JP2022139878A - 二次電池用電極の製造方法 - Google Patents

二次電池用電極の製造方法 Download PDF

Info

Publication number
JP2022139878A
JP2022139878A JP2021040443A JP2021040443A JP2022139878A JP 2022139878 A JP2022139878 A JP 2022139878A JP 2021040443 A JP2021040443 A JP 2021040443A JP 2021040443 A JP2021040443 A JP 2021040443A JP 2022139878 A JP2022139878 A JP 2022139878A
Authority
JP
Japan
Prior art keywords
coating film
electrode
current collector
wet powder
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021040443A
Other languages
English (en)
Other versions
JP7229289B2 (ja
Inventor
直大 眞下
Naohiro Mashita
勝志 榎原
Katsushi Enohara
遥 塩野谷
Haruka Shionoya
雅則 北吉
Masanori Kitayoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Planet Energy and Solutions Inc
Original Assignee
Prime Planet Energy and Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Planet Energy and Solutions Inc filed Critical Prime Planet Energy and Solutions Inc
Priority to JP2021040443A priority Critical patent/JP7229289B2/ja
Priority to EP22156827.2A priority patent/EP4057371A3/en
Priority to CN202210221567.6A priority patent/CN115084442B/zh
Priority to US17/692,191 priority patent/US20220293905A1/en
Publication of JP2022139878A publication Critical patent/JP2022139878A/ja
Application granted granted Critical
Publication of JP7229289B2 publication Critical patent/JP7229289B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/006Pressing and sintering powders, granules or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/222Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/24Calendering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/28Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/46Rollers
    • B29C2043/461Rollers the rollers having specific surface features
    • B29C2043/464Rollers the rollers having specific surface features having projections or knives, e.g. for cutting-out or for forming local depressions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

【課題】電極集電体に対する塗膜の追従性を向上させることで、不規則な間隔のクラックやシワの発生を抑制する、電極の製造方法を提供すること。【解決手段】ここで開示される電極の製造方法は、電極活物質とバインダ樹脂と溶媒とを少なくとも含有した凝集粒子によって形成される湿潤粉体を用意する工程;前記湿潤粉体を用いて、電極集電体(12)上に該湿潤粉体からなる塗膜(32)を、該塗膜の気相を残した状態で、前記塗膜の平均膜厚が50μm以上となるように成膜する工程;前記集電体上の塗膜を搬送し、ロール型を用いて凹凸転写することにより、該塗膜の表面部中央に搬送方向に沿って延びる溝(22)を前記溝の深さが、(9/10×t1)>t2を満たすように少なくとも1本形成する工程;および、前記集電体上に形成された塗膜を乾燥させて電極活物質層を形成する工程;を包含する。【選択図】図4

Description

本発明は、二次電池用電極の製造方法に関する。
リチウムイオン二次電池等の二次電池は、既存の電池に比べて軽量かつエネルギー密度が高いことから、車両搭載用の高出力電源、あるいは、パソコンおよび携帯端末の電源として好ましく利用されている。この種の二次電池に備えられる正極および負極(以下、正負極を特に区別しない場合は単に「電極」という。)の典型的な構造として、箔状の電極集電体の片面もしくは両面に電極活物質を主成分とする電極活物質層が形成されているものが挙げられる。
かかる電極活物質層は、電極活物質、結着材(バインダ)、導電材等の固形分を所定の溶媒中に分散して調製したスラリー(ペースト)状の電極材料を集電体の表面に塗布して塗膜を形成し、その塗膜を乾燥させた後、プレス圧をかけて所定の密度、厚さとすることにより形成される。二次電池はさらなる高性能化を求められており、かかる高性能化の一つの方針として、高容量化が図られている。二次電池の高容量化としては例えば、電極を従来よりも厚くすることが行われている。
電極を厚くするために電極材料(塗膜)を集電体に厚く塗布して乾燥させた場合には、塗膜の乾燥収縮も大きくなり、これにより乾燥後の塗膜に不規則な間隔のクラックやシワが生じやすくなる傾向にある。また、乾燥工程の時間を短縮するために、乾燥温度(乾燥炉内の温度)を高く設定することや、乾燥工程における搬送速度を速くすることが行われているが、このような場合にも、集電体に達するようなクラックやシワが生じやすくなる傾向にある。かかるクラックやシワが発生は、容量低下等の電池性能の低下や異物発生の原因となり得るため、好ましくない。
一般的に、かかる不規則な間隔のクラックやシワは、活物質やバインダ等の固形成分の間から溶媒(液体成分)が急速に蒸発(揮発)することによって固形成分同士が引張り合い、塗膜に引張り応力が生じる。活物質層内では、固形成分同士の結合が強い箇所と弱い箇所とが不規則に存在するため、塗膜内で引張り応力が発生すると結合の弱い箇所において、クラックやシワが生じる。これに対して、特許文献1では、樽状搬送ローラを配置して、塗膜内部に引張り応力を残留しにくくすることで、乾燥後の電極(塗膜)が割れにくくする手法が開示されている。
特開2015-46410号公報
ところで、本発明者が検討した結果によれば、乾燥後の塗膜(電極)に発生する不規則な間隔のクラックやシワは、集電体の搬送方向に直交する幅方向の端部よりも中央部に偏在し、搬送方向に沿うように生じる傾向があることを見出した。これは、電極集電体が搬送方向に一定の力で引き伸ばされた状態で搬送され、乾燥工程において加熱されると、集電体は搬送方向に伸長すると同時に幅方向に収縮し得る。上述したように、塗膜も塗膜内部に残留する引張り応力によって乾燥収縮が生じるが、集電体の変形に対して追従することができずに、不規則な間隔でシワやクラックが乾燥後の塗膜(電極)の中央部に偏在する。
本発明は、かかる事情に鑑みてなされたものであり、その主な目的は、電極集電体に対する塗膜の追従性を向上させることで、不規則な間隔のクラックやシワの発生を抑制する、電極の製造方法を提供することにある。
上記目的を実現するべく、二次電池用電極の製造方法が提供される。ここに開示される電極の製造方法は、正負極いずれかの電極集電体および電極活物質層を有する電極の製造方法であって、以下の工程:電極活物質とバインダ樹脂と溶媒とを少なくとも含有した凝集粒子によって形成される湿潤粉体を用意する工程、ここで、前記湿潤粉体は、少なくとも50個数%以上の前記凝集粒子が、固相と液相と気相とがペンジュラー状態またはファニキュラー状態を形成している;前記湿潤粉体を用いて、前記電極集電体上に該湿潤粉体からなる塗膜を、該塗膜の気相を残した状態で成膜する工程、ここで、前記塗膜の平均膜厚t(μm)は、50μm以上となるように成膜される;前記集電体上の塗膜を搬送し、ロール型を用いて凹凸転写することにより、該塗膜の表面部中央に搬送方向に沿って延びる溝を少なくとも1本形成する工程、ここで、前記溝の深さt(μm)は、(9/10×t)>tを満たすように形成される;および、前記集電体上に形成された塗膜を乾燥させて電極活物質層を形成する工程;を包含する。
かかる構成によれば、塗膜の表面部中央に搬送方向に沿って延びる溝を少なくとも1本形成することにより、電極集電体の変形に対する塗膜の追従性が向上する。これにより、塗膜中央部に不規則な間隔のクラックやシワが偏在することを抑制し、高品質な電極を製造することができる。
ここに開示される電極製造方法の好適な一態様では、前記湿潤粉体を用意する工程において用意される湿潤粉体が、所定の容積(mL)の容器に力を加えずにすり切りに湿潤粉体(g)を入れて計測した嵩比重を緩め嵩比重X(g/mL)とし、気相が存在しないと仮定して湿潤粉体の組成から算出される比重を真比重Y(g/mL)としたときに、緩め嵩比重Xと真比重Yとの比:Y/Xが、1.2以上である
かかる構成によれば、乾燥工程前の塗膜に搬送方向に延びる溝を、より好適に形成することができる。
ここに開示される電極製造方法の好適な一態様では、前記搬送方向に沿って延びる溝を形成する工程において、前記塗膜に対して前記溝が複数本形成されることを特徴とする。また、別の好適な一態様においては、前記搬送方向に沿って延びる溝を形成する工程において、前記塗膜の該搬送方向に直交する幅方向の端部に存在する溝よりも、該幅方向の中央部に存在する溝の深さが深くなるように形成されることを特徴とする。
かかる構成によれば、電極集電体に対する塗膜の追従性をより向上させ、不規則な間隔のクラックやシワを好適に抑制することができる。
一実施形態に係る電極製造方法の大まかな工程を示すフローチャートである。 一実施形態に係る電極製造装置の構成を模式的に示すブロック図である。 湿潤粉体を構成する凝集粒子における固相(活物質粒子等の固形分)、液相(溶媒)、気相(空隙)の存在形態を模式的に示す説明図であり、(A)はペンジュラー状態、(B)はファニキュラー状態、(C)は、キャピラリー状態、(D)はスラリー状態を示す。 一実施形態に係る溝形成工程を模式的に示す図である。 従来の電極製造方法において塗膜に不規則なクラックやシワが発生する過程を模式的に示す図であり、(A)は不規則なクラックやシワが発生する前の状態を示し、(B)は不規則なクラックやシワが発生した後の状態を示す。 一実施形態に係るリチウムイオン二次電池を模式的に示す説明図である。
以下、二次電池の典型例であるリチウムイオン二次電池に好適に採用される電極を例として、ここで開示される電極の製造方法の好適な実施形態について説明する。なお、本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。ここに開示される電極の製造方法は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
なお、寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。
また、本明細書において範囲を示す「A~B(ただし、A,Bは任意の値。)」の表記は、A以上B以下を意味するものとする。
本明細書において、「二次電池」とは、繰り返し充電可能な蓄電デバイス一般をいい、リチウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池等のいわゆる蓄電池(すなわち化学電池)の他、電気二重層キャパシタ(すなわち物理電池)を包含する。また、また、本明細書において「リチウムイオン二次電池」とは、電荷担体としてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電荷の移動により充放電が実現される非水電解液二次電池をいう。本明細書では、正極および負極を特に区別する必要がないときは、単に電極と記載している。
<電極の製造方法>
図1に示すようにここに開示される電極の製造方法は、大まかに言って、以下の5つの工程:(1)湿潤粉体(電極材料)を用意する工程(S1);(2)湿潤粉体からなる塗膜を成膜する工程(S2);(3)塗膜に搬送方向に延びる溝を形成する工程(S3);(4)塗膜を乾燥する工程(S4);を包含しており、乾燥工程前に塗膜に搬送方向に延びる溝を形成する点において特徴づけられている。したがって、その他の工程は特に限定されず、従来この種の製造方法と同様の構成でよい。以下、各工程について説明する。
図2は、ここで開示される電極製造方法に係る電極製造装置の概略構成を、模式的に示したブロック図である。図2に示される電極製造装置100は、典型的には、図示しない供給室から搬送されてきたシート状電極集電体12を長手方向に沿って搬送しながら、電極集電体12の表面上に電極材料30からなる塗膜32を成膜する成膜部120と、該塗膜32の表面に搬送方向に延びる溝を形成する塗膜加工部130と、塗膜32を適切に乾燥させて電極活物質層を形成する乾燥部140とを備える。これらは、予め定められた搬送経路に沿って、順に配置されている。
<用意工程>
電極材料30は、電極活物質、溶媒、バインダ樹脂、その他の添加物等の材料を従来公知の混合装置を用いて、混合することによって用意することができる。かかる混合装置としては、例えば、プラネタリーミキサー、ボールミル、ロールミル、ニーダ、ホモジナイザー等が挙げられる。
電極材料30は、ペースト、スラリー、および造粒体の形態をとり得るが、造粒体、特に溶媒を少量含む湿潤状態の造粒体(湿潤粉体)が、ここに開示される電極製造装置100において、電極活物質層を電極集電体12上に成膜するという目的に適している。なお、本明細書において、湿潤粉体の形態的な分類に関しては、Capes C. E.著の「Particle Size Enlargement」(Elsevier Scientific Publishing Company刊、1980年)に記載され、現在は周知となっている4つの分類を、本明細書においても採用しており、ここで開示される湿潤粉体は明瞭に規定されている。具体的には、以下のとおりである。
湿潤粉体を構成する凝集粒子における固形分(固相)、溶媒(液相)および空隙(気相)の存在形態(充填状態)に関しては、「ペンジュラー状態」、「ファニキュラー状態」、「キャピラリー状態」および「スラリー状態」の4つに分類することができる。
ここで「ペンジュラー状態」は、図3の(A)に示すように、凝集粒子1中の活物質粒子(固相)2間を架橋するように溶媒(液相)3が不連続に存在する状態であり、活物質粒子(固相)2は相互に連なった(連続した)状態で存在し得る。図示されるように溶媒3の含有率は相対的に低く、その結果として凝集粒子1中に存在する空隙(気相)4の多くは、連続して存在し、外部に通じる連通孔を形成している。そしてペンジュラー状態では、電子顕微鏡観察(例えば、走査型電子顕微鏡(SEM)観察)において凝集粒子1の外表面の全体にわたって連続した溶媒の層が認められないことが特徴として挙げられる。
また、「ファニキュラー状態」は、図3の(B)に示すように、凝集粒子1中の溶媒含有率がペンジュラーよりも相対的に高い状態であり、凝集粒子1中の活物質粒子(固相)2の周囲に溶媒(液相)3が連続して存在する状態となっている。但し、溶媒量は依然少ないため、ペンジュラー状態と同様に、活物質粒子(固相)2は相互に連なった(連続した)状態で存在する。一方、凝集粒子1中に存在する空隙(気相)4のうち、外部に通じる連通孔の割合はやや減少し、不連続な孤立空隙の存在割合が増加していく傾向にあるが連通孔の存在は認められる。
ファニキュラー状態は、ペンジュラー状態とキャピラリー状態との間の状態であり、ペンジュラー状態寄りのファニキュラーI状態(即ち、比較的溶媒量が少ない状態のもの)とキャピラリー状態寄りのファニキュラーII状態(即ち、比較的溶媒量が多い状態のもの)とに区分したときのファニキュラーI状態では、依然、電子顕微鏡観察(において凝集粒子1の外表面に溶媒の層が認められない状態を包含する。
「キャピラリー状態」は、図3の(C)に示すように、凝集粒子1中の溶媒含有率が増大し、凝集粒子1中の溶媒量は飽和状態に近くなり、活物質粒子2の周囲において十分量の溶媒3が連続して存在する結果、活物質粒子2は不連続な状態で存在する。凝集粒子1中に存在する空隙(気相)も、溶媒量の増大により、ほぼ全ての空隙(例えば全空隙体積の80vol%)が孤立空隙として存在し、凝集粒子1に占める空隙の存在割合も小さくなる。
「スラリー状態」は、図3の(D)に示すように、もはや活物質粒子2は、溶媒3中に懸濁した状態であり、凝集粒子とは呼べない状態となっている。気相はほぼ存在しない。
従来から湿潤粉体を用いて成膜する湿潤粉体成膜は知られていたが、従来の湿潤粉体成膜において、湿潤粉体は、粉体の全体にわたって液相が連続的に形成された、いわば図3(C)に示す「キャピラリー状態」にあった。
これに対して、ここで開示される湿潤粉体は、少なくとも50個数%以上の凝集粒子1が、(1)上記ペンジュラー状態およびファニキュラー状態(特にファニキュラーI状態)を形成している湿潤粉体である。好ましくは、気相を制御することによって、(2)電子顕微鏡観察において該凝集粒子の外表面の全体にわたって前記溶媒からなる層が認められないことを一つの形態的特徴として有する。
以下、ここで開示される上記(1)および(2)の要件を具備する湿潤粉体を「気相制御湿潤粉体」という。
なお、ここに開示される気相制御湿潤粉体は、少なくとも50個数%以上の凝集粒子が上記(1)および(2)の要件を具備することが好ましい。
気相制御湿潤粉体は、従来のキャピラリー状態の湿潤粉体を製造するプロセスに準じて製造することができる。即ち、従来よりも気相の割合が多くなるように、具体的には凝集粒子の内部に外部に至る連続した空隙(連通孔)が多く形成されるように、溶媒量と固形分(活物質粒子、バインダ樹脂、等)の配合を調整することによって、上記ペンジュラー状態若しくはファニキュラー状態(特にファニキュラーI状態)に包含される電極材料(電極合材)としての湿潤粉体を製造することができる。
また、最小の溶媒で活物質間の液架橋を実現するために、使用する粉体材料の表面と使用する溶媒には、適度な親和性があることが望ましい。
好ましくは、ここで開示される好適な気相制御湿潤粉体として、電子顕微鏡観察で認められる三相の状態がペンジュラー状態若しくはファニキュラー状態(特にファニキュラーI状態)であって、さらに、得られた湿潤粉体を所定の容積の容器に力を加えずにすり切りに入れて計測した実測の嵩比重である、緩め嵩比重X(g/mL)と、気相が存在しないと仮定して湿潤粉体の組成から算出される比重である、原料ベースの真比重Y(g/mL)とから算出される「緩め嵩比重Xと真比重Yとの比:Y/X」が、1.2以上、好ましくは1.4以上(さらには1.6以上)であって、好ましくは2以下であるような湿潤粉体が挙げられる。
電極活物質層を形成する電極材料30は、少なくとも複数の電極活物質粒子とバインダ樹脂と溶媒とを含有している。
固形分の主成分である電極活物質としては、従来の二次電池(ここではリチウムイオン二次電池)の負極活物質あるいは正極活物質として採用される組成の化合物を使用することができる。例えば、負極活物質としては、黒鉛、ハードカーボン、ソフトカーボン等の炭素材料が挙げられる。また、正極活物質としては、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5等のリチウム遷移金属複合酸化物、LiFePO等のリチウム遷移金属リン酸化合物が挙げられる。電極活物質の平均粒径は、特に限定されないが、0.1μm~50μm程度が適当であり、1~20μm程度が好ましい。なお、本明細書において、「平均粒径」とは、一般的なレーザ回折・光散乱法に基づく体積基準の粒度分布において、粒径が小さい微粒子側からの累積頻度50体積%に相当する粒径(D50、メジアン径ともいう。)をいう。
溶媒としては、例えば、N-メチル-2-ピロリドン(NMP)や、水系溶媒(水または水を主体とする混合溶媒)等を好ましく用いることができる。
バインダ樹脂としては、ポリフッ化ビニリデン(PVDF)、カルボキシメチルセルロース(CMC)、スチレンブタジエンゴム(SBR)、ポリアクリル酸(PAA)等が挙げられる。使用する溶媒に応じて適切なバインダ樹脂が採用される。
電極材料30は、固形成分として電極活物質およびバインダ樹脂以外の物質、例えば、導電材や増粘剤等を含有していてもよい。導電材としては、例えば、アセチレンブラック(AB)等のカーボンブラックやカーボンナノチューブのような炭素材料が好適例として挙げられる。また、増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)等を好ましく用いることができる。電極材料30は、上述した以外の材料(例えば各種添加剤等)を含有してもよい。
なお、本明細書において、「固形成分」とは、上述した各材料のうち溶媒を除く材料(固形材料)のことをいい、「固形分率」とは、各材料すべてを混合した電極材料のうち、固形成分が占める割合のことをいう。
上述したような各材料を用いて、湿潤造粒を行い、目的の湿潤粉体を製造することができる。具体的に例えば、撹拌造粒機(プラネタリーミキサー等のミキサー)を用いて各材料を混合することによって、湿潤粉体(即ち凝集粒子の集合物)を製造する。この種の撹拌造粒機は、典型的には円筒形である混合容器と、当該混合容器の内部に収容された回転羽根と、回転軸を介して回転羽根(ブレードともいう)に接続されたモータとを備えている。
用意工程S1においては、上記した各材料のうち、先ず、溶媒を除く材料(固形成分)を予め混合して溶媒レスの乾式分散処理を行う。これにより、各固形成分が高度に分散した状態を形成する。その後、当該分散状態の混合物に、溶媒その他の液状成分(例えば液状のバインダ)を添加してさらに混合することが好ましい。これによって、各固形成分が好適に混合された湿潤粉体を製造することができる。
具体的には、撹拌造粒機の混合容器内に固形分である電極活物質と種々の添加物(バインダ樹脂、増粘材、導電材、等)を投入し、モータを駆動させて回転羽根を、例えば、2000rpm~5000rpmの回転速度で1~60秒間(例えば2~30秒)程度、回転させることによって各固形成分の混合体を製造する。そして、固形分が70%以上、より好ましくは80%以上(例えば85~98%)になるように計量された適量の溶媒を混合容器内に添加し、撹拌造粒処理を行う。特に限定するものではないが、回転羽根を例えば100rpm~1000rpmの回転速度で1~60秒間(例えば2~30秒)程度さらに回転させる。これによって、混合容器内の各材料と溶媒が混合されて湿潤状態の造粒体(湿潤粉体)を製造することができる。なお、さらに1000rpm~3000rpm程度の回転速度で1~5秒間程度の短い撹拌を断続的に行うことで、湿潤粉体の凝集を防止することができる。得られる造粒体の粒径は、例えば、50μm以上(例えば100μm~300μm)であり得る。
ここで開示される気相制御湿潤粉体は、固相と液相と気相とがペンジュラー状態またはファニキュラー状態(好ましくはファニキュラーI状態)を形成しており、電子顕微鏡観察において凝集粒子の外表面に溶媒の層が認められない程度に溶媒含有率が低く(例えば溶媒分率が2~15%程度、3~8%であり得る)、逆に気相部分は相対的に大きい。
このような存在形態にするため、上述した用意工程S1において、気相を増大させ得る種々の処理や操作を取り入れることができる。例えば、撹拌造粒中若しくは造粒後、乾燥した室温よりも10~50度程度加温されたガス(空気または不活性ガス)雰囲気中に造粒体を晒すことにより余剰な溶媒を蒸発させてもよい。また、溶媒量が少ない状態でペンジュラー状態またはファニキュラーI状態である凝集粒子の形成を促すため、活物質粒子その他の固形成分同士を付着させるために圧縮作用が比較的強い圧縮造粒を採用してもよい。例えば、粉末原料を鉛直方向から一対のロール間に供給しつつロール間で圧縮力が加えられた状態で造粒する圧縮造粒機を採用してもよい。
<成膜工程>
ここに開示される製造方法においては、電極材料30の気相(空隙)を残した状態で塗膜32を成膜する。電極材料30からなる塗膜32の成膜は、例えば、図2に模式的に示すような成膜部120において行うことができる。図示されるように、成膜部120は、転写ロールが連続的に複数備えられている。この例では、供給ロール121に対向する第1転写ロール122、該第1転写ロールに対向する第2転写ロール123、および、該第2転写ロールに対向し、且つ、バックアップロール125にも対向する第3転写ロール124を備えている。
このような構成とすることにより、各ロール間のギャップG1~G4のサイズを異ならせ、湿潤粉体の連通孔を維持しつつ好適な塗膜を形成することができる。以下、このことを詳述する。
成膜部120において、供給ロール121の外周面と第1転写ロール122の外周面は互いに対向しており、これら一対の供給ロール121と第1転写ロール122は、図2の矢印に示すように逆方向に回転する。また、供給ロール121と第1転写ロール122とは、電極集電体12上に成膜する塗膜32の所望の厚さに応じた所定の幅(厚さ)のギャップG1があり、かかるギャップG1のサイズにより、第1転写ロール122の表面に付着させる電極材料30からなる塗膜32の厚さを制御することができる。また、かかるギャップG1のサイズを調整することにより、供給ロール121と第1転写ロール122との間を通過する電極材料30を圧縮する力を調整することもできる。このため、ギャップサイズを比較的大きくとることによって、電極材料30(具体的には凝集粒子のそれぞれ)の気相を維持した状態で成膜することができる。
第2転写ロール123および第3転写ロール124は、供給ロール121と第1転写ロール122によって圧縮された電極材料30を、該電極材料30の気相の状態を調整しながら成膜する。第2転写ロール123と第3転写ロール124とは、図2の矢印に示すように逆方向に回転する。また、第1転写ロール122と第2転写ロール123との間には第2ギャップG2、第2転写ロール123と第3転写ロール124との間には第3ギャップG3が設けられており、かかるギャップG2、G3を調整することによって、所望する厚さや気相の状態の塗膜32を製造することができ得る。
バックアップロール125は、電極集電体12を第3転写ロール124まで搬送する役割を果たす。第3転写ロール124とバックアップロール125は、図2の矢印に示すように、逆方向に回転する。また、第3転写ロール124とバックアップロール125との間には、所定の幅(厚さ)の第4ギャップG4が設けられており、かかるギャップG4のサイズにより、電極集電体12上に成膜する塗膜32の厚さを制御することができる。
電極集電体12は、この種の二次電池の電極集電体として用いられる金属製の電極集電体を特に制限なく使用することができる。電極集電体12が正極集電体である場合には、電極集電体12は、例えば、良好な導電性を有するアルミニウム、ニッケル、チタン、ステンレス鋼等の金属材から構成される。特にアルミニウム(例えばアルミニウム箔)が好ましい。電極集電体12が負極集電体である場合には、電極集電体12は、例えば、良好な導電性を有する銅や銅を主体とする合金、ニッケル、チタン、ステンレス鋼等の金属材から構成される。特に銅(例えば銅箔)が好ましい。電極集電体12の厚みは、例えば、概ね5μm~20μmであり、好ましくは8μm~15μmである。
供給ロール121、第1転写ロール122、第2転写ロール123、第3転写ロール124およびバックアップロール125は、それぞれが独立した図示しない駆動装置(モータ)に接続されているため、それぞれ異なる回転速度で回転させることができる。具体的には、供給ロール121の回転速度よりも第1転写ロール122の回転速度が速く、第1転写ロール122の回転速度よりも第2転写ロール123の回転速度は速く、第2転写ロール123の回転速度よりも第3転写ロール124の回転速度は速く、第3転写ロール124の回転速度よりもバックアップロール125の回転速度は速い。
このように各回転ロール間で集電体搬送方向(進行方向)に沿って回転速度を少しずつ上げていくことによって、ロール成膜を行うことができる。
ギャップのサイズは、第1ギャップG1が相対的に最大であり、第2ギャップG2、第3ギャップG3、第4ギャップG4の順に少しずつ小さくなるように設定されている(G1>G2>G3>G4)。ギャップG1~G4が電極集電体12の搬送方向(進行方向)に沿ってギャップが徐々に小さくなるように設定されているため、塗膜32の気相(空隙)の状態を調整しながら成膜することができる。特に限定するものではないが、各ギャップG1~G4のサイズ(幅)は、塗膜32の成膜時の平均膜厚が10μm以上300μm以下(例えば、20μm以上150μm以下)となるようなギャップサイズに設定すればよい。
供給ロール121および第1転写ロール122の幅方向の両端部には、図示しない隔壁が設けられていてもよい。隔壁は、電極材料30を供給ロール121および第1転写ロール122上に保持すると共に、2つの隔壁の間の距離によって、電極集電体12上に成膜される塗膜32の幅を規定することができる。この2つの隔壁の間に、フィーダー(図示せず)等によって電極材料30が供給される。
供給ロール121、第1転写ロール122、第2転写ロール123、第3転写ロール124およびバックアップロール125のサイズは特に制限はなく、従来の成膜装置と同様でよく、例えば直径がそれぞれ50mm~500mmであり得る。これら供給ロール121、第1~3転写ロール122,123,124およびバックアップロール125の直径は同一の直径であってもよく、異なる直径であってもよい。また、塗膜32を形成する幅についても従来の成膜装置と同様でよく、塗膜32を形成する対象の電極集電体12の幅によって適宜決定することができる。
供給ロール121、第1転写ロール122、第2転写ロール123、第3転写ロール124およびバックアップロール125の外周面の材質は、従来公知の成膜装置における回転ロールの材質と同じでよく、例えば、SUS鋼、SUJ鋼、等が挙げられる。電極材料30と直接する供給ロール121および第1~3転写ロール122、123、124の外周面の材質は、金属異物の発生を防ぐために、例えば、ジルコニア、アルミナ、窒化クロム、窒化アルミ、チタニア、酸化クロムなどのセラミックスであることがより好ましい。
なお、図2では一例として、供給ロール121、第1転写ロール122、第2転写ロール123、第3転写ロール124およびバックアップロール125の配置を示しているが、それぞれのロールの配置は、これに限られるものではない。
<溝形成工程>
塗膜32に対する搬送方向に沿って延びる溝22の形成は、例えば、図2および図4に示すような凹凸転写ロール132とバックアップロール134とを用いて行うことができる。図示されるように、凹凸転写ロール132は、外周面に沿って回転軸に垂直方向に伸長する凸部を有している。
ここに開示される電極の製造方法においては、空隙(気相)を残した状態で成膜された塗膜32に対して凹凸形成工程S3を実施する。かかる塗膜32の平均空隙率(気相率)は、少なくとも1%以上であることが好ましく、例えば1%以上55%以下、典型的には5%以上55%以下であってよい。気相を残した状態で溝22を形成することにより、展延性が向上しているため、従来よりも小さい荷重で塗膜32に対して所望する溝22を付与することができる。また、溝22を形成するために荷重がかけられたとしても、塗膜32の表面部において局所的な密度の上昇(緻密化)することなく溝22を形成することができる。
なお、本明細書において、「塗膜の平均空隙率(気相率)」は、例えば、電子顕微鏡(SEM)による電極活物質層の断面観察により算出することができる。該断面画像をオープンソースであり、パブリックドメインの画像処理ソフトウェアとして著名な画像解析ソフト「ImageJ」を用いて、固相または液相部分を白色、気相(空隙)部分を黒色とする二値化処理を行う。これにより、固相または液相が存在する部分(白色部分)の面積をS1、空隙部分(黒色部分)の面積をS2として、「S2/(S1+S2)×100」を算出することができる。これを、乾燥前の塗膜の空隙率とする。断面SEM像を複数取得し(例えば5枚以上)、かかる空隙率の平均値をここでの乾燥前の「塗膜の平均空隙率(気相率)」)とする。なお、「塗膜の平均空隙率(気相率)」には、溝形成の過程において形成された溝(すなわちマクロな空隙)は、含まない。
凹凸転写ロール132は、塗膜32の表面に溝22を形成するため、回転軸に垂直方向に伸長する凸部を有している。バックアップロール134は、搬送されてきた電極集電体12を支持しつつ矢印の搬送方向に送り出すためのロールである。凹凸転写ロール132とバックアップロール134とは対向する位置に配置されている。凹凸転写ロール132とバックアップロール134との間隙に、電極集電体12上の塗膜32を通すことにより、凹凸転写ロール132の凸部が塗膜32の表面に転写されることによって、塗膜32の表面に溝22を形成することができる。凹凸転写ロール132の線圧は、所望する形状の溝深さ等により異なり得るため特に限定されないが、概ね15N/cm~75N/cm、例えば25N/cm~65N/cm程度に設定することができる。
溝22は、塗膜32の表面部中央に少なくとも1本形成されるように転写される。塗膜32の表面部中央に溝22が1本形成されることによって、乾燥工程S4において発生する不規則な間隔のクラックやシワを好適に抑制し得る。溝22は1本以上形成されていてもよく、図示されるように複数本形成されていてもよい。溝22が複数本形成されることによって、上述した効果がより一層発揮される。溝22が複数本形成される場合は、溝間のピッチは例えば、500μm以上5mm以下であってよく、750μm以上4mm以下であってよく、1mm以上3mm以下であってよい。
なお、本明細書において「溝」とは、連続したくぼみ(典型的には細長いくぼみ)のことをいい、不連続なくぼみは含まないものとする。
溝22の溝の深さは、浅すぎる場合には、不規則な間隔のクラックやシワが塗膜32に発生することを抑制する効果が低くなる。また、深すぎる場合には電池容量の低下や、正極と負極との間で電池容量の差が生じることにより、金属リチウムが析出し得る虞があるため好ましくない。かかる観点からすると、塗膜32の平均膜厚をt(μm)、溝22の深さをt(μm)としたときに、(9/10×t)>tの関係を満たす深さで形成されればよい。溝22の深さは、例えば、(9/10×t)>t>(1/10×t)であることが好ましく、(8/10×t)≧t≧(3/10×t)であることがより好ましい。溝22が複数本形成される場合は、溝22の深さtは、同じで深さであってもよく、異なる深さであってもよい。異なる深さで形成する場合には、塗膜32の幅方向端部の溝22の深さよりも、中央部の溝22の深さが深くなるように形成することが好ましい。塗膜32に生じる不規則な間隔のクラックやシワは、中央部に偏在する傾向にある。このため、塗膜32の表面中央部に溝22を比較的深く形成することにより、より効果的に塗膜32に生じる不規則な間隔のクラックやシワを抑制することができる。
また、形成される溝22の溝幅は、特に限定されるものではないが、例えば、10μm以上1000μm以下であってよく、50μm以上800μm以下であってよく、100μm以上600μm以下であってよい。
また、塗膜加工部130においては、プレスロール136とバックアップロール138とを用いて、塗膜32の膜厚や気相の状態を調整する機構をさらに包含していてもよい。プレスロール136は塗膜32を膜厚方向に押圧して圧縮するためのロールであり、バックアップロール138は搬送されてきた電極集電体12を支持しつつ搬送方向に送り出すためのロールである。プレスロール136とバックアップロール138とは対向する位置に配置されている。搬送されてきた電極集電体12上に形成(成膜)された塗膜32を、例えば、孤立空隙を生じさせない程度にプレスして圧縮することができる。これにより、溝形成がより好適に実施されるように、塗膜32の気相の状態を調整することができる。かかるプレスロール136とバックアップロール138の好適なプレス圧は、目的とする塗膜(電極活物質層)の膜厚や密度により異なり得るため特に限定されないが、例えば、0.01MPa~100MPa、例えば0.1MPa~70MPa程度に設定することができる。
塗膜32は、気相を残した状態であることにより、乾燥工程S4前に溝を形成しても、所望する溝を形成し、該溝の形状を維持することができる。また、より好適には、塗膜32は、気相制御湿潤粉体から構成されていることが好ましい。気相制御湿潤粉体は、上述したように、連通孔を維持した状態で成膜されているため、所望する溝の形成および該溝形状の維持をさらに好適に実施することができる。
<乾燥工程>
図2に示すように、本実施形態に係る電極製造装置100の塗膜加工部130よりも搬送方向の下流側には、乾燥部140として図示しない加熱器(ヒータ)を備えた乾燥炉142が配置されている。かかる乾燥部140は、電極集電体12上に形成された塗膜32を乾燥させて、電極活物質層を形成する。乾燥の方法については、特に限定されるものではないが、例えば、熱風乾燥、赤外線乾燥等の手法が挙げられる。
乾燥工程S4における乾燥温度(乾燥炉内の温度)は、使用する溶媒の種類や、塗膜32の固形分率等によって変動するため、特に限定されるものではないが、例えば、80℃以上、典型的には100℃以上、さらには120℃以上に設定することが好ましい。乾燥温度の上限は、特に限定されるものではないが、電極集電体12の酸化を防止する観点から、例えば、200℃以下、典型的には190℃以下、さらには180℃以下に設定することが好ましい。
乾燥工程S4における搬送速度は、生産性向上の観点から、例えば、1m/分以上に設定されることが好ましく、3m/分以上に設定されることがより好ましい。搬送速度が速すぎる場合には、塗膜32に割れが生じやすくなるため、かかる観点からは、15m/分以下に設定されていればよく、10m/分以下に設定されていればよく、8m/分以下に設定されていればよい。
一般的に、従来のスラリー状の電極材料からなる塗膜を比較的高温(例えば100℃以上)や、比較的速い搬送速度(例えば8m/分以上)で乾燥させた場合には、比重が小さいバインダが表面側に偏析する現象である、マイグレーションが発生する。かかるマイグレーションが発生すると、電極集電体12と電極活物質層との密着性が低下し、製造工程中や充放電を繰り返すうちに該活物質層が該集電体12から剥離しやすくなる。これに対して、ここに開示される電極の製造方法において特に気相制御湿潤粉体を用いて製造された電極活物質層は、該活物質層の表面から電極集電体に至る厚み方向に上層および下層の2つの層に均等に区分し、該上層および下層のバインダ樹脂の濃度(mg/L)を、それぞれ、C1およびC2としたとき、0.8≦(C1/C2)≦1.2の関係を具備する。すなわち、電極活物質層は、上層と下層との間でバインダの偏析(マイグレーション)が生じ難い電極活物質層であり得る。
気相制御湿潤粉体を電極材料30として用いることにより、スラリー状の電極材料からなる塗膜よりも固形分率を大きく上げることができる。これにより、乾燥工程S4の時間を短縮するようにしても(例えば、乾燥炉内の温度を高く設定することや、乾燥工程S4における搬送速度を速く設定すること等)、マイグレーションの発生を抑制することができる。したがって、ここに開示される電極の製造方法によれば、生産性を損なうことなく、耐久性が向上した(高品質な)二次電池用電極を製造することができる。
電極材料30として、従来のスラリー状の電極材料よりも固形分率が高い湿潤粉体や気相制御湿潤粉体を用いた塗膜32であっても、乾燥工程S4において、塗膜32の中央部に不規則な間隔のクラックやシワが偏在することがあった。このようなクラックやシワの発生により、電極が欠損することによる容量低下等の電池性能の低下の他、電極の欠損部が異物となり、製造装置の故障や電極集電体12の破断を引き起こす虞がある。
本発明者が検討した結果によれば、かかるクラックやシワは、図5(A)および(B)に示すように電極集電体12が搬送方向(X方向)に沿って一定の力で引き伸ばされながら搬送され、乾燥工程において加熱されると、該集電体12が搬送方向(X方向)に伸長すると同時に、搬送方向と直交する方向(Y方向)に収縮するような変形に対して、塗膜32が追従することができないため生じることを見出した。具体的には、図5(A)の矢印Fに示すように、該集電体12は、常に略一定の張力(例えば10N~50N)がかけられた状態で搬送されている。かかる張力がかけられた状態で搬送され、典型的には80℃以上で乾燥工程S4が実施される場合には、金属箔である集電体12は、延性が向上し変形しやすくなる。したがって、図5(B)に示すように、集電体12は搬送方向(X方向)に伸長すると同時に、搬送方向と直交する方向(Y方向)に収縮し得る。該集電体12上の塗膜32は、乾燥工程S4において溶媒が蒸発(揮発)することにより展延性が減少している状態である。従来技術に記載されるように、溶媒が蒸発(揮発)することに体積は減少するがそれよりも集電体12の変形が大きい。このため、集電体12の変形に対して塗膜32が追従することができずに、特に中央部において不規則な間隔のクラックやシワが偏在する。
これに対して、ここに開示される電極の製造方法においては、乾燥工程S4以前の工程において塗膜32の表面中央部に少なくとも1本溝を形成する。これにより、電極集電体12に対する塗膜32の追従性を向上させることで、不規則な間隔のクラックやシワの発生を抑制できる。
乾燥工程S4の後に、必要に応じてロール圧延機によるロールプレスを行ってもよい。ロールプレスの線圧は、例えば、線圧1ton/cm~6ton/cm程度に設定されていることが好ましい。これにより、リチウムイオン二次電池用の長尺なシート状電極が製造される。
こうして製造されたシート状電極は、通常のこの種のシート状正極または負極としてリチウムイオン二次電池の構築に用いられる。
ここに開示される電極の製造方法によって製造された電極を用いて構築され得るリチウムイオン二次電池200の一例を図6に示している。
図6に示すリチウムイオン二次電池200は、密閉可能な箱型電池ケース50に、扁平形状の捲回電極体80と、非水電解液(図示せず)とが、収容されて構築される。電池ケース50には、外部接続用の正極端子52および負極端子54と、電池ケース50の内圧が所定レベル以上に上昇した場合に該内圧を開放するように設定された薄肉の安全弁56とが設けられている。また、電池ケース50には、非水電解質を注入するための注入口(図示せず)が設けられている。正極端子52と正極集電板52aは、電気的に接続されている。負極端子54と負極集電板54aは、電気的に接続されている。電池ケース50の材質は、高強度であり軽量で熱伝導性が良い金属製材料が好ましく、このような金属材料として、例えば、アルミニウムやスチール等が挙げられる。
捲回電極体80は、典型的には長尺シート状の正極(以下、正極シート60という。)と、長尺シート状の負極(以下、負極シート70という。)とが長尺シート状のセパレータ90を介して重ね合わせられ長手方向に捲回された形態を有する。正極シート60は、正極集電体62の片面もしくは両面に長手方向に沿って正極活物質層64が形成された構成を有する。負極シート70は、負極集電体72の片面もしくは両面に長手方向に沿って負極活物質層74が形成された構成を有する。正極集電体62の幅方向の一方の縁部には、該縁部に沿って正極活物質層64が形成されずに正極集電体62が露出した部分(即ち、正極集電体露出部66)が設けられている。負極集電体72の幅方向の他方の縁部には、該縁部に沿って負極活物質層74が形成されずに負極集電体72が露出した部分(即ち、負極集電体露出部76)が設けられている。正極集電体露出部66と負極集電体露出部76には、それぞれ正極集電板52aおよび負極集電板54aが接合されている。
正極(正極シート60)および負極(負極シート70)は、上述した製造方法により得られる正極および負極が用いられる。なお、本構成例においては、正極および負極は、集電体12(正極集電体62および負極集電体72)の両面に電極活物質層(正極活物質層64および負極活物質層74)が形成されている。
セパレータ90としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂からなる多孔性シート(フィルム)が挙げられる。かかる多孔質シートは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。セパレータ90は、耐熱層(HRL)を設けられていてもよい。
非水電解質は従来のリチウムイオン二次電池と同様のものを使用可能であり、典型的には有機溶媒(非水溶媒)中に、支持塩を含有させたものを用いることができる。非水溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の有機溶媒を、特に制限することなく用いることができる。具体的には、例えば、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、モノフルオロエチレンカーボネート(MFEC)、ジフルオロエチレンカーボネート(DFEC)、モノフルオロメチルジフルオロメチルカーボネート(F-DMC)、トリフルオロジメチルカーボネート(TFDMC)等の非水溶媒を好ましく用いることができる。このような非水溶媒は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。支持塩としては、例えば、LiPF、LiBF、LiClO等のリチウム塩を好適に用いることができる。支持塩の濃度は、特に限定するものではないが、0.7mol/L以上1.3mol/L以下程度が好ましい。
なお、上記非水電解液は、本発明の効果を著しく損なわない限りにおいて、上述した非水溶媒、支持塩以外の成分、例えば、ガス発生剤、被膜形成剤、分散剤、増粘剤等の各種添加剤を含み得る。
以上のようにして構成されるリチウムイオン二次電池200は、各種用途に利用可能である。好適な用途としては、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両に搭載される駆動用電源が挙げられる。リチウムイオン二次電池200は、複数個を直列および/または並列に接続してなる組電池の形態でも使用され得る。
以下、ここで開示される電極の製造方法に関する実施例を説明するが、ここで開示される技術をかかる実施例に示すものに限定することを意図したものではない。
<実施例1>
負極材料として好適に使用し得る気相制御湿潤粉体を作製し、次いで、該作製された湿潤粉体(負極材料)を用いて銅箔上に負極活物質層を形成した。
本試験例では、負極活物質としてレーザ回折・散乱方式に基づく平均粒子径(D50)が10μmである黒鉛粉、バインダ樹脂としてスチレンブタジエンゴム(SBR)、増粘剤としてカルボキシメチルセルロース(CMC)、溶媒として水を用いた。
まず、98質量部の上記負極活物質、1質量部のSBRおよび1質量部のCMCからなる固形分を、撹拌造粒機(プラネタリーミキサーまたはハイスピードミキサー)に投入し、混合撹拌処理を行った。
具体的には、混合羽根を有する撹拌造粒機内で混合羽根の回転速度を4500rpmに設定し、15秒間の撹拌分散処理を行い、上記固形分からなる粉末材料の混合物を得た。得られた混合物に、固形分率が90重量%となるように溶媒である水を添加し、300rpmの回転速度で30秒間の撹拌造粒複合化を行い、次いで4500rpmの回転速度で2秒間撹拌し微細化を行った。これにより本試験例に係る湿潤粉体(負極材料)を作製した。
次いで、上記得られた気相制御湿潤粉体(負極材料)を、上記電極製造装置の成膜部に供給し、別途用意した銅箔からなる負極集電体の表面に塗膜を転写した。このときの塗膜の平均膜厚は、106μmであった。
かかる塗膜を、塗膜加工部に搬送し、凹凸転写ロールで溝形成を行って、搬送方向に沿って延びる溝が溝深さ64μmとなるように所定のピッチで形成した。かかる塗膜を乾燥部において乾燥温度(乾燥炉内温度)120℃、搬送速度8m/分の条件で乾燥させた。
<比較例1>
比較対象として、溝を有しない電極活物質層を上述した条件で乾燥させた。具体的には、実施例1と同様にして電極材料を混合し、別途用意した銅箔からなる負極集電体の表面に塗膜を転写した。かかる塗膜を乾燥部において乾燥温度(乾燥炉内温度)120℃、搬送速度8m/分の条件で乾燥させた。
乾燥後の塗膜の表面を目視にて観察したところ、実施例1の塗膜は不規則なシワやクラックが生じていなかった。これに対し、比較例1の塗膜は、塗膜に不規則なシワやクラックが発生しており、特に中央部に偏在していた。
すなわち、塗膜の表面部中央に搬送方向に沿って延びる溝を該溝の溝深さt(μm)が、(9/10×t)>tを満たすように形成してから乾燥させることにより、電極集電体に対する塗膜の追従性を向上し、不規則な間隔のクラックやシワの発生を抑制することができる。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定
するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、
変更したものが含まれる。
1 凝集粒子
2 活物質粒子(固相)
3 溶媒(液相)
4 空隙(気相)
12 電極集電体
22 溝
30 電極材料
32 塗膜
50 電池ケース
64 正極活物質層
74 負極活物質層
80 捲回電極体
90 セパレータ
100 電極製造装置
120 成膜部
130 塗膜加工部
132 凹凸転写ロール
134 バックアップロール
140 乾燥部
200 リチウムイオン二次電池

Claims (4)

  1. 正負極いずれかの電極集電体および電極活物質層を有する電極の製造方法であって、以下の工程:
    電極活物質とバインダ樹脂と溶媒とを少なくとも含有した凝集粒子によって形成される湿潤粉体を用意する工程、
    ここで、前記湿潤粉体は、少なくとも50個数%以上の前記凝集粒子が、固相と液相と気相とがペンジュラー状態またはファニキュラー状態を形成している;
    前記湿潤粉体を用いて、前記電極集電体上に該湿潤粉体からなる塗膜を、該塗膜の気相を残した状態で成膜する工程、
    ここで、前記塗膜の平均膜厚t(μm)は、50μm以上となるように成膜される;
    前記集電体上の塗膜を搬送し、ロール型を用いて凹凸転写することにより、該塗膜の表面部中央に搬送方向に沿って延びる溝を少なくとも1本形成する工程、
    ここで、前記溝の深さt(μm)は、
    (9/10×t)>t
    を満たすように形成される;および、
    前記集電体上に形成された塗膜を乾燥させて電極活物質層を形成する工程;
    を包含する、二次電池用電極の製造方法。
  2. 前記湿潤粉体を用意する工程において用意される湿潤粉体が、所定の容積(mL)の容器に力を加えずにすり切りに湿潤粉体(g)を入れて計測した嵩比重を緩め嵩比重X(g/mL)とし、
    気相が存在しないと仮定して湿潤粉体の組成から算出される比重を真比重Y(g/mL)としたときに、
    緩め嵩比重Xと真比重Yとの比:Y/Xが、1.2以上である、
    請求項1に記載の二次電池用電極の製造方法。
  3. 前記搬送方向に沿って延びる溝を形成する工程において、前記塗膜に対して前記溝が複数本形成されることを特徴とする、請求項1または2に記載の電極の製造方法。
  4. 前記搬送方向に沿って延びる溝を形成する工程において、前記塗膜の該搬送方向に直交する幅方向の端部に存在する溝よりも、該幅方向の中央部に存在する溝の深さが深くなるように形成されることを特徴とする、請求項3に記載の電極の製造方法。

JP2021040443A 2021-03-12 2021-03-12 二次電池用電極の製造方法 Active JP7229289B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021040443A JP7229289B2 (ja) 2021-03-12 2021-03-12 二次電池用電極の製造方法
EP22156827.2A EP4057371A3 (en) 2021-03-12 2022-02-15 Method of producing electrode for secondary battery
CN202210221567.6A CN115084442B (zh) 2021-03-12 2022-03-09 二次电池用电极的制造方法
US17/692,191 US20220293905A1 (en) 2021-03-12 2022-03-11 Method of producing electrode for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021040443A JP7229289B2 (ja) 2021-03-12 2021-03-12 二次電池用電極の製造方法

Publications (2)

Publication Number Publication Date
JP2022139878A true JP2022139878A (ja) 2022-09-26
JP7229289B2 JP7229289B2 (ja) 2023-02-27

Family

ID=80682804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021040443A Active JP7229289B2 (ja) 2021-03-12 2021-03-12 二次電池用電極の製造方法

Country Status (4)

Country Link
US (1) US20220293905A1 (ja)
EP (1) EP4057371A3 (ja)
JP (1) JP7229289B2 (ja)
CN (1) CN115084442B (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010253A (ja) * 2006-06-28 2008-01-17 Toyota Central Res & Dev Lab Inc リチウム二次電池用電極及びその製造方法、並びにリチウム二次電池
JP2008027633A (ja) * 2006-07-19 2008-02-07 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP2017228349A (ja) * 2016-06-20 2017-12-28 トヨタ自動車株式会社 二次電池の製造方法
JP2018041921A (ja) * 2016-09-09 2018-03-15 旭化成株式会社 非水系リチウム蓄電素子
JP2018186033A (ja) * 2017-04-27 2018-11-22 トヨタ自動車株式会社 電極の製造方法
JP2020161303A (ja) * 2019-03-26 2020-10-01 三洋化成工業株式会社 供給装置及びリチウムイオン電池用電極の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE298932T1 (de) * 1997-04-23 2005-07-15 Japan Storage Battery Co Ltd Elektrode und batterie
JP2005285607A (ja) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd 非水系二次電池およびその製造方法
JP5188795B2 (ja) * 2007-12-14 2013-04-24 パナソニック株式会社 リチウム二次電池用正極形成用塗工液、リチウム二次電池用正極およびリチウム二次電池
JP4672079B2 (ja) * 2009-01-14 2011-04-20 パナソニック株式会社 非水系電池用負極板、非水系電池用電極群およびその製造方法、並びに、円筒形非水系二次電池およびその製造方法
JP6046538B2 (ja) * 2013-03-29 2016-12-14 トヨタ自動車株式会社 二次電池の製造方法
JP2015138619A (ja) * 2014-01-21 2015-07-30 パナソニックIpマネジメント株式会社 非水電解質二次電池の負極の製造方法、および非水電解質二次電池の負極の製造装置
JP2016018725A (ja) * 2014-07-09 2016-02-01 トヨタ自動車株式会社 リチウムイオン二次電池用電極の製造方法
JP5837672B2 (ja) 2014-12-10 2015-12-24 トヨタ自動車株式会社 電池用電極の製造装置
JP2016119261A (ja) * 2014-12-22 2016-06-30 トヨタ自動車株式会社 リチウムイオン二次電池用電極の製造方法および製造装置
JP2016122631A (ja) * 2014-12-25 2016-07-07 トヨタ自動車株式会社 リチウムイオン二次電池用電極の製造方法
JP6380808B2 (ja) * 2015-05-19 2018-08-29 トヨタ自動車株式会社 二次電池用電極の製造方法
JP6989265B2 (ja) * 2017-01-27 2022-01-05 トヨタ自動車株式会社 電池の製造方法
CN110521032B (zh) * 2017-04-21 2023-08-25 三洋化成工业株式会社 锂离子电池用电极活性物质成型体的制造方法和锂离子电池的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010253A (ja) * 2006-06-28 2008-01-17 Toyota Central Res & Dev Lab Inc リチウム二次電池用電極及びその製造方法、並びにリチウム二次電池
JP2008027633A (ja) * 2006-07-19 2008-02-07 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP2017228349A (ja) * 2016-06-20 2017-12-28 トヨタ自動車株式会社 二次電池の製造方法
JP2018041921A (ja) * 2016-09-09 2018-03-15 旭化成株式会社 非水系リチウム蓄電素子
JP2018186033A (ja) * 2017-04-27 2018-11-22 トヨタ自動車株式会社 電極の製造方法
JP2020161303A (ja) * 2019-03-26 2020-10-01 三洋化成工業株式会社 供給装置及びリチウムイオン電池用電極の製造方法

Also Published As

Publication number Publication date
CN115084442B (zh) 2023-11-17
EP4057371A2 (en) 2022-09-14
JP7229289B2 (ja) 2023-02-27
EP4057371A3 (en) 2022-09-21
CN115084442A (zh) 2022-09-20
US20220293905A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
CN115084425B (zh) 二次电池用电极和具备该二次电池用电极的二次电池
JP7334202B2 (ja) 二次電池用電極の製造方法および該電極
JP7385611B2 (ja) 湿潤粉体からなる電極材料および電極とその製造方法ならびに該電極を備える二次電池
JP7229289B2 (ja) 二次電池用電極の製造方法
JP7320010B2 (ja) 二次電池用電極の製造方法および電極ならびに該電極を備える二次電池
JP7334201B2 (ja) 二次電池用電極および該電極の製造方法
JP7301083B2 (ja) 非水電解液二次電池用電極および該電極の製造方法ならびに該電極を備える非水電解液二次電池
JP7334200B2 (ja) 二次電池用電極および該電極の製造方法
JP7214765B2 (ja) 二次電池用電極の製造方法
JP7208281B2 (ja) 二次電池用電極の製造方法
JP7258064B2 (ja) 二次電池用電極および該電極の製造方法
JP2022141439A (ja) 電極の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220405

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230214

R150 Certificate of patent or registration of utility model

Ref document number: 7229289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150