 また、 電路 5 3 b、 5 3 c、 5 3 dには反発子 7の幅にほぼ等しい幅のスリッ 卜 5 6を設けており、 アーク柱が発 生し引き伸ばされる軌跡を含む面の左右にずれた位置に電路を設けている。
このような構成とすると、 実施の形態 8で示した電磁開極力を発生する導体水 平部に相当する電路がな〈なり、 実施の形態 8と比較すると開極速度は低下する。 しかし、 消弧室内の導体長を短くできるのでコスト低減が可能であり、 さらに構 造が簡単となり組立性が向上する。 また、 実施の形態 7、 実施の形態 8の導体水 平部に相当する消弧ュニッ卜内を横断する導体がないので、 導体間の絶縁距離を 確保しやすい。 また、 主に電路 5 3 b、 5 3 c、 5 3 dを流れる電流は、 接点間 に発生したアークを消弧板 3 1の反対側へと押し戻す力を発生し、 アークが上記 消弧板 3 1に触れ難くするが、 本実施の形態ではスリッ 卜 5 6を設けることによ り上記電路 5 3 b、 5 3 c、 5 3 dのアークを押し戻す作用を最小限に抑えてい る o 実施の形態 1 4 .
次に、 この発明の実施の形態 1 4を図について説明する。 図 3 1は本実施の形 態における消弧ュニヅ 卜内部を示す斜視図であり、 図 3 2は、 図 3 1の反発子 7 近傍の導体配置を示す斜視図である。 図 3 2中の矢印は電流の流れを示している。 本実施の形態では、 実施の形態 7、 実施の形態 8と異なり、 端子部 1 5に電路 5 3 a、 5 3 b、 および可とう導体 1 1を経由して反発子 7が接続され、 可動子 1 は摺動接触子 1 4を経由して端子部 1 6と接続される。 上記電路 5 3 a、 5 3 b、 および可とう導体 1 1の電路 5 3 b側の部位は、 筒状絶縁物 2 5と一体に形成さ れた絶縁物 5 4にて、 両接点 2、 8間に発生するアークから見渡せる部位を覆つ ている。 また、 電路 5 3 bには可動子 1の回動を妨げないようにスリッ卜 5 6を 設けている。 電路 5 3 a、 5 3 bは、 反発子 7より上方に配置される。
このような構成とすると、 消弧室内の導体長を短くできるのでコス卜低減が可 能であること、 構造が簡単となり組立性が向上すること、 実施の形態 7、 実施の 形態 8の導体水平部に相当する消弧ュニッ卜内を横断する導体がないので、 導体 間の絶縁距離を確保しやすいことは、 実施の形態 1 3と同様である。 さらに、 電 路 5 3 bを流れる電流が、 閉成状態の反発アーム水平部 1 0を流れる電流と反対 方向かつほぼ平行となるので、 反発子 7の開極電磁力を実施の形態 1 3より向上 させることができる。 さらに、 可とう導体 1 1を流れる上下方向の電流も、 反発 子 7の電磁開極力を強める磁束成分を発生させる。 よって、 反発子 7の開極速度 が増大し、 限流性能が向上する。 実施の形態 1 5 .
以下、 この発明の実施の形態 1 5を図について説明する。 図 3 3は、 実施の形 態 1 5に係る限流装置の主要部を示す斜視図であり、 内部構成が分かるように筒 状絶縁物 2 5と絶縁カバー 2 8の一部を切り取つている。 図 3 4は、 図 3 3に示 すものの外観を示す斜視図である。 図 3 3において、 1は、 可動接点 2と可動接 点 2が固着されてし、る可動ァー厶垂直部 3と可動ァ一厶垂直部 3とぼぼ直交する 可動ァ一厶水平部 4とにより構成されるほぼし字状の可動子である。 この可動子 1は、 固定接点 6と固定導体 1 2により構成される固定子 5と 1対をなしており、 可動子 1は可動子接圧パネ 1 8により固定子 5方向に付勢されている。 また、 可 動子 1は、 可動子回転軸 1 3を中心に回転自在に支持されており、 摺動接触子 1 4および接続導体 1 7を介して端子 1 5と電気的に接続されている。 一方、 固定 子 5は筒状絶縁物 2 5と絶縁力バ— 2 8とによつて固定接点 6近傍と端子部 1 6 との接続部近傍を除いて覆われている。 図中に示された複数の矢印は、 通電時の 電流経路を示しており、 可動アーム水平部 4の電流と固定導体 1 2の電流は、 ほ ぼ平行かつ反対方向になるよう構成されている。
図 3 3に示した限流装置では、 短絡事故等の発生により通過電流が急激に増大 すると、 接点接触面での電流集中による電磁反発力 F 1 と前述の可動アーム水平 部 4の電流と固定導体 1 2のほぼ平行かつ反対方向の電流による電磁反発力 F 2 により、 可動子接圧パネ 1 8による接圧に抗して接点が開極し、 接点間にアーク Aが発生する。 この状態を図 3 5に示す。 アークの発生に伴い、 上記接点接触面 での電流集中による電磁反発力 F 1は消滅するが、 可動アーム水平部 4の電流と 固定導体 1 2のほぼ平行かつ反対方向の電流による電磁反発力 F 2は引き続き可 動子 1を開極方向へと回転させる。
また、 図 3 6に示すように、 アーク発生に伴い、 アークの熱により筒状絶縁物 2 5の内面から大量の蒸気が発生し、 筒状絶縁物 2 5に囲まれた筒状空間 2 6に 高圧雰囲気が発生する。 この筒状空間 2 6の高圧の発生により、 可動子 1は圧力 差による開極力 F pを受ける。 この圧力差による開極力 F pと上記電磁力 F 2に より可動子 1が高速に回転し、 接点が高速開極する。 この高速開極によりアーク 長が高圧雰囲気中にて急激に伸びるのでアーク電圧が急速に立ち上がり、 事故電 流がピーク値をむかえる。
図 3 5の状態からさらに可動子 1が回転し、 最大開極位置に達した状態を図 3 7に示す。 この状態では既に電流ピークを過ぎており、 十分な大きさのアーク電 圧を発生しているので、 事故電流は零点をむかえる。 このとき、 可動接点 2は筒 状絶縁物 2 5に囲まれた狭い空間外にあるので、 可動接点 2近傍の電極金属蒸気 を通常の手段 (例えば、 絶縁物からの蒸気流、 グリツド等) にて容易に拡散もし <は冷却させることができ、 電極間の十分な絶縁回復により電流を遮断すること は容易である。 また、 可動子 1がブレても筒状絶縁物 2 5内面に触れることがな いので、 沿面絶縁破壊による再点弧が生じることもない。 この最大開極位置近傍 にて可動子 1 を拘束し再閉極を妨げる手段 (例えば、 ラッチ機構、 リンク機構 等) を付加すれば、 限流性能に優れた限流装置を得ることができる。
また、 本実施の形態では、 図 1 4 7に示した従来例と異なり、 可動子の開極を 助けるための励磁コイルを設ける必要がないので、 低インピ一ダンスの限流性能 に優れた限流性能が得られ、 大きな通電容量が求められる回路への適用が可能と なる。
さらに、 可動子 1を回転させて開極するため、 可動接点 2が開閉する方向の必 要寸法は、 固定導体 1 2の厚さ、 固定接点 6の厚さ、 可動子 1が移動する空間、 可動接点 2の厚さ、 および、 可動アーム垂直部 3の和となり、 従来の直動型限流 器より上記方向の必要寸法を小さ〈することができる。従って、 外形寸法に制限 がある場合でも、 高圧力を効果的にアーク電圧上昇に結び付けるのに必要な開極 距離を容易に確保できる。 実施の形態 1 6 .
次に、 この発明の実施の形態 1 6を図 3 8にて説明する。 図 3 8では、 端子部 1 5に直接固定子 5が接続され、 可動子 1は摺動接触子 1 4を経由して端子 1 6 によりリレー部と電気的に接続される。 また、 図 3 9に示す固定子 5は、 閉成状 態の可動アーム水平部とほぼ平行かつ反対方向の電流が流れる電路 8 6 cを有し ている。 固定子 5は、 筒状絶縁物 2 5と一体に形成された絶縁物 8 5にて、 固定 接点 6近傍を除く少なくとも開成状態の可動接点 2から見渡せる部位を覆ってい る。
閉成状態の可動ァ一ム水平部 4とほぼ平行かつ反対方向の電流が流れる電路と して、 電路 8 6 cがある。 電路 8 6 bが作る磁場も可動子 1の開極電磁力に寄与 するが、 これとは別に、 消弧室内の導体長を短くできるのでコスト低減が可能で あり、 さらに構造が簡単となり組立性が向上する。 また、 絶縁距離を確保しやす い。 実施の形態 1 7 .
この発明の実施の形態 1 7を、 図 4 0、 図 4 1に示す。 図 4 0は、 本実施の形 態の固定子 5を示す図であり、 図 3 9の固定子 5の上下方向の電路 8 6 bの一部 を水平方向の電路 8 6 c ' と上下方向の電路 8 6 dに置き換えている。 図 4 1は、 閉成状態の可動子 1、 図 4 0に示した固定子 5、 筒状絶縁物 2 5、 および筒状絶 縁物 2 5と一体に成形されている固定子を覆う絶縁物 8 5を示した断面図であり、 図中、 矢印にて電流方向を示している。 同図から明らかなように、 図 4 0の固定 子形状を用いることにより、 可動アーム水平部 4と固定子 1の電路 8 6 c ' が大 幅に近付き、 事故電流の遮断時の電磁開極力が図 3 9に示す実施の形態 1 6より 増大する。 実施の形態 1 8 .
この発明の実施の形態 1 8を図 4 2に示す。 図 4 2は、 筒状絶縁物 2 5と固定 子 5の固定接点 6側の端部と可動子 1の可動接点 2側先端部を示す部分断面図で あり、 筒状空間 2 6を囲む筒状絶縁物 2 5の壁の内、 可動子回転軸と反対側の壁 高さを可動子回転軸側の壁高さより高くしている。遮断動作時に接点間に発生す るアークには、 固定導体 1 2および可動アーム水平部 4を流れる電流により、 可 動子回転軸と反対側に電磁駆動力が発生する。 従って、 筒状空間 2 6内にあるァ —クは上記可動子回転軸と反対側の壁により強く触れる。 また、 可動子 1を高速 開極するためには可動子 1の慣性モーメン卜を小さく した方が有利であるが、 筒 状絶縁物 2 5の筒高さにより決まる可動ァ一厶垂直部 3が長くなると、 可動子慣 性モーメントは増加する。 そこで、 図 4 2に示すように、 可動子回転軸と反対側 の壁高さを可動子回転軸側の壁高さより高くすることにより、 可動アーム垂直部 3の長さを短く して慣性モーメントを低減し、 かつ、 十分な筒状絶縁物蒸気を発 生さて十分な高圧雰囲気を作ることができ、 限流性能がより向上する。 実施の形態 1 9 .
図 4 3にこの発明の実施の形態 1 9を示す。 同図では、 閉成状態のぼぼし字状 の可動子 1 と、 可動アーム水平部 4と対向する固定導体 1 2の部位 1 2 aが可動 アーム水平部 4に近づくように曲げられた固定子 5が示されている。 このように、 固定導体 1 2側を可動アームへと近付けることにより電磁反発力を強化すること ができる。 さらに、 本実施の形態では、 可動子 1がほぼ L字状のままのため可動 子の慣性モーメントが大きくなることはなく、 高速開極が可能となる。 実施の形態 2 0 .
この発明の実施の形態 2 0を図 4 4に示す。 図 4 4は、 消弧室ュニッ卜内の構 成を示す部分断面斜視図であり、 5は固定子、 2 5は筒状絶縁物、 8 8は磁束遮 蔽板、 8 9は後述する可動子 1の左右に設けたコアである。
まず、 本実施の形態の特徴の一つである固定子形状について説明する。 図 4 5 は、 図 4 4の固定子形状を示す部分断面図であり、 電路は、 端子部 1 5、 電路 8 6干、 8 6 e、 8 6 c ' 、 8 6 d、 8 6 c、 固定接点 6の順で構成されている。 この固定子 5には、 電路 8 6 e、 8 6 fの電流が作る、 可動子の開極を妨げる磁 場成分を少なくするため、 スリット 8 7を設けて電路 8 6 e、 8 6 f を可動子が 回転する軌跡を含む面から左右にずれた位置に配置している。 しかし、 閉成状態 の可動アーム水平部 4とほぼ平行かつ反対方向の電流が流れる電路が、 8 6 c ' 、 8 6 d、 8 6 cにて構成されており、 ぼぼ L字状の可動子の可動アーム水平部と 上記電路 8 6 c ' の距離が近づく。 従って、 短絡遮断動作時の可動子に働〈電磁 反発力がより大きくなり開極速度が向上する。
また、 本実施の形態の固定子形状では、 固定接点近傍で接点開極方向 (上下方 向) 成分の電流が流れる電路 8 6 dを設けている。 この電路 8 6 dの電流の上下 方向成分は、 接点間に発生したアークと逆方向となり、 アークを端子部 1 5側へ と押し出す。 従って、 接点間に発生したアークは筒状絶縁物 2 5の端子部側壁面 へと押し付けられ、 筒状絶縁物壁面からの蒸気によるアーク冷却作用が向上する。 ところで、 図 4 5には、 固定子 5の他に一部断面をとつた磁束遮蔽板 8 8と電 路 8 6 eの上部に設けられた一対のコア 8 9の一方を示している。 磁束遮蔽板 8 8およびコア 8 9は鉄などの磁性体にて構成されており、 筒状絶縁物 2 5と一体 形成された絶緣物等により接点間に発生するアークに直接触れないよう配置され ている。磁束遮蔽板 8 8は、 主に、 電路 8 6 f を流れる電流が発生する磁束 (可 動子の開極を妨げ、 かつ、 アークを可動子回転軸側へと押し戻す作用をする) を 遮蔽する役割をはたしている。一方、 コア 8 9は、 電路 8 6 c ' 、 8 6 d、 8 6 cの電流が作る、 可動子を開極させる磁場成分を強化するとともに、 電路 8 6 e を流れる電流が作る可動子の開極を妨げる磁束を遮蔽する役割をになっている。 磁束遮蔽板 8 8およびコア 8 9のように、 ある電路の急激に増大する事故電流 が発生する磁束を遮蔽する場合、 磁性体中を流れる渦電流は磁束の侵入を阻止す る方向に働くので、 磁性体の導電率は大きくてもよい。 従って、 磁気抵抗を減ら して電磁力を増大させるために用いられるコアのように積層したり、 高価な絶縁 体のコアを用いなくても、 安価な鉄板にて磁束遮蔽板 8 8およびコア 8 9を構成 しても可動子に働く電磁開極力を大きく改善できる利点がある。
図 4 6に示すコア 8 9 ' は、 図 4 5に示したコア 8 9の変形例であり、 可動子 の左右に設けた 1対のコアを可動子が開極する方向側の端部にてつないだほぼ U 字状をしており、 電磁開極力を強化させる効果が高〈なる。 また、 図 4 7に示す 8 9 " は、 磁束遮蔽板 8 8とコア 8 9を一体化した変形例であり、 コア 8 9の端 子部 1 5側端部が電路 8 6 fに近接するように構成されており、 上記端部に電路 8 6 fの電流による磁束が吸収される。 実施の形態 2 1 . この発明の実施の形態 2 1を図 4 8に示す。 図 4 8は、 本実施の形態の固定子 5と一対のコア 8 9 " の一方を示す余 4視図であり、 固定接点 6の左右に設けられ ている電路 8 6 eの一方を切り欠いている。 その他の部品については、 図示して いないが、 基本的に図 4 4と同様な構成である。
図 4 8の固定子形状は、 図 4 5に示したものと比較して、 電路 8 6 eの配置が 異なり、 電路 8 6 eが電路 8 6 cより上方に設けられており、 電路 8 6 eの中心 線は接点接触面より上方に位置している。 このような構成では、 電路 8 6 c ' が 閉成状態の可動アーム水平部と近付き電磁開極力が強化されること、 電路 8 6 d の電流によりアークが筒状絶縁物の端子部 1 5側の壁面に押し付けられアーク冷 却効果が向上することは、 実施の形態 2 0と同様であるが、 電路 8 6 eが接点接 触面より上方に位置することから、 電路 8 6 eの電流による電磁駆動力により固 定接点側のアークスポッ卜が上記壁面側へと移動しやす〈なる。 また、 電路 8 6 eを上方へ配置することにより、 可動子の開極を妨げかつアークを可動子回転軸 側へと押し戻す作用をする電路 8 6 f が必然的に短くなるので、 可動子開極速度 の向上およびアークを上記壁面へ押し付ける作用が向上する。 実施の形態 2 2 .
図 4 9はこの発明の実施の形態 2 2に係る 3極限流装置を示す斜視図であり、 内部構成が分かるように筐体 3 6の一部を切り取って示している。 この 3極限流 装置は、 回路遮断器と直列接続して用いることにより、 3極限流遮断器を構成す ることができる。 図 5 0は、 図 4 9の 3極限流装置の閉成状態の 1極分の導体構 成と筒状絶縁物 2 5および絶縁カバ— 2 8を示す斜視図であり、 筒状絶縁物 2 5 および絶縁カバ一 2 8は導電部を構成する部分の形状が分かるように一部を切り 取って示している。
図 4 9において、 1は可動子、 2 5は閉成時の接点対を囲む筒状絶縁物、 2 8 は固定子を覆う絶縁カバー、 1 4は摺動接触子、 1 8は接点対に接触圧を与える 付勢手段である可動子接圧パネ、 1 9はパネ掛け、 1 3は可動子 1の回転軸、 1 7は接続導体、 1 5 a、 1 5 b、 1 5 c、 1 6 aは端子部、 3 1は消弧板、 3 8 は排気口、 3 6は絶縁物筐体である。 図 5 0において、 1は、 可動接点 2と、 この可動接点 2が固着されている可動 アーム垂直部 3と、 この可動アーム垂直部 3とほぼ直交する可動アーム水平部 4 とにより構成されるほぼし字状の可動子である。 この可動子 1は、 固 ¾接点 6と、 固定導体 1 2とにより構成される固定子 5と 1対の接触子対をなしており、 可動 子 1は接触圧を与える付勢手段である可動子接圧パネ 1 8により固定子 5に対し て付勢されている。 可動子 1は、 可動子回転軸 1 3を中心に回転自在に支持され ており、 摺動接触子 1 4および接続導体 1 7を介して端子部 1 5 aと電気的に接 続されている。 一方、 固定子 5は筒状絶縁物 2 5と絶縁カバ— 2 8とによって、 固定接点 6近傍と端子部 1 6 aとの接続部近傍を除いて覆われている。 図中に示 した複数の矢印は、 通電時の電流経路を示しており、 可動アーム水平部 4の電流 と固定導体 1 2の電流は、 ほぼ平行かつ反対方向に流れる。 閉成状態の接触子対 は、 端子部 1 5 a、 1 6 aを結ぶ線にほぼ直交するように配置されている。
図 4 9、 図 5 0に示した限流装置では、 短絡事故等の発生により通過電流が急 激に増大すると、 接点接触面での電流集中による電磁反発力 F 1 と、 前述の可動 アーム水平部 4の電流と固定導体 1 2の電流による電磁反発力 F 2により、 可軌 子接圧パネ 1 8による付勢力に抗して接点が開極し、 接点間にアーク Aが発生す る。 この状態の接点対近傍の様子を図 5 1に示す。 アークの発生に伴い、 上記接 点接触面での電流集中による電磁反発力 F 1は消滅するが、 可動アーム水平部 4 の電流と固定導体 1 2の電流による電磁反発力 F 2は引き続き可動子 1を開極方 向へと回動させる。
また、 図 5 1に示すように、 アーク発生に伴い、 アークの熱により筒状絶縁物 2 5の内面から大量の蒸気が発生し、 筒状絶縁物 2 5に囲まれた筒状空間 2 6に 高圧雰囲気が発生する。 この筒状空間 2 6の高圧の発生により、 可動子 1は圧力 差による開極力 F pを受ける。 この圧力差による開極力 F pと上記電磁力 F 2に より可動子 1が高速に回動し、 接点が高速開極する。 この高速開極によりアーク 長が高圧雰囲気中にて急激に伸びるのでアーク電圧が急速に立ち上がり、 事故電 流がピーク値をむかえる。
ところで、 実施の形態では、 可動子開極直後にアーク雰囲気圧を高圧にするた めに固定接点 6を取り囲むように筒状絶縁物 2 5を配置している。 接点間に発生 するアークの熱により固定接点近傍に配置した絶縁物から大量の蒸気を発生させ る配置は、 例えば、 特開平 7— 2 2 0 6 1号公報の図 1 6、 図 1 7に示されてい る。 しかし、 このの先行例では、 固定接点近傍に配置される絶縁物は、 閉成状態 の可動子を左右から挟み込む形状をしており、 絶縁物から発生した蒸気は即座に 閉成状態の可動子先端側および可動子回動中心側へと流れ出し、 アーク雰囲気を 十分高圧にすることはできない。 アーク電圧を急激に立上げるには、 開極初期の アークを固定接点と可動接点と筒状絶縁物に囲まれる筒状空間に閉込める必要が あり、 アーク電圧立ち上がり速度向上の大幅な向上には、 固定接点を囲む絶縁物 形状を筒状にすることが不可欠である。
図 5 1の状態からさらに可動子 1が回動し、 最大開極位置に達した状態を図 5 2に示す。 この状態では、 可動接点 2は筒状空間 2 6外に位置しており、 十分な 大きさのアーク電圧を発生している。 さらに、 図 5 2中に矢印で示すように、 筒 状空間 2 6からアーク柱の軸方向に沿った絶縁物蒸気の流れ (白塗り矢印で示 す) がアークの熱を奪ってアークを冷却するので、 アーク抵抗がより高くなり、 事故電流は急速に零点へと向う。従って、 限流性能の指標の一つである通過エネ ルギーをより小さ〈できる。
また、 図 4 9に示すように、 可動子開極方向側 (筒状絶縁物 2 5の開口部側) の筐体壁に排気口 3 8を設けることにより、 図 5 2中に白塗り矢印で示した絶縁 物蒸気の流れを速〈でき、 可動接点 2近傍の電極金属蒸気を容易に吹き飛ばすこ とができる。 これにより電極間に電流を遮断するのに十分な絶縁回復を生じさせ ることも可能であり、 遮断能力の低い回路遮断器を直列接続して用いても、 確実 に電流を遮断できる信頼性の高い限流装置を得ることができる。
また、 上述のように電流ピーク後の遮断動作後半において、 可動接点 2を筒状 空間 2 6外に移動させることにより、 アーク電圧の上昇に効果的に結びつかない 筒状絶縁物 2 5からの蒸気発生を制限し、 内圧が必要以上増大することを防止で さる。
ところで、 本実施の形態では、 1対の接触子にて高い限流性能が得られるので、 低ィンピーダンスの限流性能に優れた限流装置が得られ、 大きな通電容量が求め られる回路への適用が容易となる。 また、 本実施の形態では、 高い限流性能を得るのに 1対の接触子しか用いない ので、 筐体側壁の肉厚を厚くでき、 安価な材料にて筐体をつくることができる。 しかし逆に、 本実施の形態によれば、 アークによる筐体内圧の上昇が抑えられて いるため、 筐体壁の肉厚を薄く して、 2組の接点対を直列に接続した導体配置を 用いることも可能であり、 この場合、 限流動作時に筒状空間内にて 2つの直列ァ —クが発生し、 より限流性能が向上する。 実施の形態 2 3 .
次に、 この発明の実施の形態 2 3を図 5 3について説明する。 図 5 3は本実施 の形態に係る限流装置の内部構成を示す断面図であり、 パネ等は図示を省略して いる。 本実施の形態が図 4 9に示す実施の形態と異なるのは、 端子部 1 5、 1 6 が筐体 3 6の取り付け面 (底部) 9 1から H ' だけ高い位置に設けられている点 である。 このため、 本実施の形態では、 可動子 1のアームと固定子 5との平行配 置電路部分を確保しかつ端子部 1 5、 1 6との接続をするために、 固定導体 1 2 の下部を U字状に曲げて端子部 1 6に接続するとともに、 可動子 1は可撓導体 1 1を用いこれをぼぼ U字状に曲げて端子部 1 5に接続している。
ところで、 限流装置を回路遮断器に直接連接する場合、 限流装置と回路遮断器 の端子部が直接係合するように限流装置の端子部を取付け面より H ' だけ高い位 置に設ける必要がある。 また、 配電盤への収納性を考慮すれば、 限流装置の高さ Hは、 回路遮断器高さと同等もしくは低い方がよいことは明かである。 このよう な外形の制限のもと、 閉成状態の可動子 1 と固定子 5とに、 高速開極に必要なほ ぽ平行かつ反対方向の電路 (以下、 反発電路と呼ぶ) を十分な長さ設けるために は、 図 5 3に示すように、 固定導体 1 2をぼぼ U字状にして固定子側の電路を取 付け面 9 1側で折り返すと共に、 可動子回転軸 1 3を端子部 1 5、 1 6の高さよ り取付け面 9 1側の低い位置に設ける必要がある。
上記のような構成を用いると、 上述のような外形の制限がある場合でも限流性 能を得るために必要な反発電路長を得ることができる。 しかし、 図 5 3中、 白塗 りの矢印で示す電流成分が発生する磁界が可動子の高速開極を妨げるよう作用す るので、 実施の形態 2 2と同じ反発電路長の場合、 実施の形態 2 2より開極速度 が低下する。 そこで、 上記高さ Hおよび端子部高さ H ' の制限下において、 実施 の形態 2 2より可動子の開極速度をさらに高めたのが次の実施の形態 2 4である。 実施の形態 2 4 .
この発明の実施の形態 2 4を図 5 4に示す。 図 5 4は本実施の形態の限流装置 の内部構成を示す断面図であり、 パネ等は図示を省略している。本実施の形態で は、 実施の形態 2 3と異なり、 可動子 1は可撓導体 1 1にて遠い側、 すなわち固 定子 5の背後に設けられた端子部 1 6に、 また、 固定子 5は固定導体 1 2を延長 して遠い側、 すなわち可動子 1の背後に設けられた端子部 1 5にそれぞれ電気的 に接続されている。 固定接点 6と端子部 1 5を電気的に接続する固定導体 1 2は、 電路 1 2 a、 1 2 b、 1 2 cで構成されている。 1 2 aは反発電路を形成する電 路、 1 2 bは一端が電路 1 2 aに接続され、 閉成状態の可動子 1の可動アームと 直交して可動子 1の下方に配置される電路、 1 2 cは電路 1 2 bの他端と端子部 1 5を結ぶ電路である。
ここで、 閉成状態の接触子対の反発電路部は、 端子部 1 5、 1 6を結ぶ線にほ ぼ直交するように配置されており、 可動子先端部に対向する立置に複数の馬蹄形 の消弧板 3 1が設けられている。 また、 固定子 5の固定接点 6が固着されている 端部側の固定導体は上方へと延長されており、 延長された導体 9 2に絶縁物カバ - 2 8 aから消弧板 3 1側に露出するアークランナー 7 9が設けられている。 上記のような電路配置では、 閉成状態において、 固定導体 1 2を流れる電流が 作る全ての磁界が可動子 1を開極させる方向に作用するので、 短絡遮断時には可 動子 1がより高速開極する。従って、 上記電路構成を、 高圧雰囲気を発生させる 手段である筒状絶縁物 2 5と併用することによりアーク電圧の立上りを大幅に改 善でき、 限流性能が一層向上する。
一方、 本実施の形態では、 短絡遮断時に筒状絶縁物 2 5内にてアークを発生さ せるため、 固定接点 6側のアークスポッ卜が筒状絶縁物 2 5の内径にて制限され、 電流密度が上昇する。 これにより固定接点 6の損耗が大きくなる場合があり、 可 能な限流動作回数が制限される。本実施の形態では、 前述のように、 固定接点 6 の上方にアーク Aが転流するアークランナー 7 9が設けられており、 可動子 1が 回動して可動接点 2が筒状空間 2 6外に移動した限流動作後半において、 可動接 点 2側のアーク噴き出し方向は固定接点 6から消弧板 3 1側へと向きを変える。 また、 アークは固定導体 1 2 a、 1 2 b、 1 2 cおよび可動子 1を流れる電流に より、 消弧板 3 1方向へ電磁力を受ける。 これらのアーク駆動力により、 固定子 6側のアークスポッ卜は、 固定接点 6からアークランナー 7 9へと移動する。 従 つて、 固定接点 6および筒状絶縁物 2 5の消耗が抑えられ、 繰返し使用可能な耐 久性に優れた限流装置が得られる。
さらに、 図 5 5に示すように、 アークがアークランナー 7 9に転流することに よりアークが消弧板 3 1により強く触れ、 アークの熱が消弧板 3 1の蒸発潜熱に より奪われアーク温度が低下するので、 遮断動作後半の筐体内圧上昇を低減でき る。 一般に配線用遮断器で用いられるモールド材の衝撃応力に対する機械強度は、 静的応力に対する機械強度より大きい。 従って、 遮断動作後半における筐体内圧 の低下は、 モールド材で作成された筐体の割れを防止する効果がある。
前述のように、 アークランナー 7 9に固定接点 6側のアークスポッ卜を転流さ せることにより固定接点 6の消耗を低減できるが、 ァ一クランナ一7 9にアーク が転流した瞬間に固定接点 6近傍のアークが筒状空間 2 6外へと移動し、 筒状空 間 2 6の高圧雰囲気にて高められていたアーク電圧が低下する。 このアーク電圧 の低下が電流ピーク以前に生じると、 電流ピークが大幅に増大し、 限流性能が大 幅に低下する。 また、 たとえ上記アーク電圧の低下が電流ピーク以後に生じても、 限流動作後半の電流の減少速度が低下して遮断時間が長くなり、 通過エネルギー が大きくなることがある。 このような問題を解決したのが、 次の実施の形態 2 5 である。 実施の形態 2 5 .
本発明の実施の形態 2 5を、 図 5 6に示す。 図 5 6に示す実施の形態 2 5では、 アークランナー 7 9の周りの絶縁カバ一 2 8 bを筒状にして、 アークランナー筒 状空間 2 6 aを形成している。 このようにすると、 可動子 1が回動して可動接点 2が筒状空間 2 6から出ても、 すぐには固定接点側アークスポッ 卜がアークラン ナ— 7 9へと転流せず、 筒状空間 2 6内での高圧雰囲気を利用したアーク電圧上 昇を有効に利用でき、 電流ピークを小さ〈抑えることができる。 また、 アークが ァ一クランナ一7 9に転流した後も、 ァ一クランナ一 7 9が筒状の絶縁カバー 2 8 bに囲まれたアークランナー筒状空間 2 6内にあるため、 アーク電圧が低下す ることがなく、 遮断時間を短縮でき、 通過エネルギーの低減につながる。 実施の形態 2 6 .
この発明では、 例えば図 5 0に示すように、 筒状絶縁物 2 5内で開極初期にァ ークを発生させるために可動子 1の先端部はほぼ L字状の形状になされている。 そのため、 可動子 1側のアークスポッ卜は可動接点 2から可動子 1の消弧板側の 端面に移動し難いので、 遮断動作後半になっても可動子側アーク噴き出し方向が 消弧板方向へ向かず、 アークが消弧板 3 1に触れにくい。 よって、 消弧板 3 1の アーク冷却効果を有効に利用できず、 限流動作後半において、 アーク電圧上昇に 結びつかない不必要な筐体内圧上昇をまねく場合がある。
そこで、 本実施の形態 2 6では、 図 5 7に示すように、 一端が接続導体 1 7に 電気的に接続され、 他端が消弧板 3 1側へと延びる、 可動子 1 とほぼ同電位の、 転流電極 7 5を可動子 1の背後に設け、 可動接点 2側のアークスポッ卜が転流電 極 7 5に転流して消弧板 3 1方向へと移動するように構成している。 また、 上述 の実施の形態と同様に、 固定子 5側もアークスポッ 卜がアークランナーにより消 弧板 3 1側へと転流する構成としており、 アークは消弧板 3 1により確実に分断、 冷却される。従って、 限流動作後半における不必要な筐体内圧上昇を防止できる。 実施の形態 2 7 .
前述のように、 この発明では、 可動子先端部はほぼし字状の形状となっている ため、 可動子 1側のアークスポッ卜は可動子 1の消弧板側の端面に移動し難い。 従って、 可動子側のアークスポッ 卜近傍の電流は、 可動接点 2に集中し、 可動接 点 2の消耗が大き〈なりやすい。 そこで、 本実施の形態では、 図 5 8に示すよう に、 転流電極 7 5 aに開成状態の可動子 1の先端部が入り込むスリッ卜 9 4を設 け、 図 5 6に示す棒状転流電極 7 5と比較して、 可動接点側アークスポットを限 流動作中の比較的早い時期に確実に転流電極 7 5 aに転流させる構成としている。 転流電極 7 5 aに転流したアークは、 消弧板 3 1の吸引作用と固定子 5および 転流電極 7 5 aを流れる電流による電磁駆動力により転流電極 7 5 a先端部へと 駆動されてアーク長が急速に伸び、 アーク電圧が上昇する。 このような比較的早 い時点での可動子 1から転流電極 7 5 aへの転流により、 可動接点 2の損耗は実 施の形態 2 5のものより大幅に低減でき、 限流装置の耐久性が向上する。 実施の形態 2 8 .
以下、 この発明の実施の形態 2 8を図について説明する。 図 5 9は、 実施の形 態 2 8に係る閉成状態の回路遮断器の主要部を示す斜視図であり、 内部構成が分 かるように筒状絶縁物 1 0 8と絶縁カバー 1 0 9の一部を切り取つている。 図 6 0は、 図 5 9に示すものの外観を示す斜視図である。 図 5 9において、 1 0 1は、 可動接点 1 0 2と可動接点 1 0 2が固着されている可動ァ―厶垂直部 1 0 3と可 動ァ―厶垂直部 1 0 3とぼぼ直交する可動アーム水平部 1 0 4とにより構成され るほぼ L字状の可動子である。 この可動子 1 0 1は、 固定接点 1 0 6と固定導体 1 0 7により構成される固定子 1 0 5と 1対をなしており、 可動子 1 0 1はパネ 1 1 1により固定子 1 0 5方向に付勢されている。 また、 可動子 1 0 1は、 可動 子回転軸 1 1 3を中心に回転自在に支持されており、 摺動接触子 1 1 0および接 続導体 1 1 4を介して端子 1 1 5と電気的に接続されている。 一方、 固定子 1 0 5は筒状絶縁物 1 0 8と絶縁カバ一 1 0 9とによって固定接点 1 0 6近傍と端子 部 1 1 6との接続部近傍を除いて覆われている。 図中に示された複数の矢印は、 通電時の電流経路を示しており、 可動アーム水平部 1 0 4の電流と固定導体 1 0 7の電流は、 ほぼ平行かつ反対方向になるよう構成されている。
ここで、 先述の実施の形態 1の説明文中にて図 2, 図 3および図 4を用いて示 したように、 アーク式限流機能を有する回路遮断器内で限流遮断時に発生する比 較的短ギャップの大電流アークの高圧力下でのアーク電圧上昇条件について述べ る。 図 6 1に示す実験装置にて、 数 c m以下の短ギャップ大電流アークの雰囲気 圧 Pを変化させてアーク電圧変化を測定した結果を図 4のグラフに示す。 図 6 1 の実験装置では、 丸棒状の電極 4 0 0を対向させてアークを発生させているので、 電極間距離はアーク長しと等しくなる。 図 6 2 ( a ) より明らかなように、 ァ一 ク電流値が比較的/ j、さし、場合、 アーク雰囲気圧 Pが高〈なるとアーク電圧は殆ど のアーク長 Lにおいて高くなる。 一方、 図 6 2 ( b ) に示すように、 アーク電流 値が比較的大き L、場合、 アーク雰囲気圧 Pが高くなつてもアーク電圧はアーク長 Lが比較的長い場合を除いて殆ど変化しない。
図 6 2に示した、 雰囲気圧 Pが高い場合のアーク電圧 V ( P二高) と雰囲気圧 Pが低い場合のアーク電圧 V ( P二低) との比 Rをとり、 グラフ化すると図 6 3 に示すようになる。 図 6 3より明らかなように、 アーク電流値が比較的小さい場 合のアーク電圧上昇率 Rは、 アーク長が長いほど高い。 一方、 アーク電流値が比 較旳大きい場合のァ一ク電圧上昇率 Rは、 ァーク長がある値以上にならないと殆 ど増加しないことが分かる。 以上より、 短ギャップ大電流アークにおいて、 ァ一 ク雰囲気圧を上げることによりアーク電圧を効果的に上げるための条件とは、 ( a ) アーク電流が比較的小さい、 (b ) アーク長が長い、 という 2つを同時に 満足することである。
短絡等の事故が発生した場合、 事故発生直後から回路電流は急激に増大する。 従って、 上記 2つの条件を満たして高い雰囲気圧にてアーク電圧を上げて事故電 流を限流するには、 ( 1 ) 少なくともアーク発生直後 (事故発生直後) に高圧雰 囲気をつ〈る、 (2 ) アーク電流が比較的小さいとき (事故発生直後) にアーク 長を長くする、 必要がある。 事故電流が増大した後では、 雰囲気圧を上げてもあ まり限流性能は向上しない。 さらに、 事故電流が増大した後の高圧雰囲気は、 限 流性能向上にあまり寄与しないだけでなく、 筐体等の破損の原因となる。
図 5 9に示した回路遮断器では、 短絡事故等の発生により通過電流が急激に増 大すると、 接点接触面での電流集中による電磁反発力 F 1 と前述の可動アーム水 平部 1 0 4の電流と固定導体 7のほぼ平行かつ反対方向の電流による電磁反発力 F 2により、 パネ 1 1 1による接圧に杭して接点が開極し、 接点間にアーク Aが 発生する。 この状態を図 6 4に示す。 アークの発生に伴い、 上記接点接触面での 電流集中による電磁反発力 F 1は消滅するが、 可動アーム水平部 1 0 4の電流と 固定導体 1 0 7のほぼ平行かつ反対方向の電流による電磁反発力 F 2は引き続き 可動子 1 0 1を開極方向へと回転させる。
また、 図 6 5に示すように、 アーク発生に伴い、 アークの熱により筒状絶縁物 1 0 8の内面から大量の蒸気が発生し、 筒状絶縁物 8に囲まれた筒状空間 1 1 8 に高圧雰囲気が発生する。 この筒状空間 1 1 8の高圧の発生により、 可動子 1 0 1は圧力差による開極力 F pを受ける。 この圧力差による開極力 F pと上記電磁 力 F 2により可動子 1 0 1が高速に回転し、 接点が高速開極する。 この高速開極 によりアーク長が高圧雰囲気中にて急激に伸びるのでアーク電圧が急速に立ち上 がり、 事故電流がピーク値を迎える。
上記のように本実施の形態では、 筒状絶縁物 1 0 8を用いた高圧雰囲気と高速 開極手段を併用しているが、 優れた限流性能を得るためには上記併用が不可欠で ある。 図 6 6には、 (a ) 高速開極手段を用いない場合と、 (b ) 高速開極手段 を用いた場合の筒状絶縁物 1 0 8の効果を示している。 同図において、 t sは事 故発生時刻、 t oは接点開極時刻、 V 0は接点間の電極降下電圧、 破線は電源電 圧波形である。 図 6 6 ( a ) は、 高速開極手段を用いない場合であり、 アーク電 圧が電源電圧に追いついた時刻 t 1 (筒状絶縁物有のとき) 、 t 2 (筒状絶縁物 なしのとき) に電流ピーク I p 1、 I p 2をそれぞれむかえる。 高速開極手段を 用いないと、 事故電流の立上りに比べアーク長さの立上りが遅いので、 筒状絶縁 物 1 0 8にて高圧雰囲気を作り出しても、 アーク長が短くアーク電圧が上昇する 上記条件を満たすことが難しい。
従って、 図 6 6 ( a ) では、 筒状絶縁物 8を用いても、 電流ピーク I pの改善 の度合い△ I p = I p 2— I p 1は小さい。 一方、 図 6 6 ( b ) に示す高速開極 手段を用いた場合では、 事故電流が大き〈なる前にアーク長が十分長〈なるので、 高圧雰囲気にてァーク電圧が上昇する上記条件を満たすことができる。 アーク電 圧が電源電圧に追いついた時刻 t 1 ' (筒状絶縁物有のとき) 、 t 2 ' (筒状絶 縁物なしのとき) の電流ピーク I pをそれぞれ I p 1 ' 、 1 ρ 2 ' とすると、 電 流ピーク I Ρの改善の度合い厶1 P ' = I ρ 2 ' — Ι ρ は、 高速開極手段を 用いなかった場合の電流ピーク I ρの改善の度合い Δ Ι ρより劇的に大きいこと が分かる。
ところで、 この発明では、 可動子 1の開極直後にアーク雰囲気圧を高圧にする ために固定接点 1 0 5を取り囲むように筒状絶縁物 1 0 8を配置している。 接点 間に発生するアークの熱により固定接点近傍に配置した絶縁物から大量の蒸気を 発生させる配置は、 例えば、 特開平 7— 2 2 0 6 1号公報の図 1 6、 図 1 7に示 されている。 しかし、 前述の先行例では、 固定接点近傍に配置される絶縁物は、 閉成状態の可動子を左右から挟み込むほぼコの字状の形状をしており、 絶縁物か ら発生した蒸気は即座に閉成状態の可動子先端側および可動子回転中心側へと流 れ出し、 アーク雰囲気を十分高圧にすることはできない。 アーク電圧を急激に立 上げるには、 開極初期のアークを固定接点と可動接点と筒状絶縁物に囲まれる空 間に閉じ込める必要があり、 アーク電圧立ちあがり速度向上の大幅な向上には、 固定接点を囲む絶縁物形状を筒状にすることが不可欠である。
図 6 4の状態からさらに可動子 1 0 1が回転し、 最大開極位置に達した状態を 図 6 7に示す。 この状態では既に電流ピークを過ぎており、 十分な大きさのァ一 ク電圧を発生しているので、 事故電流は零点をむかえる。 このとき、 可動接点 1 0 2は筒状絶縁物 1 0 8に囲まれた狭い空間外にあるので、 可動接点 1 0 2近傍 の電極金属蒸気を通常の手段 (例えば、 絶縁物からの蒸気流、 グリツド等) にて 容易に拡散もしくは冷却させることができ、 電極間の十分な絶縁回復により電流 を遮断することは容易である。 また、 可動子 1 0 1がブレても筒状絶縁物 1 0 8 内面に触れることがないので、 沿面絶縁破壊による再点弧が生じることもない。 この最大開極位置近傍にて可動子 1 0 1 を拘束し再閉極を妨げる手段 (例えば、 ラッチ機構、 リンク機構等) を付加すれば、 限流性能に優れた回路遮断器を得る ことができる。
また、 本実施の形態では、 図 1 4 7および図 1 4 8に示した従来例と異なり、 可動子の開極を助けるための励磁コイルを設ける必要がないので、 低ィンピ一ダ ンスの限流性能に優れた限流性能が得られ、 大きな通電容量が求められる回路へ の適用が可能となる。
さらに、 可動子 1 0 1を回転させて開極するため、 可動接点 1 0 2が開閉する 方向の必要寸法は、 固定導体 1 0 7の厚さ、 固定接点 1 0 6の厚さ、 可動子 1 0 1が移動する空間、 可動接点 1 0 2の厚さ、 および、 可動ァ―厶垂直部 1 0 3の 和となり、 従来の直動型限流器より上記方向の必要寸法を小さくすることができ る。従って、 外形寸法に制限がある場合でも、 高圧力を効果的にアーク電圧上昇 に結び付けるのに必要な開極距離を容易に確保できる。 実施の形態 2 9 .
この発明の実施の形態 2 9を図 6 8に示す。 図 6 8は、 筒状絶縁物 1 0 8と固 定子 1 0 5の固定接点 1 0 6側の端部を示す部分断面斜視図であり、 筒状絶縁物 1 0 8の筒内面に図 6 8 ( a ) では縱方向の、 図 6 8 ( b ) では横方向のひだを それぞれ設けている。 このように筒状空間内面のアークに触れる面積を增やすと、 遮断動作時に筒状絶縁物 1 0 8から発生する蒸気量が増え、 より高い高圧カ雰囲 気を素早く形成できるので限流性能が向上する。 実施の形態 3 0 .
この発明の実施の形態 3 0を図 6 9に示す。 図 6 9は、 筒状絶縁物 1 0 8と固 定子 1 0 5の固定接点 1 0 6側の端部を示す部分断面図であり、 筒状絶縁物 1 0 8は、 筒状空間 1 1 8内面を形成する絶緣物 1 0 8 aとその周りの絶縁物 1 0 8 bとにより構成される。 絶縁物 1 0 8 aは、 ァ一クに暴露されると即座に大量の 蒸気を発生する性質を有する材料、 例えばガラス繊維などの強化材を少量もしく はまったく含まない樹脂材にて成形され、 絶縁物 1 0 8 bは、 機械的強度に優れ た強化樹脂もし〈はセラミックにて成形されている。 このような構成とすると、 筒状空間 1 1 8内で発生する高圧力に機械的に耐えられない材料を筒状空間内面 の材料として用いることができるので、 機械的特性に関係なく大量の蒸気を発生 する物質を適用でき、 限流性能が向上する。 実施の形態 3 1 .
この発明の実施の形態 3 1を図 7 0に示す。 図 7 0は、 筒状絶縁物 1 0 8と固 定子 1 0 5の固定接点 1 0 6側の端部と可動子 1 0 1の可動接点 1 0 2側先端部 を示す部分断面図であり、 図中、 可動子 1 0 1の回転中心より最も遠い部位が開 極動作により描く軌跡を破線にて表している。 筒状絶縁物 1 0 8の可動子 1 0 1 先端部に対向する面は、 この破線に一定の間隙を持つように形成される。 一般に、 可動子 1 0 1の回転中心は接点接触面より上方に設けられるので、 可動子 1 0 1 の軌跡は固定接点 6の位置より可動子回転中心の反対側へと膨らむ。 そのため、 図 5 9に示すように、 筒状絶縁物 1 0 8の可動子先端部に対向する面を垂直とす ると、 上記面を固定接点 1 0 6より離れた位置に配置する必要があり筒状絶縁物 1 0 8に囲まれる容積が大きくなる。 そのため、 十分高い高圧雰囲気を発生する のに時間がかかる場合がある。
そこで、 可動子 1 0 1先端部の軌跡に沿って筒状絶縁物 1 0 8の内面を形成す れば、 筒状絶縁物 1 0 8に囲まれる容積を小さくでき、 限流性能が向上する。 ま た、 図 7 0では、 可動子 1 0 1先端部の軌跡に沿って筒状絶縁物 1 0 8の内面を 形成しているが、 このように弧状の面を形成しなくても、 図 7 1に示すように、 筒状空間 1 1 8の固定接点側の幅 D 2より反対側の幅 D 1を大きくすれば、 図 5 9に示す筒状絶縁物 1 0 8より筒状空間 1 1 8内の容積を低減でき、 限流性能を 向上させることができる。 以上のように、 筒状空間内の容積をできるだけ小さく して限流性能を向上させるには、 筒状空間の固定接点側の筒断面積より反対側の 筒断面積を大きくする必要があることがわかる。 実施の形態 3 2 .
この発明の実施の形態 3 2を図 7 2に示す。 図 7 2は、 筒状絶縁物 1 0 8と固 定子 1 0 5の固定接点 1 0 6側の端部と可動子 1 0 1の可動接点 1 0 2側先端部 を示す部分断面図であり、 固定子 1 0 5の端部の固定接点 1 0 6の周りを筒状絶 縁物 1 0 8の筒状空間 1 1 8内面側に張出した部位 1 0 8 cにて覆っている。 筒 状絶縁物 1 0 8に囲まれる筒状空間 1 1 8は、 一般に、 可動子 1の開閉動作時の 軌跡やブレを考慮して固定接点接触面より大きな断面を有する。 そのため、 上記 部位 1 0 8 cを設けない場合、 可動子 1 0 1側から固定接点 1 0 6接触面をみる と、 固定接点 1 0 6の周りに固定導体 1 0 7の一部が露出して見える。遮断動作 時にアークが発生すると、 固定接点側のアークスポッ卜はこの露出部まで広がる。 一方、 部位 1 0 8 cがあると、 固定子側のアークスポッ卜は固定接点 1 0 6の面 積に制限を受け、 部位 1 0 8 cがない場合より固定接点近傍のアーク径が絞られ アーク電圧が上昇する。 また、 部位 1 0 8 cから発生する絶縁物蒸気の分だけ蒸 気発生量力が増え、 十分な高圧雰囲気を素早く形成できるので、 限流性能が向上 する。 実施の形態 3 3 .
この発明の実施の形態 3 3を図 7 3に示す。 図 7 3は、 筒状絶縁物 1 0 8と固 定子 1 0 5の固定接点 1 0 6側の端部と可動子 1 0 1の可動接点 1 0 2側先端部 を示す部分断面図であり、 筒状空間 1 1 8を囲む筒状絶縁物 1 0 8の壁の内、 可 動子回転中心と反対側の壁高さを可動子回転中心側の壁高さより高くしている。 遮断動作時に接点間に発生するアークには、 固定導体 1 0 7および可動アーム水 平部 1 0 4を流れる電流により、 可動子回転中心と反対側に電磁駆動力が発生す る。従って、 筒状空間 1 1 8内にあるアークは上記可動子回転中心と反対側の壁 により強〈触れる。 また、 可動子 1 0 1を高速開極するためには可動子 1 0 1の 慣性モ一メン卜を小さくした方が有利であるが、 筒状絶縁物 1 0 8の筒高さによ り決まる可動アーム垂直部 1 0 3が長くなると、 可動子慣性モーメントは増加す る。 そこで、 図 7 3に示すように、 可動子回転中心と反対側の壁高さを可動子回 転中心側の壁高さより高くすることにより、 可動アーム垂直部 1 0 3の長さを短 <して慣性モーメントを低減し、 かつ、 十分な筒状絶縁物蒸気を発生さて十分な 高圧雰囲気を作ることができ、 限流性能がより向上する。 実施の形態 3 4 .
次に、 この発明の実施の形態 3 4を図 7 4について説明する。 図 7 4は、 配線 用遮断器のュニッ卜化された回路遮断器主要部を示す斜視図であり、 その消弧装 置構成部品は消弧ュニヅ卜筐体本体 1 2 3と消弧ュニッ卜筐体蓋 1 2 4により収 納され、 全体で消弧ュニッ卜 1 2 5を構成する。 なお、 1 1 9は消弧板、 1 2 0 は複数の消弧板 1 1 9を保持する消弧側板、 1 2 6は排気口である。 図 7 5に示 すように、 複数の上記消弧ュニッ卜 1 2 5をクロスバー 1 2 7により連結し、 ク ロスバー 1 2 7を介して接点を開閉させる機構部 1 2 8、 異常電流を検出し機構 部 1 2 8を動作させるリレー部 1 2 9、 および機構部 1 2 8を手動で動作させる ハンドル 1 3 2を付力□し、 これらをべ一ス 1 3 0とカバー 1 3 1にて収納すれば 配線用遮断器となる。 このように各構成部品をユニット化し、 これらを組み合わ せて配線用遮断器を構成するようにすれば、 組立が簡単となりコス卜低減が可能 となる。
前述のように消弧装置を消弧ュニッ 卜筐体本体 1 2 3およびュニッ 卜筐体蓋 1 2 4内に収納することにより、 遮断動作時の配線用遮断器内の圧力上昇をベース 1 3 0およびカバー 1 3 1で直接受けることがなくなる。 上記消弧ユニット筐体 の受圧面積は、 ベース 1 3 0およびカバ一 1 3 1の受圧面積より小さい。 そのた め、 たとえべ一ス 1 3 0およびカバー 1 3 1 と同一材料、 同一肉厚の消弧ュニッ 卜筐体を用いても、 より大きな内圧上昇に耐えることができ、 アーク雰囲気圧を 上げてアーク電圧を上昇させる限流手法を用いるのに適している。 また、 従来、 遮断動作時の内圧上昇に耐えるため、 機械的強度の大きな高価なモールド材にて ベースおよびカバ一を構成していたが、 消弧ュニッ 卜筐体を用いることにより、 圧力を受ける筐体の材料の量を減らすことができコスト低減が可能となる。 図 7 4に示した消弧ュニッ卜 1 2 5の内部構成を示すため、 構成部品の一部の 断面を取った開成状態の斜視図を図 7 6に示す。 また、 図 7 7に閉成状態におけ る通電部品以外を省略した斜視図を、 図 7 8に図 7 7の断面 Cにおける通電部品 の断面図をそれぞれ示す。 また、 図 7 7に、 可動アーム水平部 1 0 4、 固定導体 1 0 7、 および導体 1 2 1における電流方向を矢印にて示している。
本実施の形態では、 通常の開閉動作はハンドル 1 3 2を手動にて操作すること により行う。 ハンドル 1 3 2の操作により、 機構部 1 2 8、 クロスバー 1 2 7を 介してロータ 1 2 2が回転し、 可動子 1 0 1が開閉動作する。 また、 過負荷電流 遮断時には、 リレー部 1 2 9が異常電流を検出し、 リレー部 1 2 9より トリップ 信号が機構部 1 2 8へ伝わり、 機構部 1 2 8が動作してロータ 1 2 2が回転し可 動子 1 0 1が引き上げられ接点が開極する。 しかし、 短絡事故等の大電流遮断時 には、 ロータ 1 2 2の回転に先立ち、 接点接触部への電流集中による電磁反発力 F 1 と、 図 7 8に示す可動アーム水平部 4の電流と固定導体 1 0 7のぼぼ平行か つ反対方向の電流による電磁反発力 F 2と可動アーム水平部 1 0 4の電流と導体 1 2 1のほぼ平行かつ反対方向の電流による電磁反発力 F 3の開極方向の分力 ( F 3 . c o s 0 ) の和 F tとにより、 パネ 1 1 1による接圧に杭して接点が開 極し、 接点間にアークが発生する。 アークの発生に伴い、 上記接点接触面での電 流集中による電磁反発力 F 1は消滅するが、 電磁反発力 F 2および電磁反発力 F 3の分力は引き続き可動子 1 0 1を開極方向へと回転させる。 また、 アーク発生 に伴い、 アークの熱により筒状絶縁物 1 0 8の内面から大量の蒸気が発生し、 可 動子 1 0 1を押し上げる開極力 F pが生じる。 これらの力により、 可動子 1 0 1 が高速に回転し、 接点が高速開極する。 この高速開極によりアーク長が高圧雰囲 気中にて急激に伸びるのでアーク電圧が急速に立ち上がり、 事故電流がピーク値 ¾むかえる。
電流ピーク後、 可動子 1 0 1はさらに回転し接点間距離が増大する。 この接点 間距離の増大により、 アーク電圧がさらに大きくなり事故電流は急速に零へと向 かう。 事故電流が小さく絞られると、 アークは鉄製の消弧板 1 1 9に引き込まれ、 アークが分断、 冷却され消弧される。 このとき可動接点 1 0 2は筒状絶縁物 1 0 8に囲まれる筒状空間外にあり、 接点間の絶縁が十分回復しているので、 電極間 に電源電圧が印加きれても電流が再び流れることはなく、 遮断動作が完了する。 上記電流ピーク以降の長い接点間距離による高いアーク電圧により遮断時間は大 幅に短〈なる。 従って、 限流性能を示す指標の一つである通過エネルギー 1 2 t (電流の二乗の時間積分) が小さくなる。
ところで、 本実施の形態では、 排気口 1 2 6が接点 1 0 2、 1 0 6間からみて 消弧板 1 1 9側のみに設けられている。 このような配置をとると、 電流遮断動作 時において、 アーク電流の増加に伴い筐体内のアークよりロータ 1 2 2側の空間 に圧力が蓄積される。 アーク電流がピークをむかえアーク電流値が減少していく と、 上記蓄積された圧力により電極間ではロータ 1 2 2側から排気口 1 2 6側へ と気流が生じ、 アークを消弧板 1 1 9へと引き伸ばす。 さらに、 電流零点近傍で は、 上記流れによる接点間の荷電粒子を吹き飛ばす作用で、 接点間の絶縁回復が 大幅に改善される。従って、 高電圧の回路に用いても遮断失敗が起こり難い信頼 性の高い回路遮断器を得ることができる。
この蓄積圧による気流の絶縁回復作用は、 電流遮断時の上記気流の流速が大き いぼど大きい。 流速を大き〈するには、 蓄積圧を上げるか流路断面を小さ〈すれ ばよく、 そのために排気口面積を小さくする必要がある。 本実施の形態では、 比 較的面積の小さい排気口 1 2 6を開成状態の可動接点 1 0 1側に設けている。 筒 状絶縁物 1 0 8を用いて限流性能を向上させる場合、 固定接点 1 0 6側アークス ポッ 卜近傍のアークは筒状絶縁物 8にて拘束されるので、 上記ロータ側空間の蓄 積圧による気流にてアークを構成する金属粒子を吹き飛ばすことはできない。 一 方、 可動子側アークスポッ 卜近傍のアークは、 電流遮断時には筒状絶縁物 1 0 8 外に位置しており、 上記気流の作用を受けやすい。 よって、 比較的面積の小さい 排気口 1 2 6を開成状態の可動接点側に設けることにより、 効果的に電流遮断時 の電極間の絶縁回復を確保できる。 実施の形態 3 5 .
図 7 7、 図 7 8に示した導体配置では、 固定導体 1 0 7は、 可動子 1 0 1が回 転する軌跡を含む面上に配置されているが、 端子部 1 1 5と摺動接触子 1 1 0を 電気的に接続する導体 1 2 1は、 上記軌跡を含む面上からずれた位置に配置され る。従って、 可動子 1 0 1には接点開離方向に直行するブレの力 (F 3 · s i n Θ ) が働き、 可動子 1 0 1の開極速度を低下させる要因となる。例えば、 この発 明では、 閉成状態において筒状絶縁物 1 0 8内に可動アーム垂直部 1 0 3が挿入 されるので、 上記ブレの力により可動子 1 0 1が左右にブレた場合、 可動子 1 0 1 と筒状絶縁物 1 0 8が接触する可能性が大きい。 このような接触が生じれば、 開極速度は大幅に低下する。 また、 遮断動作時に上記ブレの力により可動子 1 0 1もしくは可動子回転軸 1 1 3等が大きく変形すれば、 再投入不能となる。
このような問題を解決した実施の形態を、 図 7 9、 図 8 0に示す。 なお、 図 8 0は、 図 7 9中の断面 Cにおける断面図である。 図 7 9、 図 8 0に示すように、 固定導体 1 0 7と導体 1 2 1を上記軌跡を含む面に対して左右対称に配置すれば、 可動アーム水平部 1 0 4と固定導体 1 0 7との電磁反発力のブレ成分 (F 2 · s i η θ ) と、 可動アーム水平部 1 0 4と導体 1 2 1 との電磁反発力のブレ成分 ( F 3 · s i η Θ ) とが互いに打ち消しあい、 導体電流間の電磁反発力は、 開極 方向のみの力 (F t = ( F 2 + F 3 ) - c o s 6 ) となる。 よって、 可動子 1 0 1のブレを防ぎ、 開閉動作の信頼性を高めることができる。 実施の形態 3 6 .
図 8 1、 図 8 2に実施の形態 3 6を示す。 なお、 図 8 2は、 図 8 1中の断面 C における断面図である。 この実施の形態では、 固定導体 1 0 7と導体 1 2 1の中 心線を上記軌跡を含む面上に閉成状態の可動アーム水平部 1 0 4とほぼ平行に配 置しており、 可動アーム 1 0 4と固定導体 1 0 7とにそれぞれ流れる反対方向の 電流による電磁反発力 F 2、 および導体 1 2 1 と固定導体 1 0 7とにそれぞれ流 れる反対方向の電流による電磁反発力 F 3のどちらにも上記ブレの力成分が生じ ない。
ところで、 可動子 1 0 1に電磁反発力を発生させる電流が流れる固定導体 1 0 7と導体 1 2 1の配置は、 実施の形態 3 4、 実施の形態 3 5、 および実施の形態 3 6でそれぞれ異なる。 一般に、 可動アーム水平部 1 0 4と固定導体 1 0 7もし くは導体 1 2 1 との距離が小さいほど、 電磁反発力が大き〈なり接点開極速度を 大きくすることができる。 しかし、 図 7 8、 図 8 0、 図 8 2に示した可動アーム 水平部 1 0 4と固定導体 1 0 7の上下方向の距離 L 1は、 主に筒状絶縁物 1 0 8 の筒高さにより決定され、 固定導体 1 0 7と導体 1 2 1 との距離 L 2は、 両導体 間に必要な絶縁距離と導体の断面形状により決定される。 さらにこれら寸法は、 配線用遮断器筐体強度、 適用回路電圧、 定格通電電流等の条件により決定される。 例えば、 筒状絶縁物 8の高さを高くするとアークに触れる絶縁物の面積が増大し、 消弧ュニッ卜筐体内圧が上昇するので、 上記筐体強度により筒状絶縁物 8が制限 を受ける。 また、 絶縁距離は回路電圧に、 導体断面積は通電容量によりそれぞれ 制限を受ける。 よって、 配線用遮断器の機種により、 最も大きな電磁開極力を得 られる導体配置が異なる。
図 8 3には、 実施の形態 3 4、 実施の形態 3 5、 および実施の形態 3 6の電磁 反発力を発生させる導体を簡略化して表している。 同図中、 Z軸方向が閉成状態 から接点が開離する方向、 Z軸上の点 P 0 ( Z = L 1 ) が閉成状態の可動アーム 水平部 1 0 4の電流中心位置、 Z = 0が固定導体 7の上下方向の中心位置、 Z X 平面が可動子 1 0 1が描く軌跡を含む面にそれぞれ相当する。 図 8 3 ( a ) が実 施の形態 3 4に、 図 8 3 ( b ) が実施の形態 3 5に、 図 8 3 ( c ) が実施の形態 3 6にそれぞれ相当しており、 固定導体 1 0 7および導体 1 2 1を流れる電流に より生じる点 P 0 ( Z二 L 1 ) における磁場の内、 可動アーム水平部 1 0 4に開 極方向の電磁力を発生させる磁場成分の磁束密度を B yとしている。 固定導体 1 07および導体 1 21の電路が十分長く、 固定導体 1 07および導体 1 2 を流 れる電流を導体中心線上の線電流で近似すると、 上記磁束密度 B yはそれぞれ図 83に示された式で表せる。
上記式より、 電流 Iおよび閉成状態の可動アーム水平部高さ位置 L 1が (a) 〜 (c) で等しい場合に、 固定導体 1 07と導体 1 21間距離 L 2を変化させた ときの上記磁束密度 B yの変化を計算し、 図 84にプロットしている。 同図より、 し 2く L 1の領域では (b) (a) (c) の順に、 L 1くし 2く ( 5— 1 ) x L 1の領域では ( b ) ( c ) (a) の順に、 ( 5— 1 ) xL 1 <L 2<^2 x L 1の領域では ( c ) ( b ) (a) の順に、 L 2〉 2 X L 1の領域では ( c )
(a) (b) の順に磁束密度 B yが大きくなることが分かる。 以上より、 筐体の 強度やサイズの制限がなく筒状絶縁物の筒高さを十分にとれる場合 (L 1が十分 大きい場合) 、 実施の形態 36のように固定導体 1 07と導体 1 21を上下に配 置するより、 実施の形態 34もしくは実施の形態 35のように左右に導体を配置 する方がより強い開極力を得られるといえる。一方、 筐体強度の制限等により上 記筒高さが低い場合は、 実施の形態 36のように上下に導体を配置する方がより 強い開極力を得られるといえる。
ところで、 図 85、 図 86、 図 87にそれぞれ示すように、 L 2は、 実施の形 態 34、 実施の形態 35では絶縁距離 aと導体幅 bの和に、 実施の形態 9では絶 縁距離 aと導体厚さ cの和となる。 一般に、 端子部 1 5と導体 21をプレス加工 等にて一体成形する場合、 (導体幅 b) > (導体厚さ c) となり、 実施の形態 3 6のし 2より実施の形態 34および実施の形態 35の L 2の方が大きくなる。 前 述の図 83に示した式より、 実施の形態 34より実施の形態 36の電磁開極力を 発生させる磁場成分 B yが大きくなる条件を求めると、 cく ( (a + b) 2/L 1 ) —aとなる。 同様に、 実施の形態 36が実施の形態 35より大きな B yを発 生させる条件は cく ( ( 2 X L 1 X ( a + b) 2/ ( (a + b) 2 -4 X L 1 2 ) ) —2となる。 導体断面積 s = bx cが実施の形態 34と実施の形態 36、 もし〈は、 実施の形態 35と実施の形態 36とで等しい場合、 上記 2つの式は、 導体断面横 s、 絶緣距離 a、 閉成状態の可動アーム水平部と固定導体の高さ方向 の距離 L 1、 材料の板厚 cにて表すことができる。 以上より、 Cが十分小さい場合 (例えば、 非常に薄い板厚の材料をプレス加工 して導体を作る場合) 、 実施の形態 3 6のように固定導体 1 0 7と導体 1 2 1を 上下に配置する方が、 実施の形態 3 4もしくは実施の形態 3 5のように左右に導 体を配置するより強い開極力を得られるといえる。 一方、 比較的厚い板厚 cを用 いる場合は、 実施の形態 3 4もしくは実施の形態 3 5のように左右に導体を配置 する方がより強い開極力を得られるといえる。 実施の形態 3 7 .
図 8 8は実施の形態 3 7を示す部分断面斜視図である。 同図に示す遮断器は、 図 7 6に示したものと転流電極 1 3 7を除き同じ構成となっている。転流電極 1 3 7は、 摺動接触子 1 1 0と電気的に接続されており、 摺動接触子 1 1 0から排 気口 1 2 6側へと延びており、 途中、 開成状態の可動子 1 0 1が入り込むスリッ 卜部を有している。転流電極 1 3 7の排気口 1 2 6側端部は消弧板 1 1 9の上部 に位置し、 上記スリッ 卜の排気口側端部は、 開成状態の可動子 1 0 1の可動接点 側端部と対向するように設けられている。
図 7 6に示した実施の形態では、 筒状絶縁物 1 0 8内で開極初期にアークを発 生させるために可動子 1 0 1はほぼ L字状の形状となっている。 そのため、 可動 子側のアークスポッ卜は可動子 1 0 1の消弧板側の端面に移動し難く、 遮断動作 後半になっても可動子側アークが噴出し方向が消弧板方向へ向かず、 アークが消 弧板 1 1 9に触れにくい。 よって、 消弧板 1 1 9のアーク冷却効果を有効に利用 できず、 アークの熱により消弧ュニッ卜筐体内圧が高くなり、 筐体割れが発生し やすい。 そこで、 図 8 8に示すように、 転流電極 1 3 7を配置すると、 可動子 1 0 1がフル開極した後の遮断動作後半において、 可動子側アークスポッ卜が可動 子 1 0 1から転流電極 1 3 7に転流し排気口 1 2 6側へと移動するので、 アーク を効果的に消弧板 1 1 9に触れさせることができる。 よって、 アークは消弧板 1 1 9により冷却され温度が ί氏下するので、 消弧ュニッ卜筐体内圧が低下する。 実施の形態 3 8 .
次に、 この発明の実施の形態 3 8を図 8 9について説明する。 図 8 9は、 本実 施の形態の回路遮断器の閉成状態の導体配置と開極電磁力を強化する磁性体のコ ァ 1 3 3を示す斜視図であり、 筒状絶縁物、 接圧発生手段、 消弧装置、 筐体等は 省略している。 図示していないが、 筒状絶縁物 1 0 8は、 閉成状態の固定接点 1 0 6、 可動接点 1 0 2、 および可動アーム垂直部 1 0 3を囲むように配置され、 事故発生時に導体を流れる電流間の電磁力により開極し、 接点間に発生する高圧 力雰囲気中のアークの電圧により限流を行うことは実施の形態 3 4と同様である。 図 9 0は、 可動子 1 0 1が回転する面に垂直、 かつ、 固定導体 1 0 7が伸びる方 向に垂直な面にて、 コア 1 3 3および可動アーム水平部 1 0 4、 導体 1 0 7、 1 2 1の断面を示す図である。 図 8 9、 図 9 0に示すように、 コア 1 3 3は、 導体 1 2 1 と直交する面方向に積層され、 導体 1 2 1 と固定導体 1 0 7とを囲むよう に配置され、 かつ、 コア 1 3 3の突起部 1 3 4の間に閉成状態の可動アーム水平 部 1 0 4が挟まれるよう構成されている。
上記構成を用いると、 導体 1 2 1 と固定導体 1 0 7を流れる電流が作る磁束を 閉成状態の可動アーム水平部 1 0 4に集中させることができるので、 事故電流遮 断動作初期の電磁開極力が強化され、 開極速度が向上する。 そのため、 筒状絶縁 物蒸気によって形成された高圧雰囲気をアーク電圧の上昇に効果的に結びつける ことができ、 限流性能が改善される。 また、 図 8 9に示すように、 薄板を積層し てコア 1 3 3を形成すると、 コア 1 3 3に発生する渦電流を ί氏減することができ、 事故電流の立上りが急激な遮断動作初期においてもコア 1 3 3により磁束を可動 ァ一ム水平部 1 0 4に効率的に集中させることができる。 実施の形態 3 9 .
ところで、 図 9 0に示したコア形状の場合、 開極動作により可動子 1 0 1が回 転して可動アームがコア 1 3 3に囲まれる空間外に移動すると、 固定導体 1 0 7 および導体 1 2 1を流れる電流が作る磁束をコア 1 3 3が遮蔽してしまうので、 可動子 1 0 1に働〈開極電磁力はコア 1 3 3を用いることにより減少してしまう。 そこで、 本実施の形態では、 図 9 1に示すように、 可動子 1 0 1が回転した後 も可動アームがコア 1 3 3に囲まれる空間内に位置するように高さ寸法を高く し たコの字状のコアを用いると、 可動子回転後の可動子 1 0 1の電磁開極力も強化 できる。 このように、 可動子 1 0 1がフル開極状態となっても比較的大きな電磁 開極力が働〈ようにすれば、 可動子 1 0 1のフル開極位置を決めるストツバ (図 示せず) に可動子 1 0 1が跳ね返される距離を小さくでき、 上記跳返りに起因す るアーク電圧の低下を抑えることができる。 なお、 図 9 1では上に開いたコの字 状コアを示したが、 図 9 2に示した下に開いたコの字状コア、 もし〈は、 図 9 3 に示した全周を囲むコアにおいても、 同様な効果が得られる。 実施の形態 4 0 .
また、 図 9 4に示すように、 消弧ュニッ 卜筐体本体 1 2 3、 消弧ュニッ卜筐体 蓋 1 2 4を挟み込むように、 例えば図 9 2の形状のコア 1 3 3を配置すれば、 遮 断時の筐体内圧上昇による筐体にかかる力をコア 1 3 3にて受けることができ、 筐体の破損を防止できる。 また、 消弧ュニッ 卜筐体本体 1 2 3と消弧ュニッ卜筐 体蓋 1 2 4との結合をコア 1 3 3にて行うことできるので、 ネジ等の接続部品を 省略することが可能となる。 また、 筐体によりコア内面の絶縁を兼ねることがで き、 コア 1 3 3へのアーク夕ツチを防止できる。 なお、 図 9 4では、 消弧ュニッ 卜上部側に図 9 2に示すコアを配置したが、 図 9 0、 図 9 1、 図 9 3に示す形状 のコアを消弧ュニッ 卜下部側からまたは全周に筐体を挟み込むように配置しても、 上記筐体破損防止、 上記接続部品省略、 上記コア内面の絶縁の効果が同様に得ら れる。 実施の形態 4 1 .
実施の形態 2 8、 実施の形態 3 4に示した筒状絶縁物 1 0 8内の筒状空間 1 1 8は一方が固定子により塞がれている。 そのため、 事故電流遮断後、 上記空間に 電極金属蒸気等の高温のガスおよび溶融物が残りやすい。 これらは、 筒状空間 1 1 8の絶縁回復を妨げて再点弧の原因となる。 さらに固定接点表面に上記溶融物 が付着すると、 遮断後の再通電時の異常温度上昇の原因となる。
図 9 5は、 本実施の形態 4 1の筒状絶縁物 1 0 8の断面、 閉成状態の可動子 1 0 1の可動接点側の一部、 および固定子 5の固定接点側の一部を示す図である。 筒状絶縁物 1 0 8には、 筒状空間 1 1 8とつながる蓄圧空間 1 3 5を設けている。 図 9 5に示すように、 蓄圧空間 1 3 5を筒状絶縁物 1 0 8の固定接点 1 0 6側に 設ければ、 大電流アーク発生中に蓄圧空間 1 3 5に蓄えられた圧力により、 ァ— ク消滅前から電流遮断後にかけて蓄圧空間 1 3 5から筒状空間 1 1 8を通って筒 状絶縁物 1 0 8外へ放出される流れが生じる。 この様子を示したのが、 図 9 6、 図 9 7である。 図 9 6は、 遮断動作時に発生する大電流アークにより蓄圧空間 1 3 5に圧力が蓄積されている状態を示している。 図 9 7は、 電流遮断直前、 すな わちアーク消滅直前の状態を示しており、 蓄圧空間 1 3 5から筒状空間 1 1 8を 通って外部へ放出される流れを矢印で示している。 この矢印の流れはノズル状と なっている筒状空間 1 1 8で最も速〈なり、 この高速の流れでアークの熱を奪い 去りアークの消滅を促進する。 さらに、 この流れにより、 上記高温のガスおよび 溶融物を外部へと排出するので、 筒状空間 1 1 8の絶縁が急速に回復されるとと もに、 固定接点表面への溶融物付着を防止できる。 実施の形態 4 2 .
図 9 8に実施の形態 4 1の固定子 1 0 5の斜視図を示す。 同図では、 固定接点 1 0 6の周りの固定導体 1 0 7の部位を絶縁物 1 3 6にて覆っている。 このよう に固定接点の周りに絶縁物 1 3 6を配置すると大電流アーク発生時に絶縁物 1 3 6より蒸気が発生し蓄圧空間 1 3 5に蓄積される圧力が高くなるので、 電流遮断 時の筒状空間 1 1 8を通過する流れが強〈なり、 上記アーク消滅作用、 上記絶縁 回復作用、 および上記固定接点表面への溶融物付着を防止する作用が増す。 実施の形態 4 3 .
図 9 9に、 実施の形態 4 3の固定子 1 0 5部分の断面図を示す。 同図では、 図 9 5の実施の形態と異なり、 蓄圧空間 1 3 5を固定子 1 0 5の固定接点 1 0 6と 反対側の面側に設けず、 固定接点 1 0 6の周りに設けている。 このような配置に しても、 図 9 5の実施の形態と同様な効果が得られ、 かつ、 組立が簡単となる。 実施の形態 4 4 .
実施の形態 2 8、 実施の形態 3 4に示した固定子にはアークランナー等の固定 子側アークスポッ 卜が移動する部品が設けられていないので、 固定子側アークス ポッ卜は常に固定接点上に存在する。 そのため、 遮断動作後半においてもアーク が消弧板に触れにく く、 消弧板のアーク冷却効果を有効に利用できず、 アークの 熱により消弧ュニッ 卜筐体内圧が高くなり、 筐体割れが発生しやすい。
そこで、 本実施の形態 4 4では、 図 1 0 0に示すように、 固定子 5の固定接点 側端部と電気的に接続されたアークランナー 3 8を設け、 アークランナー 3 8の 固定子 5との接続端部と反対の先端部 3 8 aを固定接点 6より消弧板 1 9側の位 置に筒状絶縁物 8より露出するよう構成している。 このように、 アークランナー 3 8を設けると、 遮断動作時の可動接点 2が筒状絶縁物 8に囲まれる空間 1 8外 に回転した後に、 図 4 2に示すように、 固定子側アークスポッ卜がアークランナ —3 8の先端部 3 8 aに移動するので、 アークを効果的に消弧板 1 9に触れさせ ることができる。 これにより、 アークは消弧板 1 9により冷却され温度が低下し 消弧ュニッ 卜筐体内圧上昇が抑えられる。 この内圧抑制により筐体強度を下げる ことができ、 コスト ί氐減が可能となる。 実施の形態 4 5 .
図 1 0 0に示した実施の形態では、 筒状空間 1 1 8とアークランナー先端部 1 3 8 aとの間の筒状絶縁物 1 0 8の高さが、 アークランナーの先端部 1 3 8 aよ り低く構成されている。 このような構成では、 可動接点 1 0 2が筒状空間 1 1 8 から出た瞬間に、 固定接点 1 0 6と可動接点 1 0 2間で流れていた電流の一部が アークランナー先端 1 3 8 aと可動接点 1 0 2間で流れ出す分流状態となり、 ァ ―ク電圧が低下することがある。 このアーク電圧の低下が電流ピーク以前に生じ ると、 電流ピークが大幅に増大し、 限流性能が大幅に低下する。 また、 上記分流 状態から、 アークランナー先端部 1 3 8 aと可動接点 1 0 2間のみで電流が流れ る転流状態となっても、 固定子側アークスポッ 卜が絶縁物に囲まれた筒状空間 1 1 8の外に移動するので、 固定接点 1 0 6と可動接点 1 0 2間にアークがあると きょりアーク電圧が低下し、 遮断時間が長〈なり、 通過エネルギーが大きくなる。 そこで、 本実施の形態 4 5では、 図 1 0 1に示すように、 アークランナー先端 部 1 3 8 aを筒状絶縁物 1 0 8の高さより低く し、 ァ一クランナ一先端部 1 3 8 aの周りの絶緣物をすり鉢状になるよう構成している。 このように構成すると、 可動子 1 0 1が回転して可動接点 1 0 2が筒状空間 1 1 8から出ても、 すぐには 分流状態とならず、 高圧雰囲気を利用したアーク電圧上昇を有効に利用でき、 電 流ピ一クを小さく抑えることができる。 また、 アークがアークランナー 1 3 8に 転流した後も、 アークランナー先端部 1 3 8 aがすり鉢状の絶縁物に囲まれたァ —クランナー筒状空間 1 3 9内にあるため、 アーク電圧が低下することがなく、 遮断時間を短縮でき、 通過エネルギーの ί氏減につながる。 実施の形態 4 6 .
図 1 0 2に実施の形態 4 6を示す。 本実施の形態では、 固定接点 1 0 6が配置 される筒状空間 1 1 8とアークランナー先端部 1 3 8 aが配置されるすり鉢状の アークランナー筒状空間 1 3 9を比較的断面の小さな管路 1 4 0にて連通させて いる。 このように構成すると、 電流遮断時に筒状空間 1 1 8内に発生するホッ 卜 ガスの一部が、 管路 1 4 0を通ってアークランナー先端部 1 3 8 aを囲むアーク ランナー筒状空間 1 3 9に充満する。短絡電流等の大電流遮断時には、 大量のホ ッ卜ガスが発生し消弧ュニッ卜筐体内に充満するので、 管路 4 0を経て空間 3 9 に到達したホッ 卜ガスの影響は顕著に現れない。 よって、 実施の形態 1 8とほぼ 同様の特性を示す。 しかし、 過負荷電流等の比較的小さな電流遮断時には、 消弧 ュニッ 卜筐体内に充満するほど大量のホッ 卜ガスが発生しない。 そのため、 管路 4 0を経てアークランナー筒状空間 3 9に到達したホッ卜ガスにより、 ァ一クラ ンナ—先端部 3 8 a近辺は他の部分より導電性が高い状態となっており、 管路 4 0がない場合に比べアークのァ一クランナ一3 8への転流が促進される。従って、 遮断動作開始後の早い時期にアークがアークランナー 3 8へと移り、 消弧板 1 9 にて冷却、 分断されるので、 遮断時間が短〈なるとともに固定接点 6の損耗を低 減できる。 実施の形態 4 7 .
次に、 この発明の実施の形態 4 7を図 1 0 3について説明する。 図 1 0 3は、 本実施の形態の可動子 1を示す 4視図であり、 可動子 1は、 可動接点 2、 可動ァ —ム垂直部 3、 可動アーム水平部 4 a、 4 b、 4 c、 および可動子アーム部の固 定接点側の面を覆う絶縁物 4 1により構成され、 ほぼ鈎型の形状となる。 このよ うに、 可動子 1をほぼ鈎型とすることにより、 筒状絶縁物 8を用いる場合におい ても、 閉成状態の固定導体 7と可動アーム水平部 4 cとの距離を近付けることが できる。
図 1 0 5は、 本実施の形態の閉成状態の可動子 1、 固定子 5、 および筒状絶縁 物 8を示す図であり、 図中、 電流の流れを矢印にて表している。 同図より明らか なように、 事故電流発生時に電磁開極力を発生する固定導体 7と可動アーム水平 部 4 cをそれぞれ流れる反対方向の電流が、 例えば図 1に示す L型可動子を用い る場合より一層近付き、 電磁反発力が増大し、 開極速度が向上する。
しかし、 図 1 0 4に示すように、 可動子 1の回転角 0が大き〈なると、 可動子 1を鈎型にすることによりアークが可動アーム部に触れ、 分流する可能性が高く なる。 このようにアークが可動アームに触れると、 可動アームが溶融して細〈な り開閉に耐え得る十分な機械的強度を維持できなくなるのみならず、 遮断動作後 半のアーク電圧が低下して、 限流性能が悪化する。 そこで、 少な〈とも固定接点 6表面から見渡せる可動アームの可動接点 2より可動子回転中心側の部位を絶緣 物 4 1にて覆う必要がある。 このような可動アームへの分流は、 可動子 1の回転 角 0が大きくなると実施の形態 2 8で示したぼぼ L字状の可動子においても生じ ることがあり、 上記のような可動アームの絶縁が必要となる。 実施の形態 4 8 .
図 1 0 6にこの発明の実施の形態 2 1 を示す。 通常、 可動子 1の回転中心は機 構部の開閉動作を伝える部品、 例えばロータ 2 2に支持される。 従って、 固定子 5と可動子回転軸 1 3の距離はある値以上に小さくできない。 そこで、 図 1 0 6 に示すように、 可動子 1の形状をほぼ S字状として、 図 1 0 3に示すほぼ鈎型の 可動子より屈曲部を 1つ増やせば、 可動アーム水平部 4 cと固定導体 7との距離 を遠ざけることなく、 口一夕 2 2にて可動子回転軸 1 3を保持できるので、 回転 軸 1 3が固定導体 7より遠い場合でも事故電流発生時に大きな電磁開極力を得る ことができる。 実施の形態 4 9 .
図 1 0 7にこの発明の実施の形態 4 9を示す。 同図では、 閉成状態のほぼし字 状の可動子 1 0 1 と、 可動アーム水平部 1 0 4と対向する固定導体 1 0 7の部位 が可動アーム水平部 1 0 4に近づくように曲げられた固定子 1 0 5が示されてい る。 このように、 固定導体 1 0 7側を可動ァ―厶へと近付けても実施の形態 4 3 と同様の効果がある。 さらに、 本実施の形態では、 可動子 1 0 1がほぼ L字状と なるので、 実施の形態 4 7もし〈は実施の形態 4 8に示した、 ほぼ鈎型可動子も しくはほぼ S字状可動子より慣性モーメントを小さくできるので、 より高速開極 が可能となる。 実施の形態 5 0 .
実施の形態 3 7の説明で述べたように、 図 7 6に示した実施の形態では、 ほぼ L字状の可動子形状を用いているため、 可動子側のアークスポッ卜は可動子 1 0 1の消弧板側の端面に移動し難く、 遮断動作後半になっても消弧板 1 1 9に触れ にくい。 そのため、 消弧板のアーク冷却効果を有効に利用できず、 アークの熱に より消弧ュニッ 卜筐体内圧が高くなり、 筐体割れが発生しやすい。 これを防止す るためには、 アークを消弧板に触れさせて冷却し、 素早 消弧する必要がある。 図 1 0 8に示す本実施の形態では、 フル開極位置の可動子 1 0 1の先端部の上 方に対向電極 1 4 2を設けることにより、 アークスポッ 卜をし字状可動子 1 0 1 の消弧板側端面に移動させ、 アークを効果的に消弧板 1 1 9に触れさせている。 また、 本実施の形態では、 筒状空間 1 1 8を囲む筒状絶縁物 1 0 8の可動子回 転中心と反対側の壁高さを可動子回転中心側の壁高さより低〈なるよう、 すなわ ち、 筒状空間 1 1 8の上面を消弧板 1 1 9側に向ける構成としている。 このよう な構成とすると、 図 1 0 9に示すように、 遮断動作時の筒状空間 1 1 8から可動 接点が出た直後に、 筒状空間 1 1 8から消弧板 1 1 9方向へと図中矢印で示すホ ヅトガスの流れが生じ、 アークが消弧板 1 1 9に触れやすくなるので、 アークを 素早〈冷却、 消弧することができる。
なお、 図 1 0 8では、 板状の対向電極 1 4 2を用いたが、 図 1 1 0に示すよう に、 一辺が可動子 1 0 1の消弧板側端面に対向するように配置されたし字状の対 向電極 1 4 2を用いても、 アークスポッ 卜を L字状可動子 1 0 1の消弧板側端面 に移動させることができる。 実施の形態 5 1 .
上記実施の形態 5 0では、 対向電極を用いてアークを消弧板に触れさせたが、 図 1 1 1に示すように、 馬蹄形の消弧板 1 1 9の切欠き部の中心位置 M 2を、 筒 状絶縁物 1 0 8に囲まれる筒状空間 1 1 8の可動子回転中心と反対側の端面位置 M 1より、 可動子回転中心側に設けると、 対向電極を用いることなくアークを消 弧板 1 1 9に触れさせることが可能となる。 ただし、 上記切欠き部の位置 M 2が、 図中に一点鎖線で示す可動子先端部が描〈軌跡と交わると消弧板 1 1 9が可動子 1の回転を妨げるので、 上記切欠き部の位置 M 2は、 上記一点鎖線と上記位置 M 1のと間に位置する必要がある。
また、 図 1 1 1では、 筒状絶縁物 1 0 8を可動子回転中心と反対側から馬蹄形 コア 1 4 3にて囲んでいる。 このコア 1 4 3により、 比較的電流の小さい過負荷 電流のァークや短絡電流遮断動作時の電流遮断直前の小電流のァークは、 可動子 回転中心と反対側の筒状空間 1 1 8内壁に押し付けられるので、 消弧板 1 1 9に 冷却されるとともに、 筒状空間 1 1 8内壁から発生する蒸気によっても冷却され、 確実に遮断される。 実施の形態 5 2 .
次に、 この発明の実施の形態 5 2を図 1 1 2にて説明する。 図 1 1 2では、 実 施の形態 5 1 と異なり、 端子部 1 1 5に直接固定子 1 0 5が接続され、 可動子 1 0 1は摺動接触子 1 1 0を経由して端子 1 1 6によりリレー部と電気的に接続さ れる。 また、 図 1 1 3に示す固定子 1 0 5は、 特開平 6— 2 0 5 4 7号公報に開 示されている従来の固定子形状を有しており、 閉成状態の可動アーム水平部とほ ぼ平行かつ反対方向の電流が流れる電路 1 4 5 cを有している。 固定子 1 5 5は、 筒状絶縁物 1 0 8と一体に形成された絶縁物 1 4 6にて、 固定接点 1 0 6近傍を 除く少なくとも開成状態の可動接点 1 0 2から見渡せる部位を覆っている。 実施の形態 5 1では、 閉成状態の可動アーム水平部 1 0 4とほぼ平行かつ反対 方向の電流が流れる電路として固定導体 1 0 7と導体 1 2 1が配置されたが、 本 実施の形態では、 電路 1 4 5 cが先述の電路に相当する。 さらに、 電路 1 4 5 b が作る磁場も可動子 1 0 1の開極電磁力に寄与する。 また、 消弧室内の導体長を 短くできるのでコスト ί氐減が可能であり、 さらに構造が簡単となり組立性が向上 する。 また、 絶縁距離を確保しやすい。 実施の形態 5 3 .
この発明の実施の形態 5 3を、 図 1 1 4、 図 1 1 5に示す。 図 1 1 4は、 本実 施の形態の固定子 1 0 5を示す図であり、 図 1 1 3の固定子 1 0 5の上下方向の 電路 1 4 5 bの一部を水平方向の電路 1 4 5 c ' と上下方向の電路 1 4 5 dに置 き換えている。 図 1 1 5は、 閉成状態の可動子 1、 図 1 1 4に示した固定子 1 0 5、 筒状絶縁物 1 0 8、 および筒状絶縁物 1 0 8と一体に成形されている固定子 を覆う絶縁物 1 4 6を示した断面図であり、 図中、 矢印にて電流方向を示してい る。 同図から明らかなように、 図 1 1 4の固定子形状を用いることにより、 可動 アーム水平部 1 0 4と固定子 1 0 1の電路 1 4 5 c ' が大幅に近付き、 事故電流 の遮断時の電磁開極力が図 1 1 3に示す実施の形態より増大する。 実施の形態 5 4 .
この発明の実施の形態 5 4を図 1 1 6に示す。 また、 同図の固定子形状を図 1 1 7に示す。 図 1 1 7に示す固定子においても、 図 1 1 3の実施の形態と同様に、 閉成状態の可動アーム水平部 1 0 4とほぼ平行かつ反対方向の電流が流れる電路 1 4 5 cを有している。 しかし、 電路 1 4 5 e、 1 4 5 fの電流は、 可動子 1 0 1の開極を妨げる方向の磁場を発生する。 この開極を妨げる磁場の影響を最小限 に抑えるため、 固定子にスリツ卜 1 4 7を設け、 電路 1 4 5 e、 1 4 5 f を可動 アーム 1 0 1が回転する軌跡を含む面から左右にずれた位置に配置している。 こ のような構成とすると、 図 1 1 3の実施の形態より開極速度が遅くなり限流性能 が低下するが、 固定子 1 0 5の加工が簡単となるとともに材料費も低減でき、 安 価な限流機能を有した遮断器を実現できる。 なお、 図 1 1 8に示す固定子形状を 用いても同様の効果がある。 実施の形態 55.
図 1 1 9はこの発明の実施の形態 55に係る 3極限流装置を示す斜視図であり、 内部構成が分かるように筐体 230の一部を切り取って示している。 この 3極限 流装置は、 図 1 50に示した従来例と同様に、 回路遮断器と直列接続して用いる ことにより、 3極限流遮断器を構成することができる。 図 1 20は、 図 1 1 9の 3極限流装置の閉成状態の 1極分の導体構成と筒状絶縁物 8および絶縁カバー 2 09を示す余 4視図であり、 筒状絶縁物 208および絶縁カバー 209は導電部を 構成する部分の形状が分かるように一部を切り取って示している。
図 1 1 9において、 201は可動子、 208は閉成時の接点対を囲む筒状絶縁 物、 209は固定子を覆う絶縁カバー、 21 0は摺動接触子、 21 1は接点対に 接触圧を与える付勢手段であるパネ、 21 2はパネ掛け、 21 3は可動子 201 の回転軸、 21 4は接続導体、 21 5 a、 21 5 b、 21 5 c、 2 1 6 aは端子 部、 21 9は消弧板、 226は排気口、 230は絶縁物筐体である。
図 1 20において、 201は、 可動接点 202と、 この可動接点 202が固着 されている可動アーム垂直部 203と、 この可動アーム垂直部 203とほぼ直交 する可動アーム水平部 204とにより構成されるほぼ L字状の可動子である。 こ の可動子 201は、 固定接点 206と、 固定導体 207とにより構成される固定 子 205と 1対の接触子対をなしており、 可動子 201は接触圧を与える付勢手 段であるパネ 21 1により固定子 205に対して付勢されている。 可動子 201 は、 可動子回転軸 21 3を中心に回転自在に支持されており、 摺動接触子 21 0 および接続導体 21 4を介して端子部 21 5 aと電気的に接続されている。 一方、 固定子 205は筒状絶緣物 208と絶縁カバ一 209とによって、 固定接点 20 6近傍と端子部 21 6 aとの接続部近傍を除いて覆われている。 図中に示された 複数の矢印は、 通電時の電流経路を示しており、 可動アーム水平部 204の電流 と固定導体 207の電流は、 ほぼ平行かつ反対方向に流れる。 閉成状態の接触子 対は、 端子部 21 5 a, 21 6 aを結ぶ線にほぼ直交するように配置されている c ここで、 先述の実施の形態 1の説明文で図 2乃至図 4を用いて示したように、 アーク式限流装置内で限流遮断動作時に発生する比較的短ギャップの大電流ァー クのアーク電圧を高圧力下で効果的に上げるための条件とは、 図 1 2 1に示す実 験装置にて、 数 c m以下の短ギャップ大電流アークの雰囲気圧 Pを変化させてァ —ク電圧変化を測定した結果を図 4のグラフに示す。 図 1 2 1の実験装置では、 丸棒状の電極を対向させてアークを発生させているので、 電極間距離はアーク長 Lと等しくなる。 図 1 2 2 ( a ) より明らかなように、 アーク電流値が比較的小 さい場合、 アーク雰囲気圧 Pが高くなるとアーク電圧は殆どのアーク長 Lにおい て高くなる。 一方、 図 1 2 2 ( b ) に示すように、 アーク電流値が比較的大きい 場合、 アーク雰囲気圧 Pが高くなつてもアーク電圧はアーク長しが比較的長い場 合を除いて殆ど変化しない。
図 1 2 2に示した雰囲気圧 Pが高い場合のアーク電圧 V ( P—高) と雰囲気圧 Pが低い場合のアーク電圧 V ( P—低) との比 Rをとり、 グラフ化すると図 1 2 3に示すようになる。 図 1 2 3より明らかなように、 アーク電流値が比較的大き い場合のアーク電圧上昇率 Rは、 アーク長が長いほど高い。 一方、 アーク電流値 が比較的大きい場合のアーク電圧上昇率 Rは、 アーク長がある値以上にならない と殆ど増加しないことが分かる。 以上より、 短ギャップ大電流アークにおいて、 アーク雰囲気圧を上げることによりアーク電圧を効果的に上げるための条件とは、 ( a ) アーク電流が比較的小さい、 (b ) アーク長が長い、 という 2つを同時に
/Pi t" る と める。
短絡等の事故が発生した場合、 事故発生直後から回路電流は急激に増大する。 従って、 上記 2つの条件を満たして高い雰囲気圧にてアーク電圧を上げて事故電 流を限流するには、 ( 1 ) 少な〈ともアーク発生直後 (事故発生直後) に高圧雰 囲気を作る、 (2 ) アーク電流が比較的小さいとき (事故発生直後) にアーク長 を長くする、 必要がある。事故電流が増大した後では、 雰囲気圧を上げてもあま り限流性能は向上しない。 さらに、 事故電流が増大した後の高圧雰囲気は、 限流 性能向上にあまり寄与しないだけでなく、 筐体等の破損の原因となる。
図 1 1 9、 図 1 2 0に示した限流装置では、 短絡事故等の発生により通過電流 が急激に増大すると、 接点接触面での電流集中による電磁反発力 F 1 と、 前述の 可動ァ―厶水平部 2 0 4の電流と固定導体 2 0 7の電流による電磁反発力 F 2に より、 パネ 2 1 1による付勢力に杭して接点が開極し、 接点間にアーク Aが発生 する。 この状態の接点対近傍の様子を図 1 2 4に示す。 アークの発生に伴い、 上 記接点接触面での電流集中による電磁反発力 F 1は消滅するが、 可動アーム水平 部 4の電流と固定導体 2 0 7の電流による電磁反発力 F 2は引き続き可動子 2 0 1を開極方向へと回動させる。
また、 図 1 2 4に示すように、 アーク発生に伴い、 アークの熱により筒状絶縁 物 2 0 8の内面から大量の蒸気が発生し、 筒状絶縁物 2 0 8に囲まれた筒状空間 2 1 8に高圧雰囲気が発生する。 この筒状空間 2 1 8の高圧の発生により、 可動 子 2 0 1は圧力差による開極力 F pを受ける。 この圧力差による開極力 F pと上 記電磁力 F 2により可動子 2 0 1が高速に回動し、 接点が高速開極する。 この高 速開極によりァ一ク長が高圧雰囲気中にて急激に伸びるのでァ一ク電圧が急速に 立ち上がり、 事故電流がピーク値をむかえる。
上記のように本実施の形態では、 筒状絶縁物 2 0 8と自己電流による電磁開閉 力を用いて高圧雰囲気と高速開極手段の併用を実現しているが、 優れた限流性能 を得るためには上記併用が不可欠である。 図 1 2 5では、 (a ) 高速開極手段を 用いない場合と、 (b ) 高速開極手段を用いた場合の筒状絶縁物の効果を示して いる。 同図において、 t sは事故発生時刻、 t 0は接点開極時刻、 V 0は接点間 の電極降下電圧、 破線は電源電圧波形である。 図 1 2 5 ( a ) は、 高速開極手段 を用いない場合であり、 アーク電圧が電源電圧に追い付いた時刻 t 1 (筒状絶縁 物有のとき) 、 t 2 (筒状絶縁物無しのとき) に電流ピーク I p 1、 I p 2をそ れそれむかえる。 高速開極手段を用いないと、 事故電流の立上りに比べアーク長 さの立上りが遅いので、 筒状絶縁物にて高圧雰囲気を作り出しても、 アーク長が 短くアーク電圧が上昇する上記条件を満たすことが難しい。 従って、 図 1 2 5
( a ) では、 筒状絶縁物を用いても、 電流ピーク I pの改善の度合い Δ Ι ρ = Ι Ρ 2 - I ρ 1は小さい。
—方、 図 1 2 5 ( b ) に示す高速開極手段を用いた場合では、 事故電流が大き くなる前にアーク長が十分長〈なるので、 高圧雰囲気にてァ一ク電圧が上昇する 上記条件を満たすことができる。 アーク電圧が電源電圧に追い付いた時刻 t 1 '
(筒状絶縁物有のとき) 、 t 2 ' (筒状絶緣物無しのとき) の電流ピーク I pを 夫々 I p Γ 、 I p 2 ' とすると、 電流ピーク I pの改善の度合い Δ I p ' = I p 2 ' 一 I p 1 ' は、 高速開極手段を用いなかった場合の電流ピーク I pの改善 の度合い Δ I pより劇的に大きいことが分かる。
ところで、 この発明では、 可動子開極直後にアーク雰囲気圧を高圧にするため に固定接点 2 0 6を取り囲むように筒状絶縁物 2 0 8を配置している。接点間に 発生するアークの熱により固定接点近傍に配置した絶縁物から大量の蒸気を発生 させる配置は、 例えば、 特開平 7— 2 2 0 6 1号公報の図 1 6、 図 1 7に示され ている。 しかし、 このの先行例では、 固定接点近傍に配置される絶緣物は、 閉成 状態の可動子を左右から挟み込む形状をしており、 絶縁物から発生した蒸気は即 座に閉成状態の可動子先端側および可動子回動中心側へと流れ出し、 アーク雰囲 気を十分高圧にすることはできない。 アーク電圧を急激に立上げるには、 開極初 期のアークを固定接点と可動接点と筒状絶縁物に囲まれる筒状空間に閉込める必 要があり、 アーク電圧立ち上がり速度向上の大幅な向上には、 固定接点を囲む絶 縁物形状を筒状にすることが不可欠である。
図 1 2 4の状態からさらに可動子 2 0 1が回動し、 最大開極位置に達した状態 を図 1 2 6に示す。 この状態では、 可動接点 2 0 2は筒状空間 2 1 8外に位置し ており、 十分な大きさのアーク電圧を発生している。 さらに、 図 1 2 6中に矢印 で示すように、 筒状空間 2 1 8からアーク柱の軸方向に沿った絶縁物蒸気の流れ (白塗り矢印で示す) がアークの熱を奪ってアークを冷却するので、 アーク抵抗 がより高くなり、 事故電流は急速に零点へと向う。従って、 限流性能の指標の一 つである通過エネルギーをより小さ〈できる。
また、 図 1 1 9に示すように、 可動子開極方向側 (筒状絶縁物 2 0 8の開口部 側) の筐体壁に排気口 2 2 6を設けることにより、 図 1 2 6中に白塗り矢印で示 した絶縁物蒸気の流れを速くでき、 可動接点 2近傍の電極金属蒸気を容易に吹き 飛ばすことができる。 これにより電極間に電流を遮断するのに十分な絶縁回復を 生じさせることも可能であり、 遮断能力の低い回路遮断器を直列接続して用いて も、 確実に電流を遮断できる信頼性の高い限流装置を得ることができる。
また、 上述のように電流ピーク後の遮断動作後半において、 可動接点 2 0 2を 筒状空間 2 1 8外に移動させることにより、 アーク電圧の上昇に効果的に結びつ かない筒状絶縁物 2 0 8からの蒸気発生を制限し、 内圧が必要以上増大すること を防止できる。
ところで、 本実施の形態では、 図 1 4 9に示した 2対の接触子をもつ従来例と 異なり、 1対の接触子にて高い限流性能が得られるので、 低インピーダンスの限 流性能に優れた限流装置が得られ、 大きな通電容量が求められる回路への適用が 谷易とな ·&。
また、 図 1 5 0に示した従来例のように、 限流装置を回路遮断器と直接接続し て用いる場合、 配電盤への収納性を考慮すれば、 限流装置の幅 Wは、 回路遮断器 の幅 Wと同等もしくは短い方がよいことは明かである。従来の 2対の接触子対を 並置する構成では、 このような幅 Wの制限を満たすために可動子が回動する面と 平行な筐体側壁の厚さを厚くできず、 短絡遮断時の内圧上昇による破損を防止す るため、 薄肉で強度の強い高価な絶縁材を用いて筐体を作成していた。 しかし、 本実施の形態では、 高い限流性能を得るのに 1対の接触子しか用いないので、 上 記のような幅 Wの制限がある場合においても、 上記筐体側壁の肉厚を厚〈できる ので、 安価な材料にて筐体をつ〈ることができる。逆に、 本実施の形態によれば、 アークによる筐体内圧の上昇が抑えられているため、 筐体壁の肉厚を薄くして 2 対の接点対を用いることも可能である。 実施の形態 5 6 .
次に、 この発明の実施の形態 5 6を図 1 2 7について説明する。 図 1 2 7は実 施の形態 5 6に係る限流装置の内部構成を示す断面図であり、 パネ等は図示を省 略している。本実施の形態が図 1 1 9に示す実施の形態 5 5と異なるのは、 端子 部 2 1 5、 2 1 6が筐体 2 3 0の取り付け面 (底部) 2 9 6から H ' だけ高い位 置に設けられている点である。 このため、 本実施の形態では、 可動子 2 0 1のァ ームと固定子 2 0 5との平行配置電路部分を確保しかつ端子部 2 1 5、 2 1 6と の接続をするために、 固定導体 2 0 7の下部を U字状に曲げて端子部 2 1 6に接 続するとともに、 可動子 2 0 1は可とう導体 2 7 2を用いこれをほぼ U字状に曲 げて端子部 2 1 5に接続している。
ところで、 図 1 5 0に示した従来例のように、 限流装置を回路遮断器に直接連 接する場合、 限流装置と回路遮断器の端子部が直接係合するように限流装置の端 子部を取付け面より H ' だけ高い位置に設ける必要がある。 また、 配電盤への収 納性を考慮すれば、 限流装置の高さ Hは、 回路遮断器高さと同等もしくは低い方 がよいことは明かである。 このような外形の制限のもと、 閉成状態の可動子 2 0 1 と固定子 2 0 5とに、 高速開極に必要なほぼ平行かつ反対方向の電路 (以下、 反発電路と呼ぶ) を十分な長さ設けるためには、 図 1 2 7に示すように、 固定導 体 7をぼぼ U字状にして固定子側の電路を取付け面 2 9 6側で折り返すと共に、 可動子回転軸 2 1 3を端子部 2 1 5 , 2 1 6の高さより取付け面 2 9 6側の低い 位置に設ける必要がある。
上記のような構成を用いると、 上述のような外形の制限がある場合でも限流性 能を得るために必要な反発電路長を得ることができる。 しかし、 図 1 2 7中、 白 塗りの矢印で示す電流成分が発生する磁界が可動子の高速開極を妨げるよう作用 するので、 実施の形態 5 5と同じ反発電路長の場合、 実施の形態 5 5より開極速 度が低下する。 そこで、 上記高さ Hおよび端子部高さ H ' の制限下において、 実 施の形態 5 5より可動子の開極速度をさらに高めたのが次の実施の形態 5 7であ る o 実施の形態 5 7 .
本発明の実施の形態 5 7を図 1 2 8に示す。 図 1 2 8は実施の形態 5 7の限流 装置の内部構成を示す断面図であり、 パネ等は図示を省略している。 本実施の形 態では、 実施の形態 5 6と異なり、 可動子 2 0 1は可とう導体 2 7 2にて遠い側、 すなわち固定子 2 0 5の背後に設けられた端子部 2 1 6に、 また、 固定子 2 0 5 は固定導体 2 0 7を延長して遠い側、 すなわち可動子 2 0 1の背後に設けられた 端子部 2 1 5にそれぞれ電気的に接続されている。 固定接点 2 0 6と端子部 2 1 5を電気的に接続する固定導体 2 0 7は、 電路 2 0 7 a、 2 0 7 b , 2 0 7 cで 構成されている。 2 0 7 aは反発電路を形成する電路、 2 0 7 bは一端が電路 2 0 7 aに接続され、 閉成状態の可動子 2 0 1の可動アームと直交して可動子 2 0 1の下方に配置される電路、 2 0 7 cは電路 2 0 7 bの他端と端子部 2 1 5を結 ぶ電路である。 ここで、 閉成状態の接触子対の反発電路部は、 端子部 2 1 5 . 2 1 6を結ぶ線 にぼぼ直交するように配置されており、 可動子先端部に対向する位置に複数の馬 蹄形の消弧板 2 1 9が設けられている。 また、 固定子 2 0 5の固定接点 2 0 6が 固着されている端部側の固定導体は上方へと延長されており、 延長された導体 2 3 8に絶縁物カバ一 2 0 9 aから消弧板 2 1 9側に露出するアークランナー 2 3 4が設けられている。
上記のような電路配置では、 閉成状態において、 固定導体 7を流れる電流がつ <る全ての磁界が可動子 2 0 1を開極させる方向に作用するので、 短絡遮断時に は可動子 2 0 1がより高速開極する。従って、 上記電路構成を、 高圧雰囲気を発 生させる手段である筒状絶縁物 8と併用することによりアーク電圧の立上りを大 幅に改善でき、 限流性能が一層向上する。
ところで、 本発明では、 短絡遮断時に筒状絶緣物 2 0 8内にてアークを発生さ せるため、 固定接点 2 0 6側のアークスポッ 卜が筒状絶縁物 2 0 8の内径にて制 限され、 電流密度が上昇する。 これにより固定接点 2 0 6の損耗が大きくなる場 合があり、 可能な限流動作回数が制限される。 しかし、 本実施の形態 5 7では、 前述のように、 固定接点 2 0 6の上方にアーク Aが転流するァ一クランナ一2 3 4が設けられており、 図 1 2 9に示すように、 可動子 2 0 1が回動して可動接点 2 0 2が筒状空間 2 1 8外に移動した限流動作後半において、 可動接点 2 0 2側 のアーク噴き出し方向は固定接点 2 0 6から消弧板 2 1 9側へと向きを変える。 また、 アークは固定導体 2 0 7 a、 2 0 7 b、 2 0 7 cおよび可動子 2 0 1を流 れる電流により、 消弧板 2 1 9方向へ電磁力を受ける。 これらのアーク駆動力に より、 固定子 2 0 5側のアークスポットは、 固定接点 2 0 6からアークランナー 2 3 4へと移動する。 従って、 固定接点 2 0 6および筒状絶縁物 2 0 8の消耗が 抑えられ、 繰返し使用可能な耐久性に優れた限流装置が得られる。
さらに、 図 1 2 9に示すように、 ァ一クがアークランナ一 2 3 4に転流するこ とによりアークが消弧板 2 1 9により強く触れ、 アークの熱が消弧板 2 1 9の蒸 発潜熱により奪われアーク温度が低下するので、 遮断動作後半の筐体内圧上昇を 低減できる。 一般に配線用遮断器で用いられるモールド材の衝撃応力に対する機 械強度は、 静的応力に対する機械強度より大きい。 従って、 遮断動作後半におけ る筐体内圧の低下は、 モールド材で作成された筐体の割れを防止する効果がある 前述のように、 アークランナー 2 3 4に固定接点 2 0 6側のアークスポッ卜を 転流させることにより固定接点 2 0 6の消耗を低減できるが、 ァ一クランナ一 2 3 4にアークが転流した瞬間に固定接点 2 0 6近傍のアークが筒状空間 2 1 8外 へと移動し、 筒状空間 2 1 8の高圧雰囲気にて高められていたアーク電圧が低下 する。 このアーク電圧の低下が電流ピーク以前に生じると、 電流ピークが大幅に 増大し、 限流性能が大幅に低下する。 また、 たとえ上記アーク電圧の低下が電流 ピーク以後に生じても、 限流動作後半の電流の減少速度が低下して遮断時間が長 くなり、 通過エネルギーが大き〈なることがある。 このような問題を解決したの が、 次の実施の形態 5 8である。 実施の形態 5 8 .
本発明の実施の形態 5 8を図 1 3 0に示す。 図 1 3 0に示す実施の形態 5 8で は、 アークランナー 2 3 4の周りの絶縁カバ一 2 0 9 aを筒状にして、 ァ一クラ ンナ一筒状空間 2 3 9を形成している。 このようにすると、 可動子 2 0 1が回動 して可動接点 2 0 2が筒状空間 2 1 8から出ても、 すぐには固定接点側ァ一クス ポッ卜がアークランナー 2 3 4へと転流せず、 筒状空間 2 1 8内での高圧雰囲気 を利用したアーク電圧上昇を有効に利用でき、 電流ピークを小さ〈抑えることが できる。 また、 ァ一クがアークランナ一 2 3 4に転流した後も、 ァ一クランナ一 2 3 4が筒状の絶縁カバー 2 0 9 aに囲まれたァ一クランナ一筒状空間 2 3 9内 にあるため、 アーク電圧が低下することがなく、 遮断時間を短縮でき、 通過エネ ルギ一の低減につながる。 実施の形態 5 9 .
本発明では、 例えば図 1 2 0に示すように、 筒状絶縁物 2 0 8内で開極初期に アークを発生させるために可動子 2 0 1の先端部はほぼ L字状の形状になされて いる。 そのため、 可動子 2 0 1側のアークスポッ卜は可動接点 2 0 2から可動子 2 0 1の消弧板側の端面に移動し難いので、 遮断動作後半になっても可動子側ァ —ク噴き出し方向が消弧板方向へ向かず、 アークが消弧板 2 1 9に触れにくい。 よって、 消弧板 2 1 9のァ―ク冷却効果を有効に利用できず、 限流動作後半にお いて、 アーク電圧上昇に結びつかない不必要な筐体内圧上昇をまねく場合がある そこで、 本実施の形態 5 9では、 図 1 3 1に示すように、 一端が接続導体 2 1 4に電気的に接続され、 他端が消弧板 2 1 9側へと延びる、 可動子 2 1 とほぼ同 電位の、 転流電極 2 3 7を可動子 2 0 1の背後に設け、 可動接点 2 0 2側のァ— クスポッ卜が転流電極 2 3 7に転流して消弧板 2 1 9方向へと移動するように構 成している。 また、 実施の形態 5 7、 実施の形態 5 8と同様に、 固定子 2 0 5側 もアークスポヅ卜がアークランナーにより消弧板 2 1 9側へと転流する構成とし ており、 アークは消弧板 2 1 9により確実に分断、 冷却される。 従って、 限流動 作後半における不必要な筐体内圧上昇を防止できる。 実施の形態 6 0 .
前述のように、 本発明では、 可動子先端部はほぼし字状の形状となっているた め、 可動子 2 0 1側のアークスポヅ 卜は可動子 2 0 1の消弧板側の端面に移動し 難い。従って、 可動子側のアークスポッ 卜近傍の電流は、 可動接点 2 0 2に集中 し、 可動接点 2 0 2の消耗が大きくなりやすい。 そこで、 本実施の形態 6 0では、 図 1 3 2に示すように、 転流電極 2 3 7 aに開成状態の可動子 2 0 1の先端部が 入り込むスリツ卜 2 4 7を設け、 図 1 3 1に示す棒状転流電極 2 3 7と比較して、 可動接点側アークスポッ卜を限流動作中の比較的早い時期に確実に転流電極 2 3 7 aに転流させる構成としている。
転流電極 2 3 7 aに転流したアークは、 消弧板 2 1 9の吸引作用と固定子 2 0 5および転流電極 2 3 7 aを流れる電流による電磁駆動力により転流電極 2 3 7 a先端部へと駆動されてアーク長が急速に伸び、 アーク電圧が上昇する。 このよ うな比較的早い時点での可動子 2 0 1から転流電極 2 3 7 aへの転流により、 可 動接点 2 0 2の損耗は実施の形態 5 9のものより大幅に低減でき、 限流装置の耐 久性が向上する。 実施の形態 6 1 .
本発明の実施の形態 6 1を図 1 3 3に示す。 図 1 3 3は、 固定子 5の固定接点 6側端部近傍と可動子 2 0 1の先端部と消弧板 2 1 9とを示す部分断面図であり、 可動子 2 0 1は、 開極動作途中の位置にある。 その他は図示してないが、 図 1 1 9に示した実施形態と基本的に同一構成である。 図 1 3 3に示した筒状絶縁物 2 0 8は、 筒状空間 2 1 8の開放端側に向かって広がるような形状になされ、 可動 子回転中心 (回転軸 2 1 3、 図示せず) から遠い側の筒状絶縁物壁がラッパ状に 広がるように構成されている。 この筒状絶縁物 2 0 8の形状により、 筒状空間 2 1 8内で発生した高圧蒸気の流れが、 図中の矢印で示すように、 消弧板 2 1 9側 へと流れるので、 接点間のアークがこの蒸気流により消弧板 2 1 9へと引き伸ば される。
このアークを蒸気流で消弧板 2 1 9へと導〈作用は、 図で示すように、 可動子 回転中心から遠い側の筒状絶縁物壁の高さを可動子回転中心に近い側の壁高さよ り低くすることにより強化される。 このように、 消弧板 2 1 9によるアーク冷却 効果を有効に利用できる構成とすれば、 ァ―クの熱により消弧ュニッ卜筐体内圧 が高くなることを防止でき、 筐体の機械的強度を下げることができるので、 コス 卜低減につながる。 実施の形態 6 2 .
本発明の実施の形態 6 2を図 1 3 4に示す。 図 1 3 4は、 筒状絶縁物 2 0 8と 固定子 2 0 5の固定接点側の端部を示す部分断面図であり、 筒状絶縁物 2 0 8は、 筒内面を形成する絶縁物 2 0 8 aとその周りの絶縁物 2 0 8 bとにより構成され る。絶縁物 2 0 8 aは、 アークに暴露されると即座に大量の蒸気を発生する性質 を有する材料、 例えば、 ガラス繊維などの強化材を少量しかもし〈はまったく含 まない樹脂材にて成形され、 絶縁物 2 0 8 bは、 機械的強度に優れた強化樹脂も し〈はセラミックにて成形される。
このような構成にすると、 筒状空間 2 1 8で発生する高圧力に機械的に耐えら れない材料を筒内面の材料として用いることができるので、 筒状絶緣物 2 0 8と して機械的特性に関係な〈大量の蒸気を発生する物質を適用でき、 開極初期の筒 状空間 2 1 8内の圧力上昇速度を高めることができ、 アーク電圧が急激に立ち上 がるので、 限流性能が向上する。 実施の形態 6 3 .
本発明の実施の形態 6 3を図 1 3 5に示す。 図 1 3 5は、 筒状絶縁物 2 0 8と 固定子 2 0 5の固定接点側の端部と可動子 2 0 1の可動接点側先端部を示す部分 断面図であり、 図中、 可動子 2 0 1の回動中心より最も遠い部位が開極動作によ り描く軌跡を破線にて表している。 筒状絶縁物 2 0 8の、 可動子先端部に対向す る面は、 この破線に一定の間隙を持つように形成される。
一般に、 可動子 2 0 1の回転中心は接点接触面より上方 (固定子から遠い側) に設けられるので、 可動子 2 0 1の軌跡は固定接点位置より可動子回転中心より 遠い側へと膨らむ。 そのため、 もし筒状絶縁物 2 0 8の可動子先端部に対向する 面を垂直とすると、 上記面を固定接点 2 0 6から離れた位置に配置する必要があ り、 筒状絶縁物 2 0 8に囲まれる筒状空間 2 1 8の容積が大き〈なる。 そのため、 十分高い高圧雰囲気をつくるのに時間がかかる場合がある。 そこで、 上記可動子 先端部の軌跡に沿って筒状絶縁物 2 0 8の内面を形成すれば、 同一開極距離にお ける筒状空間 2 1 8の容積を小さくでき、 上記空間の圧力上昇速度を高められ、 アーク電圧が急激に立ち上がるので、 限流性能が向上する。 実施の形態 6 4 .
本発明の実施の形態 6 4を図 1 3 6に示す。 図 1 3 6は、 筒状絶縁物 2 0 8と 固定子 2 0 5の固定接点側の端部と可動子 2 0 1の可動接点側先端部を示す部分 断面図であり、 固定子 2 0 5の端部の固定接点 2 0 6の周りを、 筒状絶縁物 2 0 8の筒内面側に張出した絶縁部位 2 0 8 cにて覆っている。 その他は図示してな いが、 図 1 1 9に示した実施形態と基本的に同一構成である。
筒状絶縁物 2 0 8に囲まれる筒状空間 2 1 8は、 一般に、 可動子 2 0 1の開閉 動作時の軌跡やブレを考慮して固定接点 2 0 6の接触面より大きな断面を有する c そのため、 絶縁部位 2 0 8 cを設けない場合、 可動子 2 0 1側から固定接点 2 0 6の接触面を見ると、 固定接点 2 0 6の周りに固定導体 2 0 7の一部が露出して 見える。遮断動作時にアークが発生すると、 固定接点側のアークスポッ卜はこの 露出部まで広がる。 これに対して、 絶縁部位 2 0 8 cがあると、 固定子側のァ一 クスポッ卜は固定接点 2 0 6の面積による制限を受け、 絶縁部位 2 0 8 cが無い 場合より固定接点近傍のアーク佳が絞られ、 アーク電圧が上昇する。 また、 絶縁 部位 2 0 8 cから発生する絶縁物蒸気の分だけ蒸気発生量が増え、 十分な高圧雰 囲気を素早く形成できるので、 限流性能が向上する。 実施の形態 6 5 .
本発明の実施の形態 6 5を図 1 3 7に示す。 図 1 3 7は、 筒状絶縁物 2 0 8と 固定子 2 0 5の固定接点側の端部と可動子 2 0 1の可動接点側先端部を示す部分 断面図であり、 筒状空間 2 1 8を囲む筒状絶縁物 2 0 8の壁の内、 可動子回転中 心に近い側の壁高さを可動子回転中心から遠い側の壁高さより低く している。 そ の他は図示してないが、 図 1 1 9に示した実施形態と基本的に同一構成である。 遮断動作時に接点間に発生するアークには、 固定導体 2 0 7および可動アーム 水平部 2 0 4を流れる電流により、 可動子回動中心と反対側に電磁駆動力が発生 する。 従って、 筒状空間 2 1 8内にあるアークは可動子回転中心から遠い側の壁 により強〈触れる。 また、 可動子 2 0 1を高速開極するためには、 可動子 2 0 1 の慣性モーメントを小さく した方が有利であるが、 筒状絶縁物 2 0 8の筒高さに より決まる可動アーム垂直部 2 0 3が長〈なると、 可動子慣性モーメントは増加 する。 そこで、 図 1 3 7に示すように、 筒状絶縁物 2 0 8の可動子回転中心に近 い側の壁高さを、 可動子回転中心から遠い側の壁高さより低〈することにより、 可動アーム垂直部 2 0 3の長さを短く して慣性モーメントを低減し、 かつ、 十分 な筒状絶縁物蒸気を発生させて十分な高圧雰囲気を作ることができ、 限流性能を より向上させることができる。 実施の形態 6 6 .
次に、 本発明の実施の形態 6 6を図 1 3 8に示す。 図 1 3 8は、 本実施の形態 の可動子 2 0 1を示す斜視図であり、 可動子 2 0 1は、 可動接点 2 0 2、 可動ァ ーム垂直部 2 0 3、 部位 2 0 4 c、 2 0 4 d、 2 0 4 eにて成る可動アーム水平 部 2 0 4、 および、 可動子アーム部の固定接点側の面を覆う絶縁物 2 4 1により 構成され、 ほぼ鉤型の形状となる。 このように、 可動子 2 0 1をほぼ鈎型とする ことにより、 筒状絶縁物を用いる場合においても、 閉成状態の固定導体と可動ァ ーム水平部 2 0 4 eとの距離を近付けることができる。 なお、 その他は図示しな いが、 図 1 1 9に示した実施形態と基本的に同一構成である。
図 1 3 9は、 本実施の形態の閉成状態の可動子 2 0 1、 固定子 2 0 5、 および 筒状絶緣物 2 0 8を示す図であり、 図中、 電流の流れを矢印にて表している。 同 図より明らかなように、 事故電流発生時に電磁開極力を発生する固定導体 2 0 7 と可動アーム水平部 2 0 4 eをそれぞれ流れる反対方向の電流が、 例えば図 1 2 0に示す L型可動子を用いる場合より一層近付き、 電磁反発力が増大し、 開極速 度が向上する。
しかし、 図 1 4 0に示すように、 可動子 2 0 1の開成状態の回転角 0が大きく なると、 可動子 2 0 1 を鉤型にすることによりアークが可動アーム部に触れ、 分 流する可能性が高くなる。 このようにアークが可動アームに触れると、 可動ァー 厶が溶融して細くなり開閉に耐えうる十分な機械的強度を維持できなくなるのみ ならず、 遮断動作後半のアーク電圧が低下して、 限流性能が悪化する。 そこで、 少なくとも固定接点 2 0 6表面から見渡せる可動アームの可動接点より可動子回 動中心側の部位を絶縁物 2 4 1にて覆う必要がある。 このような可動アームへの 分流は、 可動子 2 0 1の回転角 0が大き〈なると実施の形態 5 5で示したほぼ L 字状の可動子においても生じることがあり、 上記のような可動アームの絶縁が必 要となる。 実施の形態 6 7 .
図 1 4 1に本発明の実施の形態 6 7を示す。通常、 可動子 2 0 1の回転中心近 傍には、 可動子を回転自在に、 かつ電気的に接続する部品が配置される。例えば、 図 1 2 0に示した実施の形態では、 摺動接触子 2 1 0が配置されている。 また、 図 1 2 0に示すように、 ひねりパネ 2 1 1にて接圧を発生する場合、 可動子回転 中心近傍にはパネが配置される。 従って、 固定子 2 0 5と可動子回転軸 2 1 3の 距離は、 ある値以上に小さくできない。
そこで、 図 1 4 1に示すように、 可動子 2 0 1の形状をぼぼ S字状に屈曲して、 図 1 3 9に示すほぼ鉤型の可動子より屈曲部を 1つ増やせば、 可動アーム水平部 2 0 4 eと固定導体 2 0 7との距離を遠ざけることなく、 上記摺動接触部および ひねりパネ等を配置できるので、 回転軸 2 1 3が固定導体 2 0 7より離れている 場合でも事故電流発生時に大きな電磁開極力を得ることができる。 なお、 その他 は図示してないが、 図 1 1 9に示した実施形態と基本的に同一構成である。 実施の形態 6 8 .
図 1 4 2に本発明の実施の形態 6 8を示す。 同図では、 閉成状態のほぼ L字状 の可動子 2 0 1 と、 可動アーム水平部 2 0 4と対向する固定導体 2 0 7の部位が 可動ァ―厶水平部 2 0 4に近づくように曲げられた固定子 2 0 5が示されている c なお、 その他は図示してないが、 図 1 1 9に示した実施形態と基本的に同一構成 である。 このように、 固定導体側を可動アーム 2 0 4へと近付けても実施の形態 6 7と同様な効果がある。 さらに、 本例では、 可動子 2 0 1がほぼ L字状となる ので、 実施の形態 6 6もし〈は実施の形態 6 7に示したぼぼ鉤型の可動子もしく はほぼ S字状の可動子より慣性モ一メン卜を小さ〈できるので、 より高速開極が 可能となる。 実施の形態 6 9 .
実施の形態 5 5では、 1対の接触子対を有する限流装置を示したが、 従来例の 図 1 5 2および 1 5 3に示すような 2対の接触子対を有する導体配置にて、 両可 動子先端部をぼぼし字状とし、 両固定接点の周りに図 2で示したような筒状絶縁 物を配置し、 限流動作時に筒状空間内にて 2つの直列アークを発生させれば、 よ り限流性能が向上する。 これにより回路に直列接続された電磁開閉器を保護する 能力が高まるので、 電磁開閉器の耐溶着性を下げることができ、 配電系統全体と してコス卜を ί氐減することができる。
なお、 実施の形態 5 5乃至実施の形態 6 9に示した限流装置を、 この限流装置 にて小さく絞られた電流を遮断する能力を有する回路遮断器の長手方向に連接す ることにより、 限流性能に優れた回路遮断器が得られる。 このとき、 図 1 5 0、 1 5 1に示した従来例と同様に、 限流装置の幅寸法および高さ寸法を上記回路遮 断器と同一以下とすれば、 配電盤への収納性が向上する。 実施の形態 7 0 .
この発明の実施の形態 7 0を図 1 4 3乃至図 1 4 5に示す。 図 1 4 3は、 筒状 絶縁物 2 2 5の形状および固定子 2 0 5に延接された延長導体 2 9 2にて構成さ れるァ一クランナ 2 7 9を除き、 基本的に図 3 8に示した実施の形態 1 6と同様 である。 図 1 4 3の筒状絶緣物 2 2 5の筒断面は、 実施の形態 1 6と果なり、 端 子部 2 1 5側に広がった形状をしている。 また、 固定子 5の固定接点側瑞部には、 端子部 2 1 5側へとのびるァ一クランナ 7 9が設けられている。
ところで、 例えば、 図 3 8に示した実施の形態 1 6のように、 筒状絶縁物 2 2 5の筒断面を固定接点 2 0 6と略同じとすると、 短絡電流近断時には、 接点間に アーク発生した時の筒状空間内の圧力の上昇が大きいので、 アーク電圧が急速に 立ち上がり、 優れた限流性能が得られる。 この優れた限流性能により、 遮断器の 通過エネルギーが小さくなるので、 接点対や消孤板の損耗が従来より減る。 しか し、 回路電圧が比較的高い回路では、 アーク電圧による限流作用が顕著に現れ難 いことがある。 このような場合、 遮断器を通過するエネルギーをアーク電圧にて 小さく押さえられず、 接点対や消孤板の損耗が大きくなり、 遮断後の再通電ゃ繰 り返し遮断ができないことがある。 特に、 図 3 8に示した実施の形態 1 6のよう に、 筒断面積が比較的小さい筒状絶縁物を用いると、 固定子側アークスポッ卜が 高圧雰囲気中で常に固定接点上にあり、 事故電流を充分絞り込めないと固定接点 の損耗が劇的に増加する。 また、 固定子側ァ一クランナが常に固定子上にあると、 定格電流遮断等の比較的小電流の多頻度遮断においても固定接点の消耗が大きく、 回路遮断器の通電開閉寿命が制限されることがある。
そこで、 本実施の形態では、 筒状絶縁物 2 2 5の筒状空間を端子部 2 1 5側へ と広げ、 且つ、 固定接点 2 0 6のアークスポッ卜が移動するァ一クランナ 2 7 9 を設けている。 このような構成とすると、 図 1 4 4に示すように、 開極直後に発 生したアークは、 電路 2 8 6 bおよび 2 8 6 cの電流による電磁駆動力と、 同図 中黒矢印で示す筒状絶縁物の可動子回転中心 2 1 3側の筒壁面から発生する蒸気 流の力とにより、 端子部 2 1 5側へと素早く押し出されるので、 先述の固定接点 2 0 6の損耗が押さえられる。 さらに、 図 1 4 5に示すように、 開極距離がある 程度大き〈なると、 固定子側アークスポッ 卜がァ一クランナ 2 7 9の先端部に移 動するのでアークが馬蹄形の鉄製消孤板 2 1 9に触れやすくなる。 そのため、 ァ ーク温度が低下し、 筐体内圧の上昇が押さえられる。 また、 比較的小電流の多頻 度の通電開閉にともなう筒状絶縁物の筒壁面の炭化や変質にともなう沿面抵抗の iS下が発生した場合でも、 消孤板にアークが十分引き込まれるので、 消孤板によ る消孤作用にて電流を遮断することができ、 遮断の信頼性が向上する。
図 1 4 3乃至図 1 4 5では、 略 J字状の固定子形状を示したが、 図 5 9、 1 1 4、 4 4、 4 8に示した固定子の固定接点側端部にアークランナを追加し、 前記 アークランナ側に広がった筒状絶縁物と組み合わせることにより、 同様の効果が 得られる。特に、 固定接点近傍の可動子回転中心側にアークと反対方向の電流成 分を有する電流が流れる電路 2 8 6 dが設けられている図 4 0、 4 4、 4 8では、 電路 2 8 6 dの電流によるアークへの電磁駆動力が強く、 開極直後の早い時点で アークがアークランナヘと移動するので、 接点消耗改善効果がより大きい。
ところで、 このように筒断面積を大きくすると、 筒状空間の内圧上昇が遅くな り、 図 3 8に示した比較的小さな筒状断面を有する筒状絶縁物を用いた場合と比 較すると、 開極直後のアーク電圧の上昇速度が低下する。 しかし、 従来の可動子 の左右に絶縁物を配置し、 この絶縁物からの冷却蒸気を利用してアーク電圧を上 昇させる手法と比較すれば、 開極初期においては、 アークが可動子回転中心側の 筒壁面にふれ、 アークがアークランナに移動後は、 端子部 2 1 5側の筒壁面に押 し付けられるので、 筒状空間内圧は従来より高くなり、 アーク電圧の上昇速度も 従来と比較すれば速くなる。 また、 図 1 4 3に示すように、 両接触子対は消孤ュ ニッ卜筐体本体 2 3 6、 消孤ュニッ 卜筐体蓋 2 3 7 (図示せず) 内にあり、 筒状 空間 2 2 6で発生したアークにより圧力上昇は直ちに外部へと排出されず、 前記 筐体 2 3 6、 2 3 7内の内圧を上昇させる。 従って、 筒状絶縁物を樹脂等の比較 的分解温度の低い絶縁物にて構成して筒状絶縁物より充分な蒸気を発生させれば、 アーク電圧を上昇させて限流性能を向上させるのに十分な圧力上昇を得ることが できる。 実施の形態 7 1 . この発明の実施の形態 7 1を図 1 4 6に示す。 本実施の形態は、 図 1 4 6に示 した消孤板 2 1 9 aを除いて基本的に実施の形態 7 0と同様である。 図 1 4 6は、 事故電流遮断動作中の開極距離がある程度大きくなった時点の接点対近傍の状態 を示している。 図 1 4 6に示すように、 開極距離がある程度大きくなる電流ピー ク以降の遮断動作後半において、 固定子側アークスポッ卜はアークランナ 2 7 9 の先端部に移動する。 このとき筒状空間内の端子部 2 1 5側に消孤板 2 1 9 aを 設けておくと、 アークが筒状空間内の消孤板にふれてアーク温度が低下し、 筐体 内圧の上昇が押さえられる。従って、 筐体に求められる機械的強度を低〈でき、 筐体が安価となる。
以上のように、 この発明によれば、 1つの消弧装置にて優れた限流機能を有す る低コス卜な限流装置を得ることができるとともに、 限流性能に優れかつインピ 一ダンスが小さく、 接点開閉方向の寸法が小さ〈できる。
また、 限流性能向上に効果的に結びつかない遮断時の筐体内圧上昇を抑え筐体 に必要とされる強度を低減可能な限流機能を有する限流装置を得ることができる c また、 筐体の両側面に設けられた端子部の高さ位置にかかわらず、 電磁反発力 を発生するような可動子、 固定子の電路配置としているため、 高速開極が可能と なる。
また、 アークランナーや転流電極を設けることにより接点消耗を減じ、 繰り返 しの使用にも耐える信頼性の高し、限流装置を得ることができる。
また、 筐体の反対側面に設けられたそれぞれの端子部の高さを回路遮断器の端 子位置と合わせて端子同士を直結することにより、 回路遮断器と一体に連接して 限流遮断器を得ることが容易である。
更に、 この発明によれば、 1つの消弧装置にて優れた限流機能と遮断機能を有 する低コス卜な回路遮断器を得ることができるとともに、 限流性能に優れかつィ ンピ一ダンスが小さく、 接点開閉方向の寸法が小さく、 また、 限流性能向上に効 果的に結びつかない遮断時の筐体内圧上昇を抑え筐体に必要とされる強度を低減 可能な限流機能を有する回路遮断器を得ることができる。
また、 可動子の開閉動作が筒状絶縁物に妨げられることがなく、 限流性能に優 れ、 かつ開閉の信頼性の高い限流機能を有する遮断器が得られる。 また、 筒状絶縁物が可動子の閉極を妨げないように可動子回転中心側の絶縁壁 の高さを低く しても、 アーク電圧を上昇させるのに十分な高圧雰囲気が発生し、 優れた限流性能が得られる。
また、 アークが消弧板に触れやすくなり、 電流を確実に遮断できる信頼性の高 し、限流機能を有する遮断器が得られる。
また、 非常に大きな電磁開極力が得られ、 開極速度が大幅に向上して限流性能
Iこ優れた限流機能を有する遮断器が得られる。
また、 確実に電流を遮断でき、 絶縁破壊に起因する再点弧が生じにくい信頼性 の高い限流機能を有する回路遮断器が得られる。
また、 遮断動作後半に固定接点の周りを筒状に取り囲む絶縁物から露出するァ —クランナ一先端部に固定接点側のアークスポッ卜が転流し、 アークが消弧板に 触れやすくなり、 アークが確実に冷却、 消弧され、 電流を確実に遮断できる信頼 性の高い限流機能を有する回路遮断器が得られる。
また、 アーク消弧時に蓄圧空間内に蓄積した圧力による排気口へと流れる高速 の気流が生じ、 接点間の金属蒸気等の導電率の高いホッ卜ガスを吹き飛ばし、 電 極間の絶縁を急速に回復させるので、 確実に電流を遮断でき、 絶縁破壊に起因す る再点弧が生じに <い信頼性の高い限流機能を有する回路遮断器が得られる。 また、 電流遮断動作中に可動アームがアークにより溶融することがなく、 可動 子の機械強度の低下を防ぐことができる。
なおまた、 この発明によれば、 閉成状態において可動接点と固定接点を筒状絶 縁物による筒状空間内に配置し、 開成状態においては可動接点が筒状空間外に成 るよう配置したため、 アーク発生初期の雰囲気圧が高められ、 少ない部品点数の 簡単な構成で遮断性能を向上させ、 不必要な筐体内圧の上昇を抑えることができ る。
また、 筒状絶縁物の筒状空間の形状、 材質をいろいろに変えることにより、 ァ —クの消弧板への誘導を確実にしてアーク冷却効果を有効に利用でき、 また、 ァ ークによる蒸気発生を容易にして、 筒状空間内の圧力の立上り速度を高め、 ァー ク電圧を急速に立ち上がらせることにより、 筐体内圧が高くなることを防止でき る効果がある。 また、 筐体の両側面に設けられた端子部の高さ位置にかかわらず、 電磁反発力 を発生するような可動子、 固定子の電路配置としているため、 高速開極が可能と なる。
また、 アークランナーや転流電極を設けることにより接点消耗を減じ、 繰り返 しの使用にも耐える信頼性の高い限流装置を得ることができる。
また、 筐体の反対側面に設けられたそれぞれの端子部の高さを回路遮断器の端 子位置と合わせて端子同士を直結することにより、 回路遮断器と一体に連接して 限流遮断器を得ることが容易である。 産業上の利用可能性
本発明にかかる限流装置およびそれを用し、て限流機能を持つ回路遮断器は、 回 路を短絡電流等の大事故電流から保護する装置として有用である。

Claims

請 求 の 範 囲
1 . 各々一端部に接点を有し一対の接触子対を形成する第 1、 第 2の接触子、 上記接触子対に接触圧を与える手段、 閉成状態の上記接点の周りを筒状に取り囲 む筒状絶縁物を備え、 上記第 1、 第 2の接触子のうち少なくとも一方の接触子を 他端部にて回転自在に支持し、 接点の閉成状態においては、 上記第 1、 第 2の接 触子に互いにほぼ対向して逆方向の電流が流れる電路が形成され、 かつ、 上記第 1、 第 2の接触子の接点を有する一端部が上記筒状絶縁物が囲む筒状空間内に位 置し、 接点の開成状態においては、 上記回転自在に支持された接触子のうち少な くともいずれか一方の接点が上記筒状空間外に位置するように構成したことを特 徴とする限流装置。
2 . 可動接点と可動アームとからなり可動子回転軸を中心として回転する可動 子、 上記可動接点と接点対をなす固定接点と上記可動アームにほぼ対向する固定 導体とからなる固定子、 閉成状態の上記接点対の周りを筒状に取り囲む筒状絶縁 物、 および、 上記接点対に接触圧を与える接圧パネを備え、 上記可動アームは可 動アーム水平部と可動アーム垂直部にてほぼ L字状に形成され、 接点の閉成状態 においては、 上記可動アーム水平部が上記固定導体とほぼ平行かつ逆方向の電流 が流れるように配置され、 かつ、 上記可動接点を有する可動子先端部および上記 固定接点を有する固定子先端部が上記筒状絶縁物が囲む筒状空間内に位置し、 接 点の開成状態においては、 上記可動接点が上記筒状空間外に位置するように構成 したことを特徴とする請求項 1記載の限流装置。
3 . 導体をほぼ U字状に曲げてその一端を可動子回転軸から遠い側の端子部に 接続するとともに、 その U字形状の他端の内側に固定接点を設けて可動子に対す る固定子となし、 かつ、 上記固定子の固定接点が設けられている 1片が閉成状態 の可動アーム水平部にほぼ対向する固定導体を形成し、 上記固定子には、 可動子 の回転軌跡と交差する部位に可動子の開閉を許すスリツ卜を設け、 また、 可動子 の開成時に可動接点から見渡せる固定子の固定接点以外の部位を絶縁物で覆った ことを特徴とする請求項 2記載の限流装置。
4 . 可動子回転軸より遠い側の端子部に接続された導体からなる固定子に、 可 動子接点と接点対をなす固定接点を有し、 かつ、 可動子の可動アーム水平部に対 向して可動アームに流れる電流と逆方向の電流が流れる固定導体を形成するとと もに、 この固定導体の両側に配置され端子部から固定導体に電流を導く電路上に 磁性体コアを配置したことを特徴とする請求項 2記載の限流装置。
5 . 固定導体を、 固定接点よりも可動アーム水平部により近づくように屈曲さ せたことを特徴とする請求項 4記載の限流装置。
6 . 可動接点と可動アームとからなり可動子回転軸を中心として回転する可動 子、 上記可動接点と接点対をなす反発接点と上記可動アームにほぼ対向する反発 アームとからなり反発子回転軸を中心として回転する反発子、 閉成状態の上記接 点対の周りを筒状に取り囲む筒状絶緑物、 上記接点対に接触圧を発生させる接圧 パネ、 および主たる開口部が上記筒状絶縁物が囲む筒状空間に連通して形成され、 上記反発子を収納する蓄圧空間を備え、 上記反発ァ一厶は反発ァ一厶水平部と反 発アーム垂直部とによりほぼ L字状に形成され、 閉成状態においては、 上記反発 アーム水平部が上記可動アームの一部とほぼ平行で反対方向の電流が流れるよう に配置され、 かつ、 上記可動接点を有する可動子先端部および上記反発接点を有 する反発子先端部が上記筒状空間内に位置し、 開成状態においては、 上記可動子 先端部が上記筒状空間外に位置するように構成したことを特徴とする請求項 1記 載の限流装置。
7 . 反発子に電流を供給する電路を上記反発子の反可動子側に設け、 上記電路 の少なくとも反発子先端部と対向する部位に反発子開極軌跡を含む面に沿って反 発子の幅とほぼ同幅のスリッ卜を設けたことを特徴とする請求項 6記載の限流装
8 . 反発子に電流を供給する電路を反発子の開極軌跡を含む面と交差して配置 し、 上記電路には反発子もし〈可動子の開閉動作を許すスリツ卜を設け、 上記電 路を、 反発アーム水平部よりも可動アームに近い位置に配置し、 かつ、 上記反発 アーム水平部とほぼ平行かつ逆方向の電流が流れるよう構成したことを特徴とす る請求項 6記載の限流装置。
9 . 絶縁物筐体内に収納され、 可動接点と、 ほぼ L字状の可動アームとからな り、 回転軸を中心として回転する可動子、 上記可動接点と接点対をなす固定接点 と、 閉成時に上記可動アームの一部とはぼ平行に配置され、 かつ可動アームと反 対方向に電流が流れる電路とからなる固定子、 閉成状態の上記接点対の周りを筒 状空間で取り囲む筒状絶縁物、 上記接点対に接触圧を与える付勢手段、 上記可動 子の先端と対向する位置に配設された消弧板、 および上記絶縁物筐体の反対側面 に設けられそれぞれ上記可動子および固定子に接続されている端子部を備え、 上 記固定子は上記両端子部を結ぶ線に対してほぼ垂直に配置され、 閉成状態におい ては上記接点対が上記筒状空間内に位置し、 開成状態においては上記可動接点が 上記筒状空間外に位置するように構成したことを特徴とする請求項 1記載の限流
1 0 . 端子部は絶縁物筐体の底面より高い位置に設けられ、 可動子および固定 子は、 互いに平行する電路から屈曲する電路を経てそれそれ可動子および固定子 から遠し、側の端子部に接続されるよう構成したことを特徴とする請求項 9記載の
RR ^ ε ι4。
1 1 . 可動子と固定子の接点対が 2組設けられ、 これら接点対は電気的に直列 に接続され、 かつ相互に隔壁で隔てられていることを特徴とする請求項 9記載の
1 2 . 閉成状態の接点対の周りを筒状に取り囲む筒状絶縁物の、 可動子回転軸 と反対側の壁の高さを、 可動子回転軸側の壁の高さより高くしたことを特徴とす る請求項 2、 請求項 6、 および請求項 9のいずれか一項記載の限流装置。
1 3 . 可動子、 固定子もし〈は反発子、 および閉成状態の接点対の周りを筒状 に取り囲む筒状絶縁物を筐体に収納し、 上記筐体の可動接点からみて可動子回転 軸と反対側の面に排気口を設け、 上記排気口は、 面積が上記筐体の上記排気口を 含む面の半分以下の面積で、 かつ、 開成状態の可動接点に近接する位置に配置さ れていることを特徴とする請求項 2、 請求項 6、 および請求項 9のいずれか一項 記載の限流装置。
1 4 . 可動子の先端と対向する位置に配置された消弧板と、 固定子への通電導 体に延設されたアークランナーとを有し、 このアークランナーの端部を筒状絶縁 物の可動子回転軸と反対側の部位から消弧板側に露出させたことを特徴とする請 求項 2または請求項 9記載の限流装置。
1 5 . 可動子と対向し可動子と逆向きの電流が流れる固定導体の部位を、 可動 子に近接するように屈曲させたことを特徴とする請求項 2または請求項 9記載の
1 6 . 可動子への通電導体に接続され、 先端部が消弧板近傍に達する転流電極 を閉成状態の可動子の背後に設けたことを特徴とする請求項 2または請求項 9記 載の限流装置。
1 7 . 可動接点と可動アームとからなり可動子回動軸を中心として回転する可動 子、 上記可動接点と接点対をなす固定接点と上記可動アームにほぼ対向する固定 導体とからなる固定子、 閉成状態の上記接点対の周りを筒状に取り囲む筒状絶縁 物、 および上記接点対に接触圧を与えるパネを備え、 閉成状態において上記接点 対が上記筒状絶縁物が囲む筒状空間内に位置し、 開成状態において上記可動接点 が上記筒状空間外に位置するように構成したことを特徴とする限流機能を有する 回路遮断器。
1 8 . 可動アームは、 可動アーム水平部と可動アーム垂直部にてほぼ L字状に形 成され、 閉成状態において可動アーム水平部が固定導体とほぼ平行に位置し、 か つ上記可動アーム水平部には固定導体と反対方向の電流が流れるように構成した ことを特徴とする請求項 1 7記載の限流機能を有する回路遮断器。
1 9 . 筒状絶縁物で形成される筒状空間の内壁面にアークとの接触面積を増やす ひだを設けたことを特徴とする請求項 1 7記載の限流機能を有する回路遮断器。
2 0 . 筒状空間を形成する筒状絶縁物の材質を、 接点対を取り囲む部分とそれ以 外の部分とで変え、 接点対を取り囲む部分の絶縁物をアークにより大量の蒸気を 発生しやすい材質としたことを特徴とする請求項 1 7記載の限流機能を有する回 路 断器。
2 1 . 筒状空間の内壁を、 可動子先端の回転軌跡に沿わせた形状としたことを特 徴とする請求項 1 7記載の限流機能を有する回路遮断器。
2 2 . 筒状空間に位置する固定子は、 固定接点だけが筒状空間に露出するよう、 固定接点の周囲を絶縁物で覆つたことを特徴とする請求項 1 7記載の限流機能を 有する回路遮断器。
2 3 . 閉成状態の接点対の周りを筒状に取り囲む筒状絶縁物の、 可動子回転中心 と反対側の壁の高さを、 可動子回転中心側の壁の高さより高くしたことを特徴と する請求項 1 7記載の限流機能を有する回路遮断器。
2 4 . 固定子を形成する固定導体と可動子に通電する導体の一部を平行かつ近接 して配置し、 通電時に上記両導体に流れる電流方向が一致するようにしたことを 特徴とする請求項 1 7記載の限流機能を有する回路遮断器。
2 5 . 固定導体と、 可動子に通電する導体とを、 可動子が回転する軌跡を含む面 において平行に配置したことを特徴とする請求項 2 4記載の限流機能を有する回
2 6 . 固定導体と、 可動子に通電する導体とを囲むコアを設け、 上記コアの両極 を閉成状態の可動アーム水平部に対向するように配置したことを特徴とする請求 項 2 4記載の限流機能を有する回路遮断器。
2 7 . 固定導体と、 可動子に通電する導体と、 可動子とを囲むコアを設けたこと を特徴とする請求項 2 4記載の限流機能を有する回路遮断器。
2 8 . 可動子、 固定子、 および固定接点の周りを筒状に取り囲む筒状絶縁物を筐 体に収納し、 上記筐体の可動接点からみて可動子回転中心と反対側の面に排気口 を設け、 上記排気口は、 面積が上記筐体の上記排気口を含む面の半分以下の面積 で、 かつ、 開成状態の可動接点に近接する位置に配置されていることを特徴とす る請求項 1 7記載の限流機能を有する回路遮断器。
2 9 . 可動子への通電導体に延設され先端が消弧板上方の排気口近傍に達する転 流電極を備え、 上記転流電極には、 可動子の回動を許すスリツ卜を設け、 可動子 開成位置において可動接点が転流電極に近接するようにしたことを特徴とする請 求項 2 8記載の限流機能を有する回路遮断器。
3 0 . 可動子の開極軌跡にほぼ沿う位置に、 筐体の外部上方または下方から筐体 を挟み込むか、 または筐体を取り囲むコアを設けたことを特徴とする請求項 2 8 記載の限流機能を有する回路遮断器。
3 1 . 固定接点を、 筒状空間に連通する蓄圧空間内に配置したことを特徴とする 請求項 1 7記載の限流機能を有する回路遮断器。
3 2 . 固定接点の周りの固定導体の一部を絶縁物で覆ったことを特徴とする請求 項 3 1記載の限流機能を有する回路遮断器。
3 3 . 蓄圧空間を固定子の上方のみに設けたことを特徴とする請求項 3 1記載の 限流機能を有する回路遮断器。
3 4 . 可動子の先端と対向する位置に配置された消弧板と、 固定子の固定接点側 端部に接続されたアークランナーとを有し、 上記アークランナーの先端部を筒状 絶縁物の可動子回転中心と反対側の部位から上記消弧板側に露出させたことを特 徴とする請求項 1 7載の限流機能を有する回路遮断器。
3 5 . アークランナーの先端部を周囲の筒状絶縁物の上面より低く したことを特 徴とする請求項 3 4記載の限流機能を有する回路遮断器。
3 6 . 固定接点が位置する筒状空間と、 アークランナー先端を取り囲むアークラ ンナー筒状空間とを管路で連通したことを特徴とする請求項 3 5記載の限流機能 を有する回路遮断器。
3 7 . 可動アームの形状をほぼ鈎型にしたことを特徴とする請求項 1 7記載の限 流機能を有する回路遮断器。
3 8 . 可動アームの形状をほぼ S字状にしたことを特徴とする請求項 1 7記載の 限流機能を有する回路遮断器。
3 9 . 固定接点表面から見渡せる可動アームの可動接点より可動子回転中心側の 部位を絶縁物にて覆ったことを特徴とする請求項 1 8、 請求項 3 7および請求項 3 8のいずれか一項記載の限流機能を有する回路遮断器。
4 0 . 固定導体の可動アームと対向する部位を可動アーム側へ屈曲し、 可動ァ— ムとの平行部分を形成したことを特徴とする請求項 1 7記載の限流機能を有する 回路遮断器。
4 1 . 可動子の先端と対向する位置に配置される消弧板と、 消弧板の上方で、 開 成位置にある可動子の消弧板側端面に近接する対向電極とを備えたことを特徴と する請求項 1 7記載の限流機能を有する回路遮断器。
4 2 . 可動子の先端と対向する位置に配置される消弧板を有し、 かつ、 筒状絶縁 物が形成する筒状空間の可動子側開口部が上記消弧板方向を向くよう、 筒状空間 の内壁の可動子回転中心側の壁の高さを可動子回転中心と反対側の壁の高さより 高く したことを特徴とする請求項 1 7記載の限流機能を有する回路遮断器。
4 3 . 複数の馬蹄形の消弧板を有し、 上記消弧板の馬蹄形中央部内面の部位が、 筒状絶縁物の可動子回転中心と反対側の壁面を延長した面と、 上記可動子先端部 が描く軌跡との間に位置するように構成したことを特徴とする請求項 1 7記載の 限流機能を有する回路遮断器。
4 4 . 固定接点を有する固定導体をコ字状に曲げて可動子回転中心から遠い側に 引き出すとともに、 上記固定導体の可動子の回転軌跡と交差する部位に可動子の 閉成を許すスリツ卜を設けたことを特徴とする請求項 1 7記載の限流機能を有す る回路遮断器。
4 5 . 可動子と対向し可動子と逆向きの電流が流れる固定導体の部位を、 可動子 に近接するように屈曲させたことを特徴とする請求項 4 4記載の限流機能を有す る回路遮断器。
4 6 . 開成状態の可動接点から見渡せる固定導体を絶縁物で覆ったことを特徴と する請求項 4 4または請求項 4 5記載の限流機能を有する回路遮断器。
4 7 . 固定導体を可動子回転中心から遠い側に引き出すものにおいて、 固定導体 の一部が可動子と対向し、 この対向部分に流れる電流の向きが可動子の電流と逆 になるように配置したことを特徴とする請求項 1 1 7記載の限流機能を有する回 路½断 #ϊο
4 8 . 絶縁物筐体内に収納され、 可動接点と、 ほぼ L字状の可動アームとからな り、 回転軸を中心として回転する可動子、 上記可動接点と接点対をなす固定接点 と、 閉成時に上記可動アームの一部とほぼ平行に配置され、 かつ可動アームと反 対方向に電流が流れる電路とからなる固定子、 閉成状態の上記接点対の周りを筒 状空間で取り囲む筒状絶緣物、 上記接点対に接触圧を与える付勢手段、 開成状態 の可動接点と対向する位置に配設された消弧板、 および上記絶縁物筐体の反対側 面に設けられそれぞれ上記可動子および固定子に接続されている端子部を備え、 閉成状態においては上記接点対が上記筒状空間内に位置し、 開成状態においては 上記可動接点が上記筒状空間外に位置するように構成したことを特徴とする限流
4 9 . 端子部が絶縁物筐体の底面より高い位置に設けられていることを特徴とす る請求項 4 8記載の限流装置。
5 0 . 可動子および固定子は、 互いに平行する電路からほぼ U字状に屈曲する電 路を経てそれぞれ可動子および固定子に近い側の端子部に接続されるよう構成し たことを特徴とする請求項 4 9記載の限流装置。
5 1 . 可動子および固定子は、 互いに平行する電路から屈曲する電路を経てそれ それ可動子および固定子から遠い側の端子部に接続されるよう構成したことを特 徴とする請求項 4 9記載の限流装置。
5 2 . 固定子への通電導体に延設されたアークランナーを有し、 このァ一クラン ナ一の先端を消弧板側に絶縁物から露出させたことを特徴とする請求項 4 8記載 の限流装置。
5 3 . アークランナーの周囲にアークランナー筒状空間を形成する絶縁物を設け たことを特徴とする請求項 5 2記載の限流装置。
5 4 . 可動子への通電導体に接続され、 先端部が消弧板近傍に達する転流電極を 可動子の背後に設けたことを特徴とする請求項 4 8または請求項 5 2記載の限流
5 5 . 転流電極に可動子の開成時の回動を許すスリツ卜を設け、 可動子開成位置 において可動接点が上記転流電極に近接するようにしたことを特徴とする請求項 5 4記載の限流装置。
5 6 . 筒状絶縁物の筒状空間が消弧板側に向かって広がる形状にしたことを特徴 とする請求項 4 8記載の限流装置。
5 7 . 筒状絶縁物が形成する筒状空間の開口端が消弧板方向を向くよう、 筒状空 間の内壁の可動子回転中心から遠い側の壁の高さを可動子回転中心に近い側の壁 の高さより低く したことを特徴とする請求項 4 8記載の限流装置。
5 8 . 筒状空間を形成する筒状絶縁物の材質を、 接点対を取り囲む部分とそれ以 外の部分とで変え、 接点対を取り囲む部分の絶縁物をアークにより大量の蒸気を 発生しやすい材質としたことを特徴とする請求項 4 8記載の限流装置。
5 9 . 筒状空間の内壁を、 可動子先端の回転軌跡に沿わせた断面形状にしたこと を特徴とする請求項 4 8記載の限流装置。
6 0 . 筒状空間に位置する固定子の部位において、 固定接点だけが筒状空間に露 出するよう固定接点の周囲を絶緣物で覆つたことを特徴とする請求項 4 8記載の 限流装置。
6 1 . 筒状絶縁物が形成する筒状空間の開口端において、 筒状空間の内壁の可動 子回転中心に近い側の壁の高さを、 可動子回転中心から遠い側の壁の高さより低 くしたことを特徴とする請求項 4 8記載の限流装置。
6 2 . 閉成状態において固定子と対向し上記固定子と逆向きの電流が流れる可動 アームの一部が、 上記固定子に近接するよう上記可動アームを屈曲させたことを 特徴とする請求項 4 8記載の限流装置。
6 3 . 閉成状態の可動子と対向し可動子と逆向きの電流が流れる固定子の固定導 体を、 可動子に近接するよう屈曲させたことを特徴とする請求項 4 8記載の限流
6 4 . 固定接点表面から見渡せる可動アームの可動接点より可動子回動中心側の 部位を絶縁物にて覆ったことを特徴とする請求項 4 8または請求項 6 3記載の限
6 5 . 可動子と固定子の接点対が 2組設けられ、 これら接点対は電気的に直列に 接続され、 かつ相互に隔壁で隔てられていることを特徴とする請求項 4 8記載の 限流装置。
6 6 . 回路遮断器の長手方向に筐体同士を連接して一体化したことを特徴とする 請求項 4 8乃至請求項 6 5のいずれか一項記載の限流装置。
PCT/JP1999/007303 1998-12-28 1999-12-24 Limiteur de courant et disjoncteur avec limitation de courant WO2000041202A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP99961389A EP1069584B1 (en) 1998-12-28 1999-12-24 Current limiter and circuit breaker with current-limiting function
JP2000592847A JP4265725B2 (ja) 1998-12-28 1999-12-24 限流装置および限流機能を有する回路遮断器
DE69937107T DE69937107T2 (de) 1998-12-28 1999-12-24 Strombegrenzer und schalter mit strombegrenzungsfunktion
KR1020007009469A KR100348564B1 (ko) 1998-12-28 1999-12-24 한류장치 및 한류기능을 갖는 회로차단기
US09/641,268 US6373014B1 (en) 1998-12-28 2000-08-17 Current limiting device and circuit interrupter having a current limiting function

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP37246298 1998-12-28
JP10/372462 1998-12-28
JP1074599 1999-01-19
JP11/10745 1999-01-19
JP6998699 1999-03-16
JP11/69986 1999-03-16
JP11/240066 1999-08-26
JP24006699 1999-08-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/641,268 Continuation US6373014B1 (en) 1998-12-28 2000-08-17 Current limiting device and circuit interrupter having a current limiting function

Publications (1)

Publication Number Publication Date
WO2000041202A1 true WO2000041202A1 (fr) 2000-07-13

Family

ID=27455452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/007303 WO2000041202A1 (fr) 1998-12-28 1999-12-24 Limiteur de courant et disjoncteur avec limitation de courant

Country Status (8)

Country Link
US (1) US6373014B1 (ja)
EP (1) EP1069584B1 (ja)
JP (1) JP4265725B2 (ja)
KR (1) KR100348564B1 (ja)
CN (1) CN1199216C (ja)
DE (1) DE69937107T2 (ja)
TW (1) TW501157B (ja)
WO (1) WO2000041202A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005345A (zh) * 2010-11-11 2011-04-06 江苏辉能电气有限公司 一种塑壳低压断路器的灭弧模块

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4376483B2 (ja) * 1999-12-02 2009-12-02 三菱電機株式会社 回路遮断器
US7138597B2 (en) * 2004-11-12 2006-11-21 Eaton Corporation Circuit breaker with arc gas propelled movable contact and opposed arc cutoff shutters
CA2510681C (en) * 2005-06-28 2007-03-20 Vassili Rozine Device and a method for advanced protection from short circuit current
JP4522362B2 (ja) * 2005-12-21 2010-08-11 三菱電機株式会社 回路遮断器
US7551050B2 (en) * 2006-09-22 2009-06-23 Rockwell Automation Technologies, Inc. Contactor assembly with arc steering system
US7716816B2 (en) 2006-09-22 2010-05-18 Rockwell Automation Technologies, Inc. Method of manufacturing a switch assembly
US8159319B2 (en) 2007-01-24 2012-04-17 Siemens Aktiengesellschaft Double-breaking contact system for a low voltage circuit breaker, a molded case circuit breaker comprising the double-breaking contact system, and a method for breaking a circuit
US8164018B2 (en) * 2009-03-23 2012-04-24 Siemens Industry, Inc. Circuit breaker arc chambers and methods for operating same
CN102667995B (zh) * 2010-04-19 2015-07-01 嘉灵科技有限公司 具有增强熄弧能力的电路断流器
JP5307779B2 (ja) * 2010-08-31 2013-10-02 富士電機機器制御株式会社 電磁開閉器
US8487721B2 (en) * 2011-01-06 2013-07-16 General Electric Company Circuit interruption device and method of assembly
WO2013017159A1 (en) * 2011-08-01 2013-02-07 Alstom Technology Ltd Current limiter
US9401251B2 (en) 2012-05-16 2016-07-26 General Electric Company Molded case circuit breaker
CN102903576B (zh) * 2012-10-27 2015-06-03 东莞市三友联众电器有限公司 磁保持继电器的簧片开关组件
US9129761B2 (en) * 2012-12-20 2015-09-08 Eaton Electrical Ip Gmbh & Co. Kg Switching device suitable for direct current operation
CN104064895A (zh) * 2013-03-22 2014-09-24 富士康(昆山)电脑接插件有限公司 端子模组及其制造方法
JP6277795B2 (ja) * 2014-03-14 2018-02-14 オムロン株式会社 電磁継電器
US10153099B2 (en) * 2014-03-27 2018-12-11 Schneider Electric USA, Inc. Knife blade switch contact with high resistance portion
CN105742092B (zh) * 2014-07-28 2018-11-02 宁波高新区天都科技有限公司 互补性电路消弧方法和功率扩展方法及其基础结构
US10833555B2 (en) * 2015-11-27 2020-11-10 Foundation Of Soongsil University Industry Cooperation Motor for reducing a repulsive force
DE102016216392A1 (de) 2016-08-31 2018-03-01 Siemens Aktiengesellschaft Schalteinheit für einen elektrischen Schalter und elektrischer Schalter
CN107359058B (zh) * 2017-05-12 2019-04-16 中科电力装备集团有限公司 一种变压器中隔离开关用动静触头结构
KR20230051482A (ko) * 2020-07-22 2023-04-18 기가백, 엘엘씨 부상 퓨즈 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554783A (ja) * 1991-08-27 1993-03-05 Matsushita Electric Works Ltd 回路遮断器
JPH08287813A (ja) * 1995-04-19 1996-11-01 Mitsubishi Electric Corp 限流素子および配線用遮断器
JPH0992123A (ja) * 1995-09-22 1997-04-04 Fuji Electric Co Ltd 回路遮断器
JPH10269923A (ja) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp 限流装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658785B2 (ja) * 1985-06-12 1994-08-03 株式会社東芝 回路しや断器
JPS6443973A (en) 1987-08-11 1989-02-16 Agency Ind Science Techn Solid electrolyte fuel cell electrode
JP2996810B2 (ja) * 1992-08-21 2000-01-11 三菱電機株式会社 開閉器
JPH088048A (ja) 1994-06-21 1996-01-12 Sekisui Chem Co Ltd 高周波誘導加熱装置
JP3352560B2 (ja) * 1995-03-13 2002-12-03 寺崎電気産業株式会社 回路遮断器
JPH09171757A (ja) * 1997-01-10 1997-06-30 Hitachi Ltd 回路遮断器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554783A (ja) * 1991-08-27 1993-03-05 Matsushita Electric Works Ltd 回路遮断器
JPH08287813A (ja) * 1995-04-19 1996-11-01 Mitsubishi Electric Corp 限流素子および配線用遮断器
JPH0992123A (ja) * 1995-09-22 1997-04-04 Fuji Electric Co Ltd 回路遮断器
JPH10269923A (ja) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp 限流装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1069584A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005345A (zh) * 2010-11-11 2011-04-06 江苏辉能电气有限公司 一种塑壳低压断路器的灭弧模块
CN102005345B (zh) * 2010-11-11 2012-11-21 江苏辉能电气有限公司 一种塑壳低压断路器的灭弧模块

Also Published As

Publication number Publication date
US6373014B1 (en) 2002-04-16
EP1069584A1 (en) 2001-01-17
KR20010085202A (ko) 2001-09-07
EP1069584A4 (en) 2002-11-27
KR100348564B1 (ko) 2002-08-14
JP4265725B2 (ja) 2009-05-20
TW501157B (en) 2002-09-01
EP1069584B1 (en) 2007-09-12
DE69937107D1 (de) 2007-10-25
DE69937107T2 (de) 2008-06-12
CN1298548A (zh) 2001-06-06
CN1199216C (zh) 2005-04-27

Similar Documents

Publication Publication Date Title
WO2000041202A1 (fr) Limiteur de courant et disjoncteur avec limitation de courant
JP2009054389A (ja) 回路遮断器
WO2014155874A1 (ja) 開閉装置
US7081596B2 (en) Arc-quenching device for circuit breakers having double-break contacts
JP4360013B2 (ja) 回路遮断器
JP3431439B2 (ja) 絶縁開閉装置
KR20140079302A (ko) 개폐기
US6541727B2 (en) Molded case circuit breaker including vacuum switch assembly
JP3955702B2 (ja) 回路遮断器
KR20120040092A (ko) 회로차단기
JP2005038630A (ja) 真空遮断装置
JP4529769B2 (ja) 回路遮断器
US5023415A (en) Switch apparatus
JP4140204B2 (ja) 限流機構およびそれを備えた回路遮断器
JP4090948B2 (ja) 回路遮断器
JP4669398B2 (ja) 動作棒カバー
JP2005285547A (ja) 回路遮断器の消弧装置
JP4058967B2 (ja) 回路しゃ断器
JP2851189B2 (ja) 短絡電流抑制装置および短絡電流遮断装置
JPH0620550A (ja) 開閉器
JP6198450B2 (ja) 開閉器
EP0268194B1 (en) Electrical switching device
JP2001101962A (ja) 回路遮断器
JPH0357135A (ja) 回路遮断器
JPS63264829A (ja) 開閉器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99805439.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN IN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09641268

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020007009469

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2000/443/CHE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1999961389

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999961389

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007009469

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007009469

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999961389

Country of ref document: EP