JP4152094B2 - 半導体記憶装置の制御方法及び半導体記憶装置 - Google Patents

半導体記憶装置の制御方法及び半導体記憶装置 Download PDF

Info

Publication number
JP4152094B2
JP4152094B2 JP2001265800A JP2001265800A JP4152094B2 JP 4152094 B2 JP4152094 B2 JP 4152094B2 JP 2001265800 A JP2001265800 A JP 2001265800A JP 2001265800 A JP2001265800 A JP 2001265800A JP 4152094 B2 JP4152094 B2 JP 4152094B2
Authority
JP
Japan
Prior art keywords
voltage
output
circuit
internal
generation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001265800A
Other languages
English (en)
Other versions
JP2003077273A (ja
Inventor
剛 橋本
伊藤  豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Memory Japan Ltd
Original Assignee
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpida Memory Inc filed Critical Elpida Memory Inc
Priority to JP2001265800A priority Critical patent/JP4152094B2/ja
Priority to DE10239515A priority patent/DE10239515B4/de
Priority to KR1020020051292A priority patent/KR100541132B1/ko
Priority to US10/231,794 priority patent/US6990031B2/en
Priority to CNB021322465A priority patent/CN1215563C/zh
Priority to TW091120120A priority patent/TW567495B/zh
Publication of JP2003077273A publication Critical patent/JP2003077273A/ja
Application granted granted Critical
Publication of JP4152094B2 publication Critical patent/JP4152094B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4074Power supply or voltage generation circuits, e.g. bias voltage generators, substrate voltage generators, back-up power, power control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はリフレッシュ動作を必要とするDRAM(Dynamic Random Accuses Memory)に適用して好適な半導体記憶装置の制御方法及び半導体記憶装置に関する。
【0002】
【従来の技術】
近年のDRAMなどの半導体記憶装置は、携帯電話機やPDA(Personal Digital Assistance)等の移動端末装置でも用いられるため、消費電流の低減がより一層求められている。
【0003】
低消費電流化を実現する手段として、例えば、特開平8−203268号公報には、データを保持するメモリセルに対する非アクセス期間においてビット線をフローティング状態にさせ、ビット線及びそれに繋がるセンスアンプ内に流れるリーク電流を無くすことで消費電流を低減する手法が記載されている。なお、非アクセス期間とは、データの読み出し、書き込み、及びリフレッシュ動作期間を除いた期間を示す。また、リフレッシュ動作とは、所定の時間毎に、データの読み出し、増幅、再書き込みを実行することでメモリセルに書き込まれたデータを保持する動作である。
【0004】
【発明が解決しようとする課題】
DRAMはメモリセルが備えるキャパシタに電荷を蓄積することでデータを保持する構造である。したがって書き込まれたデータの保持が可能な最大データ保持時間tREFmax内にデータを読み出して再書き込みを行う上記リフレッシュ動作を必要とする。DRAMの平均消費電流は、この最大データ保持時間tREFmaxに依存し、最大データ保持時間tREFmaxが長くなれば、リフレッシュ動作回数を減らせるため平均消費電流を低減できる。
【0005】
しかしながら、メモリセル等の性能を改善して最大データ保持時間tREFmaxを長くしても、ある程度長くなるとそれ以上平均消費電流を低減できなくなる。これは周辺回路の消費電流、あるいは製造時に作り込まれた欠陥部位に流れるリーク電流等の直流電流成分が存在するためである。
【0006】
DRAMは、高集積化が進んだ結果、格子状に配列されたメモリセルから成るメモリセルアレイ、ワード線を駆動するためのワードドライバ、メモリセルアレイに保持されたデータを読み出すためのセンスアンプ等を含むメモリアレイ部が周辺回路に比べてより微細に加工されている。したがって、隣接線間が短絡するなどの欠陥数も周辺回路に比べて多くなり、これらの欠陥部位で発生するリーク電流により外部電源電流を消費してしまう。すなわち、リーク電流を削減することは平均消費電流の低減に有効である。
【0007】
上述したように特開平8−203268号公報に記載されたDRAMでは、非アクセス期間時にビット線をフローティング状態にしているため、ビット線及びそれに繋がるセンスアンプ内に流れるリーク電流を遮断できる。
【0008】
しかしながら、ビット線をフローティング状態にするだけでは、ワード線に流れるリーク電流や周辺回路等の消費電流を削減できないため、DRAM全体の平均消費電流を十分に低減できないという問題がある。
【0009】
本発明は上記したような従来の技術が有する問題点を解決するためになされたものであり、平均消費電流をより低減することが可能な半導体記憶装置の制御方法及び半導体記憶装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため本発明の半導体記憶装置の制御方法は、メモリセルに書き込まれたデータを保持するためにセルフリフレッシュモードでリフレッシュ動作を行う半導体記憶装置の制御方法であって、
予め、外部から供給される外部電源電圧よりも高い昇圧電圧である、ワード線を駆動するために用いられるワード線電圧を生成するVPP内部電圧発生回路に、前記ワード線電圧の出力を所定の制御信号にしたがってオンまたはオフさせるためのVPP制御手段を備え、
前記メモリセルが形成された半導体基板に供給する負電圧であるメモリアレイ基板電圧を生成するVBB内部電圧発生回路に、前記メモリアレイ基板電圧の出力を前記所定の制御信号にしたがってオンまたはオフさせるためのVBB制御手段を備え、
前記メモリセルが形成された半導体基板を接地電位にするための出力制御手段を備えておき、
前記リフレッシュ動作の終了毎に、前記VPP内部電圧発生回路及び前記VBB内部電圧発生回路からの電圧出力をそれぞれ所定の期間だけオフさせ、
前記VBB内部電圧発生回路からの前記メモリアレイ基板電圧の出力がオフしている間、前記メモリセルが形成された半導体基板を接地させ、該メモリアレイ基板電圧の出力のオフを期間が終了後、前記VBB制御手段から出力される駆動信号により、前記VBB内部電圧発生回路から前記メモリアレイ基板電圧を出力させ、
前記VBB内部電圧発生回路から出力される前記メモリアレイ基板電圧が立ち上がった後、前記VPP内部電圧発生回路から前記ワード線電圧を出力させる方法である。
【0013】
このとき、予め前記ワード線を接地電位に接続するためのスイッチ部を備えておき、
前記VPP内部電圧発生回路から前記ワード線電圧の出力がオフしている間、前記ワード線を接地電位に接続してもよい。
【0016】
また、予め、外部から供給される外部電源電圧よりも低い降圧電圧である、ビット線を駆動するために用いられるビット線電圧を生成するVDL内部電圧発生回路に、前記ビット線電圧の出力を前記所定の制御信号にしたがってオンまたはオフさせるためのVDL制御手段を備えておき、
前記リフレッシュ動作の終了毎に、前記VDL内部電圧発生回路からの電圧出力を所定の期間だけオフさせてもよい。
また、前記メモリセル内に備えるデータ保持用のキャパシタの上部電極に、前記リフレッシュ動作終了から次の前記リフレッシュ動作開始までの期間を含めて、動作時に常にセルプレート電圧を供給してもよい。
【0019】
一方、本発明の半導体記憶装置は、メモリセルに書き込まれたデータを保持するためにセルフリフレッシュモードでリフレッシュ動作を行う半導体記憶装置であって、
外部から供給される外部電源電圧よりも高い昇圧電圧である、ワード線を駆動するために用いられるワード線電圧を生成すると共に、前記ワード線電圧の出力を所定の制御信号にしたがってオンまたはオフさせるVPP内部電圧発生回路と、
前記メモリセルが形成された半導体基板に供給する負電圧であるメモリアレイ基板電圧を生成すると共に、前記メモリアレイ基板電圧の出力を前記所定の制御信号にしたがってオンまたはオフさせるVBB内部電圧発生回路と、
前記リフレッシュ動作の終了毎に、前記VPP内部電圧発生回路及び前記VBB内部電圧発生回路からの電圧出力をそれぞれ所定の期間だけオフさせるための制御信号を生成する内部電源遮断時間計測回路と、
前記VBB内部電圧発生回路からの前記メモリアレイ基板電圧の出力がオフしている間、前記メモリセルが形成された半導体基板を接地し、該メモリアレイ基板電圧の出力のオフの期間が終了後、前記VBB内部電圧発生回路から前記メモリアレイ基板電圧を出力させるための駆動信号を出力する出力制御回路と、
前記VBB内部電圧発生回路から出力される前記メモリアレイ基板電圧が立ち上がった後、前記VPP内部電圧発生回路から前記ワード線電圧を出力させるための制御信号を出力する内部電源復帰回路と、
を有する構成である。
【0020】
このとき、前記VPP内部電圧発生回路から前記ワード線電圧の出力がオフしている間、前記ワード線を接地電位に接続するためのスイッチ部を有していてもよい。
【0023】
また、外部から供給される外部電源電圧よりも低い降圧電圧である、ビット線を駆動するために用いられるビット線電圧を生成すると共に、前記ビット線電圧の出力を前記所定の制御信号にしたがってオンまたはオフさせるVDL内部電圧発生回路を有し、
前記VDL内部電圧発生回路は、前記内部電源遮断時間計測回路から出力される制御信号にしたがって前記ビット線電圧の出力をオンまたはオフさせてもよい。
また、前記メモリセル内に備えるデータ保持用のキャパシタの上部電極に、前記リフレッシュ動作終了から次の前記リフレッシュ動作開始までの期間を含めて、動作時に常にセルプレート電圧を供給するVPLT内部電圧発生回路を有していてもよい。
【0024】
上記のような半導体記憶装置の制御方法及び半導体記憶装置では、セルフリフレッシュモードによるリフレッシュ動作の終了毎に、外部電源電圧よりも高い昇圧電圧であるワード線電圧、あるいは半導体基板に供給する負電圧であるメモリアレイ基板電圧の供給を所定の期間だけ停止させることで、ワード線に流れるリーク電流、あるいは停止させた内部電圧発生回路の負荷に流れるリーク電流が遮断される。
【0025】
また、これらの電圧出力の停止時に、メモリアレイ基板電圧の出力端、及びワード線をそれぞれ接地電位に接続することで、メモリセルが有するトランジスタの誤動作が防止される。
【0026】
さらに、VBB内部電圧発生回路から出力されるメモリアレイ基板電圧が立ち上がった後、VPP内部電圧発生回路からワード線電圧を出力させることで、これらの電圧の復帰時における、メモリセルのトランジスタの誤動作が防止される。
【0027】
【発明の実施の形態】
次に本発明について図面を参照して説明する。
【0028】
近年の半導体記憶装置では、外部から供給される外部電源電圧VDDをそのまま使用するのではなく、内部電圧発生回路によって降圧、または昇圧して所定の内部電源電圧を生成し、生成した内部電源電圧を内部回路に供給することにより素子の信頼性向上を図っている。
【0029】
例えば、DRAMでは記憶容量を増大させるためにメモリセル用のトランジスタサイズが微細化されている。これに伴い、トランジスタに高電圧を印加することができないため、内部に降圧電源回路を設け、外部電源電圧VDDよりも低い降圧電圧を該トランジスタに供給している。
【0030】
一方、ワード線には所望の性能を確保するために外部電源電圧VDDよりも高い昇圧電圧を供給する必要がある。さらに、メモリセルの電荷保持特性を向上させるために半導体基板を負電圧にバイアスすることもある。このように、半導体記憶装置はその内部に種々の内部電源電圧を生成する内部電圧発生回路を有している。
【0031】
本発明の半導体記憶装置の制御方法は、メモリアレイ部に対する非アクセス期間において、上記内部電源電圧を生成するための内部電圧発生回路の動作を停止させる方法である。また、本発明の半導体記憶装置は、メモリアレイ部に対する非アクセス期間において、上記内部電源電圧を生成するための内部電圧発生回路の動作を停止させるための手段を有する構成である。但し、メモリセル内に格納されたデータを保持するのに必要な内部電圧発生回路の動作は停止させないようにする。具体的には、リフレッシュ動作終了から次のリフレッシュ動作開始までの期間において、ワード線を駆動するために用いられる昇圧電圧であるワード線電圧VPP、半導体基板に供給する負電圧であるメモリアレイ基板電圧VBB、及びメモリセルに保持されたデータを再生するために用いられるビット線プリチャージ電圧VBLRを生成する内部電圧発生回路の動作をそれぞれ停止させる。一方、メモリセル内に備えるデータ保持用のキャパシタの上部電極に供給する降圧電圧であるセルプレート電圧VPLT、及び周辺回路に供給する降圧電圧VCLを生成するための内部電圧発生回路の動作は停止させない。なお、ワード線電圧VPP、メモリアレイ基板電圧VBB、及びビット線プリチャージ電圧VBLRの出力を停止(オフ)させる際には、合わせてビット線を駆動するために用いられる降圧電圧であるビット線電圧VDLの出力も停止させてよい。
【0032】
(第1の実施の形態)
図1は本発明の半導体記憶装置の第1の実施の形態の構成を示すブロック図であり、図2は図1に示した内部電源制御回路の一構成例を示すブロック図である。また、図3は図2に示した発振回路の一構成例を示す回路図であり、図4は図2に示した内部電源遮断時間計測回路の一構成例を示す回路図である。図5は図2に示した内部電源復帰回路の一構成例を示す回路図である。なお、図1に示した半導体記憶装置はDRAMの構成例を示している。
【0033】
図1に示すように、本実施形態の半導体記憶装置は、所定の内部電源電圧をそれぞれ生成する電源回路部1と、データを保持するためのメモリアレイ部及びその制御回路を備えたDRAMメモリ部2とを有する構成である。
【0034】
電源回路部1は、ワード線電圧VPPを生成するVPP内部電圧発生回路11と、メモリアレイ基板電圧VBBを生成するVBB内部電圧発生回路12と、ビット線プリチャージ電圧VBLRを生成するVBLR内部電圧発生回路13と、セルプレート電圧VPLTを生成するVPLT内部電圧発生回路14と、ビット線電圧VDLを生成するVDL内部電圧発生回路15と、周辺回路降圧電圧VCLを生成するVCL内部電圧発生回路16と、上記内部電源電圧を生成するための基準電圧をそれぞれ生成する基準電圧発生回路17とを有する構成である。
【0035】
DRAMメモリ部2は、データが格納されるメモリアレイ部3と、メモリアレイ部3に対してデータを読み書きするための制御を行う周辺回路部4とを有する構成である。
【0036】
メモリアレイ部3は、格子状に配列された複数のメモリセルから成るメモリセルアレイ31と、ワード線を駆動するためのワードドライバ(WD)32と、メモリセルに格納されたデータを読み出すためのセンスアンプ33と、データの書き込み/読み出しを行うメモリセルに対してアクセスするためにアドレスをデコードするYデコーダ34及びXデコーダ35とを備えている。メモリセルは、直列に接続された、データを保持するためのキャパシタ(図1ではC0〜C3)及びスイッチ素子であるMOSトランジスタ(図1ではM0〜M3)を備え、キャパシタの一端からセルプレート電圧VPLTが供給される構成である。また、本実施形態の半導体記憶装置では、内部電圧発生回路が停止期間のときにメモリセルのトランジスタが誤動作しないようにするため、メモリアレイ部3にワード線を接地電位VSSに接続するためのスイッチ部36を備えている。スイッチ部36は後述する内部電源制御回路から供給される内部電源停止信号GOFFにしたがってON/OFFが制御される。なお、図1では、簡略化のためにメモリアレイ部3に4本のビット線(BL0T,BL0B,BL1T,BL1B)、2本のワード線(WL0,WL1)、及び2つのセンスアンプ(SA0,SA1)のみを記載しているが、実際のメモリアレイ部3は、より多くのビット線、ワード線、及びセンスアンプを備えた構成である。
【0037】
周辺回路部4は、外部から入力される制御コマンドにしたがって半導体記憶装置を所定の動作モードに設定するモード制御回路41と、リフレッシュ動作を制御するためのリフレッシュ動作制御回路42と、電源回路部1が有する各種内部電圧発生回路の動作/非動作を制御するための制御信号を生成する内部電源制御回路43と、外部から入力されるアドレスやデータを一時的に保持する入力バッファ44と、メモリアレイ部3から読み出された出力データを一時的に保持する出力バッファ45とを有する構成である。
【0038】
モード制御回路41は、外部から入力された制御コマンドを解釈し、その内容にしたがって半導体記憶装置を所定の動作モードに設定するための回路である。また、リフレッシュ動作制御回路42は、リフレッシュ動作の制御に必要な、リフレッシュ動作期間であることを示すリフレッシュ動作信号SRFT、リフレッシュ動作の終了を示すリフレッシュエンドパルスREFENDP、及びリフレッシュ動作時にアクセスするワード線を所定の周期毎に選択するためのワード線選択パルスPSRFをそれぞれ生成する回路である。モード制御回路41及びリフレッシュ動作制御回路42は周知の論理回路を用いてそれぞれ構成すればよいため、ここではその説明を省略する。
【0039】
図2に示すように、内部電源制御回路43は、内部電圧発生回路の停止/動作を制御するための内部電源停止信号GOFFを生成する内部電源遮断時間計測回路47と、停止していた各種内部電圧発生回路を所定の順に復帰させるための制御信号を生成する内部電源復帰回路48と、一定周期のパルスを生成する発振回路49とを有する構成である。
【0040】
本実施形態の半導体記憶装置では、負電圧であるメモリアレイ基板電圧VBBの供給が停止しているとき、基板電圧が正電位に浮かないようにVBB内部電圧発生回路12の出力端子を接地電位VSSに接続する。これは、基板電圧が正電位になると、メモリセルのトランジスタのしきい値電圧が低下することによる誤動作、あるいはトランジスタのpn接合に対して順方向にバイアスされることによる誤動作によってメモリセルに格納されたデータが破壊されるおそれがあるからである。
【0041】
また、本実施形態の半導体記憶装置では、内部電圧発生回路を復帰させる際に基板電圧が正電位に浮かないようにするため、上記内部電源復帰回路48により、メモリアレイ基板電圧VBBがある程度立ち上がった後、ワード線電圧VPPが立ち上がるように制御するための制御信号を生成する。
【0042】
発振回路49は、例えば、図3に示すように、多段接続された複数のインバータ(図3ではINV0〜INV4)の出力をトランジスタQ1,Q2で増幅し、初段のインバータ(INV0)の入力に帰還することで自励発振させるリングオシレータである。各インバータINV0〜INV4にはそれぞれ電流源を介して電力が供給される。また、インバータINV0〜INV4の出力端子と電源端子間、及びインバータINV0〜INV4の出力端子と接地電位間には、発振周波数を決定するためのコンデンサCOSCがそれぞれ挿入されている。なお、発振回路49は上述したリフレッシュ動作制御回路42に備えていてもよい。
【0043】
内部電源遮断時間計測回路47は、例えば、図4に示すように、発振回路49の出力パルスSLOSCを所定数だけ計数する、直列に接続された複数のフリップフロップ(F/F)から成るカウンタ回路を備えた構成である。カウンタ回路は、リフレッシュ動作期間であることを示すリフレッシュ動作信号SRFTが“L”レベルに切り換わると発振回路49の出力パルスSLOSCのカウントを開始し、所定のパルス幅(最大データ保持時間tREFmaxに応じて適宜設定する。例えば、1sec)を有する内部電源停止信号GOFFを生成する。なお、内部電源停止信号GOFFは、リフレッシュ動作と内部電圧発生回路の停止とを繰り返すセルフリフレッシュモード時であることを示すセルフリフレッシュモード信号SLPFが“L”のときのみ出力される。リフレッシュ動作信号SRFTは上述したようにリフレッシュ動作制御回路42から送信され、セルフリフレッシュモード信号SLPFはモード制御回路41から送信される。
【0044】
図5に示すように、内部電源復帰回路48は、ワード線電圧VPPの復帰が完了したか否かを判定するVPP復帰判定回路481と、メモリアレイ基板電圧VBBが所定の電圧まで立ち上がったか否かを検出するVBB検出回路482とを有する構成である。
【0045】
VPP復帰判定回路481は、ワード線電圧VPPと接地電位間に直列に挿入された3つの抵抗器R1〜R3と、抵抗器R2,R3の接続ノードの電圧VAと基準電圧VPPRLとを比較する差動回路とを備え、該差動回路はノード電圧VAが基準電圧VPPRLを超えたときにVPP復帰信号VPPONを有意な値(例えば、“H”)に切り換える。
【0046】
VBB検出回路482は、周辺回路降圧電圧VCLとメモリアレイ基板電圧VBB間に直列に挿入された2つの抵抗器R4,R5と、抵抗器R4と抵抗器R5の接続ノードの電圧VBと基準電圧VBBRLとを比較する差動回路とを備え、該差動回路はノード電圧VBが基準電圧VBBRLを超えたときにVBB立ち上がり完了信号VBBONを有意な値(例えば、“H”)に切り換える。基準電圧VPPRL、VBBRLは図1に示した基準電圧発生回路17からそれぞれ供給される。なお、抵抗器R1〜R3は、ワード線電圧VPPを分圧するための回路であり、抵抗器R4,R5はVCL+VBBの電圧を分圧するための回路である。したがって、これらの回路は図5に示した構成に限定されるものではなく、2つまたは3つ以上の抵抗器で構成してもよい。
【0047】
次に、図1に示した電源回路部1が有する内部電圧発生回路の構成について図面を用いて説明する。なお、内部電圧発生回路の構成は以下で説明する回路に限定されるものではなく、所定の降圧電圧、昇圧電圧、または負電圧が生成できる構成であればどのような回路であってもよい。また、基準電圧発生回路17は、周囲環境(温度)の変化に対して変動の少ない所定電圧を生成できる周知の回路で構成すればよい。したがって、ここではその構成及び動作の説明は省略する。
【0048】
図6は図1に示したVPP内部電圧発生回路の一構成例を示す回路図であり、図7は図1に示したVBB内部電圧発生回路の一構成例を示す回路図である。また、図8は図1に示したVCL内部電圧発生回路の一構成例を示す回路図であり、図9は図1に示したVDL内部電圧発生回路の一構成例を示す回路図である。図10は図1に示したVPLT内部電圧発生回路の一構成例を示す回路図であり、図11は図1に示したVBLR内部電圧発生回路の一構成例を示す回路図である。
【0049】
図6に示すように、VPP内部電圧発生回路11は、VPP制御回路111、オシレータ112、及びチャージポンプ回路113を備え、オシレータ112の出力パルスをチャージポンプ回路113により正電圧方向に加算し整流することで外部電源電圧VDDよりも高い昇圧電圧を生成する構成である。チャージポンプ回路113の出力電圧(VPP)はVPP制御回路111に帰還され、出力電圧の値に応じてオシレータ112を発振/停止させることでワード線電圧VPPの値が一定に制御される。
【0050】
VPP制御回路111は、ワード線電圧VPPと接地電位VSS間に直列に挿入された3つの抵抗器R6〜R8と、抵抗器R7,R8の接続ノードの電圧VCと基準電圧VPPRとを比較する差動回路とを有する構成である。差動回路は、ノード電圧VCが基準電圧VPPRを超えたときに発振制御信号VPPOSCSWによりオシレータ112の発振を停止させ、ノード電圧VCが基準電圧VPPRよりも低いときにオシレータ112の発振を再開させる。
【0051】
また、VPP制御回路111は、抵抗器R8と接地電位間を遮断するためのスイッチトランジスタQ11と、比較回路の差動対を構成する2つのトランジスタと電流源間を遮断するためのスイッチトランジスタQ12とを備えている。スイッチトランジスタQ11,Q12は内部電源遮断時間計測回路47から出力される内部電源停止信号GOFFによりON/OFFが制御される。さらに、VPP制御回路111には、内部電源復帰回路48から出力されるVBB立ち上がり完了信号VBBON、及び内部電源停止信号GOFFにより発振制御信号VPPOSCSWを制御するためのゲート回路を備えている。VPP制御回路111は、内部電源停止信号GOFFが“H”のときに発振制御信号VPPOSCSWによりオシレータ112の発振を停止させ、かつメモリアレイ基板電圧VBBONが“L”の間は発振制御信号VPPOSCSWによりオシレータ112の発振を停止させる。このような構成にすることで、内部電圧発生回路を復帰させる際に、上述したメモリアレイ基板電圧VBBとワード線電圧VPPの復帰の順を制御することができる。
【0052】
オシレータ112は、nMOSトランジスタとpMOSトランジスタからなる複数のインバータ回路が多段接続された構成であり、その最終段の出力を初段の入力に帰還させることで自励発振するリングオシレータである。
【0053】
チャージポンプ回路113は、複数のインバータと複数の昇圧用キャパシタ(図6ではC1〜C4)と各昇圧用キャパシタの出力電圧を所定のタイミングで加算するための複数のスイッチ素子とを有する構成であり、オシレータ112からのクロック入力で昇圧電圧を出力し、クロック入力断で昇圧電圧の出力を停止する。
【0054】
図7に示すように、VBB内部電圧発生回路12は、VBB制御回路121、オシレータ122、及びチャージポンプ回路123を備え、オシレータ122の発振出力パルスをチャージポンプ回路123により負電圧方向に加算し整流することで負電圧を生成する構成である。チャージポンプ回路123の出力電圧(VBB)はVBB制御回路121に帰還され、出力電圧の値に応じてオシレータ122を発振/停止させることでメモリアレイ基板電圧VBBが一定に制御される。
【0055】
また、VBB内部電圧発生回路12には、メモリアレイ基板電圧VBBの供給が停止しているときに基板電圧が正電位に浮かないようにするため、出力端子を接地電位VSSに接続するための出力制御回路124を有する構成である。出力制御回路124は、チャージポンプ回路123の出力端子と接地電位VSS間に挿入されたスイッチトランジスタQ21を備え、スイッチトランジスタQ21は内部電源遮断時間計測回路47から出力される内部電源停止信号GOFFによりON/OFFが制御される。
【0056】
VBB制御回路121は、周辺回路用降圧電圧VCLとメモリアレイ基板電圧VBB間に直列に挿入された2つの抵抗器R9,R10と、抵抗器R9,R10の接続ノードの電圧VDと基準電圧VBBRとを比較する差動回路とを有する構成である。差動回路は、ノード電圧VDが基準電圧VBBRを超えたときに発振制御信号VBBOSCSWによりオシレータ122の発振を停止させ、ノード電圧VDが基準電圧VBBRよりも低いときにオシレータ122の発振を再開させる。
【0057】
また、VBB制御回路121は、抵抗器R9と周辺回路用降圧電圧VCL間を遮断するためのスイッチトランジスタQ22と、比較回路の差動対を構成する2つのトランジスタと電流源間を遮断するためのスイッチトランジスタQ23とを備えている。スイッチトランジスタQ22,Q23は内部電源遮断時間計測回路47から出力される内部電源停止信号GOFFによりON/OFFが制御される。VBB制御回路121は、スイッチトランジスタQ22,Q23がOFFのとき、発振制御信号VBBOSCSWによりオシレータ122の発振を停止させる。
【0058】
オシレータ122は、nMOSトランジスタとpMOSトランジスタからなる複数のインバータ回路が多段接続された構成であり、その最終段の出力を初段の入力に帰還させることで自励発振するリングオシレータである。
【0059】
チャージポンプ回路123は、オシレータ122の発振出力クロックOSCとその反転出力OSCBとを入力とする、複数のインバータと複数の減圧用キャパシタ(図7ではC11〜C14)と各減圧用キャパシタの出力電圧を所定のタイミングで加算するための複数のスイッチ素子とを有する構成であり、オシレータ122からのクロック入力で負電圧を出力し、クロック入力断で負電圧の出力を停止する。
【0060】
図8に示すように、VCL内部電圧発生回路16は、周辺回路用降圧電圧VCLを出力するための出力トランジスタQ31と、周辺回路用降圧電圧VCLを一定に制御するための差動増幅器から成るVCL制御回路161とを有する構成である。VCL制御回路161は、基準電圧発生回路17から供給される所定の基準電圧VCLRと出力トランジスタQ31から出力される周辺回路用降圧電圧VCLとを比較し、基準電圧VCLRと周辺回路用降圧電圧VCLとが等しくなるように、出力トランジスタQ31を制御する。
【0061】
図9に示すように、VDL内部電圧発生回路15は、ビット線電圧VDLを出力するための出力トランジスタQ41と、ビット線電圧VDLを一定電圧に制御するための差動増幅器から成るVDL制御回路151とを有する構成である。VDL制御回路151は、基準電圧発生回路17から供給される所定の基準電圧VDLRと出力トランジスタQ41から出力されるビット線電圧VDLとを比較し、基準電圧VDLRとビット線電圧VDLとが等しくなるように、出力トランジスタQ41を制御する。
【0062】
なお、VDL内部電圧発生回路15には、VDL制御回路151の差動増幅器に一定電流を供給する定電流源と接地電位間を遮断するためのスイッチトランジスタQ42と、出力トランジスタQ41をOFF状態で固定するためのスイッチトランジスタQ43とを備えている。スイッチトランジスタQ42,Q43は内部電源停止信号GOFFをインバータで反転させた制御信号SWBによりON/OFFが制御される。
【0063】
図10に示すように、VPLT内部電圧発生回路14は、周辺回路用降圧電圧VCLを分圧する抵抗器R11,R12と、抵抗器R11,R12の接続ノードの電圧VPLTRを所定比倍にしてセルプレート電圧VPLTを生成する、2組の差動増幅回路及び出力トランジスタから成るVPLT制御回路141とを有する構成である。VPLT制御回路141は、ノード電圧VPLTRとセルプレート電圧VPLTとを比較し、セルプレート電圧VPLTがノード電圧VPLTRの所定比倍になるように出力トランジスタをそれぞれ制御する。
【0064】
図11に示すように、VBLR内部電圧発生回路13は、周辺回路用降圧電圧VCLを分圧する抵抗器R13,R14と、抵抗器R13,R14の接続ノードの電圧VBLRRを所定比倍にしてビット線プリチャージ電圧VBLRを生成する、2組の差動増幅回路及び出力トランジスタから成るVBLR制御回路131とを有する構成である。VBLR制御回路131は、ノード電圧VBLRRとビット線プリチャージ電圧VBLRとを比較し、ビット線プリチャージ電圧VBLRがノード電圧VBLRRの所定比倍になるように出力トランジスタをそれぞれ制御する。
【0065】
なお、VBLR内部電圧発生回路13には、ノード電圧VBLRRの出力を遮断するためのスイッチトランジスタQ51,Q52と、VBLR制御回路131の差動増幅器及び出力トランジスタの動作を停止させるためのスイッチトランジスタQ53〜Q56とを備えている。スイッチトランジスタQ51〜Q56はそれぞれ内部電源停止信号GOFFによりON/OFFが制御される。
【0066】
このような構成において、次に本実施形態の半導体記憶装置の動作について図面を用いて説明する。
【0067】
図12は本発明の半導体記憶装置の処理手順を示すフローチャートである。
【0068】
図12に示すように、半導体記憶装置は、上述したセルフリフレッシュモード状態(Entry)にあるとき、リフレッシュ動作(Refresh)と内部電圧発生回路の停止(内部電源遮断/復帰)とをメモリセルの最大データ保持時間tREFmaxに応じて設定される所定の周期で繰り返している。
【0069】
リフレッシュ動作時、リフレッシュ動作制御回路42は、まず、リフレッシュ動作期間であることを示すリフレッシュ動作信号SRFTを“H”に設定し、リフレッシュ動作対象であるワード線を選択するためのワード線選択パルスPSRFをそれぞれ生成する。モード制御回路41はリフレッシュ動作制御回路42から出力されたワード線選択パルスPSRFのタイミングで各ワード線を順に活性させ、ワード線毎にメモリセルに保持されたデータの読み出し、増幅、再書き込みをそれぞれ実施する。全てのワード線に対するリフレッシュ動作が完了すると、リフレッシュ動作制御回路42は、リフレッシュ動作信号SRFTを“L”に切り換え、リフレッシュ動作の終了を示すリフレッシュエンドパルスREFENDPを出力する。
【0070】
内部電源制御回路43は、リフレッシュ動作信号SRFTが“L”に切り換わると、内部電源遮断時間計測回路47のカウント回路により発振回路49の出力パルスSLOSCの計数を開始し、所定のパルス幅(図12では1sec)を有する内部電源停止信号GOFFを生成する。
【0071】
内部電源停止信号GOFFが有意な値(“H”)にあるとき、ワード線電圧VPPを生成するVPP内部電圧発生回路11、メモリアレイ基板電圧VBBを生成するVBB内部電圧発生回路12、ビット線プリチャージ電圧VBLRを生成するVBLR内部電圧発生回路13、及びビット線電圧VDLを生成するVDL内部電圧発生回路15の動作が停止し、それぞれの内部電源電圧の供給が停止する。また、合わせてVBB内部電圧発生回路12の出力端子、及びワード線がそれぞれ接地電位VSSに接続される。
【0072】
次に、内部電源停止信号GOFFが“L”に切り換わると、VPP内部電圧発生回路11、VBB内部電圧発生回路12、VBLR内部電圧発生回路13、及びVDL内部電圧発生回路15の動作が再開し、VBB内部電圧発生回路12の出力端子と接地電位間、及びワード線と接地電位間の接続がそれぞれ遮断される。
【0073】
ここで、VPP内部電圧発生回路11は、内部電源復帰回路48のVBB検出回路482から供給されるVBB立ち上がり完了信号VBBONが有意な値(“H”)になるまでワード線電圧VPPの出力を停止する。
【0074】
メモリアレイ基板電圧VBBがある程度立ち上がり、VPP内部電圧発生回路11の動作が復帰すると、内部電源復帰回路48のVPP復帰判定回路481はVPP復帰信号VPPONを有意な値(“H”)に切り換える。
【0075】
VPP復帰信号VPPONによりワード線電圧VPPの復帰完了を検出したリフレッシュ動作制御回路42は、復帰完了パルスGENONPを生成し、リフレッシュ動作信号SRFTを“H”に切り換えてリフレッシュ動作を再開する。
【0076】
以上説明した動作は、セルフリフレッシュモードが終了(Exit)するまで繰り返される。
【0077】
したがって、メモリアレイ部3に対する非アクセス期間において、ワード線電圧VPPを生成するVPP内部電圧発生回路11、メモリアレイ基板電圧VBBを生成するVBB内部電圧発生回路12、ビット線プリチャージ電圧VBLRを生成するVBLR内部電圧発生回路13、及びビット線電圧VDLを生成するVDL内部電圧発生回路15の動作をそれぞれ停止させることで、ビット線やワード線に流れるリーク電流、及び停止させた内部電圧発生回路の負荷に流れるリーク電流を遮断することができるため、半導体記憶装置の平均消費電流を低減することができる。
【0078】
なお、各種内部電圧発生回路のうち、VPP内部電圧発生回路11及びVBB内部電圧発生回路12は、チャージポンプ回路を用いて昇圧電圧あるいは負電圧を生成するため電圧変換効率が低いという問題がある。例えば、シングルブーストのチャージポンプ回路では変換効率が50%以下であり、ダブルブーストのチャージポンプ回路(外部電源電圧VDDをさらに低電圧にした場合に用いられる)では変換効率が33%以下になる。よって、VPP内部電圧発生回路11及びVBB内部電圧発生回路12の動作を停止すれば、これらの負荷に流れるリーク電流の2〜3倍程度の電流成分を低減できる。
【0079】
また、VPP内部電圧発生回路11、VBB内部電圧発生回路12、VBLR内部電圧発生回路13、及びVDL内部電圧発生回路15の停止時に、セルプレート電圧VPLTを生成するVPLT内部電圧発生回路14、及び周辺回路に供給する降圧電圧VCLを生成するためのVCL内部電圧発生回路16の動作を維持し、かつVBB内部電圧発生回路12の出力端子、及びワード線をそれぞれ接地電位VSSに接続することで、メモリセルが有するトランジスタの誤動作を防止することができるため、メモリセル内に保持されたデータの破壊を防止することができる。
【0080】
さらに、VPP内部電圧発生回路11、VBB内部電圧発生回路12、VBLR内部電圧発生回路13、及びVDL内部電圧発生回路15の動作を復帰させる際に、メモリアレイ基板電圧VBBが立ち上がった後、VPP内部電圧発生回路11の動作を復帰させることで、メモリセルが有するトランジスタの誤動作が防止され、メモリセル内に保持されたデータの破壊を防止できる。
【0081】
なお、上記説明では、メモリアレイ部3に対する非アクセス期間において、VPP内部電圧発生回路11、VBB内部電圧発生回路12、VBLR内部電圧発生回路13、及びVDL内部電圧発生回路15の動作を全て停止させる場合で説明したが、VPP内部電圧発生回路11、VBB内部電圧発生回路12、VBLR内部電圧発生回路13のうちの少なくとも1つを停止させれば、その負荷に流れるリーク電流を遮断できるため、従来の半導体記憶装置よりも平均消費電流を低減することができる。
【0082】
(第2の実施の形態)
図13は本発明の半導体記憶装置の第2の実施の形態の構成を示す回路図である。
【0083】
本実施形態の半導体記憶装置は、ワード線電圧VPPを生成するVPP内部電圧発生回路の動作を内部電源制御回路43から出力される内部電源停止信号GOFFで停止させないようにする。
【0084】
また、本実施形態の半導体記憶装置では、図13に示すように、ワード線電圧VPPが供給されるワードドライバやXデコーダ内の論理回路等が有する各pMOSトランジスタに対して、そのソースと基板とにそれぞれ独立してワード線電圧VPPを供給し、VPP内部電圧発生回路の出力端子とpMOSトランジスタのソース間に接続を遮断するためのスイッチトランジスタQ100を設けた構成である。その他の構成は第1の実施の形態と同様であるため、その説明は省略する。
【0085】
本実施形態の半導体記憶装置では、メモリアレイ部に対する非アクセス期間において、スイッチトランジスタQ100をOFFさせ、pMOSトランジスタのソースに印加するワード線電圧VPPの供給のみを停止し、基板電圧VPPW(≒VPP)の供給はそのまま維持させる。
【0086】
このようにすることで、内部電圧発生回路の停止時、ワード線を接地電位VSSに接続しなくてもpMOSトランジスタの見かけ上のしきい値電圧が上昇するため、誤動作を防止することができる。さらに、ワード線電圧VPPが供給されるpMOSトランジスタのサブスレショルドリーク電流も低減されるため、半導体記憶装置の平均消費電流が低減される。
【0087】
なお、VPP内部電圧発生回路の動作を第1の実施の形態と同様に停止させる場合は、図13に示すようにダイオード接続されたnMOSトランジスタQ101を介して上記pMOSトランジスタの基板に外部電源電圧VDDを供給すればよい。その場合、基板電圧VPPWはVPP内部電圧発生回路の動作停止時にVDD−VTH(Q101のしきい値電圧)まで低下するが、上記VPP印加時と同様にpMOSトランジスタの誤動作を防止することができる。
【0088】
【発明の効果】
本発明は以上説明したように構成されているので、以下に記載する効果を奏する。
【0089】
セルフリフレッシュモードによるリフレッシュ動作の終了毎に、外部電源電圧よりも高い昇圧電圧であるワード線電圧、あるいは半導体基板に供給する負電圧であるメモリアレイ基板電圧の供給を所定の期間だけ停止させることで、ワード線に流れるリーク電流、あるいは停止させた内部電圧発生回路の負荷に流れるリーク電流を遮断することができるため、半導体記憶装置の平均消費電流を低減することができる。
【0090】
また、これらの電圧出力の停止時に、メモリアレイ基板電圧の出力端、及びワード線をそれぞれ接地電位に接続することで、メモリセルが有するトランジスタの誤動作が防止されるため、メモリセルに保持されたデータの破壊が防止される。
【0091】
さらに、VBB内部電圧発生回路から出力されるメモリアレイ基板電圧が立ち上がった後、VPP内部電圧発生回路からワード線電圧を出力させることで、これらの電圧の復帰時における、メモリセルのトランジスタの誤動作が防止されるため、メモリセルに保持されたデータの破壊が防止される。
【図面の簡単な説明】
【図1】本発明の半導体記憶装置の第1の実施の形態の構成を示すブロック図である。
【図2】図1に示した内部電源制御回路の一構成例を示すブロック図である。
【図3】図2に示した発振回路の一構成例を示す回路図である。
【図4】図2に示した内部電源遮断時間計測回路の一構成例を示す回路図である。
【図5】図2に示した内部電源復帰回路の一構成例を示す回路図である。
【図6】図1に示したVPP内部電圧発生回路の一構成例を示す回路図である。
【図7】図1に示したVBB内部電圧発生回路の一構成例を示す回路図である。
【図8】図1に示したVCL内部電圧発生回路の一構成例を示す回路図である。
【図9】図1に示したVDL内部電圧発生回路の一構成例を示す回路図である。
【図10】図1に示したVPLT内部電圧発生回路の一構成例を示す回路図である。
【図11】図1に示したVBLR内部電圧発生回路の一構成例を示す回路図である。
【図12】本発明の半導体記憶装置の処理手順を示すフローチャートである。
【図13】本発明の半導体記憶装置の第2の実施の形態の構成を示す回路図である。
【符号の説明】
1 電源回路部
2 DRAMメモリ部
3 メモリアレイ部
4 周辺回路部
11 VPP内部電圧発生回路
12 VBB内部電圧発生回路
13 VBLR内部電圧発生回路
14 VPLT内部電圧発生回路
15 VDL内部電圧発生回路
16 VCL内部電圧発生回路
17 基準電圧発生回路
31 メモリセルアレイ
32 ワードドライバ
33 センスアンプ
34 Yデコーダ
35 Xデコーダ
36 スイッチ部
41 モード制御回路
42 リフレッシュ動作制御回路
43 内部電源制御回路
44 入力バッファ
45 出力バッファ
47 内部電源遮断時間計測回路
48 内部電源復帰回路
49 発振回路
111 VPP制御回路
112、122 オシレータ
113、123 チャージポンプ回路
121 VBB制御回路
124 出力制御回路
131 VBLR制御回路
141 VPLT制御回路
151 VDL制御回路
161 VCL制御回路
481 VPP復帰判定回路
482 VBB検出回路

Claims (8)

  1. メモリセルに書き込まれたデータを保持するためにセルフリフレッシュモードでリフレッシュ動作を行う半導体記憶装置の制御方法であって、
    予め、外部から供給される外部電源電圧よりも高い昇圧電圧である、ワード線を駆動するために用いられるワード線電圧を生成するVPP内部電圧発生回路に、前記ワード線電圧の出力を所定の制御信号にしたがってオンまたはオフさせるためのVPP制御手段を備え、
    前記メモリセルが形成された半導体基板に供給する負電圧であるメモリアレイ基板電圧を生成するVBB内部電圧発生回路に、前記メモリアレイ基板電圧の出力を前記所定の制御信号にしたがってオンまたはオフさせるためのVBB制御手段を備え、
    前記メモリセルが形成された半導体基板を接地電位にするための出力制御手段を備えておき、
    前記リフレッシュ動作の終了毎に、前記VPP内部電圧発生回路及び前記VBB内部電圧発生回路からの電圧出力をそれぞれ所定の期間だけオフさせ、
    前記VBB内部電圧発生回路からの前記メモリアレイ基板電圧の出力がオフしている間、前記メモリセルが形成された半導体基板を接地させ、該メモリアレイ基板電圧の出力のオフを期間が終了後、前記VBB制御手段から出力される駆動信号により、前記VBB内部電圧発生回路から前記メモリアレイ基板電圧を出力させ、
    前記VBB内部電圧発生回路から出力される前記メモリアレイ基板電圧が立ち上がった後、前記VPP内部電圧発生回路から前記ワード線電圧を出力させる半導体記憶装置の制御方法。
  2. 予め前記ワード線を接地電位に接続するためのスイッチ部を備えておき、
    前記VPP内部電圧発生回路から前記ワード線電圧の出力がオフしている間、前記ワード線を接地電位に接続する請求項1記載の半導体記憶装置の制御方法。
  3. 予め、外部から供給される外部電源電圧よりも低い降圧電圧である、ビット線を駆動するために用いられるビット線電圧を生成するVDL内部電圧発生回路に、前記ビット線電圧の出力を前記所定の制御信号にしたがってオンまたはオフさせるためのVDL制御手段を備えておき、
    前記リフレッシュ動作の終了毎に、前記VDL内部電圧発生回路からの電圧出力を所定の期間だけオフさせる請求項1又は2のいずれか1項記載の半導体記憶装置の制御方法。
  4. 前記メモリセル内に備えるデータ保持用のキャパシタの上部電極に、前記リフレッシュ動作終了から次の前記リフレッシュ動作開始までの期間を含めて、動作時に常にセルプレート電圧を供給する請求項1乃至3のいずれか1項記載の半導体記憶装置の制御方法。
  5. メモリセルに書き込まれたデータを保持するためにセルフリフレッシュモードでリフレッシュ動作を行う半導体記憶装置であって、
    外部から供給される外部電源電圧よりも高い昇圧電圧である、ワード線を駆動するために用いられるワード線電圧を生成すると共に、前記ワード線電圧の出力を所定の制御信号にしたがってオンまたはオフさせるVPP内部電圧発生回路と、
    前記メモリセルが形成された半導体基板に供給する負電圧であるメモリアレイ基板電圧を生成すると共に、前記メモリアレイ基板電圧の出力を前記所定の制御信号にしたがってオンまたはオフさせるVBB内部電圧発生回路と、
    前記リフレッシュ動作の終了毎に、前記VPP内部電圧発生回路及び前記VBB内部電圧発生回路からの電圧出力をそれぞれ所定の期間だけオフさせるための制御信号を生成する内部電源遮断時間計測回路と、
    前記VBB内部電圧発生回路からの前記メモリアレイ基板電圧の出力がオフしている間、前記メモリセルが形成された半導体基板を接地し、該メモリアレイ基板電圧の出力のオフの期間が終了後、前記VBB内部電圧発生回路から前記メモリアレイ基板電圧を出力させるための駆動信号を出力する出力制御回路と、
    前記VBB内部電圧発生回路から出力される前記メモリアレイ基板電圧が立ち上がった後、前記VPP内部電圧発生回路から前記ワード線電圧を出力させるための制御信号を出力する内部電源復帰回路と、
    を有する半導体記憶装置。
  6. 前記VPP内部電圧発生回路から前記ワード線電圧の出力がオフしている間、前記ワード線を接地電位に接続するためのスイッチ部を有する請求項記載の半導体記憶装置。
  7. 外部から供給される外部電源電圧よりも低い降圧電圧である、ビット線を駆動するために用いられるビット線電圧を生成すると共に、前記ビット線電圧の出力を前記所定の制御信号にしたがってオンまたはオフさせるVDL内部電圧発生回路を有し、
    前記VDL内部電圧発生回路は、前記内部電源遮断時間計測回路から出力される制御信号にしたがって前記ビット線電圧の出力をオンまたはオフさせる請求項5又は6のいずれか1項記載の半導体記憶装置。
  8. 前記メモリセル内に備えるデータ保持用のキャパシタの上部電極に、前記リフレッシュ動作終了から次の前記リフレッシュ動作開始までの期間を含めて、動作時に常にセルプレート電圧を供給するVPLT内部電圧発生回路を有する請求項5乃至7のいずれか1項記載の半導体記憶装置。
JP2001265800A 2001-09-03 2001-09-03 半導体記憶装置の制御方法及び半導体記憶装置 Expired - Fee Related JP4152094B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001265800A JP4152094B2 (ja) 2001-09-03 2001-09-03 半導体記憶装置の制御方法及び半導体記憶装置
DE10239515A DE10239515B4 (de) 2001-09-03 2002-08-28 Halbleiterspeicher-Steuerverfahren und Halbleiterspeichervorrichtung
KR1020020051292A KR100541132B1 (ko) 2001-09-03 2002-08-29 반도체 기억 장치의 제어방법 및 반도체 기억 장치
US10/231,794 US6990031B2 (en) 2001-09-03 2002-08-29 Semiconductor memory device control method and semiconductor memory device
CNB021322465A CN1215563C (zh) 2001-09-03 2002-09-03 半导体存储器与半导体存储器控制方法
TW091120120A TW567495B (en) 2001-09-03 2002-09-03 Semiconductor memory device control method and semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001265800A JP4152094B2 (ja) 2001-09-03 2001-09-03 半導体記憶装置の制御方法及び半導体記憶装置

Publications (2)

Publication Number Publication Date
JP2003077273A JP2003077273A (ja) 2003-03-14
JP4152094B2 true JP4152094B2 (ja) 2008-09-17

Family

ID=19092212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001265800A Expired - Fee Related JP4152094B2 (ja) 2001-09-03 2001-09-03 半導体記憶装置の制御方法及び半導体記憶装置

Country Status (6)

Country Link
US (1) US6990031B2 (ja)
JP (1) JP4152094B2 (ja)
KR (1) KR100541132B1 (ja)
CN (1) CN1215563C (ja)
DE (1) DE10239515B4 (ja)
TW (1) TW567495B (ja)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4199591B2 (ja) 2003-05-16 2008-12-17 エルピーダメモリ株式会社 セルリークモニタ回路及びモニタ方法
JP4437710B2 (ja) 2003-10-30 2010-03-24 富士通マイクロエレクトロニクス株式会社 半導体メモリ
KR100567916B1 (ko) * 2004-04-20 2006-04-05 주식회사 하이닉스반도체 반도체 메모리 소자의 전원 공급 장치 및 방법
KR100772686B1 (ko) * 2004-10-30 2007-11-02 주식회사 하이닉스반도체 저전압용 반도체 메모리 장치
KR100648278B1 (ko) * 2004-11-05 2006-11-23 삼성전자주식회사 벌크 라인 전압에 따른 프로그램 실행 구간의서스펜드/리쥼 기능을 갖는 불 휘발성 메모리 장치 및그것의 프로그램 방법
US7532532B2 (en) * 2005-05-31 2009-05-12 Micron Technology, Inc. System and method for hidden-refresh rate modification
KR100816690B1 (ko) * 2006-04-13 2008-03-27 주식회사 하이닉스반도체 온도 감지장치를 구비하는 반도체메모리소자
KR100826647B1 (ko) * 2006-11-20 2008-05-06 주식회사 하이닉스반도체 전압펌프 초기화 회로 및 이를 이용한 전압 펌핑장치
JP2008146784A (ja) 2006-12-13 2008-06-26 Elpida Memory Inc 半導体記憶装置
US7477092B2 (en) * 2006-12-29 2009-01-13 Sandisk Corporation Unified voltage generation apparatus with improved power efficiency
US7440342B2 (en) * 2006-12-29 2008-10-21 Sandisk Corporation Unified voltage generation method with improved power efficiency
US7733731B2 (en) 2007-03-05 2010-06-08 Micron Technology, Inc. Control of inputs to a memory device
US8042022B2 (en) 2007-03-08 2011-10-18 Micron Technology, Inc. Method, system, and apparatus for distributed decoding during prolonged refresh
US8004920B2 (en) * 2007-05-29 2011-08-23 Micron Technology, Inc. Power saving memory apparatus, systems, and methods
JP5045294B2 (ja) * 2007-07-30 2012-10-10 富士通セミコンダクター株式会社 カスコードカレントミラー回路を有する内部電源回路
US8005995B2 (en) 2007-08-16 2011-08-23 Micron Technology, Inc. Command interface systems and methods
US8044705B2 (en) * 2007-08-28 2011-10-25 Sandisk Technologies Inc. Bottom plate regulation of charge pumps
US7656720B2 (en) * 2007-11-07 2010-02-02 Micron Technology, Inc. Power-off apparatus, systems, and methods
US7586362B2 (en) * 2007-12-12 2009-09-08 Sandisk Corporation Low voltage charge pump with regulation
US7586363B2 (en) * 2007-12-12 2009-09-08 Sandisk Corporation Diode connected regulation of charge pumps
US7969235B2 (en) 2008-06-09 2011-06-28 Sandisk Corporation Self-adaptive multi-stage charge pump
US20090302930A1 (en) * 2008-06-09 2009-12-10 Feng Pan Charge Pump with Vt Cancellation Through Parallel Structure
US8710907B2 (en) * 2008-06-24 2014-04-29 Sandisk Technologies Inc. Clock generator circuit for a charge pump
US7683700B2 (en) 2008-06-25 2010-03-23 Sandisk Corporation Techniques of ripple reduction for charge pumps
KR101450255B1 (ko) * 2008-10-22 2014-10-13 삼성전자주식회사 반도체 메모리 장치의 내부 전원 전압 발생 회로
US7795952B2 (en) * 2008-12-17 2010-09-14 Sandisk Corporation Regulation of recovery rates in charge pumps
JP5564829B2 (ja) * 2009-05-14 2014-08-06 富士通セミコンダクター株式会社 半導体記憶装置及びその制御方法
US7973592B2 (en) * 2009-07-21 2011-07-05 Sandisk Corporation Charge pump with current based regulation
US8339183B2 (en) * 2009-07-24 2012-12-25 Sandisk Technologies Inc. Charge pump with reduced energy consumption through charge sharing and clock boosting suitable for high voltage word line in flash memories
US20110133820A1 (en) * 2009-12-09 2011-06-09 Feng Pan Multi-Stage Charge Pump with Variable Number of Boosting Stages
US20110148509A1 (en) * 2009-12-17 2011-06-23 Feng Pan Techniques to Reduce Charge Pump Overshoot
WO2012082274A2 (en) 2010-11-19 2012-06-21 Rambus Inc. Timing-drift calibration
US8294509B2 (en) 2010-12-20 2012-10-23 Sandisk Technologies Inc. Charge pump systems with reduction in inefficiencies due to charge sharing between capacitances
US8339185B2 (en) 2010-12-20 2012-12-25 Sandisk 3D Llc Charge pump system that dynamically selects number of active stages
US8649236B2 (en) * 2011-05-11 2014-02-11 Elite Semiconductor Memory Technology Inc. Circuit and method for controlling leakage current in random access memory devices
TWI469144B (zh) * 2011-07-06 2015-01-11 Elite Semiconductor Esmt 用以控制隨機存取記憶體元件中的漏電流之電路和方法
US8699247B2 (en) 2011-09-09 2014-04-15 Sandisk Technologies Inc. Charge pump system dynamically reconfigurable for read and program
US8514628B2 (en) 2011-09-22 2013-08-20 Sandisk Technologies Inc. Dynamic switching approach to reduce area and power consumption of high voltage charge pumps
US8400212B1 (en) 2011-09-22 2013-03-19 Sandisk Technologies Inc. High voltage charge pump regulation system with fine step adjustment
KR20130046182A (ko) * 2011-10-27 2013-05-07 에스케이하이닉스 주식회사 불휘발성 메모리 장치의 전압 생성 회로
US8710909B2 (en) 2012-09-14 2014-04-29 Sandisk Technologies Inc. Circuits for prevention of reverse leakage in Vth-cancellation charge pumps
US8836412B2 (en) 2013-02-11 2014-09-16 Sandisk 3D Llc Charge pump with a power-controlled clock buffer to reduce power consumption and output voltage ripple
US8981835B2 (en) 2013-06-18 2015-03-17 Sandisk Technologies Inc. Efficient voltage doubler
US9024680B2 (en) 2013-06-24 2015-05-05 Sandisk Technologies Inc. Efficiency for charge pumps with low supply voltages
US9077238B2 (en) 2013-06-25 2015-07-07 SanDisk Technologies, Inc. Capacitive regulation of charge pumps without refresh operation interruption
US9007046B2 (en) 2013-06-27 2015-04-14 Sandisk Technologies Inc. Efficient high voltage bias regulation circuit
US9083231B2 (en) 2013-09-30 2015-07-14 Sandisk Technologies Inc. Amplitude modulation for pass gate to improve charge pump efficiency
US9154027B2 (en) 2013-12-09 2015-10-06 Sandisk Technologies Inc. Dynamic load matching charge pump for reduced current consumption
US9917507B2 (en) 2015-05-28 2018-03-13 Sandisk Technologies Llc Dynamic clock period modulation scheme for variable charge pump load currents
US9647536B2 (en) 2015-07-28 2017-05-09 Sandisk Technologies Llc High voltage generation using low voltage devices
US9520776B1 (en) 2015-09-18 2016-12-13 Sandisk Technologies Llc Selective body bias for charge pump transfer switches
US9437284B1 (en) * 2015-12-02 2016-09-06 Vanguard International Semiconductor Corporation Memory devices and control methods thereof
KR20220077011A (ko) 2020-12-01 2022-06-08 에스케이하이닉스 주식회사 리프레쉬동작을 수행하는 전자장치
US11894041B2 (en) 2020-12-01 2024-02-06 SK Hynix Inc. Electronic devices executing refresh operation based on adjusted internal voltage

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950009391B1 (ko) * 1991-07-16 1995-08-21 삼성전자주식회사 데이터 보유 모드에서의 리프레시 단축회로를 갖춘 반도체 메모리 장치
JPH05210978A (ja) * 1992-01-31 1993-08-20 Sharp Corp 半導体記憶装置
JPH08203268A (ja) * 1995-01-27 1996-08-09 Hitachi Ltd ダイナミック型ram
JP2725627B2 (ja) * 1995-03-02 1998-03-11 日本電気株式会社 ダイナミック型半導体記憶装置
US6038186A (en) * 1997-09-12 2000-03-14 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device that can have power consumption reduced during self refresh mode
JPH11120772A (ja) 1997-10-15 1999-04-30 Nec Corp 半導体記憶装置
KR100363105B1 (ko) * 1998-12-23 2003-02-19 주식회사 하이닉스반도체 셀 리키지 커런트 보상용 셀프 리프레쉬 장치
KR100381966B1 (ko) 1998-12-28 2004-03-22 주식회사 하이닉스반도체 반도체메모리장치및그구동방법
JP3863313B2 (ja) * 1999-03-19 2006-12-27 富士通株式会社 半導体記憶装置
JP4804609B2 (ja) * 2000-02-16 2011-11-02 富士通セミコンダクター株式会社 セルアレイ電源の上昇を防止したメモリ回路

Also Published As

Publication number Publication date
US6990031B2 (en) 2006-01-24
CN1215563C (zh) 2005-08-17
CN1404153A (zh) 2003-03-19
KR20030020235A (ko) 2003-03-08
DE10239515A1 (de) 2003-05-22
KR100541132B1 (ko) 2006-01-10
DE10239515B4 (de) 2007-05-10
US20030043673A1 (en) 2003-03-06
JP2003077273A (ja) 2003-03-14
TW567495B (en) 2003-12-21

Similar Documents

Publication Publication Date Title
JP4152094B2 (ja) 半導体記憶装置の制御方法及び半導体記憶装置
KR100631935B1 (ko) 반도체 메모리 장치의 셀프 리프레시 회로
US4964082A (en) Semiconductor memory device having a back-bias voltage generator
US7397710B2 (en) Internal voltage level control circuit and semiconductor memory device as well as method of controlling the same
US7339847B2 (en) BLEQ driving circuit in semiconductor memory device
JPH10199244A (ja) 複合モード型基板電圧発生回路
KR100502659B1 (ko) 저전력 셀프 리프레쉬 장치를 구비한 반도체 메모리 장치
US20060146626A1 (en) Refresh control circuit of pseudo SRAM
JP3494488B2 (ja) 半導体装置
KR100468718B1 (ko) 외부 리프레쉬 명령을 사용하지 않는 메모리장치의리프레쉬 제어회로 및 그 방법
JP3869690B2 (ja) 内部電圧レベル制御回路および半導体記憶装置並びにそれらの制御方法
KR100378690B1 (ko) 대기전류를감소시킨반도체메모리용고전원발생장치
KR100244837B1 (ko) 기판 전압의 크기를 모드에 따라서 설정할 수 있는 반도체 기억 장치
JP4804609B2 (ja) セルアレイ電源の上昇を防止したメモリ回路
TWI645405B (zh) 半導體記憶裝置
JPH07296581A (ja) 半導体記憶装置
JPH06103758A (ja) ダイナミック型半導体記憶装置
JPH01235095A (ja) ダイナミック型半導体記憶装置
KR100833587B1 (ko) 리프레시 특성 향상을 위한 반도체 메모리 장치
JPH10289578A (ja) 半導体記憶装置
JPH03217917A (ja) リングオシレータ回路
JP2006048845A (ja) セルフリフレッシュ制御回路
JPH06223565A (ja) 半導体記憶装置
JP2002042465A (ja) 半導体装置
JPH06187796A (ja) 半導体記憶装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040316

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041110

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060125

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees