JP4146153B2 - 半導体レーザ素子の製造方法 - Google Patents

半導体レーザ素子の製造方法 Download PDF

Info

Publication number
JP4146153B2
JP4146153B2 JP2002112152A JP2002112152A JP4146153B2 JP 4146153 B2 JP4146153 B2 JP 4146153B2 JP 2002112152 A JP2002112152 A JP 2002112152A JP 2002112152 A JP2002112152 A JP 2002112152A JP 4146153 B2 JP4146153 B2 JP 4146153B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
semiconductor
algaas
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002112152A
Other languages
English (en)
Other versions
JP2003309329A (ja
Inventor
啓介 宮嵜
一彦 和田
泰司 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002112152A priority Critical patent/JP4146153B2/ja
Priority to US10/412,297 priority patent/US6919217B2/en
Priority to CNB031409911A priority patent/CN1225827C/zh
Publication of JP2003309329A publication Critical patent/JP2003309329A/ja
Application granted granted Critical
Publication of JP4146153B2 publication Critical patent/JP4146153B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Head (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、一つの半導体基板上に複数の半導体レーザを形成できる半導体レーザ素子の製造方法に関する。
【0002】
【従来の技術】
近年、光ディスクの普及が進み、その記録フォーマットも多岐にわたってきている。異なる規格の光ディスクを光学的に読み取る場合には、異なる規格のレーザが必要である。例えば、CD(コンパクトディスク)とDVD(ディジタル多用途ディスク)との2種類の光ディスクを読み取るためには、発光波長が780nm付近の赤外レーザと発光波長が650nm付近の赤色レーザとが必要である。
【0003】
その場合に、ピックアップの小型化や低価格化のために、一つのパッケージで二つの波長のレーザ光を放射することができる半導体レーザ素子の出現が求められている。
【0004】
また、光ディスク以外にも、レーザビームプリンタや記録再型の光ディスクにおいて、一つのパッケージで二つの波長のレーザ、あるいは、同じ波長でも低出力用と高出力用との二種類のレーザを放射することができる半導体レーザ素子の出現が求められている。さらには、同じ波長で同じ出力の2ビームレーザも考えられる。
【0005】
これらの要望に応じるために、二つの半導体レーザを一つの半導体基板上に集積する技術が開発されている。ところが、単一の半導体基板上に二つの異なる特性のレーザを形成する場合は、一度の結晶成長では実現できないことが多い。そのために、単一の半導体基板上に複数回の結晶成長を行なう方法が用いられる。すなわち、先に、半導体基板上に一方のレーザ構造を結晶成長し、それに重ねて他方のレーザ構造を成長形成し、先に成長したレーザ構造上に後から形成されたレーザ構造を除去するのである。
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来の単一の半導体基板上に複数回の結晶成長を行なう半導体レーザ素子の製造方法には、以下のような問題がある。すなわち、半導体基板上に先に成長されたレーザ構造に重ねて他方のレーザ構造を成長形成する場合には、先に成長されたレーザ構造における電極コンタクトが十分に行うことができない。さらに、後から成長されたレーザ構造における電流電圧特性に異常が生じる等の問題が発生する。
【0007】
具体的に説明すると、上記電極コンタクトを低抵抗で行なうために、コンタクト層は高いキャリア濃度で形成される。そして、このキャリア濃度を付与するために、上記コンタクト層を構成する結晶層の中には不純物が添加されている。したがって、上記コンタクト層が形成されているレーザ構造に重ねて他のレーザ構造の成長を行う際における高温の影響を受けて上記コンタクト層内から不純物が抜け、コンタクト層のキャリア濃度が低下して金属電極と半導体層とのコンタクト特性が悪化するのである。
【0008】
さらに、上記コンタクト層から抜け出た不純物が上記他方のレーザを成長するために露出させた結晶表面に再付着し、その上から上記他方のレーザの結晶成長が行われることになる。そのために、所望しない不純物が混じった必要の無い層が形成されることになり、層の抵抗率や導電型に影響を与え、結果的に電流電圧特性に異常が現れるのである。
【0009】
図5に、GaAs基板1上に、AlGaAs系半導体レーザとAlGaInP系半導体レーザとの二つの半導体レーザを成長する場合における素子断面を示している。先ず、図5(a)に示すように、n型GaAs基板1上に、n型GaAsバッファ層2,n型AlGaAsクラッド層3,AlGaAsガイド層4,多重量子井戸活性層5,p型AlGaAsガイド層6,p型AlGaAsクラッド層7,p型GaAsコンタクト層(Znを濃度5×1018cm-3でドープ)8で成るAlGaAs系半導体レーザ9が成長される。そして、AlGaAs系半導体レーザ9の一部分がエッチングによってGaAs基板1が露出するまで除去される。
【0010】
そして、次に、上記AlGaInP系半導体レーザを成長させるために成長炉に入れられる。そうすると、図5に模式的に示すように、炉内の高温によって最上層のp型GaAsコンタクト層8から不純物Znが蒸発し、露出したGaAs基板1上に再付着することになる。
【0011】
そうした後に、図5(b)に示すように、全面にn型GaAsバッファ層11,n型AlGaInPクラッド層12,AlGaInPガイド層13,多重量子井戸活性層14,AlGaInPガイド層15,p型AlGaInPクラッド層16,p型GaAsコンタクト層17で成るAlGaInP系半導体レーザ18が成長される。
【0012】
図6に、上記AlGaAs系半導体レーザ9側のp型GaAsコンタクト層8における成長直後のキャリア濃度とAlGaInP系半導体レーザ18成長後のキャリア濃度とを示す。図より、AlGaAs系半導体レーザ9形成直後に5×1018cm-3であったキャリア濃度が、AlGaInP系半導体レーザ18成長後には、最表面においては7×1017cm-3にまで減少していることが分る。
【0013】
また、図7に、後から成長されたAlGaInP系半導体レーザ18の電流‐電圧曲線を示す。尚、このAlGaInP系半導体レーザ18と同じ組成のAlGaInP系半導体レーザを単体でGaAs基板上に成長した場合の電流‐電圧曲線をも合わせて示している。図7より、単体の場合には1.82Vであった100mAでの駆動電圧が、後から成長されたAlGaInP系半導体レーザ18の場合には0.1V増加して1.92Vとなっている。これは、AlGaInP系半導体レーザ18における最下層のGaAsバッファ層11とGaAs基板1との界面に、GaAs基板1と上記再付着した不純物Znとが混じった層が形成され、内部抵抗が増加して発熱量が増えたことを意味する。このような場合には、長期駆動の際に信頼性の面で問題となるのである。
【0014】
そこで、この発明の目的は、単一の半導体基板上に複数の半導体レーザを順次成長させて良好な特性を有する半導体レーザ素子を形成できる半導体レーザ素子の製造方法を提供することにある。
【0015】
【課題を解決するための手段】
上記目的を達成するため、この発明の半導体レーザ素子の製造方法では、半導体基板上に1回目の結晶成長によって第1半導体レーザ層を形成した後、この第1半導体レーザ層における最上のコンタクト層上にノンドープ半導体層を形成している。したがって、上記半導体基板上に、2回目の結晶成長によって第2半導体レーザ層を形成するに先立って、上記第1半導体レーザ層における発光領域となる領域を除いた領域を除去して半導体基板が露出された場合に、上記ノンドープ半導体層が上記コンタクト層の保護層として機能する。
【0016】
その結果、上記2回目の結晶成長を行うために成長炉に入れた際に、炉内の高温による上記コンタクト層からの不純物の蒸発が防止される。したがって、上記コンタクト層のキャリア濃度が低下して、金属電極とのコンタクト特性が悪化することはない。
【0017】
さらに、上記露出した半導体基板の表面に、上記コンタクト層から蒸発した不純物が再付着することはない。したがって、上記露出した半導体基板上に2回目の結晶成長によって第2半導体レーザ層を形成する際に、上記第2半導体レーザ層の最下層と半導体基板との界面に、上記半導体基板と上記再付着した不純物との混じった層が形成されることはない。こうして、長期駆動の際における信頼性が向上されるのである
【0018】
た、1実施例では、上記第1半導体レーザ層のコンタクト層とノンドープ半導体層との間に、上記コンタクト層およびノンドープ半導体層とは結晶組成が異なる半導体層を形成して、上記結晶組成が異なる半導体層を選択エッチングで除去する際に上記コンタクト層をエッチング停止層として機能させるようにしている。したがって、上記第2半導体レーザ層を形成した後に、上記コンタクト層を露出させる際に、上記コンタクト層に対して選択性のあるエッチャントを用いて上記結晶組成が異なる半導体層をエッチング除去することによって、確実に上記コンタクト層の表面でエッチングが停止される。したがって、上記コンタクト層の厚みが厳密に制御されて、所定のコンタクト特性が得られる。
【0019】
また、1実施例では、上記半導体基板はG a s 基板であり、上記第1半導体レーザ層はA l a s 系半導体レーザ層あるいはA l a n P系半導体レーザ層であり、上記第1半導体レーザ層のコンタクト層はG a s 系のコンタクト層であり、上記ノンドープ半導体層はG a s 系のノンドープ半導体層であり、上記第1半導体レーザ層のコンタクト層とノンドープ半導体層との間に、上記結晶組成が異なる半導体層としてAlGaAs系の半導体層が形成される。したがって、エッチングによって上記結晶組成が異なる半導体層を除去する際に、上記GaAs系のコンタクト層に対して選択性のあるHF系あるいは塩酸系のエッチャントを用いることによって、上記GaAs系のコンタクト層の厚みが厳密に制御される。
【0020】
また、1実施例では、上記半導体基板はG a s 基板であり、上記第1半導体レーザ層はA l a s 系半導体レーザ層あるいはA l a n P系半導体レーザ層であり、上記第1半導体レーザ層のコンタクト層はG a s 系のコンタクト層であり、上記ノンドープ半導体層としてGaAs系の半導体層が形成される。したがって、上記第1半導体レーザ層のコンタクト層と上記ノンドープ半導体層とを成膜する際に、導入する材料ガスを切り換えることなくドーパントガスのオンとオフとを切り換えるだけでよく、同一の成膜装置で成膜することが可能にな
【0021】
【発明の実施の形態】
以下、この発明を図示の実施の形態により詳細に説明する。
<第1実施の形態>
図1及び図2は、本実施の形態の半導体レーザ素子の製造方法によって形成される半導体レーザ素子の各製造工程における断面を示す。先ず、図1(a)に示すように、n型GaAs基板21上に、n型GaAsバッファ層22,n型AlGaAsクラッド層23,AlGaAsガイド層24,多重量子井戸活性層25,p型AlGaAsガイド層26,p型AlGaAsクラッド層27およびp型GaAsコンタクト層28がMOCVD(有機金属気相成長)によって順次成長されて、上記第1半導体レーザ層の一例としてのAlGaAs系半導体レーザ29が形成される。その場合、最上層のp型GaAsコンタクト層28には、キャリア濃度が5×1018cm-3となるようにZnがドープされている。
【0022】
さらに、上記AlGaAs系半導体レーザ29のp型GaAsコンタクト層28上に、上記ノンドープ半導体層の一例としてのノンドープGaAs保護層30を0.2μmの膜厚で成長させる。こうして、1回目の結晶成長が行われる。
【0023】
次に、図1(b)に示すように、上記AlGaAs系半導体レーザ29の一部の領域がエッチングによって除去されて、n型GaAs基板21が露出される。具体的には、先ず、硫酸系エッチャントによって、n型AlGaAsクラッド層23に届くまでエッチングを行なう。次に、HF系または塩酸系のエッチャントによって、残りのn型AlGaAsクラッド層23をエッチング除去する。以上のエッチャントではGaAsはエッチング出来ないため、n型GaAsバッファ層22表面でエッチングは停止する。そこで、引き続いて、硫酸系あるいはNH3系のエッチャントによって、n型GaAsバッファ層22をエッチング除去してn型GaAs基板21を露出させるのである。
【0024】
この場合に、上記n型GaAs基板21上に残ったAlGaAs系半導体レーザ29におけるp型GaAsコンタクト層28の上には、ノンドープGaAs保護層30が成長されている。したがって、上記AlGaInP系半導体レーザを成長させるために成長炉に入れた際に、炉内の高温によるp型GaAsコンタクト層28からの不純物Znの蒸発が防止される。さらに、ノンドープGaAs保護層30にはドーパントが含まれてはいない。その結果、露出したGaAs基板21の表面に、p型GaAsコンタクト層28から蒸発した不純物Zn等の不純物が再付着することも防止されるのである。
【0025】
次に、図1(c)に示すように、全面に、n型GaAsバッファ層31,n型AlGaInPクラッド層32,AlGaInPガイド層33,多重量子井戸活性層34,AlGaInPガイド層35,p型AlGaInPクラッド層36およびp型GaAsコンタクト層37がMOCVDによって順次成長されて、上記第2半導体レーザ層の一例としてのAlGaInP系半導体レーザ38が形成される。こうして、2回目の結晶成長が行われる。尚、図1(c)においては、GaAs基板21上に成長されたAlGaInP系半導体レーザ38とAlGaAs系半導体レーザ29上に成長されたAlGaInP系半導体レーザ38との境界で、各層が直角に折れ曲がって垂直に延在するように描かれているが、実際にはなだらかな曲線を描くように形成される。
【0026】
次に、図2(d)に示すように、後に形成されたAlGaInP系半導体レーザ38における先に形成されたAlGaAs系半導体レーザ29上に重なって形成されている領域と、ノンドープGaAs保護層30とを、エッチングによって除去する。
【0027】
具体的には、先ず、硫酸系エッチャントによって、上記AlGaInP系半導体レーザ38のn型AlGaInPクラッド層32に届くまでエッチングを行なう。次に、塩酸系あるいはリン酸系のエッチャントによって、残りのn型AlGaInPクラッド層32をn型GaAsバッファ層31までエッチングする。この場合、選択性のあるエッチャントを用いているため、エッチングはn型GaAsバッファ層31上で停止する。引き続いて、硫酸系エッチャントあるいはNH3系エッチャントによって、n型GaAsバッファ層31およびノンドープGaAs保護層30をエッチング除去して、AlGaAs系半導体レーザ29のp型GaAsコンタクト層28を露出させる。
【0028】
さらに、上記n型GaAs基板21上におけるAlGaAs系半導体レーザ29とAlGaInP系半導体レーザ38との境界部分が除去されて、図2(e)に示すように、上記n型GaAs基板21上に、AlGaAs系半導体レーザ29とAlGaInP系半導体レーザ38とが並んで配置された半導体レーザ素子が形成される。
【0029】
そうした後、図2(f)に示すように、上記AlGaAs系半導体レーザ29のp型GaAsコンタクト層28およびp型AlGaAsクラッド層27の途中までを、中央部を紙面に垂直方向に所定幅だけ残してエッチング除去して、上記中央部にストライプ状のリッジ部を形成する。同時に、AlGaInP系半導体レーザ38のp型GaAsコンタクト層37およびp型AlGaInPクラッド層36の途中までをエッチング除去して、中央部にストライプ状のリッジ部を形成する。そして、AlGaAs系半導体レーザ29のリッジ部上とAlGaInP系半導体レーザ38のリッジ部上とに、p型AuZn/Au/Mo/Au電極39,40を形成する。さらに、n型GaAs基板21の表面にn型AuGe/Ni/Mo/Au電極41を形成する。こうして、二つの発光部を有する半導体レーザ素子が形成されるのである。
【0030】
こうして形成された半導体レーザ素子は、上記AlGaAs系半導体レーザ29におけるp型GaAsコンタクト層28からの不純物Znの蒸発はない。したがって、p型GaAsコンタクト層28の表面キャリア濃度は5×1018cm-3を維持しており、良好な電極コンタクトが得られる。さらに、n型GaAs基板21への不純物Znの再付着もない。したがって、後から成長されたAlGaInP系半導体レーザ38におけるI‐V特性は、単体で成長された同じ組成のAlGaInP系半導体レーザと変わりはない。
【0031】
上述のように、本実施の形態においては、n型GaAs基板21上にAlGaAs系半導体レーザ29を形成した後に、AlGaAs系半導体レーザ29における最上層のp型GaAsコンタクト層28上に、ノンドープGaAs保護層30を形成している。したがって、AlGaAs系半導体レーザ29の一部の領域をエッチング除去してn型GaAs基板21を露出させた後に、AlGaInP系半導体レーザを成長させるために成長炉に入れた場合、炉内の高温によってp型GaAsコンタクト層28から不純物Znが蒸発することを防止できる。したがって、p型GaAsコンタクト層28のキャリア濃度が低下して、p型AuZn/Au/Mo/Au電極39とのコンタクト特性が悪化するのを防止することができるである。
【0032】
さらに、上記露出したGaAs基板21の表面に、p型GaAsコンタクト層28から蒸発した不純物Znが再付着することが防止される。したがって、AlGaAs系半導体レーザ29が除去された領域のGaAs基板21上に、AlGaInP系半導体レーザ38を形成した際に、AlGaInP系半導体レーザ38における最下層のn型GaAsバッファ層31とGaAs基板21との界面に、GaAs基板21に上記再付着した不純物Znが混じった層が形成されることがない。したがって、内部抵抗が増加して発熱量が増えることがなく、長期駆動の際における信頼性を向上できるのである。
【0033】
その際に、上記ノンドープGaAs保護層30の膜厚を0.2μmとしている。したがって、上記成長炉内の高温によるAlGaAs系半導体レーザ29のGaAsコンタクト層28からの不純物Znの蒸発を確実に防止できると共に、GaAsコンタクト層28を露出させる際には簡単にエッチング除去することができる。
【0034】
尚、上記第1実施の形態においては、上記ノンドープGaAs保護層30の膜厚を0.2μmとしているが、これに限定されるものではない。要は、2回目の結晶成長によってAlGaInP系半導体レーザ38を成長させる前の高温で蒸発してしまわないような膜厚であれば良く、0.2μm以上であれば良い。上限については特に限定されるものではないが、現実的には2μm以下が妥当である。
【0035】
<第2実施の形態>
本実施の形態は、AlGaAs系半導体レーザとAlGaInP系半導体レーザとの二つの発光部を有する半導体レーザ素子の上記第1実施の形態とは異なる製造方法に関する。
【0036】
図3及び図4は、本実施の形態の半導体レーザ素子の製造方法によって形成される半導体レーザ素子の各製造工程における断面を示す。先ず、図3(a)に示すように、n型GaAs基板51上に、n型GaAsバッファ層52,n型AlGaAsクラッド層53,AlGaAsガイド層54,多重量子井戸活性層55,p型AlGaAsガイド層56,p型AlGaAsクラッド層57およびp型GaAsコンタクト層58がMOCVDによって順次成長されてAlGaAs系半導体レーザ59が形成される。その場合、最上層のp型GaAsコンタクト層58には、キャリア濃度が5×1018cm-3となるようにZnがドープされている。
【0037】
さらに、上記AlGaAs系半導体レーザ59のp型GaAsコンタクト層58上には、上記コンタクト層およびノンドープ半導体層とは結晶組成が異なる半導体層の一例としての膜厚が0.1μmのノンドープAlGaAsエッチング停止層60と、膜厚が0.2μmのノンドープGaAs保護層61とを成長させる。こうして、1回目の結晶成長が行われる。
【0038】
次に、図3(b)に示すように、上記AlGaAs系半導体レーザ59の一部の領域がエッチングによって除去されて、n型GaAs基板51が露出される。具体的には、先ず、硫酸系エッチャントによって、n型AlGaAsクラッド層53に届くまでエッチングを行なう。次に、HF系または塩酸系のエッチャントによって、残りのn型AlGaAsクラッド層53をエッチング除去する。以上のエッチャントではGaAsはエッチング出来ないために、n型GaAsバッファ層52の表面でエッチングは停止する。そこで、引き続いて、硫酸系あるいはNH3系のエッチャントによって、n型GaAsバッファ層52をエッチング除去してn型GaAs基板51を露出させるのである。
【0039】
この場合に、上記n型GaAs基板51上に残ったAlGaAs系半導体レーザ59におけるp型GaAsコンタクト層58の上には、ノンドープAlGaAsエッチング停止層60およびノンドープGaAs保護層61が成長されている。したがって、上記AlGaInP系半導体レーザを成長させるために成長炉に入れた際に、炉内の高温によるp型GaAsコンタクト層58からの不純物Znの蒸発が防止される。さらに、ノンドープGaAs保護層61にはドーパントが含まれていない。その結果、露出したGaAs基板51の表面に、p型GaAsコンタクト層58から蒸発した不純物Zn等の不純物が再付着することも防止されるのである。
【0040】
次に、図3(c)に示すように、全面に、n型GaAsバッファ層62,n型AlGaInPクラッド層63,AlGaInPガイド層64,多重量子井戸活性層65,AlGaInPガイド層66,p型AlGaInPクラッド層67およびp型GaAsコンタクト層68がMOCVDによって順次成長されてAlGaInP系半導体レーザ69が形成される。こうして、2回目の結晶成長が行われる。
【0041】
次に、図4(d)に示すように、後に形成されたAlGaInP系半導体レーザ69における先に形成されたAlGaAs系半導体レーザ59上に重なって形成されている領域と、ノンドープAlGaAsエッチング停止層60及びノンドープGaAs保護層61とを、エッチングによって除去する。
【0042】
具体的には、先ず、硫酸系エッチャントによって、上記AlGaInP系半導体レーザ69のn型AlGaInPクラッド層63に届くまでエッチングを行なう。次に、塩酸系あるいはリン酸系のエッチャントによって、残りのn型AlGaInPクラッド層63をn型GaAsバッファ層62までエッチングする。この場合、選択性のあるエッチャントを用いているため、エッチングはn型GaAsバッファ層62上で停止する。引き続いて、硫酸系あるいはNH3系のエッチャントによって、n型GaAsバッファ層62及びノンドープGaAs保護層61をエッチング除去する。この場合、硫酸系あるいはNH3系エッチャントを使用するために、エッチングはノンドープAlGaAsエッチング停止層60が露出した時点で停止する。続いて、HF系あるいは塩酸系エッチャントによって、ノンドープAlGaAsエッチング停止層60を除去する。こうして、AlGaAs系半導体レーザ59のp型GaAsコンタクト層58を露出させる。
【0043】
さらに、上記n型GaAs基板51上におけるAlGaAs系半導体レーザ59とAlGaInP系半導体レーザ69との境界部分が除去されて、図4(e)に示すように、上記n型GaAs基板51上に、AlGaAs系半導体レーザ59とAlGaInP系半導体レーザ69とが並んで配置された半導体レーザ素子が形成される。
【0044】
そうした後、図4(f)に示すように、上記AlGaAs系半導体レーザ59のp型GaAsコンタクト層58およびp型AlGaAsクラッド層57の途中までをエッチング除去して、第1実施の形態の場合と同様にリッジ部を形成する。同時に、上記AlGaInP系半導体レーザ69のp型GaAsコンタクト層68およびp型AlGaInPクラッド層67の途中までをエッチング除去してリッジ部を形成する。そして、AlGaAs系半導体レーザ59のリッジ部上とAlGaInP系半導体レーザ69のリッジ部上とに、p型AuZn/Au/Mo/Au電極70,71を形成する。さらに、n型GaAs基板51の表面にn型AuGe/Ni/Mo/Au電極72を形成する。こうして、二つの発光部を有する半導体レーザ素子が形成されるのである。
【0045】
上述したように、本実施の形態においては、上記n型GaAs基板51上にAlGaAs系半導体レーザ59を形成した後、AlGaAs系半導体レーザ59における最上層のp型GaAsコンタクト層58上に、膜厚が0.1μmのノンドープAlGaAsエッチング停止層60および膜厚が0.2μmのノンドープGaAs保護層61を形成している。したがって、AlGaAs系半導体レーザ59の一部の領域をエッチング除去してn型GaAs基板51を露出させた後に、AlGaInP系半導体レーザを成長させるために成長炉に入れた場合、炉内の高温によってp型GaAsコンタクト層58から不純物Znが蒸発するのを防止することができる。そのために、p型GaAsコンタクト層58のキャリア濃度が低下して、p型AuZn/Au/Mo/Au電極70とのコンタクト特性が悪化するのを防止することができるのである。
【0046】
さらに、上記露出したn型GaAs基板51の表面に、上記p型GaAsコンタクト層58から蒸発した不純物Znが再付着することが無くなる。したがって、AlGaAs系半導体レーザ59が除去された領域のGaAs基板51上にAlGaInP系半導体レーザ69を形成した際に、AlGaInP系半導体レーザ69における最下層のn型GaAsバッファ層62とGaAs基板51との界面に、GaAs基板51と上記再付着した不純物Znとの混じった層が形成されることはない。したがって、内部抵抗が増加して発熱量が増えることがなく、長期駆動の際における信頼性を向上できるのである。
【0047】
さらに、本実施の形態においては、上記AlGaAs系半導体レーザ59の最上層であるp型GaAsコンタクト層58と同じGaAs系のノンドープGaAs保護層61との間に、異なる組成であるAlGaAs系のノンドープAlGaAsエッチング停止層60を設けている。したがって、ノンドープAlGaAsエッチング停止層60を除去する場合に、GaAs層に対して選択性のあるHF系あるいは塩酸系エッチャントを用いることによって、エッチングをp型GaAsコンタクト層58が露出した時点で停止させることができる。すなわち、p型GaAsコンタクト層58の厚みを厳密に制御することができ、所定のコンタクト特性を得ることができるのである。
【0048】
その際に、上記ノンドープAlGaAsエッチング停止層60の膜厚を0.1μmとしている。したがって、ノンドープGaAs保護層61をエッチング除去する際に上記エッチングを確実に停止することができると共に、AlGaAs系半導体レーザ59のGaAsコンタクト層58を露出させる際には簡単にエッチング除去することができる。
【0049】
尚、本実施の形態においても、上記ノンドープGaAs保護層61の膜厚を0.2μmとしているが、上記第1実施の形態の場合と同様に0.2μm以上であれば良い。上限については特に限定されるものではないが、現実的には2μm以下が妥当である。さらに、本実施の形態においては、ノンドープAlGaAsエッチング停止層60の膜厚を0.1μmとしているが、これに限定されるものではない。要は、例えばNH3系エッチャントによってノンドープGaAs保護層61をエッチングしてノンドープAlGaAsエッチング停止層60に到達した際に、上記エッチングを確実に停止できる膜厚であれば良く、0.1μm以上であれば良い。上限については特に限定されるものではないが、現実的には1μm以下が妥当である。
【0050】
<第3実施の形態>
本実施の形態は、GaAs基板上に、1回目の結晶成長としてAlGaInP系半導体レーザを成長し、2回目の結晶成長としてAlGaAs系半導体レーザを成長する。その際に、1回目の結晶成長による半導体レーザと2回目の結晶成長による半導体レーザとの導電型を上記第2実施の形態の場合とは逆にし、1回目の結晶成長を上記第2実施の形態のMOCVDからMBE(分子線エピタキシー)法に変えたものである。以下、簡単に説明する。
【0051】
先ず、p型GaAs基板上に、図3(c)の場合と同様(但し導電型は逆)にして、AlGaInP半導体レーザをMBE法によって成長させる。その場合、最上層のn型GaAsコンタクト層には、キャリア濃度が5×1018cm-3となるようにSiをドープしておく。そして、AlGaInP系半導体レーザにおけるn型GaAsコンタクト層の上に、膜厚が0.1μmのノンドープAlGaAsエッチング停止層および膜厚が0.2μmのノンドープGaAs保護層を成長させる。
【0052】
次に、上記p型GaAs基板上に形成されたAlGaInP系半導体レーザの一部の領域をエッチングによって除去して、p型GaAs基板を露出させる。具体的には、先ず、SBW(飽和臭素水)系エッチャントによって、p型AlGaInPクラッド層に届くまでエッチングを行なう。次に、HCl系エッチャントによって、残りのp型AlGaInPクラッド層をエッチング除去する。この場合、HCl系のエッチャントではGaAsはエッチング出来ないため、p型GaAsバッファ層の表面でエッチングは停止する。そこで、引き続いて、NH3系あるいは硫酸系のエッチャントによって、p型GaAsバッファ層をエッチング除去してp型GaAs基板を露出させるのである。
【0053】
この場合に、上記p型GaAs基板上に残ったAlGaInP系半導体レーザにおけるn型GaAsコンタクト層の上には、ノンドープAlGaAsエッチング停止層およびノンドープGaAs保護層が成長されている。したがって、AlGaAs系半導体レーザを成長させるために成長炉に入れた際に、炉内の高温によるn型GaAsコンタクト層からの不純物Siの蒸発が防止される。さらに、上記ノンドープGaAs保護層にはドーパントが含まれていない。その結果、露出したp型GaAs基板上に、n型GaAsコンタクト層から蒸発した不純物Si等の不純物が再付着することも防止されるのである。
【0054】
次に、図3(a)の場合と同様(但し導電型は逆)にして、全面に、AlGaAs系レーザをMOCVD法によって成長させる。こうして、2回目の結晶成長が行われる。
【0055】
次に、後に形成された上記AlGaAs系半導体レーザにおける先に形成された上記AlGaInP系半導体レーザ上に重なって形成されている領域と、ノンドープAlGaAsエッチング停止層およびノンドープGaAs保護層とを、エッチングによって除去する。
【0056】
具体的には、先ず、硫酸系エッチャントによって、後に形成された上記AlGaAs系半導体レーザのp型AlGaAsクラッド層に届くまでエッチングを行なう。こうして、上記AlGaAs系半導体レーザにおけるn型GaAsコンタクト層,上部のn型AlGaAsクラッド層,AlGaAs系活性層及び上記活性層を挟んでAlGaAsガイド層が存在する場合にはその層が除去されるのである。引き続いて、HF系あるいは塩酸系のエッチャントによって、p型AlGaAsクラッド層をp型GaAsバッファ層までエッチングする。続いて、NH3系のエッチャントによって、p型GaAsバッファ層及びノンドープGaAs保護層をエッチング除去する。この場合、NH3系エッチャントを使用するために、エッチングはノンドープAlGaAsエッチング停止層が露出した時点で停止する。そこで、続いて、HF系エッチャントによって、ノンドープAlGaAsエッチング停止層を除去する。こうして、上記AlGaInP系半導体レーザのn型GaAsコンタクト層を露出させるのである。
【0057】
さらに、上記AlGaInP系半導体レーザとAlGaAs系半導体レーザとの境界部分が除去されて、上記p型GaAs基板上に、AlGaInP系半導体レーザとAlGaAs系半導体レーザとが並んで配置された半導体レーザ素子が形成される。
【0058】
そうした後、上記AlGaInP系半導体レーザとAlGaAs系半導体レーザとにリッジ部を形成し、この両リッジ部上にn型電極を形成する。さらに、p型GaAs基板の表面にp型電極を形成する。こうして、二つの発光部を有する半導体レーザ素子が形成されるのである。
【0059】
上述したように、本実施の形態においては、上記p型GaAs基板の上にAlGaInP系半導体レーザを形成した後、膜厚が0.1μmのノンドープAlGaAsエッチング停止層および膜厚が0.2μmのノンドープGaAs保護層を形成している。したがって、AlGaInP系半導体レーザの一部の領域をエッチング除去してp型GaAs基板を露出させた後に、AlGaAs系半導体レーザを成長させるために成長炉に入れた場合に、炉内の高温によってn型GaAsコンタクト層からの不純物Siの蒸発が防止される。そのために、n型GaAsコンタクト層のキャリア濃度が低下して、n型電極とのコンタクト特性が悪化するのを防止することができる。
【0060】
尚、本実施の形態においても、上記ノンドープGaAs保護層の膜厚を0.2μmとしているが、上記各実施の形態の場合と同様に0.2μm以上であれば良い。また、ノンドープAlGaAsエッチング停止層の膜厚を0.1μmとしているが、上記第2実施の形態の場合と同様に0.1μm以上であれば良い。
【0061】
さらに、上記露出したp型GaAs基板の表面に、n型GaAsコンタクト層から蒸発した不純物Siが再付着することが無くなる。したがって、上記AlGaAs系半導体レーザを形成した際に、p型GaAs基板との界面に上記再付着した不純物Siとp型GaAs基板との混じった層が形成されることがない。したがって、内部抵抗が増加して発熱量が増えることがなく、長期駆動の際における信頼性を向上できるのである。
【0062】
さらに、本実施の形態においては、上記第2実施の形態の場合と同様に、上記n型GaAsコンタクト層と同じGaAs系のノンドープGaAs保護層との間に、異なる組成であるAlGaAs系のノンドープAlGaAsエッチング停止層を設けている。したがって、ノンドープAlGaAsエッチング停止層を除去する場合には、GaAs層に対して選択性のあるエッチャントを用いることによって、エッチングを確実にn型GaAsコンタクト層が露出した時点で停止させることができる。すなわち、n型GaAsコンタクト層の厚みを厳密に制御することができ、所定のコンタクト特性を得ることができるのである。
【0063】
尚、この発明は、上記各実施の形態に限定されるものではなく、成長方法や結晶組成や導電型等は種々組み合わせても一向に差し支えない。その場合、上記ノンドープ保護層およびエッチング停止層の結晶組成は、先に形成される上記第1半導体レーザ層のコンタクト層の結晶組成に応じて夫々の機能を効果的に発揮できるように設定すればよい。
【0064】
また、上記各実施の形態においては、同一の半導体基板上に2つの半導体レーザ層を形成する場合を例に説明したが、各実施の形態において説明した工程を組み合せ繰り返して、同一の半導体基板上に3つ以上の半導体レーザ層を形成することも可能である。例えば、図1(c)においてAlGaInP系半導体レーザ38を成長させる際に、さらにGaAsコンタクト層37上にノンドープGaAs保護層を形成する。そして、AlGaAs系半導体レーザ29上のAlGaInP系半導体レーザ38を除去する際には、ノンドープGaAs保護層30は残しておく。以後、2回目に形成されたAlGaInP系半導体レーザ38を1回目に形成された半導体レーザ層と見なして、図1(b)〜図2(f)を行えば、同一n型GaAs基板21上に3つの半導体レーザ層を形成することができるのである。
【0065】
【発明の効果】
以上より明らかなように、この発明の複数の発光領域を有する半導体レーザ素子の製造方法は、半導体基板上に1回目の結晶成長によって第1半導体レーザ層を形成した後にノンドープ半導体層を形成するので、2回目の結晶成長によって第2半導体レーザ層を形成するに先立って、上記第1半導体レーザ層における発光領域となる領域を除いて除去して上記半導体基板を露出させた場合に、上記コンタクト層をノンドープ半導体層によって保護することができる。したがって、上記2回目の結晶成長を行うために成長炉に入れた際に、炉内の高温によって上記コンタクト層から不純物が蒸発するのを防止することができる。すなわち、この発明によれば、上記コンタクト層のキャリア濃度が低下して、金属電極とのコンタクト特性が悪化することを防止できるのである。
【0066】
さらに、上記露出した半導体基板の表面に、上記コンタクト層から蒸発した不純物が再付着することも防止できる。したがって、上記露出した半導体基板上に形成される上記第2半導体レーザ層の最下層と半導体基板との界面に、上記半導体基板と上記再付着した不純物との混じった層が形成されることはなく、長期駆動の際における信頼性を向上できる。
【0067】
また、上記第1半導体レーザ層のコンタクト層上に結晶組成が異なる半導体層を形成し、この結晶組成が異なる半導体層上に上記ノンドープ半導体層を形成することが好ましい。その場合には、上記コンタクト層を露出させる際に、上記コンタクト層に対して選択性のあるエッチャントを用いて上記結晶組成が異なる半導体層をエッチング除去することによって、確実に上記コンタクト層の表面でエッチングを停止して上記コンタクト層の層厚を厳密に制御することができる。したがって、所定のコンタクト特性を得ることができるのである。
【図面の簡単な説明】
【図1】 この発明の半導体レーザ素子の製造方法によって形成される半導体レーザ素子の各製造工程における断面図である。
【図2】 図1に続く各製造工程における断面図である。
【図3】 図1および図2とは異なる半導体レーザ素子の製造方法によって形成される半導体レーザ素子の各製造工程における断面図である。
【図4】 図3に続く各製造工程における断面図である。
【図5】 基板上に二つの半導体レーザを従来の方法によって成長する場合の素子断面図である。
【図6】 先に形成されたAlGaAs系半導体レーザ側のp型GaAsコンタクト層における成長直後のキャリア濃度とAlGaInP系半導体レーザ成長後のキャリア濃度とを示す図である。
【図7】 後から成長されたAlGaInP系半導体レーザの電流‐電圧曲線を示す図である。
【符号の説明】
21,51…n型GaAs基板、
22,31,52,62…n型GaAsバッファ層、
23,53…n型AlGaAsクラッド層、
24,54…AlGaAsガイド層、
25,34,55,65…多重量子井戸活性層、
26,56…p型AlGaAsガイド層、
27,57…p型AlGaAsクラッド層、
28,37,58,68…p型GaAsコンタクト層、
29,59…AlGaAs系半導体レーザ、
30,61…ノンドープGaAs保護層、
32,63…n型AlGaInPクラッド層、
33,35,64,66…AlGaInPガイド層、
36,67…p型AlGaInPクラッド層、
38,69…AlGaInP系半導体レーザ、
39,40,70,71…p型AuZn/Au/Mo/Au電極、
41,72…n型AuGe/Ni/Mo/Au電極、
60…ノンドープAlGaAsエッチング停止層。

Claims (4)

  1. 半導体基板上に1回目の結晶成長によって最上に位置するコンタクト層を含む第1半導体レーザ層を形成する工程と、
    上記第1半導体レーザ層におけるコンタクト層上にノンドープ半導体層を形成する工程と、
    上記ノンドープ半導体層が形成された上記第1半導体レーザ層における発光領域となる領域を除いた領域を除去して上記半導体基板を露出させる工程と、
    2回目の結晶成長によって第2半導体レーザ層を形成する工程と、
    上記第2半導体レーザ層における発光領域となる領域を除いた領域および上記ノンドープ半導体層を除去して、上記第1半導体レーザ層のコンタクト層を露出させる工程
    を備えて、
    上記第1半導体レーザ層における上記コンタクト層上に形成された上記ノンドープ半導体層によって、上記2回目の結晶成長によって上記第2半導体レーザ層を形成する際の高温環境下において、上記第1半導体レーザ層における上記コンタクト層から不純物が蒸発するのを防止すると共に、自らも不純物を蒸発しないようにして、
    上記露出した半導体基板上における第2半導体レーザ層の形成領域に上記コンタクト層からの上記不純物を付着させることなく、複数の発光領域を有する半導体レーザ素子を形成する
    ことを特徴とする半導体レーザ素子の製造方法。
  2. 請求項1に記載の半導体レーザ素子の製造方法において、
    上記第1半導体レーザ層のコンタクト層上にノンドープ半導体層を形成する工程の前に、上記第1半導体レーザ層のコンタクト層上に、上記コンタクト層およびノンドープ半導体層とは結晶組成が異なる半導体層を形成する工程を備えて、
    上記ノンドープ半導体層を形成する工程においては、上記ノンドープ半導体層を上記結晶組成が異なる半導体層上に形成するようにし、
    上記第1半導体レーザ層のコンタクト層を露出させる工程においては、上記ノンドープ半導体層までを除去した後に、上記結晶組成が異なる半導体層を選択エッチングで除去するようになっており、上記選択エッチングの際に上記コンタクト層をエッチング停止層として機能させるようにした
    ことを特徴とする半導体レーザ素子の製造方法。
  3. 請求項2に記載の半導体レーザ素子の製造方法において、
    上記半導体基板は、G a s 基板であり、
    上記第1半導体レーザ層は、A l a s 系半導体レーザ層あるいはA l a n P系半導体レーザ層であり、
    上記第1半導体レーザ層のコンタクト層は、G a s 系のコンタクト層であり、
    上記ノンドープ半導体層は、G a s 系のノンドープ半導体層であり、
    上記結晶組成が異なる半導体層として、A l a s 系の半導体層を形成する
    ことを特徴とする半導体レーザ素子の製造方法。
  4. 請求項1に記載の半導体レーザ素子の製造方法において、
    上記半導体基板は、G a s 基板であり、
    上記第1半導体レーザ層は、A l a s 系半導体レーザ層あるいはA l a n P系半導体レーザ層であり、
    上記第1半導体レーザ層のコンタクト層は、G a s 系のコンタクト層であり、
    上記ノンドープ半導体層として、 a s系の半導体層を形成する
    ことを特徴とする半導体レーザ素子の製造方法。
JP2002112152A 2002-04-15 2002-04-15 半導体レーザ素子の製造方法 Expired - Lifetime JP4146153B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002112152A JP4146153B2 (ja) 2002-04-15 2002-04-15 半導体レーザ素子の製造方法
US10/412,297 US6919217B2 (en) 2002-04-15 2003-04-14 Semiconductor laser device fabricating method
CNB031409911A CN1225827C (zh) 2002-04-15 2003-04-15 半导体激光器件的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002112152A JP4146153B2 (ja) 2002-04-15 2002-04-15 半導体レーザ素子の製造方法

Publications (2)

Publication Number Publication Date
JP2003309329A JP2003309329A (ja) 2003-10-31
JP4146153B2 true JP4146153B2 (ja) 2008-09-03

Family

ID=28786666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002112152A Expired - Lifetime JP4146153B2 (ja) 2002-04-15 2002-04-15 半導体レーザ素子の製造方法

Country Status (3)

Country Link
US (1) US6919217B2 (ja)
JP (1) JP4146153B2 (ja)
CN (1) CN1225827C (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153136A (ja) * 2002-10-31 2004-05-27 Sharp Corp 半導体レーザ素子とその製造方法
JP4317357B2 (ja) 2002-11-18 2009-08-19 シャープ株式会社 半導体レーザ素子およびその製造方法
JP2004193330A (ja) * 2002-12-11 2004-07-08 Sharp Corp モノリシック多波長レーザ素子とその製法
JPWO2005088790A1 (ja) * 2004-03-15 2008-01-31 三洋電機株式会社 半導体レーザ素子、およびその製造方法
JP2006313875A (ja) * 2005-04-08 2006-11-16 Mitsubishi Electric Corp 半導体レーザ装置
US7505502B2 (en) 2006-03-28 2009-03-17 Panasonic Corporation Semiconductor laser device and manufacturing method thereof
GB2451456B (en) * 2007-07-31 2011-03-02 Filtronic Compound Semiconductors Ltd An optical waveguide structure and method of manufacture thereof
CN113206448B (zh) * 2021-04-30 2023-04-07 中国科学院半导体研究所 一种具有电流阻挡层的激光器
CN114336268B (zh) * 2022-03-04 2022-05-31 苏州长光华芯光电技术股份有限公司 一种高可靠性低缺陷半导体发光器件及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01204487A (ja) 1988-02-10 1989-08-17 Nec Corp 半導体レーザ装置
JPH039589A (ja) 1989-06-07 1991-01-17 Matsushita Electric Ind Co Ltd 多光線半導体レーザ装置
JPH0629618A (ja) 1992-07-10 1994-02-04 Sumitomo Electric Ind Ltd マルチビーム半導体レーザ及びその製造方法
JP3537591B2 (ja) * 1996-04-26 2004-06-14 パイオニア株式会社 有機elディスプレイの製造方法
JP3493276B2 (ja) 1997-02-21 2004-02-03 シャープ株式会社 半導体レーザ装置及びその製造方法
US5898722A (en) * 1997-03-10 1999-04-27 Motorola, Inc. Dual wavelength monolithically integrated vertical cavity surface emitting lasers and method of fabrication
JP2000244060A (ja) * 1998-12-22 2000-09-08 Sony Corp 半導体発光装置およびその製造方法
JP3818815B2 (ja) 1999-02-08 2006-09-06 シャープ株式会社 半導体レーザ素子及びその製造方法
US6546035B2 (en) * 2000-02-29 2003-04-08 Matsushita Electric Industrial Co., Ltd. Semiconductor laser diode array and method of fabricating the same
JP4696332B2 (ja) * 2000-03-02 2011-06-08 ソニー株式会社 半導体レーザ発光装置の製造方法
JP2001345514A (ja) * 2000-06-01 2001-12-14 Toshiba Corp 半導体レーザ装置及びその製造方法

Also Published As

Publication number Publication date
JP2003309329A (ja) 2003-10-31
CN1225827C (zh) 2005-11-02
US20030194823A1 (en) 2003-10-16
US6919217B2 (en) 2005-07-19
CN1455482A (zh) 2003-11-12

Similar Documents

Publication Publication Date Title
JP2008053501A (ja) 集積光デバイスおよびその製造方法
JP2007158195A (ja) 半導体レーザ素子およびその製造方法
JP4146153B2 (ja) 半導体レーザ素子の製造方法
US7215691B2 (en) Semiconductor laser device and method for fabricating the same
JPH11186665A (ja) 半導体発光素子
JP2009302582A (ja) 二波長半導体レーザ装置
JP4253461B2 (ja) 半導体レーザ素子およびその製造方法
JP4317357B2 (ja) 半導体レーザ素子およびその製造方法
JP2004153136A (ja) 半導体レーザ素子とその製造方法
JP2009076602A (ja) 二波長半導体レーザ装置及びその製造方法
JP2000022262A (ja) 半導体レーザ装置
JP4249920B2 (ja) 端面窓型半導体レーザ装置およびその製造方法
JPH0832170A (ja) 半導体レーザ素子及びその製造方法
JP2007081173A (ja) モノリシック2波長半導体レーザ及びその製造方法
JP2010056331A (ja) 半導体レーザ装置およびその製造方法
JP2004134786A (ja) 半導体レーザ装置及びその製造方法
JPH0629618A (ja) マルチビーム半導体レーザ及びその製造方法
US20050058170A1 (en) Semiconductor laser element and semiconductor laser element manufacturing method
JP2001223438A (ja) 半導体レーザ素子の製造方法
JPH11354880A (ja) 半導体レーザ素子およびその製造方法
JP2000138419A (ja) 半導体レーザ素子及びその製造方法
JP3307600B2 (ja) 半導体レーザ素子およびその製造方法
JP3715638B2 (ja) 半導体発光素子の製造方法
JP2010016118A (ja) 半導体レーザ装置およびその製造方法
JPH05259565A (ja) マルチビーム半導体レーザ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

R150 Certificate of patent or registration of utility model

Ref document number: 4146153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term