JP4900310B2 - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP4900310B2
JP4900310B2 JP2008107982A JP2008107982A JP4900310B2 JP 4900310 B2 JP4900310 B2 JP 4900310B2 JP 2008107982 A JP2008107982 A JP 2008107982A JP 2008107982 A JP2008107982 A JP 2008107982A JP 4900310 B2 JP4900310 B2 JP 4900310B2
Authority
JP
Japan
Prior art keywords
signal
memory cell
core
circuit
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008107982A
Other languages
English (en)
Other versions
JP2008210513A (ja
Inventor
浩太 原
伸也 藤岡
和一郎 藤枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2008107982A priority Critical patent/JP4900310B2/ja
Publication of JP2008210513A publication Critical patent/JP2008210513A/ja
Application granted granted Critical
Publication of JP4900310B2 publication Critical patent/JP4900310B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Dram (AREA)
  • Memory System (AREA)

Description

本発明は、半導体記憶装置に関し、特にリフレッシュ動作を行う半導体記憶装置に関する。
DRAM(dynamic random access memory)メモリコアを使用する限りはリフレッシュ動作を必要な時期に行わなければならない。リフレッシュ動作を行う間はその動作領域に対してのアクセスができない。その結果、リフレッシュ動作を行う際に、アクセスしたい場合はリフレッシュ動作が終了するまでアクセスすることを待たなくてはならない。
もし、外部からリフレッシュ要求を入力しないSRAM(static random access memory)制御で動作させようとすると、内部で定期的にリフレッシュ要求を発生させることになる。この際に外部からアクセス要求があれば、リフレッシュ動作を行った後に要求されたアクセスを行うため、外見上1回のアクセスでも、メモリコア動作2回分の時間がかかるように見えてしまう。
特開2001−093277号公報 特開平04−132093号公報 特開2000−076891号公報
本発明の目的は、リフレッシュ動作とその際の外部アクセス要求が競合した際にも、外見上メモリコア動作1回分のアクセス時間で外部アクセスを動作させることである。
本発明の一観点によれば、同一アドレスの複数のビットデータを複数のメモリセルブロックに分散して記憶するためのメモリコアと、外部コマンドに基づいて、内部コマンド信号を出力する内部コマンド発生回路と、前記内部コマンド信号に基づいて、前記メモリコアを活性化するための第1のコア制御信号を出力する第1のコア制御信号発生回路と、前記複数のメモリセルブロックに対してそれぞれ独立にリフレッシュ動作を制御することができ、一のメモリセルブロックと他の一のメモリセルブロックとを異なるタイミングでリフレッシュ動作するように制御する制御回路とを備え、前記制御回路は、リフレッシュ要求信号に基づいて前記メモリコアを活性化するための第2のコア制御信号を出力する第2のコア制御信号発生回路を備え、リフレッシュ動作中のメモリセルブロックに対する読み出し要求信号が入力された場合は、前記リフレッシュ動作の終了後に前記第2のコア制御信号を活化して前記読み出し要求信号に基づいて擬似的読み出し及びダミーリードを行うことを特徴とする半導体記憶装置が提供される。
本発明の他の観点によれば、同一アドレスの複数のビットデータを複数のメモリセルブロックに分散して記憶するためのメモリコアと、外部コマンドに基づいて、内部コマンド信号を出力する内部コマンド発生回路と、前記内部コマンド信号に基づいて、前記メモリコアを活性化するための第1のコア制御信号を出力する第1のコア制御信号発生回路と、リフレッシュ要求信号に基づいて前記メモリコアを活性化するための第2のコア制御信号を出力する第2のコア制御信号発生回路と、前記リフレッシュ要求信号に応じて、リフレッシュを行うメモリセルブロックを選択するセレクト信号をセレクタに出力するメモリセルブロック選択回路と、前記セレクト信号に基づいて第1の制御信号と前記第2のコア制御信号とを選択的に前記メモリコアに出力するセレクタとを備え、前記セレクタは、前記複数のメモリセルブロックの内の第1のメモリセルブロックに対するリフレッシュ動作においては前記第2のコア制御信号を前記第1のメモリセルブロックのメモリコアに供給し、前記第1のメモリセルブロック以外のメモリセルブロックに対する読み出し動作においては前記第1のコア制御信号を前記第1のメモリセルブロック以外のメモリセルブロックのメモリコアに供給し、前記リフレッシュ動作中に前記第1のメモリセルブロックに対する読み出し要求信号が入力された場合は、前記リフレッシュ動作の終了後に前記第2のコア制御信号を活性化して前記読み出し要求信号に基づいて擬似的読み出し及びダミーリードを行うことを特徴とする半導体記憶装置が提供される。
以上説明したように、複数のメモリセルブロックを独立にリフレッシュ動作させることができるので、外部からのアクセス要求とリフレッシュ動作を同時に処理することが可能になる。すなわち、同一タイミングで一部のメモリセルブロックに対してリフレッシュ動作を行い、他のメモリセルブロックに対して外部からアクセスすることが可能になる。これにより、メモリコア動作1回分の高速アクセスタイムで読み出し動作を実現できる。
図1は、本発明の半導体記憶装置のメモリコアの概略図を示す。
メモリコアは、同一アドレスの複数のビットデータを複数のメモリセルブロック(以下、ブロックという)BLK1〜BLK4に分散して記憶する。例えば、同一アドレスに16ビットを記憶させることができ、4個のブロックBLK1〜BLK4はそれぞれ4ビットを記憶することができる。ブロックBLK1〜BLK4は、外部データを記憶するためのメモリセルアレイである。各ブロックBLK1〜BLK4は、メモリセル104、ワードデコーダ103、コラムデコーダ102、入力信号に対するセレクタ101を有する。各ブロックBLK1〜BLK4は、さらに複数のワードデコーダ103及びメモリセル104の組みに分割される。
ブロックBLK5は、同一アドレスの複数のビットデータに対する演算結果を記憶するためのメモリセルアレイである。演算方法の詳細は、後に図2(A)〜(C)を参照しながら説明する。ブロックBLK5も、ブロックBLK1〜BLK4と同様に、メモリセル104、ワードデコーダ103、コラムデコーダ102、入力信号に対するセレクタ101を有する。
制御信号は、第1の制御信号SIG1と第2の制御信号SIG2との2系統があり、それぞれ各ブロックBLK1〜BLK5のセレクタ101に入力される。各セレクタ101には、セレクト信号SEL1〜SEL5がそれぞれ入力される。このセレクト信号SEL1〜SEL5がローレベルの場合はセレクタ101の出力は第1の制御信号SEL1になり、セレクト信号SEL1〜SEL5がハイレベルの場合はセレクタ101の出力が第2の制御信号SIG2となる。セレクト信号SEL1〜SEL5は、それぞれ独立した信号である。
制御信号SIG1及びSIG2は、それぞれ書き込み要求信号、読み出し要求信号、アドレス、データ等を含む。例えば、書き込み要求信号及び読み出し要求信号は、チップイネーブル及びライトイネーブル信号により表現される。
ワードデコーダ103は、セレクタ101から供給されるアドレスに応じてロウアドレスを特定する。カラムデコーダ102は、セレクタ101から供給されるアドレスに応じてカラムアドレスに特定する。メモリセル104は、特定されたロウアドレス及びカラムアドレスに対してデータを書き込んだり読み出すことができる。
通常時、第2の制御信号SIG2は非活性であり、第1の制御信号SIG1のみがメモリコアを制御する。通常読み出し時、セレクト信号SEL1〜SEL4はローレベル、セレクト信号SEL5はハイレベルとなり、ブロックBLK5は非活性となる。通常書き込み時、セレクト信号SEL1〜SEL5は全てローレベルとなり、全ブロックBLK1〜BLK5に書き込みがされる。
リフレッシュ動作を行う場合は、ブロックBLK1〜BLK5を順番にブロック単位でリフレッシュし、そのブロックに対応するセレクト信号のみがハイレベルとなる。リフレッシュ動作は第2の制御信号SIG2で与えられ、セレクト信号がハイレベルのブロックのみリフレッシュ動作を行う。
また、リフレッシュ以外の書き込み信号を、第1の制御信号SIG1と非同期で第2の制御信号SIG2に与えれば、セレクト信号がハイレベルのブロックだけ第2の制御信号SIG2に従って動作し、それ以外のブロックは第1の制御信号に従って動作する。
本実施形態では、ブロック毎に活性化して制御するための制御信号を複数系統有する。セレクタ101は、ブロック毎に制御信号の系統を選択することができる。また、複数のブロックを同一又は異なるタイミングの制御信号により複数活性化し、それぞれのブロックの活性化タイミング及び/又は活性化時間が異なるように制御することができる。
図2(A)は、データ書き込み時のライトパリティ演算シーケンスの図を示す。
ブロックBLK1〜BLK4にそれぞれ1ビットデータDQ01〜DQ04を書き込む例を説明する。外部から入力される書き込みデータDQ01〜DQ04をそれぞれブロックBLK1〜BLK4に書き込む。
排他的論理和回路(Exclusive-OR)201は、データDQ01及びDQ02を入力し、排他的論理和を演算して出力する。排他的論理和回路202は、データDQ03及びDQ04を入力し、排他的論理和を演算して出力する。排他的論理和回路203は、排他的論理和回路201の出力及び排他的論理和回路202の出力を入力し、排他的論理和を演算して出力する。排他的論理和回路203の出力は、ブロックBLK5に書き込まれる。
図2(B)は、排他的論理和回路201〜203の回路図を示す。第1の入力信号IN1は、論理否定回路(インバータ)211に入力される。インバータ212の入力は、インバータ211の出力に接続される。第2の入力信号IN2は、インバータ215に入力される。pチャネルMOSトランジスタ213は、ゲートがインバータ212の出力に接続され、ソースが第2の入力信号IN2の線に接続され、ドレインが出力信号OUTの線に接続される。nチャネルMOSトランジスタ214は、ゲートがインバータ211の出力に接続され、ドレインが第2の入力信号IN2の線に接続され、ソースが出力信号OUTの線に接続される。pチャネルMOSトランジスタ216は、ゲートがインバータ211の出力に接続され、ソースがインバータ215の出力に接続され、ドレインが出力信号OUTの線に接続される。nチャネルMOSトランジスタ217は、ゲートがインバータ212の出力に接続され、ドレインがインバータ215の出力に接続され、ソースが出力信号OUTの線に接続される。
図2(C)は、図2(B)に示す排他的論理和回路の真理値表を示す。出力信号OUTは、入力信号IN1及びIN2が同じときには0になり、異なるときには1になる。
図2(A)において、2段階の2入力排他的論理和回路201〜203は、4ビットの入力データDQ01〜DQ04を基に1ビットの演算結果を出力する。この際、4ビットの入力データDQ01〜DQ04の中に、「1」データが奇数個あれば「1」を出力し、偶数個であれば「0」を出力する。以下、この演算結果をライトパリティと呼ぶ。
データDQ01〜DQ04は、例えば「0」、「1」、「0」、「0」である。この場合、排他的論理和回路201〜203は、それぞれ「1」、「0」、「1」を出力する。ブロックBLK5には、排他的論理和回路203の出力である「1」がライトパリティとして書き込まれる。
図3(A)は、データ読み出し時のデータ補正シーケンスを示す。
ブロックBLK1〜BLK4からそれぞれ1ビットデータDQ01〜DQ04を読み出して補正する例を説明する。排他的論理和回路311の2入力は、ブロックBLK1のデータ線(ビット線)及びブロックBLK2のデータ線に接続される。排他的論理和回路312の2入力は、ブロックBLK3のデータ線及びブロックBLK4のデータ線に接続される。排他的論理和回路313の2入力は、排他的論理和回路311の出力及び排他的論理和回路312の出力に接続される。排他的論理和回路314の2入力は、排他的論理和回路313の出力及びブロックBLK5のデータ線に接続される。以下、排他的論理和回路313の出力をリードパリティと呼ぶ。排他的論理和回路314は、リードパリティ及びライトパリティの比較を行う。リードパリティ及びライトパリティは、共に排他的論理和回路を用いて同様の演算により求められる。
データ補正回路301について説明する。ブロックBLK3のデータ線307は、インバータ306の入力に接続される。3点スイッチ302は、共通端子303、第1の端子305及び第2の端子304を有する。第1の端子305は、ブロックBLK3のデータ線307に接続される。第2の端子304は、インバータ306の出力に接続される。インバータ306は、入力データの論理反転を行う反転回路である。共通端子303は、1ビットデータDQ03を出力する。スイッチ302は、排他的論理和回路314の出力信号308に応じて、共通端子303を第1の端子305又は第2の端子304のいずれかに接続する。
例えばブロックBLK3がリフレッシュを行っているときには、ブロックBLK1、BLK2、BLK4、BLK5に対して読み出しを行う。この際、ブロックBLK3からは読み出しデータが出力されず、データ線307は前にアクセスした際のレベルを保持している。よって、同一アドレスでそのビットのみ値が不確定となる。そこで、書き込み時に予めブロックBLK5に書き込んでおいた同一アドレスのライトパリティを同時に読み出す。排他的論理和回路314は、リードパリティとライトパリティとの比較を行う。リードパリティとライトパリティが一致していればデータ線307のデータをそのままデータDQ03として外部に出力する。不一致であればブロックBLK1〜BLK4のうちの1ビットだけデータが欠けている(不確定になっている)ことが判る。そのビットは、リフレッシュ動作を行っているブロックBL3のビットのはずである。そこで、ブロックBLK3のデータ線307のビットデータをデータ補正回路301により反転させてデータ補正を行ってデータDQ03として外部へ出力する。その他のデータDQ01、DQ02、DQ04は、ブロックBLK1、BLK2、BLK4から読み出されたデータである。
例えば、ブロックBLK1〜BLK4にそれぞれ「0」、「1」、「0」、「0」が書き込まれているとする。これらのデータは、「1」の数が奇数個であるので、ブロックBLK5には「1」がライトパリティとして書き込まれている。ここで、ブロックBLK3のデータ線307は、不確定のデータ「1」を維持しているとする。この場合、排他的論理和回路313は、4本のデータ線のデータ「1」の数が奇数個であるので、リードパリティとして「0」を出力する。排他的論理和回路314は、リードパリティ及びライトパリティが異なるので、出力信号308として「1」を出力する。これにより、スイッチ302は、共通端子303及び第2の端子304を接続する。この結果、データ線307のデータ「1」は、インバータ306により論理反転され、データ「0」がデータDQ03として出力される。
以上のように、ブロックBLK3がリフレッシュ中であり、ブロックBLK3からデータを読み出せなくても、ブロックBLK5からライトパリティを読み出して、必要に応じてブロックBLK3のデータDQ03を補正することにより、正しいデータDQ01〜DQ04を出力することができる。これにより、ブロックBLK3がリフレッシュ中であっても、読み出しが待たされることなく、高速に読み出しデータを外部に出力することができる。
なお、ライトパリティを書き込んであるブロックBLK5がリフレッシュ動作を行っている場合は、データ補正回路301はデータ補正を行わない。データDQ01〜DQ04は、ブロックBL1〜BL4から読み出したデータになる。
図3(B)は、データ補正回路301の具体的構成を示す回路図である。インバータ320は、セレクト信号SEL5の論理反転信号を出力する。否定論理積(NAND)回路321は、信号308、セレクト信号SEL3及びインバータ320の出力を入力し、否定論理積を出力する。インバータ322は、NAND回路321の論理反転信号を出力する。インバータ325の入力は、データ線307に接続される。pチャネルMOSトランジスタ323は、ゲートがインバータ322の出力に接続され、ソースがデータ線307に接続され、ドレインが出力データ線328に接続される。nチャネルMOSトランジスタ324は、ゲートがNAND回路321の出力に接続され、ドレインがデータ線307に接続され、ソースが出力データ線328に接続される。pチャネルMOSトランジスタ326は、ゲートがNAND回路321の出力に接続され、ソースがインバータ325の出力に接続され、ドレインが出力データ線328に接続される。nチャネルMOSトランジスタ327は、ゲートがインバータ322の出力に接続され、ドレインがインバータ325の出力に接続され、ソースが出力データ線328に接続される。出力データ線328は、データDQ03(図3(A))を出力する。
図4は、メモリコアからの出力に係る制御信号発生回路のブロック図である。この制御信号発生回路は、図1のメモリコアの左に接続される。ブロックBLK1〜BLK4にはそれぞれデータ補正回路401が接続される。データ補正回路401は、図3(A)のデータ補正回路301に相当する。データ演算回路402は、図3(A)の排他的論理和回路311〜313に相当する。データ比較回路403は、図3(A)の排他的論理和回路314に相当する。各ブロックBLK1〜BLK4のデータ補正回路401は、セレクト信号SEL1〜SEL4に応じて、各ブロックBLK1〜BLK4のデータ線のデータ補正を行う。セレクト信号SEL1〜SEL4のうちでハイレベルになっているものに対応するブロックBLK1〜BLK4がリフレッシュを行っている。したがって、データ補正回路401は、入力されたセレクト信号がハイレベルであればデータ補正の対象とし、データ比較回路403の比較によりライトパリティとリードパリティとが不一致であればデータ補正を行う。データ補正回路401は、読み出しデータを外部へ出力する。
図5(A)は、半導体記憶装置の動作を示す概略図である。タイミングt1において、外部書き込みコマンドWR0が入力され、その後、タイミングt11で内部のリフレッシュ要求信号が発生した場合を説明する。リフレッシュ要求よりも書き込みコマンドWR0の方が早いので、書き込みコマンドWR0に従い、ブロックBLK1〜BLK4にはデータが書き込まれる。ブロックBLK5には、ライトパリティが書き込まれる。タイミングt11の後の期間T1では、リフレッシュ要求が保持される。この書き込み制御は、図1の制御信号SIG1により行われる。ブロックBLK2では、書き込みコマンドWR0の動作が終了すると、リフレッシュ動作501が開始する。
その後、時刻t2,t3,t4でそれぞれ外部書き込みコマンドWR1,WR2、外部読み出しコマンドRD0が入力される。ブロックBLK1、BLK3〜BLK5は、外部コマンドWR1,WR2,RD0の動作を行う。ブロックBLK2は、リフレッシュ動作501が終了した後に、外部コマンドWR1,WR2の動作を行う。なお、読み出しコマンドRD0が入力されたときには、ブロックBLK2は書き込みコマンドWR2の動作中である。そこで、ブロックBLK5からライトパリティを読み出し、ライトパリティとリードパリティとが不一致であれば、ブロックBLK2のデータ線のデータを補正する。以下、このライトパリティ及びリードパリティを用いた読み出しを、擬似的読み出しという。
ブロックBLK2では、書き込みコマンドWR2の動作を行なった後に、ダミーリード502を行う。ダミーリード502は、後に説明する図6の制御信号発生回路において行うダミー動作であり、ブロックBLK2は読み出し動作を行わない。詳細は、後に説明する。以上のリフレッシュ動作501からダミーリード502までの期間T2は、ブロックBLK2のみが第2の制御信号SIG2により制御され、その他のブロックは第1の制御信号SIG1により制御される。
次に、タイミングt5で外部読み出しコマンドRD1が入力される場合を説明する。ブロックBLK2は、直前のダミーリード502が第2の制御信号SIG2により行われている。この際、タイミングt5で、読み出しコマンドRD1の開始を検出し、第2の制御信号SIG2から第1の制御信号SIG1に切り換えると、ブロックBLK2で誤動作が生じたり、動作遅延が生じてしまうことがある。そこで、読み出しコマンドRD1については、ブロックBLK2の読み出しを行わず、擬似的読み出しを行う。そして、読み出しコマンドRD1の動作終了を検出して、第2の制御信号SIG2から第1の制御信号SIG1への切り換えを行う。これにより、次のタイミングt6の読み出しコマンドRD2では、ブロックBLK1〜BLK4から高速かつ適切に読み出しを行うことができる。この詳細は、後に図9及び図10を参照しながら説明する。読み出し動作がリフレッシュ動作と競合しない場合には、演算結果記憶用ブロックBLK5を非活性にし、その他のメモリセルブロックから読み出しを行う。
次に、タイミングt12で、内部リフレッシュ要求が発生し、ブロックBLK3がリフレッシュ動作503を行う。そのリフレッシュ動作503の間に、タイミングt7で外部読み出しコマンドRD3が入力される場合を説明する。この場合、擬似的読み出しを行い、必要に応じてブロックBLK3のデータ線のデータの補正を行う。ブロックBLK3では、リフレッシュ動作503の後に、ダミーリード504が行われる。リフレッシュ動作503からダミーリード504までの期間T3では、ブロックBLK3のみが第2の制御信号SIG2で制御される。
なお、擬似的読み出し動作を行っている間に、そのブロックBLK3に対する書き込み要求信号が入力された場合は、該書き込み要求信号を保持し、擬似的読み出し動作が終了した後に、保持していた書き込み要求信号に対応する動作を行う。
図5(B)は、半導体記憶装置の他の動作を示す概略図である。タイミングt21において、外部読み出しコマンドRD4が入力され、その後、タイミングt31で内部リフレッシュ要求が発生した場合を説明する。リフレッシュ要求よりも読み出しコマンドRD4の方が早いので、読み出しコマンドRD4に従い、ブロックBLK1〜BLK4からデータを読み出す。タイミングt31の後の期間T11では、リフレッシュ要求が保持される。ブロックBLK2では、読み出しコマンドRD4の動作が終了すると、リフレッシュ動作511が開始する。
その後、時刻t22,t23でそれぞれ外部読み出しコマンドRD5,RD6が入力される。ブロックBLK1、BLK3〜BLK5は、外部コマンドRD5,RD6に対応し、擬似的読み出しを行う。ブロックBLK2は、リフレッシュ動作511の終了後、2回のダミーリード512,513を行う。期間T12では、ブロックBLK2のみが第2の制御信号SIG2により制御される。
次に、タイミングt24で外部書き込みコマンドWR3が入力される場合を説明する。ブロックBLK1〜BLK4にはデータが書き込まれ、ブロックBLK5にはライトパリティが書き込まれる。
次に、タイミングt32で、内部リフレッシュ要求が発生し、ブロックBLK3がリフレッシュ動作514を行う。そのリフレッシュ動作514の間に、タイミングt25で外部書き込みコマンドWR4が入力され、その後、タイミングt26,t27で外部書き込みコマンドWR5,WR6が入力される場合を説明する。この際、コマンドWR4,WR5,WR6に対応し、ブロックBLK1,BLK2,BLK4にデータを書き込み、ブロックBLK5にライトパリティを書き込む。ブロックBLK3では、リフレッシュ動作514が終了した後、書き込みコマンドWR4〜WR6に応じた書き込み動作を行う。外部書き込みコマンドWR4〜WR6の発生サイクル時間は、それに対応する各ブロックBLK1〜BLK5の実行サイクル時間よりも長い。したがって、ブロックBLK3では、コマンドWR4及びWR5の動作は他のブロックの動作よりも遅れるが、コマンドWR6の動作は他のブロックの動作に追いつく。リフレッシュ動作514を行っても、外部コマンドに遅れずに高速に書き込むことができる。期間T13では、ブロックBLK3のみが第2の制御信号SIG2により制御される。
図6は、メモリコアへの入力に係る制御信号発生回路のブロック図を示す。この制御信号発生回路は、非同期型SRAMインターフェースを想定しており、図1のメモリコアの左に接続される。内部のリフレッシュ要求(OSC)信号発生回路604は、リングオシレータを用いて定期的にリフレッシュ要求を自動発生する。
通常の書き込み時は、外部コマンドEXTC、アドレスADR、マスク情報MSK、書き込みデータINDが外部から入力される。マスク情報MSKは、上位バイト及び/又は下位バイトを選択的に書き込み指示をするための情報である。外部コマンドEXTCは、内部コマンド発生回路601に入力される。内部コマンド発生回路601は、第1の内部コマンドINTC1を生成し、第1のコア制御信号発生回路602へ出力する。第1のコア制御信号発生回路602は、第1のコア制御信号COC1 (図1の第1の制御信号SIG1に相当)を発生し、セレクタ621(図1のセレクタ101と同一)へ出力し、メモリコアを制御する。
この時、各ブロックのセレクタ621は、図1で説明したように、全て第1のコア制御信号COC1を選択している。その際、第1のコア制御信号発生回路602は、第1のコア制御信号COC1でコアが活性化されている期間、第1のコア活性化状態信号COS1を出力する。マスク情報MSKは、その際の書きこみ動作を無効とする役目を持ち、バッファ607、第1のコア制御信号発生回路602に第1のマスク情報MSK1として供給される。第1のコア制御信号発生回路602は、内部コマンドINTC1及びマスク情報MSK1に応じて、コア制御信号COC1及びコア活性化状態信号COS1を出力する。アドレスADRは、バッファ607を介して第1のアドレスADR1としてセレクタ622に供給される。第1のアドレスADR1は、第1のコア制御信号COC1とセットであり、書き込みの際のアドレスを指定する。データ演算回路609は、入力データINDを入力し、ライトパリティ(図2(A)参照)を演算し、第1の入力データIND1をセレクタ623へ供給する。第1のアドレスADR1のメモリセルへ第1の入力データIND1が書き込まれる。この際、データ演算回路609は、入力データINDを基にライトパリティの演算を行い、その結果を演算用メモリセルブロックBLK5に書きこむ。
セレクタ621は、セレクト信号SEL1〜SEL5に応じて、第1のコア制御信号COC1又は第2のコア制御信号COC2を選択し、メモリコアへ出力する。セレクタ622は、セレクト信号SEL1〜SEL5に応じて、第1のアドレスADR1又は第2のアドレスADR2を選択し、メモリコアへ出力する。セレクタ623は、セレクト信号SEL1〜SEL5に応じて、第1のデータIND1又は第2のデータIND2を選択し、メモリコアへ出力する。3つのセレクタ621〜623は、図1の1つのセレクタ101に相当する。3つのセレクタ621〜623の組みがブロックBLK1〜BLK5の数だけ存在する。
次に、リフレッシュ動作について説明する。リフレッシュ要求(OSC)信号発生回路604は、定期的にリフレッシュ要求信号OSCをパルス出力する。内部コマンド発生回路601は、外部コマンドEXTCの入力時に信号ATDを出力する。この際に、リフレッシュ要求信号OSCと外部コマンドEXTCの実行との時期が重なる場合を想定して、コマンド-リフレッシュ比較回路603は、信号ATDと信号OSCとのどちらが早いかを常に判定する。
コマンド-リフレッシュ比較回路603は、リフレッシュ要求信号OSCの方が早いと判定すれば、リフレッシュ要求信号REFを発生する。第2のコア制御信号発生回路606は、リフレッシュ要求信号REFが入力されると、第2のコア活性化状態信号COS2を出力し、第2のコア制御信号COC2(図1の第2の制御信号SIG2に相当)をセレクタ621に出力する。リフレッシュ要求信号REFは、同時にリフレッシュブロック選択回路611に入力される。リフレッシュブロック選択回路611は、セレクタ621,622,623に対するセレクト信号SEL1〜SEL5のうち、ひとつをハイレベルにする。こうしてセレクト信号SEL1〜SEL5により選ばれた1つのブロックBLK1〜BLK5のみがリフレッシュ動作を行う。リフレッシュは、例えばブロックBLK1〜BLK5が順番に行われる。コマンド-リフレッシュ比較回路603は、リフレッシュ要求信号OSCが外部コマンドEXTCより遅いと判定すれば、第1のコア活性化状態信号COS1がリセットされるまでリフレッシュ要求信号REFの出力を待つ。
次に、リフレッシュ中に外部から書きこみ要求コマンドEXTCがあった場合について説明する。リフレッシュ中は、第1のコア制御信号発生回路602と同様に、第2のコア制御信号発生回路606が第2のコア活性化状態信号COS2を出力する。第2のコア活性化状態信号COS2は、内部コマンド保持回路605に入力される。第2のコア活性化状態信号COS2が出力されている間は、内部コマンド保持回路605がリフレッシュ中に発生した第1の内部コマンドINTC1を保持する。内部コマンド保持回路605は、リフレッシュ動作が終了し、第2のコア活性化状態信号COS2がリセットされるのを受けて、保持していたコマンドを第2の内部コマンドINTC2として出力する。
この際に、内部コマンド保持回路605は、保持していた内部コマンドINTC2を出力する時に、次の外部コマンドEXTCが発生し、これに対応する内部コマンドINTC1を保持しなければならない場合がある。1つの保持回路で2つのコマンドの出力と保持の両方を同時にできないので、保持回路は2つ用いる。カウンタは、保持するコマンドをカウントし、2つの保持回路のどちらに保持させるかを選択する。もう一つのカウンタは、出力信号をカウントし、次にどちらの保持回路から出力するかを選ぶ。
図7は2つの保持回路を含む内部コマンド保持回路605の回路図、図8はその動作波形を示す。内部コマンド保持回路605は、2つの保持回路701及び702を有する。カウンタ721は、第1の内部コマンドINTC1のパルス501,502が入力される度に状態反転する信号/CNTAを出力する。インバータ723は、信号/CNTAを論理反転した信号CNTAを出力する。カウンタ722は、第2の内部コマンドINTC2のパルス506,507が入力される度に状態反転する/CNTBを出力する。インバータ724は、信号/CNTBを論理反転した信号CNTBを出力する。
まず、保持回路701について説明する。否定論理積回路(NAND)回路711は、第2のコア活性化状態信号COS2及び信号CNTBを入力し、否定論理積を出力する。NAND回路712は、第1の内部コマンドINTC1、信号CNTA、NAND回路711の出力を入力し、否定論理積を出力する。NAND回路713は、NAND回路712の出力及びNAND回路714の出力を入力し、信号n01を出力する。ディレイライン717は、信号n03を遅延させてNAND回路714に出力する。NAND回路714は、信号n01及びディレイライン717の出力を入力し、否定論理積を出力する。NAND回路715は、NAND回路711の出力及びNAND回路716の出力信号n03を入力し、否定論理積を出力する。NAND回路716は、信号n01及びNAND回路715の出力を入力し、信号n03を出力する。
次に、保持回路702について説明する。保持回路702は、保持回路701と同様な構成を有する。保持回路702が保持回路701と異なる点を説明する。NAND回路711は、第2のコア活性化状態信号COS2及び信号/CNTBを入力する。NAND回路712は、第1の内部コマンドINTC1、信号/CNTA、NAND回路711の出力を入力する。NAND回路713の出力信号をn02とし、NAND回路716の出力信号をn04とする。
否定論理和(NOR)回路725は、信号n03及び信号n04を入力し、第2の内部コマンドINTC2を出力する。カウンタ721は、保持回路701及び702が交互にコマンドを保持するタイミングを制御する。カウンタ722は、保持回路701及び702が交互にコマンドを出力するタイミングを制御する。
図8において、第1の内部コマンドINTC1は、パルス501及び502はそれぞれ例えば書き込みコマンドである。第2のコア活性化状態信号COS2において、期間503ではリフレッシュを行い、期間504では書き込みコマンド501に対応した書き込み動作を行い、期間505では書き込みコマンド502に対応した書き込み動作を行っている。
図7及び図8を参照しながら動作を説明する。第1の内部コマンドINTC1及び第2のコア活性化状態信号COS2が図6の内部コマンド保持回路605に入力される。信号CNTA、/CNTAは、第1の内部コマンドINTC1によってカウントされたカウンタ721の出力である。信号n03及びn04は、2つの保持回路701及び702のそれぞれの出力である。第2の内部コマンドINTC2は、信号n03及びn04をNOR回路725で合成した信号である。信号CNTB、/CNTBは、第2の内部コマンドINTC2によってカウントされたカウンタ722の出力である。第2のコア活性化状態信号COS2は、活性化期間ではローレベルの信号である。この信号がローレベルの間に第1の内部コマンドINTC1が発生すると、信号CNTA、/CNTAのいずれかがハイレベルとなる。ハイレベルとなった保持回路701又は702が第1の内部コマンドINTC1を保持し、信号n01又はn02がハイレベルとなる。その状態で第2のコア活性化状態信号COS2がハイレベルとなると、保持したコマンドが信号n03又はn04となり、第2の内部コマンドINTC2となる。第2の内部コマンドINTC2は、信号CNTB,/CNTBを反転させる。
次に、図6を参照しながら説明する。第2のコア活性化状態信号COS2が出力されている間、アドレス及びマスク情報保持回路608は、第1の内部コマンドINTC1自身が使用するアドレスADR、マスク情報MSKを保持し、データ保持回路610は入力データINDを保持する。第2の内部コマンドINTC2が出力されると、それを受けてアドレス及びマスク情報保持回路608とデータ保持回路610が保持していた情報をそれぞれ第2のアドレスADR2、第2のマスク情報MSK2、第2のデータIND2として出力する。第2のコア制御信号発生回路606は、第2の内部コマンドINTC2及び第2のマスク情報MSK2に応じて、第2のコア制御信号COC2及び第2のコア活性化状態信号COS2を出力する。第2のコア活性化状態信号COS2が出力されている間は、リフレッシュブロック選択回路611がセレクト信号SEL1〜SEL5を維持して出力し続ける。セレクト信号SEL1〜SEL5で選択されたブロックBLK1〜BLK5は、リフレッシュ動作に続いて、第2の内部コマンドINTC2の動作を、第2のアドレスADR2、第2のマスク情報MSK、第2のデータIND2を用いて行う。
第2の内部コマンドINTC2の動作中に次の外部書きこみコマンドEXTCが発生した場合は、同様に各情報を保持し、その時実行中の動作が終了した後で、保持していた第2の内部コマンドINTC2を実行する。よって、第2のコア活性化状態信号COS2が出力されている間に外部書きこみコマンドEXTCが発生する限り、セレクト信号SEL1〜SEL5で選択されたブロックBLK1〜BLK5は第1の内部コマンドINTC1とは非同期に第2の内部コマンドINTC2を実行し続ける。第2の内部コマンドINTC2の実行サイクルが外部コマンドEXTCの発生サイクルより短ければ、いずれ第2の内部コマンドINTC2の実行も終わる(図5(B)参照)。
読み出し時について説明する。メモリコアに制御信号が入力するまでは、書き込み時とほぼ同じである。異なる点は、書き込み時の第2のコア制御信号COC2に相当する信号はリフレッシュ動作時以外は出力しない。この際、第2のコア制御信号発生回路606自体は動作している。この状態がダミーリード(図5(A)及び(B)参照)である。また、第2のコア活性化状態信号COS2が出力されない期間、リフレッシュブロック選択回路611は、演算結果書き込み用ブロックBLK5に対するセレクト信号SEL5を非選択状態にする。
次に、図5(A)の動作について説明する。ブロックBLK2では、リフレッシュ動作501の後の第2のコア制御信号COC2による書き込み動作を行う。その後に、ブロックBLK2を制御する信号を、第2のコア制御信号COC2から第1のコア制御信号COC1に切り換える場合を考える。その後、タイミングt5で、すぐに外部から読み出しコマンドRD1が発生した場合、通常は読み出しコマンドからメモリコアへのアクセスは最速で行わなくてはならないため、コア制御信号の切り換えが間に合わない場合がある。
そこで、図6のリフレッシュブロック選択回路611を図9のように構成する。この構成によれば、次の1回の読み出しコマンドRD1が終了するまで、第2のコア制御信号COC2でブロックBLK2を制御する。
図9は、リフレッシュブロック選択回路611の回路図であり、図10はその動作波形を示す。図9を参照しながら、回路構成を説明する。ディレイライン901は、第2のコア活性化状態信号COS2を遅延させる。NAND回路902は、第2のコア活性化状態信号COS2及びディレイライン901の出力を入力し、否定論理積を出力する。インバータ903は、NAND回路902の出力を論理反転し、信号n01を出力する。
RSフリップフロップ904は、NAND回路905及び906により構成される。インバータ907は、信号CLを論理反転する。NAND回路905は、信号n01及びNAND回路906の出力を入力し、否定論理積を出力する。NAND回路906は、NAND回路905の出力及びインバータ907の出力を入力し、否定論理積を出力する。インバータ908は、NAND回路905の出力を入力し、信号n02を出力する。
NAND回路909は、信号RS及び信号n02を入力し、否定論理積を出力する。NAND回路910は、信号WR及びNAND回路909の出力を入力し、否定論理積を出力する。NAND回路911は、信号n01及びNAND回路910の出力を入力し、否定論理積を出力する。
RSフリップフロップ912は、NAND回路913及び914により構成される。NAND回路913は、信号n03及びNAND回路911の出力を入力し、否定論理積を出力する。NAND回路914は、信号REF及びNAND回路913の出力を入力し、信号n03を出力する。
NAND回路919は、信号n03及び信号PSEL1を入力し、インバータ922に出力する。インバータ922は、セレクト信号SEL1を出力する。NAND回路920は、信号n03及び信号PSEL4を入力し、インバータ923に出力する。インバータ923は、セレクト信号SEL4を出力する。
インバータ915は、信号PSEL5の論理反転信号を出力する。NAND回路917は、信号n03及びインバータ915の出力を入力し、否定論理積を出力する。NOR回路916は、信号n03及び信号RDを入力し、インバータ918へ出力する。NAND回路921は、NAND回路917の出力及びインバータ918の出力を入力し、インバータ924へ出力する。インバータ924は、セレクト信号SEL5を出力する。
次に、回路の動作を説明する。信号RSは、第1のコア制御信号COC1のコアリセット信号であり、ハイレベルになるとメモリコアをリセットする。コア動作中では、信号RSがローレベルになる。信号WRは、第1のコア制御信号COC1の書きこみ時にローレベルとなる状態信号である。信号CLは、第1のコア制御信号COC1のCL信号(メモリセルのデータを読み出し、センスアンプで増幅した後にそのデータをセンスアンプから取り出すパルス)である。信号REFは、リフレッシュ要求信号である。信号RDは、第1のコア制御信号COC1の読み出し時にハイレベルとなる状態信号であり、書き込み要求が発生するまで状態を保持する。信号PSEL1〜PSEL5は、リフレッシュを行うブロックを示す信号であり、内部カウンタおよびデコーダから出力される。最終的にセレクタに入力される信号は、セレクト信号SEL1〜SEL5である。
ここで、信号PSEL1がハイレベル、信号PSEL2〜PSEL5がローレベルであるとする。タイミングt1のリフレッシュ要求信号REFでリフレッシュ動作が開始すると、信号n03がハイレベルとなり、セレクト信号SEL1がハイレベルとして、ブロックBLK1の制御信号を第2のコア制御信号COC2に切り替える。第2のコア活性化状態信号COS2において、期間T1でリフレッシュを行い、期間T2で書き込みを行なっているとする。リフレッシュの期間T1中に外部から書き込み要求が発生すると、リフレッシュ動作の後、保持した書き込み動作をブロックBLK1に対して行う。
第2のコア活性化状態信号COS2は、ディレイライン901によって信号n01のような一つの状態信号に合成される。信号n01は、RSフリップフロップ904をセットし、さらにリフレッシュ要求信号REFがハイレベルになる前にRSフリップフロップ912の状態を保持する。
信号RSにおいて、期間T3及びT4ではそれぞれ読み出しを行っているとする。フリップフロップ904の出力信号n02は、タイミングt2で、次の読み出し動作の第1のコア制御信号COC1の信号CLが出力されるまで状態を保持する。信号CLは、必ず信号RSがローレベルの期間に出力するようにタイミングを設定してある。信号n02が信号CLを受けてハイレベルになった後、タイミングt3で、信号RSがハイレベルに遷移したのを受けて信号n03がローレベルとなり、セレクト信号SEL1がローレベルになる。その後に書き込み要求が発生しなければ、信号RDがハイレベルなのでセレクト信号SEL5がハイレベルとして、ライトパリティブロックBLK5を非活性とする。こうして、第2のコア制御信号COC2の動作が終了した後も次の読み出し1回は、演算結果を用いたデータ補正を行う。第2のコア制御信号COC2の動作が終了した後に書き込み要求が発生した場合は、信号WRによりセレクト信号SEL1は1回も待たずにローレベルになる。もちろんこれは、書き込み動作が、読み出し動作ほど高速化する必要がないことが条件となる。書き込みを高速化するため、読み出しと同様に、制御信号の系統を切り換えないで書き込みを行ってもよい。
図11は、図1の1つのブロックを構成するワードデコーダ103及びメモリセル104の他の構成例を示す。図6のマスク情報MSKを用いることにより、上位バイト及び/又は下位バイトを選択的にアクセスすることができる。1つのブロックは、メインワードデコーダ1101、サブワードデコーダ1102、上位バイトメモリセル1103、サブワードデコーダ1104及び下位バイトメモリセル1105を有する。
同一アドレスに16ビットのデータを記憶するための4つのブロックBLK1〜BLK4を有する場合を考える。1つのブロックは、同一アドレスにつき4ビットデータを記憶する。同一アドレスにおいて、上位バイトは上位8ビットであり、下位バイトは下位8ビットである。上位バイトメモリセル1103は、上位バイト中の2ビットを記憶する。下位バイトメモリセル1105は、下位バイト中の2ビットを記憶する。
メインワードデコーダ1101は、外部から供給されるロウアドレスに応じてデコードする。サブワードデコーダ1102は、メインワードデコーダ1101の出力に応じて、上位バイトメモリセル1103のロウアドレスを特定する。サブワードデコーダ1104は、メインワードデコーダ1101の出力に応じて、下位バイトメモリセル1105のロウアドレスを特定する。上位バイトと下位バイトは、別制御で読み書きすることができる。1つのブロックでは、上位バイトメモリセル1103及び下位バイトメモリセル1105に対して同時にリフレッシュ動作を行うことができる。
上位バイトメモリセル1103及び下位バイトメモリセル1105のそれぞれについて、メインワードデコーダを設けると、レイアウト面積が大きくなる。メインワードデコーダ1101及びサブワードデコーダ1102,1104によりワード線を階層化し、メインワードデコーダ1101のメインワード線を共有させることにより、メインワードデコーダ1101の面積を減らすことができる。
以上のように、本実施形態によれば、外部からのアクセス要求と内部リフレッシュ動作を同時に処理することが可能となり、外部からリフレッシュ要求を入力しないSRAMインターフェースなどでも、メモリコア動作1回分の高速アクセスタイムで読み出し動作を実現できる。
また、メモリコアの活性化領域を分割し、1回のリフレッシュ領域を限定する。メモリコアの制御信号を複数系統用意し、リフレッシュブロックとそれ以外のブロックとで、異なる系統の制御信号を用いる。これにより同一アドレスのビットをその存在するブロックに応じて異なる制御ができる。外見上メモリコア動作1回分のアクセスタイムでの読み出し動作が可能になる。
なお、メモリコア内の複数のブロックは、ロウアドレス方向若しくはカラムアドレス方向、又はその両方のアドレス方向に分割してもよい。
上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
本発明の実施形態は、例えば以下のように種々の適用が可能である。
(付記1)同一アドレスの複数のビットデータを複数のメモリセルブロックに分散して記憶するためのメモリコアと、
前記複数のメモリブロックに対してそれぞれ独立にリフレッシュ動作を制御することができ、一のメモリセルブロックと他の一のメモリセルブロックとを異なるタイミングでリフレッシュ動作するように制御する制御回路と
を有する半導体記憶装置。
(付記2)前記制御回路は、同一のタイミングにおいて前記複数のメモリセルブロックのうちの一のメモリセルブロックに対してリフレッシュ動作を行わせ、他の一のメモリセルブロックに対してデータの書き込み又は読み出しを行わせるように制御することができる付記1記載の半導体記憶装置。
(付記3)前記メモリコアは、同一アドレスに対して外部入力可能なビット数より多いビット数のデータを記憶することができ、
前記制御回路は、外部入力の複数のビットデータを前記メモリコアに書き込むと共に、外部入力の複数のビットデータを基に論理演算を行い、該演算結果を前記メモリコアに書き込む付記1記載の半導体記憶装置。
(付記4)前記メモリコア内の複数のメモリセルブロックは、ロウアドレス方向若しくはカラムアドレス方向、又はその両方のアドレス方向に分割され、同一アドレスの複数のビットが複数のメモリセルブロックに分散して存在し、
前記制御回路は、前記複数のメモリブロックをそれぞれ独立に制御することができる付記1記載の半導体記憶装置。
(付記5)前記制御回路は、同一のロウアドレス又はカラムアドレスで複数のメモリセルブロックを活性化して制御することができる付記1記載の半導体記憶装置。
(付記6)前記制御回路は、前記メモリセルブロック毎に活性化して制御するための制御信号を複数系統有し、前記メモリセルブロック毎に前記制御信号の系統を選択する選択回路を有する付記1記載の半導体記憶装置。
(付記7)前記制御回路は、前記メモリセルブロック毎に活性化して制御するための制御信号を複数系統有し、各メモリセルブロックに対する制御信号のタイミングはすべて同一になる場合の他、すべて又は一部が異なる場合がある付記1記載の半導体記憶装置。
(付記8)前記制御回路は、前記複数のメモリセルブロックを同一又は異なるタイミングの制御信号により複数活性化し、それぞれのメモリセルブロックの活性化タイミング及び/又は活性化時間が異なるように制御することができる付記1記載の半導体記憶装置。
(付記9)前記メモリコアは、同一アドレスについて複数のビットデータを記憶するための複数のメモリセルブロックの他、演算結果を記憶するための演算結果記憶用メモリセルブロックを有し、
前記制御回路は、データ書き込み時に同一アドレスの複数ビットの書き込みデータのハイレベル又はローレベルのビット数が偶数個又は奇数個を示す演算結果データを演算する演算回路を有し、該演算結果データを前記演算結果記憶用メモリセルブロックに書き込む付記1記載の半導体記憶装置。
(付記10)前記制御回路は、データ読み出し時に同一アドレスの複数ビットの読み出しデータのハイレベル又はローレベルのビット数が偶数個又は奇数個を示す演算結果データを演算する演算回路と、該演算した演算結果データと前記演算結果記憶用メモリセルブロックから読み出した演算結果データを比較する比較回路とを有する付記9記載の半導体記憶装置。
(付記11)前記制御回路は、読み出し又は書き込みにより複数のメモリセルブロックを活性化した際に活性化中の一部のメモリセルブロックに対してリフレッシュ要求が発生した場合は、その活性化の動作終了後、次の読み出し又は書き込みの要求が発生しても、リフレッシュ動作を優先して行うように制御する付記1記載の半導体記憶装置。
(付記12)前記制御回路は、リフレッシュ動作中のメモリセルブロックに対する読み出し要求信号が入力された場合は、そのメモリセルブロックからデータを読み出さず、前記比較回路の比較により両方の演算結果データが不一致であれば、リフレッシュ動作中のメモリセルブロックのデータ線のデータを反転させるための反転回路を有する付記10記載の半導体記憶装置。
(付記13)前記制御回路は、リフレッシュ動作中のメモリセルブロックに対する書き込み要求信号が入力された場合は、該書き込み要求信号を保持し、リフレッシュ動作が終了した後に前記保持していた書き込み要求信号に対応する書き込み動作を行う付記12記載の半導体記憶装置。
(付記14)前記制御回路は、前記保持していた書き込み要求信号に対応する書き込み動作を実行中に、次の書き込み要求信号が入力された場合には該書き込み要求信号を保持する付記13記載の半導体記憶装置。
(付記15)前記制御回路は、前記書き込み動作の実行中に出力される活性化信号がリセットされた時点で前記保持していた書き込み要求信号に対応する書き込み動作を開始する付記14記載の半導体記憶装置。
(付記16)前記制御回路は、前記メモリセルブロック毎に活性化して制御するための制御信号を複数系統有し、前記メモリセルブロック毎に前記制御信号の系統を選択する選択回路を有し、
前記選択回路は、前記保持していた書き込み要求信号の書き込み動作中に、そのメモリセルブロックに対して次の書き込み要求信号が入力されなければ、その時点で実行していた書き込み動作が終了した時点で、リフレッシュ動作以前の制御信号の系統を選択する付記13記載の半導体記憶装置。
(付記17)前記制御回路は、リフレッシュ動作中のメモリセルブロックに対する書き込み要求信号が入力された場合は、該書き込み要求信号を保持し、リフレッシュ動作が終了した後に前記保持していた書き込み要求信号に対応する書き込み動作を行い、該書き込み動作中にそのメモリセルブロックに対する読み出し要求信号が入力された場合は、前記反転回路は前記比較回路の比較結果に応じてデータの反転を行う付記12記載の半導体記憶装置。
(付記18)前記制御回路は、リフレッシュ動作中に読み出し要求信号が入力された場合は前記反転回路が前記比較回路の比較結果に応じてデータ反転を行い、該読み出し要求信号を保持し、リフレッシュ動作が終了した後に読み出し動作を行う際、そのメモリセルブロックからデータを読み出さず、前記反転回路が前記比較回路の比較結果に応じてデータ反転を行うことにより擬似的読み出し動作を行う付記13記載の半導体記憶装置。
(付記19)前記制御回路は、前記擬似的読み出し動作を行っている間に、そのメモリセルブロックに対する書き込み要求信号が入力された場合は、該書き込み要求信号を保持し、前記擬似的読み出し動作が終了した後に前記保持していた書き込み要求信号に対応する動作を行う付記18記載の半導体記憶装置。
(付記20)前記制御回路は、前記擬似的読み出し動作を行っている間に、そのメモリセルブロックに対する読み出し要求信号が入力された場合は、該読み出し要求信号を保持し、前記擬似的読み出し動作が終了した後に前記保持していた読み出し要求信号に対応し、そのメモリセルブロックからデータを読み出さず、前記反転回路が前記比較回路の比較結果に応じてデータ反転を行う付記18記載の半導体記憶装置。
(付記21)前記制御回路は、前記メモリセルブロック毎に活性化して制御するための制御信号を複数系統有し、前記メモリセルブロック毎に前記制御信号の系統を選択する選択回路を有し、
前記保持していた書き込み要求信号に対応する書き込み動作中に、そのメモリセルブロックに対して次の書き込み要求信号が入力されない場合でも次の1回の読み出し動作は前記反転回路が前記比較結果に応じてデータ反転を行うことによる擬似的読み出しを行い、
前記選択回路は、前記擬似的読み出し動作が終了した時点で、リフレッシュ動作以前の制御信号の系統を選択する付記13記載の半導体記憶装置。
(付記22)前記各メモリセルブロックは、上位バイト及び下位バイトによりワード線が階層化され、メインのワード線で上位バイト及び下位バイトの両方を同時に選択することができる付記1記載の半導体記憶装置。
(付記23)前記各メモリセルブロックは、上位バイト及び下位バイトに対して同時にリフレッシュ動作を行う付記22記載の半導体記憶装置。
(付記24)前記制御回路は、読み出し動作がリフレッシュ動作と競合しない場合には前記演算結果記憶用メモリセルブロックを非活性にし、その他のメモリセルブロックから読み出しを行う付記9記載の半導体記憶装置。
(付記25)前記複数のメモリセルブロックは、それぞれワードデコーダを有する付記1記載の半導体記憶装置。
(付記26)前記制御回路は、入力される書き込み要求信号又は読み出し要求信号を保持するための2個の保持回路を有する付記12記載の半導体記憶装置。
(付記27)前記2個の保持回路は、カウンタを用いて交互に前記要求信号を記憶する付記26記載の半導体記憶装置。
(付記28)前記制御回路は、前記2個の保持回路に対して信号を保持する時と保持した信号を出力する時とを異なるカウンタで制御することにより、該2個の保持回路を交互に使用する付記27記載の半導体記憶装置。
メモリコア概略図である。 図2(A)〜(C)はライトパリティ演算シーケンスを示す図である。 図3(A)、(B)はデータ補正シーケンスを示す図である。 メモリコアからの出力に係る制御信号発生回路のブロック図である。 図5(A)、(B)は半導体記憶装置の全体動作を示す概略図である。 メモリコアへの入力に係る制御信号発生回路のブロック図である。 内部コマンド保持回路の回路図である。 内部コマンド保持回路の動作波形図である。 リフレッシュブロック選択回路の回路図である。 リフレッシュブロック選択回路の動作波形図である。 メモリコアのブロックの構成を示す図である。
符号の説明
101 セレクタ
102 カラムデコーダ
103 ワードデコーダ
104 メモリセル
SIG1 第1の制御信号
SIG2 第2の制御信号
SEL1〜SEL5 セレクト信号
BLK1〜BLK5 メモリセルブロック

Claims (6)

  1. 同一アドレスの複数のビットデータを複数のメモリセルブロックに分散して記憶するためのメモリコアと、
    外部コマンドに基づいて、内部コマンド信号を出力する内部コマンド発生回路と、
    前記内部コマンド信号に基づいて、前記メモリコアを活性化するための第1のコア制御信号を出力する第1のコア制御信号発生回路と、
    前記複数のメモリセルブロックに対してそれぞれ独立にリフレッシュ動作を制御することができ、一のメモリセルブロックと他の一のメモリセルブロックとを異なるタイミングでリフレッシュ動作するように制御する制御回路と
    を備え、
    前記制御回路は、
    リフレッシュ要求信号に基づいて前記メモリコアを活性化するための第2のコア制御信号を出力する第2のコア制御信号発生回路を備え、
    リフレッシュ動作中のメモリセルブロックに対する読み出し要求信号が入力された場合は、前記リフレッシュ動作の終了後に前記第2のコア制御信号を活化して前記読み出し要求信号に基づいて擬似的読み出し及びダミーリードを行うこと
    を特徴とする半導体記憶装置。
  2. リフレッシュ要求信号を出力するリフレッシュ要求信号発生回路と、
    前記外部コマンドと前記リフレッシュ要求信号の何れが早いかを判定し、リフレッシュ要求信号が早いと判断した場合には、リフレッシュ要求信号を前記第2のコア制御信号発生回路に出力するコマンド−リフレッシュ比較回路と
    を備えることを特徴とする請求項1に記載の半導体記憶装置。
  3. 前記第1のコア制御信号と前記第2のコア制御信号とを選択的に前記メモリコアに出力するセレクタを備えること
    を特徴とする請求項1又は請求項2に記載の半導体記憶装置。
  4. 前記制御回路は、
    前記リフレッシュ要求信号に応じて、リフレッシュを行うメモリセルブロックを選択するセレクト信号を前記セレクタに出力するメモリセルブロック選択回路を備えること
    を特徴とする請求項3に記載の半導体記憶装置。
  5. 前記制御回路は、
    リフレッシュ動作中のメモリセルブロックに対する書き込み要求信号が入力された場合には、前記書き込み要求信号を保持し、前記保持していた書き込み要求信号に対応する書き込み動作中に、次の書き込み要求信号が入力された場合には、前記次の書き込み要求信号を保持すること
    を特徴とする請求項1に記載の半導体記憶装置。
  6. 同一アドレスの複数のビットデータを複数のメモリセルブロックに分散して記憶するためのメモリコアと、
    外部コマンドに基づいて、内部コマンド信号を出力する内部コマンド発生回路と、
    前記内部コマンド信号に基づいて、前記メモリコアを活性化するための第1のコア制御信号を出力する第1のコア制御信号発生回路と、
    リフレッシュ要求信号に基づいて前記メモリコアを活性化するための第2のコア制御信号を出力する第2のコア制御信号発生回路と、
    前記リフレッシュ要求信号に応じて、リフレッシュを行うメモリセルブロックを選択するセレクト信号をセレクタに出力するメモリセルブロック選択回路と、
    前記セレクト信号に基づいて第1の制御信号と前記第2のコア制御信号とを選択的に前記メモリコアに出力するセレクタと
    を備え、
    前記セレクタは、
    前記複数のメモリセルブロックの内の第1のメモリセルブロックに対するリフレッシュ動作においては前記第2のコア制御信号を前記第1のメモリセルブロックのメモリコアに供給し、
    前記第1のメモリセルブロック以外のメモリセルブロックに対する読み出し動作においては前記第1のコア制御信号を前記第1のメモリセルブロック以外のメモリセルブロックのメモリコアに供給し、
    前記リフレッシュ動作中に前記第1のメモリセルブロックに対する読み出し要求信号が入力された場合は、前記リフレッシュ動作の終了後に前記第2のコア制御信号を活性化して前記読み出し要求信号に基づいて擬似的読み出し及びダミーリードを行うこと
    を特徴とする半導体記憶装置。
JP2008107982A 2008-04-17 2008-04-17 半導体記憶装置 Expired - Fee Related JP4900310B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008107982A JP4900310B2 (ja) 2008-04-17 2008-04-17 半導体記憶装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008107982A JP4900310B2 (ja) 2008-04-17 2008-04-17 半導体記憶装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001367053A Division JP4159280B2 (ja) 2001-08-03 2001-11-30 半導体記憶装置

Publications (2)

Publication Number Publication Date
JP2008210513A JP2008210513A (ja) 2008-09-11
JP4900310B2 true JP4900310B2 (ja) 2012-03-21

Family

ID=39786675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008107982A Expired - Fee Related JP4900310B2 (ja) 2008-04-17 2008-04-17 半導体記憶装置

Country Status (1)

Country Link
JP (1) JP4900310B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141161A1 (ja) * 2011-04-12 2012-10-18 ルネサスエレクトロニクス株式会社 半導体記憶回路、半導体記憶回路の動作方法、及び半導体記憶回路の設計方法
CN112102859B (zh) * 2019-06-17 2023-08-15 华邦电子股份有限公司 伪静态随机存取存储器及其数据写入方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120292A (ja) * 1984-07-05 1986-01-29 Toshiba Corp 半導体記憶装置
JPS6129489A (ja) * 1984-07-20 1986-02-10 Olympus Optical Co Ltd ダイナミツクメモリ制御方式
JPS6199999A (ja) * 1984-10-19 1986-05-19 Hitachi Ltd 半導体記憶装置
JPS6212990A (ja) * 1985-07-09 1987-01-21 Fujitsu Ltd ダイナミツク型半導体記憶装置
JPS62259295A (ja) * 1986-05-06 1987-11-11 Hitachi Ltd リフレツシユ制御方式
JPS63204593A (ja) * 1987-02-19 1988-08-24 Hitachi Ltd ダイナミツクメモリアクセス方法
JPH04132093A (ja) * 1990-09-21 1992-05-06 Toshiba Corp 半導体記憶装置
JPH1011348A (ja) * 1996-06-24 1998-01-16 Ricoh Co Ltd Dramの制御装置およびそのdram
JP4555416B2 (ja) * 1999-09-22 2010-09-29 富士通セミコンダクター株式会社 半導体集積回路およびその制御方法
JP3778417B2 (ja) * 2000-02-29 2006-05-24 富士通株式会社 半導体記憶装置

Also Published As

Publication number Publication date
JP2008210513A (ja) 2008-09-11

Similar Documents

Publication Publication Date Title
JP4159280B2 (ja) 半導体記憶装置
US11361808B2 (en) Apparatuses and methods for selective row refreshes
JP3244340B2 (ja) 同期型半導体記憶装置
US7304908B2 (en) SRAM device capable of performing burst operation
US6421292B1 (en) Semiconductor memory, and memory access method
US9373379B2 (en) Active control device and semiconductor device including the same
JP2006294216A (ja) 半導体記憶装置
TWI646542B (zh) 半導體記憶體裝置
JP2008108417A (ja) 低電力dram及びその駆動方法
JP2000306379A (ja) 半導体記憶装置
KR100510491B1 (ko) 부분 활성화 구조를 가지고 페이지 모드 동작이 가능한반도체 메모리 장치 및 그 동작 방법
US6175535B1 (en) Cycle control circuit for extending a cycle period of a dynamic memory device subarray
JP2011048876A (ja) 半導体記憶装置及びその制御方法
US7180822B2 (en) Semiconductor memory device without decreasing performance thereof even if refresh operation or word line changing operation occur during burst operation
JP4900310B2 (ja) 半導体記憶装置
KR20050034402A (ko) 동작 모드의 재설정없이 버스트 길이를 제어할 수 있는반도체 메모리 장치 및 그것을 포함하는 메모리 시스템
US10714161B2 (en) Semiconductor device
JP2007272981A (ja) 半導体記憶装置
JPH1145570A (ja) 半導体記憶装置
JP2004185686A (ja) 半導体記憶装置
US20230077701A1 (en) Processing-in-memory(pim) device
JP2004206850A (ja) 半導体記憶装置
US20230215483A1 (en) Semiconductor memory device and memory system including the same
KR100599411B1 (ko) 스토리지 커패시터를 포함하는 셀을 가지는 에스램 및 그라이트데이타 입력방법
JP4100403B2 (ja) 半導体メモリ装置におけるリフレッシュ制御および内部電圧の生成

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees