JP3269745B2 - モジュール型半導体装置 - Google Patents

モジュール型半導体装置

Info

Publication number
JP3269745B2
JP3269745B2 JP00466995A JP466995A JP3269745B2 JP 3269745 B2 JP3269745 B2 JP 3269745B2 JP 00466995 A JP00466995 A JP 00466995A JP 466995 A JP466995 A JP 466995A JP 3269745 B2 JP3269745 B2 JP 3269745B2
Authority
JP
Japan
Prior art keywords
wiring
terminal
solder
substrate
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00466995A
Other languages
English (en)
Other versions
JPH08195471A (ja
Inventor
広一 井上
隆一 齋藤
森  睦宏
保敏 栗原
仁 大貫
新 木村
嶋田  智
和弘 鈴木
行雄 紙田
勇雄 小林
一二 山田
直弘 門馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP00466995A priority Critical patent/JP3269745B2/ja
Priority to DE19601372A priority patent/DE19601372B4/de
Publication of JPH08195471A publication Critical patent/JPH08195471A/ja
Priority to US09/603,966 priority patent/US6353258B1/en
Application granted granted Critical
Publication of JP3269745B2 publication Critical patent/JP3269745B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48738Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48747Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85447Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16151Cap comprising an aperture, e.g. for pressure control, encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/163Connection portion, e.g. seal
    • H01L2924/16315Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/2076Diameter ranges equal to or larger than 100 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、絶縁ゲート型トランジ
スタチップ及びダイオードチップ等の複数のパワー半導
体素子を搭載した構成単位を複数配列するモジュール型
半導体装置に関する。
【0002】
【従来の技術】絶縁ゲート型トランジスタは、たとえ
ば、電子技術1991年8月号pp.17−71に解説さ
れているように、MOSFETの高速性及び高入力インピーダ
ンス特性とバイポーラトランジスタの低飽和電圧特性を
兼ね備えた電力スイッチング素子であり、(1)電圧駆
動である、(2)高速動作ができる、という大きな特徴
を有している。すなわち、使いやすい上に高性能な素子
であり、注目されている。その反面、(a)高耐圧化が
難しい、(b)チップの単位面積当たりの電流が小さ
い、という問題も併せ持っている。
【0003】上記した問題点を解決するためには、大電
力のスイッチングを行う際、チップの直列並列接続が不
可欠になるので、モジュール化、さらにはモジュールの
多重接続が行われる。
【0004】絶縁ゲート型トランジスタをモジュール化
する際に考慮しなければならないのは、モジュールのシ
リーズ化である。モジュール内に、一つの回路を形成す
るユニットを設け、必要に応じてユニット数を増減す
る。モジュール内での2並列は一般に行われており、特
開平2−178959 号公報のように開示例がある。本開示例
では、2並列の各ユニットは線対称に配置されている。
この配列は、2並列では理想的であるが、3並列,4並
列といった、多重並列に対応するのが難しい。
【0005】上述のとおり、絶縁ゲート型トランジスタ
モジュールでは、モジュール単独での使用では耐圧,電
流容量の不足する場合が多い。その場合、モジュール内
のユニットの多重接続にとどまらず、モジュールの多重
接続が必要になる。そのためには、端子をモジュールの
上面に集中する構造が望ましい。さらに、モジュール間
の主回路配線の影響を受けにくいゲート配線の引き回し
が要求される。モジュールのゲート端子の配置次第で主
回路を流れる電流の影響の程度が大きく左右されるので
ある。たとえば、特開昭57−15453 号公報に上面配置の
構成例が示される。これは、モジュールの並列接続を念
頭に置いているため、ベース(本例はトランジスタモジ
ュールであるため、ゲートでなくベースである)をモジ
ュールの端に配置している。ところが、これを直列に接
続すると、ベース端子の上を主回路の配線が通ることに
なり主回路を流れる電流の影響をベース回路が受け、不
都合である。
【0006】
【発明が解決しようとする課題】以上述べたように、従
来技術には、モジュール内のユニット、すなわち構成単
位の数が2を越えても対応可能な構造、及び、モジュー
ルを多重接続する際の問題点を解消した構造について考
慮がされていない。
【0007】本発明の目的は、シリーズ展開が可能な、
絶縁ゲート型トランジスタ,ダイオード等のパワー半導
体素子を搭載した電力用モジュール型半導体装置の構造
を提供することにある。
【0008】本発明の他の目的は、信頼性の高い、絶縁
ゲート型トランジスタ,ダイオード等のパワー半導体素
子を搭載した電力用モジュール型半導体装置の構造を提
供することにある。
【0009】
【課題を解決するための手段】本発明によれば、基板上
に複数のパワー半導体素子及び配線用金属銅箔を非対称
に配置した同一の構成単位を複数同一方向に配置し、各
構成単位上に同一間隔で電極端子を配置し、これらを連
結端子で連結することで、モジュール内の多重接続を実
現する。
【0010】本発明の実施態様によれば、モジュール外
の多重接続に対応するために、主端子及び補助端子をす
べてモジュールの上面に配置する。補助端子は主端子間
に配置することが望ましい。
【0011】さらに、本発明の実施態様によれば、高信
頼化のために、直接パワー半導体素子を固定する個所に
は錫とアンチモンを主成分とするはんだを使用し、同時
に、モジュール内の、パワー半導体素子を支える部材の
接着個所には錫と鉛を主成分とするはんだを使用する。
【0012】さらに、本発明の実施態様によれば、シリ
コーンゲルの膨張収縮による過大な応力発生を避けるた
めにモジュール内に空気層を設ける構造を採用すること
により、高信頼化を達成する。
【0013】
【作用】
{1}モジュール内多重接続 本発明の基本的な構成は、モジュール内の並列接続数が
2である場合に必要かつ十分な電気的性能を得られる構
造にあると同時に、モジュール内の並列接続数が3以上
の場合にも、必要かつ十分な電気的性能を得られる構造
にある。大電流を制御する場合、並列回路のインダクタ
ンスを極力揃えることが肝要である。インダクタンスの
不整合があると、インダクタンス成分によってスイッチ
ング時に発生する逆起電力が不揃いになる。そのため、
一部の回路に電流が集中するという不都合を生じるので
ある。インダクタンスは、配線長にもっとも影響を受け
る。従って、内部の並列接続部同士の配線長を揃える配
置が重要になる。二つの並列接続においては、パワー半
導体素子及び配線を線対称に配置すれば、配線長を揃え
ることができ、その結果、容易にインダクタンスを揃え
ることができる。しかし、三つの並列接続においては困
難が生じる。本発明による構成単位の配列は、二つの並
列接続にとどまらず、三つ以上の並列にも対応できる、
優れたものである。
【0014】図3に、本発明による配列例(図3(a)
及び図3(b))を示す。ここで構成単位とは、1枚の
窒化アルミニウム基板420上に二つの絶縁ゲート型ト
ランジスタチップ401及び一つのダイオードチップ3
01及び配線用銅箔(408,409,410)を搭載
し、アルミニウムワイヤ(エミッタワイヤ402,ゲー
トワイヤ403、及びアノードワイヤ336)で内部配
線を行ったものを指す。本発明による配列(図3(a)
及び図3(b))では、同一種類の構成単位をすべて同
じ方向を向いて配列している。すなわち、基板上に複数
のパワー半導体素子及び配線用金属箔を非対称に配置し
てた構成単位を同じ方向に複数配置している。この配置
を採用することによって、三つの構成単位の並列接続
(図3(b))を容易に出来る。パワー半導体素子の特性
は、他の半導体素子と同様、ばらつきを持っているた
め、構成単位の特性もばらつく。本発明のように同一パ
ターンの構成単位を使用することにより、近い特性の構
成単位を組み合わせやすくなる。また、本発明によれば
各構成単位で、電流の取りだし位置(端子足のはんだ付
け位置)を同じにするため、並列接続する端子足間のピ
ッチが、構成単位のピッチと同じになり、一定になるた
めインダクタンスのバランスを調整することが出来る。
すなわち、コレクタ端子足306と307,307と3
08の間隔、エミッタ端子足323と324,324と
325の間隔が同じになるのである。従って、少なくと
も両端の構成単位に関しては、コレクタ合流端子足31
5のコレクタインダクタンス調整端子足312との接点
から各構成単位を経てエミッタ合流端子足332のエミ
ッタインダクタンス調整端子足329との接点までの経
路では、インダクタンスが揃っている。従って、両端の
構成単位に至るインダクタンスに対して中央の構成単位
に至るインダクタンスを合わせれば、三つの構成単位に
至るインダクタンスがすべて揃うことになる。
【0015】また、図3の例では両端と中央の構成単位
に至るインダクタンスを揃えるためにコレクタインダク
タンス調整端子足312とエミッタインダクタンス調整
端子足329を設けた。コレクタ連結端子足311とコ
レクタインダクタンス調整端子足312が近接している
ので、相互インダクタンスを発生する。両者の間隔及び
近接長さを調整することで、中央の構成単位に至る経路
のインダクタンスを両端の2構成単位に合わせることが
可能になる。
【0016】もちろん、四つ以上の並列接続も、同様に
可能であり、直列接続も可能である。
【0017】{2}モジュール外多重接続 本発明の複数モジュールの多重接続によれば、外部端子
をすべてモジュールの上面に配置し、しかも、ゲートを
駆動するための端子であるゲート端子及び補助エミッタ
端子をコレクタ端子とエミッタ端子の間に配置してい
る。このような構成によって、使い勝手が良いだけでな
く電気的特性も良好で、構造として理想的である。図2
にその一例を示す。図2は、本発明による絶縁ゲート型
トランジスタを搭載したモジュール型半導体装置を、直
流電源から三相交流を発生するインバータに適用した例
である。入力は、直流プラス側入力201及び直流マイ
ナス側入力202である。出力は、U相203,V相2
04及びW相205である。単一のモジュールでは電流
容量が不足するので、2モジュールを並列に接続してい
る。それぞれのモジュールには、コレクタ端子207,
エミッタ端子208,ゲート端子209及び補助エミッ
タ端子210と、すべての外部端子が樹脂ケース211
の上面に載置されている。樹脂ケース211上のコレク
タ端子207及びエミッタ端子208は、モジュール上
面のほぼ中心線上に位置し、これら主端子、すなわちコ
レクタ端子207とエミッタ端子208の間にゲート端
子209及び補助エミッタ端子210がある。そのた
め、ゲート駆動用のゲート配線213及び補助エミッタ配
線214が板状配線215と重ならない。この配置は、
主電流の流れる回路と制御電圧を供給するゲート回路が
空間的に分離されているため、作業性が良いばかりでな
く、ゲート回路への主電流の干渉が少なくなるという電
気的性能上の利点もある。
【0018】電流のアンバランスによる影響は、大きい
電流の回路部分より小さい電流の回路部分の方が小さ
い。本発明によるモジュールを使用すれば、モジュール
内で三つの並列を実現して、モジュールの並列数を、電
流バランスの良い2とする構成を実現することができ
る。この構成は、電流のアンバランスをモジュール内で
吸収するという点で、システム全体のバランスとして、
より優れている。本発明は、上記したように内部で3並
列が可能であるので、システム全体としてのバランスを
取りやすい、柔軟なシステム設計ができる。
【0019】{3}高信頼化接着構造 本発明のモジュール内の構造によれば、直接パワー半導
体素子を固定する個所には錫(Sn)とアンチモン(S
b)を主成分とするはんだを使用する。このはんだは、
Snの含有量の多い、比較的硬いはんだであり、これを
シリコーンチップ下に使用することにより、接着部の耐
熱疲労性が向上する。はんだが硬いため、熱疲労歪がは
んだに掛かりにくくなるからである。とくに、我々の知
見では、Sbの含有量を4〜6重量%にすると、良好な
はんだ付け性及び接着部の信頼性が得られている。反応
性の高いSn含有量が90重量%以上のはんだを使用す
ると、チップ裏面のメタライズが侵食されやすい。そこ
で、比較的侵食されにくいニッケル(Ni)をメタライ
ズの多層膜中に使用し、さらに、反応抑制のために微量
のNiをはんだに添加するとよい。同様に、チップ下は
んだが触れるコレクタ配線用銅箔にも銅箔ニッケルめっ
きを施して、はんだによる侵食を極力抑えるとよい。モ
ジュール内の構造の例を図4に示す。図4は、本発明に
よる標準的なモジュールの断面の一部である。外壁は、
金属板ニッケルめっき423で表面を覆った金属板21
2と、樹脂ケース211で構成されている。絶縁ゲート
型トランジスタチップ401は窒化アルミニウム基板4
20表面に銀ろう421で接着されたコレクタ配線用銅
箔408上に、チップ下はんだ406で接着されてい
る。
【0020】絶縁ゲート型トランジスタチップ401の
ゲート接続用アルミニウムパッド405からは、ゲート
ワイヤ403を通してゲート配線用銅箔409に、ま
た、エミッタ接続用アルミニウムパッド404からは、
エミッタワイヤ402を通してエミッタ配線用銅箔41
0に、それぞれ接続されている。これらは、最終的には
ゲート端子209及びエミッタ端子(図示せず)並びに
補助エミッタ端子(図示せず)につながる。図では、主
端子(すなわち、主電流が流れる端子)を表示していな
い。主端子のモジュール内配線は、すべて端子足群で行
われる。これに対して、ゲート配線及び補助エミッタ配
線は、端子足群と、絶縁被覆を施した撚り線による配線
の併用構造である。構成単位間を構成単位間ゲート接続
線415及び構成単位間補助エミッタ接続線416で接
続し、外部に出る端子としては、ゲート端子209と補
助エミッタ端子(図示せず)の2個となる。なお、ゲー
ト及び補助エミッタの接続線には、テフロン被覆の撚り
線を使用する。
【0021】絶縁ゲート型トランジスタチップ401
は、シリコーンゲル424で覆われ、樹脂ケース211
を通して侵入してくる水により電気特性が変化しないよ
うにしている。また、樹脂ケース211と接着性の良い
エポキシ樹脂425をシリコーンゲル424と樹脂ケー
ス211との間に充填し、水の侵入速度を下げる役割を
担わせている。
【0022】端子足は、予め熱処理によって柔らかくし
た銅を素材とし、表面に端子足ニッケルめっき419を
施したものを使用する。樹脂ケース211,エポキシ樹
脂425及びシリコーンゲル424は、熱膨張係数が金
属より大きい。とくに、シリコーンゲルは、液体並みの
膨張係数を有しているので、温度変化で、外部端子接続
用ゲート端子足414や内部結線用補助エミッタ端子足
413には大きな変位が加わる。そこで、端子足先端は
んだ418近傍に端子足曲折部417を設け、端子足先
端はんだ418に過大な熱応力が掛からないようにす
る。この対策は、図示していないが、主端子でも同様に
行われる。また、端子足には外部の端子をねじ締めする
際にも力が加わる。端子足曲折部417には、このよう
な外力を直接端子足先端はんだ418に及ぼさない効果
もある。
【0023】更に、本発明のモジュール内構造によれば
パワー半導体素子を支える部材の接着個所に錫と鉛を主
成分とするはんだを使用する。
【0024】本発明のモジュール型半導体装置のもう一
つの接着個所である、窒化アルミニウム基板420の裏
面接着用銅箔411と金属板212の接着個所について
述べる。窒化アルミニウム基板固定用はんだ422の接
着部の特徴は、接着面積が大きいことである。従って、
この部分のはんだには、なによりもぬれ性が良く、気泡
(ボイド)の発生が少ないことが求められる。前述のS
n−Sb系はんだはぬれ性があまり良くない。従って、
この部分のはんだとしては適さない。さらに、この部分
には柔軟性が要求される。絶縁ゲート型トランジスタチ
ップ401から金属板212に至る層構造全体で見る
と、チップ下はんだ406が硬いので柔軟な部分が他に
はない。熱歪は小さいが熱応力が比較的大きくなりやす
い構造である。従って、熱応力の緩和のため、窒化アル
ミニウム基板固定用はんだ422には、柔らかいはんだ
の使用が望ましい。
【0025】以上の二つの要件、すなわち、大面積であ
るためぬれ性が要求されること、及び、Sn−Sbが硬
いので、この部分には柔らかいはんだが要求されるこ
と、この、両方を満足する材料、そして、もちろん、耐
熱疲労性が高いはんだである、Snと鉛(Pb)を主成
分とするはんだを採用した。この系のはんだは、共晶に
近い組成の、比較的硬いものでもSn−Sb系に比べる
と、ヤング率が半分程度であり、充分に柔らかい。従っ
て、層構造全体の中での応力吸収層としての機能を充分
果たすことができる。しかも、ぬれ性が良好である。こ
の部分に使用するはんだとしては、他の系で適するもの
はない。具体的には、この部分の接着はSn−Sbより
後工程になるので、融点の低い、共晶に近い組成のもの
を選んでいる。
【0026】{4}高信頼化モジュール構造 本発明のモジュール内の構造によれば、モジュール内部
に空気層を設けている。このことによりシリコーンゲー
ルの膨張収縮による過大な応力発生を避けることが可能
となる。図5にモジュール内部の構造例を示す。なお、
説明に直接関係のない、はんだ,ボンディングワイヤ,
端子足群等は表示を省略した。
【0027】図において、樹脂蓋502は端子足群を固
定する役割も担っており、樹脂壁504が金属板212
に接着される前に、端子足群のはんだ付け時に固定され
る。その後、樹脂壁504が固定され、エポキシ樹脂4
25が樹脂蓋502と樹脂壁504がお互いに噛み合う
部分に注入され、硬化される。その後、シリコーンゴム
キャップ503を取り付ける前の状態の樹脂蓋502の
穴からシリコーンゲル424を注入し、硬化する。上部
に空気層501を残すように、量を調節する。最後に、
シリコーンゴムキャップ503を圧入し、完成する。
【0028】シリコーンゲルは、1℃当たり数100pp
m の非常に大きな熱膨張係数を有しているため、その膨
張,収縮による圧力変化をどのように躱すかがパッケー
ジの信頼性に直接関係する。また、ゲルの硬化時に発生
するガスが、ケース材料の表面をコーティングすること
によって、ケース材料とエポキシの接着力を低下させ、
パッケージの信頼性を下げている。本構造は、その両方
の問題を解決する。すなわち、膨張に関しては、パッケ
ージ内に空気層を設けて充分な緩衝効果を得ている。ま
た、ゲルの硬化時のガス発生によるケース表面汚染に関
しては、ゲルの硬化以前にエポキシを硬化することで対
処している。
【0029】以上の説明で明らかなように、本構造はエ
ポキシとケースとの接着性を確保しつつシリコーンゲル
上に空間を確保しており、信頼性の高いパッケージであ
る。
【0030】
【実施例】以下、本発明を、実施例によりさらに具体的
に説明する。なお、本発明はこれら実施例に限定されな
い。
【0031】本発明の実施例1乃至7を、図1乃至図2
及び図4乃至図29に従って説明する。
【0032】(実施例1)本発明の第1の実施例につい
て、図1乃至図2,図4及び図7乃至図13を参照して
説明する。
【0033】図12は、本発明の第1の実施例を斜め上
方から眺めたところである。ヒートシンク(図示せず)
に取り付けるためのベースとなる金属板には、モリブデ
ンを使用した。モリブデン基板107には、はんだ付け
の便宜を図るため及び、モリブデンの耐湿性を補うため
にニッケルめっきを施した(図示せず)。底面以外の、
側壁及び上面は樹脂で構成した。主端子及び補助端子を
すべてモジュールの上面に配置した。主端子であるコレ
クタ端子119及びエミッタ端子120を、モジュール
の中心線上に配置し、補助端子であるゲート端子129
及び補助エミッタ端子130を両主端子の間に配置し
た。外形寸法を小さく保ちつつ、内部の寸法を確保する
ために、ケース壁1201の四隅を円弧状にえぐり、そ
の部分に取り付け用穴116を開けた。図12は、一部
を切って、内部が見えるようにしてある。内部にはシリ
コーンゲル1203とエポキシレジン1202が層状に
充填されている。絶縁ゲート型トランジスタチップ10
1上をシリコーンゲル1203が覆い、エポキシレジン12
02がその上に重なっている。エポキシレジン1202の一
部は上面において外壁の一部を構成している。
【0034】本発明によるモジュール型半導体装置は大
電流を扱うので、モジュール外の配線と相互干渉を発生
する要因を極力避ける必要がある。そのためには不必要
な電磁誘導の原因になる余計な端子類をモジュール外に
出さない方が良い。従って、構成単位内の配線はもちろ
ん、構成単位間の配線も、モジュール型半導体装置内で
行う。モジュール外の端子は、主端子2個(コレクタ端
子119及びエミッタ端子120)及びゲート端子12
9及び補助エミッタ端子130各1個の合計4個であ
る。外部端子を必要最小限にすると、使い勝手も良くな
る。
【0035】図10は、本発明の第1の実施例の製作過
程における外観及び断面を示している。本発明の第1の
実施例は、構成単位が2個で、各構成単位が1個の窒化
アルミニウム基板106からなっている。それぞれの構
成単位について、同じく製作過程の外観及び断面を示す
図8で説明する。構成単位である窒化アルミニウム基板
106には、4個のシリコーンチップが搭載されてい
る。一番上の1個がフリーホイールダイオードチップ1
02であり、下の3個が絶縁ゲート型トランジスタチッ
プ101である。3個の絶縁ゲート型トランジスタチッ
プ101とフリーホイールダイオードチップ102は、
同じ外形寸法で、一辺10mmである。基本的には、構成
単位内のチップは一列にならんでいる。しかし、フリー
ホイールダイオードチップ102は、絶縁ゲート型トラ
ンジスタチップ101より少し右にずれた配置になって
いる。その結果、フリーホイールダイオードチップ10
2の左のコレクタ配線用銅箔パターン103に比較的広
い領域を確保することができた。その反面、フリーホイ
ールダイオードチップ102の右横のエミッタ配線用銅
箔パターン104は、絶縁ゲート型トランジスタチップ
101の右より幅が狭くなっている。しかし、狭くなっ
ても幅が8mmあり、図8の後工程であるアルミニウム細
線のワイヤボンディングを施した状態、すなわち図9を
参照して分かるように、ワイヤボンディングに支障はな
い。むしろ、絶縁ゲート型トランジスタチップ101の
右側のエミッタ配線用銅箔パターン104の幅にゆとり
がある。これら、コレクタ配線用銅箔パターン103及
びエミッタ配線用銅箔パターン104のゆとりのスペー
スは、図1に示すように、コレクタ端子足108及びエ
ミッタ端子足110、さらに、補助エミッタ端子足11
4の接着場所として使われる。本実施例のように、窒化
アルミニウム基板106の長辺側に接着場所を配置する
と、窒化アルミニウム基板106の対角長を小さくする
ことができる。本実施例と、接着個所を短辺側に配置し
た場合の比較をする。本実施例では、窒化アルミニウム
基板106の長辺寸法が58mm、短辺寸法が42mmで、
面積は約2400平方mm、また、対角長は71.6mm で
ある。これに対して、接着場所を短辺側に配置すると、
長辺寸法が74mm、短辺寸法が38mmで、面積は約28
00平方mm、また、対角長は83.2mm となる。窒化ア
ルミニウムは脆い材料であり、できるだけ応力の掛から
ない構造にする必要がある。対角長を小さくすること
は、最も効果的な対策である。従って、本実施例のよう
に、窒化アルミニウム基板106の長辺側に接着個所を
配置することは、重要である。また、エミッタ端子足1
10が、3個の絶縁ゲート型トランジスタチップの両端
の重心を結んだ線分の垂直二等分線上に接着されてい
る。この構成は、エミッタ側配線のインダクタンスを揃
えるのに有効である。絶縁ゲート型トランジスタチップ
は電圧駆動であるため、点弧直後の絶縁ゲート型トラン
ジスタチップ101間の電流上昇カーブを揃えるには、
ゲート−エミッタ間電圧を揃えなければならない。その
ためには、各絶縁ゲート型トランジスタチップ101の
エミッタに至る配線のインダクタンスを揃えることが必
要である。インダクタンスを揃えれば、各絶縁ゲート型
トランジスタチップ101のエミッタ電位が揃い、ゲー
ト−エミッタ間電圧が揃うのである。この配置も、端子
足の接着場所を長辺側にすることによって初めて実現で
きる。
【0036】銅の端子足群とは、軟化のための熱処理を
施した銅を素材とする細長い板状の棒を必要本数樹脂の
蓋に挿入し、先端の位置及び高さを揃えたものである。
先端にクリームはんだあるいは溶融はんだを付着させ、
一つのモジュールで必要とする端子足をすべて一括して
はんだ付けする。この端子足の先端は、すべて窒化アル
ミニウム基板の金属化パターン表面と接着される。こ
の、接着位置を窒化アルミニウム基板の長辺側の端部に
配置するのである。すでに述べたように、窒化アルミニ
ウム、とくに、本発明で扱う、両面に銅箔を貼りつけた
窒化アルミニウムは、割れやすい。主な原因は、窒化ア
ルミニウムと銅の熱膨張係数の違いである。従って、窒
化アルミニウムの寸法を小さく抑えなければならない。
ここで述べているはんだ付け位置は、結果として窒化ア
ルミニウムの対角寸法を低減できる、実用的な対策であ
る。もちろん、寸法を小さくすることは、アルミナに対
しても有効である。
【0037】絶縁ゲート型トランジスタは電圧駆動型で
あるので、点弧直前のみならず、点弧直後の電流がまだ
安定しない時間領域ではエミッタとゲート間の電圧を、
各チップで揃えておく必要がある。ゲートには、ほとん
ど電流が流れないので、ゲートの電位は各チップでそん
なに変わるものではない。ところが、エミッタには主電
流が流れるので、電源から各チップのエミッタまでの誘
導成分(インダクタンス)が揃っていないと、点弧直後
の電圧が揃わなくなる。点弧特性は、各チップに掛かる
ゲート電圧、すなわち、ゲートとエミッタの間の電圧で
左右されるので、エミッタの主電流が流れる配線のイン
ダクタンスの整合は重要である。インダクタンスは、基
本的に配線長に比例するので、エミッタ端子から各絶縁
ゲート型トランジスタのエミッタまでの距離を揃える必
要がある。エミッタ端子足110から各絶縁ゲート型ト
ランジスタチップ101を厳密に等距離に置くには、エ
ミッタ端子足110を中心とする円弧上に各絶縁ゲート
型トランジスタチップ101を配置しなければならない。
これは、現実問題としては不可能である。そこで、本実
施例のように、現実的には、最遠(両端)の絶縁ゲート
型トランジスタチップ101に至る距離を揃える配置を
取らざるを得ない。
【0038】図8に戻って、窒化アルミニウム基板10
6及び、その上のシリコーンチップについて、さらに説
明する。まず、チップの配置である。基本的にすべての
シリコーンチップがほぼ一列に配置されている。先程述
べた、エミッタ配線のインダクタンスを考慮すると、絶
縁ゲート型トランジスタチップ101が、エミッタ端子
足110の接着部を中心にした、同一の円周上に配置さ
れるのが理想である。ところが、このような配置にする
と、窒化アルミニウム基板106に無駄な場所ができて
しまい、接着部の熱応力が大きくなって、信頼性を低下
させてしまう。また、絶縁ゲート型トランジスタチップ
101は、3端子素子であるので、エミッタ配線とゲー
ト配線が両立する配列でなければならない。以上の両方
の理由から、直線配置が最も合理的である。
【0039】すでに何度も述べているように、窒化アル
ミニウムは脆い材料である。従って、亀裂の発生原因を
極力排除しなければならない。そのために、窒化アルミ
ニウム基板の四隅を曲率0.5mm 以上の円弧で、いわゆ
る面取りをする。さらに、銅箔パターンの角部にも曲率
0.1mm 以上の面取りを施す。亀裂のスタートは鋭い角
部であることが多いので、この構造は有効である。
【0040】窒化アルミニウムはシリコーンに近い熱膨
張係数を有していることが特徴である。このことが、表
面を金属化する際の制約になっている。すなわち、金属
との熱膨張係数の差が大きいために、亀裂が発生しやす
い。すでに述べたように、窒化アルミニウムは脆いの
で、ますます亀裂の発生が起こりやすくなる。程度の差
はあるが、アルミナも銅の数分の1という小さい熱膨張
係数を有しており、同様の問題がある。
【0041】そこで、必ず両面に金属化層を設け、両面
で発生する熱応力をバランスさせるようにする。ところ
が、片面は金属板に接着するために全面単一のパターン
(べた)であるが、もう片面は、チップへの配線の一部
を担うため、いくつかの分かれたパターンになる。従っ
て、全面パターン側の方が金属化層の応力が大きくな
る。そこで、全面側をパターン面より薄くしてバランス
を取ることにする。
【0042】外部と絶縁を保ちつつ熱を逃がすために、
高熱伝導で絶縁性の良い窒化アルミニウム基板106を
使用する。窒化アルミニウムの熱膨張係数はシリコーン
に近いので、絶縁ゲート型トランジスタチップ101及
びフリーホイールダイオードチップ102のはんだ付け
個所の熱疲労寿命を伸ばすのに有効である。
【0043】また、窒化アルミニウム基板106の表面
を、モリブデン基板107との接着のために全面金属化
する。同時に、逆の面も金属化する。この逆の面の金属
化部分は、先に述べた面のように全面ではなく、いくつ
かの部分に分かれている。絶縁ゲート型トランジスタチ
ップ101及びフリーホイールダイオードチップ102の
接着のみならず、電流あるいは電圧を供給する作用、す
なわち、配線の機能を併せ持つ。
【0044】窒化アルミニウムは脆いので、熱応力を小
さく抑えるために、対角サイズを小さく抑え、さらに、
基板端部に曲率を持たせたり、銅箔パターンの端部にも
曲率を持たせる必要がある。
【0045】つぎに、本実施例で、絶縁ゲート型トラン
ジスタチップ101とフリーホイールダイオードチップ
102を同じサイズにした理由を述べる。まず、絶縁ゲ
ート型トランジスタチップ101とフリーホイールダイ
オードチップ102に掛かる負荷を考える。ピーク電流
は、両者でほぼ同じである。また、電流が流れる時間
(デューティ)は、フリーホイールダイオードが絶縁ゲ
ート型トランジスタのほぼ半分である。また、飽和電圧
は、フリーホイールダイオードの方が小さい。以上のこ
とを考慮すると、フリーホイールダイオードチップ10
2の発熱は、絶縁ゲート型トランジスタチップ101の
約3分の1になる。つぎに、チップの構造について考え
る。本発明が対象としているモジュールは、高耐圧,大
電力用である。従って、チップの周辺には、耐圧を維持
するための、別の表現をすれば、電界を緩和するための
構造が施される。この部分は、チップサイズに無関係に
チップの周辺部に一定の幅で配置される。この幅は、絶
縁ゲート型トランジスタチップ101でもフリーホイー
ルダイオードチップ102でも同じである。先程述べた
ように、フリーホイールダイオードチップ102は絶縁
ゲート型トランジスタチップ101の約3分の1の負荷
であるので、チップ数を同じにすればフリーホイールダ
イオードチップ102を小さくすることになる。ところ
が、チップを小さくすると、電界を緩和するための構造
がチップに占める割り合いが増すので、電流容量(すな
わち、チップ内のアクティブ領域の面積)を3分の1に
しても、チップサイズはあんまり小さくならない。チッ
プ製作時の歩留まりもそれほど上がらない。また、フリ
ーホイールダイオードチップ102を絶縁ゲート型トラ
ンジスタチップ101と同じサイズにすると、チップ配
置がシンプルになり、有利である。以上の理由で、本実
施例では、絶縁ゲート型トランジスタチップ101とフ
リーホイールダイオードチップ102を同じサイズにし
た。
【0046】つぎに、図10を参照して、高信頼性接着
構造について説明する。本実施例では、チップ下はんだ
801として、5重量%のSb、若干のNi及びP(リ
ン)を含む、主成分がSnの、いわゆるSn−Sbはん
だを使用している。このはんだは、低融点ろう材の中で
は比較的硬く、従来はチップの接着に向くとは考えられ
ていなかった。しかし、近年では、チップとその下地を
強固に一体化することで、熱疲労寿命を増すことが明ら
かになり、このはんだは、チップ下はんだとして多用さ
れている。しかし、このはんだを使うと、絶縁ゲート型
トランジスタチップ101から窒化アルミニウム基板1
06までが一体化されるので、熱応力が主に曲げ応力と
して、その下、すなわちモリブデン基板107に及ぶ。
ところが、モリブデン基板107は非常に硬い材料であ
るので、曲がることを拒否する。その結果、絶縁ゲート
型トランジスタチップ101に大きな応力となって跳ね
返り、通電、一日の温度変化,年間の温度変化等による
熱応力により、比較的短時間で破壊に至る。従来は、チ
ップ下はんだとして、比較的柔らかいSn−Pb系の高
温はんだを使用していたので、基板が硬く、曲がること
を拒否しても、チップに大きな応力として跳ね返ること
はなかった。従って、チップのみを考慮すると、Sn−
Sbはんだを使用するより高信頼性ではあった。しか
し、チップ下のはんだ付け部がすべての歪を吸収するた
め、はんだ付け部の信頼性レベルが充分ではなかった。
チップだけでなく、接着構造全体としての信頼性の向上
が望まれていた。潜在的に高信頼性を期待できるSn−
Sb系はんだを使用しつつ、全体として高信頼になるは
んだ付け構造が必要とされた。
【0047】そこで、本実施例では、窒化アルミニウム
基板固定用はんだ1001として、40重量%のPbを
含むSn−Pbはんだを使用することにした。このはん
だは、チップ下はんだ801に使用しているSn−Sb
はんだの約半分のヤング率を持っている。充分なはんだ
厚さを確保すれば、Sn−Sbによる応力を緩和する効
果が期待できる。窒化アルミニウム基板固定用はんだ1
001として、Sn−40重量%Pbはんだに粒径が5
0μmから80μmのNi粒を体積比率で1%圧入した
シートを使用することにした。はんだ付け時にNi粒が
はんだ付け面に分散し、はんだ付け部の厚さを最低80
μm確保している。その結果、このはんだ付け部の柔軟
性が増し、チップ下はんだ801で生じた曲げ応力を窒
化アルミニウム基板固定用はんだ1001の層で完全に
吸収することができている。
【0048】図4を使用して、モジュール内の縦構造を
概説し、同時に高信頼性はんだ接着構造についてもう少
し詳しく説明する。図4は、本発明による標準的なモジ
ュールの断面の一部である。外壁は、金属板ニッケルめ
っき423で表面を覆った金属板212と,樹脂ケース
211で構成されている。絶縁ゲート型トランジスタチ
ップ401は窒化アルミニウム基板420表面に銀ろう
421で接着されたコレクタ配線用銅箔408上に、チ
ップ下はんだ406で接着されている。
【0049】絶縁ゲート型トランジスタチップ401の
ゲート接続用アルミニウムパッド405からは、ゲート
ワイヤ403を通してゲート配線用銅箔409に、ま
た、エミッタ接続用アルミニウムパッド404からは、
エミッタワイヤ402を通してエミッタ配線用銅箔41
0に、それぞれ接続されている。これらは、最終的には
ゲート端子209及びエミッタ端子(図示せず)並びに
補助エミッタ端子(図示せず)につながる。図では、主
端子(すなわち、主電流が流れる端子)を表示していな
い。主端子のモジュール内配線は、すべて端子足群で行
われる。これに対して、ゲート配線及び補助エミッタ配
線は、端子足群と、絶縁被覆を施した撚り線による配線
の併用構造である。構成単位間を構成単位間ゲート接続
線415及び構成単位間補助エミッタ接続線416で接
続し、外部に出る端子としては、ゲート端子209と補
助エミッタ端子(図示せず)の2個となる。なお、ゲー
ト及び補助エミッタの接続線には、テフロン被覆の撚り
線を使用する。
【0050】絶縁ゲート型トランジスタチップ401
は、シリコーンゲル424で覆われ、樹脂ケース211
を通して侵入してくる水により電気特性が変化しないよ
うにしている。また、樹脂ケース211と接着性の良い
エポキシ樹脂425をシリコーンゲル424と樹脂ケー
ス211との間に充填し、水の侵入速度を下げる役割を
担わせている。
【0051】端子足は、予め熱処理によって柔らかくし
た銅を素材とし、表面に端子足ニッケルめっき419を
施したものを使用する。樹脂ケース211,エポキシ樹
脂425及びシリコーンゲル424は、熱膨張係数が金
属より大きい。とくに、シリコーンゲルは、液体並みの
膨張係数を有しているので、温度変化で、外部端子接続
用ゲート端子足414や内部結線用補助エミッタ端子足
413には大きな変位が加わる。そこで、端子足先端は
んだ418近傍に端子足曲折部417を設け、端子足先
端はんだ418に過大な熱応力が掛からないようにす
る。この対策は、図示していないが、主端子でも同様に
行われる。また、端子足には外部の端子をねじ締めする
際にも力が加わる。端子足曲折部417には、このよう
な外力を直接端子足先端はんだ418に及ぼさない効果
もある。
【0052】ここで、はんだについて触れる。チップ下
はんだ406には、錫(Sn)とアンチモン(Sb)を
主成分とするはんだを使用している。このはんだは、S
nの含有量の多い、比較的硬いはんだである。このはん
だをシリコーンチップ下に使用すると、接着部の耐熱疲
労性が向上することが知られている。はんだが硬いた
め、熱疲労歪がはんだに掛かりにくくなることが主要因
の一つである。とくに、我々の知見では、Sbの含有量
を4〜6重量%にすると、良好なはんだ付け性及び接着
部の信頼性が得られている。反応性の高いSn含有量が
90重量%以上になるので、このはんだを使用すると、
チップ裏面のメタライズが侵食されやすい。そこで、比
較的侵食されにくいニッケル(Ni)をメタライズの多
層膜中に使用し、さらに、反応抑制のために微量のNi
をはんだに添加している。同様に、チップ下はんだ40
6が触れるコレクタ配線用銅箔408にも銅箔ニッケル
めっき412を施して、はんだによる侵食を極力抑えて
いる。
【0053】つぎに、本発明のモジュール型半導体装置
のもう一つの接着個所である、窒化アルミニウム基板4
20の裏面接着用銅箔411と金属板212の接着個所
について述べる。窒化アルミニウム基板固定用はんだ4
22の接着部の特徴は、接着面積が大きいことである。
従って、この部分のはんだには、なによりもぬれ性が良
く、気泡(ボイド)の発生が少ないことが求められる。
前述のSn−Sb系はんだはぬれ性があまり良くない。
従って、この部分のはんだとしては適さない。さらに、
この部分には柔軟性が要求される。絶縁ゲート型トラン
ジスタチップ401から金属板212に至る層構造全体
で見ると、チップ下はんだ406が硬いので柔軟な部分
が他にはない。熱歪は小さいが熱応力が比較的大きくな
りやすい構造である。従って、熱応力の緩和のため、窒
化アルミニウム基板固定用はんだ422には、柔らかい
はんだの使用が望ましい。
【0054】以上の二つの要件、すなわち、大面積であ
るためぬれ性が要求されること、及び、Sn−Sbが硬
いので、この部分には柔らかいはんだが要求されるこ
と、この、両方を満足する材料、そして、もちろん、耐
熱疲労性が高いはんだである、Snと鉛(Pb)を主成
分とするはんだを採用した。この系のはんだは、共晶に
近い組成の、比較的硬いものでもSn−Sb系に比べる
と、ヤング率が半分程度であり、充分に柔らかい。従っ
て、層構造全体の中での応力吸収層としての機能を充分
果たすことができる。しかも、ぬれ性が良好である。こ
の部分に使用するはんだとしては、他の系で適するもの
はない。具体的には、この部分の接着はSn−Sbより
後工程になるので、融点の低い、共晶に近い組成のもの
を選んでいる。
【0055】図7に示すように、本発明による多層構造
では、Sn−Sb系の硬いはんだと、Sn−Pb系の柔
らかいはんだの性質を利用している。チップと窒化アル
ミニウム又はアルミナの間は、熱疲労に対する信頼性の
高い、硬いSn−Sb系のはんだで接着しているので、
チップと窒化アルミニウム基板又はアルミナ基板は一体
に近い状態で膨張収縮をする。すなわち、バイメタルの
ようになり、熱応力を曲げ方向701で示すように、曲
げで吸収する。この曲げに窒化アルミニウム又はアルミ
ナまでは追従するが、金属板は抵抗をする。また、外部
のヒートシンクへの取り付けを考慮すると、金属板は曲
がらない方がよい。そこで、ニッケル粒を入れる等の工
夫により厚さを一定以上に保ち、柔軟性を確保した、S
n−Pbの層がチップ下で生じた曲げを引っ張り及び圧
縮として、図に引っ張り方向702と表示している方向で
吸収する。さらに、大面積である窒化アルミニウム又は
アルミナと金属板の接着部に生じる熱応力は、曲がりに
くい、しかも、曲がらない方がよい金属板が自由に伸び
縮みするように、曲げでなく、はんだ内での剪断歪で回
避する。図中に剪断方向703と、表示した。このよう
にして、チップ下では曲げ、チップ下の窒化アルミニウ
ム又はアルミナと金属板の間では引っ張り及び圧縮、金
属板と窒化アルミニウム又はアルミナとの熱応力では剪
断と、それぞれに都合のよい応力緩和策を取った、理想
的な層構造になっている。
【0056】これは、Sn−Sb系はんだとSn−Pb
系はんだの連携で初めて可能になる作用である。
【0057】何度も述べているように、チップ下のはん
だに、高信頼性ではあるが硬いSn−Sbはんだを使用
したため、窒化アルミニウム又はアルミナ基板と金属板
の間が唯一の柔軟な層になる。しかも、接続相手が窒化
アルミニウムである場合には、脆いので、信頼性を確保
することが難しい。層構造全体の熱膨張係数の差に基づ
く応力を緩和する役割を担っているこの部分には、はん
だに柔らかいSn−Pb系を使用することは当然である
が、それだけでは不充分であり、積極的に柔軟性を確保
しなければならない。はんだ付け厚さを確保することが
必須要件である。
【0058】そこで、はんだ材料に一定量のニッケル粒
を混入させ、はんだ厚を確保することにする。この際、
はんだ付け個所でニッケル粒が二つ以上重ならないよう
に、しかも、はんだ付け部に最低3個入るように、混入
比率を調整する。我々の検討の結果によると、ニッケル
の粒径を40ミクロン〜100ミクロンとし、混入比率
としては体積比率で0.1%〜3% が望ましい。
【0059】チップのはんだ付け部は、窒化アルミニウ
ムあるいはアルミナと金属板のはんだ付け部に比較する
と面積が小さいので、ニッケル粒を入れることによる、
はんだの機械的性質の変化が信頼性に大きく影響する。
しかも、この部分は硬いSn−Sbはんだで一体化され
ているため、はんだ厚が大きいことが必ずしも高信頼性
につながるわけではない。従って、この部分には、ニッ
ケル粒の混入は望ましくない。
【0060】本実施例の構成単位の表面の配線パター
ン、及び、それに伴う表面の部品配置は、上下,左右と
も非対称である。上下が非対称なのは、主に、絶縁ゲー
ト型トランジスタチップ101とフリーホイールダイオ
ードチップ102が実装されていることによる。また、
左右が非対称な主な理由は、絶縁ゲート型トランジスタ
チップ101が3端子素子であるため、エミッタ配線と
ゲート配線があるためである。図10で分かるように、
本実施例では二つの構成単位を同じ方向で並べている。
その結果、図1に示すように、コレクタ端子足108及
びエミッタ端子足110が左右対称でない。このこと
は、インダクタンスのアンバランスを生じ、本実施例の
不利な点である。しかし、後で述べるように、アンバラ
ンスの量が少なく、問題にはならない。手段及び作用の
項ですでに述べたように、この構造には効果があるた
め、採用した。
【0061】図1に示すように、構成単位間のゲート配
線及び補助エミッタ配線には、耐熱樹脂被覆の撚り線を
使用した。すなわち、構成単位間ゲート接続線117及
び構成単位間補助エミッタ接続線118である。撚り線
を使用することで、配線経路の自由度が増し、また、誘
導を避けるために構成単位間ゲート接続線117と構成
単位間補助エミッタ接続線118とを撚り合わせること
も可能になった。
【0062】上記したように、絶縁ゲート型トランジス
タは電圧駆動型であるので、電流駆動型の素子に比べて
ゲート駆動回路の配線の引き回しは、ラフでよい。しか
し、これは、モジュール外のことである。モジュール内
では、主電流回路とゲート駆動回路が近接することが多
い。電圧駆動であるのでゲートは高インピーダンスであ
る。従って、ゲート駆動の配線は誘導ノイズを拾いやす
い。そのため、ゲート配線と補助エミッタ配線はお互い
に極力近づけて誘導ノイズによる電圧変動を抑えること
が望ましい。できれば、お互いに撚り合わせるのがよ
い。その点で、本実施例の構造は、望ましい姿である。
【0063】さらに、主電流回路に近接する場所では、
極力誘導の影響を避けるため、主電流回路と垂直に近い
角度で交叉するようにするべきである。
【0064】図13に従って、本実施例の製法を説明す
る。なお、図13は、左に工程、右に各工程終了後の簡
易断面図、右端には、より詳細な図面の番号を記してい
る。 (1)チップはんだ付け 窒化アルミニウム基板106にチップ(絶縁ゲート型ト
ランジスタチップ101及びフリーホイールダイオードチ
ップ102)をはんだ付けする。はんだはすでに述べた
Sn−5wt%Sbはんだであり、露点−40℃以下に
管理された純水素雰囲気中で、最高温度280℃ではん
だ付けする。
【0065】(2)ワイヤボンディング 熱処理で柔らかくした直径0.4mm の純アルミニウム細
線を用いて、超音波による固相接合を行う。絶縁ゲート
型トランジスタチップ101のエミッタには、チップ当
たり4本、ゲートには1本、フリーホイールダイオード
チップ102のアノードには12本のワイヤをボンディ
ングする。
【0066】(3)窒化アルミニウム基板はんだ付け 1体積%のNi粒を含むSn−40重量%Pbはんだシ
ートを使用して、露点−40℃以下に管理された純水素
雰囲気中で、最高温度230℃ではんだ付けする。この
最高温度は、Sn−Sbはんだが再溶融しない条件であ
る。
【0067】(4)端子足はんだ付け 端子足は、ケース蓋121に固定されている。各端子足
の先端には、ケース材料とモリブデン基板107や窒化
アルミニウム基板106との熱膨張係数差に伴う応力を
緩和する目的で曲折部が設けてある。すなわち、図1に
示すコレクタ端子足曲折部109,エミッタ端子足曲折
部111,ゲート端子足曲折部113、及び補助エミッ
タ端子足曲折部115である。Sn−40重量%Pbは
んだ粒をはんだ付けフラックスでペースト状にした、ペ
ーストはんだをすべての端子足の先端に付け、全端子足
を一括してはんだ付けする。雰囲気は空気、最高温度は
220℃である。はんだ付け後、水で残留フラックスを
洗浄する。
【0068】(5)ケース壁接着 耐熱性の接着剤で、ケース壁1201をモリブデン基板
107に接着する。接着温度は150℃、雰囲気は空気
である。
【0069】(6)シリコーンゲル注入,硬化 シリコーンゲルを注入し、空気中、150℃で硬化す
る。ゲル中には大量のガスが含まれているので、硬化前
に真空中で脱泡をする。シリコーンゲル1203は、ボ
ンディングワイヤの最大高さより上まで注入される。
【0070】(7)エポキシレジン注入,硬化 エポキシレジンを注入し、硬化する。硬化雰囲気は空
気、温度は150℃である。これで、本実施例によるモ
ジュール型半導体装置が完成する。
【0071】つぎに、本実施例による効果について述べ
る。
【0072】モジュールの信頼性を左右するのは、はん
だ付け部である。はんだ付け部、とくに、チップ下はん
だ801には、絶縁ゲート型トランジスタチップ101
のコレクタ電流及びフリーホイールダイオードチップ1
02のカソード電流が流れる。同時に、絶縁ゲート型ト
ランジスタチップ101及びフリーホイールダイオード
チップ102で発生した熱が流れる。この部分に亀裂が
入ると、電気特性及び熱特性に大きな影響がある。もち
ろん、窒化アルミニウム基板固定用はんだ1001の亀裂、
とくに、絶縁ゲート型トランジスタチップ101及びフ
リーホイールダイオードチップ102直下の亀裂も、熱
特性に与える影響が大きい。
【0073】定格通電の断続によりモリブデン基板10
7の底面の温度を70℃の幅で振る試験を繰り返した結
果、本実施例によるモジュール型半導体装置は、従来の
モジュールより2倍以上の信頼性の向上が認められた。
なお、従来モジュールでは、チップ下にもSn−Pb系
はんだを使用していた。
【0074】つぎに、電気特性について触れる。大電流
を制御するモジュールであるので、エミッタ配線の誘導
成分をできるだけ揃えなければならない。モジュールの
外部端子から眺めて、各チップまでのインダクタンスの
差が10ナノヘンリー(nH)を越えると、各チップの点
弧時のばらつきが大きくなり、一部のチップに電流が集
中する。その結果、チップの破壊を招く場合もある。従
って、エミッタ回路のインダクタンスの差を10ナノヘ
ンリー(nH)以下に抑えなければならない。すでに述
べたように、モジュール内の端子が左右対称でないの
で、インダクタンスのバランスが若干狂う。左の構成単
位と右の構成単位で違いが約5nHであった。コレクタ
については、左の構成単位が、エミッタについては、右
の構成単位が大きく、コレクタからエミッタまでの合計
では、ほぼ同じであった。ただし、ゲート駆動に直接影
響するエミッタ配線のインダクタンスが構成単位間で少
し違うので点弧の際のバランスは少し悪い。また、構成
単位内の3チップ間のエミッタ配線では、約3nHの差
があった。すでに述べたように、エミッタ配線を両端の
絶縁ゲート型トランジスタチップ101から等しい距離
に配置したため、アンバランスを小さくすることができ
た。合計で、エミッタ配線のインダクタンスのアンバラ
ンスは最大約8nHであった。
【0075】本発明のモジュールは、後程述べるが、多
数が並列及び直列に接続され、全体として大きなスイッ
チングシステムになる。その際、全体が同期してスイッ
チングしないと、一部のチップに電流が集中し、破壊に
至る場合がある。全体システムを考えると、電流のアン
バランスは、大きな部分、すなわち、大電流が流れる、
まとまった部分では、致命的になるが、小さな部分、す
なわち、電流値の小さい部分では、比較的許される。従
って、全体から眺めて比較的小さい部分である、構成単
位間では、電流の相違を1.5 倍以内に抑え、モジュー
ル間では、ほぼバランスが取れるようにするのが良い。
【0076】通電開始から10μ(マイクロ)秒の間で
構成単位間の電流のバランスを測定した。その結果、左
右の構成単位間の電流のアンバランスは、最大で1.3
倍であった。この程度だと、一部のチップに大きな負担
を掛けることが少なく、充分実用に耐えるバランスであ
る。なお、10μ秒を過ぎると、インダクタンスによる
影響が無視できるほど小さくなり、構成単位間の電流バ
ランスを問題にする必要がなくなった。
【0077】本実施例では、窒化アルミニウム基板を使
用したが、もちろん、アルミナ基板を使用することも可
能である。モリブデンとアルミナの熱膨張差は、モリブ
デンと窒化アルミニウムとほぼ同じであり、窒化アルミ
ニウム基板あるいはアルミナ基板とモリブデン基板の間
のはんだ(図示せず)に掛かる熱応力の絶対値はほぼ同
じである。さらに、アルミナは窒化アルミニウムより弾
力性に富んでいるので、基板の亀裂発生は生じにくい。
そのため、たとえば図8に示すような、窒化アルミニウ
ム基板106の角に付けた丸み(ここでは、半径1mmで
ある)並びにコレクタ配線用銅箔パターン103,エミ
ッタ配線用銅箔パターン104及びゲート配線用銅箔パ
ターン105の角につけた丸み(ここでは、半径0.1m
mである)が不要となる。
【0078】本実施例は構成単位が2個であるが、もち
ろん、3個に対してでも4個に対してでも、まったく同
様の構成で対応ができることは言うまでもない。
【0079】最後に、本実施例を多重接続した例を、図
2に従って説明する。図2は、本発明による絶縁ゲート
型トランジスタを搭載したモジュール型半導体装置を、
直流電源から三相交流を発生するインバータに適用した
例である。入力は、直流プラス側入力201及び直流マ
イナス側入力202である。出力は、U相203,V相
204及びW相205である。スイッチング時に絶縁ゲ
ート型トランジスタに過大の電流が流れないようにする
ため、スナバ回路を挿入している。しかし、この図で
は、表現の簡略化のため省略している。また、単一のモ
ジュールでは電流容量が不足するので、2モジュールを
並列に接続している。直列に4モジュールがつながって
いるが、3レベルインバータであるためである。各モジ
ュールは、直列方向には単独に動作する。3レベルイン
バータとするため、一番上のモジュールのエミッタと一
番下のモジュールのコレクタをクランプダイオードで接
続しているが、図中では省略した。各モジュールからの
発熱を逃がすため、モジュール底面の金属板212を共
通のヒートシンク206上に熱伝導グリースを介してネ
ジで締め付ける構造になっている。それぞれのモジュー
ルには、コレクタ端子207,エミッタ端子208,ゲ
ート端子209及び補助エミッタ端子210と、すべて
の外部端子が樹脂ケース211の上面に載置されてい
る。コレクタ端子207及びエミッタ端子208は、モ
ジュール上面のほぼ中心線上に位置し、これらの主端子
の間にゲート端子209及び補助エミッタ端子210が
ある。そのため、ゲート駆動用のゲート配線213及び
補助エミッタ配線214が板状配線215と重ならな
い。この配置は作業性が良いばかりでなく、ゲート回路
への主電流の干渉が少なくなるという利点もある。
【0080】以上、説明したように、本発明によるモジ
ュール型半導体装置は、複数個をグループ化して使用す
る場合、図2に示すように外部端子をすべてモジュール
の上面に配置し、しかも、ゲートを駆動するための端子
であるゲート端子209及び補助エミッタ端子210を
コレクタ端子207とエミッタ端子208の間に配置し
てあり、使い勝手が良く、性能的にも良好で、理想的構
造である。
【0081】(実施例2)本発明の第2の実施例につい
て、図5及び図14乃至図19を参照して説明する。
【0082】図14は、本発明の第2の実施例の製作過
程における外観及び断面を示している。図15は、図1
4と同じく、本発明の第2の実施例の製作過程における
外観であり、ケース蓋1501を透明に表現している。
本発明の第2の実施例は、構成単位が3個で、各構成単
位が1個の窒化アルミニウム基板106からなってい
る。それぞれの構成単位については、第1の実施例と同
じであるので、説明を省略する。
【0083】各構成単位内のパワー半導体チップの配列
及び配線パターンは左右上下とも非対称である。第1の
実施例と同じく、すべてが同じ方向を向いている。この
配列は、第1の実施例では若干の不利な要因を持ってい
たが、本実施例では有利さが際立っている。すなわち、
図15に示すように、3本のコレクタ端子足1508が
同じ間隔で並んでいる。同様に、エミッタ端子足160
1も同じ間隔で並んでいる。このことは、中央の端子足
から眺めて、左右の端子足が同じ距離に配置されている
ことになる。インダクタンスは、配線長に直接影響され
る。そのため、3端子の並列接続ではインダクタンスの
整合を取ることが難しい。このことは、すでに述べた。
しかし、この配置では、少なくとも左右の両端の端子足
に至るインダクタンスについては最初から整合が取れて
いる。そのため、中心の端子足と両端の端子足のインダ
クタンスの整合を考慮するだけでよい。これが、本配置
の大きなメリットである。中心の端子足と左右の端子足
とのインダクタンスの整合について、とくにインダクタ
ンスの整合が必要なエミッタ端子について、図16を使
用して説明する。
【0084】エミッタ端子足1601は、3本が同じ間
隔で一直線上に並んでいる。その先端には、温度変化に
よる応力を緩和するためにエミッタ端子足曲折部160
2が設けられている。エミッタ端子1608から電流が
流れ込む状況を想定する。電流は、エミッタ合流端子足
1607,エミッタ位置調整端子足1606,エミッタ
合流端子足1605を経由して、半分ずつに分かれてエ
ミッタインダクタンス調整端子足1604に流れ込む。
電流の方向を図中に太い矢印で示した。全電流の内、3
分の1は端のエミッタ端子足1601に流れ、残りであ
る全体の6分の1がエミッタ連結端子足1603に流れ
る。ここを流れる電流も、図中に太い矢印で示した。図
から明らかなように、エミッタインダクタンス調整端子
足1604を流れる電流の方向とエミッタ連結端子足160
3を流れる電流の方向は逆である。エミッタインダクタ
ンス調整端子足1604とエミッタ連結端子足1603
の間隔(図中のM)が充分大きいと、中央のエミッタ端
子足1601への経路の方が、両端のエミッタ端子足1
601への経路より長くなるので、中央のエミッタ端子
足1601へのインダクタンスが両端のエミッタ端子足
1601へのインダクタンスより大きくなる。反対に、
Mがゼロになると、距離関係が逆転し、中央のエミッタ
端子足1601へのインダクタンスの方が小さくなる。
Mは、モジュールの形状によるが、10mm以下に最適値
がある。本実施例では、Mを8mmにした時、エミッタ合
流端子足1605から各端子足先端までのインダクタン
スが、3本とも同じになった。その理由は、エミッタイ
ンダクタンス調整端子足1604を流れる電流とエミッタ連
結端子足1603を流れる電流が逆向きであるため、相
互インダクタンスがマイナスになるためである。
【0085】また、コレクタ端子1511及びエミッタ
端子1608をモジュールの中心線上に配置したため、
エミッタではエミッタ位置調整端子足1606が必要に
なった。その結果、第1の実施例と同じく左右の端子足
に至るインダクタンスにアンバランスが生じた。しか
し、わずかなアンバランスに過ぎない。エミッタ端子1
608から左のエミッタ端子足1601に至るインダク
タンスは、エミッタ端子1608から右のエミッタ端子
足1601に至るインダクタンスより約5nH小さかっ
た。エミッタ位置調整端子足1606の長さが20mmと
比較的短いためと、図中の距離Gが15mmと比較的大き
いため、この程度に収めることができた。
【0086】構成単位を並列につなぐ数が2で始まる公
比2の等比数列の場合には、構成単位二つからなるグル
ープを作り、さらに二つのグループで上位のグループを
作る。このように、階層的にグループを構成すれば、絶
縁ゲート型トランジスタのエミッタへの主電流の流れる
配線のモジュール外壁に配置されたエミッタ端子と構成
単位の間で、該端子足群を階層構造にすることで、各構
成単位に至るまでのインダクタンスを同じか同じに近づ
けることができる。ところが、構成単位を並列につなぐ
数が2で始まる公比2の等比数列以外の場合には、どこ
かでこの階層構造が崩れる。ようするに、3構成単位を
並列に接続する部分が発生する。この部分では、本質的
にインダクタンスのアンバランスを生じる。これを回避
するため、端子足群の一部に、近接して電流の一部が逆
方向に流れる部分を構成する。逆方向に流れる電流によ
って、インダクタンスが相殺される。逆方向に流れる電
流量と距離を調節することによって、本実施例のように
三つの構成単位のエミッタに至るインダクタンスを同じ
か同じに近づけることができる。
【0087】本実施例の特徴の一つとして、金属板に銅
−モリブデン−銅クラッド基板1401を使用したことを挙
げることができる。その効果について、図17を使用し
て説明する。なお、図17では、主にセラミックス基板
とシリコーンチップからなる部材を、熱源1701とし
て単純化した。図17(a)は、第1の実施例を示し、
同図(b)は、第2の実施例を示している。もちろん、
熱の流れ方は、金属板が取り付けられるヒートシンクの
熱的な性能及び、ヒートシンクと金属板の熱的な結合の
大小に依存することは当然である。ここでは、両実施例
の違いに注目する。図(a)では、モリブデン基板17
02が、単一の材料でできているため、熱は滑らかな曲
線を描いて流れる。これに対して、図(b)では、熱伝
導率の小さいモリブデン層1704の熱源1701側に
熱伝導率の大きい上側銅層1703があるため、この層の中
で熱が水平方向に強制的に広げられる。下側銅層1705の
下面、すなわち、ヒートシンク(図示せず)と接触する
面の熱流束の密度が下がる。一般に、ヒートシンクとの
熱接触部には、伝熱性のグリースを塗布する。空気より
熱伝導率が飛躍的に大きいため使われるのであるが、金
属に比べると2桁ほど熱伝導率が小さい。従って、グリ
ース層の熱流の密度が重要になる。下側銅層1705の
下面における熱流束密度が小さいと、グリース中の温度
差を小さく抑えることができる。その結果、ヒートシン
クまで含めたトータルの熱抵抗を小さく抑えることがで
きる。換言すればシリコーンチップの温度上昇を小さく
することができるのである。また、グリース部での温度
の分担が少ないので、ヒートシンク及び金属板の微細な
うねりによるグリース厚さのばらつきに伴う局部的なグ
リース厚さの増加やグリースのボイドによるグリース部
の温度上昇が小さくなり、シリコーンチップの温度上昇
を低く抑えることもできる。なお、下側銅層1705は、熱
的にはとくに関与しない。下側銅層1705は、上側銅
層1703と共同で、熱膨張の違うモリブデンと銅とを
クラッドした場合のバイメタル効果、すなわち、温度変
化による板の曲がりを防止している。
【0088】また、上側銅層1703,モリブデン層1
704、及び下側銅層1705は、それぞれ3mmの板厚
であり、3層全体としての横方向(板の表面に平行な方
向)の熱膨張係数は、10ppm/℃ である。金属板がモ
リブデン単独である第1の実施例よりは、金属板と窒化
アルミニウムとの熱膨張係数の差が大きくなるので、は
んだ付け部の信頼性は第1の実施例より劣るが、その程
度はわずかで、ほぼ同等と言える。なお、金属板の熱膨
張係数が10ppm/℃ を越えると、信頼性が目に見えて
落ちてくる。
【0089】金属板に要求される機能は、(1)機械的に
支えること、(2)熱を外部に効率的に逃がすこと、(3)
水を通さないこと、の3点である。さらに、望ましい性
質としては、窒化アルミニウムあるいはアルミナとのは
んだ付け部で、熱応力の発生が少ないことである。熱膨
張係数としては、1℃当たり10ppm 以下が望ましい。
この条件を満たす性質を有する単一の材料は、タングス
テン及びモリブデンである。
【0090】金属板内で板に平行な方向に熱の流れを促
し、モジュール外底面での温度分布を小さくするために
は、単一の材料では効果が小さい。熱伝導率の異なる材
料の積層構造が望ましい。熱膨張係数が1℃当たり10
ppm 以下で、この条件を満たす材料としては、銅−タン
グステン−銅の3層構造、タングステン−銅−タングス
テンの3層構造、銅−モリブデン−銅の3層構造及びモ
リブデン−銅−モリブデンの3層構造を挙げることがで
きる。3層にする理由は、バイメタル効果、すなわち温
度変化による曲がりの防止である。
【0091】図15において、本実施例のケース蓋15
01に第1の実施例と異なる二つの特徴が認められる。
すなわち、周辺に溝1502が掘られていることと、注
入孔1503が開いていることである。これは、モジュ
ール内の樹脂の充填構造が第1の実施例と異なるためで
ある。図18を使って説明する。図18は、図15から
さらに工程が進んだ状態の第2の実施例を示している。
この図では、ケース蓋1501を不透明にすると同時
に、ケース壁1801を透明に描いた。また、ケース蓋
1501とケース壁1801の重なる部分では、陰にな
る部分のケース蓋1501を破線で、また、ケース壁1
801を細い実線で表した。さらに、表現の省略のた
め、図の左半分と右半分で違う工程の状態を表した。す
なわち、図15の次の工程の状態を左半分、最終工程終
了後、すなわち、本実施例の完成時の状態を右半分に示
した。
【0092】本実施例では、ケース蓋1501とケース
壁1801が噛み合う構造になっている。すなわち、図
中の断面図で分かるように、ケース蓋1501の周囲の
溝1502の部分にケース壁1801の上側先端の楔状
突起1803が嵌めこまれる。この部分に、エポキシレ
ジン1805が流しこまれ、ケース蓋1501とケース
壁1801が接着される。図の右半分に注目すると、シ
リコーンゲル1804がモジュール内部に充填されている。
注入の際には、注入孔1503を利用する。また、シリ
コーンゲル1804の上表面とケース蓋1501下面と
の間は空気層1806になっている。注入孔1503
は、最終的にシリコーンゴムキャップ1802で塞がれ
る。シリコーンゲル1804は熱膨張係数が大きく、製
作過程や使用中の温度変化でモジュール内部に大きな圧
力変化をもたらす。液体に比べて膨張収縮に伴う圧力変
化の少ない空気層をモジュール内に設けることで、モジ
ュール内の圧力変化を小さくした。150℃に加熱した
場合、モジュール内部の圧力上昇は、わずか0.5 気圧
に止まった。また、本実施例ではシリコーンゲル180
4の表面ほぼ全体を空気層にしたことで、ゲル内の応力
発生を極力小さく抑えることもでき、モジュールの信頼
性向上が図れた。
【0093】さらに、この構造について、図5を使用し
て説明する。図5は、本実施例のように高信頼性ケース
構造を採用した場合の、モジュール型半導体装置の断面
の一部を示す。なお、説明に直接関係のない、はんだ,
ボンディングワイヤ,端子足群等は表示を省略した。
【0094】樹脂蓋502は端子足群を固定する役割も
担っており、樹脂壁504が金属板212に接着される
前に、端子足群のはんだ付け時に固定される。その後、
樹脂壁504が固定され、エポキシ樹脂425が樹脂蓋
502と樹脂壁504がお互いに噛み合う部分に注入さ
れ、硬化される。その後、シリコーンゴムキャップ50
3を取り付ける前の状態の樹脂蓋502の穴からシリコ
ーンゲル424を注入し、硬化する。上部に空気層50
1を残すように、量を調節する。最後に、シリコーンゴ
ムキャップ503を圧入し、完成する。
【0095】シリコーンゲルは、1℃当たり数100pp
m の非常に大きな熱膨張係数を有しているため、その膨
張、収縮による圧力変化をどのように躱すかがパッケー
ジの信頼性に直接関係する。また、ゲルの硬化時に発生
するガスが、ケース材料の表面をコーティングすること
によって、ケース材料とエポキシの接着力を低下させ、
パッケージの信頼性を下げている。本構造は、その両方
の問題を解決する。すなわち、膨張に関しては、パッケ
ージ内に空気層を設けて充分な緩衝効果を得ている。ま
た、ゲルの硬化時のガス発生によるケース表面汚染に関
しては、ゲルの硬化以前にエポキシを硬化することで対
処している。
【0096】以上の説明で明らかなように、本構造はエ
ポキシとケースとの接着性を確保しつつシリコーンゲル
上に空間を確保しており、信頼性の高いパッケージであ
る。図5に示すように、本発明による高信頼性ケース構
造では、空気層501がモジュール内のシリコーンゲル
424の表面のほぼ全体に存在する。応力計算によれ
ば、シリコーンゲル424上の空気層501の体積の大
小は、もちろんシリコーンゲル424の膨張収縮に伴う
応力緩和の大小に影響するが、シリコーンゲル424の
表面の空気層501の面積が、それ以上に大きく効いて
いることが分かった。すなわち、上面を空気層にする場
合、シリコーンゲルの膨張収縮は、主に上下方向にな
る。シリコーンゲルの表面の内、空気層501に接して
いない部分は、上下方向の動きを制限されるので、大き
な応力を発生するのである。もちろん、ゲル424は左
右前後にも変形するため、完全密封に比べると応力発生
は少ない。しかし、左右前後への動きは小さいので、空
気層501の体積がたとえ同じでも、ゲル424上の空
気層501の面積の大小が信頼性に直接影響するのであ
る。
【0097】その意味で、本構造は、シリコーンゲル4
24の上面ほぼ全体を空気層501にしているので、応
力緩和が有効に働き、信頼性の高いパッケージ構造にな
っている。
【0098】本実施例の構造上のもう一つの特徴は、取
り付け用穴1402のピッチが窒化アルミニウム基板1
06のピッチと一致していることである。窒化アルミニ
ウム基板106は、脆いため四隅に曲率を持たせてあ
る。しかも、窒化アルミニウム基板106のはんだ付け
時のはんだのはみ出し対策やはんだ付け治具の加工精
度,はんだ付けの作業性等の都合で窒化アルミニウム基
板106同士を密着して配置することはなく、隙間(本
実施例では2mm)を開けている。そのため、2枚の窒化
アルミニウム基板106に挟まれた場所には、上下の寸
法に少しゆとりが生まれる。この部分に取り付け用穴1
402を配置した。その結果、モジュール全体の寸法を
小さく抑えることができた。図18で、ケース壁180
1が、窒化アルミニウム基板106の隙間に入りこんで
いるので、その効果を直接確認できる。
【0099】つぎに、図19を使用して、本実施例の製
造工程を説明する。なお、図19は、左に工程、右に、
各工程終了後の簡易断面図、右端には、より詳細な図面
の番号を記している。
【0100】(1)チップはんだ付け 第1の実施例と同じであるので、省略する。
【0101】(2)ワイヤボンディング 第1の実施例と同じであるので、省略する。
【0102】(3)窒化アルミニウム基板はんだ付け 金属板がモリブデン基板107から銅−モリブデン−銅
クラッド基板1401に変わっただけで、その他は第1
の実施例と同じであるので、省略する。
【0103】(4)端子足はんだ付け 端子足は、ケース蓋1501に固定されている。ケース
蓋1501には、周辺に溝1502が掘ってあり、中央
に近い部分には注入孔1503が開いている。各端子足
の先端には、ケース材料と銅−モリブデン−銅クラッド
基板1401や窒化アルミニウム基板106との熱膨張
係数差に伴う応力を緩和する目的で曲折部が設けてあ
る。Sn−40重量%Pbはんだ粒をはんだ付けフラッ
クスでペースト状にした、ペーストはんだをすべての端
子足の先端に付け、全端子足を一括してはんだ付けす
る。雰囲気は空気、最高温度は220℃である。はんだ
付け後、水で残留フラックスを洗浄する。
【0104】(5)ケース壁接着 耐熱性の接着剤で、ケース壁1801を銅−モリブデン
−銅クラッド基板1401に接着する。接着温度は150
℃、雰囲気は空気である。この時、ケース壁1801先端の
楔状突起1803が、ケース蓋1501周辺の溝150
2に嵌まる。
【0105】(6)エポキシレジン注入,硬化 エポキシレジン1805を溝1502に注入し、硬化す
る。硬化雰囲気は空気,温度は150℃である。この時
点で、ケース蓋1501とケース壁1801とが接着す
る。
【0106】(7)シリコーンゲル注入,硬化 第1の実施例では、ケース蓋121とケース壁1201
との隙間(幅20mm程度)からシリコーンゲル1203
及びエポキシレジン1202を注入した。しかし、本実
施例では溝1502に楔状突起1803が嵌まっている
ため、第1の実施例のようにケース蓋とケース壁の間に
隙間がない。従って、シリコーンゲルの注入には、注入
孔1503を利用する。ゲルの硬化は、空気中、150
℃である。ゲル中には大量のガスが含まれているので、
硬化前に真空中で脱泡をする。脱泡時及び硬化時にゲル
からガスが出て、ケース壁1801の内面を汚染する場
合がある。汚染された部分では、エポキシレジン180
5とケース壁1801の接着性が悪くなる。本実施例で
は、エポキシレジンの接着をシリコーンゲルの工程より
前にしてこの欠点を回避した点が一つの特徴である。シ
リコーンゲル1804は、ボンディングワイヤの最大高さよ
り上まで注入される。その上部は空気層1806である。
【0107】(8)シリコーンゴムキャップ挿入 最後に、シリコーンゴムキャップ1802を常温で注入
孔1503に圧入し、注入孔1503を閉じる。これ
で、本実施例によるモジュール型半導体装置が完成す
る。なお、シリコーンゴムキャップ1802は、モジュ
ール内外の圧力差2気圧まで耐えることができる。
【0108】(実施例3)本発明の第3の実施例につい
て、図6及び図20乃至図22を参照して説明する。
【0109】図20は、本発明の第3の実施例の製作過
程における外観及び断面を示している。また、図21
は、図20と同じく、本発明の第3の実施例の製作過程
における外観であり、ケース蓋2101を透明に表現し
ている。図20から分かるように、本実施例は6個の構
成単位から成り立っている。図21を参照すると、3構
成単位を並列に接続し、まとまった3構成単位同士を直
列に接続していることが分かる。従って、機能は実施例
2のモジュールを2個、直列に接続したのと同じであ
る。ここで、本発明の共通の特徴である、すべての構成
単位を同一方向に向けて搭載する形態を、本実施例でも
採用している。
【0110】本実施例の、材料面での特徴の一つは、ア
ルミナ基板2001を採用していることである。図20
−(b)に示すように、金属板接着用銅箔2002は、
ろう材を介さないで直接アルミナ基板2001に接着し
ている。銅の酸化物を利用した、直接接着法による基板
である。同様に、エミッタ配線用銅箔パターン2004,ゲ
ート配線用銅箔パターン2005、及びコレクタ配線用
銅箔パターン2006も、アルミナ基板2001に直接
接着されている。
【0111】アルミナは、窒化アルミニウムに比べて靭
性に富んでいるので、実施例1あるいは2のように、基
板端部に曲率を持たせる必要がない。同様に、パターン
の端部にも曲率を必要としない。この点が、アルミナ基
板2001の形態上の特徴になる。
【0112】もう一つの材料面の特徴は、銅−タングス
テン−銅クラッド基板2009を使用していることであ
る。この材料は、第2の実施例で使用した銅−モリブデ
ン−銅クラッド基板1401に比べて、(1)板厚方向
の熱伝導率が良い、板に平行な方向の熱膨張係数が小さ
いという特徴がある。それは、タングステンの性質によ
る。モリブデンは、熱伝導率が銅の約3分の1と、小さ
いのに対して、タングステンは約半分と、比較的大きい
ことである。また、熱膨張係数はタングステンの方が小
さい。本実施例で使用した銅−タングステン−銅クラッ
ド基板2009は、上下の表面の銅が1mm、中央のタン
グステンが1mmの厚さである。板に平行な方向の熱膨張
係数は、9ppm/℃ 、また、板厚方向の熱伝導率は、
0.6cal/cm・s・℃である。
【0113】銅−タングステン−銅クラッド基板200
9は、熱膨張係数がアルミナ(7ppm/℃)とほぼ等しい
ことから、アルミナ基板固定用はんだ2003のほとん
どの部分には熱疲労が発生しない。しかも、タングステ
ンが銅でサンドイッチされているため基板単独でのバイ
メタル効果がないのと同時に、銅−タングステン−銅ク
ラッド基板2009とアルミナ基板2001との熱膨張
係数がほぼ等しいことからこの両者の間にもバイメタル
効果がない。従って、アルミナ基板2001に曲げ応力
がほとんど掛からない。その結果、チップ下はんだ20
07に掛かる熱応力も小さくなる。ただし、シリコーン
とアルミナの熱膨張係数が少し離れているので、チップ
下はんだ2007には、熱膨張係数差に基づく、ある程
度の剪断応力が発生する。この部分のはんだは、第1の
実施例及び第2の実施例と同じくSn−5wt%Sbは
んだであるので、熱疲労耐量が大きい。その反面、この
はんだは硬いので、剪断応力がアルミナ基板2001を
通じてアルミナ基板固定用はんだ2003に達する。従
って、アルミナ基板固定用はんだ2003の絶縁ゲート
型トランジスタチップ2008及びフリーホイールダイ
オードチップ2010の直下の部分にはチップ下はんだ20
07で発生した熱応力の影響が現れる。柔軟性があり、
しかも、熱応力耐量の優れているSn−40重量%Pb
はんだを使用しているため、この熱応力をアルミナ基板
固定用はんだ2003で吸収できる。本実施例でも、S
n−SbとSn−Pbの2種類のはんだによる、連携作
用が奏効している。
【0114】また、銅−タングステン−銅クラッド基板
2009の板厚方向の熱伝導率がモリブデン単独あるい
は銅−モリブデン−銅クラッド基板より大きいという性
質により、窒化アルミニウムに比べて熱伝導率の小さい
アルミナを使用しても、モジュール全体の熱抵抗を0.
01℃/W と、他の実施例並みに小さく抑えることが
できた。
【0115】なお、本実施例で使用した銅−タングステ
ン−銅クラッド基板の代わりに、タングステン−銅−タ
ングステンクラッド基板を使用することは可能であり、
その効果も同等である。
【0116】図21に示すように、本実施例は、構成単
位6個からなるモジュールである。しかも、3個ずつ並
列に接続した構成単位を2個直列に接続している。3個
並列については第2の実施例と同じであるので、ここで
は説明を省略する。外部端子として、上側コレクタ端子
2102,上側エミッタ端子2103,上側ゲート端子
2106、及び上側補助エミッタ端子2107からなる
上側構成単位集合と、下側コレクタ端子2104,下側
エミッタ端子2105,下側ゲート端子2108、及び下側
補助エミッタ端子2109からなる下側構成単位集合
は、まったく同じものである。本実施例では、直列接続
バー2132で予め直列に接続されているため、使用す
る際には、耐圧が2倍の一つのモジュールとして外部の
主回路を構成することができる。もちろん、直列接続バ
ー2132を取り外せる構造にしておくことで、別々に
動作する二つのモジュールとして使用できるようにして
もよいことは自明である。
【0117】図6を使用して、さらに詳しく説明する。
図6は、図3(c)を直列に二つつないだ形態になって
いる。図3(c)の配列に直列接続用端子足601を追
加するだけで、並列3接続,直列2接続ができている。
この図に示すように、全く同一の構成単位を、同じ方向
に並べると、二つ以上の任意の並列接続、さらに、二つ
以上の任意の直列接続を円滑に行うことができる。すで
に述べたように、同一の構成単位を同じ方向で配置する
構成は、二つの構成単位を並列に接続する際には大きな
メリットを生むわけではない。しかし、この図に示すよ
うに、並列,直列の構成単位数が増すにつれて、メリッ
トが大きくなる。
【0118】もちろん、各構成単位が全く同じであるた
め、電気特性が揃いやすく、二つだけの並列接続でも、
メリットがある。従来例にあるように、左右対称にする
ために反転パターンの構成単位を使用する場合でも、本
来ならば電気特性が揃うはずであるが、はんだ付け,ワ
イヤボンディング等、パターンが異なると全く同じ作り
方をすることが難しくなる。さらに、半導体チップは特
性にばらつきを持つものであるため、構成単位間で特性
を揃えるためには構成単位が同じものである方が選別時
の無駄が少なくなる。そのため、本発明のように全く同
じパターンを採用した方が、各構成単位の電気特性が揃
い易くなるのである。
【0119】もう一つの本実施例の特徴は、上側補助エ
ミッタ端子足2123の下に上側チップ抵抗2130が
配置され、下側補助エミッタ端子足2125の下に下側
チップ抵抗2131が配置されていることである。一般
に、ゲート回路の直列抵抗は、各チップのゲートワイヤ
2012とゲート配線用銅箔パターン2005との間に
挿入される。チップ毎の特性のばらつきや、エミッタ配
線の各チップに至るインダクタンスの不整合を調節する
のに、直列抵抗は有効である。これに対して、本実施例
では上側補助エミッタ端子足2123あるいは下側補助
エミッタ端子足2125とエミッタ配線用銅箔パターン
2004との間に直列抵抗、すなわち上側チップ抵抗2
130あるいは下側チップ抵抗2131を配置してい
る。この構成の利点を、図22を参照しながら説明す
る。
【0120】図22では、簡単のために、構成単位2個
を抜きだしている。通電開始直後、インダクタンスの不
整合により、左側の構成単位に右側より多くの主電流が
流れたと仮定する。図では、左側エミッタ主電流220
1を2本の矢印で、右側エミッタ主電流2202を1本
の矢印で表示し、大小関係を示している。なお、黒く太
い線は、エミッタ主配線2203である。その結果、左
側の構成単位のエミッタ配線用銅箔パターン2004の
電位(E1)の方が右側の構成単位のエミッタ配線用銅
箔パターン2004の電位(E2)より高くなる。エミ
ッタ主配線2203の脇に表示した白抜きの線は、補助エミ
ッタ配線2204であり、ここでは、エミッタ配線用銅
箔パターン2004に直接接続されている。E1>E2
であるから、補助エミッタ配線2204内を左側の構成
単位から右側の構成単位に向かって主電流の一部、すな
わち補助エミッタ配線内主電流2205が流れる。この
電流は、もともと考慮されたものではないので、場合に
よっては、上側構成単位間補助エミッタ接続線2127
あるいは下側構成単位間補助エミッタ接続線2129を焼き
切る可能性もある。そのような極端な状況に至らなくて
も、補助エミッタ配線内主電流2205により不要な電
圧降下が発生し、ゲートエミッタ間電圧が変動を受け
る。この有害な補助エミッタ配線内主電流2205を制
限し、上側構成単位間補助エミッタ接続線2127及び
下側構成単位間補助エミッタ接続線2129を保護するため
に上側チップ抵抗2130及び下側チップ抵抗2131
を配置した。
【0121】絶縁ゲート型トランジスタは電圧駆動型で
あるので、多くのモジュールを直列,並列に接続する場
合、サイリスタやトランジスタのように電流駆動型のス
イッチング素子に比べて各ゲートにスイッチングの信号
を供給することが比較的容易である。すなわち、スイッ
チングの電源に大きな負担が掛からない。同時に、ゲー
ト駆動回路の配線の引き回しも、比較的ラフでよい。し
かし、途中のインピーダンスが高いと、ゲート駆動用配
線に主電流からのノイズが混入し、誤動作の原因にな
る。ところが、ゲート回路のインピーダンスを下げる
と、ゲート駆動時に、各チップの特性のアンバランス
や、主電流の流れるエミッタ配線のインダクタンスの不
整合がそのままゲート駆動電圧に反映され、スイッチン
グのタイミングばらつきの原因になる。
【0122】この、相反する必要特性を同時にカバーす
るため、各チップ毎あるいは各構成単位毎に、ゲート回
路に抵抗を挿入することは、一般的に行われている。し
かし、構成単位間でアンバランスが生じていると、各構
成単位の補助エミッタ間で電位の違いを生じ、補助エミ
ッタ回路に主電流が流れる恐れがある。そこで、補助エ
ミッタ回路に抵抗を挿入する。実装上、端子足群の先端
と窒化アルミニウム又はアルミナ上の金属化パターンの
間にチップ抵抗を挿入し、チップ抵抗と端子足群を同時
にはんだ付けするのがよい。
【0123】また、各絶縁ゲート型トランジスタチップ
のゲートに個別にゲート抵抗を挿入する、一般的な方法
と併用すると、安定化効果が増す。さらに、モジュール
外部に取りまとめのゲート抵抗を挿入する方法との併用
も有効である。
【0124】(実施例4)本発明の第4の実施例につい
て、図23を参照して説明する。
【0125】図23は、本発明の第4の実施例の製作過
程における外観を示す。なお、他の実施例と同様、ケー
ス蓋2313を透明に表現した。本実施例は、(1)主
端子のインダクタンスを小さくする構造、(2)絶縁ゲ
ート型トランジスタチップ一つずつのゲートに挿入した
抵抗、(3)ゲート配線及び補助エミッタ配線を金属板
で接続する、主端子と同じ形態、(4)アルミナ基板と
銅基板を使用、という4点で、第1乃至第3の実施例と
異なる。以下、本実施例の特徴的な部分について説明す
る。
【0126】まず、主端子の構造について述べる。実施
例1乃至実施例3では、インダクタンスのバランスに関
して様々の構造上の工夫を行ったが、本実施例では、さ
らにインダクタンスの絶対値を下げる工夫を行ってい
る。主端子の基本的な構造は、図15に示した第2の実
施例とほぼ同じである。しかし、一部に、コレクタ配線
とエミッタ配線の接近した部分がある。すなわち、対エ
ミッタ近接部2302及び対コレクタ近接部2305で
ある。両者を流れる電流が反対方向を向いているので、
この部分を近接させると、相互誘導によりインダクタン
スが小さくなる。また、コレクタ端子2301脇のモジ
ュール外部に出ている部分とコレクタ平行通電部230
3との間、そして、エミッタ端子2304脇のモジュー
ル外部に出ている部分とエミッタ平行通電部2306と
の間でも、電流が逆に流れることを利用して相互誘導に
よりインダクタンスを相殺している。対エミッタ近接部
2302と対コレクタ近接部2305の間隔は、約8mmであ
り、約10nHのインダクタンスの低減効果があった。
【0127】つぎに、ゲート抵抗について述べる。本実
施例では、各絶縁ゲート型トランジスタチップ2008
のゲートごとにチップ抵抗2314を挿入した。この構
成の利点は、チップ間の特性のばらつきによる点弧タイ
ミングのずれを最小限に抑えることができることであ
る。実施例1乃至実施例3では、各モジュールごとに搭
載する絶縁ゲート型トランジスタチップのゲート感度を
測定し、似通ったもの同士を搭載するようにしている
が、本実施例ではその必要がなくなった。
【0128】つぎに、構成単位間のゲート配線及び補助
エミッタ配線の形態について述べる。本実施例では、主
端子の配線と同じく金属板で構成単位間を結んでいる。
すなわち、構成単位間ゲート接続板2308及び構成単
位間補助エミッタ接続板2311である。この構造の利点
は、今まで述べた実施例より接続部が少ないことであ
る。今まで述べた実施例では、構成単位間の配線にテフ
ロン被覆のリード線を使用したため、その両端をはんだ
付けする必要があった。この、はんだ付けが不要にな
り、モジュールとしての信頼性が向上した。さらに、リ
ード線をはんだ付けしなくてよいため、ゲート端子足2
309及び補助エミッタ端子足2312の表面のめっき
材料を自由に選べるようになった。リード線のはんだ付
けが良好に行われるように、実施例1乃至3では、ゲー
ト端子足2309及び補助エミッタ端子足2312に錫
めっきを施している。主端子は、ねじ止めをする都合
上、ニッケルめっきを採用している。そこで、両者のは
んだに対するぬれ性に大きな差を生じ、端子足のはんだ
付けに支障を来すことがあった。本実施例では、すべて
の端子足をニッケルめっきに統一することができ、はん
だ付けが円滑に行われるようになった。
【0129】最後に、アルミナ基板と銅基板の組み合わ
せについて説明する。モジュールの底面を構成する材料
としては、熱伝導率,剛性及び価格から、銅が適当であ
る。しかし、銅は熱膨張係数が大きく、シリコーンとの
間で大きな熱膨張の不整合を発生する。それを緩和する
ために、熱膨張係数がシリコーンと銅の中間であるアル
ミナを両者の間に挟んだ。アルミナを選んだのは、つぎ
の理由による。すなわち、シリコーンと銅の熱膨張係数
差が大きいので、脆い窒化アルミニウムでは熱応力に耐
えることが困難であり、しかも、熱膨張係数がシリコー
ンと銅の中間というよりシリコーンに近すぎるので、銅
と窒化アルミニウムの接着部分に集中的に応力が発生
し、全体として信頼性が下がってしまうのである。絶縁
ゲート型トランジスタチップ2008とアルミナ基板2
315との間に発生する熱応力は、第3の実施例とほぼ
等しく、熱疲労に強いSn−5重量%Sbはんだで吸収
できる。第3の実施例より信頼性の面で問題になるの
は、アルミナ基板2315と銅基板2316の間の熱膨
張の不整合である。この部分には、柔軟性に富むSn−
40重量%Pbはんだを使用し、さらに、はんだ厚さを
最低200μmとすることで、信頼性を確保した。因み
に、実施例1乃至3では、はんだの厚さを100μm程
度としている。
【0130】もちろん、アルミナ基板2315と銅基板
2316の間の不整合に伴うバイメタル作用が発生し、
曲げ応力が絶縁ゲート型トランジスタチップ2008と
アルミナ基板2315との間のSn−5重量%Sbはん
だに及ぶ。その点、第3の実施例より信頼性が低下する
要因を持っている。しかし、Sn−40重量%Pbはん
だを200μm以上と厚くしたため、その影響は小さく
とどめられ、モジュール全体としての信頼性はわずかな
低下に止まった。
【0131】また、銅基板の大きな熱膨張係数は、樹脂
でできたケース(図示せず)及びケース蓋2313の熱
膨張係数に近いので、モジュール全体としての熱膨張係
数の不整合が少ないというメリットがある。さらに、銅
はタングステン,モリブデンやそれらと銅との複合材よ
り熱膨張係数が大きいので、ヒートシンク(図示せず)の
材料(本実施例ではアルミニウム、一般にアルミニウム
が多い)に熱膨張が近い。従って、ヒートシンクに搭載
する際に、熱膨張差に基づく熱伝導グリースの流出等の
弊害を生じにくいというメリットもある。
【0132】(実施例5)本発明の第5の実施例につい
て、図24乃至図27を参照して説明する。
【0133】図25は、本発明の第5の実施例の製作過
程における外観を示している。本発明の第5の実施例
は、第1の実施例と同じく構成単位が2個である。しか
し、第1乃至第4の実施例と異なり、各構成単位が2個
の窒化アルミニウム基板からなっている。すなわち、絶
縁ゲート型トランジスタチップ2401を搭載した第1
窒化アルミニウム基板2406及びフリーホイールダイ
オードチップ2402を搭載した第2窒化アルミニウム
基板2409である。それぞれの構成単位について、図
25より前の段階の製作過程の外観を示す図24で説明
する。構成単位である2枚の窒化アルミニウム基板のう
ち、図中上側に位置する第1窒化アルミニウム基板24
06には、3個の絶縁ゲート型トランジスタチップ24
01が搭載されている。また、下側の第2窒化アルミニ
ウム基板2409には、1個のフリーホイールダイオー
ドチップ2402が搭載されている。絶縁ゲート型トラ
ンジスタチップ2401とフリーホイールダイオードチ
ップ2402は同じ外形寸法で、一辺10mmである。第
1窒化アルミニウム基板2406上の絶縁ゲート型トラ
ンジスタチップ2401の配列は、上下のチップより中
央のチップが少し左に寄った「く」の字型である。この
配列には、図26に示すように、エミッタ端子足260
4から各絶縁ゲート型トランジスタチップ2401まで
の距離の差を縮めて、インダクタンスを揃えるという目
的がある。なお、図26は、簡略化のために補助端子
(ゲート及び補助エミッタ端子)の接続構造を省略し
た。さらに、この配列には、図26で分かるように、エ
ミッタ端子足2604,コレクタ端子足上2601及び
コレクタ端子足下2602をはんだ付けする場所を確保
するという目的もある。なお、コレクタ端子足をコレク
タ端子足上2601及びコレクタ端子足下2602に分
割したのは、コレクタ配線のインダクタンスを揃えるた
めである。二つのコレクタ端子足を結ぶため、コレクタ
連結バー2606を設けた。なお、図面の理解を助ける
ため、コレクタ連結バー2606に斜線を施した。断面
ではないので、注意されたい。窒化アルミニウム基板を
二つに分解した結果、端子足の数が増えている。本実施
例では、各構成単位ごとに5個になっている。また、同
時に、構成単位内の相互接続も必要になる。本実施例で
は、コレクタ・カソード連結バー2607及びエミッタ
・アノード連結バー2608がこれに当たる。いずれ
も、図面の理解を助けるため、斜線を施した。エミッタ
・アノード連結バー2608では、インダクタンスを揃
えるために、左右のエミッタ端子足2604及びアノー
ド端子足2605から厳密に等距離の位置同士を結んで
いる。これに対して、コレクタ連結バー2606及びコ
レクタ・カソード連結バー2607では、エミッタ回路
にぶつからないことを最優先にして配置している。
【0134】ここで、窒化アルミニウム基板を二つにし
たことによる利点について触れる。利点は、個々の窒化
アルミニウム基板サイズの縮小である。第1の実施例で
は、窒化アルミニウム基板106の長辺寸法、すなわ
ち、図8の配置に於いて縦寸法が58mmであった。本実
施例では、基板を2枚構成にしたため、第1窒化アルミ
ニウム基板2406の縦寸法が46mm,第2窒化アルミ
ニウム基板2409の縦寸法が28mmと、何れも第1の
実施例より小さくなった。ただし、当然であるが、両者
を足した合計寸法は大きくなっている。また、それぞれ
の横寸法は、第1の実施例と同じ42mmである。はんだ
付け部の最大の熱応力は、はんだ付け部材の一体になっ
ている部分の最大寸法にほぼ比例すると考えて差し支え
ない。この場合は、窒化アルミニウム基板の対角寸法が
最大寸法に当たる。大きい方の第1窒化アルミニウム基
板2406の対角寸法は62.3mm であるので、はんだ
付け部の最大熱応力は第1の実施例の0.87 倍、小さ
い方の第2窒化アルミニウム基板2409では対角寸法
は50.5mm であるので、最大熱応力は0.7 倍と、そ
れぞれ大幅に小さくなっている。一般的に、金属にかか
る繰り返し応力と破壊に至る繰り返し数との間には、図
27に示すような関係がある。この関係は、材料によっ
て若干の傾きの違いはあるが、はんだについても同様で
ある。図27から、応力が10%程度下がっただけで熱
疲労寿命が大きく延びることが容易に分かる。従って、
本実施例では、第1の実施例より耐熱疲労性が大幅に向
上していることが明らかである。また、基板寸法の縮小
に伴って窒化アルミニウム基板と銅箔パターンとの熱膨
張差による応力発生も小さくなり、窒化アルミニウム基
板そのものの耐熱疲労性も向上している。
【0135】つぎに、窒化アルミニウム基板を二つに分
けたことによる欠点について触れる。図26から明らか
なように、窒化アルミニウム基板を分割すると、端子足
の配線が複雑になる。本実施例は構成単位が二つなの
で、複雑さはさほどでもないが、構成単位が増すと複雑
になる。複雑なだけでは特性上のデメリットは少ない
が、端子足のはんだ付け個所が多くなるので、はんだ付
け部の信頼性が低下するという問題がある。第1の実施
例の構造を選ぶか、本実施例の構造を選ぶかは、モジュ
ール全体の信頼性レベルに、窒化アルミニウム基板の信
頼性,窒化アルミニウムのはんだ付け部の信頼性、及び
端子足のはんだ付け部の信頼性がどの程度寄与している
かによって決まる。いずれの構造にしても、チップ下の
Sn−Sb系はんだ、窒化アルミニウム下のSn−Pb
系はんだの相互作用による高信頼構造である点は、共通
している。
【0136】(1)構成単位内の配線:絶縁ゲート型トラ
ンジスタのコレクタ及びフリーホイールダイオードのカ
ソードは、はんだ付け,絶縁ゲート型トランジスタのエ
ミッタ及びゲート並びにフリーホイールダイオードのア
ノードは、アルミニウム細線によるワイヤボンディング
を採用する。電流容量が大きいので、アルミニウム細線
の線径は、0.3mm 以上である。構成単位を2枚の窒化
アルミニウム基板で構成する場合、2枚の基板の間をつ
なぐ配線は、アルミニウム細線によるワイヤボンディン
グを採用してもよい。また、銅箔(あるいは、表面をN
iめっきした銅箔)をはんだ付けする構造もありうる。
もちろん、外部端子への接続手段である銅の端子足を利
用してもよい。(2)構成単位間の配線:主たる実現手段
は、銅の端子足を窒化アルミニウム表面の金属化パター
ンへはんだ付けすることである。その他の手段として
は、構成単位内の2枚の配線基板間の配線と同じ構造を
採ることもできる。すなわち、アルミニウム細線による
ワイヤボンディングあるいは、銅箔をはんだ付けする構
造である。ただし、各構成単位とそれに至る接続手段と
の接続位置は、電気特性を揃える目的から、かならず各
構成単位で同じにしなければならない。
【0137】もちろん、構成単位が1枚の基板で構成さ
れる場合には、構成単位内の配線は含まれない。
【0138】窒化アルミニウムセラミックスは脆いの
で、できるだけ小さい方がよい。対角長100mm以下が
望ましい。同時に、各構成単位が数多くの窒化アルミニ
ウムセラミックス基板で構成されると、構成単位内の基
板間の配線が複雑になるので、3枚以上は実用的でな
い。従って、1枚あるいは2枚が適当である。
【0139】アルミナは、窒化アルミニウムに比べて機
械的衝撃に強いので、対角長100mmの制約はない。従
って、基板サイズの制約、及び、それに伴う構成単位内
の基板数を要件としていない。
【0140】(実施例6)本発明の第6の実施例につい
て、図28を参照して説明する。図28は、第6の実施
例によるモジュールからエミッタ端子足を取りだしたと
ころを示している。第6の実施例によるモジュールは、
第2の実施例と同じく、構成単位が3個で構成され、そ
れらが並列に接続されている。従って、エミッタ端子足
には等間隔で並んだ3組の端子足先端部2806があ
る。
【0141】本実施例は、他の実施例と異なり端子足先
端部2806の屈曲に特徴がある。すなわち、図28に
示すように、端子足先端2808から、第1屈曲部28
01,第2屈曲部2802、そして第3屈曲部2803
と、少なくとも三つの屈曲部がある。これらの屈曲部が
端子足先端2808のはんだ付け部を、熱膨張係数差に
よる応力から守っている。第1屈曲部2801は、屈曲
の軸が図の左右方向であるので、それと直角の、紙面に
ほぼ垂直の方向(前後方向)の変位を吸収する機能を持
つ。第2屈曲部2802は、屈曲の軸が図の上下方向で
あるので、それと直角である左右方向の変位を吸収する
機能を持つ。最後に、第2屈曲部2802と第3屈曲部28
03の間の梁2809で上下方向の変位を吸収する。こ
のように、少なくとも3個所の直角に曲がる屈曲部を備
え、そのうち1個所の屈曲中心の方向が基板面に平行で
あり、残りの屈曲個所のうちの少なくとも1個所の屈曲
中心の方向が基板面に垂直であることによって、基板面
に垂直な方向のみならず基板面に平行な、互いに垂直な
2方向に対しても、すなわち、互いに垂直な3軸方向に
柔軟な端子足を実現した。なお、両端の端子足先端部2
806には、さらに第4屈曲部2807がある。この屈
曲部の存在により、さらに柔軟性が増しているが、とく
に、この屈曲部が必須というわけではない。
【0142】銅の端子足群は、樹脂の蓋に固定されてい
るため、樹脂ケースの熱膨張による変位を直接受ける。
信頼性確保のため、できるだけ熱膨張を小さく、金属に
近く調整した材料を用いるが、それでも、樹脂の熱膨張
係数は大きく、金属との熱膨張係数の違いは大きい。さ
らに、窒化アルミニウム、あるいはアルミナの熱膨張係
数は、銅,アルミニウム、あるいは鉄のような金属に比
較してもかなり小さい。従って、端子足先端のはんだ付
け部には、平面方向の大きな熱応力が発生する。さら
に、樹脂の蓋が樹脂のケースに接着される構造であるた
め、上下方向にも樹脂(ケース)と銅(端子足群)との
熱膨張の差が現れる。従って、はんだ付け部に発生する
熱応力は、左右前後及び上下の三次元的に複雑なもので
ある。
【0143】これを吸収するために、はんだ付け部直下
の窒化アルミニウムあるいはアルミナ表面から銅箔を浮
かせる対策を施すことも可能であり、有効である。しか
し、変位量が10ミクロンを越える場合があるので、端
子足に曲折部を設けることは必須である。もちろん、予
め熱処理をして、端子足の素材を柔軟にしておく対策も
採られている。とくに、三次元的な相対変位を吸収する
ために、端子足先端近傍に三次元的な曲折を設けること
が有効である。
【0144】(実施例7)本発明の第7の実施例につい
て、図29を参照して説明する。図29は、第7の実施
例の完成時の外観形状を示している。モジュール上面2
901に、主端子が二つ配置されている。すなわち、上
方がコレクタ端子2902,下方がエミッタ端子290
3である。両主端子の間に補助端子、すなわち、補助エ
ミッタ端子2904及びゲート端子2905が配置され
ている。すでに述べたように、この配置には、モジュー
ルを直列あるいは並列に複数個並べる場合ゲート配線が
容易になるという利点がある。
【0145】さらに、本実施例では、補助ゲート端子2
906を設けたことが特徴である。この端子は、モジュ
ールの内部と電気的につながっていない。図に示すよう
に、ゲートに至る配線中に外付け抵抗2907を取り付
けるための端子である。外付け抵抗をつける目的は、ゲ
ート配線のインピーダンス調整である。すなわち、各モ
ジュールに近い場所までは低インピーダンスで配線し、
各モジュールに至るまでの比較的長い配線経路での電気
的な撹乱を受けにくくする。ところが、低インピーダン
スのまま、モジュールに接続すると、モジュールごとの
ゲート感度の違いをうまく吸収することが難しい。そこ
で、インピーダンスを調整するために、外付け抵抗29
07を挿入するのである。本実施例では抵抗値として
0.5Ω を採用した。さらに、モジュール内では、第4
の実施例で説明したように、各チップごとの感度のばら
つきを調整するために、チップごとにゲート抵抗を挿入
する(図示せず)。ここの抵抗値は、絶縁ゲート型トラ
ンジスタチップ1個あたり6Ωである。以上、簡単に説
明したように、モジュールごとに取り付ける外付け抵抗
2907は、モジュール間の性能のばらつきを吸収し、
モジュールごとのスイッチング時刻のずれを最小限に食
い止めるために使用される。
【0146】本実施例による、補助ゲート端子2906
の配置は、モジュールごとのゲート抵抗の実装を容易に
するという利点を持っている。
【0147】主端子とは、主電流の流れる外部端子のこ
とであり、補助端子とは、ゲート駆動のために主電流に
よる電圧降下(変動)の影響を受けないように配線され
たエミッタへ通じる外部端子、すなわち、補助エミッタ
端子及びゲート端子のことである。モジュールを直列及
び/又は並列に接続するには、すでに述べたように、こ
れらの外部端子をすべてモジュールの上面、すなわち、
ベース金属と反対の面に配置することが必須である。そ
れだけでなく、主端子で補助端子を挟む配列が有効であ
る。
【0148】また、ゲートに直列抵抗を入れてスイッチ
ングのばらつきを低減する際に、モジュール内ばかりで
なくモジュール外にも抵抗を取り付けると、動作がさら
に安定することがある。そのために、モジュールに補助
ゲート端子を設ける、本実施例で述べている構造もスイ
ッチングの安定化に有効な解決策である。
【0149】
【発明の効果】本発明によれば、シリーズ展開が可能
な、絶縁ゲート型トランジスタ,ダイオード等のパワー
半導体素子を搭載した電力用モジュール型半導体装置を
実現することができる。
【0150】さらに本発明によれば、信頼性の高い、絶
縁ゲート型トランジスタ,ダイオード等のパワー半導体
素子を搭載した電力用モジュール型半導体装置を実現す
ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す一部透視斜視図で
ある。
【図2】本発明の作用及び第1の実施例を示す斜視図で
ある。
【図3】本発明の作用を示す平面模式図である。
【図4】本発明の作用及び第1の実施例を示す断面図で
ある。
【図5】本発明の作用及び第2の実施例を示す断面図で
ある。
【図6】本発明の第3の実施例を示す平面模式図であ
る。
【図7】本発明の第1の実施例を示す断面図である。
【図8】本発明の第1の実施例を示す斜視図及び断面図
である。
【図9】本発明の第1の実施例を示す斜視図である。
【図10】本発明の第1の実施例を示す斜視図及び断面
図である。
【図11】本発明の第1の実施例を示す斜視図である。
【図12】本発明の第1の実施例を示す斜視図である。
【図13】本発明の第1の実施例を示す工程模式図であ
る。
【図14】本発明の第2の実施例を示す斜視図及び断面
図である。
【図15】本発明の第2の実施例を示す一部透視斜視図
である。
【図16】本発明の第2の実施例を示す斜視図である。
【図17】本発明の第2の実施例の効果を示す断面説明
図である。
【図18】本発明の第2の実施例を示す斜視図である。
【図19】本発明の第2の実施例を示す工程模式図であ
る。
【図20】本発明の第3の実施例を示す斜視図及び断面
図である。
【図21】本発明の第3の実施例を示す一部透視斜視図
である。
【図22】本発明の第3の実施例の効果を示す説明図で
ある。
【図23】本発明の第4の実施例を示す一部透視斜視図
である。
【図24】本発明の第5の実施例を示す斜視図である。
【図25】本発明の第5の実施例を示す斜視図である。
【図26】本発明の第5の実施例を示す斜視図である。
【図27】本発明の第5の実施例の効果を説明するグラ
フである。
【図28】本発明の第6の実施例を示す斜視図である。
【図29】本発明の第7の実施例を示す斜視図である。
【符号の説明】
101,401,2008,2401…絶縁ゲート型ト
ランジスタチップ、102,2010,2402…フリ
ーホイールダイオードチップ、106,420…窒化アル
ミニウム基板、107,1702,2501…モリブデ
ン基板、108,302,1508…コレクタ端子足、11
0,319,1601,2604…エミッタ端子足、1
12,1504,2309…ゲート端子足、114,1
506,2312…補助エミッタ端子足、117,41
5,1505…構成単位間ゲート接続線、118,41
6,1507…構成単位間補助エミッタ接続線、11
9,207,318,1511,2301,2609,
2902…コレクタ端子、120,208,335,1
608,2304,2610,2903…エミッタ端
子、121,1501,2101,2313…ケース
蓋、122,336,2013,2502…アノードワ
イヤ、123,402,2011,2503…エミッタ
ワイヤ、124,403,2012,2504…ゲート
ワイヤ、129,209,1512,2307,290
5…ゲート端子、130,210,1513,2310,2
904…補助エミッタ端子、201…直流プラス側入
力、202…直流マイナス側入力、203…U相、20
4…V相、205…W相、206…ヒートシンク、21
1…樹脂ケース、212…金属板、213…ゲート配
線、214,2204…補助エミッタ配線、215…板
状配線、301…ダイオードチップ、309…コレクタ
連結端子足、312…コレクタインダクタンス調整端子
足、313…コレクタ合流端子足、316…コレクタ位
置調整端子足、326,1603,2804…エミッタ
連結端子足、329,1604,2805…エミッタイ
ンダクタンス調整端子足、330,332,1605,
1607…エミッタ合流端子足、333,1606…エ
ミッタ位置調整端子足、406,801,2007…チ
ップ下はんだ、408…コレクタ配線用銅箔、409…
ゲート配線用銅箔、410…エミッタ配線用銅箔、41
1…裏面接着用銅箔、412…銅箔ニッケルめっき、4
13…内部結線用補助エミッタ端子足、414…外部端
子接続用ゲート端子足、421,802…銀ろう、42
2,1001…窒化アルミニウム基板固定用はんだ、4
24,1203,1804…シリコーンゲル、425…エ
ポキシ樹脂、501,1806…空気層、502…樹脂
蓋、503…シリコーンゴムキャップ、504…樹脂
壁、601…直列接続用端子足、701…曲げ方向、7
02…引っ張り方向、703…剪断方向、803,20
02…金属板接着用銅箔、1101…金属リング、12
01,1801…ケース壁、1202…エポキシレジ
ン、1401…銅−モリブデン−銅クラッド基板、15
02…溝、1503…注入孔、1509…コレクタ連結
端子足、1510…コレクタインダクタンス調整端子
足、1602…エミッタ端子足曲折部、1701…熱
源、1703…上側銅層、1704…モリブデン層、170
5…下側銅層、1802…シリコーンゴムキャップ、1
803…楔状突起、1805…エポキシレジン、200
1,2315…アルミナ基板、2003…アルミナ基板
固定用はんだ、2009…銅−タングステン−銅クラッ
ド基板、2102…上側コレクタ端子、2103…上側
エミッタ端子、2104…下側コレクタ端子、2105
…下側エミッタ端子、2106…上側ゲート端子、21
07…上側補助エミッタ端子、2108…下側ゲート端
子、2109…下側補助エミッタ端子、2110…上側
コレクタ端子足、2111…上側コレクタ連結端子足、
2112…上側コレクタインダクタンス調整端子足、2
113…上側エミッタ端子足、2114…上側エミッタ
連結端子足、2115…上側エミッタインダクタンス調
整端子足、2116…下側コレクタ端子足、2117…
下側コレクタ連結端子足、2118…下側コレクタイン
ダクタンス調整端子足、2119…下側エミッタ端子
足、2120…下側エミッタ連結端子足、2121…下
側エミッタインダクタンス調整端子足、2122…上側
ゲート端子足、2123…上側補助エミッタ端子足、2
124…下側ゲート端子足、2125…下側補助エミッ
タ端子足、2126…上側構成単位間ゲート接続線、2
127…上側構成単位間補助エミッタ接続線、2128
…下側構成単位間ゲート接続線、2129…下側構成単
位間補助エミッタ接続線、2130…上側チップ抵抗、
2131…下側チップ抵抗、2132…直列接続バー、
2201…左側エミッタ主電流、2202…右側エミッタ主
電流、2203…エミッタ主配線、2205…補助エミ
ッタ配線内主電流、2302…対エミッタ近接部、2303
…コレクタ平行通電部、2305…対コレクタ近接部、
2306…エミッタ平行通電部、2308…構成単位間
ゲート接続板、2311…構成単位間補助エミッタ接続
板、2314…チップ抵抗、2316…銅基板、240
6…第1窒化アルミニウム基板、2409…第2窒化ア
ルミニウム基板、2601…コレクタ端子足上、260
2…コレクタ端子足下、2603…カソード端子足、2
605…アノード端子足、2606…コレクタ連結バ
ー、2607…コレクタ・カソード連結バー、2608
…エミッタ・アノード連結バー、2801…第1屈曲
部、2802…第2屈曲部、2803…第3屈曲部、280
6…端子足先端部、2807…第4屈曲部、2808…
端子足先端、2809…梁、2901…モジュール上
面、2906…補助ゲート端子、2907…外付け抵
抗。
フロントページの続き (72)発明者 森 睦宏 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 栗原 保敏 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 大貫 仁 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 木村 新 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 嶋田 智 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 鈴木 和弘 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 紙田 行雄 茨城県日立市幸町三丁目1番1号 株式 会社 日立製作所 日立工場内 (72)発明者 小林 勇雄 茨城県ひたちなか市大字高場字鹿島谷津 2477番地3日立オートモティブエンジニ アリング株式会社内 (72)発明者 山田 一二 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 門馬 直弘 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (56)参考文献 特開 平3−97257(JP,A) 特開 平3−292764(JP,A) 特開 昭61−185954(JP,A) 特開 平4−350957(JP,A) 特開 平5−13920(JP,A) 独国特許出願公開4316639(DE,A 1) 欧州特許出願公開629464(EP,A 1) (58)調査した分野(Int.Cl.7,DB名) H01L 23/52 - 23/538 H01L 25/00 - 25/18 H01L 23/28 - 23/31

Claims (5)

    (57)【特許請求の範囲】
  1. 【請求項1】基板上に複数のパワー半導体素子と、配線
    用の金属箔とを配置してユニットを形成し、このユニッ
    トを放熱用の金属基板上に複数配置し、各ユニット上に
    これらのユニットを電気的に接続するための電極端子足
    を配置し、上記電極端子足を連結端子足によって電気的
    に接続し、上記配線用の金属箔はユニットが形成される
    基板上に銀ろうで固定され、上記配線用の金属箔上には
    んだによりパワー半導体素子が接着されているモジュー
    ル型半導体装置において、 上記パワー半導体素子の裏面には、ニッケルめっきが施
    されていることを特徴とするパワー半導体装置。
  2. 【請求項2】基板上に複数のパワー半導体素子と、配線
    用の金属箔とを配置してユニットを形成し、このユニッ
    トを放熱用の金属基板上に複数配置し、各ユニット上に
    これらのユニットを電気的に接続するための電極端子足
    を配置し、上記電極端子足を連結端子足によって電気的
    に接続し、上記配線用の金属箔はユニットが形成される
    基板上に銀ろうで固定され、この金属箔上にはんだによ
    りパワー半導体素子が接着されているモジュール型半導
    体装置において、 上記配線用の金属箔上にパワー半導体素子を接着するは
    んだには、ニッケルが添加されていることを特徴とする
    モジュール型半導体装置。
  3. 【請求項3】基板上に複数のパワー半導体素子と、配線
    用の金属箔とを配置してユニットを形成し、このユニッ
    トを放熱用の金属基板上に複数配置し、各ユニット上に
    これらのユニットを電気的に接続するための電極端子足
    を配置し、上記電極端子足を連結端子足によって電気的
    に接続し、上記配線用の金属箔はユニットが形成される
    基板上に銀ろうで固定され、上記配線用の金属箔上には
    んだによりパワー半導体素子が接着されているモジュー
    ル型半導体装置において、 上記配線用の金属箔には、ニッケルめっきが施されてい
    ることを特徴とするモジュール型半導体装置。
  4. 【請求項4】基板上に複数のパワー半導体素子と、配線
    用の金属箔とを配置してユニットを形成し、このユニッ
    トを放熱用の金属基板上に複数配置し、各ユニット上に
    これらのユニットを電気的に接続するための電極端子足
    を配置し、上記電極端子足を連結端子足によって電気的
    に接続し、上記配線用の金属箔は上記ユニットが形成さ
    れる基板上に銀ろうで固定され、上記配線用の金属箔上
    にはんだにより上記パワー半導体素子が接着され、上記
    基板の裏面には接着用の銅箔が銀ろうにより接着され、
    上記接着用の銅箔と上記放熱用の金属基板ははんだによ
    り接着されるモジュール型半導体装置において、 上記接着用の銅箔と放熱用の金属基板を接着するはんだ
    には、ニッケル粒を混入させたことを特徴とするモジュ
    ール型半導体装置。
  5. 【請求項5】基板上に複数のパワー半導体素子と、配線
    用の金属箔とを配置してユニットを形成し、このユニッ
    トを放熱用の金属基板上に複数配置し、各ユニット上に
    これらのユニットを電気的に接続するための電極端子足
    を配置し、上記電極端子足は連結端子足によって、各ユ
    ニットが電気的に接続され、上記金属基板上に上記ユニ
    ットを囲うように設けられた樹脂壁と、上記金属基板の
    上空にこの金属基板に対抗するように設けられ上記樹脂
    壁と接続される樹脂蓋とを有し、上記金属基板、樹脂壁
    及び樹脂蓋により形成された空間にはシリコーン層と空
    気層とが形成されているモジュール型半導体装置の製造
    方法において、 上記樹脂蓋を形成する製造工程を、シリコーン層を形成
    する製造工程より先に行うことを特徴とするモジュール
    型半導体装置の製造方法。
JP00466995A 1995-01-17 1995-01-17 モジュール型半導体装置 Expired - Fee Related JP3269745B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP00466995A JP3269745B2 (ja) 1995-01-17 1995-01-17 モジュール型半導体装置
DE19601372A DE19601372B4 (de) 1995-01-17 1996-01-16 Halbleitermodul
US09/603,966 US6353258B1 (en) 1995-01-17 2000-06-26 Semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00466995A JP3269745B2 (ja) 1995-01-17 1995-01-17 モジュール型半導体装置

Publications (2)

Publication Number Publication Date
JPH08195471A JPH08195471A (ja) 1996-07-30
JP3269745B2 true JP3269745B2 (ja) 2002-04-02

Family

ID=11590325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00466995A Expired - Fee Related JP3269745B2 (ja) 1995-01-17 1995-01-17 モジュール型半導体装置

Country Status (3)

Country Link
US (1) US6353258B1 (ja)
JP (1) JP3269745B2 (ja)
DE (1) DE19601372B4 (ja)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1146988C (zh) * 1997-12-08 2004-04-21 东芝株式会社 半导体功率器件的封装及其组装方法
DE19942770A1 (de) * 1999-09-08 2001-03-15 Ixys Semiconductor Gmbh Leistungshalbleiter-Modul
JP3695260B2 (ja) * 1999-11-04 2005-09-14 株式会社日立製作所 半導体モジュール
US6703707B1 (en) * 1999-11-24 2004-03-09 Denso Corporation Semiconductor device having radiation structure
US7091606B2 (en) * 2000-01-31 2006-08-15 Sanyo Electric Co., Ltd. Circuit device and manufacturing method of circuit device and semiconductor module
US6548328B1 (en) * 2000-01-31 2003-04-15 Sanyo Electric Co., Ltd. Circuit device and manufacturing method of circuit device
WO2001082376A1 (fr) * 2000-04-25 2001-11-01 Kabushiki Kaisha Toyota Jidoshokki Dispositif a semi-conducteur
DE60030417D1 (de) * 2000-05-08 2006-10-12 St Microelectronics Srl Elektrische Verbindungsstruktur für elektronische Leistungsbauelemente und Verbindungsmethode
JP3749137B2 (ja) * 2001-03-21 2006-02-22 株式会社日立製作所 半導体装置
WO2002082542A1 (fr) * 2001-04-02 2002-10-17 Mitsubishi Denki Kabushiki Kaisha Dispositif de puissance à semi-conducteurs
JP4491992B2 (ja) * 2001-05-30 2010-06-30 富士電機システムズ株式会社 半導体素子の並列接続用導体
JP4066644B2 (ja) * 2001-11-26 2008-03-26 株式会社豊田自動織機 半導体装置、半導体装置の配線方法
GB0226714D0 (en) * 2002-11-15 2002-12-24 Bombardier Transp Gmbh Converter module
DE10333328B3 (de) * 2003-07-23 2005-01-27 Semikron Elektronik Gmbh Leistungshalbleitermodul in skalierbarer Aufbautechnik
DE102004042367B4 (de) * 2004-09-01 2008-07-10 Infineon Technologies Ag Leistungshalbleitermodul
JP2006114716A (ja) * 2004-10-15 2006-04-27 Mitsubishi Electric Corp 電力用半導体装置
JP4581717B2 (ja) * 2005-02-03 2010-11-17 富士電機ホールディングス株式会社 電力用半導体モジュール
US7816249B2 (en) * 2005-05-20 2010-10-19 Fuji Electric Systems Co., Ltd. Method for producing a semiconductor device using a solder alloy
JP4635715B2 (ja) * 2005-05-20 2011-02-23 富士電機システムズ株式会社 はんだ合金およびそれを用いた半導体装置
JP2007012831A (ja) 2005-06-30 2007-01-18 Hitachi Ltd パワー半導体装置
KR101321361B1 (ko) * 2005-09-05 2013-10-22 페어차일드코리아반도체 주식회사 모터구동용 인버터 모듈 및 이를 구비한 모터구동장치와인버터 집적회로 패키지
DE102006014582B4 (de) * 2006-03-29 2011-09-15 Infineon Technologies Ag Halbleitermodul
JP4926726B2 (ja) * 2007-01-15 2012-05-09 ローム株式会社 半導体装置
JP2008270455A (ja) * 2007-04-19 2008-11-06 Hitachi Ltd パワー半導体モジュール
JP5261982B2 (ja) * 2007-05-18 2013-08-14 富士電機株式会社 半導体装置及び半導体装置の製造方法
WO2009093982A1 (en) 2008-01-25 2009-07-30 Iskralab D.O.O. Power switching module
JP4692908B2 (ja) * 2008-04-14 2011-06-01 電気化学工業株式会社 モジュール構造体
JP5136343B2 (ja) * 2008-10-02 2013-02-06 三菱電機株式会社 半導体装置
US8237260B2 (en) * 2008-11-26 2012-08-07 Infineon Technologies Ag Power semiconductor module with segmented base plate
JP5581043B2 (ja) * 2009-11-24 2014-08-27 イビデン株式会社 半導体装置及びその製造方法
JP5126244B2 (ja) * 2010-02-12 2013-01-23 株式会社村田製作所 回路モジュール
JP5440438B2 (ja) 2010-08-04 2014-03-12 三菱電機株式会社 パワーモジュール
JP5705099B2 (ja) 2011-12-16 2015-04-22 三菱電機株式会社 半導体スイッチング装置
KR101443987B1 (ko) 2012-12-31 2014-09-23 삼성전기주식회사 반도체 모듈 패키지
USD721047S1 (en) 2013-03-07 2015-01-13 Vlt, Inc. Semiconductor device
US8975694B1 (en) * 2013-03-07 2015-03-10 Vlt, Inc. Low resistance power switching device
CN105247675B (zh) * 2013-05-29 2019-11-15 三菱电机株式会社 半导体装置
JP6114149B2 (ja) * 2013-09-05 2017-04-12 トヨタ自動車株式会社 半導体装置
JP2015173215A (ja) * 2014-03-12 2015-10-01 株式会社東芝 半導体装置及びその製造方法
DE112016000092T5 (de) 2015-03-05 2017-04-20 Fuji Electric Co., Ltd. Halbleitervorrichtung
JP2017139380A (ja) * 2016-02-04 2017-08-10 矢崎総業株式会社 スイッチング制御装置
EP3339656B1 (de) * 2016-12-22 2020-11-11 Grundfos Holding A/S Pumpenaggregat
JP6874452B2 (ja) * 2017-03-21 2021-05-19 住友電気工業株式会社 半導体モジュール
CN108962884B (zh) * 2017-05-22 2022-01-21 万国半导体(开曼)股份有限公司 模制智能电源模块
JP7221930B2 (ja) 2017-07-12 2023-02-14 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト パワー半導体モジュール
JP6402813B2 (ja) * 2017-09-20 2018-10-10 三菱電機株式会社 半導体装置
CN111386604B (zh) 2018-06-01 2023-12-19 富士电机株式会社 半导体装置
JP6980625B2 (ja) 2018-09-18 2021-12-15 株式会社東芝 端子板及び半導体装置
CN209709698U (zh) 2019-04-26 2019-11-29 阳光电源股份有限公司 一种逆变器系统
DE102022214023A1 (de) 2022-12-20 2024-06-20 Vitesco Technologies Germany Gmbh Leistungselektronikmodul, Inverter mit einem Leistungselektronikmodul

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893159A (en) 1974-02-26 1975-07-01 Rca Corp Multiple cell high frequency power semiconductor device having bond wires of differing inductance from cell to cell
US4589195A (en) 1981-02-27 1986-05-20 Motorola, Inc. Method of fabricating a high current package with multi-level leads
JPS57207356A (en) 1981-06-15 1982-12-20 Fujitsu Ltd Semiconductor device
JPH0454197Y2 (ja) 1987-12-25 1992-12-18
JPH0736467B2 (ja) * 1991-07-05 1995-04-19 電気化学工業株式会社 セラミックス回路基板の製造法
JP2850606B2 (ja) 1991-11-25 1999-01-27 富士電機株式会社 トランジスタモジュール
JPH0629459A (ja) * 1992-07-08 1994-02-04 Mitsubishi Electric Corp 半導体装置およびその製造方法
US5324888A (en) 1992-10-13 1994-06-28 Olin Corporation Metal electronic package with reduced seal width
US5411703A (en) * 1993-06-16 1995-05-02 International Business Machines Corporation Lead-free, tin, antimony, bismtuh, copper solder alloy

Also Published As

Publication number Publication date
JPH08195471A (ja) 1996-07-30
DE19601372A1 (de) 1996-07-18
DE19601372B4 (de) 2004-02-12
US6353258B1 (en) 2002-03-05

Similar Documents

Publication Publication Date Title
JP3269745B2 (ja) モジュール型半導体装置
US10483216B2 (en) Power module and fabrication method for the same
US8018047B2 (en) Power semiconductor module including a multilayer substrate
US20090039498A1 (en) Power semiconductor module
US20080054425A1 (en) Power electronic package having two substrates with multiple electronic components
US20180331002A1 (en) Electronic device
US10147707B2 (en) Semiconductor device
JP3222341B2 (ja) 半導体モジュール
JP2020009834A (ja) 半導体装置
JP2007173703A (ja) 半導体装置
WO2022024567A1 (ja) 半導体装置
CN112786550B (zh) 半导体装置
JPH09135155A (ja) 半導体装置
WO2023109604A2 (en) Power semiconductor module
WO2023109605A1 (en) Power semiconductor apparatus
WO2022249806A1 (ja) 半導体装置
WO2022249812A1 (ja) 半導体装置
EP4322210A1 (en) Semiconductor module and method for fabricating the same
WO2022249810A1 (ja) 半導体装置
WO2022249804A1 (ja) 半導体装置
US20240234267A1 (en) Semiconductor device
WO2022249811A1 (ja) 半導体装置
WO2022249809A1 (ja) 半導体装置
WO2022249803A1 (ja) 半導体装置
WO2022249807A1 (ja) 半導体装置

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees