JP3650836B2 - 固体脱硫剤利用湿式排煙脱硫装置と方法 - Google Patents

固体脱硫剤利用湿式排煙脱硫装置と方法 Download PDF

Info

Publication number
JP3650836B2
JP3650836B2 JP52753695A JP52753695A JP3650836B2 JP 3650836 B2 JP3650836 B2 JP 3650836B2 JP 52753695 A JP52753695 A JP 52753695A JP 52753695 A JP52753695 A JP 52753695A JP 3650836 B2 JP3650836 B2 JP 3650836B2
Authority
JP
Japan
Prior art keywords
desulfurization
solid
limestone
exhaust gas
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP52753695A
Other languages
English (en)
Inventor
博文 吉川
史登 中島
宏行 加来
成仁 高本
浩 石坂
滋 野沢
正勝 西村
隆則 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Application granted granted Critical
Publication of JP3650836B2 publication Critical patent/JP3650836B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/502Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific solution or suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/05Automatic, including computer, control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Description

技術分野
本発明は、湿式排煙脱硫装置と方法に係わり、特に脱硫性能が高く、かつ石灰などの固体脱硫剤の粉砕動力が低減でき、吸収液中のアルミニウム成分、フッ素成分による脱硫性能の低下が小さく、経済的にボイラなど燃焼装置から排出される排ガス中の硫黄酸化物を除去する固体脱硫剤利用湿式排煙脱硫装置と方法に関するものである。
背景技術
火力発電所などにおいて、化石燃料の燃焼に伴って発生する排煙中の硫黄酸化物(以下、SO2と言う。)は、大気汚染・酸性雨などの地球的環境問題の主原因の一つである。このため、排煙中からSO2を除去する排煙脱硫方法の研究および排煙脱硫装置の開発は極めて重要な課題となっている。
上記排煙脱硫方法としては、さまざまなプロセスが提案されているが、湿式法が主流を占めている。この湿式法には、吸収剤にソーダ化合物を用いるソーダ法、カルシウム化合物を用いるカルシウム法およびマグネシウム化合物を用いるマグネシウム法などがある。このうち、ソーダ法は吸収剤とSO2との反応性に優れている反面、使用するソーダ類が非常に高価である。このため、発電用の大型ボイラなどの排煙脱硫装置には、比較的安価な炭酸カルシウムなどのカルシウム化合物を用いる方法が最も多く採用されている。
このカルシウム化合物を吸収液として用いる脱硫システムは、気液接触方法の違いによりスプレ方式、濡れ壁方式およびバブリング方式の3種類に大別される。各方式ともそれぞれ特徴を有しているが、実績が多く信頼性の高いスプレ方式が世界的にも多く採用されている。このスプレ方式の脱硫システムとしては、従来から排ガスの冷却・除塵を行う冷却塔、吸収液を噴霧して排ガス中のSO2と反応させる脱硫塔、脱硫塔で生成した亜硫酸カルシウムを酸化する酸化塔の3塔で構成されていた。しかし、近年になって脱硫塔に冷却・酸化の機能を持たせた1塔型脱硫塔(タンク内酸化法)の開発が進み、最近では1塔型脱硫システムがスプレ方式の主流になっている。
図39に従来技術のスプレ方式による1塔型脱硫装置の一例を示す。1塔型の脱硫塔は、主に塔本体1、入口ダクト2、出口ダクト3、スプレノズル4、吸収液ポンプ5、循環タンク6、撹拌機7、空気吹き込み装置8、ミストエリミネータ9、吸収液抜き出し管10、石膏抜き出し管11、石灰石供給管12、脱水機13等から構成される。スプレノズル4は水平方向に複数個、さらに高さ方向に複数段設置されている。また、撹拌機7および空気吹き込み装置8は脱硫塔下部の吸収液が滞留する循環タンク6に設置され、ミストエリミネータ9は脱硫塔内最上部あるいは出口ダクト3内に設置される。
ボイラから排出される排ガスAは、入口ダクト2より脱硫塔本体1に導入され、出口ダクト3より排出される。この間、脱硫塔には吸収液抜き出し管10を通じて吸収液ポンプ5から送られる吸収液が複数のスプレノズル4から噴霧され、吸収液と排ガスAの気液接触が行われる。このとき吸収液は排ガスAのSO2を選択的に吸収し、亜硫酸カルシウムを生成する。亜硫酸カルシウムを生成した吸収液は循環タンク6に溜まり、撹拌機7によって撹拌されながら、空気吹き込み装置8から供給される空気Bにより吸収液中の亜硫酸カルシウムが酸化され石膏Cを生成する。石灰石Dなどの脱硫剤は石灰石供給管12より循環タンク6内の吸収液に添加される。石灰石Dおよび石膏Cが共存する循環タンク6内の吸収液の一部は、吸収液ポンプ5によって吸収液抜き出し管10から再びスプレノズル4に送られ、一部は石膏抜き出し管11より脱水機13に送られる。また、スプレノズル4から噴霧され微粒化された吸収液の内、液滴径の小さいものは排ガスAに同伴され、脱硫塔上部に設けられたミストエリミネータ9によって回収される。
上記従来技術の問題点としては次の事項が挙げられる。
(1)吸収液中にはSO2を吸収する炭酸カルシウム(石灰石)のみでなく、吸収には寄与しない石膏が多く含まれているが、脱硫性能を向上させるため吸収液中の石灰石の割合を増加させると石膏の品質が低下し、石膏を利用できなくなる。
(2)石灰石を粉砕するための動力エネルギーが大きい。
(3)吸収液中にアルミニウム成分、フッ素成分が共存すると石灰石粒子表面に不活性なアルミニウム、フッ素含有化合物が生成し、脱硫性能が低下する。
本発明の目的は、上記問題点を解決し、経済的でかつ高い脱硫性能を達成するための排煙脱硫装置と方法を提供することにある。
また、本発明の目的は、固体脱硫剤からの固体生成物の品質を低下させないで脱硫性能を向上させる排煙脱硫装置と方法を提供することである。
また、本発明の目的は、固体脱硫剤を粉砕するための動力コストを低減する脱硫性能の高い排煙脱硫装置と方法を提供することである。
さらに、本発明の目的は吸収液中の固体脱硫剤と固体脱硫剤からの固体生成物とを容易に分離する脱硫性能の高い排煙脱硫装置と方法を提供することである。
また、その他の本発明の目的は、以下の本発明の実施例などの説明で明らかになる。
発明の開示
本発明の上記目的は次の構成によって達成される。
すなわち、燃焼装置から排出される排ガスと吸収液を接触させることにより排ガス中の硫黄酸化物を吸収液中に吸収させて硫黄酸化物を吸収した吸収液を中和する湿式排煙脱硫方法において、吸収液を中和する部位に硫黄化 合物を吸収した吸収液との反応で得られる反応生成物の 粒子とは物理的に分離可能であり十分な大きさの固体脱硫剤を貯めておき、前記反応生成物水を主成分とする吸収液を該中和部位から選択的に排出して、少なくとも その一部を前記燃焼装置から排出される排ガスと接触さ せる固体脱硫剤利用湿式排煙脱硫方法である。
また、燃焼装置から排出される排ガスと水を主成分とす 吸収液を接触させる吸収部と、該吸収部で排ガス中の 硫黄酸化物を吸収した吸収液を回収して、硫黄化合物を吸収した吸収液との反応で得られる反応生成物の粒子と は物理的に分離可能であり十分な大きさの固体脱硫剤を含有し、水を主成分とする吸収液を含有する中和部と、該中和部から前記反応生成物の粒子と水を主成分とする 吸収液を前記固体脱硫剤から分離して排出して、その少 なくとも一部を吸収部に供給する循環路とを設けた固体脱硫剤利用湿式排煙脱硫装置である。
本発明で用いる固体脱硫剤は、その重量平均粒径(以下、平均粒径と呼ぶ)が0.5mm以上であることが好ましく、平均粒径が0.5mm未満であると脱硫剤の石膏などの酸化反応生成物と分離が容易でなくなり、また粉砕後の石灰石などの固体脱硫剤を排煙脱硫装置に搬送する過程で微粉化することがある。より好ましくは固体脱硫剤の平均粒径は1.0mm以上であることである。また、固体脱硫剤の平均粒径が10mmを超えると排ガス中のSO2を吸収した吸収液を中和する反応活性が低下し、また、排煙脱硫装置の中和部に接続する固体脱硫剤供給管を摩耗させるおそれがある。したがって、本発明の固体脱硫剤は、その平均粒径が0.5mm〜10mmであることが望ましい。なお、本発明において、固体脱硫剤の中には粒径が0.5mm未満の粒径のものも含まれていて良く、前記平均粒径は一応の目安に過ぎず、厳密な粒径を意味するものではない。
排ガス中には多くの微粒成分が含まれているが、石炭焚きのボイラから排出される排ガス中には多くの燃焼灰が含まれている。脱硫装置前の集塵装置でそのほとんどが除去されるが、一部は脱硫装置に入り、噴霧された吸収液で捕捉される。燃焼灰にはアルミニウム成分(Al)が含まれており、吸収液がSO2を吸収してそのpHが低下するとAlの一部が溶解する。これとは別に、排ガス中のフッ化水素(HF)が噴霧された吸収液に捕捉されて、両者が石灰石と反応すると化学式CaAlF3(OH)・CaF2で代表されるアルミニウム、フッ素含有化合物が石灰石粒子表面に析出し、石灰石の反応性が低下する。この反応は石灰石粒子の粒径に関係なく起きることが本発明者によって確認された。しかし、平均径0.5mm以上の石灰石では中和部で石灰石同士が接触し、擦り合うことでアルミニウム、フッ素含有化合物が除去されることが判明した。微粒石灰石の場合は粒径が小さいため吸収液中に浮遊しており、このような現象は起きない。
本発明では固体脱硫剤はスラリー状にしてあるいは乾燥状のものを気流搬送して中和部に供給することが望ましい。
また、中和部への固体脱硫剤供給量の制御は定量フィーダや固体脱硫剤粉砕機のオン・オフなどで行い、固体脱硫剤粒度の制御は前記粉砕機の回転数などで行う。
また、本発明の固体脱硫剤としては石灰石が代表的な例であるが、本発明で言う石灰石とは炭酸カルシウムを主要成分とする堆積岩を指し、炭酸マグネシウムを含有するものも本発明では石灰石というものとする。したがって、ドロマイト(主成分CaCO3・MgCO3)も本発明の石灰石に含まれる。また、例えば石灰石には不純物が含有されているので、その不純物が脱硫反応性に影響を与えるので、このような不純物は粉砕することにより、反応性の高いCaCO3を固体表面に露出させることが望ましい。しかし、脱硫反応性が高くても微粒状の固体脱硫剤は石膏などの固体生成物中に混入するので、微粒子は分離除去する必要がある。粒径が大き過ぎても固体脱硫剤供給部を損傷するおそれがあるので、固体脱硫剤供給部にはフィルターまたはサイクロンを設けて固体脱硫剤の分級をすることが望ましい。
本発明法に基づく排煙脱硫装置での主な反応を下記に示す。ただし、下記反応式(1)〜(3)の反応は本発明を理解し易くするためのもので、本発明の排煙脱硫装置内での反応がすべて反応式(1)〜(3)の反応によるものとは限らない。
反応式(1)〜(3)の反応は固体脱硫剤として石灰石(CaCO3として)を用いる例で説明する。吸収液(主成分:水)が排ガス中のSO2を吸収してH2SO3を生じ、これが空気により酸化されてH2SO4(希硫酸)となる。H2SO4はCaCO3により中和されて石膏(CaSO4・2H2O)となる。
(吸収反応) H2O+SO2=H2SO3 (1)
(酸化反応) H2SO3+1/2O2=H2SO4 (2)
(中和反応) H2SO4CaCO3+H2O=CaSO4・2H2O+CO2 (3)
生成した石膏は回収されて石膏ボード等の材料として利用されるが、石膏中に石灰石が多く含まれていると石膏の品質が低下する。このため、従来の排煙脱硫装置では上記の中和反応が起きている部位での吸収液中の石灰石濃度を所定値以下(例えば、石膏の1/100程度)に保つ必要があった。石膏および石灰石を含んだ吸収液を湿式サイクロン等の分級装置で処理することにより吸収液中の石膏を選択的に回収する方法も考えられるが、従来の排煙脱硫装置では石灰石と石膏の粒径差が小さいため分級効果が小さく、分級のための装置も高価になる。
本発明では、排煙脱硫装置において硫黄酸化物の吸収によりpHが低下した吸収液を中和する部位に石灰石粒子を選択的にとどめ、硫黄酸化物から生成した石膏や水などを系外に選択的に排出することにより石膏の品質を維持したまま脱硫性能を高めることができる。そのための具体的な方法は、排ガス内のSO2を吸収した吸収液を中和するために使用する石灰石として、重量平均径の大きいもの(0.5mm以上、好ましくは1.0mm以上)を使用することにより石灰石と石膏(通常の重量平均径30〜100μm)との分離を容易にするものである。
さらに、本発明によると粒径の大きな石灰石を用いるので石灰石を微粉砕する必要がなく、微粉砕設備が不備となり粉砕動力が少なくて済む。
また、本発明では通常約20時間程度の連続運転でも消費されないだけの量の石灰石を中和部に充填することができるので、排ガスの負荷が大きくなり、排ガスを吸収した吸収液のpHが大きく低下しても中和部での石灰石の供給量の細かい制御が不要であるという特徴もある。
また、中和部では石灰石粒子表面で(3)式の反応が進むが、絶えずH2SO4を含む吸収液が石灰石粒子と接触することで(3)式の反応は進みやすく、脱硫性能も高くなる。しかし、吸収液を前記石灰石充填部の石灰石層の上部から下部に流すと石灰石層が締まり、徐々に吸収液が流れる部分と流れない部分が形成され、脱硫性能も低下する。そこで、例えば、中和部内の石灰石層の底部から上部へ流れる流れを形成させ、その吸収液をある程度以上の流速で流すことで、石灰石粒子を流動させることにより、石灰石層が締まる問題は解決されて、高い脱硫性能が得られる。
石灰石層の流動層が形成されても本発明の中和する部位での石灰石層高や石灰石の流動状態は測定できないため、層高の低い部分に選択的に吸収液が流れるおそれがある。また、排ガスとの接触領域に循環する吸収液量が同じであれば、石灰石層高の低い(石灰石量の少ない)部分に吸収液の多くが流れると、吸収液に対して石灰石量が極端に少なくなるため、排ガスとの接触領域に送られる吸収液のpHも低くなり、脱硫性能も低下する。
これに対して、中和部位の石灰石層中に空気などの気体を吹き込む方法、石灰石層中に水などの液体を吹き込む方法、撹拌装置により石灰石を撹拌する方法のいずれか1つ以上を用いることにより石灰石層の高さを中和部位全体でほぼ均一(同一の)高さにすることにより脱硫性能の低下を防止できる。なお、石灰石層中に空気などの気体を吹き込む代わりに中和部位の底部から上部に向けての吸収液を噴出する部分に気体も吹き込んで、吸収液と共に石灰石層中に供給することにより石灰石層の高さを中和部位全体に均一にする(同一にする)ことも可能である。ここで、石灰石層の撹拌装置としては中和部内に設けられた撹拌羽根またはレーキなどで撹拌する装置または中和部それ自体を回転させる装置などが用いられる。
より好ましくは複数の箇所の流動している石灰石層の圧力損失(以下、圧損ということがある。)、吸収液中の固体濃度、吸収液の比重、吸収液の粘度の内の1つ以上を測定して複数の箇所の石灰石の流動状態を検知し(流動していない箇所では圧力損失が小さくなる。)、流動状態が悪いと判断した箇所の石灰石層中に空気などの気体を吹き込む方法、石灰石層中に水などの液体を吹き込む方法、撹拌装置により石灰石を撹拌する方法のいずれか1つ以上を用いることにより石灰石層の高さを中和部位全体に均一にできる。
一般に、流動層部の圧損Pは下記の式で表される。
P=(石灰石の比重−吸収液の比重)×石灰石層高×(1−空隙率)
ここで、空隙率は流動時の値であるが、石灰石層高×(1−空隙率)は静止時と流動時では同じであるので、上記式から静止時の石灰石層高を求めることができる。すなわち、石灰石の比重は既知(約2.7)であり、静止時の空隙率は粒子形状に依存するが約0.4であるので、圧損Pおよび吸収液の比重を測定すれば石灰石層高が求められる。また、吸収液の比重は吸収液中の粒子濃度(ここでは、ほとんど石膏粒子濃度)または吸収液の粘度と相関があるので、比重の代わりに粒子濃度または吸収液の粘度を測定することも可能である。
また、石灰石層中に空気などの気体を吹き込む方法、石灰石層中に水などの液体を吹き込む方法、撹拌装置により石灰石を撹拌する方法のいずれか1つ以上を用いることにより吸収液中での石灰石粒子の混合が促進され、石灰石粒子と吸収液の接触効率が高まる。
さらに、石灰石層中に空気などCO2以外の気体を吹き込むことにより吸収液中に溶解しているCO2の一部が追い出され、上記中和反応が促進されて脱硫性能が向上する。
また、本発明は酸化塔外置き方式の排煙脱硫装置にも適用可能である。酸化塔外置き方式の排煙脱硫装置は、排ガスの冷却・除塵を行う冷却塔、吸収液を噴霧して排ガス中のSO2と反応させる脱硫塔、脱硫塔で生成した亜硫酸カルシウムを酸化する酸化塔の3塔で構成される。本発明の酸化塔外置き方式の排煙脱硫装置での主な反応式は下記の通りである。
吸収液(主成分:水)が排ガス中のSO2を吸収して亜硫酸(H2SO3)を生じ、これが吸収液中の亜硫酸カルシウム(CaSO3・1/2H2O)と反応して次亜硫酸カルシウム(Ca(HSO3)となる。次亜硫酸カルシウムは中和部で石灰石と反応して亜硫酸カルシウムを生成する。この亜硫酸カルシウムが再度吸収部に送られて排ガス中のSO2を吸収して生じたH2SO3と反応する。一方、亜硫酸カルシウムの一部は酸化塔に送られ、そこで硫酸を添加されてpHが調整された後、亜硫酸が酸化されて石膏(CaSO4・2H2O)が生成する。
(吸収反応)H2O+SO2=H2SO3
CaSO3・1/2H2O+H2SO3=Ca(HSO3+1/2H2O
(中和反応)Ca(HSO3+CaCO3=CaSO3・1/2H2+CO2
(酸化反応)CaSO3・1/2H2+1/2O2+3/2H2O=CaSO4・2H2O
【図面の簡単な説明】
図1は本発明の実施例1の1塔型湿式排煙脱硫装置の概略図である。
図2は図1のa−a線視図である。
図3は図1の石灰石供給管部分の拡大図である。
図4は図1の中和部の変形例の拡大図である。
図5は図4のb−b線視図の変形例である。
図6は実施例1(実線)と比較例1(破線)の吸収液pHと脱硫率あるいは石膏中の石灰石濃度の関係図である。
図7は実施例1の吸収液の石灰石層での上昇速度と脱硫率の関係を示す。
図8は実施例1の(実線(a))と比較例2(破線(b))の吸収液中のAl、F成分濃度と脱硫率の関係を示す図である。
図9は実施例2に基づく脱硫装置のフローシートの図である。
図10は実施例2の脱硫率の時間変化を示す図である。実線(a)は中和装置内の石灰石層を静置した場合の結果であり、破線(b)は撹拌機を用いて中和装置内の石灰石を撹拌した場合の結果である。
図11は撹拌機を備えた実施例2の中和装置の概略図である。
図12は実施例2の中和装置として用いる回転式の湿式のキルンの概略図である。
図13は実施例2の中和装置として用いる循環タンクの下部にレーキを設けた場合の脱硫装置の概略図である。
図14は実施例3の脱硫装置の概略図である。
図15は実施例3の中和後の吸収液の溶存酸素濃度と脱硫率の関係を示す図である。
図16は実施例4のグリッド塔を有する脱硫装置に本発明を適用した場合の概略図である。
図17は実施例5の吸収液中に配管を通して排ガスを吹き込むジェットバブリング方式の脱硫装置に本発明を適用した場合の概略図である。
図18は実施例6の水平型(横型)の排煙脱硫装置に本発明適用した場合の概略図である。
図19は実施例7のカルボン酸またはその塩を吸収液に供給する脱硫装置の概略図である。
図20は実施例7の吸収液中のぎ酸ナトリウム濃度を変化させた時の気液比(L/G)と脱硫率の関係を示す図である。
図21は実施例8の石灰石量により中和装置の出口での吸収液のpHを調整した場合の脱硫率の変化を示す図である。
図22は実施例9の分散管にpH計を設けた場合の排煙脱硫装置のフローを示す図である。
図23は脱硫装置の運転時間と脱硫率の関係を示す図である。実線(a)は実施例9の運転時間と脱硫率の関係を示し、破線(b)は比較例3の運転時間と脱硫率の関係を示す。
図24は脱硫装置の運転時間と脱硫率の関係を示す図である。実線(a)は実施例10の運転時間と脱硫率の関係を示し、破線(b)は比較例4の運転時間と脱硫率の関係を示す。
図25は実施例11の石灰石層に空気を吹き込む脱硫装置の概略図である。
図26は図25の中和部の拡大図である。
図27は脱硫装置の脱硫率の時間変化を示す図である。実線(a)は実施例11の脱硫装置を一定期間停止した後に再起動した場合の脱硫率の時間変化を示し、破線(b)は比較例5の従来技術の装置(図39)を用いた起動後の脱硫率の時間変化を示し、一点鎖線(c)は実施例12の石灰石層に空気吹き込み孔を通じて連続的に空気を吹き込んだ場合の脱硫率の時間変化を示す。
図28は脱硫塔本体とは別に中和装置を設置し、撹拌機で中和装置内部の石灰石層を撹拌して、層高を全体にわたりほぼ同一にする実施例13の脱硫装置の概略図である。
図29は実施例14の分散管に設けた下方向に向いた垂直管の下部に円錐状の整流板を設けた場合の循環タンク内の底部拡大図である。
図30は実施例14の整流板の循環タンクの底部平面とのなす角度Xと脱硫率との関係を示す図である。
図31は分散管に設けた上方向に向いた垂直管の上部には円錐状の整流板を設けた実施例14の変形例の図である。
図32は図30または図31の垂直管先端部の形状を示した図である。
図33は実施例15の中和装置を循環タンクとは別個に設け、循環タンク内の吸収液の一部のみをスプレノズルに循環供給し、他の一部を中和装置に循環供給する脱硫装置の概略図である。
図34は実施例16の吸収液のスプレノズルへの循環ラインとは別に循環タンクの下部に接続する吸収液のバイパスラインを設けた脱硫装置の概略図である。
図35は実施例17の本発明を酸化塔外置き方式の脱硫装置に適用した概略図である。
図36は従来技術に基づく酸化塔外置き方式の排煙脱硫装置の概略図である。
図37は本発明の原料石灰石の供給システムの一例を示す図である。
図38は本発明の原料石灰石の供給システムの他の一例を示す図である。
図39は従来技術の1塔式の湿式排煙脱硫装置の概略図である。
発明を実施するための最良の形態
本発明は、下記の実施例によって、さらに詳細に説明されるが下記の例で制限されるものではない。
実施例1
本実施例を図1、図2(図1のa−a線から見た図)に示す。図39に示した従来技術の脱硫塔と同様に本実施例の装置は塔本体1、入口ダクト2、出口ダクト3、スプレノズル4、吸収液ポンプ5、循環タンク6、撹拌機7、空気吹き込み装置8、ミストエリミネータ9などから構成されるが、本実施例では、さらに落下した吸収液を集めて循環タンク6下部の石灰石粒子の層19の底部から上部へ流れを形成させ、石灰石粒子を吸収液中で流動させるために集液板14、導入管15、分岐管16(図2参照)および分岐管17を循環タンク6に備えている。
図示しないボイラから排出される排ガスAは、入口ダクト2より脱硫塔本体1に導入され、出口ダクト3より排出される。この間、脱硫塔には吸収液ポンプ5から送られる吸収液が複数のスプレノズル4から噴霧され、吸収液と排ガスAの気液接触が行われる。このとき吸収液は排ガスAのSO2を選択的に吸収し、亜硫酸を生成する。亜硫酸を生成した吸収液滴は循環タンク6上に設置された集液板14上に落ちる。集液板14上の吸収液は集められ導入管15を通って循環タンク6の底部へ導かれる。その途中に空気吹き込み装置8から吹き込まれた酸化用空気Bにより吸収液中の亜硫酸は酸化されて硫酸となる。
導入管15底部には吸収液を循環タンク6内の吸収液中に該タンク6の平面全体に均一に上昇させる分散管17が取り付けられている。その構造の一例を図2に示す。図2は循環タンク6の底部断面から見た図であり、この分散管17は循環タンク6の底部より上部に向けて吸収液が底部平面全体に均一に上昇するような構造を採用している。
すなわち分散管17は循環タンク6の底部平面全体に均一に広がるように配置されており、導入管15より導かれた吸収液は分岐管16に入り、さらに分岐管17に導かれる。分岐管17には複数の分散孔18があけられており、この分散孔18により吸収液と空気がタンク6の底部平面全体に均一にしかも激しく噴出して上昇流を形成する。循環タンク6内の吸収液中の流動している石灰石層19内では硫酸と石灰石の反応により石膏が生成する。循環吸収液のpHはpH計21で常に計測されている。
このようにして循環タンク6内の石灰石層19内で中和されてpHが回復した吸収液は、循環タンク6の上部の出口20から吸収液抜き出し管10を通って再びスプレノズル4に送られ、排ガスA中のSO2を選択的に吸収する。吸収液の一部は脱水機13に送られ、石膏Cが回収される。
また、石灰石Dは石灰石供給管12より循環タンク6内に供給される。粒子状の石灰石はスラリまたは乾燥状態で石灰石供給管12より供給するが、乾燥石灰石を気流搬送により石灰石供給管12から塔内に供給する場合には循環タンク6内の吸収液の温度が約50℃であるので、図3に示すように供給管12の内壁面に吸収液からの湯気の影響で石灰石が湿潤化して付着して付着物Fとなる。この湿潤化石灰石の付着量が増えると石灰石供給管12を閉塞することになるので、石灰石供給管12の内壁を定期的に洗浄して、石灰石の付着物Fを洗い落とす洗浄水噴霧ノズル22を設けることが望ましい。なお、以下に述べる全ての実施例において石灰石供給管12の内壁を定期的に洗浄して、石灰石の付着物Fを洗い落とす洗浄水噴霧ノズル22を設けることが望ましいが図示は省略している。
流動している石灰石層19内では硫酸と石灰石の反応により石膏が生成するが、石灰石粒子に比較して石膏粒子が小さいため、石膏粒子と水のみが上昇流により循環タンク6の上部の出口20から循環タンク6外に排出し、石灰石が選択的に循環タンク6内にとどまる。
循環タンク6が角筒状である場合には図4、図5に示すような導入管15、分岐管16および分散管17を設けることができる。図4は側面図、図5は図4のb−b線断面から見た矢視図である。この場合には導入管15の底の一側面に分岐管16が接続しており、該分岐管16から循環タンク6の底部全体にまんべんなく伸びた分散管17が複数設けられている。各分散管17に設けられた分散孔18からの吸収液の噴出速度を所定以上に維持できるようにしてある。
また、分散孔18付きの分散管17としては吸収部に用いる吸収液噴霧用のスプレヘッダのノズル4の部分を外してそのまま転用することができる。
本実施例に基づく装置により重量平均径2mmの石灰石を用いて脱硫試験を行った。ただし、脱硫塔入口での排ガスAのSO2濃度は1000ppmである。また、循環タンク6に吹き込む空気量は排ガス中のSO2のモル比で30倍とした。図6の実線(a)に中和後の吸収液のpHと脱硫率および石膏中の石灰石濃度の関係を示す。ただし、中和後のpHは石灰石量により調整した。吸収液のpH値の上昇に伴い脱硫率も向上するが、石膏中の石灰石濃度は中和後のpHが向上してもほとんど増加せず、0.1%以下と極めて低い。このことから、循環タンク6の上部の出口20から循環タンク6外に排出する石膏の品質が高いことが分かる。
また、石灰石層19の断面積を変化させることにより吸収液の上昇速度を調整した(ただし、石灰石量は一定とした)。
図7に吸収液の石灰石層19での上昇速度と脱硫率の関係を示す。吸収液の上昇速度の増加に伴い脱硫率も向上し、上昇速度6cm/秒で脱硫率はほぼ一定となる。ただし、上昇速度は液流量を石灰石層19の断面積で割った値で示す。
脱硫塔入口ダクト2での排ガスA中のSO2濃度を100〜5000ppmまで変化させたが、いずれの条件でも吸収液の石灰石層19での上昇速度に伴い脱硫率も向上し、上昇速度6cm/秒で脱硫率はほぼ一定となった。石灰石の粒径にもよるが、吸収液の前記上昇速度としては3〜15cm/秒が好ましい。これ以下では脱硫性能が低下し、これ以上では圧力損失が高くなる。
石灰石層高や石灰石粒径などの条件一定で、吸収液に等モルのAlCl3およびNaF(共に試薬)を添加し吸収液中のAl、F成分の濃度を変化させた時の脱硫率の変化を図8中の実線(a)に示す。Al、F成分が5mmol/Lでもほとんど脱硫率が低下していない。
上記実施例では、循環タンク6から抜き出した吸収液はそのままスプレノズル4および脱水機13に供給しているが、循環タンク6から抜き出した吸収液中の石灰石を図示しない分離装置で分離し、石灰石が分離除去された吸収液を脱水して、石膏を回収すると品質の高い石膏が回収できる。
また、脱硫装置の諸設備を定期的に検査する時に、脱硫装置の運転が停止されるので、このとき、循環タンク6内の石灰石は抜き出して必要ならば新しいものと入れ替えるが、この際に、まず、石灰石層19を流動化させて石灰石を抜き出すと、その抜き出しが容易となる。すなわち、静止している石灰石をポンプで抜き出すことは不可能であるが、液中に流動している状態で液と共に抜き出すことは容易である。ただし、石灰石より液の方が抜き出しやすいため、流動化して抜き出しただけでは石灰石の一部が中和部に残ってしまう。そこで、抜き出した石灰石と液を静置して石灰石を沈降させ、液のみを再度中和部に戻すことで石灰石を中和部から完全に抜き出すことが可能となる。なお、抜き出した石灰石を廃棄する代わりにこれを粉砕してある程度まで粒径を小さくし、反応性の高い成分を粒子表面に露出させることにより再度使用することも可能である。
比較例1
実施例1と同じ装置を用いて、平均径10μmに微粉砕した石灰石を使用した時の脱硫性能を調べた。ただし、本比較例の場合は石灰石粒径が小さいので石灰石は吸収液中にけん濁し、実施例1のような流動層を形成させない。中和後の吸収液のpHと脱硫率及び石膏中の石灰石濃度の関係を図6の破線(b)に示す。中和後のpHが同じなら、脱硫率は実施例1とほぼ同じである。しかし、石膏中の石灰石濃度は実施例1より高く、またpHが高くなると石膏中の石灰石濃度が高くなり、石膏中の品質が低下する傾向がある事が分かる。
比較例2
吸収液中の石灰石濃度などの条件一定で、吸収液に等モルのAlCl3およびNaF(共に試薬)を添加し、吸収液中のAl、F濃度を変化させた時の脱硫率の変化を図8中の破線(b)に示す。実施例1に比べて脱硫率の低下が著しい。
実施例2
図9に本実施例に基づく脱硫装置のフローシートを示す。実施例1では循環タンク6内部で吸収液を中和しているが、実施例1と異なり、本実施例のように循環タンク6内の吸収液の外部に中和装置23を設置することも可能である。本実施例は図39に示した従来技術の脱硫塔と同様に塔本体1、入口ダクト2、出口ダクト3、スプレノズル4、吸収液ポンプ5、循環タンク6、撹拌機7、空気吹き込み管8およびミストエリミネータ9などから構成されるが、本実施例では、排ガスA中のSO2を吸収してpHが低下した吸収液のpHを増加させる中和装置23を備えている。
実施例1と同様に、排ガスA中のSO2を選択的に吸収し、亜硫酸を生成した吸収液は循環タンク6内で酸化され、硫酸を生じる。硫酸を含む吸収液はポンプ(図示せず)により中和装置23に送られ、中和装置23内で石灰石により中和され、同時に石膏が生成される。中和後の吸収液の一部が脱水機13に送られ、石膏Cが脱水・回収される。中和後の吸収液は再びスプレーノズル4に送られ、SO2を選択的に吸収する。石灰石Dは石灰石供給管12より中和装置23に供給される。
本実施例でも実施例1と同様に乾燥石灰石を気流搬送により石灰石供給管12から塔内に供給する場合に、該供給管12に湿潤化石灰石が付着するのを防止するため石灰石供給管12の内壁を定期的に洗浄して、石灰石の付着物を洗い落とす洗浄水噴霧ノズル22を設けることが望ましい。
本実施例に基づく装置を用いて脱硫試験を行った。ただし、脱硫塔入口での排ガスA中のSO2濃度は1000ppmである。中和装置23内には最初に2時間分の排ガスA中のSO2と同モルの石灰石(平均径5mm)を入れておき、石灰石供給管12からモル比で排ガス中のSO2の0.97倍の石灰石を供給した。また、循環タンク6内に吹き込む空気量は排ガス中のSO2のモル比で30倍とした。
図10中の実線(a)に中和装置23内の石灰石層19を静置した場合の脱硫率の時間変化を示す。初期には高い脱硫性能を示していたが、時間とともに脱硫率が低下した。この原因を調べた結果、中和装置23内の石灰石粒子表面に石膏粒子がスケーリングし、石灰石の反応性が低下したためであることが判明した。そこで、図11に示すような撹拌機25を用いて中和装置23内の石灰石を撹拌する構造に改良した。改良後の脱硫率の時間変化を図10の曲線bに示す。脱硫性能の低下が認められず、長時間高い脱硫性能が得られた。脱硫塔入口での排ガスA中のSO2濃度を100〜5000ppmまで変化させたが、いずれの条件でも撹拌機25を用いることにより長時間高い脱硫性能が得られた。
また、中和装置23の構造としては吸収液中で平均径が1mm程度の石灰石を撹拌できるものであれば、どのような構造のものでも使用可能である。図11に示す中和装置23では循環タンク6から管路10を経由して硫酸を含む吸収液が中和装置23内に送られ、撹拌機25で撹拌されながら石灰石Dにより中和される。石灰石粒子に比較して石膏粒子は粒径が小さいため、石膏粒子や水のみが中和装置23上部の出口20からスプレーノズル4や脱水機13へ送られ、石灰石Dが選択的に中和装置23内にとどまる。中和装置23は石灰石と吸収液を反応させるもので、石灰石粒子が下流側に実質的に流れて行かないものであればどのような構造のものでも使用可能である。
また、石灰石粒子表面での石膏粒子のスケーリングを防止する方法としては、上記のように撹拌機25を用いる他に、例えば空気などのガスをバブリングしてスケールを防止することも可能である。
また、中和装置23として、図12に示す回転式の湿式のキルン26を用いることもできる。この場合は湿式のキルン26の回転で、その内部に充填された石灰石(図示せず)を撹拌させることができる。また、図13には循環タンク6の下部に設けたレーキ27を中和装置として使用する概略図を示す。
図12に示すキルン26を用いる場合は図11に示す撹拌機25の回転数の代わりにキルン26の回転数を変化させることや、図11に示す中和装置23のタンクでの吸収液量(タンクレベル)の代わりにキルン26の出口に設置された分配器29を用いて吸収液の一部を管路30よりキルン26の入口へ戻すことによりキルン26内部での吸収液の滞留時間を調整することも可能である。
また、中和装置23を脱硫塔の外部に設置する代わりに、図13に示す循環タンク6の下部にレーキ27を設置した場合は循環タンク6の内部に石灰石粒子(図示せず)を入れ、レーキ27の撹拌速度により脱硫塔出口SO2濃度を制御することも可能である。図13には石灰石と石膏の分離装置31を脱硫塔の外部に設置した例を示している。
実施例3
上記実施例2では中和装置23を脱硫塔の外部に設置しているが、図14に示すように、循環タンク6の下部に石灰石Dを充填して循環タンク6から取り出した吸収液を石灰石Dの層19で中和して分離装置31に供給することも可能である。酸化された吸収液は石灰石Dの層19で中和され、吸収液は分離装置31に送られ、ここで石膏と石灰石が分離されて石灰石含有率の低い吸収液が脱水機13に送られ、石膏Cは脱水・回収される。石灰石含有率の高い吸収液は再び塔本体1のスプレノズル4に送られ、SO2を選択的に吸収する。
このような構造にしても石灰石表面にスケーリングする石膏粒子を除去するようにすることが好ましい。
また、図14の装置で循環タンク6に吹き込む空気Bの量を排ガスA中のSO2の10〜100倍に変化させ、その時の分離装置31の溶存酸素濃度を溶存酸素計33を用いて測定しながら脱硫性能を調べた。図15に溶存酸素濃度と脱硫率の関係を示すが、溶存酸素濃度が1ppm以下になると脱硫率が低下した。これは、循環タンク6に吹き込む空気量が少ないと酸化反応(H2SO3+1/2O2=H2SO4)によりH2SO3が完全には酸化されないで液中に残るため、吸収反応(H2O+SO2=H2SO3)が遅くなるためと推定される。そこで、吸収液中の溶存酸素を測定し、その値が1ppm以上になるように酸化用空気量を制御することが好ましい。
なお、本実施例では分離装置31内で吸収液の溶存酸素濃度を測定しているが、中和装置23内部などの吸収液を酸化した後の溶存酸素であれば、他の部位での溶存酸素を測定することも可能である。
また、石膏に要求される品質が低くてもよい場合または吸収液中の石灰石粒子の濃度が低い場合は分離装置31を省略することも可能であり、さらに中和装置23と分離装置31を合体させて1つの装置に両方の機能を持たせることも可能である。分離装置31はシックナや遠心脱水機など石膏粒子と水を分離できるものであればどのようなものでも構わない。
次に、排ガスの流れ方向や排ガスと吸収液の接触方式にそれぞれ特徴を有する実施例4〜実施例6を示す。
実施例4
グリッド塔を有する脱硫装置に本発明を適用した場合の実施例を図16に示す。図16には図1に示す装置を変形した装置を示し、排ガス中のSO2の吸収が脱硫塔内に設けられたグリッド34で行われると排ガスの流れる方向が異なる以外は実施例1のスプレー式の脱硫塔と脱硫プロセスは同じものである。
ボイラから排出される排ガスAは、脱硫塔本体1の塔頂に設けられた入口ダクト2より脱硫塔本体1に導入され、脱硫塔本体1の下部に設けられた排ガス出口ダクト3より排出される。この間、脱硫塔には吸収液ポンプ5から送られる吸収液が複数のスプレーノズル4または該スプレーノズル4の配管の適所に設けられた開口部(図示せず)からグリッド34の頂上部に落下し、グリッド34での吸収液と排ガスAの気液接触が行われる。このとき吸収液は排ガスA中のSO2を選択的に吸収し、亜硫酸を生成する。
亜硫酸を生成した吸収液滴が循環タンク6に集められ、石灰石層19で吸収液中の硫酸が石灰石により中和され、石膏が生成する工程は実施例1と同様である。
実施例5
本発明を吸収液中に配管を通して排ガスを吹き込むジェットバブリング方式の脱硫装置に適用した場合の実施例を図17に示す。ここで、図1と同一機能を奏する部材は同一番号を付し、その説明は省略する。
ボイラから排出される排ガスAは、入口ダクト2より脱硫塔本体1に導入され、出口ダクト3より排出される。この間、排ガスAは入口ダクト2に接続した排ガス吹き込み管35から脱硫塔本体1の下部に設けられた吸収液を貯溜するタンク37内の吸収液の中に吹き込まれ、そこで吸収液と排ガスAの気液接触が行われる。
このときタンク37内の吸収液は排ガスA中のSO2を選択的に吸収し、亜硫酸を生成する。撹拌機38により撹拌されながら、タンク37内の吸収液に吹き込み装置8から吹き込まれる酸化用空気により亜硫酸は酸化されて硫酸となり、硫酸はタンク37内に存在する石灰石層19により中和され、石膏が生成する。タンク37内では撹拌機38により石灰石Dが撹拌される。タンク37内の吸収液の一部はタンク37に設けられた出口20から石膏抜き出し管11を経由してポンプ39により脱水機13に送られ、石膏Cが回収される。また、石灰石Dは石灰石供給管12よりタンク37内に供給される。
上記の実施例4及び実施例5ではそれぞれ循環タンク6及びタンク37内で吸収液を中和しているが、実施例2と同様に中和装置23を脱硫塔外部に設置することも可能である。例えば、実施例5の場合は図33のように該中和装置で吸収液の一部をタンク37から抜き出し中和した後、再び脱流塔に戻している。
実施例6
上記実施例1〜実施例5では脱硫塔の下部または上部から排ガスを導入し、上部または下部から排出する縦型構造の脱硫装置を用いているが、図18に示すような鉛直でない方向に排ガス流路を設けた水平型(横型)の排煙脱硫装置にも本発明は有効である。本装置では脱硫塔は脱硫塔本体1と入口ダクト2と出口ダクト3とで構成され、入口ダクト2に吸収液のスプレノズル4を設け、導入排ガスに吸収液を噴霧してSO2を吸収液中に吸収させ、これを脱硫塔の下部に設けた循環タンク6に落下させて酸化させるものである。また、出口ダクト3にはミストエリミネータ9を設け、飛散ミストが脱硫塔外部に排出しないようにする。
図示しないボイラから排出される排ガスAは、入口ダクト2より脱硫塔本体1に導入され、出口ダクト3より排出される。この間、脱硫塔には吸収液ポンプ5から送られる吸収液が複数のスプレノズル4から噴霧され、吸収液と排ガスAの気液接触が行われる。このとき吸収液は排ガスAのSO2を選択的に吸収し、亜硫酸を生成する。亜硫酸を生成した吸収液滴は循環タンク6上に設置された集液板14上に落ちる。集液板14上の吸収液は集められ導入管15を通って循環タンク6の底部へ導かれる。その途中に空気吹き込み装置8から吹き込まれた酸化用空気Bにより吸収液中の亜硫酸は酸化されて硫酸となる。
導入管15底部には吸収液を循環タンク6内の吸収液中に該タンク6の平面全体に均一に上昇させる分散管17が取り付けられている。導入管15より導かれた吸収液は分岐管16に入り、さらに分散管17に導かれる。分散管17には複数の分散孔(図示せず)があけられており、この分散孔により吸収液と空気がタンク6の底部平面全体に均一にしかも激しく噴出して上昇流を形成する。循環タンク6内の吸収液中の流動している石灰石層19内では硫酸と石灰石の反応により石膏が生成する。そして、層19で中和された吸収液は吸収液抜き出し管10を通り、吸収液ポンプ5によりスプレーノズル4に送られる。また、中和後の吸収液の一部は脱水機13に送られ、石膏Cが脱水・回収される。
なお、本発明の横型吸収塔は図18に示すように吸収塔内のガス流路が水平方向に向いたものに限らず、多少傾斜した鉛直方向でない向きに排ガス流路が設けられた横型吸収塔も含まれる。
実施例7
本実施例は図9に示す実施例2の次の問題点を改良したものである。
すなわち、図9の中和装置23内部では吸収液が石灰石Dにより中和されるが、石灰石粒子表面に石膏粒子が付着すると石灰石Dによる中和の速度が低下するため、中和装置23内部では石灰石粒子表面が液により更新されることが好ましい。例えば、湿式のキルン26(図12)や撹拌機25(図11)を有するタンクあるいは石灰石を液で流動させる方法等のように石灰石を含む吸収液をゆっくりであるが絶えず撹拌しておく必要がある。また、図9に示すプロセスでは、中和装置23内部では粒径の比較的大きい粗い石灰石Dを用いて吸収液を中和するが、スプレーノズル4から噴霧される吸収液中の石灰石Dの含有量は低い。このため、脱硫装置入口でのSO2濃度が高くなると脱硫塔内部を落下する吸収液滴のpHが低下し、その結果脱硫率が低くなるという問題点があった。
そこで本実施例はpHの低下した吸収液を粒径の比較的大きい微粉化処理をしていない粗い石灰石などの固体脱硫剤を用いて中和する湿式脱硫において、脱硫装置入口でのSO2濃度が高くなっても、経済的でかつ高い脱硫性能を達成するものである。
図19に本実施例の装置フローを示す。図9に示した装置フローと同一機能を奏する部材は同一番号を付しているが、本実施例では、図9に示す装置フローに、さらにカルボン酸またはその塩E(本実施例ではぎ酸を用いる)を供給する配管41を追加している。
ボイラから排出される排ガスAは、入口ダクト2より脱硫塔本体1に導入され、出口ダクト3より排出される。この間、脱硫塔には吸収液ポンプ5から送られる吸収液が複数のスプレーノズル4から噴霧され、吸収液と排ガスAの気液接触が行われる。このとき吸収液は排ガスA中のSO2を選択的に吸収し、亜硫酸を生成する(H2O+SO2=H2SO3)。亜硫酸を生成した吸収液滴は、循環タンク6に向かって落下する。循環タンク6内では亜硫酸が酸化され、次式により硫酸を生じる。
H2SO3+1/2O2=H2SO4=2H++SO4 2-
上記反応式により、水中の水素イオン(H+)濃度が一時的に増加(吸収液のpHが低下する)するが、配管41よりぎ酸Eを供給すると次の反応式に示した通り、HCOO-とH+が結合して水中の水素イオン濃度を低下(pHを増加)させることができる。
2HCOO-+2H+=2HCOOH
ぎ酸を含む吸収液はポンプ42により中和装置23に送られ、中和装置23内で次式に示した通りHCOOHは石灰石D(CaCO3)と反応して再度HCOO-となる。
2HCOOH+CaCO3=2HCOO-+H2O+Ca2++CO2
水中のCa2+とSO4 2-濃度が飽和溶解度以上になると次の反応式に示した通り石膏Cが晶析する。
Ca2++SO4 2-+2H2O=CaSO4・2H2O
全体の反応は次の式で表され、ぎ酸Eは分解や蒸発分及び石膏Cの付着水中に溶解しているもの以外は消費されない。
2H2O+SO2+1/2O2+CaCO3=CaSO4・2H2O+CO2
中和装置23で中和された吸収液中には石膏が含まれているが、石膏粒子の粒径は10〜50μm程度であり、中和装置23中の石灰石は平均径で1mm程度なので、両者は容易に分離できる。例えば、中和装置23の出口に石灰石粒子より細かい金網を設置してもよいし、中和装置23中の吸収液の上部から液を抜き出すことにより粗い石灰石粒子の流出を防止することも可能である。しかし、中和装置23から出てくる吸収液中には石膏Cのみでなくわずかながら石灰石Dを含む場合もあるので、必要に応じて吸収液は分離装置31に送られ、ここで石膏Cと石灰石Dが分離されて石灰石含有率の低い吸収液が脱水機13に送られ、石膏Cが脱水・回収される。石灰石含有率の高い吸収液は再びスプレーノズル4に送られ、SO2を選択的に吸収する。石灰石Dは石灰石供給管12より中和装置23に供給される。なお、回収する石膏Cの品質によっては分離装置31は省略できる。
本プロセスでは、中和装置23内部で吸収液が石灰石粒子により中和されるが、石灰石粒子表面に石膏粒子が付着すると石灰石Dによる中和の速度が低下するため、中和装置23内部では石灰石粒子表面が液により更新されることが好ましい。例えば、前記した湿式のキルン26(図12)や撹拌機25(図11)を有するタンク、あるいは石灰石Dを液または気体で流動させる方法等のように石灰石Dを含む吸収液をゆっくりであるが絶えず撹拌しておく必要がある。
図19に示した本実施例に基づく装置を用いて脱硫試験を行った。ただし、脱硫塔入口での排ガスA中の濃度は1000ppmである。中和装置23内には最初に5時間分の排ガスA中のSO2と同モルの石灰石(平均径1mm)を入れておき、石灰石供給管12からモル比で排ガス中のSO2の0.97倍の石灰石Dを供給した。また、循環タンク6に吹き込む空気Bの量は排ガス中SO2のモル比で30倍とした。ぎ酸ナトリウムは吸収液中の濃度が所定の値となるようにカルボン酸またはその塩の供給用の配管41から供給した。
図20に吸収液のぎ酸ナトリウム濃度を変化させた時の気液比(噴霧吸収液量と排ガス量の比率、以下L/Gと略する)と脱硫率の関係を示す。ぎ酸ナトリウム濃度が高くなるほど同一L/Gでの脱硫率が高くなる。
実施例8
実施例7と同じ条件で脱硫試験を行った。ただし、中和装置23内部の石灰石量により中和装置23の出口での吸収液のpHを調整した。図21にぎ酸ナトリウム濃度およびL/G一定でのpHと脱硫率の関係を示す。pHが3.2以下ではぎ酸ナトリウムの効果がほとんど認められない。他のカルボン酸塩についても調べたが、中和装置23出口での吸収液のpHがカルボン酸塩の酸解離指数pKaより高くなるように中和装置23内部での石灰石量や液流速などを調整することにより高い脱硫率が得られる。
上記実施例7では中和装置23が脱硫塔の外に設置されているが、図1、図2(実施例1)に示すように脱硫塔内部で落下する吸収液を吸収部の下部にある循環タンク6の底部に導き、循環タンク6内の石灰石粒子の層の底部から上部へ流れを形成させ、石灰石粒子を吸収液中で流動させることにより吸収液を中和することも可能である。なお、ここでぎ酸ナトリウムは吸収液中の濃度が所定の値となるように、石灰石層19(図1など)の上部の吸収液中にカルボン酸またはその塩の供給用の配管を設けることができる。また、ぎ酸ナトリウムは図1、図2に示す導入管15内の吸収液に供給しても良い。こうして、循環タンク6内の石灰石層19において吸収液の上昇流を形成させることにより図11に示す撹拌機25および撹拌機25の計装などの設備が不要となり、さらにこれに伴う動力も不要となる大きな特徴がある。
また、本実施例では脱硫塔の下部または上部から排ガスを導入し、上部または下部から排出する縦型構造の脱硫装置を用いているが、図18に示すような鉛直でない方向に排ガス流路を設けた横型の排煙脱硫装置にも適用できる。この場合は、ぎ酸ナトリウムは吸収液中の濃度が所定の値となるように、石灰石粒子層(図18の石灰石層19と同等のもの)の上部の吸収液中にカルボン酸またはその塩の供給用の配管を設けることができる。
また、粗い石灰石などの固体脱硫剤を用いるので固体脱硫剤を粉砕する必要がなく、固体脱硫剤粒径が粗い(平均粒径0.5mm以上)ので石膏などの固体生成物粒子(通常平均粒径20〜100μm)と容易に分離でき、中和装置中の固体脱硫剤量を多くできるので高い脱硫性能が得られ、かつ固体生成物粒子に固体脱硫剤が混合することが少ないので固体生成物の品質も向上する。さらに、カルボン酸塩を添加することにより高い脱硫性能が得られる。また、上記カルボン酸及び/またはその塩としてはぎ酸、酢酸などの酸及び/またはその塩を用いることができる。
実施例9
本実施例は図1、図2に示す実施例1の装置の改良に関するものである。
図1に示す装置フローでは石灰石Dの微粉砕設備および微粉砕動力が不要であり、かつ生成した石膏Cの品質も高いという特徴を有する。しかし、脱硫装置を停止した後再起動すると、再起動後所定の期間(数十分〜数時間)は脱硫性能が低くなるという問題があった。
本実施例の排煙脱硫装置のフローを図22に示し、図1に示す装置と同一機能を奏する部材は同一番号を付し、その説明は省略するが、本実施例では、さらに分散管17内の吸収液のpHを測定するためのpH計21を有している。本実施例は、ボイラからの排ガスの供給が停止した後も脱硫塔内で吸収液を循環し、分散管17内に取付けられたpH計21の指示値が5.5になったこと確認してから脱硫装置を停止するものである。
本実施例に基づく装置により平均径2mmの石灰石を用いて脱硫試験を行った。ただし、脱硫塔入口での排ガスA中のSO2濃度は1000ppmである。
図23中の実線(a)にボイラからの排ガスAの供給が停止した後も脱硫塔内で吸収液を循環し、分散管17内に取付けられたpH計21の指示値が5.5になった後に脱硫装置の運転を停止し、24時間後に再起動した時の脱硫率の時間変化を示す。再起動後も安定した脱硫性能が得られている。
比較例3
実施例9と同じ装置を用いて、該装置の再起動後の脱硫性能を調べた。ただし、本比較例ではボイラからの排ガスAの供給が停止した後、ただちに脱硫塔内での吸収液の循環を停止した。24時間後に再起動した時の脱硫率の時間変化を図23中の破線(b)に示す。脱硫率が低い状況が再起動後、1時間以上続いた。
実施例10
脱硫塔入口での排ガスA中のSO2濃度が3000ppmであること以外は、実施例9と同じ装置および条件で脱硫試験を行った。その結果を図24中の実線(a)に示す。再起動後も安定した脱硫性能が得られていることが分かる。
比較例4
脱硫塔入口での排ガスA中のSO2濃度が3000ppmであること以外は、比較例3と同じ装置および条件で脱硫試験を行った。その結果を図24中の破線(b)に示す。脱硫率が低い状況が再起動後2時間以上続いた。
その他の条件でも脱硫性能を調べたが、脱硫塔入口での排ガスA中のSO2濃度が高いほど従来技術では再起動後の脱硫性能の回復に時間がかかる傾向が認められたが、実施例9、10では常に再起動後も安定した脱硫性能が得られた。
このように、実施例1(図1)に示した脱硫装置を停止すると、吸収液中に残存したH2SO3やH2SO4が停止中に石灰石と反応式(3)の中和反応および次式
H2SO3+CaCO3=CaSO3・1/2H2O+CO2
の中和反応に従って反応し、生成したCaSO3(亜硫酸カルシウム)や石膏Cが石灰石Dの表面に付着するため反応性が悪くなり、再起動した際の脱硫性能が低下すると考えられる。再起動後しばらくすると、吸収液による石灰石Dの流動や石灰石D同士の衝突などにより石灰石D表面の亜硫酸カルシウムや石膏Cが除去され、脱硫性能が回復すると考えられる。これに対して、実施例9、実施例10では、ボイラなどからの排ガスが停止した後も吸収液を循環し、例えば吸収液が中和される部位に入ってくる吸収液(図22で分散管17内の吸収液)のpHが所定の値(通常4.0〜6.0)以上になるようにした後、脱硫装置の運転を停止させる。このため、脱硫装置の運転の停止中において、吸収液中にH2SO3やH2SO4が残存しないため、石灰石D表面に亜硫酸カルシウムや石膏Cが付着することなく、再起動後の脱硫性能の低下も生じることなく、安定した脱硫性能が得られる。
実施例9、実施例10では、石灰石と石膏の粒径の差による沈降速度の差を利用して中和部内部に石灰石を選択的にとどめているが、他の方法、例えばフルイや慣性力の差を利用した方法で石灰石と石膏を分離することも可能である。
実施例11
本実施例を図25、図26(図25の石灰石により吸収液を中和する部位の拡大図)に示す。図1に示した実施例1の装置と同一機能を奏する部材、装置は同一番号を付し、その説明は省略するが、本実施例では、流動している石灰石層19の圧力損失を測定するための圧力計43、石灰石層19中に空気などの気体を吹き込むための空気吹き込み装置45および空気吹き込み孔46を有する。
排ガス中のSO2を吸収した吸収液は集液板14上に落下し、導入管15を通って循環タンク6の底部へ導かれる。その途中で吸収液中の亜硫酸は酸化されて硫酸となる。導入管15底部の分散管17に設けられた複数の分散孔18より吸収液と空気吹き込み孔26からの空気がすべての供給孔で均一にしかも激しく噴出して上昇流を形成する。流動している石灰石層19内では硫酸と石灰石の反応により石膏が生成する。
このようにして中和されてpHが回復した吸収液は、循環タンク6の上部の出口20から吸収液抜き出し管10を通って再びスプレーノズル4に送られ、SO2を選択的に吸収する。圧力計43により複数の箇所での循環タンク6の底部と上部の圧力差が測定され、圧力差が所定の値より小さい箇所では空気吹き込み装置45の空気吹き込み孔46を通じて空気が吹き込まれ、流動化の悪い部分の石灰石層19の流動が促進される。なお、空気に代えて水を吹き込んでもよい。
このとき、図示していないが、各分散管17の間に区画板を石灰石層19の垂直方向に設けて各分散管17を互いに分離して石灰石層19の流動層の形成が複数の区画された中和部内にそれぞれ形成される構成とすると、各々の区画内で独立して石灰石層19の流動層が形成させることができるので、流動化の悪い部分の石灰石層19の流動化が容易になる。
また導入管15内には吸収液の比重を測定する比重計47を設けると、圧力計43と共に流動している石灰石層19での圧力損失(P)および吸収液の比重を計測して、前記したように下記の式に従い、石灰石層19の層高を検出することができる。
P=(石灰石の比重−吸収液の比重)×石灰石層高×(1−空隙率)
本実施例に基づく装置により平均径2mmの石灰石を用いて脱硫試験を行った。ただし、脱硫塔入口での排ガスA中のSO2濃度は1000ppmである。また、循環タンク6の底部と上部の圧力差を測定する際の液深の差は2mであり、液深差による圧力差0.2kg/m2を差し引いた石灰石Dの流動による圧力差が0.05kg/cm2以下になった箇所のみ空気吹き込み装置45から空気吹き込み孔46を通じて石灰石Dの流動による圧力差が0.1gk/cm2以上になるまで空気を吹き込んだ。
図27中の実線(a)に一定期間停止した後に脱硫装置を再起動した場合の脱硫率の時間変化を示す。起動直後には石灰石Dの流動状態が石灰石層19全体にわたり均一でないため、脱硫率が低くなっているが、空気を吹き込んで石灰石Dの流動を石灰石層全体にわたり均一にする(石灰石層高が層全体でほぼ同一となる)ことにより脱硫率が向上し、その後も安定した脱硫性能が得られている。また、空気を吹き込みにより起動後は石灰石Dの流動化がおこり、石灰石Dの反応性が高くなる。空気の吹き込みに代えて水などの液体を吹き込み孔46から導入しても同様の効果が得られる。
なお、石灰石層19中に空気などの気体を吹き込む代わりに導入管15、分岐管16または分散管17内に気体を吹き込んで、吸収液と共に石灰石層19中に気体を供給することにより石灰石層19の高さを石灰石層全体にわたりほぼ同一にすることも可能である。
比較例5
実施例11と同じ条件で、図39に示した従来技術の装置を用いて起動後の脱流性能を調べた。脱硫率の時間変化を図27中の破線(b)に示す。脱硫率が低く、時間と共に脱硫率が低下する。これは、時間と共に石灰石層全体にわたり、石灰石層高の不均一さが増したためと推定される。
実施例12
実施例11と同じ装置を用いて同じ条件で試験を行った。ただし、試験中は連続的に循環タンク6の底部全体にわたりまんべんなく設置された空気吹き込み孔46を通じて空気を吹き込んだ。空気吹き込み量は排ガス量の1vol%であった。脱硫率の時間変化を図27中の一点鎖線(c)に示す。定常になった時の脱硫率は約94%であり、実施例11のそれより高くなった。これは、吸収液中のCO2が空気により追い出され、中和反応(H2SO4+CaCO3+H2O=CaSO4・2H2O+CO2)が促進されたためである。
実施例13
上記実施例12では循環タンク6内で石灰石を流動化させる構造で、かつ空気を吹き込むことにより石灰石Dの層高を全体にわたりほぼ同一高さにしているが、図28に示すように、塔本体1とは別に中和装置31を設置し、循環タンク6とは連結管10で接続し、撹拌機25で中和装置31内部の石灰石層19を撹拌すると共に、循環タンク6からの吸収液を中和装置31の底部から上部に向けて流すことにより、層高を全体にほぼ同一高さとすることも可能である。
実施例14
本実施例では図1に示す排煙脱硫装置を用いるが、図29の分散管17が配置されている循環タンク6底部の部分断面図に示すように、図2、図4などに示す分散管17に下方向に向いた垂直管49を設け、その先端に分散孔18が存在するようにした。垂直管49の下部には円錐状の整流板50があり、分散孔18から噴出した吸収液を整流すると共に、垂直方向に吸収液の速度分布(下部の方が速度が大きい)を持たせることにより、分散孔18から噴出した吸収液の噴出速度が低下しても下部、すなわち整流板50があるため循環タンク6の底部に当たる部分の吸収液の速度は大きいので、石灰石粒子が流動し易くなる。
本実施例に基づく装置により平均径2mmの石灰石を用いて脱硫試験を行った。ただし、脱硫塔入口での排ガスA中のSO2濃度は1000ppmである。図30は整流板50の循環タンク6の底部平面とのなす角度Xと脱硫率との関係を示す。脱硫率からすると前記角度Xは30〜70度が好ましい。
なお、図31に示すように分散管17に上方向に向いた垂直管49を設け、その先端に分散孔18を形成し、垂直管49の上部には石灰石粒子が分散管17に入るのを防止すると共に分散孔18から噴出する吸収液を中和部に均一に流すための円錐状の整流板51を図29の場合とは逆向きに設けることも可能である。また、垂直管49は図32に示すような種々の先端部の形状をしたものを用いることができる。
実施例15
図33に示すように、本実施例は中和装置23を循環タンク6とは別個に設け、循環タンク6内の吸収液の一部のみをスプレーノズル4に循環供給し、他の一部を中和装置23に循環供給する例である。この場合は中和装置23とスプレーノズル4への各々の吸収液循環系統を別に独立して維持管理することが可能である。そのため、例えば一方の吸収液循環系統が故障した場合でも正常な方をしばらく運転継続することができる。また、実施例9、実施例10に述べたような排煙脱硫装置の運転停止時における中和部内部の吸収液のpHの管理が易しくなる。すなわち、排煙脱硫装置の運転停止後もしばらく中和装置23のみ運転を継続して、pH計21により中和装置23出口の吸収液のpHが5.5になった後に脱硫装置を停止させることが容易になる。また、排煙脱硫装置の起動時には中和装置23側の吸収液のpHを十分高めた後にスプレーノズル4に吸収液を循環させる系統の運転を始めることも可能となる。
また、図示していないが、脱水機13に流入する直前の吸収液流路からサイクロンを介して中和装置23に吸収液が循環する配管を接続しておくと、粒径の大きい石灰石Dを中和装置23に回収することができ、粒径の大きい石灰石Dが脱水機13側に流出することがない。
実施例16
図34に本実施例の脱硫プロセスのフローを示す。本実施例では吸収液のスプレノズル4への循環ライン10とは別に循環タンク6の下部と循環ライン53とを接続するバイパスライン54が設置されている。このバイパスライン54は脱硫装置を起動する際に石灰石層19を流動させるために用いるもので、ポンプ55からスプレーノズル4を経ないで直接循環タンク6の下部に吸収液を送る。脱硫装置の運転の停止中に石灰石層19が水圧により締まるため、脱硫装置を起動する際に石灰石層19を流動させるには高い圧力を必要とする。バイパスライン54を設置することにより吸収液をスプレーノズル4に送るための圧力損失が無くなるため、起動時の石灰石Dの流動が容易になる。一度流動すれば、吸収液の循環ラインをバイパスライン54から循環ライン53に切り替え、例えば実施例1のように操作すればよい。なお、本実施例では吸収液中の石灰石Dを分離装置31で分離し、石灰石Dが分離除去された吸収液を脱水機13で脱水して、石膏Cを回収している。
実施例17
本発明は図35に示す酸化塔外置き方式の排煙脱硫装置にも適用可能である。酸化塔外置き方式の排煙脱硫装置は、排ガスの冷却・除塵を行う冷却塔(図示せず。)、吸収液を噴霧して排ガス中のSO2と反応させる脱硫塔本体1、脱硫塔本体1で生成した亜硫酸カルシウムを酸化する酸化塔57の3塔で構成される。図35に示す酸化塔外置き方式の排煙脱硫装置内の主な反応式は下記の通りである。なお、図36には従来技術に基づく酸化塔外置き方式の排煙脱硫装置のフローシートを示す。
吸収液(主成分:水)が脱硫塔本体1内で排ガス中のSO2を吸収してH2SO3を生じ、これが吸収液中の亜硫酸カルシウム(CaSO3・1/2H2O)と反応して次亜硫酸カルシウム(Ca(HSO3)となる。次亜硫酸カルシウムは中和部で石灰石層19内を通過する過程で石灰石と反応して亜硫酸カルシウムを生成する。この亜硫酸カルシウムが再度スプレノズル4に送られて排ガスA中のSO2を吸収して生じたH2SO3と反応する。一方、亜硫酸カルシウムの一部はタンク56に送られ、そこで硫酸Gを添加されて撹拌機58による撹拌でpHが調整された後、酸化塔57に送られる。酸化塔57には空気Bが供給され、下記の反応式に従って亜硫酸が酸化されて石膏C(CaSO4・2H2O)が生成される。
(吸収反応(H2O+SO2=H2SO3CaSO3・1/2H2O+H2SO3=Ca(HSO3+1/2H2O
(中和反応)Ca(HSO3+CaCO3=CaSO3・1/2H2 +CO2
(酸化反応)CaSO3・1/2H2 +1/2O2+3/2H2O=CaSO4・2H2O
また上記いずれの実施例にも適用可能であるが、中和部内の石灰石層19は大量の石灰石が充填することが可能であり、通常約20時間程度の連続運転でも消費されないだけの石灰石Dが一度に充填されている。したがって、脱硫装置の運転を停止している夜間に、まとめて中和部に石灰石Dを充填すると、昼間は石灰石Dの充填操作をする必要がなくなり、また石灰石粉砕用の粉砕機などのメインテナンスを夜間にする必要がなくなる。特に、脱硫装置の運転停止中に石灰石Dを充填するので、脱硫塔本体1の石灰石供給管12内に湿潤化した石灰石Dが付着することを防ぐための対策を石灰石Dの供給時に行う必要がなくなる。
排煙脱硫装置に所定の粒径の石灰石Dを供給するには原料の石灰石原石を粉砕機(ジョークラッシャー、ハンマークラッシャー、ロールクラッシャーなどを用いる。)で粉砕して排煙脱硫装置まで搬送して供給するが、石灰石原石D'の受け入れ場所は排煙脱硫装置の設置場所から数km程度離れていることが多い。そこで本発明の上記各実施例では図37、図38に示すように、粉砕機61を石灰石原石D'の近傍に配置するか、脱硫塔本体1近傍に配置するかのいずれかにして、石灰石原石D'と脱硫塔本体1の間はベルトコンベアで接続する原料供給システムを採用する。
図37は石灰石原石D'をまずベルトコンベア58で排煙脱硫装置の近傍に配置されたホッパー59と粉砕機61に供給して、粉砕した後、石灰石配送管62からホッパー63、定量フィーダ65を経由させて中和装置23に供給する原料供給システムを示す。また、図38には石灰石原石D'を原石D'の近傍にあるホッパー59と粉砕機61に供給して、粉砕した後ベルトコンベア58で脱硫塔本体1の近傍に配置されたホッパー63、定量フィーダ65を経由させて中和装置23に供給する原料供給システムを示す。上記いずれの原料供給システムでも粉砕機61の台数を各脱硫塔本体1にそれぞれ対応させて設置する必要はなく、一台の粉砕機61を複数の脱硫塔本体1に対応させることができる。特に、図38に示すシステムでは一台の粉砕機61を石灰石原石D'の近傍に配置するだけですべての脱硫塔本体1に石灰石Dを供給できる。
ここで、図37、図38には脱硫塔本体1とは別個に中和装置23を設けた例を示しているが、本発明はこれに限定されないことは明らかである。こうして、脱硫塔本体1内では排ガスAが吸収液に吸収され、該吸収液を空気Bで酸化し、最終的に脱水機13で石膏Cを回収する。
また、中和装置23への石灰石Dの供給量の制御は定量フィーダ65や粉砕機61のオン・オフなどで行い、石灰石粒度の制御は粉砕機61の回転数などで行う。
本発明の上記各実施例では、石灰石Dと石膏Cの粒径の差による沈降速度の差を利用して中和部内部に石灰石を選択的にとどめているが、他の方法、例えばフルイや慣性力の差を利用した方法で石灰石Dと石膏Cを分離することも可能である。
また、本発明の上記各実施例は脱硫塔本体1の下部から排ガスを導入し、上部から排出する構造でかつスプレで吸収液を排ガスA中に噴霧する脱硫塔などについての実施例がほとんどであるが、本発明法は排ガスの流れ方向や排ガスと吸収液の接触方式(濡れ壁式吸収装置、吸収液中に浸った配管を通して排ガスを吸収液中にバブリングする方式等)に関係なく有効である。
以上のように本発明によれば、吸収液中にAl、Fが共存しても脱硫性能がほとんど低下しない。また、粒径の粗い石灰石などの固体脱硫剤を用いるので固体脱硫剤を粉砕する必要がなく、固体脱硫剤粒子の粒径が粗い(0.5mm以上、好ましくは1mm以上)ので石膏粒子(通常20〜100μm)と容易に分離でき、中和部中の固体脱硫剤量を多くできるので高い脱硫性能が得られ、かつ石膏などの固体生成物粒子に固体脱硫剤が混合することが少ないので固体生成物の品質も向上する。

Claims (30)

  1. 焼装置から排出される排ガスと吸収液を接触させることにより排ガス中の硫黄酸化物を吸収液中に吸収させて硫黄酸化物を吸収した吸収液を中和する湿式排煙脱硫方法において、
    吸収液を中和する部位に硫黄化合物を吸収した吸収液と の反応で得られる反応生成物の粒子とは物理的に分離可 能であり十分な大きさの固体脱硫剤を貯めておき、前記 反応生成物水を主成分とする吸収液を該中和部位から選択的に排出して、少なくともその一部を前記燃焼装置 から排出される排ガスと接触させることを特徴とする固体脱硫剤利用湿式排煙脱硫方法。
  2. ガスを吸収液中に吸収させた後、該吸収液を酸化させることを特徴とする請求の範囲1記載の固体脱硫剤利用湿式排煙脱硫方法。
  3. 中和部位では固体脱硫剤の周りに反応生成物粒子がスケーリングするのを防止することを特徴とする請求の範囲1または2記載の固体脱硫剤利用湿式排煙脱硫方法。
  4. 固体脱硫剤の周りに反応生成物粒子がスケーリングするのを防止するには中和部位の底部から上部へ向けて吸収液の流れを形成させるか前記吸収液の流れと共にまたはこれとは別に中和部位の底部から上部へ向けて空気または水の流れを形成させることにより行い、吸収液を中和することを特徴とする請求の範囲3記載の固体脱硫剤利用湿式排煙脱硫方法。
  5. 固体脱硫剤の周りに反応生成物粒子がスケーリングするのを防止するには中和部位内を撹拌することで行うことを特徴とする請求の範囲3記載の固体脱硫剤利用湿式排煙脱硫方法。
  6. 中和部位を複数に区画し、各々の区画内で独立して固体脱硫剤の周りに反応生成物粒子がスケーリングするのを防止することを特徴とする請求の範囲1または2記載の固体脱硫剤利用湿式排煙脱硫方法。
  7. 吸収液中にカルボン酸および/またはその塩を供給することを特徴とする請求の範囲1または2記載の固体脱硫剤利用湿式排煙脱硫方法。
  8. 排ガス中の硫黄酸化物吸収前の吸収液のpHがカルボン酸の酸解離指数pKaより高くなるように中和部位における少なくとも固体脱硫剤量または吸収液流速のいずれかを調整することを特徴とする請求の範囲7記載の固体脱硫剤利用湿式排煙脱硫方法。
  9. 中和部位の吸収液中の溶存酸素濃度を測定し、排ガス中の硫黄酸化物を吸収した吸収液の酸化用空気量を制御することを特徴とする請求の範囲1または2記載の固体脱硫剤利用湿式排煙脱硫方法。
  10. 固体脱硫剤が石灰石であり、反応生成物が石膏であることを特徴とする請求の範囲1または2記載の固体脱硫剤利用湿式排煙脱硫方法。
  11. 固体脱硫剤は中和反応により生成する固体生成物の粒径より大きい粒径を有することを特徴とする請求の範囲1または2記載の固体脱硫剤利用湿式排煙脱硫方法。
  12. 排ガスを下部から導入し、上部から排出する、または排ガスを上部から導入し下部から排出する竪型の排ガス流路または鉛直でない方向である水平型の排ガス流路を設けたことを特徴とする請求の範囲1または2記載の固体脱硫剤利用湿式排煙脱硫方法。
  13. 焼装置から排出される排ガスと水を主 成分とする吸収液を接触させる吸収部と、
    該吸収部で排ガス中の硫黄酸化物を吸収した吸収液を 収して、硫黄化合物を吸収した吸収液との反応で得られ る反応生成物の粒子とは物理的に分離可能であり十分な 大きさの固体脱硫剤を含有し、水を主成分とする吸収液を含有する中和部と、
    該中和部から前記反応生成物の粒子と水を主成分とする 吸収液を前記固体脱硫剤から分離して排出して、その少 なくとも一部を吸収部に供給する循環流路と
    を設けたことを特徴とする固体脱硫剤利用湿式排煙脱硫装置。
  14. 黄酸化物を吸収した吸収液を酸化する酸化部を前記中和部の前流側に設けたことを特徴とする請求の範囲13記載の固体脱硫剤利用湿式排煙脱硫装置。
  15. 吸収部は排ガスと吸収液との気液接触領域を有することを特徴とする請求の範囲13または14記載の固体脱硫剤利用湿式排煙脱硫装置。
  16. 気液接触領域には排ガスと噴霧吸収液との気液接触用のグリッドを設けたことを特徴とする請求の範囲15記載の固体脱硫剤利用湿式排煙脱硫装置。
  17. 中和部の吸収液内にバブリング方式で排ガスを導く配管を設けたことを特徴とする請求の範囲13または14記載の湿式排煙脱硫装置。
  18. 中和部内の固体脱硫剤の周りに反応生成物粒子がスケーリングすることを防止する手段を備えたことを特徴とする請求の範囲13または14記載の固体脱硫剤利用湿式排煙脱硫装置。
  19. 固体脱硫剤の周りに反応生成物粒子がスケーリングすることを防止する手段は固体脱硫剤からなる層の底部全体にわたり分岐し、該底部から上部へ向って分散する吸収液の噴出流を形成させる吸収液の分岐・分散流路と
    この吸収液の分岐・分散流路と共にまたは別個に前記固体脱硫剤層の底部全体にわたり分岐し、該底部から上部へ向って分散する空気または水の噴出流を形成させる空気または水の分岐・分散流路
    を設けたことを特徴とする請求の範囲18記載の固体脱硫剤利用湿式排煙脱硫装置。
  20. 吸収液の分岐・分散流路には、吸収液を下向きまたは上向きに噴出する分散孔を先端に備えた垂直管が設けられ、該分散孔に対向する位置の中和部内には整流板が設けられていることを特徴とする請求の範囲19記載の固体脱硫剤利用湿式排煙脱硫装置。
  21. 固体脱硫剤の周りに反応生成物粒子がスケーリングすることを防止する手段は中和部内に設けられた撹拌羽根またはレーキで構成されるかまたは中和部を回転体で構成されることを特徴とする請求の範囲18記載の固体脱硫剤利用湿式排煙脱硫装置。
  22. 固体脱硫剤は複数の区画された中和部内にそれぞれ充填されたことを特徴とする請求の範囲13または14記載の固体脱硫剤利用湿式排煙脱硫装置。
  23. 中和部へ固体脱硫剤を供給する供給部を設け、該供給部にはその壁面に固体脱硫剤が付着するのを防止する洗浄装置を設けたことを特徴とする請求の範囲13または14記載の固体脱硫剤利用湿式排煙脱硫装置。
  24. 固体脱硫剤が石灰石であり、反応生成物が石膏であることを特徴とする請求の範囲13または14記載の固体脱硫剤利用湿式排煙脱硫装置。
  25. 固体脱硫剤の重量平均径が0.5mm以上であることを特徴とする請求の範囲13または14記載の固体脱硫剤利用湿式排煙脱硫装置。
  26. 排ガスを下部から導入し、上部から排出する竪型の排ガス流路または排ガスを上部から導入し下部から排出する竪型の排ガス流路または鉛直でない方向である水平型の排ガス流路を設けたことを特徴とする請求の範囲13または14記載の固体脱硫剤利用湿式排煙脱硫装置。
  27. 請求の範囲13または14記載の固体脱硫剤利用湿式排煙脱硫装置の運転を停止する場合には、硫黄酸化物を吸収した吸収液のpHの検出値が所定値以上になった後、湿式排煙脱硫装置を停止させることを特徴とする固体脱硫剤利用湿式排煙脱硫装置の停止方法。
  28. 硫黄酸化物を吸収した吸収液のpHの検出値が4.0以上である場合に、湿式排煙脱硫装置を停止させることを特徴とする請求の範囲27記載の固体脱硫剤利用湿式排煙脱硫装置の停止方法。
  29. 請求の範囲13または14記載の固体脱硫剤利用湿式排煙脱硫装置の運転開始時または運転時に、中和部内の固体脱硫剤をかき混ぜて中和部全体にわたり固体脱硫剤の層高がほぼ同一になるようにすることを特徴とする固体脱硫剤利用湿式排煙脱硫装置の運転方法。
  30. 中和部内の固体脱硫剤の層の圧力損失、撹拌装置のトルク、吸収液中の固体濃度、吸収液の比重、吸収液の粘度の内の一以上の値を測定して、固体脱硫剤の撹拌状態を検知し、固体脱硫剤層高が中和部全体にわたり不均一であると判断した場合に、固体脱硫剤の層に吸収液、気体または水を吹き込むかまたは固体脱硫剤の層を撹拌装置で撹拌することを特徴とする請求の範囲29記載の固体脱硫剤利用湿式排煙脱硫装置の運転方法。
JP52753695A 1994-05-11 1995-05-11 固体脱硫剤利用湿式排煙脱硫装置と方法 Expired - Fee Related JP3650836B2 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP9742594 1994-05-11
JP2062595 1995-02-08
JP4031695 1995-02-28
JP4031595 1995-02-28
JP4031895 1995-02-28
PCT/JP1995/000921 WO1995031272A1 (fr) 1994-05-11 1995-05-11 Appareil de desulfuration de gas brules par voie humide et procede utilisant un agent de desulfuration solide

Publications (1)

Publication Number Publication Date
JP3650836B2 true JP3650836B2 (ja) 2005-05-25

Family

ID=27520244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52753695A Expired - Fee Related JP3650836B2 (ja) 1994-05-11 1995-05-11 固体脱硫剤利用湿式排煙脱硫装置と方法

Country Status (11)

Country Link
US (3) US5686053A (ja)
JP (1) JP3650836B2 (ja)
KR (1) KR100290751B1 (ja)
CN (1) CN1075743C (ja)
CZ (1) CZ293501B6 (ja)
FI (1) FI960128A0 (ja)
GB (1) GB2296490B (ja)
MX (1) MX9505374A (ja)
PL (1) PL180622B1 (ja)
RU (1) RU2145905C1 (ja)
WO (1) WO1995031272A1 (ja)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ293501B6 (cs) * 1994-05-11 2004-05-12 Babcock@Hitachiákabushikiákaisha Způsob odsiřování kouřových plynů mokrého typu a zařízení k jeho provádění
MX9505372A (es) * 1995-02-28 1998-03-31 Babcock Hitachi Kk Planta de desulfuramiento de gas de combustion del tipo humedo y metodo para hacer uso de un agente desulfurante solido.
TW301701B (ja) * 1995-03-30 1997-04-01 Mitsubishi Heavy Ind Ltd
US5665317A (en) * 1995-12-29 1997-09-09 General Electric Company Flue gas scrubbing apparatus
JP3068452B2 (ja) * 1996-02-06 2000-07-24 三菱重工業株式会社 湿式排煙脱硫装置
KR100355506B1 (ko) * 1997-11-11 2002-10-11 미츠비시 쥬고교 가부시키가이샤 습식 가스 처리 장치, 습식 가스 처리 방법, 가스 처리 방법 및 가스 처리 장치
WO2000010691A1 (en) * 1998-08-18 2000-03-02 United States Department Of Energy Method and apparatus for extracting and sequestering carbon dioxide
US6190629B1 (en) * 1999-04-16 2001-02-20 Cbl Technologies, Inc. Organic acid scrubber and methods
US6277343B1 (en) 1999-09-23 2001-08-21 Marsulex Environmental Technologies, Llc Flue gas scrubbing method and apparatus therefor
US6594553B1 (en) 2000-04-18 2003-07-15 Alstom (Switzerland) Ltd Process for enhancing the sulfur capture capability of an alkaline earth material
RU2212928C1 (ru) * 2002-03-06 2003-09-27 Чучалин Лев Климентьевич Способ очистки отходящих технологических газов от диоксида серы
US6695018B2 (en) * 2002-06-10 2004-02-24 The Babcock & Wilcox Company Collection scoop for flue gas desulfurization systems with bleed streams or ex situ forced oxidation
CN1224446C (zh) * 2003-08-15 2005-10-26 武汉凯迪电力股份有限公司 单塔多床循环流态化的大型化干法烟气脱硫方法
CN100448512C (zh) * 2005-10-19 2009-01-07 中国石油化工股份有限公司 一种燃煤锅炉烟气脱硫方法及装置
KR20090087029A (ko) * 2006-12-23 2009-08-14 에이이 앤드 이 렌트제스 게임베하 연료 가스 정화 유닛용 통기 장치
CN101219335B (zh) * 2007-09-29 2010-09-08 北京朗新明环保科技有限公司 一种脱硫吸收塔连续运行方法及其烟气临时排放装置
KR101018462B1 (ko) * 2009-02-24 2011-03-02 최쌍석 가스-슬러리 접촉 트레이식 에너지 절약형 유황산화물 제거장치
SE533938C2 (sv) * 2009-07-14 2011-03-08 Marketing I Konsulting Per Anders Brattemo Förfarande samt anordning för rening av gaser
CA2771406A1 (en) * 2009-08-19 2011-02-24 John Michael Hoce Wet particulate neutralizing canister for liquid acid vacuum recovery
US8795416B2 (en) * 2009-10-12 2014-08-05 Babcock & Wilcox Power Generation Group, Inc. Segregated in-situ forced oxidation wet flue gas desulfurization for oxygen-fired fossil fuel combustion
CN101797466B (zh) * 2009-10-14 2012-05-23 中国科学院过程工程研究所 一种利用电石渣浆的湿法烟气脱硫的方法及其装置
FR2951386B1 (fr) * 2009-10-21 2011-12-09 Lab Sa Procede et installation de commande d'un laveur humide
JP5770421B2 (ja) * 2009-10-26 2015-08-26 千代田化工建設株式会社 排ガス処理装置
US20120189522A1 (en) * 2011-01-20 2012-07-26 Foster Wheeler North America Corp. Method of Desulfurizing Flue Gas, an Arrangement for Desulfurizing Flue Gas, and a Method of Modernizing a Desulfurization Arrangement
EP2578292B1 (en) * 2011-10-07 2018-12-26 General Electric Technology GmbH A method of controlling a wet scrubber useful for removing sulphur dioxide from a process gas
RU2014128160A (ru) * 2011-12-16 2016-02-10 Дге Др.-Инж. Гюнтер Инжиниринг Гмбх Способ и установка для выделения диоксида углерода из сырых газов, содержащих метан
JP5950435B2 (ja) * 2011-12-26 2016-07-13 森川産業株式会社 ガス洗浄装置
CN102614756B (zh) * 2012-03-21 2013-11-06 浙江省电力公司电力科学研究院 石灰石-石膏脱硫系统石灰石屏蔽现象诊断及处理方法
US8961916B1 (en) * 2012-06-07 2015-02-24 Mansour S. Bader Methods to control flue gas and inorganics precipitation
US20140112834A1 (en) * 2012-10-23 2014-04-24 Babcock & Wilcox Power Generation Group, Inc. System and method for controlling scale build-up in a wfgd
JP2014233702A (ja) * 2013-06-04 2014-12-15 三菱重工業株式会社 海水脱硫装置及び海水脱硫システム
JP6262978B2 (ja) * 2013-10-03 2018-01-17 千代田化工建設株式会社 硫黄酸化物を含むガスの脱硫方法及び脱硫装置
US10375901B2 (en) 2014-12-09 2019-08-13 Mtd Products Inc Blower/vacuum
CN104524954B (zh) * 2015-01-16 2016-04-06 梁蓓 一种带有左、右限位传感器的脱硫除尘设备
JP6623053B2 (ja) 2015-12-07 2019-12-18 千代田化工建設株式会社 排煙脱硫装置
CN105561741A (zh) * 2016-02-15 2016-05-11 大唐环境产业集团股份有限公司 一种高效吸收塔多功能烟气排放装置
CN106345244A (zh) * 2016-10-17 2017-01-25 浙江大学 一种燃煤烟气三氧化硫脱除装置和方法
JP6445619B2 (ja) 2017-06-01 2018-12-26 千代田化工建設株式会社 気体下降管、据付部材および脱硫装置
CN107261780B (zh) * 2017-08-12 2020-05-19 浙江千尧环境工程有限公司 一种湿法烟气脱硫的鼓泡吸收塔
CN107694311A (zh) * 2017-09-26 2018-02-16 华北理工大学 一种用于含有酸性气体的净化装置
CN108097019A (zh) * 2017-12-11 2018-06-01 常州苏通海平机电科技有限公司 一种锅炉尾气综合处理装置及其应用方法
CN110541832B (zh) * 2019-09-26 2024-03-19 中船澄西船舶修造有限公司 一种用于湿法脱硫器的离心风机
CN111068500A (zh) * 2019-12-23 2020-04-28 山东师范大学 一种循环流化床烟气脱硫系统
CN112206640B (zh) * 2020-09-16 2022-08-19 西安热工研究院有限公司 石灰石浆液pH值浓度飞升检测系统、方法、控制系统和脱硫系统
CN115400561B (zh) * 2022-08-23 2023-11-24 浙江嘉宁环保新材料科技有限公司 一种应用于氧化钙生产的脱硫塔

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US31236A (en) * 1861-01-29 Improvement in treadle attachments for sewing-machines
JPS5638247B2 (ja) 1973-02-10 1981-09-05
JPS5638937B2 (ja) * 1973-07-24 1981-09-09
JPS5230783A (en) * 1975-09-05 1977-03-08 Mitsubishi Heavy Ind Ltd Wet desulfurization process of exhaust gas
DE3006965A1 (de) * 1980-02-25 1981-10-22 L. & C. Steinmüller GmbH, 5270 Gummersbach Verfahren zum entfernen von schwerfeldioxid aus einem rauchgas
JPS5888023A (ja) * 1981-11-17 1983-05-26 Ishikawajima Harima Heavy Ind Co Ltd 石膏を副生する排煙脱硫方法
JPS5913624A (ja) * 1982-07-14 1984-01-24 ゼネラル・エレクトリツク・カンパニイ 1基の排煙脱硫装置内で同時に石膏を副生する方法
JPS6099329A (ja) * 1983-11-07 1985-06-03 Mitsubishi Heavy Ind Ltd 湿式排煙脱硫装置
JPS61178022A (ja) * 1985-02-05 1986-08-09 Mitsubishi Heavy Ind Ltd So↓2とso↓3とダストの同時処理方法
US4696805A (en) * 1985-02-05 1987-09-29 Mitsubishi Jukogyo Kabushiki Kaisha Method for desulfurizing exhaust gas
JPH0741141B2 (ja) * 1986-08-18 1995-05-10 バブコツク日立株式会社 湿式排煙脱硫装置
JP2547803B2 (ja) * 1987-12-25 1996-10-23 バブコツク日立株式会社 湿式排煙脱硫装置
JPH0533828A (ja) * 1991-07-26 1993-02-09 Showa Electric Wire & Cable Co Ltd 振動絶縁方法
JPH05228336A (ja) * 1992-02-19 1993-09-07 Mitsubishi Heavy Ind Ltd 脱硫装置のpH制御装置
CZ293501B6 (cs) * 1994-05-11 2004-05-12 Babcock@Hitachiákabushikiákaisha Způsob odsiřování kouřových plynů mokrého typu a zařízení k jeho provádění
US5512072A (en) * 1994-12-05 1996-04-30 General Electric Environmental Services, Inc. Flue gas scrubbing apparatus
MX9505372A (es) * 1995-02-28 1998-03-31 Babcock Hitachi Kk Planta de desulfuramiento de gas de combustion del tipo humedo y metodo para hacer uso de un agente desulfurante solido.

Also Published As

Publication number Publication date
GB2296490A (en) 1996-07-03
KR960706365A (ko) 1996-12-09
US5945081A (en) 1999-08-31
US6080370A (en) 2000-06-27
WO1995031272A1 (fr) 1995-11-23
RU2145905C1 (ru) 2000-02-27
FI960128A (fi) 1996-01-11
GB2296490B (en) 1998-04-08
MX9505374A (es) 1998-03-31
CZ323295A3 (en) 1996-04-17
US5686053A (en) 1997-11-11
PL312217A1 (en) 1996-04-01
KR100290751B1 (ko) 2001-09-17
CZ293501B6 (cs) 2004-05-12
CN1075743C (zh) 2001-12-05
PL180622B1 (pl) 2001-03-30
GB9522404D0 (en) 1996-02-21
FI960128A0 (fi) 1996-01-11
CN1128503A (zh) 1996-08-07

Similar Documents

Publication Publication Date Title
JP3650836B2 (ja) 固体脱硫剤利用湿式排煙脱硫装置と方法
JP3650837B2 (ja) 固体脱硫剤利用湿式排煙脱硫方法と装置
US6203598B1 (en) Flue gas treating process and system
US5648048A (en) Wet-type flue gas desulfurization plant
EP2586517B1 (en) Flue gas desulfurization
KR970703798A (ko) 연소 배출물로부터 황 산화물을 제거하기 위한 습식 세척 방법 및 장치(improved wet scrubbing method and apparatus for removing sulfur oxides from combustion effluents)
JP3564289B2 (ja) 脱硫吸収液の処理方法及びその装置
JPH0780243A (ja) 高濃度脱硫剤スラリによる脱硫方法と装置
JPH11290646A (ja) 湿式排煙脱硫方法と装置
JPH0724252A (ja) 酸化マグネシウムによる湿式排煙脱硫装置及びその脱硫 方法
JPH10137539A (ja) 粗粒固体脱硫剤を用いる排煙脱硫方法と装置
JPH10192647A (ja) 湿式排煙脱硫装置
JPH06343824A (ja) 湿式排煙脱硫装置と方法
JPH06114233A (ja) 湿式排煙脱硫装置および方法
JP3429012B2 (ja) 湿式排煙脱硫方法および装置
JPH11128669A (ja) 湿式排煙脱硫方法及び該方法を用いる装置
JPH08229347A (ja) 石炭焚排ガスの排ガス処理方法及び排ガス処理装置
JPH0663354A (ja) 湿式排煙脱硫装置とその運転方法
JPH05285339A (ja) 湿式排煙脱硫装置
JPH09857A (ja) 排ガスの処理方法
JPH05285338A (ja) 湿式排煙脱硫装置
JPH0739719A (ja) 湿式排煙脱硫方法と装置
JPH11147022A (ja) 排煙脱硫方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees