JP3938842B2 - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP3938842B2
JP3938842B2 JP2000368423A JP2000368423A JP3938842B2 JP 3938842 B2 JP3938842 B2 JP 3938842B2 JP 2000368423 A JP2000368423 A JP 2000368423A JP 2000368423 A JP2000368423 A JP 2000368423A JP 3938842 B2 JP3938842 B2 JP 3938842B2
Authority
JP
Japan
Prior art keywords
data
write
memory cell
refresh
parity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000368423A
Other languages
English (en)
Other versions
JP2002170384A (ja
Inventor
綾子 北本
正人 松宮
伸一 山田
雅人 瀧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2000368423A priority Critical patent/JP3938842B2/ja
Priority to TW90115578A priority patent/TW512343B/zh
Priority to US09/892,748 priority patent/US6421292B1/en
Priority to KR20010038290A priority patent/KR100664477B1/ko
Priority to EP20010305891 priority patent/EP1215678A3/en
Priority to CNB011257261A priority patent/CN1226749C/zh
Publication of JP2002170384A publication Critical patent/JP2002170384A/ja
Application granted granted Critical
Publication of JP3938842B2 publication Critical patent/JP3938842B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1006Data managing, e.g. manipulating data before writing or reading out, data bus switches or control circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4076Timing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4096Input/output [I/O] data management or control circuits, e.g. reading or writing circuits, I/O drivers or bit-line switches 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4097Bit-line organisation, e.g. bit-line layout, folded bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/401Indexing scheme relating to cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C2211/406Refreshing of dynamic cells
    • G11C2211/4062Parity or ECC in refresh operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Databases & Information Systems (AREA)
  • Dram (AREA)
  • Memory System (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体記憶装置およびメモリアクセス方法に関し、特にリフレッシュ動作が必要なメモリセルで構成された半導体記憶装置およびそのような半導体記憶装置に対するメモリアクセス方法においてリフレッシュ動作を見かけ上隠す技術に関する。
【0002】
DRAMなどの半導体記憶装置では、定期的に外部からリフレッシュコマンドを入力してリフレッシュ動作をおこない、リーク電流によりメモリセルから消失した分の電荷を充電する必要がある。このリフレッシュ動作と通常の書き込みや読み出しなどのメモリアクセスとは同時におこなうことができないため、リフレッシュ動作が終了してから通常のメモリアクセスをおこなうことになる。そのため、リフレッシュ動作の実行により通常のメモリアクセスのできない時間帯が生じる。また、リフレッシュ動作と通常のメモリアクセスとのタイミングを制御する必要があるため、メモリコントローラの負担が大きい。
【0003】
【従来の技術】
従来より、リフレッシュ動作が必要な半導体記憶装置において、リフレッシュ動作を隠す技術が提案されている。たとえば、キャッシュメモリを用いてリフレッシュ動作を隠す技術が公知である(米国特許第5,999,474号)。
【0004】
【発明が解決しようとする課題】
しかしながら、上述した従来の技術では、キャッシュのヒットまたはミスによって読み出し動作の速度や書き込み動作の速度に差が生じるという問題点がある。また、キャッシュミス率を下げるために大きなキャッシュメモリを設けると、半導体記憶装置の大型化または集積度の低下をもたらすという不都合がある。
【0005】
本発明は、上記問題点に鑑みてなされたものであって、リフレッシュ動作が必要な半導体記憶装置およびそのような半導体記憶装置に対するメモリアクセス方法において、キャッシュメモリを利用せずにリフレッシュ動作を見かけ上隠すことができる半導体記憶装置およびメモリアクセス方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明は、半導体記憶装置の内部で生成したリフレッシュ信号に基づいてリフレッシュ動作をおこなうとともに、データと一緒にパリティを記憶し、リフレッシュ動作とデータの読み出し動作が同時におこなわれるときに、リフレッシュ動作が優先されたために読み出すことができないメモリセルのデータをパリティに基づいて確定し、また、リフレッシュ動作とデータの書き込み動作が同時におこなわれるときに、リフレッシュ動作が優先されたために書き込むことができないメモリセルのデータを別の記憶領域に一時的に記憶、保持しておき、その保持データをあとで本来のメモリセルに書き戻すようにしたものである。
【0007】
この発明によれば、リフレッシュ動作とデータの読み出しや書き込みとが同時に起こる場合、読み出せないメモリセルのデータはパリティにより確定され、また、書き込めないメモリセルのデータは別の領域に一時的に記憶、保持された後、本来のメモリセルに書き戻されるため、キャッシュメモリを用いることなく、リフレッシュ動作を見かけ上隠すことができる。
【0008】
【発明の実施の形態】
以下に、本発明の実施の形態にかかる半導体記憶装置およびメモリアクセス方法について図面を参照しつつ詳細に説明する。
【0009】
(実施の形態1)
図1は、本発明の実施の形態1にかかる半導体記憶装置の構成を示すブロック線図である。この半導体記憶装置1は、コマンド入力回路11、アドレス入力回路12、ロウデコーダ13、コラムデコーダ14、データ入出力回路15、リフレッシュ手段を構成するリフレッシュ信号生成回路2および内部アドレス生成回路3、記憶領域であるライトデータバッファ4、書き戻し制御手段であるライトデータバッファ制御回路5、パリティ生成手段であるパリティ生成回路6、パリティ・データ比較手段であるパリティ・データ比較回路7、メモリセルアレー8、コラム・ドライバ81、ライトアンプおよびリードアンプなどのデータバスアンプ部82、ならびにメイン・ワード・ドライバおよびセンスアンプ列駆動回路83を備えている。
【0010】
さらに、リフレッシュ信号生成回路2は、リフレッシュ・オシレータ21および分周器22により構成されている。コマンド入力回路11は、アドレス入力回路12に、外部のCPUなどから受け取ったデータの読み出しや書き込みのコマンドに合わせてアドレスを取り込むための制御信号を出力する。取り込まれたアドレスは、ロウデコーダ13およびコラムデコーダ14によりデコードされ、メイン・ワード・ドライバおよびセンスアンプ列駆動回路83、およびコラム・ドライバ81に供給される。
【0011】
実施の形態1にかかる半導体記憶装置1は、つぎのような構成となっている。すなわち、半導体記憶装置1の内部でリフレッシュ信号を生成し、そのリフレッシュ信号に基づいてリフレッシュ動作をおこなう。また、データの書き込み時にパリティを生成して記憶する。リフレッシュ動作と、通常のデータの読み出し動作または書き込み動作とが重なった場合には、リフレッシュ対象のサブアレーを優先する。そのため、データ読み出し時に読み出すことができないメモリセルのデータを1(ゼロでもよい)と仮定してパリティを生成し、それをデータの書き込み時に記憶しておいたパリティの値と比較して、1(またはゼロ)と仮定したデータの値を確定する。
【0012】
また、リフレッシュ対象のサブアレーを優先したためメモリセルに書き込むことができないデータをライトデータバッファ4に一時的に記憶、保持する。そして、リフレッシュ動作と、通常のデータの読み出しまたは書き込み動作とが重ならないときに、対応するメモリセルにライトデータバッファ4の保持データを書き戻す。
【0013】
図2は、メモリセルアレー8の構成の一例を説明するための模式図である。メモリセルアレー8は、特に限定しないが、たとえば81個のサブアレーが9行×9列のマトリクス状に配置された構成となっている。各サブアレーは、特に図示しないが、複数のメモリセルがマトリクス状に配置された構成となっている。これらサブアレーはたとえば9個で一つのブロックを構成している。すなわち、メモリセルアレー8はたとえば9個のブロックで構成されている。ここで、ブロックとは、データの書き込みまたは読み出しの際に、同時にメモリアクセスがおこなわれる単位のことである。
【0014】
図2に示す例では、ブロック1は、図中に「1」で示す8個のサブアレーおよび「1P」で示す1個のパリティ用のサブアレーで構成される。同様に、ブロック2は、図中に「2」で示す8個のサブアレーおよび「2P」で示す1個のパリティ用のサブアレーで構成される。ブロック3〜ブロック9についても同様である。1〜9の各ブロックにおいて、同一のブロックに含まれる9個のサブアレーは、1番目から9番目の各ブロック行(以下、実施の形態1においてRB1〜RB9とする)に1個ずつで、かつ1番目から9番目の各ブロック列(以下、実施の形態1においてCB1〜CB9とする)に1個ずつ配置される。ここで、ブロック行とは、行方向(ワード線方向)に並ぶサブアレーよりなる行のことを意味し、ブロック列とは、列方向(ビット線方向)に並ぶサブアレーよりなる列のことを意味する。
【0015】
ここで、メモリセルアレー8における各ブロックのサブアレーの配置を具体的に説明するため、便宜上、ブロック行RBiとブロック列CBj(i,j=1,2,・・・,9)とが交差して決まるサブアレーをRBi*CBjと表すことにする。たとえば、図2に示すように、ブロック1を構成する9個のサブアレーは、RB1*CB1、RB2*CB2、RB3*CB3、RB4*CB4、RB5*CB5、RB6*CB6、RB7*CB7、RB8*CB8およびRB9*CB9である。このうち、RB9*CB9はブロック1のパリティ格納用サブアレーである。
【0016】
ブロック2を構成する9個のサブアレーは、RB1*CB2、RB2*CB3、RB3*CB4、RB4*CB5、RB5*CB6、RB6*CB7、RB7*CB8、RB8*CB9およびRB9*CB1である。このうち、RB8*CB9はブロック2のパリティ格納用サブアレーである。ブロック3を構成する9個のサブアレーは、RB1*CB3、RB2*CB4、RB3*CB5、RB4*CB6、RB5*CB7、RB6*CB8、RB7*CB9、RB8*CB1およびRB9*CB2である。ブロック3のパリティ格納用サブアレーはRB7*CB9のサブアレーである。ブロック4〜9についても同様である。
【0017】
つまり、kを1〜9の整数とすると、ブロックkを構成する9個のサブアレーは、RB1*CBk、RB2*CB(k+1)、RB3*CB(k+2)、RB4*CB(k+3)、RB5*CB(k+4)、RB6*CB(k+5)、RB7*CB(k+6)、RB8*CB(k+7)およびRB9*CB(k+8)である。ただし、CBのつぎに付す数値(すなわち、kと1〜8との和)が9を超える場合には、その数から9を引いた値とする。このうち、RB(10−k)*CB9はブロックkのパリティ格納用サブアレーである。なお、この実施の形態1では、メモリセルアレー8は8ブロック構成のものであり、ブロック9はパリティ格納用サブアレーの冗長用等に使用できる。
【0018】
各サブアレーは、サブ・ワード・ドライバ84およびセンスアンプ85により囲まれる。特に図示しないが、サブ・ワード・ドライバ84で挟まれた領域につき1本のコラム選択線が立ち上がり、各コラム選択線につき所定数のデータが出力される。たとえば、1本のコラム選択線につき2ビットまたは4ビットのデータが出力される構成の場合には、メモリセルアレー8が8ブロック構成であるため、出力データのビット数は16ビットまたは32ビットとなる。メイン・ワード・ドライバおよびセンスアンプ列駆動回路83には、センスアンプ列駆動信号生成回路群86およびメイン・ワード・ドライバ87が配置される。
【0019】
実施の形態1では、リフレッシュ動作はサブアレー単位でおこなわれる。図2には、ブロック2の、RB2*CB3に位置するサブアレーがリフレッシュ対象となっている場合が示されている。図2に示す構成では、1ブロックあたり9個のサブアレーがあるため、従来のブロック単位でリフレッシュをおこなう場合の9分の1の間隔でリフレッシュをおこなう。つまり、リフレッシュ・オシレータ21で生成された発振信号は、分周器22により、従来のリフレッシュ・タイミングを制御する信号の9倍の周波数を有するように分周される。
【0020】
このリフレッシュ信号生成回路2から出力されたリフレッシュ信号refzに基づいて内部アドレス生成回路3のたとえばカウンタがカウントアップされ、それによって順次リフレッシュ対象のサブアレーを活性化するためのロウアドレスが生成される。その生成されたロウアドレスはロウデコーダ13によりデコードされ、メイン・ワード・ドライバおよびセンスアンプ列駆動回路83に供給される。
【0021】
図3は、ワード線の階層化構造の一例を説明するための模式図であり、一ブロック行の4個のサブアレーの部分を示している。メイン・ワード線88は一ブロック行あたりたとえば64本設けられている。メイン・ワード線88は、メイン・ワード・ドライバ87により、そのメイン・ワード線88が配線されたブロック行に並ぶ9個のサブアレー全体にわたって駆動される。サブ・ワード線89は一メイン・ワード線88あたりたとえば4本あるいは8本設けられている。サブ・ワード線89は、サブ・ワード・ドライバ84により供給されるサブ・ワード線選択信号91により選択され、選択サブ・ワード線駆動信号92により個々のサブアレー内においてのみ駆動される。つまり、実施の形態1では、メモリセルアレー8は、サブアレー単位で活性化される。
【0022】
ここで、サブ・ワード線選択信号91は、通常のデータの書き込み動作または読み出し動作をおこなう場合と、リフレッシュ動作をおこなう場合とで、別々に発生される。あるいは、リフレッシュ動作については、別の方法で順次サブ・ワード線89が選択される構成でもよい。サブ・ワード線選択信号91はロウデコーダ13から、および選択サブ・ワード線駆動信号92は、選択サブ・ワード線駆動信号92を生成する回路94からそれぞれ供給される。また、メイン・ワード線88の選択はロウデコーダ13から供給される選択信号により選択される。
【0023】
図4は、センスアンプとデータバスとの接続関係の要部を示す回路図である。また、図5は、図4に示す回路において各信号の論理関係を示すダイアグラムである。ただし、図5においては動作タイミングは考慮されていない。図4および図5において、BLおよび/BLはビット線(またはビット線電位)、n01およびn02は説明の便宜上設けたノード(またはその電位)である。また、rdbxおよびrdbzはデータ読み出し時にデータバスに供給されるデータ信号、wdbxおよびwdbzはデータ書き込み時にデータバスから供給されるデータ信号、psaおよびnsaはそれぞれセンスアンプ活性信号、CLはコラム選択信号、rclezおよびwclxはそれぞれデータの読み出し時および書き込み時のセンスアンプ列選択信号、selzはサブアレー選択信号を表す。
【0024】
サブアレー選択信号selzは、センスアンプ列をサブアレー単位で活性化させるための信号である。コラム選択信号CLはコラムデコーダ14から供給される。センスアンプ列選択信号rclez,wclxおよびサブアレー選択信号selzはロウデコーダ13から供給される。
【0025】
サブアレー選択信号selzおよびデータの読み出し時のセンスアンプ列選択信号rclezはナンドゲートNa1に入力される。ナンドゲートNa1の出力端子(ノードn01に相当)はトランジスタQ1およびトランジスタQ2の各ソースに接続されている。トランジスタQ1およびトランジスタQ2の各ゲートは、それぞれビット線BLおよびビット線/BLに接続されている。そして、これらトランジスタQ1およびトランジスタQ2の各ドレイン出力は、それぞれコラム選択信号CLをゲート入力とするトランジスタQ3およびトランジスタQ4を介して、データ読み出し時のデータ信号rdbxおよびrdbzとして出力される。
【0026】
また、サブアレー選択信号selzはインバータIn1により反転される。そのサブアレー選択信号selzの反転信号は、データの書き込み時のセンスアンプ列選択信号wclxとともにノアゲートNo1に入力される。ノアゲートNo1の出力端子(ノードn02に相当)はトランジスタQ5およびトランジスタQ6の各ゲートに接続されている。トランジスタQ5およびトランジスタQ6の各ソースには、それぞれデータ書き込み時のデータ信号wdbzおよびwdbxが供給される。また、トランジスタQ5およびトランジスタQ6の各ドレインは、それぞれコラム選択信号CLをゲート入力とするトランジスタQ7およびトランジスタQ8を介して、ビット線BLおよびビット線/BLに接続されている。ナンドゲートNa1、インバータIn1およびノアゲートNo1の出力、すなわちn01、n02は、複数のセンスアンプで共有可能である。
【0027】
ビット線BL,/BLに接続されたセンスアンプラッチ93は、センスアンプ活性信号psaが相対的に電位レベルが高い「H」で、かつセンスアンプ活性信号nsaが相対的に電位レベルが低い「L」のときに活性化される。図5に示すように、センスアンプラッチ93が活性化しているときに、コラム選択信号CL、サブアレー選択信号selzおよびデータの読み出し時のセンスアンプ列選択信号rclezがすべて「H」になると、ノードn01の電位レベルは「L」となる。それによって、ビット線BLとビット線/BLの電位差に対応した電位差が、データバスに供給されるデータ信号rdbxおよびrdbzに生じる。すなわち、サブアレー選択信号selzにより選択されたサブアレーのうちCL線が「H」となったセンスアンプから目的のメモリセルのデータが読み出される。
【0028】
一方、センスアンプラッチ93が活性化しているときに、コラム選択信号CLおよびサブアレー選択信号selzがともに「H」で、かつデータの書き込み時のセンスアンプ列選択信号wclxが「L」になると、ノードn02の電位レベルは「H」となる。それによって、ビット線BLおよびビット線/BLに、書き込みデータがデータ信号wdbzおよびwdbxとして供給される。すなわち、サブアレー選択信号selzにより選択されたサブアレーのうちコラム選択信号CLがHとなったセンスアンプから目的のメモリセルにデータが書き込まれる。
【0029】
図6は、リフレッシュ対象のサブアレーを選択する機構の一例を説明するための模式図である。メモリセルアレー8には、RB1〜RB9の各ブロック行ごとにそれぞれロウ側リフレッシュイネーブル信号refr1z〜refr9zを供給するための信号線が設けられる。また、CB1〜CB9の各ブロック列ごとにそれぞれコラム側リフレッシュイネーブル信号refc1z〜refc9zを供給するための信号線が設けられる。ロウ側リフレッシュイネーブル信号refr#zとコラム側リフレッシュイネーブル信号refc#zが供給されたサブアレーがリフレッシュ対象となる。
【0030】
ここで、#は1〜9の数字を意味する。ロウ側リフレッシュイネーブル信号refr#zおよびコラム側リフレッシュイネーブル信号refc#zは内部アドレス生成回路3から供給される。内部アドレス生成回路3は、たとえばカウンタを有しており、そのカウンタのカウントアップによりロウ側リフレッシュイネーブル信号refr#zとコラム側リフレッシュイネーブル信号refc#zを順に活性化させるようになっている。
【0031】
図6に示す例では、2番目のロウ側リフレッシュイネーブル信号refr2zと3番目のコラム側リフレッシュイネーブル信号refc3zが供給されているため、RB2*CB3のサブアレーがリフレッシュ対象となっている。したがって、リフレッシュ動作の実施のため、RB2*CB3のサブアレーが活性化される。なお、コラム側リフレッシュイネーブル信号refc#zを用いる代わりに、ロウ側リフレッシュイネーブル信号refr#zとブロック番号との組み合わせでリフレッシュ対象のサブアレーを選択することも可能である。
【0032】
さらに、図6に示すように、メモリセルアレー8には、CB1〜CB9の各ブロック列ごとにそれぞれ非活性化信号inact1z〜inact9zを供給するための信号線が設けられる。非活性化信号inact#zは、リフレッシュ動作により通常のデータの書き込み動作または読み出し動作をおこなうことができないサブアレーに対応して活性化される。非活性化信号inact#zはメモリセルアレー8において生成される。
【0033】
図6に示す例では、RB2*CB3のサブアレーに対するリフレッシュ動作と同時に、ブロック4に対するデータの書き込み動作がおこなわれている。この場合、上述したようにリフレッシュによってRB2*CB3のサブアレーが活性化されるため、ブロック4に含まれるサブアレーのうちRB2のブロック行に位置するサブアレー、すなわちRB2*CB5のサブアレーは活性化されない。その代わり、RB2*CB5のサブアレーに対応する非活性化信号inact5zが活性化されて「H」となる。それによって、ブロック列CB5に対応するライトデータバッファ4に所定の情報が保持されることになる。
【0034】
前記ライトデータバッファ制御回路5は、リフレッシュ動作とデータの読み出し動作、またはリフレッシュ動作とデータの書き込み動作が同時におこなわれないときに、ライトデータバッファ4に保持されたデータを対応するメモリセルに書き戻すための制御信号である書き戻しイネーブル信号wbackを生成する。書き戻しイネーブル信号wbackは、コマンド入力回路11から供給されるライトイネーブル信号wenzおよびリードイネーブル信号renzと、リフレッシュ信号生成回路2から供給されるリフレッシュ信号refzとに基づいて生成される。すなわち、ライトデータバッファ制御回路5は、ライトイネーブル信号wenz、リードイネーブル信号renzおよびリフレッシュ信号refzの論理をとって書き戻しイネーブル信号wbackを出力する論理回路を有する。このような論理回路については種々構成可能であるため、具体的な図示を省略する。
【0035】
図7は、ライトデータバッファ4の一部の構成の一例を示す回路図である。ライトデータバッファ4は書き込みデータを保持する回路と、その保持データに対応するロウアドレスおよびコラムアドレスを保持する回路を有する。たとえば、書き込みデータの保持回路と、保持データに対応するロウアドレスおよびコラムアドレスの保持回路との組が各ブロック列ごとに1組ずつ設けられている。書き込みデータを保持する回路は、たとえば2個のトランスファゲートTr1,Tr2、6個のインバータIn2〜In7、3個のナンドゲートNa2〜Na4および遅延器41により構成される。データ入出力回路15から供給された書き込みデータwdataは、第1のトランスファゲートTr1を介して、2個のインバータIn2,In3よりなるラッチに入力される。このラッチの出力は、第2のトランスファゲートTr2を介して書き戻しデータwcdbzとしてデータバスに出力される。
【0036】
フリップフロップ回路を構成する2個のナンドゲートNa2,Na3のうち、一方のナンドゲートNa2には非活性化信号inact0zがインバータIn4により反転されて入力され、もう一方のナンドゲートNa3には書き戻しイネーブル信号wbackがインバータIn5により反転されて入力される。それら2個のナンドゲートNa2,Na3の出力はそれぞれ他方のナンドゲートNa3,Na2のもう一方の入力となっている。第2のトランスファゲートTr2は、ナンドゲートNa2の出力信号と、その出力信号をインバータIn6により反転してなる信号により制御される。
【0037】
インバータIn6の出力信号は、ナンドゲートNa4の一方の入力端子に直接入力される。ナンドゲートNa4のもう一方の入力端子には、インバータIn6の出力信号が遅延器41を介して入力される。この遅延器41は、ラッチに保持されたデータがライトアンプまたはデータバスに確実に伝達された後に、つぎのデータの受け付けを可能とするために設けられている。第1のトランスファゲートTr1は、ナンドゲートNa4の出力信号と、その出力信号をインバータIn7により反転してなる信号により制御される。
【0038】
ロウアドレスを保持する回路は、上述した書き込みデータを保持する回路と同じ構成の回路であり、トランスファゲートTr1,Tr2をトランスファゲートTr3,Tr4に、また6個のインバータIn2〜In7をインバータIn8〜In13に、また3個のナンドゲートNa2〜Na4をナンドゲートNa5〜Na7に、さらに遅延器41を遅延器42にそれぞれ読み替えたものである。そして、書き込みデータwdataの代わりに、保持データに対応するロウアドレスのデコード信号rap00zがロウデコーダ13から入力側のトランスファゲートTr3に入力される。出力側のトランスファゲートTr4からは、書き戻しデータwcdbzの代わりに、書き戻しのためのデコードアドレス信号rapbk00zがメイン・ワード・ドライバおよびセンスアンプ列駆動回路83に供給される。
【0039】
また、コラムアドレスを保持する回路は、図示省略するが、ロウアドレスを保持する回路と同じ構成の回路である。ただし、入力側のトランスファゲートには、ロウアドレスのデコード信号rap00zの代わりに、コラムデコーダ14からコラムアドレスのデコード信号cap00zが入力される。また、出力側のトランスファゲートからは、書き戻しのためのロウ側のデコードアドレス信号rapbk00zの代わりに、書き戻しのためのコラム側のデコードアドレス信号capbk00zがコラム・ドライバ81に供給される。このように、ライトデータバッファ4にデータを保持する際には、デコードされたアドレス(ロウアドレスおよびコラムアドレス)が一緒に保持される。したがって、ライトデータバッファ4は、保持データを記憶する領域と、デコードされたアドレスを記憶する領域を有する。
【0040】
保持データを対応するメモリセルに書き戻す際には、ライトデータバッファ4に記憶されたアドレスに基づいてワード線やコラム線が活性化される。図7に示す例では、ライトデータバッファ4に、デコードされたアドレスrap00z,cap00zが記憶されるため、書き戻しのためのロウ側のデコードアドレス信号rapbk00zおよび書き戻しのためのコラム側のデコードアドレス信号capbk00zは、それぞれ、メイン・ワード・ドライバおよびセンスアンプ列駆動回路83およびコラム・ドライバ81に直接入力される。ライトデータバッファ4には、上述した構成の回路が所定のアドレスの個数分設けられており、それによって該当アドレスが保持される。なお、ライトデータバッファ4に、デコードされていないアドレスそのものを記憶させるようにしてもよい。その場合には、ライトデータバッファ4から出力される書き戻しのためのアドレスはロウデコーダ13およびコラムデコーダ14に入力される。
【0041】
図8は、図7に示す回路について各信号の論理関係を示す論理値表である。なお、図8においてn03およびn04は、それぞれ説明の便宜上設けたノードであり、ノードn03はインバータIn6の出力端子点、ノードn04はインバータIn12の出力端子点に相当する。まず、書き込みデータのラッチについて説明する。初期状態では、非活性化信号inact0zおよび書き戻しイネーブル信号wbackはともに「L」であり、ノードn03の電位レベルは「H」となる。このときはデータの書き込みが可能な状態である。
【0042】
非活性化信号inact0zが「H」で、かつ書き戻しイネーブル信号wbackが「L」のとき、ノードn03の電位レベルは「L」となる。それによって、入力側のトランスファゲートTr1はオフ状態となり、出力側のトランスファゲートTr2がオフ状態となる。したがって、ライトデータバッファ4に書き込みデータwdataが入力されるが、書き込み禁止状態であるため、入力された書き込みデータwdataがラッチされる。その後、非活性化信号inact0zが「L」となるが、書き込み禁止状態のままである。ここで、非活性化信号inact0zは各ブロック列の対応する非活性化信号inact#z(たとえば#=5)が活性化されて「H」となることに応答して「H」となる。
【0043】
この状態から、非活性化信号inact0zが「L」で、かつ書き戻しイネーブル信号wbackが「H」になると、ノードn03の電位レベルが「H」となる。それによって、出力側のトランスファゲートTr2がオン状態となり、ラッチに保持されたデータが書き戻しデータwcdbzとしてデータバスに出力され、ライトアンプにより該当するメモリセルに書き込まれる。このとき書き込まれるメモリセルは、ライトデータバッファ4の上述したロウアドレスを保持する回路およびコラムアドレスを保持する回路に保持されたアドレスにより特定される。その後、初期状態に戻る。
【0044】
ロウアドレスおよびコラムアドレスのラッチについても同様である。すなわち、非活性化信号inact0zが「H」で、かつ書き戻しイネーブル信号wbackが「L」のときに、ロウアドレスおよびコラムアドレスがラッチされる。ラッチされたロウアドレスおよびコラムアドレスは、非活性化信号inact0zが「L」で、かつ書き戻しイネーブル信号wbackが「H」のときに、アドレスバスに出力される。
【0045】
図9は、パリティ生成回路6の構成の一例を示す回路図である。このパリティ生成回路6は、特に限定しないが、たとえば8ビットのデータのパリティを生成する回路である。図9において、0z〜7zは、データ入出力回路15から供給された8ビットデータの各ビットのデータである。このパリティ生成回路6は、8ビットの各データ0z〜7zを入力とし、それらの総和の最下位ビットが偶数の場合にパリティ信号pzが「H」となり、奇数なら「L」となる論理回路である。パリティ信号pzはライトアンプへ送られ、メモリセルアレー8の該当するパリティビットに書き込まれる。
【0046】
図10は、パリティ・データ比較回路7の構成の一例を示す回路図である。図10において、prdatzは、メモリセルアレー8から読み出されたデータに基づいて生成されたパリティ、すなわち読み出しデータのパリティである。この読み出しデータのパリティprdatzは、特に限定しないが、たとえば、リフレッシュ動作と通常のデータの読み出し動作とが重なった場合に、リフレッシュ動作が優先されることによって読み出すことができないメモリセルのデータを1と仮定して計算される。また、przは、メモリセルアレー8に記憶されていたパリティ、すなわち読み出し対象のデータがメモリセルアレー8に書き込まれたときに一緒に蓄積されたパリティ(以下、蓄積パリティとする)である。
【0047】
パリティ・データ比較回路7は、読み出しデータのパリティprdatzと蓄積パリティprzとのノア論理およびナンド論理をそれぞれとるノアゲートNo2およびナンドゲートNa8、そのノア回路No2の出力を反転するインバータIn14、ならびにそのインバータIn14の出力とナンドゲートNa8の出力とのナンド論理をとるナンドゲートNa9を有する。ナンドゲートNa9の出力信号、すなわちパリティ・データ比較回路7の出力信号compzは、読み出しデータのパリティprdatzと蓄積パリティprzとが一致していれば1となり、両パリティprdatzとprzが一致していなければゼロとなる。ここで、読み出すことができないメモリセルのデータを1と仮定しているため、この出力信号compzの値は、そのまま、読み出すことができないメモリセルのデータとしてデータ入出力回路15に出力される。
【0048】
つぎに、実施の形態1にかかる半導体記憶装置1において、通常のデータ読み出し動作またはデータ書き込み動作、すなわちリフレッシュ動作と重ならずにデータの読み出しまたは書き込みが単独でおこなわれる場合について、図11を例にして説明する。図11に示す例では、ブロック4がデータの読み出しまたは書き込みの対象となっており、そのため、ブロック4に属するRB1*CB4、RB2*CB5、RB3*CB6、RB4*CB7、RB5*CB8、RB6*CB9、RB7*CB1、RB8*CB2およびRB9*CB3の9個のサブアレーが活性化されている。したがって、メイン・ワード線は9本立ち上がる。また、CB1〜CB9の各ブロック列でコラム選択線が1本ずつ立ち上がるので、合計9本のコラム選択線が立ち上がる。各コラム選択線には所定数のデータバスが配置されており、所定数のデータが読み出しまたは書き込みされる。
【0049】
つぎに、実施の形態1にかかる半導体記憶装置1において、リフレッシュ動作とデータの読み出し動作とが同時におこなわれる場合について、図12を例にして説明する。図12に示す例では、図11と同様にブロック4がデータの読み出し対象となっており、かつRB2*CB3のサブアレーがリフレッシュ対象となっている。この場合、ブロック行RB2ではリフレッシュ動作が優先されるため、RB2*CB3のサブアレーが活性化され、リフレッシュアドレスに対応するワード線が活性化される。
【0050】
一方、ブロック4に属するRB2*CB5のサブアレーは活性化されない。そのため、RB2*CB5のサブアレー内のメモリセルに記憶されたデータは出力されなくなるが、上述したようにこの出力されないデータを1と仮定し、パリティ・データ比較回路7により読み出しデータのパリティprdatzと蓄積パリティprzとを比較することによって、出力されないデータの値を確定する。また、ブロック列CB3においては、リフレッシュ対象のRB2*CB3のサブアレーと、読み出し対象のRB9*CB3のサブアレーが活性化されることになるが、上述したサブアレー選択信号selzによりRB9*CB3のサブアレーが選択され、それによってリフレッシュ対象のサブアレーからはデータは出力されず、読み出し対象のサブアレーからのみデータが出力される。
【0051】
図13は、リフレッシュ動作とデータの読み出し動作とが同時におこなわれる場合において、パリティ格納用サブアレーがリフレッシュ対象である場合を示している。すなわち、図13において、RB6*CB9のサブアレーはブロック4のパリティ格納用サブアレーであるが、同時にリフレッシュ対象となっている。この場合には、リフレッシュ動作が優先されるため、RB6*CB9のサブアレーからは蓄積パリティprzが出力されないが、パリティを除くブロック4のすべてのデータは出力されるので、その出力されたデータがそのまま読み出しデータとなる。
【0052】
つぎに、実施の形態1にかかる半導体記憶装置1において、リフレッシュ動作とデータの書き込み動作とが同時におこなわれる場合について、図14を例にして説明する。図14に示す例では、図11と同様にブロック4がデータの書き込み対象となっており、かつRB2*CB3のサブアレーがリフレッシュ対象となっている。読み出しのときと同様に、ブロック行RB2ではリフレッシュ動作が優先されるため、RB2*CB3のサブアレーが活性化される。RB2*CB5のサブアレーは活性化されないため、RB2*CB5のサブアレー内のメモリセルにデータを書き込むことができない。
【0053】
このRB2*CB5のサブアレー内のメモリセルに書き込まれるべきデータは、一旦ライトデータバッファ4に書き込まれる。そして、ライトデータバッファ4に保持されたデータは、上述したように、リフレッシュ動作、データの書き込み動作またはデータの読み出し動作のいずれかが単独でおこなわれるときに本来のメモリセルに書き戻される。リフレッシュ動作とデータの書き込み動作とが同時におこなわれる場合において、パリティ格納用サブアレーがリフレッシュ対象である場合も同様である。
【0054】
上述した実施の形態1によれば、リフレッシュ動作とデータの読み出しや書き込みとが同時に起こる場合、リフレッシュ動作が優先されるため読み出すことができないメモリセルのデータをパリティに基づいて確定する。また、リフレッシュ動作が優先されるため書き込むことができないメモリセルのデータをライトデータバッファ4に一時的に記憶、保持した後、本来のメモリセルに書き戻す。このようにすることによって、リフレッシュ動作を見かけ上隠すことができる。したがって、リフレッシュ動作を見かけ上隠すためにキャッシュメモリを用いた場合に、キャッシュのヒットまたはミスによって読み出し動作の速度や書き込み動作の速度に差が生じるという問題点や、キャッシュミス率を下げるために大きなキャッシュメモリを設けることによる半導体記憶装置の大型化または集積度の低下という問題点を解決することができる。
【0055】
また、実施の形態1によれば、半導体記憶装置1の内部でリフレッシュ信号を生成し、そのリフレッシュ信号に基づいてリフレッシュ動作をおこなう構成となっているため、外部からリフレッシュコマンドを入力させる必要がない。したがって、半導体記憶装置1をSRAMインターフェースの記憶装置として用いることができるので、従来のSRAMをこの半導体記憶装置1で置き換えることが可能となる。それによって、SRAMに比べて消費電力が小さい、集積回路の面積が小さいなどの効果を奏する。
【0056】
また、実施の形態1によれば、半導体記憶装置1を、DRAMインターフェースと同様あるいは類似でかつ外部からのリフレッシュコマンドが不要な記憶装置として用いることができる。この場合には、リフレッシュコマンドが不要であるため、リフレッシュ動作とデータの読み出し動作や書き込み動作のタイミング制御が簡潔になるという効果が得られる。また、リフレッシュによるメモリアクセスの禁止時間帯がなくなるため、従来のDRAMなどと比べて、メモリコントローラに負担をかけることなく、バスの利用効率を向上させることができる。つまり、高データ転送速度が得られる。
【0057】
また、実施の形態1によれば、サブアレー単位でリフレッシュ動作をおこなうため、従来のブロック単位でリフレッシュをおこなう場合に比べて、リフレッシュ動作時のピーク消費電流が小さくなる。したがって、消費電流の変動による電源配線のノイズを小さくすることができる。また、アーキテクチャによっては電源発生回路の供給能力の最大値を小さくすることができるので、回路面積をより小さくすることができたり、設計しやすくなるなどの利点が得られる。
【0058】
なお、上述した実施の形態1においては、ロウアドレスによって決まるブロックが8個の場合を例にして説明したが、これに限らず、ブロック数は7個以下でもよいし、あるいは9個以上でもよい。また、上述した実施の形態1においては、読み出しまたは書き込み対象となるデータは8ビットであるとしたが、これに限らず、4ビット、16ビット、32ビットまたは64ビットなどでも同様である。さらに、メモリセルアレー8の構成、ワード線の階層化構造、センスアンプとデータバスとの接続の構成、リフレッシュ信号生成回路2、ライトデータバッファ4、ライトデータバッファ制御回路5、パリティ生成回路6およびパリティ・データ比較回路7は、いずれも上述した構成に限らず、種々設計変更可能である。
【0059】
(実施の形態2)
図15は、本発明の実施の形態2にかかる半導体記憶装置の構成を示すブロック線図である。この半導体記憶装置101は、コマンド入力回路111、アドレス入力回路112、ロウデコーダ113、コラムデコーダ114、データ入出力回路115、リフレッシュ手段を構成するリフレッシュ信号生成回路102および内部アドレス生成回路103、不揮発性の記憶装置よりなる記憶領域であるデータレジスタ104、パリティ生成手段であるパリティ生成回路106、パリティ・データ比較手段であるパリティ・データ比較回路107、メモリセルアレー108、コラム・ドライバ181、ライトアンプおよびリードアンプなどのデータバスアンプ部182、ならびにワード・ドライバおよびセンスアンプ列駆動回路183を備えている。
【0060】
さらに、リフレッシュ信号生成回路102は、リフレッシュ・オシレータ121および分周器122により構成されている。実施の形態1と同様に、コマンド入力回路111は、アドレス入力回路112に、外部のCPUなどから受け取ったデータの読み出しや書き込みのコマンドに合わせてアドレスを取り込むための制御信号を出力する。取り込まれたアドレスは、ロウデコーダ113およびコラムデコーダ114によりデコードされ、ワード・ドライバおよびセンスアンプ列駆動回路183、およびコラム・ドライバ181に供給される。前記パリティ生成回路106および前記パリティ・データ比較回路107は、実施の形態1のパリティ生成回路106およびパリティ・データ比較回路7と同様の構成であるため、説明を省略する。
【0061】
実施の形態2にかかる半導体記憶装置101は、つぎのような構成となっている。すなわち、半導体記憶装置101の内部でリフレッシュ信号を生成し、そのリフレッシュ信号に基づいてリフレッシュ動作をおこなう。また、データの書き込み時にパリティを生成して記憶する。リフレッシュ動作と、通常のデータの読み出し動作または書き込み動作とが同時におこなわれる場合で、かつリフレッシュ対象のサブアレーとデータの読み出しまたは書き込み対象のメモリセルを含むサブアレーとがセンスアンプを共有するか、または読み出しまたは書き込み動作で使用される信号線として、複数のセンスアンプ列で共有するものと、同一ブロック行に関わるセンスアンプ列で共有するものとを併用する場合、リフレッシュ対象のサブアレーを優先する。
【0062】
そのため、データ読み出し時に読み出すことができないメモリセルのデータを1(ゼロでもよい)と仮定してパリティを生成し、それをデータの書き込み時に記憶しておいたパリティの値と比較して、1(またはゼロ)と仮定したデータの値を確定する。また、リフレッシュ対象のサブアレーを優先したためメモリセルに書き込むことができないデータをデータレジスタ104に一時的に記憶、保持する。そして、データレジスタ104に保持されたデータが本来書き込まれるべきメモリセルを含む行に対してつぎのデータの読み出しまたは書き込みの動作がおこなわれるときに、その有効なデータを対応するメモリセルに書き戻す。
【0063】
図16は、メモリセルアレー108の構成の一例を説明するための模式図である。メモリセルアレー108は、特に限定しないが、たとえば20個のサブアレーが4行×5列のマトリクス状に配置された構成となっている。各サブアレーは、特に図示しないが、複数のメモリセルがマトリクス状に配置された構成となっている。実施の形態2では、一ブロックはたとえば5個のサブアレーにより構成されており、メモリセルアレー108はたとえば4個のブロックで構成されている。
【0064】
図16に示す例では、ブロック1は、図中に「1−1」〜「1−4」で示す4個のサブアレーおよび「1P」で示す1個のパリティ用のサブアレーで構成される。同様に、ブロック2は、図中に「2−1」〜「2−4」で示す4個のサブアレーおよび「2P」で示す1個のパリティ用のサブアレーで構成される。ブロック3およびブロック4についても同様である。同一のブロックに含まれる5個のサブアレーは同一のブロック行に配置される。つまり、同一ロウアドレスのワード線に沿って並ぶ一列のサブアレーが同一のブロックに含まれる。
【0065】
各サブアレーは、ワード・ドライバ184およびセンスアンプ列185により囲まれる。ワード・ドライバ184は、サブアレーごとに独立して動作することが可能な構成となっている。たとえば、実施の形態2では、一つのブロックあたり2k(ただしk=1024)個のセンスアンプ(ビット線対)が設けられており、512個のセンスアンプごとにワード・ドライバ184が設けられている。センスアンプ列185により挟まれる領域、すなわち一つのブロック行には、たとえば512本または1024本のワード線が配置される。
【0066】
そして、データレジスタ105a〜105d(図15では、代表して符号104を付した)はロウアドレスごとに設けられており、メモリセルアレー108と同じロウアドレスを有する。各データレジスタ105a〜105dに保持されているデータが有効であるか否かは、フラグにより識別される。すなわち、フラグは、データレジスタ105a〜105dに保持されているデータが有効であるか無効であるかを識別する手段としての機能を有する。たとえば、保持データが有効である場合にはフラグは1であり、無効である場合にはゼロとなる。また、各データレジスタ105a〜105dには、データとともに、そのデータが本来記憶されるべきメモリセルのコラムアドレス(またはコラムアドレスとロウアドレスでもよい)およびサブアレーのアドレスが記憶される。
【0067】
図17は、実施の形態2におけるリフレッシュ単位を説明するための模式図である。図17に示すように、リフレッシュ動作はサブアレー単位でおこなわれる。図17には、ブロック3の4番目に位置するサブアレー、すなわち3−4のサブアレーがリフレッシュ対象となっている場合が示されている。図17に示す構成では、1ブロックあたり5個のサブアレーがあるため、従来のブロック単位でリフレッシュをおこなう場合の5分の1の間隔でリフレッシュをおこなう。つまり、リフレッシュ・オシレータ121で生成された発振信号は、分周器122により、従来のリフレッシュ・タイミングを制御する信号の5倍の周波数を有するように分周される。
【0068】
このリフレッシュ信号生成回路102から出力されたリフレッシュ信号refzに基づいて内部アドレス生成回路103により順次リフレッシュ対象のサブアレーを活性化するためのロウアドレスが生成され、その生成されたロウアドレスに基づいてリフレッシュ動作がおこなわれるのは実施の形態1と同じである。
【0069】
図18は、センスアンプとデータバスとの接続関係の要部を示す回路図である。図18において、WDBおよび/WDBは通常のデータ書き込み動作をおこなう際に使用されるデータバス対、CLは通常のデータ書き込み動作をおこなう際に使用されるコラム選択線、RWDBおよび/RWDBはデータレジスタ104からのデータ書き戻し動作をおこなう際に使用されるデータバス対、RCLはデータレジスタ104からのデータ書き戻し動作をおこなう際に使用されるコラム選択線である。
【0070】
つまり、実施の形態2にかかる半導体記憶装置では、通常のデータ書き込み動作用のデータバス対WDB,/WDBおよびコラム選択線CLの他に、データ書き戻し動作用のデータバス対RWDB,/RWDBおよびコラム選択線CLを有する。図18のWCLは、データの書き込みおよび書き戻し対象のサブアレーに対応するセンスアンプ列を選択するための選択線である。この選択線WCLの電位レベルは、データの書き込みおよび書き戻しの対象となっているサブアレーのセンスアンプ列に対して共通に「H」とされる。
【0071】
各センスアンプ185は、2個のスイッチング・トランジスタQ1,Q2を介して通常書込み用のデータバスWDBに接続されているとともに、2個のスイッチング・トランジスタQ3,Q4を介して通常書込み用のデータバス/WDBに接続されている。また、各センスアンプ185は、2個のスイッチング・トランジスタQ5,Q6を介して書き戻し用のデータバスRWDBに接続されているとともに、2個のスイッチング・トランジスタQ7,Q8を介して書き戻し用のデータバス/RWDBに接続されている。4個のトランジスタQ1,Q3,Q5,Q7は、選択線WCLの電位レベルが「H」のときにオン状態となる。
【0072】
2個のトランジスタQ2,Q4は、通常のデータ書き込み動作用のコラム選択線CLの電位レベルが「H」のときにオン状態となる。したがって、選択線WCLの電位レベルが「H」のときに通常のデータ書き込み動作用のコラム選択線CLの電位レベルが「H」となって選択されたセンスアンプ185に、データ入出力回路115から通常のデータ書き込み動作用のデータバス対WDB,/WDBを介してデータwdataが供給される。そのデータは該当するメモリセルに書き込まれる。この様子が図18の上半部に示されおり、データの流れが実線の片矢印で示されている。
【0073】
一方、2個のトランジスタQ6,Q8は、データ書き戻し動作用のコラム選択線RCLの電位レベルが「H」のときにオン状態となる。したがって、選択線WCLの電位レベルが「H」のときにデータ書き戻し動作用のコラム選択線RCLの電位レベルが「H」となって選択されたセンスアンプ185に、データレジスタ104からデータ書き戻し動作用のデータバス対RWDB,/RWDBを介してデータが供給される。そのデータは該当するメモリセルに書き戻される。この様子が図18の下半部に示されており、データの流れが二点鎖線の片矢印で示されている。データ書き戻し動作用のコラム選択線RCLは、データレジスタ104にデータとともに保持されたコラムアドレスに基づいて「H」レベルとなる。
【0074】
センスアンプ185とデータバスとの接続関係がこのような構成となっていることによって、選択線WCLの電位レベルが「H」となったことにより選択されたセンスアンプ列において、あるメモリセルに書き込みコマンドに応じたデータを書き込む動作と、そのメモリセルとコラムアドレスが同じメモリセルにデータレジスタ104から保持データを書き戻す動作とを独立しておこなうことが可能となっている。したがって、データ書き戻し動作用のデータバス対RWDB,/RWDB、データ書き戻し動作用のコラム選択線RCLおよびスイッチング・トランジスタQ6,Q8は、データレジスタ104に記憶、保持されたデータを対応するメモリセルに書き戻す手段を構成する。
【0075】
図19は、図18に示す回路において、あるメモリセルにデータを書き込むとともに、そのメモリセルと同じロウアドレスのメモリセルにデータレジスタ104からデータを書き戻す場合の各信号の波形を示す波形図である。図19において、WRTは書き込み用のタイミング信号、WLはワード線電位、CLは通常のデータ書き込み動作用のコラム選択線CLの電位、RCLはデータ書き戻し動作用のコラム選択線RCLの電位、BL,/BLはビット線電位を表す。図19に示すように、データ書き戻し動作用のコラム選択線RCLの電位は、通常のデータ書き込み動作用のコラム選択線CLの電位が「H」レベルとなった後、tだけ遅れたタイミングで「H」レベルとなる。なお、図は模式的なものであり、tの大きさは実際を反映しているものではない。
【0076】
その理由は、データ書き込み時に、あるメモリセルに対応する通常のデータ書き込み動作用のコラム選択線CLが立ち上がった後、そのメモリセルと同じロウアドレスに対応するデータレジスタ104のフラグを調べ、その値が1、すなわちデータレジスタに有効なデータが保持されている場合に、対応するデータ書き戻し動作用のコラム選択線RCLが立ち上がるからである。
【0077】
つぎに、実施の形態2にかかる半導体記憶装置101において、通常のデータ読み出し動作、すなわちリフレッシュ動作と重ならずにデータの読み出しが単独でおこなわれる場合で、かつデータレジスタ104のフラグがゼロの場合について、図20を例にして説明する。図20に示す例では、ブロック2がデータの読み出し対象となっている。そのため、ブロック2に属する2−1、2−2、2−3、2−4および2Pの5個のサブアレーが活性化されており、これら5個のサブアレー内の各メモリセルからデータおよびパリティが出力される。
【0078】
つぎに、実施の形態2にかかる半導体記憶装置101において、通常のデータ読み出し動作で、かつデータレジスタ104のフラグが1の場合について、図21を例にして説明する。図21に示す例では、ブロック2がデータの読み出し対象となっているが、データレジスタに保持されているコラムアドレスと読み出し対象のコラムアドレスが一致し、データレジスタ105bには、2−4のサブアレー内の読み出し対象のメモリセルに書き込まれるべき有効なデータが保持されている。この場合、2−1、2−2、2−3および2Pの各サブアレーについては、該当するメモリセルからデータおよびパリティが出力されるが、2−4のサブアレーからは正しいデータは出力されない。
【0079】
その代わり、データレジスタ105bから論理回路201を介して正しいデータが出力される。この論理回路201については後述する。そして、データレジスタ105bに保持されたデータは、2−4のサブアレーの該当するメモリセルに書き戻される。保持データが書き戻されたことにより、データレジスタ105bに保持されたデータは無効となるので、データレジスタ105bの該当するフラグはゼロになる。コラムアドレスが不一致のときには、図20と同様の通常の読み出し動作が実行されるとともに、データレジスタのデータが書き戻される。
【0080】
図22は、論理回路201の構成の一例を示す回路図である。この論理回路201は、一ブロックあたりのサブアレーの数と同じ個数、図示例では5個のトランスファゲートTr5〜Tr9と、それと同数(5個)のインバータIn15〜In19により構成されている。図22において、seg0z〜seg4zは、各アドレスに対応するデータレジスタに保持されていたデータの、サブアレーのコラム方向のアドレス、rega01はアドレスa01に対応するデータレジスタに保持されていたデータである。ここで、サブアレーのコラム方向のアドレスseg0z〜seg4zにおいて、segjz(ただし、jは0〜4)のjはサブアレー番号をi−jとしたときのjである。
【0081】
また、rcdbpzはパリティのサブアレーに対応するリードコモンデータバス、rcdb0z〜rcdb3zは一ブロック内のパリティのサブアレーを除く4個のサブアレーに対応するリードコモンデータバスである。リードコモンデータバスrcdbpz,rcdb0z〜rcdb3zは、通常の読み出しデータに対するデータバスと共通である。seg0z〜seg4zの各電位レベルは、選択されているときに「H」となり、非選択時には「L」となる。
【0082】
トランスファゲートTr5は、seg0zの信号およびそれをインバータIn15により反転してなる信号により制御され、seg0zの電位レベルが「H」のときにオン状態となる。トランスファゲートTr6は、seg1zの信号およびそれをインバータIn16により反転してなる信号により制御され、seg1zの電位レベルが「H」のときにオン状態となる。同様に、トランスファゲートTr7、トランスファゲートTr8およびトランスファゲートTr9は、それぞれseg2z、seg3zおよびseg4zの電位レベルが「H」のときにオン状態となる。これらトランスファゲートTr5〜Tr9のいずれかがオン状態となることによって、データレジスタに保持されていたデータrega01が所望のリードコモンデータバスrcdbpz,rcdb0z〜rcdb3zに出力される。
【0083】
つぎに、実施の形態2にかかる半導体記憶装置101において、リフレッシュ動作とデータの読み出し動作とが同時におこなわれる場合で、かつデータレジスタ104のフラグがゼロの場合について、図23を例にして説明する。図23に示す例では、図20と同様にブロック2がデータの読み出し対象となっており、かつ3−4のサブアレーがリフレッシュ対象となっている。この場合、リフレッシュ動作が優先されるため、3−4のサブアレーに対応するワード線が活性化されるが、2−4のサブアレーのワード線は活性化されない。そのため、2−4のサブアレー内のメモリセルに記憶されたデータは出力されない。
【0084】
そこで、実施の形態1と同様に、2−4のサブアレーのデータを1と仮定し、これと、2−1、2−2および2−3の3個のサブアレーからの読み出しデータとに基づいてパリティを生成する。そして、その生成したパリティと2Pのサブアレーから読み出されたパリティとをパリティ・データ比較回路107において比較することによって、2ー4のサブアレーから読み出されるはずのデータの値を確定する。
【0085】
つぎに、実施の形態2にかかる半導体記憶装置101において、リフレッシュ動作とデータの読み出し動作とが同時におこなわれる場合で、かつデータレジスタ104のフラグが1の場合について、図24を例にして説明する。図24に示す例では、図20と同様にブロック2がデータの読み出し対象となっており、かつ3−4のサブアレーがリフレッシュ対象となっている。さらに、データレジスタ105bには本来サブアレー2−2に記憶されるべき有効なデータが保持されており、データレジスタに保持されたコラムアドレスと読み出し対象のコラムアドレスが不一致である。この場合、データの読み出し動作については、リフレッシュ動作とデータの読み出し動作とが同時におこなわれる場合で、かつデータレジスタ104のフラグがゼロの場合(図23に示す場合)と同じである。そして、データレジスタ104のフラグが1であるため、該当するデータをデータレジスタ105bから本来のメモリセルに書き戻し、対応するフラグをゼロにする。コラムアドレスが一致するときには、図21の場合と同様にレジスタに保持されたデータを正しいデータとしてパリティ・データ比較回路107に出力する。
【0086】
つぎに、実施の形態2にかかる半導体記憶装置101において、通常のデータ書き込み動作、すなわちリフレッシュ動作と重ならずにデータの書き込みが単独でおこなわれる場合について、図25を例にして説明する。図25に示す例では、ブロック2がデータの書き込みの対象となっており、そのため、ブロック2に属する2−1、2−2、2−3、2−4および2Pの5個のサブアレーが活性化されており、これら5個のサブアレー内の各メモリセルにデータおよびパリティが書き込まれる。フラグがゼロの場合には、データレジスタ105bからのデータの書き戻しや、データレジスタ105bに保持されているデータを無効にするなどの動作はおこなわれない。
【0087】
フラグが1で、レジスタ105bに有効なデータが保持されている場合、書き込み対象のメモリセルのロウアドレスに対応するデータレジスタ105bに保持されているコラムアドレスが、書き込み対象のメモリセルのコラムアドレスと一致する場合には、該当するフラグをゼロにして、データレジスタ105bに保持されているデータを無効にする。これは、これから正規のメモリセルに書き込むデータが最新のデータとなるからである。また、書き込み対象のメモリセルのロウアドレスに対応するデータレジスタ105bに保持されているコラムアドレスが、書き込み対象のメモリセルのコラムアドレスと一致しない場合には、データレジスタ105bに保持されているコラムアドレスのメモリセルにデータを書き戻し、対応するフラグをゼロにする。
【0088】
つぎに、実施の形態2にかかる半導体記憶装置101において、リフレッシュ動作とデータの書き込み動作とが同時におこなわれる場合で、かつデータレジスタ104のフラグがゼロの場合について、図26を例にして説明する。図26に示す例では、図25と同様にブロック2がデータの書き込み対象となっており、かつ3−4のサブアレーがリフレッシュ対象となっている。2−4のサブアレーと3−4のサブアレーは同じセンスアンプを共有するため、リフレッシュ対象である3−4のサブアレーは活性化されるが、2−4のサブアレーは活性化されない。そのため、2−4のサブアレー内のメモリセルにデータを書き込むことができないので、本来2−4のサブアレー内のメモリセルに書き込まれるべきデータを、対応するロウアドレスのデータレジスタ105bに一旦書き込む。その際、その対応するコラムアドレスとサブアレーのアドレスもデータレジスタ105bに記憶する。そして、対応するフラグを1とする。
【0089】
つぎに、実施の形態2にかかる半導体記憶装置101において、リフレッシュ動作とデータの書き込み動作とが同時におこなわれる場合で、かつデータレジスタ104のフラグが1の場合について、図27を例にして説明する。図27に示す例では、ブロック2がデータの書き込み対象となっており、かつ3−3のサブアレーがリフレッシュ対象となっている。さらに、書き込み対象のメモリセルに対応するロウアドレスのデータレジスタ105bには本来2−4のサブアレーに記憶されるべき有効なデータが保持されている。データレジスタに保持されているコラムアドレスと書き込み対象のコラムアドレスが不一致の場合、まず、データレジスタ105bに保持されている有効なデータを2−4のサブアレー内の本来のメモリセルに書き戻し、対応するフラグをゼロとする。
【0090】
その後、リフレッシュ動作とデータの書き込み動作とが同時におこなわれる場合で、かつデータレジスタ104のフラグがゼロの場合(図26に示す場合)と同様にして、リフレッシュ動作が優先されるため本来のメモリセルに書き込むことができないデータ(図示例では、2−3のサブアレーのデータ)をデータレジスタ105bに、対応するコラムアドレスおよびサブアレーのアドレスとともに格納する。そして、対応するフラグを1とする。なお、データレジスタ104に保持されている有効なデータと同じロウアドレスで、かつコラムアドレスが異なるメモリセルに対する通常のデータ書き込み動作のときにも同様にして、データレジスタ104に保持された有効なデータを書き戻すことができる。データレジスタに保持されているコラムアドレスと書き込み対象のコラムアドレスが一致する場合には、図26の場合と同様に書き込むことのできないデータをデータレジスタに格納し、対応するフラグは1のまま維持する。
【0091】
上述した実施の形態2によれば、実施の形態1と同様の効果、すなわちリフレッシュ動作を隠すためのキャッシュメモリを用いずに、リフレッシュ動作を隠すことができる。したがって、リフレッシュ動作を隠すためにキャッシュメモリを用いた場合に、キャッシュのヒットまたはミスによって読み出し動作の速度や書き込み動作の速度に差が生じるという問題点や、キャッシュミス率を下げるために大きなキャッシュメモリを設けることによる半導体記憶装置の大型化または集積度の低下という問題点を解決することができる。
【0092】
また、実施の形態2によれば、実施の形態1と同様に、半導体記憶装置101をSRAMインターフェースの記憶装置として用いることができる。また、半導体記憶装置101を、DRAMインターフェースと同様でかつ外部からのリフレッシュコマンドが不要な記憶装置として用いることができる。また、実施の形態2によれば、サブアレー単位でリフレッシュ動作をおこなうため、従来のブロック単位でリフレッシュをおこなう場合に比べて、リフレッシュ動作時のピーク消費電流が小さくなる。したがって、実施の形態1と同等の効果が得られる。
【0093】
なお、上述した実施の形態2においては、ロウアドレスによって決まるブロックが4個の場合を例にして説明したが、これに限らず、ブロック数は3個以下でもよいし、あるいは5個以上でもよい。また、メモリセルアレー108の構成、センスアンプの数、センスアンプとデータバスとの接続の構成、リフレッシュ信号生成回路102、パリティ生成回路106およびパリティ・データ比較回路107は、いずれも上述した構成に限らず、種々設計変更可能である。
【0094】
また、データレジスタ104に有効なデータが保持されていることを識別するためのフラグの代わりに、データレジスタ104に保持されているアドレスと、データの読み出しまたは書き込み対象のアドレスとを比較することによって、データレジスタ104に有効なデータが保持されているか否かを識別するようにしてもよいし、あるいはスイッチ手段によりデータレジスタ104へのデータの入出力を制御するようにしてもよい。さらには、データレジスタ104に保持されている有効なデータに対応するアドレスをコントローラ側で記憶しておき、その記憶したアドレスに基づいて、データレジスタ104に有効なデータが保持されているか否かを識別するようにしてもよい。
【0095】
(付記1) 書き込みデータに基づいてパリティを生成するパリティ生成手段と、
データの読み出しまたは書き込みを同時におこなう対象であるブロックを複数有し、それら各ブロックは、書き込みデータを記憶する複数のサブアレー、および前記書き込みデータに基づいて前記パリティ生成手段により生成されたパリティを記憶する1以上のサブアレーを有し、各サブアレーは複数のメモリセルを有するメモリセルアレーと、
前記サブアレーごとにリフレッシュ動作をおこなうリフレッシュ手段と、
リフレッシュ動作とデータの読み出し動作が同時におこなわれるときに、リフレッシュ動作により別のブロックのサブアレーが活性化されたため読み出すことができないサブアレー内のメモリセルのデータをゼロまたは1と仮定して生成したパリティの値と、読み出し対象のデータが書き込まれたときに記憶された対応するパリティの値とを比較して、前記読み出すことができないメモリセルに記憶されているデータを確定するパリティ・データ比較手段と、
を具備することを特徴とする半導体記憶装置。
【0096】
(付記2) 前記メモリセルアレーは、さらに同一のブロックに含まれるサブアレーがすべて異なるブロック行に配置されてなることを特徴とする付記1に記載の半導体記憶装置。
【0097】
(付記3) 前記メモリセルアレーは、さらに同一のブロックに含まれるサブアレーがすべて同じブロック行に配置されてなることを特徴とする付記1に記載の半導体記憶装置。
【0098】
(付記4) 書き込みデータに基づいてパリティを生成するパリティ生成手段と、
データの読み出しまたは書き込みを同時におこなう対象であるブロックを複数有し、それら各ブロックは、書き込みデータを記憶する複数のサブアレー、および前記書き込みデータに基づいて前記パリティ生成手段により生成されたパリティを記憶する1以上のサブアレーを有し、各サブアレーは複数のメモリセルを有するメモリセルアレーと、
前記サブアレーごとにリフレッシュ動作をおこなうリフレッシュ手段と、
リフレッシュ動作とデータの書き込み動作が同時におこなわれるときに、リフレッシュ動作により別のブロックのサブアレーが活性化されたため書き込むことができないサブアレー内のメモリセルに対するデータを一時的に保持する記憶領域と、
を具備することを特徴とする半導体記憶装置。
【0099】
(付記5) 前記メモリセルアレーは、さらに同一のブロックに含まれるサブアレーがすべて異なるブロック行に配置されてなることを特徴とする付記4に記載の半導体記憶装置。
【0100】
(付記6) 前記メモリセルアレーは、さらに同一のブロックに含まれるサブアレーがすべて同じブロック行に配置されてなることを特徴とする付記4に記載の半導体記憶装置。
【0101】
(付記7) 前記記憶領域は、書き込みデータを記憶する領域と、その書き込みデータが本来書き込まれるべきメモリセルの少なくともロウアドレスまたはコラムアドレスの一方を記憶する領域とを有することを特徴とする付記4に記載の半導体記憶装置。
【0102】
(付記8) さらに、リフレッシュ動作とデータの読み出しまたは書き込みの動作とが同時におこなわれないときに、前記記憶領域に保持されたデータを対応するメモリセルに書き戻す書き戻し制御手段を具備したことを特徴とする付記4〜7のいずれか一つに記載の半導体記憶装置。
【0103】
(付記9) 前記記憶領域は、前記メモリセルアレーの各行ごとに設けられていることを特徴とする付記4〜7のいずれか一つに記載の半導体記憶装置。
【0104】
(付記10) さらに、前記記憶領域に有効なデータが保持されている場合、その保持されたデータが本来書き込まれるべきメモリセルを含む行に対してつぎのデータの読み出しまたは書き込みの動作がおこなわれるときに、前記記憶領域に保持されたデータを対応するメモリセルに書き戻す書き戻し制御手段を具備することを特徴とする付記9に記載の半導体記憶装置。
【0105】
(付記11) 書き込みデータに基づいてパリティを生成するパリティ生成手段と、
データの読み出しまたは書き込みを同時におこなう対象であるブロックを複数有し、それら各ブロックは、書き込みデータを記憶する複数のサブアレー、および前記書き込みデータに基づいて前記パリティ生成手段により生成されたパリティを記憶する1以上のサブアレーを有し、各サブアレーは複数のメモリセルを有するメモリセルアレーと、
前記サブアレーごとにリフレッシュ動作をおこなうリフレッシュ手段と、
リフレッシュ動作とデータの読み出し動作が同時におこなわれるときに、リフレッシュ動作により別のブロックのサブアレーが活性化されたため読み出すことができないサブアレー内のメモリセルのデータをゼロまたは1と仮定して生成したパリティの値と、読み出し対象のデータが書き込まれたときに記憶された対応するパリティの値とを比較して、前記読み出すことができないメモリセルに記憶されているデータを確定するパリティ・データ比較手段と、
リフレッシュ動作とデータの書き込み動作が同時におこなわれるときに、リフレッシュ動作により別のブロックのサブアレーが活性化されたため書き込むことができないサブアレー内のメモリセルに対するデータを一時的に保持する記憶領域と、
を具備することを特徴とする半導体記憶装置。
【0106】
(付記12) 前記記憶領域は各列ごとに少なくとも1つ以上設けられていることを特徴とする付記11に記載の半導体記憶装置。
【0107】
(付記13) さらに、前記記憶領域に保持されているデータが有効であるか無効であるかを識別する手段を具備することを特徴とする付記11または12に記載の半導体記憶装置。
【0108】
(付記14) さらに、データの読み出し時に、前記記憶領域に記憶された、読み出し対象のメモリセルに書き込まれるべき有効なデータを、当該データが本来書き込まれるべきメモリセルに対応するデータバスに出力する回路を具備することを特徴とする付記11に記載の半導体記憶装置。
【0109】
(付記15) データの読み出しまたは書き込みを同時におこなう対象であるブロックを複数に分割してなるサブアレーごとにリフレッシュ動作をおこなう工程と、
データの書き込み時に書き込みデータのパリティを生成して記憶する工程と、リフレッシュ動作とデータの読み出し動作が同時におこなわれるときに、リフレッシュ動作により別のブロックのサブアレーが活性化されたため読み出すことができないサブアレー内のメモリセルのデータをゼロまたは1と仮定して生成したパリティの値と、読み出し対象のデータが書き込まれたときに記憶された対応するパリティの値とを比較して、前記読み出すことができないメモリセルに記憶されているデータを確定する工程と、
を含むことを特徴とするメモリアクセス方法。
【0110】
(付記16) データの読み出しまたは書き込みを同時におこなう対象であるブロックを複数に分割してなるサブアレーごとにリフレッシュ動作をおこなう工程と、
データの書き込み時に書き込みデータのパリティを生成して記憶する工程と、リフレッシュ動作とデータの書き込み動作が同時におこなわれるときに、リフレッシュ動作により別のブロックのサブアレーが活性化されたため書き込むことができないサブアレー内のメモリセルのデータを当該メモリセル以外の記憶領域に一時的に記憶、保持する工程と、
を含むことを特徴とするメモリアクセス方法。
【0111】
(付記17) 前記記憶領域に、書き込みデータとともに、その書き込みデータが本来書き込まれるべきメモリセルの少なくともロウアドレスまたはコラムアドレスの一方が記憶されることを特徴とする付記16に記載のメモリアクセス方法。
【0112】
(付記18) さらに、リフレッシュ動作とデータの読み出しまたは書き込みの動作とが同時におこなわれないときに、前記記憶領域に保持されたデータを対応するメモリセルに書き戻す工程を含むことを特徴とする付記16または17に記載のメモリアクセス方法。
【0113】
(付記19) さらに、前記記憶領域に有効なデータが保持されている場合、その保持されたデータが本来書き込まれるべきメモリセルを含む行に対してつぎのデータの読み出しまたは書き込みの動作がおこなわれるときに、前記記憶領域に保持されたデータを対応するメモリセルに書き戻す工程を含むことを特徴とする付記16〜18のいずれか一つに記載のメモリアクセス方法。
【0114】
【発明の効果】
本発明によれば、リフレッシュ動作とデータの読み出しや書き込みとが同時に起こる場合、読み出せないメモリセルのデータはパリティにより確定され、また、書き込めないメモリセルのデータは別の領域に一時的に記憶、保持された後、本来のメモリセルに書き戻される。したがって、キャッシュメモリを用いることなく、リフレッシュ動作を見かけ上隠すことができるので、キャッシュメモリを用いてリフレッシュ動作を見かけ上隠す場合の問題点を解決することができる。すなわち、キャッシュのヒットまたはミスによって読み出し動作の速度や書き込み動作の速度に差が生じるという問題点や、キャッシュミス率を下げるために大きなキャッシュメモリを設けることによる半導体記憶装置の大型化または集積度の低下という問題点を解決することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1にかかる半導体記憶装置の構成を示すブロック線図である。
【図2】本発明の実施の形態1にかかる半導体記憶装置においてメモリセルアレーの構成の一例を説明するための模式図である。
【図3】本発明の実施の形態1にかかる半導体記憶装置においてワード線の階層化構造の一例を説明するための模式図である。
【図4】本発明の実施の形態1にかかる半導体記憶装置においてセンスアンプとデータバスとの接続関係の要部を示す回路図である。
【図5】図4に示す回路について各信号の論理関係を示すダイアグラムである。
【図6】本発明の実施の形態1にかかる半導体記憶装置においてリフレッシュ対象のサブアレーを選択する機構の一例を説明するための模式図である。
【図7】本発明の実施の形態1にかかる半導体記憶装置においてライトデータバッファの構成の一例を示す回路図である。
【図8】図7に示す回路について各信号の論理関係を示す論理値表である。
【図9】本発明の実施の形態1にかかる半導体記憶装置においてパリティ生成回路の構成の一例を示す回路図である。
【図10】本発明の実施の形態1にかかる半導体記憶装置においてパリティ・データ比較回路の構成の一例を示す回路図である。
【図11】本発明の実施の形態1にかかる半導体記憶装置において通常のデータ読み出し動作またはデータ書き込み動作が単独でおこなわれる場合について説明するための模式図である。
【図12】本発明の実施の形態1にかかる半導体記憶装置においてリフレッシュ動作とデータの読み出し動作とが同時におこなわれる場合について説明するための模式図である。
【図13】本発明の実施の形態1にかかる半導体記憶装置においてリフレッシュ動作とデータの読み出し動作とが同時におこなわれる場合について説明するための模式図である。
【図14】本発明の実施の形態1にかかる半導体記憶装置においてリフレッシュ動作とデータの書き込み動作とが同時におこなわれる場合について説明するための模式図である。
【図15】本発明の実施の形態2にかかる半導体記憶装置の構成を示すブロック線図である。
【図16】本発明の実施の形態2にかかる半導体記憶装置においてメモリセルアレーの構成の一例を説明するための模式図である。
【図17】本発明の実施の形態2にかかる半導体記憶装置においてリフレッシュ単位を説明するための模式図である。
【図18】本発明の実施の形態2にかかる半導体記憶装置においてセンスアンプとデータバスとの接続関係の要部を示す回路図である。
【図19】図18に示す回路について、あるメモリセルにデータを書き込むとともに、そのメモリセルと同じロウアドレスのメモリセルにデータレジスタからデータを書き戻す場合の各信号の波形を示す波形図である。
【図20】本発明の実施の形態2にかかる半導体記憶装置において通常のデータ読み出し動作が単独でおこなわれる場合(フラグ:ゼロ)について説明するための模式図である。
【図21】本発明の実施の形態2にかかる半導体記憶装置において通常のデータ読み出し動作が単独でおこなわれる場合(フラグ:1)について説明するための模式図である。
【図22】本発明の実施の形態2にかかる半導体記憶装置においてデータレジスタからの読み出しデータをデータバスへ供給するための論理回路の構成の一例を示す回路図である。
【図23】本発明の実施の形態2にかかる半導体記憶装置においてリフレッシュ動作とデータの読み出し動作とが同時におこなわれる場合(フラグ:ゼロ)について説明するための模式図である。
【図24】本発明の実施の形態2にかかる半導体記憶装置においてリフレッシュ動作とデータの読み出し動作とが同時におこなわれる場合(フラグ:1)について説明するための模式図である。
【図25】本発明の実施の形態2にかかる半導体記憶装置において通常のデータ書き込み動作が単独でおこなわれる場合について説明するための模式図である。
【図26】本発明の実施の形態2にかかる半導体記憶装置においてリフレッシュ動作とデータの書き込み動作とが同時におこなわれる場合(フラグ:ゼロ)について説明するための模式図である。
【図27】本発明の実施の形態2にかかる半導体記憶装置においてリフレッシュ動作とデータの書き込み動作とが同時におこなわれる場合(フラグ:1)について説明するための模式図である。
【符号の説明】
1,101 半導体記憶装置
2,102 リフレッシュ信号生成回路
3,103 内部アドレス生成回路
4 ライトデータバッファ
5 ライトデータバッファ制御回路
6,106 パリティ生成回路
7,107 パリティ・データ比較回路
8,108 メモリセルアレー
104,105a〜105d データレジスタ
RWDB,/RWDB データ書き戻し動作用のデータバス対
RCL データ書き戻し動作用のコラム選択線
Q6,Q8 スイッチング・トランジスタ

Claims (6)

  1. 書き込みデータに基づいてパリティを生成するパリティ生成手段と、
    データの読み出しまたは書き込みを同時におこなう対象であるブロックを複数有し、それら各ブロックは、書き込みデータを記憶する複数のサブアレー、および前記書き込みデータに基づいて前記パリティ生成手段により生成されたパリティを記憶する1以上のサブアレーを有し、各サブアレーは複数のメモリセルを有するメモリセルアレーと、
    前記サブアレーごとにリフレッシュ動作をおこなうリフレッシュ手段と、
    リフレッシュ動作とデータの書き込み動作が同時におこなわれるときに、リフレッシュ動作により別のブロックのサブアレーが活性化されたため書き込むことができないサブアレー内のメモリセルに対するデータを一時的に保持する記憶領域と、
    を具備し、
    前記記憶領域は、前記メモリセルアレーの各行ごとに設けられていることを特徴とする半導体記憶装置。
  2. 前記メモリセルアレーは、さらに同一のブロックに含まれるサブアレーがすべて異なるブロック行に配置されてなることを特徴とする請求項に記載の半導体記憶装置。
  3. 前記メモリセルアレーは、さらに同一のブロックに含まれるサブアレーがすべて同じブロック行に配置されてなることを特徴とする請求項に記載の半導体記憶装置。
  4. 前記記憶領域は、書き込みデータを記憶する領域と、その書き込みデータが本来書き込まれるべきメモリセルの少なくともロウアドレスまたはコラムアドレスの一方を記憶する領域とを有することを特徴とする請求項に記載の半導体記憶装置。
  5. さらに、リフレッシュ動作とデータの読み出しまたは書き込みの動作とが同時におこなわれないときに、前記記憶領域に保持されたデータを対応するメモリセルに書き戻す書き戻し制御手段を具備したことを特徴とする請求項1〜4のいずれか一つに記載の半導体記憶装置。
  6. さらに、前記記憶領域に有効なデータが保持されている場合、その保持されたデータが本来書き込まれるべきメモリセルを含む行に対してつぎのデータの読み出しまたは書き込みの動作がおこなわれるときに、前記記憶領域に保持されたデータを対応するメモリセルに書き戻す書き戻し制御手段を具備することを特徴とする請求項1〜5に記載の半導体記憶装置。
JP2000368423A 2000-12-04 2000-12-04 半導体記憶装置 Expired - Fee Related JP3938842B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000368423A JP3938842B2 (ja) 2000-12-04 2000-12-04 半導体記憶装置
TW90115578A TW512343B (en) 2000-12-04 2001-06-27 Semiconductor memory, and memory access method
US09/892,748 US6421292B1 (en) 2000-12-04 2001-06-28 Semiconductor memory, and memory access method
KR20010038290A KR100664477B1 (ko) 2000-12-04 2001-06-29 반도체 기억 장치
EP20010305891 EP1215678A3 (en) 2000-12-04 2001-07-09 Semiconductor memory, and memory access method
CNB011257261A CN1226749C (zh) 2000-12-04 2001-08-23 半导体存储器及其存取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000368423A JP3938842B2 (ja) 2000-12-04 2000-12-04 半導体記憶装置

Publications (2)

Publication Number Publication Date
JP2002170384A JP2002170384A (ja) 2002-06-14
JP3938842B2 true JP3938842B2 (ja) 2007-06-27

Family

ID=18838663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000368423A Expired - Fee Related JP3938842B2 (ja) 2000-12-04 2000-12-04 半導体記憶装置

Country Status (6)

Country Link
US (1) US6421292B1 (ja)
EP (1) EP1215678A3 (ja)
JP (1) JP3938842B2 (ja)
KR (1) KR100664477B1 (ja)
CN (1) CN1226749C (ja)
TW (1) TW512343B (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426893B1 (en) * 2000-02-17 2002-07-30 Sandisk Corporation Flash eeprom system with simultaneous multiple data sector programming and storage of physical block characteristics in other designated blocks
JP4712214B2 (ja) * 2001-04-09 2011-06-29 富士通セミコンダクター株式会社 半導体メモリの動作制御方法および半導体メモリ
JP4782302B2 (ja) * 2001-04-18 2011-09-28 富士通セミコンダクター株式会社 半導体記憶装置
JP3860436B2 (ja) * 2001-07-09 2006-12-20 富士通株式会社 半導体記憶装置
JP4768163B2 (ja) * 2001-08-03 2011-09-07 富士通セミコンダクター株式会社 半導体メモリ
KR100481820B1 (ko) * 2002-09-26 2005-04-11 (주)실리콘세븐 패러티로서 비유효한 출력 데이터를 보정하는 에스램 호한메모리와 그 구동방법
JP4664208B2 (ja) * 2003-08-18 2011-04-06 富士通セミコンダクター株式会社 半導体メモリおよび半導体メモリの動作方法
CN100433195C (zh) * 2003-12-31 2008-11-12 深圳市朗科科技股份有限公司 闪存介质数据写入方法
JP4093197B2 (ja) * 2004-03-23 2008-06-04 セイコーエプソン株式会社 表示ドライバ及び電子機器
JP4713143B2 (ja) * 2004-12-15 2011-06-29 富士通セミコンダクター株式会社 半導体記憶装置
JP4273087B2 (ja) * 2005-02-08 2009-06-03 エルピーダメモリ株式会社 半導体記憶装置およびその書込み方法
JP4753637B2 (ja) * 2005-06-23 2011-08-24 パトレネラ キャピタル リミテッド, エルエルシー メモリ
JP4362573B2 (ja) * 2005-07-28 2009-11-11 パトレネラ キャピタル リミテッド, エルエルシー メモリ
US7385855B2 (en) * 2005-12-26 2008-06-10 Ememory Technology Inc. Nonvolatile memory device having self reprogramming function
US8161356B2 (en) 2008-03-28 2012-04-17 Intel Corporation Systems, methods, and apparatuses to save memory self-refresh power
WO2010150054A1 (en) * 2009-06-25 2010-12-29 St-Ericsson (Grenoble) Sas Autonomous control of a memory.
JP5430484B2 (ja) 2010-04-15 2014-02-26 ルネサスエレクトロニクス株式会社 半導体記憶装置、及びその制御方法
US9003153B2 (en) * 2010-11-08 2015-04-07 Greenliant Llc Method of storing blocks of data in a plurality of memory devices in a redundant manner, a memory controller and a memory system
US10380024B2 (en) * 2017-12-05 2019-08-13 Nanya Technology Corporation DRAM and method of operating the same in an hierarchical memory system
US10503670B2 (en) * 2017-12-21 2019-12-10 Advanced Micro Devices, Inc. Dynamic per-bank and all-bank refresh
KR20190086936A (ko) 2018-01-15 2019-07-24 삼성전자주식회사 메모리 장치
US11681465B2 (en) 2020-06-12 2023-06-20 Advanced Micro Devices, Inc. Dynamic multi-bank memory command coalescing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612613B2 (ja) * 1986-03-18 1994-02-16 富士通株式会社 半導体記憶装置
US4989180A (en) * 1989-03-10 1991-01-29 Board Of Regents, The University Of Texas System Dynamic memory with logic-in-refresh
US5469555A (en) * 1991-12-19 1995-11-21 Opti, Inc. Adaptive write-back method and apparatus wherein the cache system operates in a combination of write-back and write-through modes for a cache-based microprocessor system
US6108229A (en) * 1996-05-24 2000-08-22 Shau; Jeng-Jye High performance embedded semiconductor memory device with multiple dimension first-level bit-lines
US5999474A (en) * 1998-10-01 1999-12-07 Monolithic System Tech Inc Method and apparatus for complete hiding of the refresh of a semiconductor memory
US6075740A (en) * 1998-10-27 2000-06-13 Monolithic System Technology, Inc. Method and apparatus for increasing the time available for refresh for 1-t SRAM compatible devices

Also Published As

Publication number Publication date
EP1215678A2 (en) 2002-06-19
KR100664477B1 (ko) 2007-01-04
US20020067649A1 (en) 2002-06-06
JP2002170384A (ja) 2002-06-14
KR20020044045A (ko) 2002-06-14
CN1357891A (zh) 2002-07-10
TW512343B (en) 2002-12-01
CN1226749C (zh) 2005-11-09
EP1215678A3 (en) 2004-01-21
US6421292B1 (en) 2002-07-16

Similar Documents

Publication Publication Date Title
JP3938842B2 (ja) 半導体記憶装置
KR940005684B1 (ko) 캐시(cash)내장 반도체 장치 및 그 동작방법
JP4159280B2 (ja) 半導体記憶装置
JP3244340B2 (ja) 同期型半導体記憶装置
JP3579205B2 (ja) 半導体記憶装置、半導体装置、データ処理装置及びコンピュータシステム
JP3065736B2 (ja) 半導体記憶装置
JP2006190402A (ja) 半導体装置
JPH08129882A (ja) 半導体記憶装置
JPH0757457A (ja) メモリ装置
JPS62103895A (ja) 半導体メモリおよびその動作方法
JPH1031886A (ja) ランダムアクセスメモリ
JP2001023373A (ja) 半導体メモリ装置及びそれに適した駆動信号発生器
JP2001148191A (ja) 半導体記憶装置
JP2002216473A (ja) 半導体メモリ装置
US7508706B2 (en) Nonvolatile semiconductor memory device provided with data register for temporarily holding data in memory array
JPH08129876A (ja) 半導体記憶装置
JP3577112B2 (ja) 同期型半導体記憶装置
JP3240897B2 (ja) 半導体記憶装置
JP4060527B2 (ja) クロック同期型ダイナミックメモリ
JP4184036B2 (ja) 半導体記憶装置およびそのテスト方法
JP4900310B2 (ja) 半導体記憶装置
JPH07211062A (ja) 半導体記憶装置
US6288923B1 (en) Semiconductor memory mounted with cache memory
JPH1145570A (ja) 半導体記憶装置
JP4408833B2 (ja) 半導体記憶装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees