JP4059566B2 - 絶縁ゲート型半導体装置及びその製造方法 - Google Patents

絶縁ゲート型半導体装置及びその製造方法 Download PDF

Info

Publication number
JP4059566B2
JP4059566B2 JP17722998A JP17722998A JP4059566B2 JP 4059566 B2 JP4059566 B2 JP 4059566B2 JP 17722998 A JP17722998 A JP 17722998A JP 17722998 A JP17722998 A JP 17722998A JP 4059566 B2 JP4059566 B2 JP 4059566B2
Authority
JP
Japan
Prior art keywords
region
channel stopper
groove
source region
base region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17722998A
Other languages
English (en)
Other versions
JP2000012850A (ja
Inventor
渉 隅田
英子郎 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP17722998A priority Critical patent/JP4059566B2/ja
Publication of JP2000012850A publication Critical patent/JP2000012850A/ja
Application granted granted Critical
Publication of JP4059566B2 publication Critical patent/JP4059566B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66727Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、絶縁ゲート型半導体装置の製造方法に関し、例えば、パワー用縦型のMOSFETや伝導度変調型MOSFET等の絶縁ゲート型半導体装置に関する。
【0002】
【従来の技術】
本出願人はソース領域をフォトリソグラフィ法を用いないセルフアラインで形成する縦型MOSFET及びその製造方法を特願平9−261433により出願している。以下、図3及び図4を参照して説明する。尚、上記出願ではMOSFETを構成するチップの外周部のチャネルストッパ構造については記載されていないが、この構造についても合わせて説明する。
先ず構成を説明すると、図3において、21は半導体本体で、高不純物濃度の一導電型としてのN+ 型半導体基板22と、この半導体基板22表面上に設けたエピタキシャル層23とからなる。エピタキシャル層23は平面方向にセル部A、フィールド部B及び外周部Cとに区分され、セル部Aにはこの表面層に選択的に設けた他導電型としてのP型第1ベース領域24と、このベース領域24の表面層に選択的に設けたN+ 型ソース領域25と、ベース領域24とソース領域25が設けられたエピタキシャル層23の元のままの領域であるN- 型ドレイン領域26とを含み、ソース領域25表面からソース領域25を貫通した溝27aを形成している。フィールド部Bにはセル部Aと共通のドレイン領域26を含んでいる。外周部Cにはこの表面層にベース領域24と同時に選択的に設けたP型第2ベース領域54と、このベース領域54の表面層にソース領域25と同時に選択的に設けたN+ 型チャネルストッパ領域55と、セル部A及びフィールド部Bと共通のドレイン領域26とを含み、溝27aと同時にチャネルストッパ領域55表面からベース領域54までの段差27cを形成している。
セル部A表面にはベース領域24表面のソース領域25とドレイン領域26とによって挟まれた位置にゲート酸化膜28を介してポリシリコンのゲート電極29を設けている。フィールド部B表面にはフィールド酸化膜43を介して、ゲート電極29と電気的接続されたゲートポリシリコン配線層44を設け、このゲートポリシリコン配線層44を貫通した溝27bを形成している。(ゲートポリシリコン配線層44の厚さによっては溝27bはゲートポリシリコン配線層44のみに形成される。)外周部C表面には外周端から所定距離離間してチャネルストッパ領域55表面の位置までフィールド部Bに設けたフィールド酸化膜43が延長して設けられている。
セル部A上において、ソース領域25表面の溝27a側の一部を除いた位置上及びゲート電極29表面上と、フィールド部Bにおいて、ゲートポリシリコン配線層44表面の溝27b側の一部を除いた位置上と、外周部Cにおいて、フィールド酸化膜43上及びチャネルストッパ領域55表面の段差27c側の一部を除いた位置上とに層間絶縁膜30を設けている。
セル部A上において、層間絶縁膜30表面上、ソース領域25表面の溝27a側の一部上及び溝27a内にアルミニウムのソース電極31を設けている。フィールド部B上において、層間絶縁膜30表面上、ゲートポリシリコン配線層44表面の溝27b側の一部上及びゲートポリシリコン配線層44を貫通した溝27b内にソース電極と同時にゲート金属配線層45を設けている。外周部Cにおいて、ベース領域54とドレイン領域26との接合部を跨いで層間絶縁膜30表面上、チャネルストッパ領域55表面の段差27c側の一部57上及び段差27cのスクライブ領域を除く位置にEQR電極56を設けている。半導体基板22の裏面にはドレイン電極32を設けている。
【0003】
次に製造方法を図4(a)〜(d)と図3を参照して説明する。尚、以下の説明において(a)〜(d)の各項目記号は、図4の(a)〜(d)のそれぞれに対応する。
(a)N+ 型半導体基板22表面上にN型不純物を低濃度に含んだエピタキシャル層23を成長させた半導体本体21表面上に熱酸化法によりフィールド酸化膜43を形成し、エピタキシャル層23をセル部A、フィールド部B及び外周部Cに区分する。そしてフォトリソグラフィ法及びエッチング法により外周部Cの外周端から所定幅及びセル部A上のフィールド酸化膜43を除去し、フィールド酸化膜43が除去された表面上に熱酸化法によりゲート酸化膜28を形成する。次にこれらの酸化膜43,28表面にポリシリコン膜を被着させ、このポリシリコン膜をフォトリソグラフィ法及びエッチング法により選択的に除去して、セル部A上のゲート酸化膜28表面上に残したポリシリコン膜によりゲート電極29と、フィールド部B上のフィールド酸化膜43表面上に残したポリシリコン膜によりゲート電極29と電気的接続されたゲートポリシリコン配線層44を形成する。次にセル部Aにおいてゲート電極29及び外周部Cにおいてフィールド酸化膜43をマスクとして、ボロン及び砒素を順次イオン注入及び熱拡散してセル部AにP型第1ベース領域24及びN+ 型ソース領域25を形成すると共に外周部CにP型第2ベース領域54及びN+ 型チャネルストッパ領域55を形成する。
(b)次に(a)の工程を完了した半導体本体21上に層間絶縁膜30を被着させ、その上からフォトリソグラフィ法によりソース領域25表面上、ゲートポリシリコン配線層44表面上及びチャネルストッパ領域55表面上の位置にそれぞれ開口46a,46b,46cを有するレジストパターン47を形成する。
(c)次にレジストパターン47をマスクにしてウエットエッチング法によりレジストパターンの各開口46a,46b,46c下の層間絶縁膜30をソース領域25、ゲート配線ポリシリコン層44及びチャネルストッパ55表面が露出するまでジャストエッチし、更に所定時間だけオーバーエッチしてその露出面積がレジストパターン47の各開口面積より大きいコンタクトホール48a,48b、48cを形成する。
(d)次に(c)の工程で用いたレジストパターン47を再びマスクにして露出したエピタキシャル層23表面よりイオンエッチング法によりソース領域25及びチャネルストッパ55を貫通してベース領域24,54の一部までの溝27a、段差27cを形成する。このとき同時に、露出したゲートポリシリコン配線層44表面よりフィールド酸化膜43の一部までの溝27bも形成される。(ゲートポリシリコン配線層44の厚さによっては溝27bはポリシリコン配線層44を貫通しないこともある。)
以上の工程を終了した後、図3に示すようにレジストパターン47を除去し、半導体本体21上に真空蒸着によりアルミニウム膜を被着し、このアルミニウム膜をフォトリソグラフィ法及びエッチング法により選択的に除去して、ソース領域25及びベース領域24と電気的に接続するソース電極31と、ゲートポリシリコン配線層44と電気的に接続するゲート金属配線45と、チャネルストッパ55及びベース領域54と電気的接続するEQR電極56を形成すると共に、半導体本体21の裏面に金属を蒸着してドレイン電極32を形成する。
【0004】
【発明が解決しようとする課題】
ところで、上述のMOSFETはソース領域25をフォトリソグラフィ法を用いないセルフアラインで形成し、ソース電極31とベース領域24との接続をレジストパターン47の開口46aを利用してソース領域25を貫通する溝27aを形成してその溝27a内で行っており、このときチップの外周部Cにおいてセルフアラインで形成されたチャネルストッパ領域55とEQR電極56との接続も同一のレジストパターン47を利用するが、レジストパターン47の開口46cは、EQR電極56が外周部Cのスクライブ領域Dを除いた位置でチャネルストッパ領域55と接続するように、図4(b)に示すようにスクライブ領域Dの幅より大きくしており、レジストパターン47の開口46cに対応してチャネルストッパ領域55は図4(d)に示すようにエッチングでスクライブ領域Dの幅より大きく削り取られる。このMOSFETがウェーハからチップとしてスクライブ領域Dでカットされたとき、カット面Eは加工歪みにより、裏面と表面で同電位となっている。しかしEQR電極56はチャネルストッパ領域55とはチャネルストッパ領域55の表面の一部57と段差の壁面のみの接触でコンタクト面積が小さく、また、カット面Eの表面側にはEQR電極56に接続されたチャネルストッパ領域55が露出しておらずP型のベース領域54となっており、EQR電極56の電位がドレイン電極32の電位とならないおそれがあり、EQR電極56がチャネルストッパとして十分に機能しないおそれがあった。
従って、本発明は上記の問題点を解決するためになされたもので、ソース領域をフォトリソグラフィ法を用いないセルフアラインで形成し、ソース電極とベース領域との接続をレジストパターンの開口を利用してソース領域を貫通する溝を形成してその溝内で行っている絶縁ゲート型半導体装置において、レジストパターンの形成回数を増やすことなく、EQR電極に接続されるチャネルストッパ領域がスクライブ領域Dにも含まれるように形成された絶縁ゲート型半導体装置及びその製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明に係る絶縁ゲート型半導体装置は、低不純物濃度の一導電型ドレイン領域を有する半導体本体が平面的にセル部と外周部との区分及び外周部にスクライブ領域を有し、セル部でドレイン領域表面層に形成した他導電型の第1ベース領域及び第1ベース領域表面層に形成した高不純物濃度の一導電型ソース領域を含み、外周部でドレイン領域表面層に第1ベース領域と同時形成した第2ベース領域及び第2ベース領域表面層にソース領域と同時形成したチャネルストッパ領域を含み、ソース領域表面からソース領域を貫通する溝内面及びソース領域表面の一部に電気的接触するソース電極を形成し、チャネルストッパ領域に電気的接触するEQR電極を形成した絶縁ゲート型半導体装置において、チャネルストッパ領域はスクライブ領域にも含まれ、メッシュ状パターンの溝が形成され、EQR電極が溝内面及びチャネルストッパ領域表面の溝周りでチャネルストッパ領域と電気的接続されたことを特徴とする。
上記の手段によれば、絶縁ゲート型半導体装置がウェーハからチップとしてスクライブ領域でカットされたとき、カット面は加工歪みにより裏面と表面で同電位となり、カット面の表面側にはチャネルストッパ領域が露出しこのチャネルストッパ領域にメッシュ状に形成した溝の内面及びチャネルストッパ領域表面の溝周りでEQR電極と十分なコンタクトがとれ、EQR電極は確実に裏面電極と同電位となり、EQR電極はチャネルストッパとして確実に機能する。
また本発明に係る絶縁ゲート型半導体装置は、上記のドレイン領域、ベース領域及びソース領域がエピタキシャル層に含まれる。
また本発明に係る絶縁ゲート型半導体装置は、上記のエピタキシャル層が高不純物濃度の一導電型半導体基板表面上にあり、具体的にはMOSFETである。
また本発明に係る絶縁ゲート型半導体装置は、上記エピタキシャル層が高不純物濃度の他導電型半導体基板表面上にあり、具体的には伝導度変調型MOSFETである。
本発明に係る絶縁ゲート型半導体装置の製造方法は、低不純物濃度の一導電型共通ドレイン領域を有する半導体本体表面上にフィールド酸化膜を形成し、半導体本体表面のセルが形成されるセル部と外周部のフィールド酸化膜を除去し、フィールド酸化膜が除去されたセル部及び外周部表面にゲート酸化膜を形成し、その後半導体本体上にポリシリコン膜を被着させ、ポリシリコン膜を選択的に除去してセル部のゲート酸化膜上にゲート電極を形成し、前記ゲート電極及びフィールド酸化膜をマスクにセル部のドレイン領域表面層に他導電型第1ベース領域とこの第1ベース領域表面層に高不純物濃度の一導電型ソース領域を形成すると共に外周部のドレイン領域表面層に第1ベース領域と同時に第2ベース領域とこの第2ベース領域表面層にソース領域と同時にチャネルストッパ領域を形成する第1工程と、第1工程を完了後、半導体本体上に層間絶縁膜を被着させ、その上にソース領域及びチャネルストッパ領域上の位置に窓を有するレジストパターンを形成する第2工程と、第2工程を完了後、前記レジストパターンをマスクに前記層間絶縁膜をウェットエッチングして、ソース領域及びチャネルストッパ領域の表面を露出させる第3工程と、第3工程を完了後、前記レジストパターンをマスクに露出したソース領域及びチャネルストッパ領域の表面からイオンエッチングして、ソース領域及びチャネルストッパ領域を貫通して第1ベース領域及び第2ベース領域の一部までの溝を形成する第4工程と、第4工程を完了後、半導体本体上にアルミニウム膜を被着させアルミニウム膜を選択的に除去して、ソース領域表面の溝側の一部とソース領域及び第1ベース領域の溝内面とで電気的接続したソース電極を形成すると共に、チャネルストッパ領域表面の溝側の一部とチャネルストッパ領域の溝内面とで電気的接続したEQR電極を形成する第5工程とを含む絶縁ゲート型半導体装置の製造方法において、前記レジストパターンが前記チャネルストッパ領域上でメッシュ状の開口パターンを有することを特徴とする。
上記手段によれば、レジストパターンが外周部のチャネルストッパ領域上でメッシュ状の開口を有することにより、外周部にはチャネルストッパ領域表面からチャネルストッパ領域を貫通する溝がメッシュ状に形成され、この溝内面及びチャネルストッパ領域表面の溝周りでチャネルストッパ領域と十分なコンタクトでEQR電極に接続できる絶縁ゲート型半導体装置を製造でき、この方法で製造した絶縁ゲート型半導体装置がウェーハからチップとしてスクライブ領域でカットされたとき、カット面は加工歪みにより裏面と表面で同電位となり、カット面の表面側にはチャネルストッパ領域が露出しEQR電極は確実にドレイン電極と同電位となり、EQR電極はチャネルストッパとして機能する。
また本発明に係る絶縁ゲート型半導体装置の製造方法は、上記のウェットエッチングがジャストエッチングとオーバーエッチングとからなり、レジストパターンをマスクに、先ず層間絶縁膜をジャストエッチングし更に所定時間オーバーエッチングするので正確にレジストパターンの開口面積より広くエピタキシャル層表面を露出できる。
【0006】
【発明の実施の形態】
以下に、本発明に基づき1実施例のMOSFET及びその製造方法を図1及び図2を参照して説明する。
先ず構成を説明すると、図1において、61は半導体本体で、高不純物濃度の一導電型としてのN+ 型半導体基板62と、この半導体基板62表面上に設けたエピタキシャル層63とからなる。エピタキシャル層63は平面方向にセル部A、フィールド部B及び外周部Cとに区分され、セル部Aにはこの表面層に選択的に設けた他導電型としてのP型第1ベース領域64と、このベース領域64の表面層に選択的に設けたN+ 型ソース領域65と、ベース領域64とソース領域65が設けられたエピタキシャル層63の元のままの領域であるN- 型ドレイン領域66とを含み、ソース領域65表面からソース領域65を貫通した溝67aを形成している。フィールド部Bにはセル部Aと共通のドレイン領域66を含んでいる。図1の下段には外周部Cにおける半導体本体61の表面を見た平面図、上段にはその平面図でのA−A断面図、中段右にはその平面図でのB−B断面図を表わしている。その外周部Cにはこの表面層にベース領域64と同時に選択的に設けたP型第2ベース領域94と、このベース領域94の表面層にソース領域65と同時に選択的に設けたN+ 型チャネルストッパ領域95と、セル部A及びフィールド部Bと共通のドレイン領域66とを含み、溝67aと同時にチャネルストッパ領域95表面からチャネルストッパ領域95を貫通する溝67cをメッシュ状に形成している。
セル部A表面にはベース領域64表面のソース領域65とドレイン領域66とによって挟まれた位置にゲート酸化膜68を介してポリシリコンのゲート電極69を設けている。フィールド部B表面にはフィールド酸化膜83を介して、ゲート電極69と電気的接続されたゲートポリシリコン配線層84を設け、このゲートポリシリコン配線層84を貫通した溝67bを形成している。(ゲートポリシリコン配線層84の厚さによっては溝67bはゲートポリシリコン配線層84を貫通しないこともある。)外周部C表面にはフィールド部Bに設けたフィールド酸化膜83が延長しベース領域94とチャネルストッパ領域95の接合部を跨いで設けられている。
セル部A上において、ソース領域65表面の溝67a側の一部を除いた位置上及びゲート電極69表面上と、フィールド部Bにおいて、ゲートポリシリコン配線層84表面の溝67b側の一部を除いた位置上と、外周部Cにおいて、フィールド酸化膜83上及びチャネルストッパ領域95表面の溝周り97を除いた位置上とに層間絶縁膜70を形成している。
セル部A上において、層間絶縁膜70表面上、ソース領域65表面の溝67a側の一部上及びエピタキシャル層63の溝67a内にアルミニウムのソース電極71を設けている。フィールド部B上において、層間絶縁膜70表面上、ゲートポリシリコン配線層84表面の溝67b側の一部上及びゲートポリシリコン配線層84を貫通した溝67b内にソース電極と同時にゲート金属配線層85を設けている。外周部Cにおいて、スクライブ領域Dを除いてドレイン領域66とベース領域94の接合部を跨ぐ層間絶縁膜70表面上、チャネルストッパ領域95表面の溝周り97上及び溝67c内にEQR電極96を設けている。半導体基板62の裏面にはドレイン電極72を設けている。
以上の構成によると、MOSFETがウェーハからチップとしてスクライブ領域Dでカットされたとき、カット面Eは加工歪みにより裏面と表面で同電位となり、カット面Eの表面側にはチャネルストッパ領域95が露出しこのチャネルストッパ領域95にメッシュ状に形成した溝67c内面及びチャネルストッパ領域95表面の溝周り97で十分なコンタクトで接続されたEQR電極96は確実に裏面電極と同電位となり、EQR電極96はチャネルストッパとして十分に機能する。
【0007】
次に製造方法を図2(a)〜(d)と図1を参照して説明する。尚、以下の説明において(a)〜(d)の各項目記号は、図2の(a)〜(d)のそれぞれに対応する。
(a)N+ 型半導体基板62表面上にN型不純物を低濃度に含んだエピタキシャル層63を成長させた半導体本体61表面上に熱酸化法によりフィールド酸化膜83を形成し、エピタキシャル層63をセル部A、フィールド部B及び外周部Cに区分する。そしてフォトリソグラフィ法及びエッチング法により外周部C上の外周端から所定幅及びセル部A上のフィールド酸化膜83を除去し、フィールド酸化膜83が除去された表面上に熱酸化法によりゲート酸化膜68を形成する。次にこれらの酸化膜83,68表面にポリシリコン膜を被着させ、このポリシリコン膜をフォトリソグラフィ法及びエッチング法により選択的に除去して、セル部A上のゲート酸化膜68表面上に残したポリシリコン膜によりゲート電極69と、フィールド部B上のフィールド酸化膜83表面上に残したポリシリコン膜によりゲート電極69に電気的接続されたゲートポリシリコン配線層84とを形成する。次にセル部Aにおいてゲート電極69及び外周部Cにおいてフィールド酸化膜83をマスクとして、ボロン及び砒素を順次イオン注入及び熱拡散してセル部AにP型第1ベース領域64及びN+ 型ソース領域65を形成すると共に外周部CにP型第2ベース領域94及びN+ 型チャネルストッパ領域95を形成する。これらの領域が形成されたエピタキシャル層63の元のままの領域はN- 型ドレイン領域66となる。
(b)次に(a)の工程を完了した半導体本体61上に層間絶縁膜70を被着させ、その上からフォトリソグラフィ法によりソース領域65表面上、ゲートポリシリコン配線層84表面上及びチャネルストッパ領域95表面上のスクライブ領域Dを除く位置にそれぞれ開口86a,86b,86cを有するレジストパターン87を形成する。開口86cはメッシュ状パターンである。
(c)次にレジストパターン87をマスクにしてウエットエッチング法によりレジストパターンの各開口86a,86b,86c下の層間絶縁膜70をソース領域65、ゲート配線ポリシリコン層84及びチャネルストッパ領域95表面が露出するまでジャストエッチし、更に所定時間だけオーバーエッチしてその露出面積がレジストパターン87の各開口面積より大きいコンタクトホール88a,88b、88cを形成する。
(d)次に(c)の工程で用いたレジストパターン87を再びマスクにして露出した半導体本体61表面よりイオンエッチング法によりソース領域65及びチャネルストッパ95を貫通して溝67a,67cを形成する。このとき同時に、露出したゲートポリシリコン配線層84表面よりポリシリコン配線層84を貫通する溝67bも形成される。(ゲートポリシリコン配線層84の厚さによっては溝67bはポリシリコン配線層84を貫通しないこともある。)
以上の工程を終了した後、図1に示すようにレジストパターン87を除去し、半導体本体61上に真空蒸着によりアルミニウム膜を被着し、このアルミニウム膜をフォトリソグラフィ法及びエッチング法により選択的に除去して、ソース領域65及びベース領域64と電気的に接続するソース電極71と、ゲートポリシリコン配線層84と電気的に接続するゲート金属配線85と、チャネルストッパ95及びベース領域94と電気的接続するEQR電極96を形成すると共に、半導体本体61の裏面に金属を蒸着してドレイン電極72を形成する。
【0008】
以上で説明したように、ソース領域65をフォトリソグラフィ法を用いないセルフアラインで形成し、ソース電極71とベース領域64との接続をレジストパターンの開口を利用してソース領域65を貫通する溝67aを形成してその溝内で行うMOSFETの製造方法において、(b)の工程でレジストパターン87を形成する際、外周部Cのチャネルストッパ領域95表面上の位置にメッシュ状パターンの開口86cを有するレジストパターン87とすることにより、外周部Cにはチャネルストッパ領域95表面からチャネルストッパ領域95を貫通する溝67cがメッシュ状に形成され、この溝67c内面及びチャネルストッパ領域95表面の溝周り97でチャネルストッパ領域95と十分なコンタクトで接続されたEQR電極96が形成でき、このMOSFETがウェーハからチップとしてスクライブ領域Dでカットされたとき、カット面Eは加工歪みにより裏面と表面で同電位となり、カット面Eの表面側にはチャネルストッパ領域95が露出しEQR電極96は確実にドレイン電極72と同電位となり、EQR電極96はチャネルストッパとして十分に機能する。
尚、上記実施の形態において、一導電型としてN型及び他導電型としてP型で説明したが、一導電型としてP型及び他導電型としてN型であってもよい。
また、半導体基板を高不純物濃度の一導電型で説明したが、高不純物濃度の他導電型であってもよい。この場合は、伝導度変調型MOSFETに利用できる。
また、半導体本体を半導体基板上にエピタキシャル層を成長させたもので説明したが、半導体基板だけであってもよい。この場合はドレイン領域、ベース領域及びソース領域は半導体基板に含まれる。
【0009】
【発明の効果】
本発明によれば、ソース領域をフォトリソグラフィ法を用いないセルフアラインで形成し、ソース電極とベース領域との接続をレジストパターンの開口を利用してソース領域を貫通する溝を形成してその溝内で行う場合、レジストパターンを形成する際、外周部のチャネルストッパ領域表面上の位置にメッシュ状パターンの開口を有するレジストパターンとすることにより、外周部Cにはチャネルストッパ領域表面からチャネルストッパ領域を貫通する溝がメッシュ状に形成され、この溝内面及びチャネルストッパ領域表面の溝周りでチャネルストッパ領域と十分なコンタクトで接続されたEQR電極が形成でき、このMOSFETがウェーハからチップとしてスクライブ領域でカットされたとき、カット面は加工歪みにより裏面と表面で同電位となり、カット面の表面側にはチャネルストッパ領域が露出しEQR電極は確実にドレイン電極と同電位となり、EQR電極はチャネルストッパとして機能することができるので、信頼性の高い絶縁ゲート型半導体装置及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】 本発明の一実施例である縦型MOSFETの主要部断面図及び平面図。
【図2】 図1に示す縦型MOSFETの製造工程を示す主要部断面図。
【図3】 従来の縦型MOSFETの主要部断面図及び平面図。
【図4】 図3に示す縦型MOSFETの製造工程を示す主要部断面図。
【符号の説明】
61 半導体本体
62 N+ 型半導体基板
63 エピタキシャル層
64 P型第1ベース領域
65 N+ 型ソース領域
66 N- 型ドレイン領域
67a,67c 溝
68 ゲート酸化膜
69 ゲート電極
70 層間絶縁膜
71 ソース電極
83 フィールド酸化膜
87 レジストパターン
94 P型第2ベース領域
95 N+ 型チャネルストッパ領域
96 EQR電極
A セル部
C 外周部
D スクライブ領域

Claims (7)

  1. 低不純物濃度の一導電型ドレイン領域を有する半導体本体が平面的にセル部と外周部との区分及び外周部にスクライブ領域を有し、セル部でドレイン領域表面層に形成した他導電型の第1ベース領域及び第1ベース領域表面層に形成した高不純物濃度の一導電型ソース領域を含み、外周部でドレイン領域表面層に第1ベース領域と同時形成した第2ベース領域及び第2ベース領域表面層にソース領域と同時形成したチャネルストッパ領域を含み、ソース領域表面からソース領域を貫通する溝内面及びソース領域表面の一部に電気的接触するソース電極を形成し、チャネルストッパ領域に電気的接触するEQR電極を形成した絶縁ゲート型半導体装置において、前記チャネルストッパ領域は前記スクライブ領域にも含まれ、メッシュ状パターンの溝が形成され、前記EQR電極が前記溝内面及びチャネルストッパ領域表面の溝周りで前記チャネルストッパ領域と電気的接続されたことを特徴とする絶縁ゲート型半導体装置。
  2. 前記半導体本体が半導体基板上に形成されたエピタキシャル層である請求項1記載の絶縁ゲート型半導体装置。
  3. 前記半導体基板が高不純物濃度一導電型である請求項2記載の絶縁ゲート型半導体装置。
  4. 低不純物濃度の一導電型共通ドレイン領域を有する半導体本体表面上にフィールド酸化膜を形成し、半導体本体表面のセルが形成されるセル部と外周部のフィールド酸化膜を除去し、フィールド酸化膜が除去されたセル部及び外周部表面にゲート酸化膜を形成し、その後半導体本体上にポリシリコン膜を被着させ、ポリシリコン膜を選択的に除去してセル部のゲート酸化膜上にゲート電極を形成し、前記ゲート電極及びフィールド酸化膜をマスクにセル部のドレイン領域表面層に他導電型第1ベース領域とこの第1ベース領域表面層に高不純物濃度の一導電型ソース領域を形成すると共に外周部のドレイン領域表面層に第1ベース領域と同時に第2ベース領域とこの第2ベース領域表面層にソース領域と同時にチャネルストッパ領域を形成する第1工程と、
    第1工程を完了後、半導体本体上に層間絶縁膜を被着させ、その上にソース領域及びチャネルストッパ領域上の位置に窓を有するレジストパターンを形成する第2工程と、第2工程を完了後、前記レジストパターンをマスクに前記層間絶縁膜をウェットエッチングして、ソース領域及びチャネルストッパ領域の表面を露出させる第3工程と、
    第3工程を完了後、前記レジストパターンをマスクに露出したソース領域及びチャネルストッパ領域の表面からイオンエッチングして、ソース領域及びチャネルストッパ領域を貫通して第1ベース領域及び第2ベース領域の一部までの溝を形成する第4工程と、
    第4工程を完了後、半導体本体上にアルミニウム膜を被着させアルミニウム膜を選択的に除去して、ソース領域表面の溝側の一部とソース領域及び第1ベース領域の溝内面とで電気的接続したソース電極を形成すると共に、チャネルストッパ領域表面の溝側の一部とチャネルストッパ領域の溝内面とで電気的接続したEQR電極を形成する第5工程とを含む絶縁ゲート型半導体装置の製造方法において、
    前記レジストパターンが前記チャネルストッパ領域上でメッシュ状の開口パターンを有することを特徴とする絶縁ゲート型半導体装置の製造方法。
  5. 前記ウェットエッチングがジャストエッチングとオーバーエッチングとからなる請求項4記載の絶縁ゲート型半導体装置の製造方法。
  6. 前記半導体本体が半導体基板上に形成されたエピタキシャル層である請求項4記載の絶縁ゲート型半導体装置の製造方法。
  7. 前記半導体基板が高不純物濃度一導電型である請求項6記載の絶縁ゲート型半導体装置の製造方法。
JP17722998A 1998-06-24 1998-06-24 絶縁ゲート型半導体装置及びその製造方法 Expired - Fee Related JP4059566B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17722998A JP4059566B2 (ja) 1998-06-24 1998-06-24 絶縁ゲート型半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17722998A JP4059566B2 (ja) 1998-06-24 1998-06-24 絶縁ゲート型半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2000012850A JP2000012850A (ja) 2000-01-14
JP4059566B2 true JP4059566B2 (ja) 2008-03-12

Family

ID=16027419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17722998A Expired - Fee Related JP4059566B2 (ja) 1998-06-24 1998-06-24 絶縁ゲート型半導体装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP4059566B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9000538B2 (en) 2010-06-30 2015-04-07 Renesas Electronics Corporation Semiconductor device with equipotential ring contact at curved portion of equipotential ring electrode and method of manufacturing the same
CN108110044A (zh) * 2017-12-18 2018-06-01 深圳市晶特智造科技有限公司 半导体功率器件及其制作方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848605B2 (ja) * 2001-08-29 2011-12-28 株式会社デンソー 半導体装置の製造方法
JP2006310508A (ja) * 2005-04-28 2006-11-09 Sanyo Electric Co Ltd 半導体装置およびその製造方法
JP2009088440A (ja) * 2007-10-03 2009-04-23 Oki Semiconductor Co Ltd 半導体装置及びその製造方法
JP7316746B2 (ja) * 2017-03-14 2023-07-28 富士電機株式会社 半導体装置および半導体装置の製造方法
CN108417616A (zh) * 2018-02-23 2018-08-17 深圳市威兆半导体有限公司 一种dmos截止环的设计方法
WO2020121507A1 (ja) * 2018-12-14 2020-06-18 サンケン電気株式会社 半導体装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9000538B2 (en) 2010-06-30 2015-04-07 Renesas Electronics Corporation Semiconductor device with equipotential ring contact at curved portion of equipotential ring electrode and method of manufacturing the same
US9263280B2 (en) 2010-06-30 2016-02-16 Renesas Electronics Corporation Semiconductor device with equipotential ring contact at curved portion of equipotential ring electrode and method of manufacturing the same
US10340147B2 (en) 2010-06-30 2019-07-02 Renesas Electronics Corporation Semiconductor device with equipotential ring contact at curved portion of equipotential ring electrode and method of manufacturing the same
CN108110044A (zh) * 2017-12-18 2018-06-01 深圳市晶特智造科技有限公司 半导体功率器件及其制作方法

Also Published As

Publication number Publication date
JP2000012850A (ja) 2000-01-14

Similar Documents

Publication Publication Date Title
KR100400079B1 (ko) 트랜치 게이트 구조를 갖는 전력용 반도체 소자의 제조 방법
JPS6145396B2 (ja)
JPH07120795B2 (ja) 半導体デバイスの製作方法
JP4059566B2 (ja) 絶縁ゲート型半導体装置及びその製造方法
US4351099A (en) Method of making FET utilizing shadow masking and diffusion from a doped oxide
JPH01268072A (ja) 接合形電界効果トランジスタを製造する方法
JPH03129818A (ja) 半導体装置の製造方法
JP3298472B2 (ja) 絶縁ゲート型半導体装置の製造方法
JP3440987B2 (ja) 絶縁ゲート型半導体装置の製造方法
CN115148602A (zh) Ldmos器件及其制造方法
JPS63207177A (ja) 半導体装置の製造方法
CA1142270A (en) Self-alignment method of depositing semiconductor metallization
JP3002964B2 (ja) バイポーラ半導体装置の製造方法
JP2003163351A (ja) 絶縁ゲート型半導体装置およびその製造方法
JP2004014658A (ja) 半導体装置およびその製造方法
JP2925910B2 (ja) 絶縁ゲート型半導体装置の製造方法
JP3703427B2 (ja) Mos電界効果トランジスタ
KR100194691B1 (ko) 반도체 장치 및 그 제조 방법
JP3036034B2 (ja) 半導体装置の製造方法
KR940006705B1 (ko) 모스패트의 구조 및 제조방법
JPS6185864A (ja) バイポ−ラ型トランジスタ
CN116646400A (zh) 一种碳化硅mosfet器件及制造方法
JPH0547982B2 (ja)
KR100338095B1 (ko) 반도체소자의콘택홀형성방법
JPH0281439A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050518

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20071127

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20071218

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101228

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees