JP2020171283A - 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ - Google Patents

上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ Download PDF

Info

Publication number
JP2020171283A
JP2020171283A JP2020071602A JP2020071602A JP2020171283A JP 2020171283 A JP2020171283 A JP 2020171283A JP 2020071602 A JP2020071602 A JP 2020071602A JP 2020071602 A JP2020071602 A JP 2020071602A JP 2020171283 A JP2020171283 A JP 2020171283A
Authority
JP
Japan
Prior art keywords
peptide
cells
cell
cancer
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020071602A
Other languages
English (en)
Other versions
JP7074370B2 (ja
Inventor
シュスター,ハイコ
Schuster Heiko
ペペル,ヤネット
Peper Janet
ワグナー,フィーリプ
Wagner Philipp
ランメンゼー,ハンス−ゲオルク
Rammensee Hans-Georg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Immatics Biotechnologies GmbH
Original Assignee
Immatics Biotechnologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Immatics Biotechnologies GmbH filed Critical Immatics Biotechnologies GmbH
Publication of JP2020171283A publication Critical patent/JP2020171283A/ja
Application granted granted Critical
Publication of JP7074370B2 publication Critical patent/JP7074370B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464466Adhesion molecules, e.g. NRCAM, EpCAM or cadherins
    • A61K39/464468Mesothelin [MSLN]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464469Tumor associated carbohydrates
    • A61K39/46447Mucins, e.g. MUC-1
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4727Mucins, e.g. human intestinal mucin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70539MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2833Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6881Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5158Antigen-pulsed cells, e.g. T-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70503Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
    • G01N2333/70539MHC-molecules, e.g. HLA-molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/04Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)

Abstract

【課題】がん免疫療法において使用するためのペプチドまたは誘導体、該ペプチドを用いて製造した活性化T細胞、該ペプチドを認識する抗体、可溶性T細胞受容体、およびそれらの使用方法の提供。【解決手段】主要組織適合性複合体分子と結合するとCD4および/またはCD8T細胞に認識されるペプチドまたはその誘導体、該ペプチドを抗原としてインビトロで製造した活性化T細胞、および該ペプチドを認識する抗体と、該ペプチド、該ペプチドまたはその変異体をエンコードする核酸、該核酸の発現ベクター、該発現ベクターを含む細胞、該活性化Tリンパ球または該抗体の、がんの診断および/または治療において、またはがんに対する薬剤の製造における使用方法。【選択図】なし

Description

本発明は、免疫療法において使用するためのペプチド、タンパク質、核酸、および細胞に関する。特に、本発明はがんの免疫療法に関する。本発明は、単独のまたはその他の腫瘍関連ペプチドと組み合わされた、腫瘍関連T細胞ペプチドエピトープにさらに関し、それは、例えば、抗腫瘍免疫応答を刺激し、または生体外でT細胞を刺激して患者に移入する、ワクチン組成物の活性医薬品成分の役割を果たし得る。主要組織適合性複合体(MHC)の分子と結合しているペプチド、またはペプチドそれ自体もまた、抗体、可溶性T細胞受容体、およびその他の結合分子の標的になり得る。
本発明は、ヒト腫瘍細胞のHLAクラスIならびにHLAクラスII分子に由来する、いくつかの新規ペプチド配列およびそれらの変異型に関し、それらは抗腫瘍免疫応答を引き起こすためのワクチン組成物中で、または薬学的/免疫学的活性化合物および細胞の開発のための標的として、使用され得る。
上皮性卵巣がん(EOC)は、依然として婦人科悪性病変に起因する主要な死因、および西欧諸国でのがん関連死の第5位の主要原因であり、2014年には米国で2万2千件の新たな診断と、1万4千人の死亡を引き起こした(1)。唯一利用可能な根治的治療選択肢は、初期の非転移期における完全な外科的腫瘍除去である。しかし、ほとんどの患者(>70%)はIIIまたはIV期で診断され、これは特定の初期症状の欠如によって引き起こされる。化学療法レジメンの進歩、および第一選択治療のためのベバシズマブの最近の認可にもかかわらず、大部分の患者は最初の治療後数ヶ月または数年以内に再発する(2,3)。
がんの治療に伴う重度の副作用および費用を考慮すると、がん全般、そして特に卵巣がんの治療に使用し得る要素を同定する必要がある。がんのより良い診断、予後の評価、および治療成功の予測につながる、がん全般、特に卵巣がんのためのバイオマーカーに相当する要素を同定する必要性もまたある。
がんの免疫療法は、がん細胞を特異的に標的化しながら副作用を最小化する選択肢に相当する。がん免疫療法は、腫瘍関連抗原の存在を利用する。腫瘍関連抗原(TAA)の現行の分類は、次の主要群を含んでなる:
a)がん精巣抗原:T細胞によって認識され得る初めて同定されたTAAはこのクラスに属し、元々はがん精巣(CT)抗原と称されたが、それは、そのメンバーが組織学的に異なるヒト腫瘍において発現し、正常組織では精巣の精母細胞/精原細胞のみに存在し、時として胎盤に存在するためであった。精巣の細胞はクラスIおよびII HLA分子を発現しないので、これらの抗原は正常組織のT細胞によって認識され得ず、したがって免疫学的に腫瘍特異的と見なされる。CT抗原の周知の例は、MAGEファミリーメンバーおよびNY−ESO−1である。
b)分化抗原:これらのTAAは、腫瘍と、それから腫瘍が生じる正常組織との間で共有される。既知の分化抗原のほとんどは、黒色腫および正常メラノサイトに見いだされる。これらのメラノサイト系関連タンパク質の多くは、メラニン生合成に関与し、したがって腫瘍特異的でないが、それでもなおがん免疫療法のために広く利用されている。例としては、黒色腫に対するチロシナーゼとMelan−A/MART−1、または前立腺がんに対するPSAが挙げられるが、これに限定されるものではない。
c)過剰発現TAA:広範に発現されるTAAをエンコードする遺伝子は、組織学的に異なる型の腫瘍において検出され、多数の正常組織においても概してより低い発現レベルで検出されている。正常組織によってプロセスされて潜在的に提示され得るエピトープの多くは、T細胞認識の閾値レベル未満であり得る一方で、腫瘍細胞におけるそれらの過剰発現は、以前確立された免疫寛容を破壊することにより、抗がん応答を始動し得る。このクラスのTAAの顕著な例は、Her−2/neu、サバイビン、テロメラーゼまたはWT1である。
d)腫瘍特異的抗原:これらのユニークなTAAは、正常な遺伝子(β−カテニン、CDK4など)の変異から生じる。これらの分子変化のいくつかは、腫瘍性形質転換および/または進行に関連している。腫瘍特異的抗原は、通常、正常組織に対する自己免疫反応のリスクなしに、強力な免疫応答を誘導できる。他方、これらのTAAは、ほとんどの場合、その上でそれらが同定されたまさにその腫瘍のみと関係があり、通常は、多くの個々の腫瘍間で共有されない。腫瘍特異的(関連)イソ型を有するタンパク質では、ペプチドの腫瘍特異性(または関連性)はまた、ペプチドが腫瘍(関連)エクソンに由来する場合に生じてもよい。
e)異常な翻訳後修飾から生じるTAA:このようなTAAは、特異的でなく腫瘍において過剰発現もされないタンパク質から生じてもよいが、それでもなお、腫瘍において主に活性である翻訳後プロセスによって腫瘍関連になる。このクラスの例は、腫瘍にMUC1のような新規エピトープをもたらす改変グリコシル化パターン、または腫瘍特異的であってもなくてもよい分解中のタンパク質スプライシングのような事象から生じる。
f)オンコウイルスタンパク質:これらのTAAはウイルスタンパク質であり、それらは発がん過程において重要な役割を果たしてもよく、外来性である(ヒト由来でない)ため、それらはT細胞応答を誘起し得る。このようなタンパク質の例は、子宮頸がんにおいて発現されるヒト乳頭腫16型ウイルスタンパク質E6およびE7である。
過去20年間に、EOCは、多様な臨床所見に基づいて高度に免疫原性の腫瘍として認識されてきた。頻繁な免疫細胞浸潤を示すEOCは、T細胞浸潤と臨床予後の決定的な関連が確立された最初のがんの1つであった。これらの浸潤性T細胞集団内では、腫瘍反応性および抗原特異的T細胞が同定されている。対照的に、腫瘍常在調節性T細胞(Treg)は、臨床転帰と負の相関がある。さらに、免疫刺激性サイトカインは、個々の患者において説得力のある腫瘍応答を誘導することが示されている。
がん治療のための免疫療法アプローチの有効性は、黒色腫治療において示される免疫チェックポイント阻害剤の最近の開発および認可によって例示されている。さらに、抗原特異的ペプチドワクチン接種および養子T細胞移入は、黒色腫、および例えば腎細胞がんなどのその他の免疫原性腫瘍において、成功を示し始めた。個別化免疫療法には治癒的可能性さえもあり、素晴らしい結果が個々の患者で提示された。
T細胞ベースの免疫療法は、主要組織適合性複合体(MHC)の分子によって提示される、腫瘍関連または腫瘍特異的タンパク質由来ペプチドエピトープを標的とする。腫瘍特異的Tリンパ球によって認識される抗原、すなわちそれらのエピトープは、酵素、受容体、転写因子などの全てのタンパク質クラスに由来する分子であり得て、それはそれぞれの腫瘍細胞において発現されて、同一起源の非改変細胞と比較して、通常、上方制御される。
MHC分子には、MHCクラスIおよびMHCクラスIIの2つのクラスがある。MHCクラスI分子はα重鎖およびβ2ミクログロブリンから構成され、MHCクラスII分子はαおよびβ鎖から構成される。それらの三次元立体構造は、ペプチドとの非共有結合相互作用のために使用される、結合溝をもたらす。
MHCクラスI分子は、ほとんどの有核細胞上に見いだされる。それらは、主に内因性タンパク質、欠陥リボソーム産物(DRIP)、およびより大型のペプチドのタンパク質切断から得られる、ペプチドを提示する。しかし、エンドソームコンパートメントまたは外因性起源に由来するペプチドもまた、MHCクラスI分子上に頻繁に見いだされる。この非古典的様式のクラスI提示は、文献中で交差提示と称される(Brossart and Bevan,1997;Rock et al.,1990)。MHCクラスII分子は、大部分はプロフェショナル抗原提示細胞(APC)に見いだされ、例えば、エンドサイトーシス中にAPCに取り込まれて引き続きプロセシングされる、外因性または膜貫通タンパク質のペプチドを主に提示する。
ペプチドとMHCクラスIの複合体が、適切なT細胞受容体(TCR)を有するCD8陽性T細胞によって認識される一方で、ペプチドとMHCクラスII分子の複合体は、適切なTCRを有するCD4陽性ヘルパーT細胞によって認識される。その結果、TCR、ペプチド、およびMHCは、化学量論的に1:1:1の量で存在することが良く知られている。
CD4陽性ヘルパーT細胞は、CD8陽性細胞傷害性T細胞による、効果的な応答の誘導と維持において重要な役割を果たす。腫瘍関連抗原(TAA)に由来するCD4陽性T細胞エピトープの同定は、抗腫瘍免疫応答を始動させる医薬品の開発に非常に重要である(Gnjatic et al.,2003)。腫瘍部位では、Tヘルパー細胞が、細胞毒性T細胞(CTL)親和的サイトカイン環境を維持して(Mortara et al.,2006)、例えば、CTL、ナチュラルキラー(NK)細胞、マクロファージ、および顆粒球などのエフェクター細胞を引きつける(Hwang et al.,2007)。
炎症不在下では、MHCクラスII分子の発現は、免疫系細胞、特に、例えば、単球、単球由来細胞、マクロファージ、樹状細胞などのプロフェショナル抗原提示細胞(APC)に主に限定される。がん患者においては、腫瘍細胞がMHCクラスII分子を発現することが判明している(Dengjel et al.,2006)。
伸長された(より長い)本発明のペプチドは、MHCクラスII活性エピトープとして作用し得る。
MHCクラスIIエピトープによって活性化されたTヘルパー細胞は、抗腫瘍免疫におけるCTLのエフェクター機能を統合するのに重要な役割を果たす。TH1型のTヘルパー細胞応答を始動するTヘルパー細胞エピトープは、それらの細胞表面に腫瘍関連ペプチド/MHC複合体を提示する腫瘍細胞に向けられた細胞傷害機能をはじめとする、CD8陽性キラーT細胞のエフェクター機能を支持する。このようにして腫瘍関連Tヘルパー細胞ペプチドエピトープは、単独で、またはその他の腫瘍関連ペプチドとの組み合わせで、抗腫瘍免疫応答を刺激するワクチン組成物の活性医薬品成分の役割を果たし得る。
例えば、マウスなどの哺乳類動物モデルにおいて、CD8陽性Tリンパ球の不在下であっても、インターフェロンγ(IFNγ)の分泌による血管新生阻害を通じて腫瘍発現を阻害するには、CD4陽性T細胞で十分であることが示された(Beatty and Paterson,2001;Mumberg et al.,1999)。CD4 T細胞が、直接抗腫瘍エフェクターであるという証拠がある(Braumuller et al.,2013;Tran et al.,2014)。
HLAクラスII分子の構成的発現は、通常、免疫細胞に限定されるので、原発性腫瘍からクラスIIペプチドを直接単離する可能性があり得るとは、これまで考えられなかった。しかし、Dengjel et al.は、いくつかのMHCクラスIIエピトープを腫瘍から直接成功裏に同定した(国際公開第2007/028574号パンフレット、欧州特許第1760088B1号明細書)。
CD8およびCD4依存性の双方のタイプの応答は、抗腫瘍効果に共同して相乗的に寄与するので、CD8+T細胞(リガンド:MHCクラスI分子+ペプチドエピトープ)、またはCD4陽性Tヘルパー細胞(リガンド:MHCクラスII分子+ペプチドエピトープ)のどちらかによって認識される、腫瘍関連抗原の同定および特性解析は、腫瘍ワクチンの開発にとって重要である。
MHCクラスIペプチドが、細胞性免疫応答を始動(惹起)するためには、それはまた、MHC分子に結合しなくてはならない。この過程は、MHC分子の対立遺伝子と、ペプチドのアミノ酸配列の特定の多型性とに依存する。MHCクラスI結合ペプチドは、通常は8〜12アミノ酸残基長であり、通常は、MHC分子の対応する結合溝と相互作用するそれらの配列中に、2つの保存残基(「アンカー」)を含有する。このようにして、各MHC対立遺伝子は、どのペプチドが結合溝と特異的に結合し得るかを決定する、「結合モチーフ」を有する。
MHCクラスI依存免疫反応においては、ペプチドは腫瘍細胞によって発現される特定のMHCクラスI分子に結合できるだけでなく、それらはまた、引き続いて特異的T細胞受容体(TCR)を有するT細胞によって認識されなくてはならない。
タンパク質が、Tリンパ球によって腫瘍特異的または腫瘍関連抗原として認識され、治療で利用されるためには、特定の必要条件が満たされなくてはならない。抗原は、主に腫瘍細胞によって発現され、健常組織によって発現されず、または比較的少量発現されるべきである。好ましい実施形態では、ペプチドは、腫瘍細胞によって、健常組織と比較して過剰提示されるべきである。それぞれの抗原は、ある種の腫瘍に存在するだけでなく、高い濃度(すなわち、それぞれのペプチド細胞あたりのコピー数)で存在することもさらに望ましい。腫瘍特異的および腫瘍関連抗原は、例えば、細胞周期調節またはアポトーシス抑制における機能のために、正常細胞から腫瘍細胞への形質転換に直接関与するタンパク質に由来することが多い。さらに、形質転換の直接原因となるタンパク質の下流標的が、上方制御されてもよく、(und)したがって間接的に腫瘍関連であってもよい。このような間接的腫瘍関連抗原もまた、ワクチン接種アプローチの標的であってもよい(Singh−Jasuja et al.,2004)。このようなペプチド(「免疫原性ペプチド」)が、腫瘍関連抗原に由来して、生体外または生体内T細胞応答をもたらすことを確実にするためには、抗原のアミノ酸配列内にエピトープが存在することが必須である。
基本的に、MHC分子に結合できるあらゆるペプチドが、T細胞エピトープとして機能してもよい。生体外または生体内T細胞応答誘導のための必要条件は、対応するTCRを有するT細胞の存在、およびこの特定のエピトープに対する免疫寛容の不在である。
したがって、TAAは、腫瘍ワクチンをはじめとするが、これに限定されるものではない、T細胞ベースの治療法開発の出発点である。TAAを同定し特性決定する方法は、通常は、患者または健常人から単離され得るT細胞の使用に基づき、またはそれらは、腫瘍と正常組織との間の示差的転写プロファイル、または示差的ペプチド発現パターンの生成に基づく。しかし、腫瘍組織またはヒト腫瘍細胞株において過剰発現され、またはこのような組織または細胞株において選択的に発現される遺伝子の同定は、免疫療法においてこれらの遺伝子から転写される抗原の使用に関する、正確な情報を提供しない。これは、これらの抗原のエピトープの個々の亜集団のみが、このような用途に適するためであり、その理由は、対応するTCRを有するT細胞が存在しなくてはならず、この特定のエピトープに対する免疫寛容が不在または最小でなくてはならないからである。したがって本発明の非常に好ましい実施形態では、それに対する機能性および/または増殖性T細胞が見いだされる、過剰にまたは選択的に提示されるペプチドのみを選択することが、重要である。このような機能性T細胞は、特異的抗原による刺激時にクローン増殖され得て、エフェクター機能を果たすことができるT細胞(「エフェクターT細胞」)と定義される。
本発明による特異的TCR(例えば、可溶性TCR)および抗体またはその他の結合分子(スキャフォールド)によってペプチドMHCを標的化する場合、基礎となるペプチドの免疫原性は二次的である。これらの場合には、提示が決定要因である。
本発明の第1の態様では、本発明は、配列番号1〜配列番号549、または配列番号1〜配列番号549と少なくとも77%、好ましくは少なくとも88%相同的な(好ましくは、少なくとも77%または少なくとも88%同一の)その変異配列からなる群から選択されるアミノ酸配列を含んでなるペプチドに関し、その中で前記変異体は、MHCと結合し、および/またはT細胞と前記ペプチドまたはその薬学的に許容可能な塩との交差反応を誘導し、その中で前記ペプチドは、基礎となる完全長ポリペプチドでない。
本発明は、配列番号1〜配列番号549、または配列番号1〜配列番号549と少なくとも77%、好ましくは少なくとも88%相同的な(好ましくは少なくとも77%または少なくとも88%同一の)その変異体からなる群から選択される配列を含んでなる、本発明のペプチドにさらに関し、前記ペプチドまたはその変異型は、8〜100、好ましくは8〜30、最も好ましくは8〜14アミノ酸の全長を有する。
続く表は、本発明によるペプチド、それらの各配列番号、およびそれらのペプチドの予測される起源(基礎)遺伝子を示す。表1および表2の全てのペプチドは、HLA−A*02に結合する。表2のペプチドは、誤り率が高い、またはアルゴリズムを使用して計算された、ハイスループットスクリーニングの結果としての大きなリスト中で以前開示されているが、これまでがんとは全く関連付けられていなかった。表3のペプチドは、本発明のその他のペプチドとの組み合わせで有用であってもよい、追加的なペプチドである。表4のペプチドは、それぞれの基礎ポリペプチドの過剰発現または過剰提示を伴う、様々なその他の悪性腫瘍の診断および/または治療においてさらに有用である。
表1: 本発明によるペプチド; X = S、RまたはG
表2: 本発明による追加的ペプチド; X = S、RまたはG
表3: がん治療に有用な追加的ペプチド、X = S、RまたはG
表4: がん治療に有用な追加的ペプチド、X = S、RまたはG
本発明は、さらに、例えば、ペプチド配列番号1〜配列番号319がそれに由来するタンパク質の過剰発現を示す、卵巣がん、非小細胞肺がん、小細胞肺がん、腎臓がん、脳がん、結腸または直腸がん、胃がん、肝臓がん、膵臓がん、前立腺がん、白血病、乳がん、メルケル細胞がん、黒色腫、食道がん、膀胱がん、子宮がん、胆嚢がん、胆管がん、およびその他の腫瘍などの増殖性疾患の治療において使用するための本発明によるペプチドに一般に関する。
特に好ましいのは、配列番号1〜配列番号549からなる群から選択される、本発明による単独のまたは組み合わされたペプチドである。より好ましいのは、配列番号1〜配列番号319(表1および2を参照されたい)からなる群から選択される単独のまたは組み合わせのペプチドと、卵巣がん、非小細胞肺がん、小細胞肺がん、腎臓がん、脳がん、結腸または直腸がん、胃がん、肝臓がん、膵臓がん、前立腺がん、白血病、乳がん、メルケル細胞がん、黒色腫、食道がん、膀胱がん、子宮がん、胆嚢がん、および胆管がん、および好ましくは卵巣がんの免疫療法におけるそれらの使用である。
したがって、本発明の別の態様は、好ましくは、卵巣がん、非小細胞肺がん、小細胞肺がん、腎臓がん、脳がん、結腸または直腸がん、胃がん、肝臓がん、膵臓がん、前立腺がん、白血病、乳がん、メルケル細胞がん、黒色腫、食道がん、膀胱がん、子宮がん、胆嚢がん、および胆管がんの群から選択される増殖性疾患の併用治療のための、本発明によるペプチドの使用に関する。
本発明は、ヒト主要組織適合性複合体(MHC)クラスIの分子に結合する能力を有し、または長さ変異体などの伸長形態では、MHCクラスIIに結合する能力を有する、本発明によるペプチドにさらに関する。
本発明は、本発明によるペプチドにさらに関し、前記ペプチドは(それぞれ)配列番号1〜配列番号549に記載のアミノ酸配列からなり、またはそれから本質的になる。
本発明は、本発明によるペプチドにさらに関し、前記ペプチドは、修飾され、および/または非ペプチド結合を含む。
本発明は、本発明によるペプチドにさらに関し、前記ペプチドは、特にHLA−DR抗原関連不変鎖(Ii)のN末端アミノ酸に融合した、または例えば樹状細胞に対して特異的な抗体などの抗体(またはその配列中)に融合した、融合タンパク質の一部である。
本発明は、本発明によるペプチドをエンコードする核酸にさらに関する。本発明は、DNA、cDNA、PNA、RNA、またはそれらの組み合わせである、本発明による核酸にさらに関する。
本発明は、本発明による核酸を発現でき、および/または発現する、発現ベクターにさらに関する。
本発明は、疾患治療および医療において、特にがんの治療において使用するための本発明によるペプチド、本発明による核酸または本発明による発現ベクターにさらに関する。
本発明は、本発明によるペプチドに対して、または前記本発明によるペプチドとMHCの複合体に対して特異的な対抗と、それらを製造する方法とにさらに関する。
本発明は、T細胞受容体(TCR)、特に、自己由来または同種異系T細胞に組み込まれた可溶性TCR(sTCR)およびクローン化TCR;これらを製造する方法;ならびに前記TCRを有するまたは前記TCRと交差反応する、NK細胞またはその他の細胞を製造する方法にさらに関する。
抗体およびTCRは、本発明によるペプチドの免疫療法用途の追加的な実施形態である。
本発明は、前述のような本発明による核酸または発現ベクターを含んでなる、宿主細胞にさらに関する。本発明は、抗原提示細胞であり、好ましくは樹状細胞である、本発明による宿主細胞にさらに関する。
本発明は、本発明による宿主細胞を培養するステップと、宿主細胞またはその培養液からペプチドを単離するステップとを含んでなる、本発明によるペプチドを製造する方法にさらに関する。
本発明は、十分な量の抗原を抗原提示細胞に接触させることで、適切な抗原提示細胞または人工抗原提示細胞の表面に発現されるクラスIまたはII MHC分子上に抗原が負荷される、本発明による方法にさらに関する。
本発明は、抗原提示細胞が、配列番号1〜配列番号549を含有する、好ましくは配列番号1〜配列番号319または変異アミノ酸配列を含有する、前記ペプチドを発現できまたは発現する、発現ベクターを含んでなる、本発明による方法にさらに関する。
本発明は、本発明による方法によって製造される活性化T細胞にさらに関し、前記T細胞は、本発明によるアミノ酸配列を含んでなるポリペプチドを発現する細胞を選択的に認識する。
本発明は、本発明によって製造されるT細胞の有効数を患者に投与するステップを含んでなる、患者において、本発明による任意のアミノ酸配列を含んでなるポリペプチドを異常に発現する標的細胞を死滅させる方法にさらに関する。
本発明は、薬剤としてのまたは薬剤の製造における、記載される任意のペプチド、本発明による核酸、本発明による発現ベクター、本発明による細胞、本発明による活性化Tリンパ球、T細胞受容体または抗体またはその他のペプチド−および/またはペプチド−MHC−結合分子の使用にさらに関する。好ましくは、薬剤は、がんに対して有効である。
好ましくは、前記薬剤は、細胞療法、可溶性TCRまたは抗体に基づくワクチンまたはタンパク質のためのものである。
本発明は、本発明による使用にさらに関し、前記がん細胞は、卵巣がん、非小細胞肺がん、小細胞肺がん、腎臓がん、脳がん、結腸または直腸がん、胃がん、肝臓がん、膵臓がん、前立腺がん、白血病、乳がん、メルケル細胞がん、黒色腫、食道がん、膀胱がん、子宮がん、胆嚢がん、および胆管がん、および好ましくは卵巣がん細胞である。
本発明は、がん、好ましくは卵巣がんの診断において使用され得る、本明細書で「標的」と称される、本発明によるペプチドをベースとするバイオマーカーにさらに関する。マーカーは、ペプチドそれ自体の過剰提示、または対応遺伝子の過剰発現であり得る。マーカーはまた、好ましくは免疫療法、最も好ましくはバイオマーカーによって同定されるのと同じ標的を標的とする免疫療法である、治療の成功確率を予測するのに使用されてもよい。例えば、抗体または可溶性TCRを使用して腫瘍切片が染色され、MHCと複合体形成する目的ペプチドの存在が検出され得る。
任意選択的に、抗体は、免疫刺激ドメインまたは毒素などのさらなるエフェクター機能を保有する。
本発明はまた、がん治療の文脈におけるこれらの新規標的の使用に関する。
追加的ながん性疾患に対する治療的および診断的使用の双方が、本発明によるペプチドの基本的発現産物(ポリペプチド)に関する、以下のより詳細な説明で開示される。
免疫応答の刺激は、宿主免疫系によって外来性として認識される抗原の存在に依存する。腫瘍関連抗原の存在の発見は、宿主の免疫系を用いて腫瘍成長に介入する可能性を高めた。免疫系の体液性および細胞性アームの双方を活用する様々な機構が、がん免疫療法のために目下探求されている。
細胞性免疫応答の特定の要素は、腫瘍細胞を特異的に認識して破壊できる。腫瘍浸潤性細胞集団からの、または末梢血からのT細胞の単離は、がんに対する自然免疫防御において、このような細胞が重要な役割を果たすことを示唆する。特に、細胞質ゾル内に位置するタンパク質または欠陥リボソーム産物(DRIPS)に由来する、通常は8〜10アミノ酸残基の主要組織適合性複合体(MHC)保有ペプチドのクラスI分子を認識するCD8陽性T細胞が、この応答において重要な役割を果たす。ヒトのMHC分子はまた、ヒト白血球抗原(HLA)とも称される。
本発明は、以下に記載されるような修飾されたおよび/または非ペプチド結合を含む、本発明によるペプチドにさらに関する。
本発明は、本発明によるペプチドにさらに関し、前記ペプチドは、特にHLA−DR抗原関連不変鎖(Ii)のN末端アミノ酸に融合した、または例えば樹状細胞に対して特異的な、すなわち、樹状細胞に結合する抗体などの抗体に(またはその配列中に)融合した、融合タンパク質の一部である。
本発明は、本発明によるペプチドをコードする核酸にさらに関する。本発明は、DNA、cDNA、PNA、RNA、またはそれらの組み合わせである、本発明による核酸にさらに関する。
本発明は、本発明による核酸を発現、発現、および/または提示できる、発現ベクターにさらに関する。
本発明は、医療で使用するための、本発明によるペプチド、本発明による核酸、または本発明による発現ベクターにさらに関する。
本発明は、下でさらに詳しく説明される抗体と、それらを製造する方法とにさらに関する。好ましいのは、本発明のペプチドに対して、および/またはそれらのMHCとの結合時の本発明のペプチドに対して、特異的な抗体である。好ましい抗体は、モノクローナルであり得る。
本発明は、T細胞受容体(TCR)、特に、本発明によるペプチドを標的化する可溶性TCR(sTCR)および/またはそれらのペプチド−MHC複合体、およびそれらを製造する方法にさらに関する。
本発明は、本発明によるペプチドおよび/またはそれらのペプチドMHC複合体を標的とする、抗体またはその他の結合分子と、それらを製造する方法とにさらに関する。
本発明は、前述のような本発明による核酸または発現ベクターを含んでなる、宿主細胞にさらに関する。本発明は、抗原提示細胞である、本発明による宿主細胞にさらに関する。本発明は、抗原提示細胞が樹状細胞である、本発明による宿主細胞にさらに関する。
本発明は、本発明による宿主細胞を培養するステップと、宿主細胞および/またはその培養液からペプチドを単離するステップとを含んでなる、本発明によるペプチドを製造する方法にさらに関する。
本発明は、T細胞を、適切な抗原提示細胞の表面に発現される抗原負荷ヒトクラスIまたはII MHC分子に、前記T細胞を抗原特異的様式で活性化するのに十分な時間にわたり、生体外で接触させるステップを含んでなる、活性化Tリンパ細胞を製造するインビトロ法にさらに関し、前記抗原は本発明による少なくとも1つのペプチドである。
本発明は、十分な量の抗原を抗原提示細胞に接触させることで、抗原が、適切な抗原提示細胞の表面に発現されるクラスIまたはII MHC分子上に負荷される方法にさらに関する。
本発明は、抗原提示細胞が、配列番号1〜配列番号549、または変異アミノ酸配列を含有する、前記ペプチドを発現できる発現ベクターを含んでなる、本発明による方法にさらに関する。
本発明は、本発明による方法によって製造される活性化T細胞にさらに関し、それは、本発明によるアミノ酸配列を含んでなるポリペプチドを異常に発現する細胞を選択的に認識する。
本発明は、本発明によるT細胞の有効数を患者に投与するステップを含んでなる、患者において、本発明による任意のアミノ酸配列を含んでなるポリペプチドを異常に発現する標的細胞を死滅させる方法にさらに関する。
本発明は、記載される任意のペプチド、本発明による核酸、本発明による発現ベクター、本発明による細胞、または本発明による活性化T細胞の、薬剤としてのまたは薬剤の製造における使用にさらに関する。
本発明は、前記薬剤が、ワクチン、細胞、例えば、細胞株、sTCR、およびモノクローナル抗体などの細胞集団である、本発明による使用にさらに関する。
本発明は、薬剤ががんに対して有効である、本発明による使用にさらに関する。
本発明は、前記がん細胞が卵巣がんの細胞である、本発明による使用にさらに関する。
本発明は、卵巣がんの診断および/または予後診断で使用され得る、本発明によるペプチドベースの特定の標識タンパク質およびバイオマーカーにさらに関する。
さらに本発明は、がん治療のためのこれらの新規標的の使用に関する。
さらに、本発明は、プレスクリーニング腫瘍関連ペプチドのデータベース(本明細書で「貯蔵庫」とも称される)を使用して、個々の患者のための個別化抗がんワクチンを製造する方法に関する。
免疫応答の刺激は、宿主免疫系によって外来性として認識された抗原の存在に依存する。腫瘍関連抗原の存在の発見は、宿主の免疫系を用いて腫瘍成長に介入する可能性を高めた。免疫系の体液性および細胞性アームの双方を活用する様々な機構が、がん免疫療法のために目下探求されている。
細胞性免疫応答の特定の要素は、腫瘍細胞を特異的に認識して破壊できる。腫瘍浸潤性細胞集団からの、または末梢血からのT細胞の単離は、がんに対する自然免疫防御において、このような細胞が重要な役割を果たすことを示唆する。特に、細胞質ゾル内に位置するタンパク質または欠陥リボソーム産物(DRIPS)に由来する、通常は8〜10アミノ酸残基の主要組織適合性複合体(MHC)保有ペプチドのクラスI分子を認識するCD8陽性T細胞が、この応答において重要な役割を果たす。ヒトのMHC分子はまた、ヒト白血球抗原(HLA)とも称される。
過去数年間における、がん免疫療法の分野における大きな進歩は、標準的な化学療法アプローチに対する、潜在的に治癒的な追加のまたはその代替としての、広範な高い評価をもたらした。いくつかの論文は、HLAが、重要な腫瘍拒絶抗原として変異および野生型腫瘍関連抗原を提示することの重要性を実証する。したがって、HLAが提示するがん特異的腫瘍抗原の大規模同定は、免疫系が腫瘍細胞をどのように特定し、認識するかを理解する上でのもう一つの重要な要素を追加する。
本発明では、本発明者らは、EOCの免疫ペプチドームを包括的に特徴付け、HLA提示抗原を臨床用途での有用性について評価する目的で、上皮性卵巣がん(EOC)に焦点を合わせた。これまでのところ、EOCに関して同定されたHLA提示抗原はごくわずかであり、大部分の臨床試験は、必ずしもEOCによって頻繁に提示されるわけではない、予測されたまたは確立されたがん精巣抗原に依存しており、この事実は我々の分析によって確認され得た。
本発明者らは、以前公表されたデータに一致して、卵巣腫瘍細胞上のHLAクラスI分子の一貫した高度発現発現を実証する。さらに、本発明者らは、EOCが、強力なHLA−DR分子の発現もまた示すことを単一細胞レベルで示す。この強力な発現は、卵巣腫瘍からならびに高度濃縮腫瘍細胞画分から発せられる大量のMHCクラスIIリガンドを発明者らが同定したことで、さらに強調された。
85個を超える異なる起源の良性起源と比較した、34個の卵巣腫瘍の免疫ペプチドームのプロファイリングから、数百のEOC関連抗原が明らかにされた。本発明者らの良性データセットのいずれの組織上でも提示されない、TOP100 HLAクラスI EOC抗原の中でも、MUC16は明らかに最も例外的であった。同定されたHLAリガンドの数(>80)と患者コホートにおける提示頻度(約80%)の双方に関して、これは、本発明者らがこれまでに研究してきたいかなるその他の腫瘍抗原および腫瘍実体においても先例がない。さらに、本発明者らは、MUC16に由来するHLAリガンドの70%超が免疫原性であり、健常人においてT細胞を刺激でき、ムチン16をEOC免疫療法のための比類のない最上の抗原にすることを確立し得た。免疫ペプチドームプロファイリングはさらに、EOCへの明らかな機構的洞察のためのショーケースを提供し、それはHLAクラスIおよびクラスIIリガンドの双方のHLAリガンドに反映される。重要なキナーゼとホスファターゼ(DDR1、EYA2)、転写因子(SOX9、SOX17)、免疫抑制に関連するタンパク質(IDO1、ガレクチン1)、ならびにEOC(MUC1、KLK10、FOLR1)の確立されたおよび疑われる分子マーカーに由来するHLAリガンドは、ほんの数例である。注目すべきことに、HLAクラスIIについては、MUC16の確立されたリガンドであるメソテリンが、TOP1腫瘍関連抗原として同定されている。いくつかの研究は、EOC、ならびに膵臓がんまたは中皮腫などのその他の腫瘍における細胞浸潤および転移に対するMUC16/MSLN軸の中心的役割を実証しており、これらの抗原のT細胞エピトープが、その他の悪性病変においてさらに試験されるべきであることが示唆される。本発明者らは、MSLN染色がMUC16染色と直接相関し、高いMSLN発現がEOCにおいて負の予後因子を形成することを示し得た。
この種の選択的免疫ペプチドームプロファイリングのために、いくつかの異なる良性組織および細胞型(PBMC、骨髄、肝臓、腎臓、結腸、卵巣)が初めて使用されている。調査に利用できる異なる組織数に制限があるために、本発明者らは、個々の抗原がその臓器のHLA分子によってもまた提示されるかもしれないことを完全に排除し得ない。しかし、EOCに対するこれらの抗原の確立された機能的関連性、そして特に、健常人における各ペプチドの免疫原性のために、その他の組織におけるこれらの抗原の提示はありそうにない。
「T細胞応答」という用語は、生体外または生体内でペプチドによって誘導される、エフェクター機能の特異的増殖および活性化を意味する。MHCクラスI拘束性細胞毒性T細胞では、エフェクター機能は、ペプチドパルスされた、ペプチド前駆体パルスされた、または天然の、ペプチド提示標的細胞の溶解;好ましくはペプチドによって誘導されたインターフェロン−γ、TNF−α、またはIL−2であるサイトカインの分泌;好ましくはペプチドによって誘導されたグランザイムまたはパーフォリンであるエフェクター分子の分泌;または脱顆粒であってもよい。
「ペプチド」という用語は、典型的に、隣接するアミノ酸のα−アミノ基とカルボニル基との間のペプチド結合によって互いに連結する、一連のアミノ酸残基を命名するために、本明細書で使用される。ペプチドは、好ましくは9アミノ酸長であるが、8アミノ酸長程度に短くあり得て、10、11、または12程度に長くあり得て、MHCクラスIIペプチド(本発明のペプチドの伸長された変種)の場合、それらは15、16、17、18、19または20アミノ酸長程度に長くあり得る。
さらに「ペプチド」という用語は、典型的に、隣接するアミノ酸のα−アミノ基とカルボニル基との間のペプチド結合によって互いに連結する、一連のアミノ酸残基の塩を含むものとする。好ましくは、塩は、例えば、塩化物塩または酢酸塩(トリフルオロ酢酸塩)などの、ペプチドの薬学的に許容可能な塩である。ペプチドは生体内においては塩ではないので、本発明によるペプチドの塩は、それらの生体内の状態が、ペプチドと実質的に異なることに留意すべきである。
「ペプチド」という用語は、「オリゴペプチド」もまた含むものとする。「オリゴペプチド」という用語は、典型的に、隣接するアミノ酸のα−アミノ基とカルボニル基との間のペプチド結合によって互いに連結する、一連のアミノ酸残基を命名するために、本明細書で使用される。オリゴペプチドの長さは、その中で正しいエピトープまたはエピトープが保持されれば、本発明には重要でない。オリゴペプチドは、典型的に、約30アミノ酸残基長未満であり、約15アミノ酸長を超える。
「本発明のペプチド」という用語は、上で定義される、配列番号1〜配列番号549に記載のペプチドからなる、またはそれを含んでなる、ペプチドを含むものとする。
「ポリペプチド」という用語は、典型的に、隣接するアミノ酸のα−アミノ基とカルボニル基との間のペプチド結合によって互いに連結する、一連のアミノ酸残基を指す。正しいエピトープが保持されれば、ポリペプチドの長さは本発明にとって重要でない。ペプチドまたはオリゴペプチドという用語とは対照的に、ポリペプチドという用語は、約30を超えるアミノ酸残基を含有する分子を指すことが意図される。
ペプチド、オリゴペプチド、タンパク質またはこのような分子をコードするポリヌクレオチドは、免疫応答を誘導できれば「免疫原性」である(したがって本発明における「免疫原」である)。本発明では、免疫原性は、より具体的には、T細胞応答を誘導する能力と定義される。したがって「免疫原」は、免疫応答を誘導できる分子であり、本発明では、T細胞応答を誘導できる分子である。別の態様では、免疫原は、それに対する特異的抗体またはTCRを生じさせるのに使用される、ペプチド、ペプチドとMHCの複合体、オリゴペプチド、および/またはタンパク質であり得る。
クラスI T細胞「エピトープ」は、クラスI MHC受容体に結合している短いペプチドを必要とし、三成分複合体(MHCクラスIα鎖、β−2−ミクログロブリン、およびペプチド)を形成し、それは、適切な親和性でMHC/ペプチド複合体に結合する適合T細胞受容体を保有するT細胞によって、認識され得る。MHCクラスI分子に結合するペプチドは、典型的に8〜14アミノ酸長であり、最も典型的には9アミノ酸長である。
ヒトにおいては、MHCクラスI分子(ヒト白血球抗原(HLA)ともまた称されるヒトのMHC分子)をコードする、3つの異なる遺伝子座、HLA−A、HLA−B、およびHLA−Cがある。HLA−A*01、HLA−A*02、およびHLA−B*07は、これらの遺伝子座から発現され得る、異なるMHCクラスI対立遺伝子の例である。
表5: HLA-A*5およびHLA-A*24の発現頻度F、および最も高頻度のHLA-DR血清型。頻度は、ハーディ・ワインベルグ式、F=1-(1-Gf)2を用いて、Mori et al. (Morietal., 1997)から適応された、米国人母集団内のハプロタイプ頻度Gfから推定される。連鎖不均衡のために、A*02またはA*24と特定のHLA-DR対立遺伝子との組み合わせは、それらの単一頻度から予測されるよりも、豊富でありまたは低頻度であるかもしれない。詳細については、Chanock et al. (Chanock et al., 2004)を参照されたい。
本発明のペプチドは、好ましくは、本明細書に記載される本発明のワクチンに包含される場合、異なるHLA型に結合する。ワクチンはまた、汎結合MHCクラスIIペプチドと、その他の対立遺伝子に結合するペプチドとを含んでもよく、それは個別化された医薬品にとって役立つであろう。したがって、本発明のワクチンを使用して、A*02陽性の患者においてがんを治療し得る一方で、これらのペプチドの汎結合特性のために、MHCクラスIIアロタイプを選択する必要はない。
好ましい実施形態では、「ヌクレオチド配列」という用語は、デオキシリボヌクレオチドのヘテロ重合体を指す。
特定のペプチド、オリゴペプチド、またはポリペプチドをコードするヌクレオチド配列は、天然であってもよく、またはそれらは合成的に構築されてもよい。一般に、本発明のペプチド、ポリペプチド、およびタンパク質をエンコードするDNA断片は、cDNAフラグメントと短いオリゴヌクレオチドリンカーから構築され、またはひと続きのオリゴヌクレオチドから構築されて、微生物またはウイルスオペロンに由来する調節因子を含んでなる、組換え転写単位で発現できる合成遺伝子が提供される。
本明細書の用法では「ペプチドをコーディング(またはコード)するヌクレオチド」という用語は、配列が、例えば、TCRの製造に有用な樹状細胞または別の細胞株によって発現される生体系と適合性である、人工(人造)開始および停止コドンを含むペプチドをコードする、ヌクレオチド配列を指す。
本明細書の用法では、核酸配列への言及は、一本鎖および二本鎖の核酸の双方を含む。したがって、例えば、特異的配列は、文脈上明らかに別の意味が示唆されない限り、このような配列の一本鎖DNA、このような配列とその補体との二本鎖(二本鎖DNA)、およびこのような配列の補体を指す。
「コード領域」という用語は、その天然ゲノム環境内で、遺伝子の発現産物を天然にまたは正常にコードする遺伝子の部分、すなわち、遺伝子の天然発現産物を生体内でコードする領域を指す。
コード領域は、非変異(「正常」)、変異または改変遺伝子に由来し得て、またはDNA合成技術の当業者に周知の方法を使用して実験室で完全に合成された、DNA配列または遺伝子にさえ由来し得る。
「発現産物」という用語は、遺伝子の、そして遺伝コード縮重に起因する同等物をコードし、したがって同一アミノ酸をコードする任意の核酸配列の天然翻訳産物である、ポリペプチドまたはタンパク質を意味する。
コード配列に言及する場合、「フラグメント」という用語は、その発現産物が、完全コード領域の発現産物と本質的に同一の生物学的機能または活性を保つ、完全未満のコード領域を含んでなるDNAの部分を意味する。
「DNA断片」という用語は、別々のフラグメントの形態の、またはより大型のDNAコンストラクトの構成要素としての、DNAポリマーを指し、それは、実質的に純粋な、すなわち、混入内因性物質を含まない形態で、例えばクローニングベクターを使用した標準生化学的方法によって、断片およびその構成ヌクレオチド配列が同定、操作、および回収できる量または濃度で、少なくとも1回単離されたDNAに由来する。このような断片は、典型的に真核生物遺伝子内に存在する内部非翻訳配列またはイントロンによって中断されていない、読み取り枠の形態で提供される。非翻訳DNA配列は、それがコード領域の操作または発現を妨げない、読み取り枠下流に存在してもよい。
「プライマー」という用語は、短い核酸配列を意味し、それはDNAの1本鎖と対合し得て、DNAポリメラーゼがそこでデオキシリボヌクレオチド鎖合成を開始する、遊離3’−OH末端を提供する。
「プロモーター」という用語は、転写を開始するためのRNAポリメラーゼ結合に関与する、DNAの領域を意味する。
「単離」という用語は、物質が、その元の環境(例えば、それが天然であれば天然環境)から取り出されていることを意味する。例えば、生きている動物に存在する天然ポリヌクレオチドまたはポリペプチドは単離されていないが、天然システムで共存する物質の一部または全部から分離された同じポリヌクレオチドまたはポリペプチドは、単離されている。このようなポリヌクレオチドはベクターの一部であり得て、および/またはこのようなポリヌクレオチドまたはポリペプチドは組成物の一部であり得るが、このようなベクターまたは組成物がその天然環境の一部でないと言う意味では、なおも単離されている。
本発明によって開示されるポリヌクレオチド、および組換えまたは免疫原性ポリペプチドは、「精製」形態であってもよい。「精製」という用語は、完全に純粋である必要はなく;むしろ、それは相対的定義であることが意図されて、これらの用語が当業者によって理解されるように、高度に精製された調製物、または部分的にのみ精製された調製物を含み得る。例えば、cDNAライブラリーから単離された個々のクローンは、電気泳動的に均一に、従来法で精製されている。少なくとも1桁、好ましくは2または3桁、より好ましくは4または5桁までの、出発原料または天然物質の精製が明示的に検討される。さらに、重量基準で、好ましくは99.999%、または少なくとも99.99%または99.9%;さらに望ましくは99%以上の純度を有する、特許請求されるポリペプチドが明示的に開示される。
本発明によって開示される核酸およびポリペプチド発現産物、ならびにこのような核酸および/またはこのようなポリペプチドを含有する発現ベクターは、「濃縮形態」であってもよい。本明細書の用法では、「濃縮」という用語は、物質濃度が、(例えば)その天然濃度の少なくとも約2、5、10、100、または1000倍であることを意味し、有利には重量基準で0.01%、好ましくは重量基準で少なくとも約0.1%である。重量基準で約0.5%、1%、5%、10%、および20%の濃縮調製物もまた、検討される。本発明を構成する、配列、コンストラクト、ベクター、クローン、およびその他の物質は、有利には濃縮または単離形態であり得る。
本明細書の用法では、ポリペプチドとの関連で使用される場合、「部分」、「断片」、および「フラグメント」という用語は、アミノ酸残基などの連続する残基の配列を指し、その配列はより大型の配列の部分集合を形成する。例えば、ポリペプチドがトリプシンまたはキモトリプシンなどの一般的エンドペプチダーゼのいずれかによって処理されれば、このような処理から得られるオリゴペプチドは、出発ポリペプチドの部分、断片またはフラグメントに相当するであろう。ポリヌクレオチドに関して使用される場合、これらの用語は、いずれかのエンドヌクレアーゼによる前記ポリヌクレオチドの処理によって生じる生成物を指す。
本発明によると、配列に言及する場合、「同一性百分率」または「パーセント同一」という用語は、比較される配列(「比較配列」)と、記載されまたは特許請求される配列(「参照配列」)とのアライメント後に、配列が、特許請求されまたは記載される配列と比較されることを意味する。次に同一性百分率は、次式に従って判定される:
同一性百分率=100[1−(C/R)]
式中、Cは、参照配列と比較される配列との間のアライメント長にわたる、参照配列と比較配列の間の差異の数であり、
(i)比較配列中に対応する整列塩基またはアミノ酸を有しない、参照配列中の各塩基またはアミノ酸、および
(ii)参照配列中の各ギャップ、および
(iii)比較配列中の整列塩基またはアミノ酸と異なる、参照配列中の各整列塩基またはアミノ酸が差異を構成して、
(iiii)アライメントは、整合配列の1位から開始しなくてはならず;
Rは、比較配列とのアライメント長にわたる参照配列中の塩基またはアミノ酸の数であり、参照配列中に生じる任意のギャップもまた、塩基またはアミノ酸として数えられる。
比較配列と、それに対して同一性百分率が上のように計算される参照配列との間に、特定の最小同一性百分率とほぼ同じまたはそれを上回るアライメントが存在すれば、その中に、上記のように計算された同一性百分率が特定の同一性百分率未満であるアライメントが存在したとしても、比較配列は、参照配列との特定の最小同一性百分率を有する。
したがって上述したように、本発明は、配列番号1〜配列番号549、または配列番号1〜配列番号549と88%相同的であるその変異体、またはT細胞を前記ペプチドと交差反応させるその変異体からなる群から選択される配列を含んでなる、ペプチドを提供する。本発明のペプチドは、ヒト主要組織適合性複合体(MHC)クラスI分子または前記ペプチドの伸長バージョンをクラスIIに結合する能力を有する。
本発明では、「相同的」という用語は、2つのアミノ酸配列、すなわちペプチドまたはポリペプチド配列の配列間の同一性の程度を指す(上の同一性百分率を参照されたい)。前述の「相同性」は、比較される配列にわたり、最適条件下でアライメントされた2つの配列を比較することで判定される。このような配列相同性は、例えばClustalWアルゴリズムを使用してアライメントを作成することで、計算され得る。一般に利用できる配列解析ソフトウェア、より具体的には、Vector NTI、GENETYXまたはその他のツールが、公共データベースによって提供される。
当業者は、特定のペプチドの変異体によって誘導されるT細胞が、ペプチドそれ自体と交差反応できるかどうかを評価できるであろう(Appay et al.,2006;Colombetti et al.,2006;Fong et al.,2001;Zaremba et al.,1997)。
所与のアミノ酸配列の「変異型」によって、本発明者らは、ペプチドが、配列番号1〜配列番号549からなる所与のアミノ酸配列からなるペプチドと実質的に同様に、HLA分子となおも結合できるように、(例えば、それらを別の天然アミノ酸残基の側鎖で、またはその他の側鎖で置換することにより)例えば、アミノ酸の1つまたは2つの残基の側鎖が変化することを意味する。例えば、ペプチドは、それがHLA−A*02または−DRなどの適切なMHC分子の結合溝と相互作用して結合する能力を改善せずとも、少なくとも維持するように修飾されてもよく、このようにしてそれは、活性化CTLのTCRに結合する能力を改善せずとも、少なくとも維持する。
これらのT細胞は、引き続いて細胞と交差反応して、本発明の態様で定義される同族ペプチドの天然アミノ酸配列を含有するポリペプチドを発現する細胞を殺滅し得る。学術文献およびデータベース(Rammensee et al.,1999;Godkin et al.,1997)から演繹され得るように、HLA結合ペプチドの特定の位置は、典型的に、アンカー残基であり、結合溝を構成するポリペプチド鎖の極性、電気物理的、疎水性、および空間特性によって画定されるHLA受容体の結合モチーフと適合する、コア配列を形成する。したがって、当業者は、既知のアンカー残基を保つことで、配列番号1〜配列番号549に記載されるアミノ酸配列を修飾でき、このような変異型がMHCクラスIまたはII分子に結合する能力を維持するかどうかを判定できるであろう。本発明の変異型は、活性化T細胞のTCRに結合する能力を維持し、それは引き続いて、本発明の態様で定義されるような同族ペプチドの天然アミノ酸配列を含有するポリペプチドを発現する細胞と交差反応して、それを殺滅し得る。
本明細書で開示される元の(未修飾)ペプチドは、特に明記されない場合は、ペプチド鎖内の異なる、おそらくは選択的な部位における、1つまたは複数の残基の置換によって修飾され得る。好ましくはこれらの置換は、アミノ酸鎖の末端に位置する。このような置換は、保存的性質であってもよく、例えば、疎水性アミノ酸が別の疎水性アミノ酸によって置換されるなど、構造および特徴の類似したアミノ酸によってアミノ酸が置換される。さらにより保存的な置換は、ロイシンのイソロイシンによる置換などの、同一または類似サイズおよび化学的性質のアミノ酸の置換である。天然相同タンパク質ファミリーの配列多様性の研究では、特定のアミノ酸置換は、他よりも耐容されることが多く、これらは、元のアミノ酸とその置換物との間のサイズ、電荷、極性、および疎水性の類似性との相関を示すことが多く、これが「保存的置換」の定義の基礎である。
保存的置換は、本明細書では、以下の5つのグループの1つの中の交換として定義される:グループ1−小型脂肪族、非極性またはわずかに極性の残基(Ala、Ser、Thr、Pro、Gly);グループ2−極性の負に帯電した残基およびそれらのアミド(Asp、Asn、Glu、Gln);グループ3−極性の正に帯電した残基(His、Arg、Lys);グループ4−大型脂肪族非極性残基(Met、Leu、Ile、Val、Cys);およびグループ5−大型芳香族残基(Phe、Tyr、Trp)。
より保存的でない置換は、アラニンのイソロイシン残基による置換などの、類似した特徴を有するがサイズがいくらか異なる別のアミノ酸による置換を伴うかもしれない。高度に非保存的な置換は、極性アミノ酸の、または塩基性アミノ酸の酸性アミノ酸による置換を伴うかもしれない。しかし化学効果は完全に予測可能でなく、「過激な」置換は単純な化学的原理からは予測できない偶然の効果を生じさせる可能性があるので、このような過激な置換は、潜在的に無効であるとして却下し得ない。
もちろんこのような置換には、通常のL−アミノ酸以外の構造が関与してもよい。したがってD−アミノ酸が、本発明の抗原性ペプチドに通常見いだされるL−アミノ酸を置換するかもしれず、依然として本明細書の開示に包含される。さらに、非標準アミノ酸(すなわち、一般的な天然タンパク質新生アミノ酸以外)もまた置換目的で使用して、本発明による免疫原および免疫原性ポリペプチドが製造されてもよい。
2つ以上の位置における置換が、以下に定義されるように実質的に同等のまたはそれを超える抗原活性のあるペプチドをもたらすことが判明した場合、これらの置換の組み合わせを試験して、置換の組み合わせが、ペプチドの抗原性に相加または相乗効果をもたらすかどうかが判定される。最大でも、ペプチド内の4つ以上の位置を超えて同時に置換されることはない。
本明細書で示されるようなアミノ酸配列から本質的になるペプチドは、非修飾ペプチドと比較すると、ヒト主要組織適合性複合体(MHC)クラスIまたはII分子に結合する能力が、実質的に変化したり悪影響を受けたりすることなく交換される、1つまたは2つの非アンカーアミノ酸を有し得る(アンカーモチーフについては下記を参照されたい)。別の実施形態では、本明細書で示されるようなアミノ酸配列から本質的になるペプチドにおいては、ヒト主要組織適合性複合体(MHC)クラスIまたはII分子に結合する能力が非修飾ペプチドと比較して実質的に変化したり悪影響を受けることなく、1つまたは2つのアミノ酸が、それらの保存的交換パートナー(以下を参照されたい)で交換され得る。
T細胞受容体との相互作用に実質的に寄与しないアミノ酸残基は、その組み込みが、T細胞反応性に実質的に影響を及ぼさず、関連MHCとの結合を排除しない、その他のアミノ酸での置換によって修飾され得る。したがって与えられた但し書きを除いて、本発明のペプチドは、与えられたようなアミノ酸配列またはそれらの部分または変異体を含む、任意のペプチド(本発明者らは、その用語にオリゴペプチドまたはポリペプチドを含める)であってもよい。
より長い(伸長された)ペプチドもまた、適切であってもよい。MHCクラスIエピトープは、通常は8〜11アミノ酸長であるが、実際のエピトープを含むより長いペプチドまたはタンパク質から、ペプチドプロセッシングによって生成することが可能である。実際のエピトープ側面に位置する残基は、プロセッシング中に実際のエピトープを曝露させるのに必要なタンパク質分解切断に、実質的に影響を及ぼさない残基であることが好ましい。
本発明のペプチドは、最大4個のアミノ酸によって伸長させ得て、すなわち4:0〜0:4の間のあらゆる組み合わせで、どちらかの末端に1、2、3または4個のアミノ酸が付加され得る。本発明による伸長の組み合わせは、表6にある。
表6: 本発明のペプチドの伸長の組み合わせ
伸長/延長のためのアミノ酸は、元のタンパク質配列のペプチドまたは任意のその他のアミノ酸であり得る。伸長を利用して、ペプチドの安定性または溶解度を高め得る。
したがって本発明のエピトープは、天然腫瘍関連または腫瘍特異的エピトープと同一であってもよく、またはそれらが実質的に同一の抗原活性を有しさえすれば、4つ以下の残基が参照ペプチドと異なるエピトープを含んでもよい。
代案の実施形態では、ペプチドは、4つを超えるアミノ酸で、好ましくは30アミノ酸の全長まで、片側または両側で伸長される。これは、MHCクラスII結合ペプチドをもたらしてもよい。MHCクラスIIへの結合は、当該技術分野で公知の方法によって試験される得る。
したがって、本発明は、MHCクラスIエピトープのペプチドおよび変異型を提供し、ペプチドまたは変異型は、8〜100、好ましくは8〜30、最も好ましくは8〜14、すなわち8、9、10、11、12、13、14アミノ酸の全長を有し、伸長されたクラスII結合ペプチドの場合、長さはまた、15、16、17、18、19、20、21または22アミノ酸であり得る。
もちろん、本発明によるペプチドまたは変異型は、ヒト主要組織適合性複合体(MHC)クラスIまたはIIの分子に結合する能力を有する。ペプチドまたは変異体のMHC複合体への結合は、当該技術分野で既知の方法によって試験されてもよい。
好ましくは、本発明によるペプチドに特異的なT細胞を置換ペプチドについて試験する場合、置換ペプチドが背景に対して最大溶解増加の半分を達成するペプチド濃度は、約1mM以下、好ましくは約1μM以下、より好ましくは約1nM以下、さらにより好ましくは約100pM以下、最も好ましくは約10pM以下である。置換ペプチドが、2人以上、少なくとも2人、より好ましくは3人の個人からのT細胞によって認識されることもまた好ましい。
本発明の特に好ましい実施形態では、ペプチドは、配列番号に1〜配列番号549に記載のアミノ酸配列からなり、またはそれから本質的になる。
「から本質的になる」は、本発明によるペプチドが、配列番号1〜配列番号549のいずれかに記載の配列またはその変異体に加えて、MHC分子エピトープのエピトープとして機能するペプチドの一部を必ずしも構成しない、追加的なNおよび/またはC末端に位置するアミノ酸の一連の配列を含有することを意味するものとする。
それでもなお、これらの一連の配列は、本発明によるペプチドの細胞への効率的な導入を提供するのに重要であり得る。本発明の一実施形態では、ペプチドは、例えば、NCBI、GenBank受入番号X00497に由来する、HLA−DR抗原関連不変鎖(p33、以下の「Ii」)の80個のN末端アミノ酸を含んでなる、融合タンパク質の一部である。その他の融合物においては、本発明のペプチドは、本明細書に記載されるような抗体、またはその機能的部分に、特に抗体の配列に、前記抗体によって特異的に標的化されるように融合し得て、または例えば、本明細書に記載されるような樹状細胞に対して特異的な抗体に、またはその中に融合し得る。
さらにペプチドまたは変異型は、より強力な免疫応答を引き起こすために、安定性および/またはMHC分子への結合を改善するようにさらに修飾されてもよい。ペプチド配列のこのような最適化方法は当該技術分野で周知であり、例えば、逆ペプチド結合または非ペプチド結合の導入が挙げられる。
逆ペプチド結合においては、アミノ酸残基はペプチド(−CO−NH−)結合によって連結せず、ペプチド結合が逆転する。このようなレトロ−インベルソペプチド模倣剤は、例えば、参照により本明細書に援用される、Meziere et al(1997)(Meziere et al.,1997)に記載されるものなどの当該技術分野で既知の方法を使用して製造されてもよい。このアプローチは、側鎖の方向でなく主鎖に関与する変化を含有する、擬ペプチドの生成を伴う。Meziere et al.(Meziere et al.,1997)は、MHC結合およびTヘルパー細胞応答のために、これらの擬ペプチドが有用であることを示す。CO−NHペプチド結合の代わりにNH−CO結合を含有するレトロインバースペプチドは、タンパク質分解に対してはるかにより高い耐性がある。
非ペプチド結合は、例えば、−CH−NH、−CHS−、−CHCH−、−CH=CH−、−COCH−、−CH(OH)CH−、および−CHSO−である。米国特許第4,897,445号明細書は、標準手順によって合成されるポリペプチド、およびNaCNBHの存在下でアミノアルデヒドとアミノ酸を反応させることで合成される非ペプチド結合が関与する、ポリペプチド鎖中の非ペプチド結合(−CH−NH)を固相合成する方法を提供する。
上述の配列を含んでなるペプチドは、それらのアミノおよび/またはカルボキシ末端に存在する追加的な化学基と共に合成して、ペプチドの安定性、生物学的利用能、および/または親和性を高めてもよい。例えば、カルボベンゾキシル、ダンシル、またはt−ブチルオキシカルボニル基などの疎水性基が、ペプチドのアミノ末端に付加されてもよい。同様に、アセチル基または9−フルオレニルメトキシ−カルボニル基が、ペプチドのアミノ末端に配置されてもよい。さらに、疎水性基、t−ブチルオキシカルボニル、またはアミド基が、ペプチドのカルボキシ末端に付加されてもよい。
さらに、本発明のペプチドは、それらの立体配置を改変するように合成されてもよい。例えば、通常のL異性体でなく、ペプチドの1つまたは複数のアミノ酸残基のD異性体が使用されてもよい。なおもさらに、本発明のペプチドのアミノ酸残基の少なくとも1つは、周知の非天然アミノ酸残基の1つで置換されてもよい。これらのような変化は、本発明のペプチドの安定性、生物学的利用能および/または結合作用の増加に役立ってもよい。
同様に、本発明のペプチドまたは変異体は、ペプチド合成の前または後のどちらかに、特定のアミノ酸を反応させることで化学的に修飾されてもよい。このような修飾の例は、当該技術分野で周知であり、例えば、参照により本明細書に援用される、R.Lundblad,Chemical Reagents for Protein Modification,3rd ed.CRC Press,2004(Lundblad,2004)に要約される。アミノ酸の化学修飾としては、これに限定されるものではないが(although without limitation thereto)、アシル化、アミジン化、リジンのピリドキシル化、還元アルキル化、2,4,6−トリニトロベンゼンスルホン酸(TNBS)によるアミノ基のトリニトロベンジル化、システインのシステイン酸への過ギ酸酸化によるカルボキシル基のアミド修飾およびスルフヒドリル修飾、水銀誘導体形成、その他のチオール化合物との混合ジスルフィド形成、マレイミドとの反応、ヨード酢酸またはヨードアセトアミドによるカルボキシメチル化、およびアルカリ性pHでのシアネートによるカルバモイル化による修飾が挙げられるが、これに限定されるものではない(is not limited to)。この点において、当業者は、タンパク質の化学修飾に関するより詳細な手順について、Current Protocols In Protein Science,Eds.Coligan et al.(John Wiley and Sons NY 1995−2000)(Coligan et al.,1995)の第15章を参照されたい。
簡単に述べると、例えばタンパク質中のアルギニル残基の修飾は、付加体を形成するためのフェニルグリオキサール、2,3−ブタンジオン、および1,2−シクロヘキサンジオンなどの隣接するジカルボニル化合物の反応に基づくことが多い。別の例は、メチルグリオキサールとアルギニン残基の反応である。システインは、リジンおよびヒスチジンなどのその他の求核性部位の同時の修飾なしに修飾され得る。その結果、システイン修飾のために多数の試薬が利用可能である。Sigma−Aldrichなどの会社のウェブサイト(http://www.sigma−aldrich.com)が、特定の試薬に関する情報を提供する。
タンパク質中のジスルフィド結合の選択的還元もまた、一般的である。ジスルフィド結合は、生物医薬品の加熱処理中に形成されて酸化され得る。ウッドワード試薬Kを使用して、特定のグルタミン酸残基が修飾されてもよい。N−(3−(ジメチルアミノ)プロピル)−N’−エチルカルボジイミドを利用して、リジン残基とグルタミン酸残基との間に分子内架橋が形成され得る。例えば、ジエチルピロ炭酸は、タンパク質中のヒスチジル残基修飾のための試薬である。ヒスチジンはまた、4−ヒドロキシ−2−ノネナールを使用して修飾され得る。リジン残基およびその他のα−アミノ基の反応物は、例えば、ペプチドの表面への結合またはタンパク質/ペプチド架橋で有用である。リジンはポリ(エチレン)グリコールの付着部位であり、タンパク質のグリコシル化の主要な修飾部位である。タンパク質中のメチオニン残基は、例えば、ヨードアセトアミド、ブロモエチルアミン、およびクロラミンTによって修飾され得る。
テトラニトロメタンおよびN−アセチルイミダゾールを使用して、チロシル残基が修飾され得る。ジチロシンの形成を通じた架橋は、過酸化水素/銅イオンによって達成され得る。
トリプトファンの修飾に関する最近の研究では、N−ブロモサクシニミド、臭化2−ヒドロキシ−5−ニトロベンジルまたは3−ブロモ−3−メチル−2−(2−ニトロフェニルメルカプト)−3H−インドール(BPNS−スカトール)が使用されている。
PEGによる治療用タンパク質およびペプチドの成功裏の修飾が、循環半減期の延長に関連することが多い一方で、タンパク質と、グルタルアルデヒド、ポリエチレングリコールジアクリレート、およびホルムアルデヒドとの架橋は、ハイドロゲル調製のために使用される。免疫療法のためのアレルゲンの化学修飾は、カリウムシアネートでのカルバミル化によって達成されることが多い。
ペプチドが修飾されまたは非ペプチド結合を含む、ペプチドまたは変異体は、本発明の好ましい実施形態である。一般に、ペプチドおよび変異体(少なくともアミノ酸残基間にペプチド結合を含有するもの)は、Lukas et al.(Lukas et al.,1981)によって、そしてその中で引用される参考文献によって開示される、Fmoc−ポリアミド様式の固相ペプチド合成によって合成されてもよい。一時的なN−アミノ基保護は、9−フルオレニルメチルオキシカルボニル(Fmoc)基によってもたらされる。この高度に塩基不安定性の保護基の反復性切断は、N,N−ジメチルホルムアミド中の20%ピペリジンを使用して実施される。側鎖官能基は、それらのブチルエーテル(セリン、スレオニン、およびチロシンの場合)、ブチルエステル(グルタミン酸およびアスパラギン酸の場合)、ブチルオキシカルボニル誘導体(リジンおよびヒスチジンの場合)、トリチル誘導体(システインの場合)、および4−メトキシ−2,3,6−トリメチルベンゼンスルホニル誘導体(アルギニンの場合)として保護されてもよい。グルタミンまたはアスパラギンがC末端残基である場合、側鎖アミド官能基を保護するために、4,4’−ジメトキシベンズヒドリル基が活用される。固相担体は、ジメチルアクリルアミド(主鎖単量体)、ビスアクリロイルエチレンジアミン(架橋剤)、およびアクリロイルサルコシンメチルエステル(機能化因子)の3つの単量体から構成される、ポリジメチル−アクリルアミドポリマーをベースとする。使用されるペプチド−対−樹脂の切断可能な結合因子は、酸不安定性4−ヒドロキシメチル−フェノキシ酢酸誘導体である。逆転N,N−ジシクロヘキシル−カルボジイミド/1ヒドロキシベンゾトリアゾール媒介共役手順を使用して付加されるアスパラギンおよびグルタミンを除いて、全てのアミノ酸誘導体は、それらのあらかじめ形成された対称的な無水物誘導体として付加される。全ての共役および脱保護反応は、ニンヒドリン、トリニトロベンゼンスルホン酸またはイサチン(isotin)試験手順を使用してモニターされる。合成完了時に、ペプチドは樹脂担体から切断され、同時に、50%スカベンジャー混合物を含有する95%トリフルオロ酢酸での処理によって、側鎖保護基が除去される。一般に使用されるスカベンジャーとしては、エタンジチオール、フェノール、アニソール、および水が挙げられ、正確な選択は、合成されるペプチドの構成アミノ酸に左右される。ペプチドの合成のための固相法と溶液相法の組み合わせもまた、可能である(例えば、(Bruckdorfer et al.,2004)、およびその中で引用される参考文献を参照されたい)。
トリフルオロ酢酸は、真空蒸発によって除去され、引き続くジエチルエーテルを用いた磨砕は、粗製ペプチドをもたらす。存在する任意のスカベンジャーは、単純な抽出手順によって除去され、それは水相の凍結乾燥時に、スカベンジャーを含まない粗製ペプチドを与える。ペプチド合成のための試薬は、通常、例えば、Calbiochem−Novabiochem(Nottingham,UK)から入手できる。
精製は、再結晶化、サイズ排除クロマトグラフィー、イオン交換クロマトグラフィー、疎水性相互作用クロマトグラフィー、および(通常は)例えば、アセトニトリル/水勾配分離を使用した逆相高速液体クロマトグラフィーなどの技術の任意の1つまたは組み合わせによって実施されてもよい。
ペプチドの分析は、薄層クロマトグラフィー、電気泳動法、特にキャピラリー電気泳動法、固相抽出(CSPE)、逆相高速液体クロマトグラフィー、酸加水分解後のアミノ酸分析を使用して、高速原子衝撃(FAB)質量分光分析によって、ならびにMALDIおよびESI−Q−TOF質量分光分析によって、実施されてもよい。
過剰提示ペプチドを選択するために、中央値サンプル提示ならびに反復試験変動を示す、提示プロファイルが計算される。プロファイルは、目的腫瘍実体のサンプルを正常なサンプル組織のベースラインに並置させる。次に、線形混合効果モデルのp値を計算し(Pinheiro et al.,2015)、偽発見率によって複数試験について補正することで(Benjamini and Hochberg,1995)、これらの各プロファイルが過剰提示スコアに統合され得る。
質量分析によるHLAリガンドの同定と相対的定量化のために、衝撃凍結組織サンプルからのHLA分子が精製されて、HLA関連ペプチドが単離された。単離ペプチドを分離して、オンラインナノエレクトロスプレーイオン化(nanoESI)液体クロマトグラフィー質量分析(LC−MS)実験によって配列を同定した。得られたペプチド配列は、卵巣がんサンプルから記録された天然TUMAPのフラグメンテーションパターンを、同一配列の対応する合成参照ペプチドのフラグメンテーションパターンと比較することで確認された。ペプチドは、原発性腫瘍のHLA分子のリガンドとして直接、同定されたので、これらの結果は、卵巣がん患者から入手された原発性がん組織上における、同定されたペプチドの天然プロセッシングおよび提示の直接的証拠を提供する。
発見パイプラインXPRESIDENT(登録商標)v2.1(例えば、その内容全体が参照により本明細書に援用される、米国特許第2013−0096016号明細書を参照されたい)は、いくつかの異なる非がん性組織および臓器と比較した、がん組織上のHLA拘束性ペプチドレベルの直接相対定量化に基づく、妥当な過剰提示ペプチドワクチン候補の同定と選択ができるようにする。これは、独自仕様のデータ解析パイプラインで処理された獲得LC−MSデータを使用して、配列同定のためのアルゴリズム、スペクトルクラスタリング、イオン計数、滞留時間アライメント、電荷状態のデコンボリューション、および正規化を組み合わせる、非標識示差定量法の開発によって達成された。
各ペプチドおよびサンプルの誤差推定値を含む、提示レベルが確立された。腫瘍組織上で排他的に提示されるペプチド、および腫瘍において過剰提示されるペプチドが、非がん性の組織および臓器との比較で同定されている。
卵巣がん組織サンプルからのHLAペプチド複合体は精製されてHLA結合ペプチドが単離され、LC−MSによって分析された(実施例を参照されたい)。本出願に含まれる全てのTUMAPは、この原発性卵巣がんサンプルに対するアプローチを用いて同定され、それらの原発性卵巣がん上の提示が確認された。
複数の卵巣がんおよび正常組織上で同定されたTUMAPは、非標識LC−MSデータのイオン計数を使用して定量化された。方法は、ペプチドのLC−MSシグナル面積が、サンプル中のその存在量と相関すると仮定する。様々なLC−MS実験におけるペプチドの全ての定量的シグナルは、中心傾向に基づいて正規化され、サンプルあたりで平均化されて、提示プロファイルと称される棒グラフにマージされた。提示プロファイルは、タンパク質データベース検索、スペクトルクラスタリング、電荷状態デコンボリューション(除電)、および滞留時間アライメントおよび正規化のような、異なる解析法を統合する。
本発明は、本発明のペプチドを過剰にまたは排他的に提示する、好ましくは卵巣がんである、がん/腫瘍を治療するのに有用なペプチドを提供するこれらのペプチドは、原発性ヒト卵巣がんサンプル上で、HLA分子によって天然に提示されることが、質量分析法によって示された。
それにペプチドが由来する起源遺伝子/タンパク質(「完全長タンパク質」または「基礎タンパク質」とも称される)の多くは、正常組織と比較してがんにおいて高度に過剰発現されることが示されて、起源遺伝子の高度な腫瘍関連性が実証され、「正常組織」は、本発明との関連で、健康な卵巣組織細胞またはその他の正常組織細胞のどちらかを意味するものとする。さらに、ペプチド自体は、腫瘍組織上では強く過剰提示されるが、正常組織上では過剰提示されず、「腫瘍組織」は、本発明との関連で、卵巣がんに罹患している患者に由来するサンプルを意味するものとする。
HLA結合ペプチドは、免疫系、特にTリンパ球によって認識され得る。T細胞は、例えば誘導ペプチドを提示する卵巣がん細胞などの、認識されたHLA/ペプチド複合体を提示する細胞を破壊し得る。
本発明のペプチドは、T細胞応答を刺激でき、および/または過剰提示されることが示されおり、したがって本発明に従って、抗体および/または可溶性TCRなどのTCRの製造のために使用され得る。さらに、ペプチドは、それぞれのMHCと複合体化した場合に、本発明による抗体および/またはTCR、特にTCR製造のためにも使用され得る。それぞれの方法は、当業者に良く知られており、それぞれの参考文献にもまた見られる。したがって本発明のペプチドは、それによって腫瘍細胞が破壊され得る、患者における免疫応答を生じさせるのに有用である。患者における免疫応答は、理想的には免疫原性を増強する薬剤(すなわちアジュバント)との組み合わせで、記載されるペプチド、または適切な前駆体(例えば伸長ペプチド、タンパク質、またはこれらのペプチドをコードする核酸)を患者に直接投与することで、誘導され得る。本発明の標的ペプチドは、正常組織上では同等のコピー数で提示されないので、このような治療的ワクチン接種から生じる免疫応答は、腫瘍細胞に対して高度に特異的であることが予測され得て、患者の正常細胞に対する望まれない自己免疫反応のリスクを防止する。
本明細書は、鎖およびaβ鎖(「α/βTCR」)を含んでなるT細胞受容体(TCR)にさらに関する。MHC分子によって提示された際に、TCRおよび抗体に結合できるHAVCR1−001ペプチドもまた提供される。本明細書はまた、本明細書のTCRおよびペプチドを発現するための核酸、ベクター、および宿主細胞;そしてそれを使用する方法にも関する。
「T細胞受容体」(TCRと略記される)という用語は、αポリペプチド鎖(α鎖)およびβポリペプチド鎖(β鎖)を含んでなるヘテロ二量体分子を指し、ヘテロ二量体受容体は、HLA分子によって提示されるペプチド抗原と結合できる。本用語は、いわゆるγ/δTCRもまた含む。
一実施形態では、本明細書は、本明細書に記載されるようなTCRを製造する方法を提供し、方法は、TCRの発現を促進するのに適した条件下でTCRを発現できる、宿主細胞を培養するステップを含んでなる。
別の態様における説明は、十分な量の抗原を抗原提示細胞に接触させることで、適切な抗原提示細胞または人工抗原提示細胞の表面に発現されるクラスIまたはII MHC分子上に抗原が負荷され、または抗原/クラスIまたはII MHC複合体モノマーを四量体化することで、クラスIまたはII MHC四量体上に抗原が負荷される、本明細書に記載の方法に関する。
α/βTCRのαおよびβ鎖、そしてγ/δTCRのγおよびδ鎖は、一般にそれぞれ2つの「領域」、すなわち可変および定常領域を有すると見なされる。可変領域は、可変領域(V)の連結と、連結領域(J)とからなる。可変領域はまた、リーダー領域(L)を含んでもよい。βおよびδ鎖はまた、多様性領域(D)を含んでもよい。αおよびβ定常領域はまた、αおよびβ鎖を細胞膜に固着させるC末端膜貫通(TM)領域を含んでもよい。
γ/δTCRに関して、「TCRγ可変領域」という用語は、本明細書の用法ではリーダー領域(L)のないTCRγV(TRGV)領域とTCRγJ(TRGJ)領域との連結を指し、TCRγ定常領域という用語は、細胞外TRGC領域を指し、またはC末端切断型TRGC配列を指す同様に「TCRδ可変領域」という用語は、リーダー領域(L)のないTCRδV(TRDV)領域とTCRδD/J(TRDD/TRDJ)領域との連結を指し、「TCRδ定常領域」という用語は、細胞外TRDC領域を指し、またはC末端切断型TRDC配列を指す。
本明細書のTCRは、好ましくは、約1μM以下、約001μM以下、約25μM以下、または約10μM以下の結合親和性(KD)で、発明のペプチド−HLA分子複合体に結合する。より好ましいのは、約1μM以下、約100nM以下、約50nM以下、約25nM以下の結合親和性を有する、高親和性TCRである。本発明のTCRの好ましい結合親和性範囲の非限定的例としては、約1nM〜約10nM;約10nM〜約20nM;約20nM〜約30nM;約30nM〜約40nM;約40nM〜約50nM;約50nM〜約60nM;約60nM〜約70nM;約70nM〜約80nM;約80nM〜約90nM;および約90nM〜約100nMが挙げられる。
本明細書の用法では、本明細書のTCRとの関連で、「特異的結合」およびそれらの文法的変種は、HAVCR1−001ペプチド−HLA分子複合体に対して、1μM以下の結合親和性(KD)を有するTCRを意味するために使用される。
本明細書のα/βヘテロ二量体TCRは、それらの定常領域の間に導入された、ジスルフィド結合を有してもよい。このタイプの好ましいTCRとしては、TRAC定常領域配列とTRBC1またはTRBC2定常領域配列とを有するものが挙げられるが、ただし、TRACのThr48およびTRBC1またはTRBC2のSer57は、システイン残基によって置換されており、前記システインは、TCRのTRAC定常領域配列とTRBC1またはTRBC2定常領域配列との間に、ジスルフィド結合を形成する。
上述の導入された鎖間結合の存在下または不在下で、本明細書のα/βヘテロ二量体TCRは、TRAC定常領域配列とTRBC1またはTRBC2定常領域配列とを有してもよく、TCRのTRAC定常領域配列と、TRBC1またはTRBC2定常領域配列とが、TRACのエクソン2のCys4と、TRBC1またはTRBC2のエクソン2のCys2との間の天然ジスルフィド結合によって連結されてもよい。
本明細書のTCRは、放射性核種、フルオロフォア、およびビオチンからなる群から選択される、検出可能な標識を含んでなってもよい。本明細書のTCRは、放射性核種、化学療法剤、または毒素などの治療的活性薬剤にコンジュゲートされてもよい。
一実施形態では、α鎖に少なくとも1つの変異を有し、および/またはβ鎖に少なくとも1つの変異を有する本明細書のTCRは、非変異TCRと比較して修飾されたグリコシル化を有する。
一実施形態では、TCRα鎖および/またはTCRβ鎖に少なくとも1つの変異を含んでなるTCRは、発明のペプチド−HLA分子複合体に対して、非変異TCRα鎖および/または非変異TCRβ鎖を含んでなるTCRの少なくとも2倍の結合親和性および/または結合半減期を有する。腫瘍特異的TCRの親和性増強とその利用は、最適TCR親和性のウィンドウの存在に依存する。このようなウィンドウの存在は、HLA−A2拘束性病原体に対して特異的なTCRが、HLA−A2拘束性腫瘍関連自己抗原に対して特異的なTCRと比較して、一般に約10分の1のKD値を有するという観察に基づく。腫瘍抗原は免疫原性である可能性を有するが、腫瘍は個人自身の細胞から生じるので、改変された翻訳プロセッシングのある変異型タンパク質またはタンパク質のみが、免疫系によって異質と見なされることが今や知られている。上方制御されまたは過剰発現される抗原(いわゆる自己抗原)は、腫瘍に対する機能性免疫応答を必ずしも誘導しない。これらの抗原に対して高度に反応性のTCRを発現するT細胞は、中枢性免疫寛容として知られている過程、すなわち自己抗原に対する低親和性TCRを有するT細胞のみが残留する過程によって、胸腺において負選択される。したがって、発明のペプチドに対する本明細書のTCRまたは変異体の親和性は、当技術分野で周知の方法によって高め得る。
本明細書は、本明細書に従ってTCRを同定し単離する方法にさらに関し、前記方法は、HLA−A*02陰性健常ドナーからのPBMCをA2/発明のペプチドモノマーと共にインキュベートするステップと、PBMCを四量体フィコエリトリン(PE)と共にインキュベートするステップと、高結合活性T細胞を蛍光活性化細胞選別(FACS)Calibur分析によって単離するステップとを含んでなる。
本明細書は、本明細書に従ってTCRを同定して単離する方法にさらに関し、前記方法は、そのT細胞がマウスTCR欠損を補償する多様なヒトTCRレパートリーを発現する、全ヒトTCRαβ遺伝子遺伝子座(1.1および0.7Mb)を有する遺伝子組換えマウスを得るステップと、マウスを発明のペプチドによって免疫化するステップと、四量体フィコエリトリン(PE)を有する遺伝子組換えマウスから得られたPBMCをインキュベートするステップと、高結合活性T細胞を蛍光活性化細胞選別(FACS)Calibur分析によって単離するステップとを含んでなる。
一態様では、本明細書のTCRを発現するT細胞を得るために、本明細書のTCR−αおよび/またはTCR−β鎖をコードする核酸が、γレトロウイルスまたはレンチウイルスなどの発現ベクターにクローン化される。組換えウイルスが生成され、次に、抗原特異性および機能性結合活性などの機能について試験される。次に、最終生成物のアリコートを使用して、標的T細胞集団(一般に患者のPBMCから精製される)が形質導入され、それは患者への輸液前に増殖される。
別の態様では、本明細書のTCRを発現するT細胞を得るために、例えば、生体外転写システム(sys−tems)などの当該技術分野で公知の技術によって、TCR RNAが合成される。次に生体外で合成されたTCR RNAは、健常ドナーから得られた原発性CD8+T細胞内に電気穿孔によって導入され、腫瘍特異的TCR−αおよび/またはTCR−β鎖が再発現される。
発現を増加させるために、本明細書のTCRをコードする核酸は、レトロウイルス長末端反復(LTR)、サイトメガロウイルス(CMV)、マウス幹細胞ウイルス(MSCV)U3、ホスホグリセリン酸キナーゼ(PGK)、β−アクチン、ユビキチン、およびシミアンウイルス40(SV40)/CD43複合プロモーター、伸長因子(EF)−1a、および脾臓フォーカス形成ウイルス(SFFV)プロモーターなどの強力なプロモーターと作動可能に連結されてもよい。好ましい実施形態では、プロモーターは、発現される核酸に対して異種である。
強力なプロモーターに加えて、本明細書のTCR発現カセットは、レンチウイルスコンストラクトの核転座を促進する、中央ポリプリントラクト(cPPT)(Follenzi et al.,2000)、およびRNA安定性を増加させることで導入遺伝子発現のレベルを増加させる、ウッドチャック肝炎ウイルス転写後調節因子(wPRE)(Zufferey et al.,1999)をはじめとする導入遺伝子発現を高め得る追加的な要素を含有してもよい。
本発明のTCRのαおよびβ鎖は、別々のベクターにある核酸によってコードされてもよく、または同一ベクターにあるポリヌクレオチドによってコードされてもよい。
高レベルのTCR表面発現の達成には、導入されたTCRのTCR−αおよびTCR−β鎖の双方が、高レベルで転写される必要がある。これを行うために、本明細書のTCR−αおよびTCR−β鎖は、この障害を克服できることが示されている、単一ベクター内のバイシストロニックコンストラクトにクローン化されてもよい。TCR−αおよびTCR−β鎖は、翻訳中に2つのタンパク質に分かれて等モル比のTCR−αおよびTCR−β鎖の生成を確実にする単一転写物から生成されるので、TCR−α鎖とTCR−β鎖との間のウイルス配列内リボソーム進入部位の使用は、双方の鎖の協調発現をもたらす(Schmitt et al.2009)。
本明細書のTCRをコードする核酸はコドン最適化されて、宿主細胞からの発現が増加されてもよい。遺伝コードの重複は、いくつかのアミノ酸が2つ以上のコドンによってコードされるようにするが、特定のコドンは、適合tRNAの相対可用性ならびにその他の要因のために、他のものよりも「最適」でない(Gustafsson et al.,2004)。各アミノ酸が、哺乳類遺伝子発現のための最適コドンによってコードされるように、TCR−αおよびTCR−β遺伝子配列を修飾すること、ならびにmRNA不安定モチーフまたは潜在的スプライス部位を除去することは、TCR−αおよびTCR−β遺伝子発現を有意に高めることが示されている(Scholten et al.,2006)。
さらに、導入TCR鎖と内因性TCR鎖との間の誤対合は、重大な自己免疫リスクをもたらす特異性の獲得を引き起こすこともある。例えば、混合TCR二量体の形成は、適切に対合するTCR複合体を形成するために利用できるCD3分子の数を減少させてもよく、ひいては導入TCRを発現する細胞の機能性結合活性を有意に低下させ得る(Kuball et al.,2007).
誤対合を減少させるために、本明細書の導入TCR鎖のC末端領域は、鎖間親和性を高める一方で、導入鎖が内因性TCRと対形成する能力を低下させる(de−creasing)ために修飾されてもよい。これらのストラテジーは、ヒトTCR−αおよびTCR−βのC末端領域をそれらのマウス対応物(マウス化C末端領域)で置換する;導入TCRのTCR−αおよびTCR−β鎖の双方に第2のシステイン残基を導入することで、C末端領域に第2の鎖間ジスルフィド結合を生成する(システイン修飾);TCR−αおよびTCR−β鎖C末端領域内の相互作用残基を交換する(「ノブ・イン・ホール」);そしてTCR−αおよびTCR−β鎖の可変領域をCD3ζに直接融合させる(CD3ζ融合)ことを含んでもよい。(Schmitt et al.2009)。
一実施形態では、宿主細胞は、本細書のTCRを発現するように遺伝子操作される。好ましい実施形態では、宿主細胞は、ヒトT細胞またはT細胞前駆細胞である。いくつかの実施形態では、T細胞またはT細胞前駆細胞は、がん患者から得られる。その他の実施形態では、T細胞またはT細胞前駆細胞は、健常ドナーから得られる。本明細書の宿主細胞は、治療される患者に関して、同種異系または自己由来であり得る。一実施形態では、宿主は、α/βTCRを発現するように形質転換されたγ/δT細胞である。
「医薬組成物」は、医学的状況においてヒトへの投与に適する組成物である。好ましくは、医薬組成物は無菌であり、GMPガイドラインに準拠して製造される。
医薬組成物は、遊離形態または薬学的に許容可能な塩の形態のどちらかのペプチドを含んでなる(上記もまた参照されたい)。本明細書の用法では、「薬学的に許容可能な塩」は、開示されたペプチドの誘導体を指し、ペプチドは、薬剤の酸性または塩基性塩を生成することで修飾される。例えば、酸性塩は、適切な酸との反応を伴って、遊離塩基から調製される(典型的に、薬剤の中性形態が中性NH2基を有する)。酸性塩を調製するための適切な酸としては、例えば、酢酸、プロピオン酸、グリコール酸、ピルビン酸、シュウ酸、リンゴ酸、マロン酸、コハク酸、マレイン酸、フマル酸、酒石酸、クエン酸、安息香酸、ケイ皮酸、マンデル酸、メタンスルホン酸、エタンスルホン酸、p−トルエンスルホン酸、サリチル酸などの有機酸、ならびに例えば、塩酸、臭化水素酸、硫酸、硝酸リン酸などの無機酸の双方が挙げられる。逆に、ペプチド上に存在してもよい酸部分の塩基性塩の調製物は、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム、水酸化カルシウム、トリメチルアミンなどの薬学的に許容可能な塩基を使用して調製される。
特に好ましい一実施形態では、医薬組成物は、酢酸(酢酸塩)、トリフルオロ酢酸または塩酸(塩化物)の塩としてのペプチドを含んでなる。
好ましくは、本発明の薬剤はワクチンなどの免疫療法剤である。それは、患者に直接、罹患臓器に、または全身的に、i.d.、i.m.、s.c.、i.p.、およびi.v.投与され、または生体外で患者またはヒト細胞株に由来する細胞に適用されて、それが引き続いて患者に投与され、または生体外で使用されて患者に由来する免疫細胞の亜集団が選択され、次にそれが患者に再投与されてもよい。核酸が、生体外で細胞に投与される場合、インターロイキン2などの免疫刺激サイトカインを同時発現させるように、細胞を形質移入することが有用であってもよい。ペプチドは、実質的に純粋であり、または免疫刺激アジュバント(下記参照)と組み合わされ、または免疫賦活性サイトカインと組み合わされて使用され、または例えば、リポソームなどの適切な送達系によって投与されてもよい。ペプチドはまた、キーホールリンペットヘモシニアン(KLH)またはマンナンなどの適切な担体に共役されてもよい(国際公開第95/18145号パンフレットおよび(Longenecker et al.,1993)を参照されたい)。ペプチドはまた、標識されてもよく、融合タンパク質であってもよく、またはハイブリッド分子であってもよい。その配列が本発明に記載されるペプチドは、CD4またはCD8 T細胞を刺激することが予測される。しかし、CD8 T細胞の刺激は、CD4 Tヘルパー細胞によって提供される援助の存在下で、より効率的である。したがって、CD8 T細胞を刺激するMHCクラスIエピトープでは、ハイブリッド分子の融合パートナーまたはセクションは、適切にはCD4陽性T細胞を刺激するエピトープを提供する。CD4およびCD8刺激エピトープは、当該技術分野で周知であり、本発明で同定されたものが挙げられる。
一態様では、ワクチンは、配列番号1〜配列番号549に記載されるアミノ酸配列を有する少なくとも1つのペプチドと、少なくとも1つの追加的なペプチド、好ましくは2〜50、より好ましくは2〜25、なおもより好ましくは2〜20、最も好ましくは2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17または18個のペプチドとを含んでなる。ペプチドは、1つまたは複数の特異的TAAから誘導されてもよく、MHCクラスI分子に結合してもよい。
本発明のさらなる態様は、本発明のペプチドまたはペプチド変異体をエンコードする核酸(例えばポリヌクレオチド)を提供する。ポリヌクレオチドは、それがペプチドをコードしさえすれば、例えば、単鎖および/または二本鎖のいずれかのDNA、cDNA、PNA、RNAまたはそれらの組み合わせであってもよく、または例えばホスホロチオエート主鎖を有するポリヌクレオチドなどのポリヌクレオチドの未変性または安定化形態であってもよく、それはイントロンを含有してもまたはしなくてもよい。もちろん、天然ペプチド結合によって連結する天然アミノ酸残基を含有するペプチドのみが、ポリヌクレオチドによってエンコードされ得る。本発明のなおもさらなる態様は、本発明によるポリペプチドを発現できる発現ベクターを提供する。
例えば相補的付着端を通じて、ポリヌクレオチド、特にDNAをベクターに連結する、多様な方法が開発されている。例えば、ベクターDNAに挿入されるDNA断片に、相補的ホモポリマー配列が付加され得る。次に、相補的ホモポリマー尾部間の水素結合によって、ベクターおよびDNA断片が連結されて組換えDNA分子が形成する。
1つまたは複数の制限酵素認識部位を含有する合成リンカーは、DNA断片をベクターに連結する代替え方法を提供する。多様な制限エンドヌクレアーゼ部位を含有する合成リンカーは、International Biotechnologies Inc.New Haven,CN,USAをはじめとするいくつかの供給元から商業的に入手できる。
本発明のポリペプチドをコードするDNAを修飾する望ましい方法は、Saiki RK,et al.(Saiki et al.,1988)で開示されるようなポリメラーゼ連鎖反応を用いる。この方法は、例えば、適切な制限酵素認識部位を改変することで、DNAを適切なベクターに導入するために使用されてもよく、またはそれは、当該技術分野で既知のその他の有用な様式でDNAを修飾するために使用されてもよい。ウイルスベクターを使用するのであれば、ポックスウイルスまたはアデノウイルスベクターが好ましい。
次にDNA(またはレトロウイルスベクターの場合はRNA)を適切な宿主において発現させ、本発明のペプチドまたは変異体を含んでなるポリペプチドが製造されてもよい。このようにして、本明細書に含まれる教示を考慮して適切に修正された既知の技術に従って、本発明のペプチドまたは変異体をコードするDNAを使用して、発現ベクターが構築されてもよく、次にそれを使用して、本発明のポリペプチドの発現および製造のために、適切な宿主細胞が形質転換される。このような技術としては、例えば、米国特許第4,440,859号明細書、米国特許第4,530,901号明細書、米国特許第4,582,800号明細書、米国特許第4,677,063号明細書、米国特許第4,678,751号明細書、米国特許第4,704,362号明細書、米国特許第4,710,463号明細書、米国特許第4,757,006号明細書、米国特許第4,766,075号明細書、および米国特許第4,810,648号明細書で開示されるものが挙げられる。
本発明の化合物を構成するポリペプチドをエンコードするDNA(またはレトロウイルスベクターの場合はRNA)は、適切な宿主への導入のために、多種多様なその他のDNA配列に連結されてもよい。コンパニオンDNAは、宿主の性質、DNAの宿主への導入様式、およびエピソームの維持または組み込みが所望されるかどうかに左右される。
一般に、DNAは、発現のための適切な方向および正しい読み枠で、プラスミドなどの発現ベクターに挿入される。必要ならば、DNAは、所望の宿主によって認識される適切な転写および翻訳調節制御ヌクレオチド配列に連結されてもよいが、このような制御は、一般に発現ベクター中で利用できる。次に、標準的な技術を通じて、ベクターが宿主に導入される。一般に、全ての宿主がベクターによって形質転換されるわけではない。したがって、形質転換された宿主細胞を選択することが必要になる。一選択技術は、抗生物質耐性などの形質転換細胞内で選択可能な形質をコードする、任意の必要な制御因子を有するDNA配列を発現ベクター内に組み込むことを伴う。
代案としては、このような選択可能な形質の遺伝子は、所望の宿主細胞を同時形質転換するのに使用される、別のベクター上にあり得る。
次に、本明細書で開示される教示を考慮して、当業者に知られている適切な条件下で十分な時間にわたり、本発明の組換えDNAによって形質転換された宿主細胞が培養されてポリペプチドが発現され、次にそれが回収され得る。
細菌(例えば大腸菌(E.coli)およびバチルス・サブチリス(Bacillus subtilis))、酵母(例えばサッカロミセス・セレビシエ(Saccharomyces cerevisiae))、糸状菌(例えばアスペルギルス属(Aspergillus))、植物細胞、動物細胞、および昆虫細胞をはじめとする多数の発現系が知られている。好ましくは、発現系は、ATCC Cell Biology Collectionから入手できるCHO細胞などの哺乳類細胞であり得る。
構成的発現のための典型的な哺乳類細胞ベクタープラスミドは、適切なポリA尾部と、ネオマイシンなどの耐性マーカーとを有する、CMVまたはSV40プロモーターを含んでなる。一例は、Pharmacia,Piscataway,NJ,USAから入手できるpSVLである。誘導性哺乳類発現ベクターの一例であるpMSGもまた、Pharmaciaから入手できる。有用な酵母プラスミドベクターは、pRS403−406およびpRS413−416であり、通常、Stratagene Cloning Systems,La Jolla,CA 92037,USAから入手できる。プラスミドpRS403、pRS404、pRS405、およびpRS406は、酵母組み込みプラスミド(YIps)であり、酵母の選択可能なマーカーHIS3、TRP1、LEU2、およびURA3が組み込まれている。プラスミドpRS413−416は、酵母セントロメアプラスミド(Ycps)である。CMVプロモーターベースのベクター(例えばSigma−Aldrich製)は、一過性または安定性発現、細胞質内発現または分泌、およびFRAG、3xFLAG、c−mycまたはMATの様々な組み合わせでのN末端またはC末端標識付けを提供する。これらの融合タンパク質は、組換えタンパク質を検出、精製、および分析できるようにする。二重標識融合物は、検出に融通性を与える。
強力なヒトサイトメガロウイルス(CMV)プロモーター調節領域は、COS細胞において、構成タンパク質発現レベルを1mg/L程度の高さに駆動する。効力がより低い細胞株では、タンパク質レベルは典型的に、約0.1mg/Lである。SV40複製起点の存在は、SV40複製許容COS細胞における高レベルのDNA複製をもたらす。CMVベクターは、例えば、細菌細胞におけるpMB1(pBR322の誘導体)複製起点、細菌におけるアンピシリン耐性選択のためのb−ラクタマーゼ遺伝子、hGHポリA、およびf1起点を含有し得る。プレプロトリプシンリーダー(PPT)配列を含有するベクターは、抗FRAG抗体、樹脂、およびプレートを使用した精製のために、培養液中へのFRAG融合タンパク質分泌を誘導し得る。多様な宿主細胞において使用するためのその他のベクターおよび発現系が、当該技術分野で周知である。
別の実施形態では、本発明の2つ以上のペプチドまたはペプチド変異型がコードされ、したがって順次発現される(「数珠玉構造」コンストラクトに類似する)。その際に、ペプチドまたはペプチド変異型は、例えばLLLLLLなどの一続きのリンカーアミノ酸によって、共に連結または融合されてもよく、またはそれらの間のいかなる追加的なペプチドもなしに連結されてもよい。これらのコンストラクトはまた、がん療法のために使用され得て、MHC IとMHC IIの双方が関与する免疫応答を誘導してもよい。
本発明はまた、本発明のポリヌクレオチドベクターコンストラクトで形質転換された宿主細胞にも関する。宿主細胞は、原核または真核生物のどちらかであり得る。細菌細胞は、いくつかの状況では、好ましい原核宿主細胞であってもよく、典型的には、例えば、Bethesda Research Laboratories Inc.,Bethesda,MD,USAから入手できる大腸菌(E.coli)DH5株、および米国微生物系統保存機関(ATCC)Rockville,MD,USAから入手できるRR1(ATCC番号31343)などの大腸菌(E.coli)株である。好ましい真核宿主細胞としては、酵母、昆虫、および哺乳類細胞、好ましくはマウス、ラット、サルまたはヒト線維芽および結腸細胞株に由来するものなどの脊椎動物細胞が挙げられる。酵母宿主細胞としては、Stratagene Cloning Systems,La Jolla,CA 92037,USAから一般に入手できる、YPH499、YPH500、およびYPH501が挙げられる。好ましい哺乳類宿主細胞としては、ATCCからCCL61として入手できるチャイニーズハムスター卵巣(CHO)細胞、ATCCからCRL1658として入手できるNIH Swissマウス胚細胞NIH/3T3、ATCCからCRL1650として入手できるサル腎臓由来COS−1細胞、およびヒト胎児由来腎細胞である293細胞が挙げられる。好ましい昆虫細胞は、バキュロウイルス発現ベクターで形質移入され得るSf9細胞である。発現のための適切な宿主細胞の選択に関する概説は、例えば、Paulina BalbasおよびArgelia Lorenceの教科書”Methods in Molecular Biology Recombinant Gene Expression,Reviews and Protocols,”Part One,Second Edition,ISBN 978−1−58829−262−9、および当業者に知られているその他の文献にある。
本発明のDNAコンストラクトによる適切な細胞宿主の形質転換は、典型的に使用されるベクターのタイプに左右される周知の方法によって達成される。原核宿主細胞の形質転換に関しては、例えば、Cohen et al.(Cohen et al.,1972)および(Green and Sambrook,2012)を参照されたい。酵母細胞の形質転換は、Sherman et al.(Sherman et al.,1986)に記載される。Beggs(Beggs,1978)の方法もまた有用である。脊椎動物細胞に関しては、このような細胞を形質移入するのに有用な、例えば、リン酸カルシウムおよびDEAE−デキストランまたはリポソーム製剤などの試薬が、Stratagene Cloning Systems,or Life Technologies Inc.,Gaithersburg,MD 20877,USAから入手できる。電気穿孔もまた、細胞を形質転換および/または形質移入するのに有用であり、酵母細胞、細菌細胞、昆虫細胞、および脊椎動物細胞を形質転換する技術分野で周知である。
成功裏に形質転換された細胞、すなわち本発明のDNAコンストラクトを含有する細胞は、PCRなどの周知の技術によって同定され得る。代案としては、抗体を使用して、上清中のタンパク質の存在が検出され得る。
例えば、細菌、酵母、および昆虫細胞などの本発明の特定の宿主細胞は、本発明のペプチドの調製において有用であることが理解されるであろう。しかしその他の宿主細胞が、特定の治療法において有用であってもよい。例えば、樹状細胞などの抗原提示細胞は、それらが適切なMHC分子中に負荷されてもよいように、本発明のペプチドを発現するために有用に使用されてもよい。したがって、本発明は、本発明による核酸または発現ベクターを含んでなる宿主細胞を提供する。
好ましい実施形態では、宿主細胞は、抗原提示細胞、特に樹状細胞または抗原提示細胞である。前立腺酸性ホスファターゼ(PAP)を含有する組換え融合タンパク質が負荷されたAPCは、無症候性または微小症候性転移性HRPCを治療するために、米国食品医薬品局(FDA)によって2010年4月20日に認可された(シプロイセルT)(Rini et al.,2006;Small et al.,2006)。
本発明のさらなる態様は、宿主細胞を培養するステップと、宿主細胞またはその培養液からペプチドを単離するステップとを含んでなる、ペプチドまたはその変異型を製造する方法を提供する。
別の実施形態では、本発明のペプチド、核酸または発現ベクターは、医療において使用される。例えば、ペプチドまたはその変異体は、静脈内(i.v.)注射、皮下(s.c.)注射、皮内(i.d.)注射、腹腔内(i.p.)注射、筋肉内(i.m.)注射のために調合されてもよい。ペプチド注射の好ましい方法としては、s.c.、i.d.、i.p.、i.m.、およびi.v.が挙げられる。DNA注射の好ましい方法としては、i.d.、i.m.、s.c.、i.p.、およびi.v.が挙げられる。例えば、50μg〜1.5mg、好ましくは125μg〜500μgのペプチドまたはDNAの用量が投与されてもよく、それぞれのペプチドまたはDNAに左右される。この範囲の用量は、以前の治験で成功裏に使用された(Walter et al.,2012)。
活性ワクチン接種のために使用されるポリヌクレオチドは、実質的に純粋であってもよく、または適切なベクターまたは送達系に含有されてもよい。核酸は、DNA、cDNA、PNA、RNAまたはそれらの組み合わせであってもよい。このような核酸をデザインして導入する方法は、当該技術分野で周知である。概説は、例えば、Teufel et al.(Teufel et al.,2005)によって提供される。ポリヌクレオチドワクチンは調製が容易であるが、免疫応答誘導におけるこれらのベクターの作用機序は、完全には分かっていない。適切なベクターおよび送達系としては、アデノウイルス、ワクシニアウイルス、レトロウイルス、ヘルペスウイルス、アデノ随伴ウイルス、または2つ以上のウイルスの構成要素を含有するハイブリッドベースのシステムなどのウイルスDNAおよび/またはRNAが挙げられる。非ウイルス送達系としては、カチオン性脂質およびカチオン性ポリマーが挙げられ、DNA送達技術分野において周知である。「遺伝子銃」などを介する物理的送達もまた、使用されてもよい。核酸によってコードされるペプチド(単数)またはペプチド(複数)は、例えば、上述のように、それぞれの逆CDRのT細胞を刺激するエピトープとの融合タンパク質であってもよい。
本発明の薬剤は、1つまたは複数のアジュバントもまた含んでもよい。アジュバントは、免疫応答(例えば、CD8陽性T細胞およびヘルパーT(TH)細胞によって媒介される抗原に対する免疫応答を非特異的に促進または増強する物質であり、したがって本発明の薬剤中で有用であると見なされる。適切なアジュバントとしては、1018 ISS、アルミニウム塩、AMPLIVAX(登録商標)、AS15、BCG、CP−870,893、CpG7909、CyaA、dSLIM、フラジェリンまたはフラジェリン由来TLR5リガンド、FLT3リガンド、GM−CSF、IC30、IC31、イミキモド(ALDARA(登録商標))、レシキモド、ImuFact IMP321、IL−2やL−13やIL−21などのインターロイキン、インターフェロン−αまたは−βまたはそれらのPEG化誘導体、ISパッチ、ISS、ISCOMATRIX、ISCOM、JuvImmune(登録商標)、LipoVac、MALP2、MF59、モノホスホリルリピドA、モンタニドIMS1312、モンタニドISA206、モンタニドISA50V、モンタニドISA−51、油中水型および水中油型エマルション、OK−432、OM−174、OM−197−MP−EC、ONTAK、OspA、PepTel(登録商標)ベクター系、ポリ(ラクチドコグリコリド)[PLG]ベースおよびデキストラン微粒子、タラクトフェリンSRL172、ビロソームおよびその他のウイルス様粒子、YF−17D、VEGFトラップ、R848、β−グルカン、Pam3Cys、サポニンに由来するAquila’s QS21 stimulon、マイコバクテリア抽出物および合成細菌細胞壁模倣体、およびRibi’s DetoxまたはQuilまたはSuperfosなどのその他の独自仕様の補助剤が挙げられるが、これに限定されるものではない。フロイントまたはGM−CSFなどのアジュバントが好ましい。樹状細胞およびそれらの調製物に対して特異的な、いくつかの免疫学的アジュバント(例えばMF59)が、以前記載されている(Allison and Krummel、1995)。サイトカインもまた使用されてもよい。数種のサイトカインは、樹状細胞のリンパ組織(例えばTNF−)への移動に影響を与えること、Tリンパ球(例えば、GM−CSF、IL−1、およびIL−4)のための効率的な抗原提示細胞への樹状細胞の成熟を加速すること(その内容全体が参照により本明細書に具体的に援用される、米国特許第5,849,589号明細書)、および免疫増強剤(例えば、IL−12、IL−15、IL−23、IL−7、IFN−α、IFN−β)として作用することと、直接関連付けられている(Gabrilovich et al.,1996)。
CpG免疫賦活性オリゴヌクレオチドもまた、ワクチン環境において、アジュバント効果を増強することが報告されている。理論により拘束されることなく、CpGオリゴヌクレオチドは、Toll様受容体(TLR)、主にTLR9を通じた、内在的(非適応性)免疫系の活性化によって作用する。CpG誘導性TLR9活性化は、ペプチドまたはタンパク質抗原、生きたまたは死滅ウイルス、樹状細胞ワクチン、自己細胞ワクチン、そして予防的および治療的ワクチンの双方における多糖コンジュゲートをはじめとする多種多様な抗原に対する、抗原特異的体液性および細胞性応答を増強する。より重要なことには、それは樹状細胞の成熟と分化を増強し、CD4 T細胞援助の不在下であってさえも、TH1細胞の活性化の促進、および強力な細胞傷害性Tリンパ球(CTL)生成をもたらす。TLR9刺激によって誘導されるTH1バイアスは、通常はTH2バイアスを促進するミョウバンまたは不完全フロイントアジュバント(IFA)などのワクチンアジュバント存在下であってさえも、維持される。CpGオリゴヌクレオチドは、その他のアジュバントと調合されまたは同時投与された際に、または微粒子、ナノ粒子、脂質エマルションなどの配合物、または類似配合物中で、なおもより高いアジュバント活性を示し、それは、抗原が比較的弱い場合、強力な応答を誘導するのに特に必要である。それらは免疫応答もまた加速し、いくつかの実験では、CpGなしのワクチン総量と同等の抗体応答で、抗原用量のほぼ2桁分の低減を可能にする(Krieg,2006)。米国特許第6,406,705B1号明細書は、抗原特異的免疫応答を誘導するためのCpGオリゴヌクレオチド、非核酸アジュバント、および抗原の併用を記載する。CpG TLR9拮抗薬は、本発明の医薬組成物の好ましい構成要素である、Mologen(Berlin,Germany)製のdSLIM(二重ステムループ免疫調節剤)である。RNA結合TLR7、TLR8および/またはTLR9などのその他のTLR結合分子もまた、使用されてもよい。
有用なアジュバントその他の例としては、化学修飾CpG(例えば、CpR、Idera);ポリ(I:C)などのdsRNAアナログおよびそれらの誘導体(例えばAmpliGen(登録商標)、Hiltonol(登録商標)、ポリ(ICLC)、ポリ(IC−R)、ポリ(I:C12U)、非CpG細菌DNAまたはRNA;ならびにシクロホスファミド、スニチニブ、ベバシズマブ(登録商標)、セレブレックス、NCX−4016、シルデナフィル、タダラフィル、バルデナフィル、ソラフェニブ、テモゾロマイド、テムシロリムス、XL−999、CP−547632、パゾパニブ、VEGF Trap、ZD2171、AZD2171、抗CTLA4などの免疫活性小型分子および抗体;免疫系の重要な構造体を標的にするその他の抗体(例えば、抗CD40、抗TGFβ、抗TNFα受容体);SC58175が挙げられるが、これに限定されるものではなく、これらは治療的におよび/またはアジュバントとして作用してもよい。本発明の文脈で有用なアジュバントおよび添加剤の量と濃度は、過度の実験を実施することなく、当業者によって容易に判定され得る。
好ましいアジュバントは、抗CD40、イミキモド、レシキモド、GM−CSF、シクロホスファミド、スニチニブ、ベバシズマブ、インターフェロンα、CpGオリゴヌクレオチドおよび誘導体、ポリ(I:C)および誘導体、RNA、シルデナフィル、およびPLGまたはビロソーム微粒子調合物である。
本発明による薬剤組成物の好ましい実施形態では、アジュバントは、顆粒球マクロファージコロニー刺激因子(GM−CSF、サルグラモスチム)、シクロホスファミド、イミキモド、レシキモド、およびインターフェロンαなどのコロニー刺激因子からなる群から選択される。
本発明による医薬組成物の好ましい実施形態では、アジュバントは、顆粒球マクロファージコロニー刺激因子(GM−CSF、サルグラモスチム)、シクロホスファミド、イミキモド、およびレシキモドなどのコロニー刺激因子からなる群から選択される。本発明による薬剤組成物の好ましい実施形態では、アジュバントは、シクロホスファミド、イミキモドまたはレシキモドである。なおもより好ましいアジュバントは、Montanide IMS 1312、Montanide ISA 20、Montanide ISA 50V、Montanide ISA−51、ポリICLC(Hiltonol(登録商標))、および抗CD40mABまたはそれらの組み合わせである。
この組成物は、皮下、皮内、筋肉内などの非経口投与、または経口投与のために使用される。このためには、ペプチドおよび任意選択的にその他の分子が、薬学的に許容可能な、好ましくは水性担体に溶解され、または懸濁される。さらに組成物は、緩衝液、結合剤、ブラスチング剤、希釈剤、風味、潤滑剤などの賦形剤を含有し得る。ペプチドはまた、サイトカインなどの免疫刺激物質と共に投与され得る。このような組成物中で使用され得る賦形剤の詳細な一覧は、例えば、A.Kibbe,Handbook of Pharmaceutical Excipients(Kibbe,2000)から採用され得る。組成物は、腺腫様またはがん性疾患の阻止、予防法および/または治療法のために使用され得る。例示的調合物は、例えば、欧州特許第2112253号明細書にある。
本発明によるワクチンによって引き起こされる免疫応答は、異なる細胞分裂期および異なる発生段階のがんを攻撃することを理解することが重要である。さらに、異なるがん関連シグナル伝達経路が攻撃される。これは、1つまたは少数の標的のみに対処して、攻撃に対する腫瘍の容易な適応(腫瘍エスケープ)を引き起こすこともある、ワクチンに優る利点である。さらに個々の腫瘍の全てが、同一パターンの抗原を発現するとは限らない。したがって、いくつかの腫瘍関連ペプチドの組み合わせによって、ありとあらゆる腫瘍が標的の少なくとも一部を有することが確実になる。組成物は、それぞれの腫瘍が抗原のいくつかを発現することを予期して設計され、腫瘍の増殖と維持に必要ないくつかの独立した経路をカバーする。したがって、ワクチンは、より大きな患者集団のために、容易に「出来合」で使用され得る。これは、ワクチンで治療される患者の予備選択が、HLAタイピングに限定され得て、抗原発現に関する任意の追加的なバイオマーカーアセスメントを必要としないことを意味するが、いくつかの標的が誘導免疫応答によって同時に攻撃されることはなおも確実であり、これは有効性にとって重要である(Banchereau et al.,2001;Walter et al.,2012)。
本明細書の用法では、「スキャフォールド」という用語は、(例えば、抗原性)決定因子に特異的に結合する分子を指す。一実施形態では、スキャフォールドはまた、それが付着する実体(例えば、(第2の)抗原結合部分)を例えば、抗原決定基(例えば本出願書に記載のペプチドとMHCの複合体)を有する特異的腫瘍細胞または腫瘍間質などの型標的部位に誘導できる。別の実施形態では、キャフォールドは、例えば、T細胞受容体複合体抗原などのその標的抗原を通じて、シグナル伝達を活性化できる。スキャフォールドとしては、抗体およびそれらのフラグメント、抗体重鎖可変領域および抗体軽鎖可変領域を含んでなる抗体の抗原結合ドメイン、少なくとも1つのアンキリンリピートモチーフと単一ドメイン抗原結合(SDAB)分子とを含んでなる結合タンパク質、アプタマー、(可溶性)TCR、および同種異系または自己由来T細胞などの(改変)細胞が挙げられるが、これに限定されるものではない。分子が標的に結合するスキャフォールドであるかどうかを評価するために、結合アッセイが実施され得る。
「特異的」結合は、特異的標的を保有する細胞を殺滅できる活性分子を装備したスキャフォールドが、特異的標的を有しないがその他のペプチド−MHC複合体を提示する別の細胞を殺滅できない程度に、スキャフォールドがその他の天然ペプチド−MHC−複合体よりもさらに良好に、目的ペプチド−MHC−複合体に結合することを意味する。交差反応性ペプチド−MHCのペプチドが天然に存在せず、すなわち、ヒトHLA−ペプチドームに由来しない場合、その他のペプチド−MHC複合体への結合は無関係である。標的細胞死滅を評価する試験は、当該技術分野で周知である。それらは、非改変ペプチド−MHC提示を有する標的細胞(初代細胞または細胞株)、または天然に存在するペプチド−MHCレベルに達するようにペプチドを負荷された細胞を使用して、実施されるべきである。
各スキャフォールドは標識を含んでなり得て、それは、標識によって提供されるシグナルの存在または不在を判定することで、結合スキャフォールドが検出され得ることを提供する。例えば、スキャフォールドは、蛍光染料または任意のその他の適用可能な細胞マーカー分子で標識され得る。このようなマーカー分子は、当該技術分野で周知である。例えば、蛍光染料によって提供される蛍光標識は、蛍光またはレーザー走査顕微鏡またはフローサイトメトリーによる、結合アプタマーの視覚化を提供し得る。
各スキャフォールドは、例えば、IL−21、抗−CD3、抗−CD28などの第2の活性分子にコンジュゲートされ得る。
ポリペプチドスキャフォールドに関するさらなる情報については、例えば国際公開第2014/071978A1号パンフレットの背景セクション、およびその中で引用された参考文献を参照されたい。
本発明は、アプタマーにさらに関する。アプタマー(例えば、国際公開第2014/191359号パンフレット、およびその中で引用される文献を参照されたい)は、短い一本鎖核酸分子であり、それは、所定の三次元構造に折り畳まれて、特異的標的構造体を認識し得る。それらは、標的療法を開発するための適切な代案のようであった。アプタマーは、高い親和性および特異性で、多様な複合体標的と選択的に結合することが示されている。
細胞表面に位置する分子を認識するアプタマーは、過去10年内に同定されており、診断および治療的アプローチを開発する手段を提供する。アプタマーは、毒性および免疫原性がほぼ皆無であることが示されているので、それらは生物医学的用途のための有望な候補である。確かに、例えば、前立腺特異的膜抗原認識アプタマーなどのアプタマーは、標的療法のために成功裏に用いられており、異種移植片生体内モデルにおいて機能できることが示されている。さらに、特異的腫瘍細胞株を認識するアプタマーが同定されている。
DNAアプタマーは、様々ながん細胞、特に固形腫瘍に由来するものに対して広域スペクトル認識特性を示す一方で、非腫瘍形成性および主要健常細胞を認識しないように選択され得る。同定されたアプタマーが、特異的腫瘍サブタイプを認識するだけでなく、むしろ一連の腫瘍と相互作用する場合、アプタマーは、いわゆる広域スペクトル診断薬および治療薬として応用できるようになる。
さらに、フローサイトメトリーによる細胞結合挙動の調査から、アプタマーがナノモル濃度範囲内の非常に良好な見かけの親和性を見せたことが示された。
アプタマーは、診断および治療目的で有用である。さらに、アプタマーの一部は腫瘍細胞に取り込まれ、したがって腫瘍細胞内へのsiRNAなどの抗がん剤の標的化送達のための分子ビヒクルとして、機能し得ることが示され得た。
アプタマーは、細胞SELEX(試験管内進化法)技術を使用して、細胞および組織などの複合体標的に対して、および本発明による配列番号1〜配列番号549のいずれかに記載の配列とMHC分子とを含んでなり、好ましくはそれからなるペプチド複合体などに対して、選択され得る。
本発明のペプチドを使用して、MHC/ペプチド複合体に対する特異的抗体が生成され、開発され得る。これらは、毒素または放射性物質を患部組織に標的化する治療法のために、使用され得る。これらの抗体の別の用途は、PETなどのイメージング目的の放射性核種の患部組織への標的化であり得る。この用途は、小規模な転移の検出、または病的組織の大きさと正確な位置の判定を助け得る。
したがってHLA拘束性抗原と複合体化した、ヒト主要組織適合性複合体(MHC)クラスIまたはIIと特異的に結合する、組換え抗体を製造する方法を提供することが、本発明のさらなる態様であり、方法は、前記ヒト主要組織適合性複合体(MHC)クラスIまたはIIを発現する細胞を含んでなる、遺伝子操作された非ヒト哺乳類を前記HLA拘束性抗原と複合体化した可溶性形態のMHCクラスIまたはII分子によって免疫化するステップと;mRNA分子を前記非ヒト哺乳類の抗体産生細胞から単離するステップと;前記mRNA分子によってコードされるタンパク質分子を提示する、ファージディスプレイライブラリーを作製するステップと;少なくとも1つのファージを前記ファージディスプレイライブラリーから単離するステップとを含んでなり、前記少なくとも1つのファージは、前記HLA拘束性抗原と複合体化した前記ヒト主要組織適合性複合体(MHC)クラスIまたはIIと特異的に結合する、前記抗体を提示する。
HLA拘束性抗原と複合体化したヒト主要組織適合性複合体(MHC)クラスIまたはIIと特異的に結合する抗体を提供することも、本発明のさらなる態様であり、その中で抗体は、好ましくは、ポリクローナル抗体、モノクローナル抗体、二重特異性抗体および/またはキメラ抗体である。
このような抗体および一本鎖クラスI主要組織適合性複合体を製造するそれぞれの方法、ならびにこれらの抗体を製造するためのその他のツールは、本発明の目的で、その内容全体が参照により全て明示的に援用される、国際公開第03/068201号パンフレット、国際公開第2004/084798号パンフレット、国際公開第01/72768号パンフレット、国際公開第03/070752号パンフレット、および文献(Cohen et al.,2003a;Cohen et al.,2003b;Denkberg et al.,2003)で開示される。
好ましくは、抗体は、20ナノモル濃度未満、好ましくは10ナノモル濃度未満の結合親和性で複合体に結合し、それは本発明の文脈で「特異的」と見なされる。
本発明は、配列番号1〜配列番号549からなる群から選択される配列、または配列番号1〜配列番号549と少なくとも88%相同的な(好ましくは同一の)その変異体を含んでなるペプチド、またはT細胞を前記ペプチドと交差反応させるその変異体に関し、前記ペプチドは、基礎となる完全長ポリペプチドでない。
本発明は、配列番号1〜配列番号549からなる群から選択される配列、または、配列番号1〜配列番号549と少なくとも88%相同的な(好ましくは同一の)その変異体を含んでなるペプチドにさらに関し、前記ペプチドまたは変異体は、8〜100、好ましくは8〜30、最も好ましくは8〜14アミノ酸の全長を有する。
本発明は、ヒト主要組織適合性複合体(MHC)クラスIまたはIIの分子に結合する能力を有する、本発明によるペプチドにさらに関する。
本発明は、ペプチドが、配列番号1〜配列番号549に記載のアミノ酸配列からなり、またはそれから本質的になる、本発明によるペプチドにさらに関する。
本発明は、ペプチドが(化学的に)修飾された、および/または非ペプチド結合を含む、本発明によるペプチドにさらに関する。
本発明は、本発明によるペプチドにさらに関し、ペプチドは、融合タンパク質の一部であり、特にHLA−DR抗原関連不変鎖(Ii)のN末端アミノ酸を含んでなり、またはペプチドは、例えば樹状細胞特異的抗体などの抗体に(またその中に)融合する。
本発明の別の実施形態は、非天然ペプチドに関し、前記ペプチドは、配列番号1〜配列番号48に記載のアミノ酸配列からなり、またはそれから本質的になり、薬学的に許容可能な塩として合成的に生産される(例えば、合成される)。ペプチドを合成的に生産する方法は、当該技術分野で周知である。生体内で生成されるペプチドは塩でないため、本発明によるペプチドの塩は、ペプチドの生体内での状態と実質的に異なる。ペプチドの非天然塩形態は、特に、ペプチドを含んでなる医薬組成物、例えば、本明細書で開示されるペプチドワクチンなどの文脈で、ペプチドの溶解性を媒介する。治療される対象にペプチドを効率的に提供するためには、ペプチドの十分で少なくとも実質的な溶解性が必要である。好ましくは、塩はペプチドの薬学的に許容可能な塩である。本発明によるこれらの塩としては、アニオンPO 3−、SO 2−、CHCOO、Cl、Br、NO 、ClO 、I、SCNandascationsNH 、Rb、K、Na、Cs、Li、Zn2+、Mg2+、Ca2+、Mn2+、Cu2+およびBa2+としてのホフマイスター系列の塩などのアルカリ塩およびアルカリ土類塩が挙げられる。特に、塩は、(NHPO、(NHHPO、(NH)HPO、(NHSO、NHCHCOO、NHCl、NHBr、NHNO、NHCIO、NHI、NHSCN、RbPO、RbHPO、RbHPO、RbSO、RbCHCOO、RbCl、RbBr、RbNO、RbCIO、RbI、RbSCN、KPO、KHPO、KHPO、KSO、KCHCOO、KCl、KBr、KNO、KClO、KI、KSCN、NaPO、NaHPO、NaHPO、NaSO、NaCHCOO、NaCl、NaBr、NaNO、NaCIO、NaI、NaSCN、ZnCICsPO、CsHPO、CsHPO、CsSO、CsCHCOO、CsCl、CsBr、CsNO、CsCIO、CsI、CsSCN、LiPO、LiHPO、LiHPO、LiSO、LiCHCOO、LiCl、LiBr、LiNO、LiClO、LiI、LiSCN、CuSO、Mg(PO、MgHPO、Mg(HPO、MgSO、Mg(CHCOO)、MgCl、MgBr、Mg(NO、Mg(ClO、MgI、Mg(SCN)、MnCl、Ca(PO),、CaHPO、Ca(HPO、CaSO、Ca(CHCOO)、CaCl、CaBr、Ca(NO、Ca(ClO、CaI、Ca(SCN)、Ba(PO、BaHPO、Ba(HPO、BaSO、Ba(CHCOO)、BaCl、BaBr、Ba(NO、Ba(ClO、BaI、およびBa(SCN)から選択される。特に好ましいのは、例えば、塩化物塩または酢酸塩(トリフルオロ酢酸塩)などのNH酢酸塩、MgCl、KHPO、NaSO、KCl、NaCl、およびCaClである。
一般に、ペプチドおよび変異体(少なくともアミノ酸残基間にペプチド結合を含有するもの)は、Lukas et al.(Lukas et al.,1981)によって、そしてその中で引用される参考文献によって開示される、Fmoc−ポリアミド様式の固相ペプチド合成によって合成されてもよい。一時的なN−アミノ基保護は、9−フルオレニルメチルオキシカルボニル(Fmoc)基によってもたらされる。この高度に塩基不安定性の保護基の反復性切断は、N,N−ジメチルホルムアミド中の20%ピペリジンを使用して実施される。側鎖官能基は、それらのブチルエーテル(セリン、スレオニン、およびチロシンの場合)、ブチルエステル(グルタミン酸およびアスパラギン酸の場合)、ブチルオキシカルボニル誘導体(リジンおよびヒスチジンの場合)、トリチル誘導体(システインの場合)、および4−メトキシ−2,3,6−トリメチルベンゼンスルホニル誘導体(アルギニンの場合)として保護されてもよい。グルタミンまたはアスパラギンがC末端残基である場合、側鎖アミド官能基を保護するために、4,4’−ジメトキシベンズヒドリル基が活用される。固相担体は、ジメチルアクリルアミド(主鎖単量体)、ビスアクリロイルエチレンジアミン(架橋剤)、およびアクリロイルサルコシンメチルエステル(機能化因子)の3つの単量体から構成される、ポリジメチル−アクリルアミドポリマーをベースとする。使用されるペプチド−対−樹脂の切断可能な結合因子は、酸不安定性4−ヒドロキシメチル−フェノキシ酢酸誘導体である。逆転N,N−ジシクロヘキシル−カルボジイミド/1ヒドロキシベンゾトリアゾール媒介共役手順を使用して付加されるアスパラギンおよびグルタミンを除いて、全てのアミノ酸誘導体は、それらのあらかじめ形成された対称的な無水物誘導体として付加される。全ての共役および脱保護反応は、ニンヒドリン、トリニトロベンゼンスルホン酸またはイサチン(isotin)試験手順を使用してモニターされる。合成完了時に、ペプチドは樹脂担体から切断され、同時に、50%スカベンジャー混合物を含有する95%トリフルオロ酢酸での処理によって、側鎖保護基が除去される。一般に使用されるスカベンジャーとしては、エタンジチオール、フェノール、アニソール、および水が挙げられ、正確な選択は、合成されるペプチドの構成アミノ酸に左右される。ペプチドの合成のための固相法と溶液相法の組み合わせもまた、可能である(例えば、(Bruckdorfer et al.,2004)、およびその中で引用される参考文献を参照されたい)。
トリフルオロ酢酸は、真空蒸発によって除去され、引き続くジエチルエーテルを用いた磨砕は、粗製ペプチドをもたらす。存在するあらゆるスカベンジャーは、単純な抽出手順によって除去され、それは水相の凍結乾燥に際して、スカベンジャーを含まない粗製ペプチドを与える。ペプチド合成のための試薬は、通常、例えば、Calbiochem−Novabiochem(Nottingham,UK)から入手できる。
精製は、再結晶化、サイズ排除クロマトグラフィー、イオン交換クロマトグラフィー、疎水性相互作用クロマトグラフィー、および(通常は)例えばアセトニトリル/水勾配分離を使用した逆相高速液体クロマトグラフィーなどの技術の任意の1つまたは組み合わせによって、実施されてもよい。
本発明は、本発明によるペプチドをエンコードする核酸にさらに関するが、ただしペプチドは完全(完全長)ヒトタンパク質でない。
本発明は、DNA、cDNA、PNA、RNAまたはそれらの組み合わせである、本発明による核酸にさらに関する。
本発明は、本発明による核酸を発現できる、発現ベクターにさらに関する。
本発明は、医療、特に卵巣がんの治療で使用するための、本発明によるペプチド、本発明による核酸、または本発明による発現ベクターにさらに関する。
本発明は、本発明による核酸または本発明による発現ベクターを含んでなる、宿主細胞にさらに関する。
本発明は、抗原提示細胞、好ましくは樹状細胞である、本発明による宿主細胞にさらに関する。
本発明は、本発明による宿主細胞を培養するステップと、宿主細胞またはその培養液からペプチドを単離するステップとを含んでなる、本発明によるペプチドを製造する方法にさらに関する。
本発明は、十分な量の抗原を抗原提示細胞に接触させることで、適切な抗原提示細胞の表面に発現されるクラスIまたはII MHC分子上に、抗原が負荷される、本発明による方法にさらに関する。
本発明は、抗原提示細胞が、配列番号1〜配列番号549または前記異アミノ酸配列を含有する、前記ペプチドを発現できる、発現ベクターを含んでなる、本発明による方法にさらに関する。
本発明は、本発明による方法によって製造される活性化T細胞にさらに関し、前記T細胞は、本発明によるアミノ酸配列を含んでなるポリペプチドを異常に発現する細胞を選択的に認識する。
本発明は、本発明によるT細胞の有効数を患者に投与するステップを含んでなる、患者において、本発明による任意のアミノ酸配列を含んでなるポリペプチドを異常に発現する標的細胞を死滅させる方法にさらに関する。
本発明は、記載される任意のペプチド、本発明による核酸、本発明による発現ベクター、本発明による細胞、または本発明による活性化細胞傷害性Tリンパ球の、薬剤としての、または薬剤の製造における、使用にさらに関する。本発明は、薬剤ががんに対して有効である、本発明による使用にさらに関する。
本発明は、薬剤がワクチンである、本発明による使用にさらに関する。本発明は、薬剤ががんに対して有効である、本発明による使用にさらに関する。
本発明は、前記がん細胞が、卵巣がん細胞であり、または膵臓がん、脳がん、腎がん、結腸または直腸がん、白血病などのその他の固形または血液学的腫瘍細胞である、本発明による使用にさらに関する。
本発明は、卵巣がんの診断および/または予後診断において使用され得る、本明細書で「標的」と称される、本発明によるペプチドベースの特定の標識タンパク質およびバイオマーカーにさらに関する。本発明はまた、がん治療のためのこれらの新規標的の使用に関する。
「抗体(単数)」または「抗体(複数)」という用語は、本明細書では広義に使用され、ポリクローナルおよびモノクローナル抗体の双方を含む。無処理または「完全」免疫グロブリン分子に加えて、「抗体」という用語には、本発明による所望の特性(例えば、卵巣がんマーカーポリペプチドの特異的結合、がんマーカー遺伝子を増大レベルで発現する卵巣がん細胞への毒素の送達、および/または卵巣がんマーカーポリペプチドの活性阻害)のいずれかを示しさえすれば、フラグメント(例えば、CDRs、Fv、Fab、およびFcフラグメント)、またはこれらの免疫グロブリン分子のポリマー、および免疫グロブリン分子のヒト化バージョンもまた含まれる。
可能な場合は常に、本発明の抗体は、商業的供給元から購入されてもよい。また本発明の抗体は、周知の方法を使用して生成されてもよい。当業者は、本発明の抗体を生成するために、完全長卵巣がんマーカーポリペプチドまたはそのフラグメントのどちらを使用してもよいことを理解するであろう。本発明の抗体を製造するために使用されるポリペプチドは、天然原料から部分的にまたは完全に精製されてもよく、または組換えDNA技術を使用して製造されてもよい。
例えば、配列番号1〜配列番号549に記載のペプチドなどの本発明によるペプチドをコードするcDNA、またはその変異体またはフラグメントが、原核細胞(例えば、細菌)または真核細胞(例えば、酵母、昆虫、または哺乳類細胞)で発現され得て、その後、組換えタンパク質が精製されて、本発明による抗体を生成するために使用される、卵巣がんマーカーポリペプチドに特異的に結合する、モノクローナルまたはポリクローナル抗体製剤を生成するために使用され得る。
当業者は、モノクローナルまたはポリクローナル抗体の2つ以上の異なるセットの生成が、その目的の用途(例えば、ELISA、免疫組織化学的検査、生体内イメージング、免疫毒素療法)に必要な特異性および親和性を有する抗体を得る可能性を最大化することを理解するであろう。抗体は、それに対して抗体が使用される目的に従って、既知の方法によりそれらの所望の活性について試験される(例えば、ELISA、免疫組織化学的検査、免疫療法など;抗体の生成および試験のさらなるガイダンスについては、例えば、Greenfield,2014(Greenfield,2014)を参照されたい)。例えば、抗体は、ホルマリン固定肺がんまたは冷凍組織切片のELISAアッセイ、ウエスタンブロット、免疫組織化学染色で試験されてもよい。それらの最初の生体外特性解析後、治療または生体内診断用途を意図した抗体が、既知の臨床試験法によって試験される。
「モノクローナル抗体」という用語は、本明細書の用法では、実質的に均質な抗体集団から得られる抗体を指し;すなわち、集団を構成する個々の抗体は、微量で存在してもよい可能な自然発生突然変異以外は同一である。本明細書では、「モノクローナル抗体」は、それらが所望の拮抗活性を示しさえすれば、その中で重鎖および/または軽鎖の一部が、特定の種に由来しまたは特定の抗体クラスまたはサブクラスに属する抗体中の対応する配列と同一または相同的である一方、鎖の残部は、別の種に由来しまたは別の抗体クラスまたはサブクラスに属する抗体中の対応する配列と同一または相同的である、「キメラ」抗体、ならびにこのような抗体のフラグメントを特に含む(その内容全体が本明細書に援用される、米国特許第4,816,567号明細書)。
本発明のモノクローナル抗体は、ハイブリドーマ法を使用して調製されてもよい。ハイブリドーマ法においては、マウスまたはその他の適切な宿主動物が免疫剤によって典型的に免疫化されて、免疫剤と特異的に結合する抗体を産生するまたは産生できるリンパ球を生じさせる。代案としては、リンパ球は、生体外で免疫化されてもよい。
モノクローナル抗体はまた、米国特許第4,816,567号明細書に記載されるものなどの組換えDNA法によって製造されるものであってもよい。本発明のモノクローナル抗体をコードするDNAは、従来の手順を使用して、容易に単離および配列決定され得る(例えば、マウス抗体の重鎖および軽鎖をコードする遺伝子と特異的に結合できる、オリゴヌクレオチドプローブの使用によって)。
インビトロ法もまた、一価の抗体を調製するのに適する。抗体フラグメント、特にFabフラグメントを生成するための抗体の消化は、当該技術分野で既知の通例の技術を使用して達成され得る。例えば、消化は、パパインを使用して実施され得る。パパイン消化の例は、国際公開第94/29348号パンフレットおよび米国特許第4,342,566号明細書に記載される。抗体のパパイン消化は、それぞれ単一抗原結合部位を有するFabフラグメントと称される2つの同一の抗原結合フラグメントと、残りのFcフラグメントとを典型的に生じる。ペプシン処理は、F(ab’)2フラグメントおよびpFc’フラグメントをもたらす。
抗体フラグメントは、その他の配列に付着するかどうかに関わりなく、フラグメントの活性が非修飾抗体または抗体フラグメントと比較して顕著に変化せずまたは損なわれないという条件で、特定領域または特定アミノ酸残基の挿入、欠失、置換、またはその他の選択された修飾もまた含み得る。これらの修飾は、ジスルフィド結合できるアミノ酸の除去/付加、そのバイオ寿命増大、その分泌特性改変などのいくつかの追加的な特性を提供し得る。いずれにしても、抗体フラグメントは、結合活性、結合領域における結合調節などの生理活性特性を有しなくてはならない。抗体の機能性または活性領域は、タンパク質の特定領域の変異誘発とそれに続く発現、および発現したポリペプチドの試験によって同定されてもよい。このような方法は、当該技術分野の熟練した実務家には容易に分かり、抗体フラグメントをエンコードする核酸の部位特異的変異誘発を含み得る。
本発明の抗体は、ヒト化抗体またはヒト抗体をさらに含んでなってもよい。非ヒト(例えば、マウスなどの)抗体のヒト化形態は、キメラ免疫グロブリン、免疫グロブリン鎖またはそのフラグメント(抗体のFv、Fab、Fab’またはその他の抗原結合部分配列など)であり、それらは非ヒト免疫グロブリンに由来する最小配列を含有する。ヒト化抗体としては、その中でレシピエントの相補性決定領域(CDR)からの残基が、所望の特異性、親和性、および能力を有する、マウス、ラットまたはウサギなどの非ヒト生物種(ドナー抗体)のCDRからの残基によって置換される、ヒト免疫グロブリン(レシピエント抗体)が挙げられる。場合によっては、ヒト免疫グロブリンのFvフレームワーク(FR)残基は、対応する非ヒト残基によって置換される。ヒト化抗体はまた、レシピエント抗体または移入CDRまたはフレームワーク配列のどちらにも見いだされない、残基を含んでなってもよい。一般に、ヒト化抗体は、少なくとも1つおよび典型的に2つの可変領域の実質的に全てを含んでなり、その中では、CDR領域の全てまたは実質的に全てが、非ヒト免疫グロブリンのものに対応し、FR領域の全てまたは実質的に全てが、ヒト免疫グロブリン共通配列のものである。ヒト化抗体は、至適には、免疫グロブリン定常領域(Fc)、典型的にヒト免疫グロブリン定常領域の少なくとも一部もまた含んでなる。
非ヒト抗体をヒト化する方法は、当該技術分野で周知である。通常、ヒト化抗体は、非ヒト起源から導入された、1つまたは複数のアミノ酸残基を有する。これらの非ヒトアミノ酸残基は、しばしば「移入」残基と称され、それは典型的に「移入」可変領域から得られる。ヒト化は、齧歯類CDR(複数)またはCDR(単数)配列を、対応するヒト抗体配列によって置換することで、基本的に実施され得る。したがって、このような「ヒト化」抗体は、キメラ抗体(米国特許第4,816,567号明細書)であり、その中では、実質的に非損傷ヒト可変領域未満が、非ヒト生物種からの対応する配列によって置換されている。実際には、ヒト化抗体は典型的にヒト抗体であり、その中ではいくつかのCDR残基と、おそらくはいくつかのFR残基とが、齧歯類抗体中の類似部位からの残基によって置換されている。
免疫化に際して、内因性免疫グロブリン生成不在下で、ヒト抗体の完全レパートリーを産生できる遺伝子組換え動物(例えばマウス)が用いられ得る。例えば、キメラおよび生殖細胞系変異マウスにおける、抗体重鎖連結領域遺伝子のホモ接合型欠失は、内因性抗体生成の完全阻害をもたらすことが記載されている。このような生殖細胞系変異マウスにおけるヒト生殖細胞系免疫グロブリン遺伝子アレイの転写は、抗原チャレンジに際してヒト抗体の産生をもたらす。ヒト抗体はまた、ファージディスプレイライブラリー中でも産生され得る。
本発明の抗体は、好ましくは薬学的に許容できる担体中で、対象に投与される。典型的に、製剤中で適当量の薬学的に許容可能な塩が使用されて、製剤を等張にする。薬学的に許容可能な担体の例としては、生理食塩水、リンゲル液、およびデキストロース溶液が挙げられる。溶液のpHは、好ましくは約5〜約8、より好ましくは約7〜約7.5である。さらなる担体としては、抗体を含有する固体疎水性ポリマーの半透性マトリックス徐放性製剤が挙げられ、そのマトリックスは、例えば、フィルム、リポソームまたは微粒子などの造形品の形態である。当業者には、例えば、投与される抗体の投与経路と濃度次第で、特定の担体がより好ましくあってもよいことが明らかであろう。
抗体は、注射(例えば、静脈内、腹腔内、皮下、筋肉内)によって、または有効形態での血流への送達を確実にする輸液などのその他の方法によって、対象、患者、または細胞に投与され得る。抗体はまた、腫瘍内または腫瘍周囲経路によって投与されて、局所性ならびに全身性の治療効果を発揮してもよい。局所注射または静脈内注射が好ましい。
抗体を投与するための有効投与量およびスケジュールは、経験的に判定されてもよく、このような測定の実施は、当該技術分野の技術範囲内である。当業者は、投与しなくてはならない抗体用量が、例えば、抗体を投与される対象、投与経路、使用される特定の抗体型、および投与されるその他の薬剤次第で変動することを理解するであろう。単独使用される抗体の典型的な1日量は、上述の要素次第で、1日あたり約1(μg/kg〜最大100mg/kg体重またはそれ以上の範囲に及ぶかもしれない。好ましくは卵巣がんを治療するための抗体投与に続いて、治療用抗体の効力が、熟練した実務家に良く知られている様々な方法で評価され得る。例えば、標準腫瘍イメージング技術を使用して、治療を受ける対象における肺がんのサイズ、数、および/または分布がモニターされてもよい。抗体投与不在下で起こるであろう疾患経過と比較して、腫瘍成長を停止させ、腫瘍収縮をもたらし、および/または新規腫瘍の発症を予防する、治療的に投与された抗体は、肺がん治療のための有効な抗体である。
特異的ペプチド−MHC複合体を認識する可溶性T細胞受容体(sTCR)を製造する方法を提供することもまた、本発明のさらなる態様である。このような可溶性T細胞受容体は、特異的T細胞クローンから生成され得て、それらの親和性は、相補性決定領域を標的とする変異誘発によって増加させ得る。T細胞受容体の選択目的で、ファージディスプレイが利用され得る(米国特許第2010/0113300号明細書、(Liddy et al.,2012))。ファージディスプレイ中に、そして薬剤として実用する際に、T細胞受容体を安定化させる目的で、例えば、非天然ジスルフィド結合、その他の共有結合(一本鎖T細胞受容体)、または二量体化ドメインによって、αおよびβ鎖を連結させ得る(Boulter et al.,2003;Card et al.,2004;Willcox et al.,1999)。T細胞受容体は、標的細胞上で特定機能を発揮させるために、毒素、薬剤、サイトカイン(例えば、米国特許第2013/0115191号明細書を参照されたい)、抗CD3ドメインのようなエフェクター細胞動員ドメインなどに、連結させ得る。さらにそれは、養子免疫伝達のために使用されるT細胞において発現され得た。さらなる情報は、国際公開第2004/033685A1号パンフレットおよび国際公開第2004/074322A1号パンフレットにある。TCRの組み合わせは、国際公開第2012/056407A1号パンフレットに記載される。さらなる製造法は、国際公開第2013/057586A1号パンフレットで開示される。
さらに本発明のペプチドおよび/またはTCRまたは抗体またはその他の結合分子を使用して、病理学者の生検サンプルに基づくがん診断を確認し得る。
抗体またはTCRはまた、生体内診断アッセイのために使用されてもよい。通常、抗体は、腫瘍が位置確認され得るように、免疫シンチグラフィー(immunoscintiography)を使用して、放射性ヌクレオチド(111In、99Tc、14C、131I、H、32Pまたは35Sなど)で標識される。一実施形態では、抗体またはそれらのフラグメントは、上述のタンパク質からなる群から選択されるタンパク質の2つ以上の標的の細胞外ドメインに結合し、親和性(Kd)は1×10μM未満である。
診断用の抗体は、様々なイメージング法による検出に適するプローブで標識されてもよい。プローブの検出方法としては、蛍光、光学、共焦点および電子顕微鏡検査;磁気共鳴画像法および分光法;蛍光透視法、コンピュータ断層撮影および陽電子放射型断層撮影法が挙げられるが、これに限定されるものではない。適切なプローブとしては、フルオレセイン、ローダミン、エオジンおよびその他のフルオロフォア、放射性同位体、金、ガドリニウムおよびその他のランタニド、常磁性鉄、フッ素18およびその他の陽電子放出放射性核種が挙げられるが、これに限定されるものではない。さらに、プローブは二官能価または多官能価であってもよく、列挙される方法の2つ以上によって検出可能であってもよい。これらの抗体は、前記プローブで直接または間接的に標識されてもよい。特に十分に技術分野で承認されている、プローブの抗体への付着としては、プローブの共有結合、プローブの抗体への組み込み、およびプローブ結合のためのキレート化合物の共有結合が挙げられる。免疫組織化学的検査では、疾患組織サンプルは、新鮮または冷凍であってもよく、またはパラフィン包埋されてホルマリンなどの保存料で固定されてもよい。サンプルを含有する固定または包埋切片は、標識一次抗体および二次抗体と接触されて、抗体を使用して原位置タンパク質発現が検出される。
本発明の別の態様は、活性化T細胞を製造するインビトロ法を含み、方法は、生体外T細胞を、適切な抗原提示細胞の表面に発現される抗原負荷ヒトMHC分子に、T細胞を抗原特異的様式で活性化するのに十分な時間にわたり接触させるステップを含んでなり、抗原は本発明によるペプチドである。好ましくは、抗原提示細胞と共に、十分な量の抗原が使用される。
好ましくは、哺乳類細胞は、TAPペプチド輸送体のレベルまたは機能が皆無でありまたは低下している。TAPペプチド輸送体が欠如している適切な細胞としては、T2、RMA−S、およびショウジョウバエ細胞が挙げられる。TAPは、抗原プロセシングに関連している輸送体である。
ヒトペプチド負荷欠乏細胞系T2は、カタログ番号CRL1992の下に、米国微生物系統保存機関、12301 Parklawn Drive,Rockville,Maryland 20852,USAから入手でき;ショウジョウバエ細胞系Schneider系統2は、カタログ番号CRL19863の下にATCCから入手でき;マウスRMA−S細胞系は、Ljunggren et al.(Ljunggren and Karre,1985)に記載される。
好ましくは、宿主細胞は、移入前にMHCクラスI分子を実質的に発現しない。刺激因子細胞が、B7.1、B7.2、ICAM−1、およびLFA3のいずれかなどのT細胞のための共刺激シグナルを提供するのに重要な分子を発現することもまた好ましい。多数のMHCクラスI分子および共刺激因子分子の核酸配列は、GenBankおよびEMBLデータベースから公的に入手可能である。
MHCクラスIエピトープが抗原として使用される場合、T細胞はCD8陽性T細胞である。
抗原提示細胞が、このようなエピトープを発現するために形質移入される場合、好ましくは、細胞は、配列番号1〜配列番号549、またはその変異アミノ酸配列を含有するペプチドを発現できる発現ベクターを含んでなる。
生体外でT細胞を製造するために、その他のいくつかの方法が使用されてもよい。例えば、自己由来腫瘍浸潤性リンパ球が、CTLを生成するために使用され得る。Plebanski et al.(Plebanski et al.,1995)は、T細胞の調製において、自己由来末梢血リンパ球(PLB)を利用した。さらに、樹状細胞をペプチドまたはポリペプチドでパルス処理する、または組換えウイルスで感染させることによる、自己由来T細胞の製造も可能である。B細胞もまた、自己由来T細胞の製造において使用され得る。さらに、ペプチドまたはポリペプチドでパルス処理された、または組換えウイルスで感染されたマクロファージが、自己CTLの調製において使用されてもよい。S.Walter et al.(Walter et al.,2003)は、人工抗原提示細胞(aAPC)を使用したT細胞の生体外プライミングを記載し、それはまた、選択されたペプチドに対するT細胞を製造するための適切な方法でもある。本発明では、ビオチン:ストレプトアビジン生化学によって、あらかじめ形成されたMHC:ペプチド複合体を表面ポリスチレン粒子(ミクロビーズ)に共役させることで、aAPCが生成された。このシステムは、aAPC上のMHC密度の正確な調節を可能にし、それは、血液サンプルから高効率で、高または低結合活性の抗原特異的T細胞応答を選択的に引き起こすことを可能にする。MHC:ペプチド複合体の他に、aAPCは、それらの表面に共役する、抗CD28抗体のような共刺激活性を有するその他のタンパク質を保有すべきである。さらにこのようなaAPCベースのシステムは、例えばサイトカイン様インターロイキン12などの適切な可溶性因子の付加を要することが多い。
同種異系細胞はまた、T細胞の調製において使用されてもよく、方法は、参照により本明細書に援用される、国際公開第97/26328号パンフレットで詳述される。例えば、ショウジョウバエ細胞およびT2細胞に加えて、その他の細胞を使用して、CHO細胞、バキュロウイルス感染昆虫細胞、細菌、酵母、ワクシニア感染標的細胞などの抗原を提示してもよい。さらに植物ウイルスが使用されてもよい(例えば、外来性ペプチド提示のための高収率システムとしてのササゲモザイクウイルス開発を記載するPorta et al.(Porta et al.,1994)を参照されたい)。
本発明のペプチドに向けられた活性化T細胞は、治療法において有用である。したがって、本発明のさらなる態様は、前述の本発明の方法によって入手可能な活性化T細胞を提供する。
上記方法によって製造される活性化T細胞は、配列番号1〜配列番号549のアミノ酸配列を含んでなるポリペプチドを異常に発現する細胞を選択的に認識する。
好ましくは、T細胞は、そのTCRを通じた、HLA/ペプチド複合体(例えば結合)との相互作用によって、細胞を認識する。T細胞は、その標的細胞が、本発明のアミノ酸配列を含んでなるポリペプチドを異常に発現する患者において、標的細胞を死滅させる方法で有用であり、患者には有効数の活性化T細胞が投与される。患者に投与されるT細胞は、患者に由来して、上述のように活性化されてもよい(すなわち、それらは自己T細胞である)。代案としては、T細胞は、患者でなく別の個人に由来する。もちろん、個人が健常人であれば、それが好ましい。「健常人」によって、本発明者らは、個人が概して健康良好であり、好ましくは有能な免疫系を有して、より好ましくは容易に検査され検出され得るいかなる疾患にも罹患していないことを意味する。
生体内で、本発明によるCD8陽性T細胞の標的細胞は、(時にMHCクラスIIを発現する)腫瘍細胞であり得て、および/または(時にMHCクラスIIもまた発現する;(Dengjel et al.,2006))腫瘍(腫瘍細胞)周囲の間質細胞であり得る。
本発明のT細胞は、治療用組成物の活性成分として使用されてもよい。したがって、本発明は、その標的細胞が、本発明のアミノ酸配列を含んでなるポリペプチドを異常に発現する患者において、標的細胞を死滅させる方法もまた提供し、方法は、上で定義されるようなT細胞の有効数を患者に投与するステップを含んでなる。
「異常に発現される」によって、本発明者らは、正常な発現レベルと比較して、ポリペプチドが過剰発現されること、または腫瘍がそれに由来する組織においては遺伝子がサイレントであるが、腫瘍においてはそれが発現されることもまた意味する。「過剰発現」によって、本発明者らは、ポリペプチドが、正常組織に存在するレベルの少なくとも1.2倍のレベルで;好ましくは正常組織に存在するレベルの少なくとも2倍、より好ましくは少なくとも5倍または10倍のレベルで存在することを意味する。
T細胞は、例えば上で記載されるものなどの当該技術分野で公知の方法によって得られてもよい。
T細胞のこのいわゆる養子免疫伝達のためのプロトコルは、当該技術分野で周知である。概説は、Gattioni et al.and Morgan et al.(Gattinoni et al.,2006;Morgan et al.,2006)にある。
本発明の別の態様は、その核酸がクローン化されて、好ましくはT細胞である宿主細胞に導入されるT細胞受容体を生成するための、MHCと複合体形成するペプチドの使用を含む。次に、この遺伝子操作T細胞は、がん治療のために患者に移入され得る。
本発明の任意の分子、すなわちペプチド、核酸、抗体、発現ベクター、細胞、活性化T細胞、T細胞受容体またはそれをエンコードする核酸は、免疫応答を逃れた細胞によって特徴付けられる障害の治療に有用である。したがって本発明の任意の分子は、薬剤として、または薬剤の製造において使用されてもよい。分子は、単独で、または本発明のその他の分子または既知の分子との組み合わせで、使用されてもよい。
上記の表で言及される本発明のペプチドの基礎となるポリペプチドは、卵巣がんにおいて高度に発現され、正常細胞では極めて低いレベルで発現されるので、以下の遺伝子のタンパク質産物由来のペプチドを標的化することが、好ましくは、治療ストラテジーに組み込まれてもよい:
本発明は、がん、特に卵巣がんおよびその他の悪性腫瘍を治療するのに有用な薬剤をさらに提供する。
本発明は、
(a)溶液中のまたは凍結乾燥形態の上述の医薬組成物を含有する容器;
(b)任意選択的に、凍結乾燥製剤のための希釈剤または再構成溶液を含有する第2の容器;および
(c)任意選択的に、(i)溶液の使用、または(ii)凍結乾燥製剤の再構成および/または使用のための取扱説明書
を含んでなるキットをさらに目的とする。
キットは、(iii)緩衝液、(iv)希釈剤、(V)濾過、(vi)針、または(V)シリンジの1つまたは複数をさらに含んでなってもよい。容器は、好ましくは、ボトル、バイアル、シリンジまたは試験管であり;それは、多回使用容器であってもよい。医薬組成物は、好ましくは凍結乾燥される。
本発明のキットは、好ましくは、適切な容器内の本発明の凍結乾燥製剤と、その再構成および/または使用のための取扱説明書とを含んでなる。適切な容器としては、例えば、ボトル、バイアル(例えば二重チャンバーバイアル)、シリンジ(二重チャンバーシリンジなど)、および試験管が挙げられる。容器は、ガラスまたはプラスチックなどの多様な材料から形成されてもよい。好ましくは、キットおよび/または容器は、容器上の、または容器に付随する、取扱説明を含み、それは再構成および/または使用上の指示を示す。例えば、ラベルは、凍結乾燥製剤が、上述されるようなペプチド濃度に再構成されることを表示してもよい。ラベルは、製剤が皮下投与に有用であり、または皮下投与用であることをさらに表示してもよい。
製剤を収容する容器は、多回使用バイアルであってもよく、それは再構成製剤の反復投与(例えば2〜6回の投与)を可能にする。キットは、適切な希釈剤(例えば、炭酸水素ナトリウム溶液)を含んでなる、第2の容器をさらに含んでなってもよい。
希釈剤と凍結乾燥製剤の混合時に、再構成製剤中の最終ペプチド濃度は、好ましくは少なくとも0.15mg/mL/ペプチド(=75μg)であり、好ましくは3mg/mL/ペプチド(=1500μg)以下である。キットは、その他の緩衝液、希釈剤、フィルター、針、シリンジ、および取扱説明が掲載されるパッケージインサートをはじめとする商業的および使用者観点から望ましい、その他の物品をさらに含んでもよい。
本発明のキットは、その他の構成要素(例えば、その他の化合物またはこれらのその他の化合物の医薬組成物)が添加されたまたは添加されない、本発明による医薬組成物製剤を含有する単回容器を有してもよく、または各構成要素のための別個の容器を有してもよい。
好ましくは、本発明のキットは、第2の化合物(アジュバント(例えばGM−CSF)、化学療法剤、天然物、ホルモンまたは拮抗薬、抗血管新生因子または阻害剤、アポトーシス誘導剤またはキレート剤など)またはその医薬組成物の同時投与と合わせて使用するためにパッケージされた、本発明の製剤を含む。キットの構成要素は、あらかじめ混合されてもよく、または各構成要素は、患者への投与前に別個の異なる容器内にあってもよい。キットの構成要素は、1つまたは複数の液体溶液、好ましくは水溶液、より好ましくは無菌水溶液中で、提供されてもよい。またキットの構成要素は、固体として提供されてもよく、それは、好ましくは別の異なる容器内に提供される、適切な溶媒の添加によって液体に変換されてもよい。
治療用キットの容器は、バイアル、試験管、フラスコ、ボトル、シリンジ、または固体または液体を封入するその他のあらゆる手段であってもよい。通常、2つ以上の構成要素がある場合、キットは、第2のバイアルまたはその他の容器を含有して、別々の投薬を可能にする。キットは、薬学的に許容可能な液体のための別の容器もまた、含有してもよい。好ましくは、治療用キットは、装置(例えば、1本または複数本の針、シリンジ、点眼器、ピペットなど)を含有して、本キットの構成要素である本発明の作用物質の投与を可能にする。
本製剤は、経口(腸内)、経鼻、眼、皮下、皮内、筋肉内、静脈内または経皮などの任意の許容できる手段によるペプチド投与に適するものである。好ましくは、投与はs.c.であり、最も好ましくはi.d.投与であり、輸液ポンプによってもよい。
本発明のペプチドは卵巣がんから単離されるので、本発明の薬剤は、好ましくは卵巣がんを治療するために使用される。
本発明は、予備スクリーニングTUMAPの貯蔵庫から選択される少なくとも1つのペプチドを含んでなる、医薬組成物を製造するステップを含んでなる、個々の患者のための個別化医薬品を製造する方法をさらに含み、医薬組成物中で使用される少なくとも1つのペプチドは、個々の患者における適切さについて選択される。一実施形態では、医薬組成物はワクチンである。方法はまた、TCR単離などの下流用途、または可溶性抗体、およびその他の治療選択肢のためのT細胞クローンを製造するためにも適応され得る。
「個別化医薬品」は、積極的個別化がんワクチンおよび自己由来患者組織を使用した養子細胞療法をはじめとするこのような個々の患者の治療のためにのみ使用される、一個人の患者のために特に調整された治療法を意味するものとする。
本明細書の用法では、「貯蔵庫」という用語は、特定の腫瘍型における免疫原性および/または過剰提示について予備スクリーニングされている、一群のまたは一組のペプチドを指すものとする。「貯蔵庫」という用語は、ワクチンに含まれる特定のペプチドが、予備製造されて物理的設備内で貯蔵されることを暗示することは意図されないが、その可能性も検討される。ペプチドは、製造される各個別化ワクチンのために新規に製造されてもよく、または予備製造されて貯蔵されてもよいことが、明示的に検討される。貯蔵庫(例えば、データベースの形態)は、多様なHLA−AHLA−BおよびHLA−C対立遺伝子を有する卵巣がん患者の腫瘍組織において高度に過剰発現される、腫瘍関連ペプチドから構成される。それは、MHCクラスIおよびMHCクラスIIペプチドまたは伸長MHCクラスIペプチドを含有してもよい。いくつかの卵巣がん組織から収集された腫瘍関連ペプチドに加えて、貯蔵庫は、HLA−A*02およびHLA−A*24、ならびにより少ない存在量のマーカーペプチドがあるHLAを含有してもよい。これらのペプチドは、TUMAPによって誘導されるT細胞免疫の規模を定量的に比較できるようにし、したがって抗腫瘍応答を引き起こすワクチンの能力について、重要な結論が導かれるようにする。第2に、それらは、患者において、「自己」抗原に由来するTUMAPに対するいかなるワクチン誘導T細胞応答も観察されない症例において、「非自己」抗原に由来する重要な陽性対照ペプチドとして機能する。第3に、それは、患者の免疫能力状態に関する結論が導かれるようにしてもよい。
貯蔵庫のためのTUMAPは、遺伝子発現解析、質量分析、およびT細胞免疫学を組み合わせた、統合ゲノム機能解析アプローチ(XPresident(登録商標))を使用して同定される。アプローチは、高い割合の腫瘍上に真に存在するが、正常組織上では発現されず、または最小限にのみ発現されるTUMAPだけが、さらなる分析のために選択されることを保証する。最初のペプチド選択のために、患者に由来する卵巣がんサンプルおよび健常ドナーに由来する血液を段階的アプローチで分析した:
1.悪性物質からのHLAリガンドを質量分析法によって同定した
2.ゲノム規模メッセンジャーリボ核酸(mRNA)発現解析を使用して、一連の正常器官および組織と比較して悪性組織(卵巣がん)中の遺伝子過剰発現を同定した
3.同定されたHLAリガンドを遺伝子発現データと比較した。好ましくは、ステップ2で検出されたような選択的に発現されまたは過剰発現される遺伝子によってコードされる、腫瘍組織上で過剰提示されまたは選択的に提示されるペプチドが、多重ペプチドワクチンのための適切なTUMAP候補と見なされた。
4.同定されたペプチドのTUMAPとしての妥当性を支持する追加的な証拠を同定するために、文献調査を実施した
5.mRNAレベルでの過剰発現の関連性をステップ3からの選択されたTUMAPの腫瘍組織上における再検出と、健常組織における検出の欠如(またはまれな)検出によって確認した。
6.選択されたペプチドによる生体内T細胞応答の誘導が可能かどうかを評価するために、健常ドナーならびに卵巣がん患者からのヒトT細胞を使用して、生体外免疫原性アッセイを実施した。
一態様では、貯蔵庫に含める前に、ペプチドが免疫原性について予備スクリーニングされる。制限を意図しない一例として、貯蔵庫に包含されるペプチドの免疫原性は、ペプチド/MHC複合体および抗CD28抗体が負荷された人工抗原提示細胞による、健常ドナーからのCD8+T細胞の反復刺激を通じた、生体外T細胞プライミングを含んでなる方法によって判定される。
この方法は、稀ながんに、そして稀な発現プロファイルを有する患者にとって、好ましい。一定組成を有する多重ペプチド混合物とは対照的に、現在開発されている貯蔵庫は、腫瘍における抗原の実際の発現とワクチンとの顕著により高いマッチングを可能にする。多標的アプローチでは、各患者のために、選択された単一のまたは組み合わされた数種の「既製」ペプチドが利用される。理論上は、例えば50個の抗原性ペプチドのライブラリーからの5個の異なる抗原性ペプチドの選択に基づくアプローチは、それだけでおよそ1700万個の可能な医薬品(DP)組成物をもたらす。
一態様では、ペプチドは、本明細書に記載される、または以下のような本発明による方法に基づく、個々の患者に対するそれらの適切さに基づいて、ワクチンへの包含のために選択される。
HLA表現型、トランスクリプトミクスおよびペプチドミクスデータが、患者の腫瘍材料および血液サンプルから収集されて、「貯蔵庫」および患者に特有の(すなわち変異)TUMAPを含有する、各患者に対して最も適切なペプチドが同定される。患者の腫瘍において選択的にまたは過剰発現されて、可能であれば、患者の個々のPBMCと共に試験すると、強力な生体外免疫原性を示すペプチドが選択される。
好ましくは、ワクチンに含まれるペプチドは、(a)個々の患者からの腫瘍サンプルによって提示される腫瘍関連ペプチド(TUMAP)を同定するステップと;(b)(a)で同定されたペプチドを上述のペプチド貯蔵庫と比較するステップと;(c)少なくとも1つのペプチドを患者において同定された腫瘍関連ペプチドに関連がある貯蔵庫(データベース)から選択するステップとを含んでなる方法によって同定される。例えば、腫瘍サンプルによって提示されるTUMAPは、(a1)前記腫瘍サンプルからの発現データを前記腫瘍サンプルの組織型に対応する正常組織サンプルからの発現データと比較して、前記腫瘍サンプルにおいて過剰発現されまたは異常に発現されるタンパク質を同定するステップと;(a2)発現データを腫瘍サンプル中のMHCクラスIおよび/またはクラスII分子と結合しているMHCリガンドの配列と相関させて、腫瘍によって過剰発現されまたは異常に発現されるタンパク質に由来するMHCリガンドを同定するステップとによって同定される。好ましくは、MHCリガンドの配列は、腫瘍サンプルから単離されたMHC分子から結合ペプチドを溶出させて、溶出したリガンドを配列決定することで同定される。好ましくは、腫瘍サンプルおよび正常組織は、同一患者から入手される。
貯蔵庫(データベース)モデルを使用してペプチドを選択するのに加えて、またはその代案として、TUMAPを患者において新規に同定し、次に、ワクチンに含めてもよい。一実施例として、(a1)前記腫瘍サンプルからの発現データを前記腫瘍サンプルの組織型に対応する正常組織サンプルからの発現データと比較して、前記腫瘍サンプルにおいて過剰発現されまたは異常に発現されるタンパク質を同定するステップと;(a2)発現データを腫瘍サンプル中のMHCクラスIおよび/またはクラスII分子と結合しているMHCリガンドの配列と相関させて、腫瘍によって過剰発現されまたは異常に発現されるタンパク質に由来するMHCリガンドを同定するステップとによって、候補TUMAPが患者において同定されてもよい。別の実施例として、個々の患者からの正常な対応組織と比較して、腫瘍サンプルに特有の変異を含有するタンパク質が同定されてもよく、特異的に変異を標的とするTUMAPが同定され得る。例えば、腫瘍のゲノム、および対応する正常組織のゲノムは、全ゲノム配列決定によって配列決定され得る。遺伝子のタンパク質コード領域における非同義の変異を発見するために、ゲノムDNAおよびRNAが腫瘍組織から抽出され、正常な非変異ゲノム生殖細胞系DNAが末梢血単核細胞(PBMC)から抽出される。適用されたNGSアプローチは、タンパク質コード領域の再配列決定(エクソーム再配列決定)に限定される。この目的で、供給業者が提供する標的濃縮キットを使用して、ヒトサンプルからのエクソンDNAが捕捉され、例えばHiSeq2000(Illumina)による配列決定がそれに続く。それに加えて、遺伝子発現の直接定量化と、変異遺伝子が患者の腫瘍において発現されることの妥当性評価とのために、腫瘍mRNAが配列決定される。結果として得られる数百万の配列読み取りは、ソフトウェアアルゴリズムを通じて処理される。出力一覧は、変異および遺伝子発現を含有する。PBMC由来生殖細胞系の多様性と比較することで腫瘍特異的体細胞変異が判定され、優先順位がつけられる。次に、新規に同定されたペプチドは、貯蔵庫について上述した免疫原性について試験され得て、適切な免疫原性を保持する候補TUMAPが、ワクチンへの包含のために選択される。
例示的一実施形態では、ワクチンに包含されるペプチドは、(a)個々の患者からの腫瘍サンプルによって提示される腫瘍関連ペプチド(TUMAP)を上述の方法(方法)によって同定するステップと;(b)a)で同定されたペプチドを対応する正常組織との比較で腫瘍における免疫原性および過剰提示について予備選別されたペプチドの貯蔵庫と比較するステップと;(c)少なくとも1つのペプチドを患者において同定された腫瘍関連ペプチドに関連がある貯蔵庫から選択するステップと;(d)任意選択的に、(a)で新規に同定された少なくとも1つのペプチドを選択して、その免疫原性を確認するステップとによって同定される。
例示的一実施形態では、ワクチンに包含されるペプチドは、(a)個々の患者からの腫瘍サンプルによって提示される腫瘍関連ペプチド(TUMAP)を同定するステップと;(b)(a)で新規に同定された少なくとも1つのペプチドを選択して、その免疫原性を確認するステップとによって同定される。
ひとたび個別化ペプチドベースのワクチンのためのペプチドを選択したら、ワクチンを製造する。ワクチンは、好ましくは、約33%DMSOなどの20〜40%DMSO、好ましくは約30〜35%DMSOに溶解された、個々のペプチドからなる液体製剤である。
製品に包含される各ペプチドをDMSOに溶解する。単一ペプチド溶液の濃度は、製品に包含されるペプチド数に応じて選択しなくてはならない。単一ペプチドDMSO溶液を等量で混合し、ペプチドあたり約2.5mg/mlの濃度で、製品に包含される全てのペプチドを含有する溶液を得る。次に、混合溶液を注射用水で1:3に希釈して、33%DMSO中でペプチドあたり0.826mg/mlの濃度を得る。希釈溶液を0.22μmの無菌フィルターを通して濾過する。最終バルク溶液を得る。
最終バルク溶液をバイアルに充填して、使用時まで−20℃で保存する。1本のバイアルは、0.578mgの各ペプチドを含有する700μLの溶液を含有する。この内、500μL(ペプチドあたりおよそ400μg)を皮内注射のために適用する。
がんを治療するために有用であるのに加えて、本発明のペプチドは、診断法としてもまた有用である。ペプチドは卵巣がん細胞から生成されたので、そしてこれらのペプチドは正常組織には存在せずまたはより低レベルで存在すると判定されたので、これらのペプチドを利用してがんの存在を診断し得る。
特許請求されるペプチドの血液サンプル中の組織生検上の存在は、がん診断において病理学者を補佐し得る。抗体、質量分析法またはその他の当該技術分野で公知の方法の手段による特定のペプチドの検出は、組織サンプルが悪性または炎症性または概して病的であることを病理学者に告げ得て、または卵巣がんのためのバイオマーカーとして利用され得る。ペプチド基の存在は、病的組織の分類または下位分類を可能にし得る。
患部組織検体上のペプチドの検出は、特にTリンパ球が作用機序に関与することが知られておりまたは予測される場合に、免疫系が関与する治療法の利点を判定できるようにする。MHC発現の喪失は、それによって感染悪性細胞が免疫監視を逃れる、十分に説明された機序である。したがってペプチドの存在は、この機序が、分析した細胞によって活用されていないことを示す。
本発明のペプチドは、ペプチドまたはMHC分子と複合体化したペプチドに対するT細胞応答または抗体応答などの、これらのペプチドに対するリンパ球応答を分析するのに使用されるかもしれない。これらのリンパ球応答は、さらなる治療段階を決定するための予後マーカーとして使用され得る。これらの応答はまた、例えば、タンパク質、核酸、自己材料のワクチン接種や、リンパ球の養子免疫伝達などの異なる手段によるリンパ球応答の誘導を目指す、免疫療法アプローチにおける代理応答マーカーとして使用され得る。遺伝子治療の設定では、副作用の評価において、ペプチドに対するリンパ球応答が考慮され得る。リンパ球応答のモニタリングはまた、例えば移植片対宿主病および宿主対移植片病の検出など、移植治療の経過観察検査のための有益な手段かもしれない。
ここで好ましい実施形態を記載する以下の実施例中で本発明を説明するが、それでもなお、これらには限定されないのものとする。本発明の目的で、本明細書で引用される全ての参考文献は、その内容全体が参照により援用される。
卵巣がんおよび良性卵巣組織内の異なる細胞サブセットのHLA−A、B、C(A)およびHLA−DR(B)の発現を示す。図1では、2つの比較群の間の不等分散のために、ウェルチの修正を加えた両側独立スチューデントt検定が用いられた。特徴的な細胞表面マーカー(白血球区画:CD45+、腫瘍細胞/上皮細胞区画:CD45−EpCam+、内皮細胞区画:CD45−CD31+)によって特徴付けられる、酵素的解離後における、EOCおよび良性卵巣組織内の異なる細胞型上のHLAクラスI(A)およびHLA−DR(B)発現。各データ点は、各サンプルについて実施された三連の実験の平均を表す。両側t検定を用いて、有意性が試験された(*p<0.05;**p<0.01)。 良性組織と対比したEOCの免疫ペプチドームの比較プロファイリングを示す。(A)EOC(n=34)および良性組織で表示される、HLAクラスIリガンド起源タンパク質の比較プロファイリング。起源タンパク質のHLA拘束性提示頻度は、EOC(x軸の上)および良性起源(x軸の下)について別々にy軸上に示される。起源タンパク質は、それらのEOC特異的提示の頻度に従って格付けされた(左から右)。左側のボックスは、EOCによって排他的に提示される、TOP100 HLAリガンド起源タンパク質を強調表示する。(B)TOP100 EOC特異的HLAクラスIリガンド起源タンパク質(uniprot推奨遺伝子名)のワードクラウド。フォントサイズ(5〜26)は、各起源タンパク質のHLAリガンドを提示する、がん患者の絶対数と相関する。(C)EOC(n=22)および良性組織で表示される、HLAクラスIIリガンド起源タンパク質の比較プロファイリング。(B)TOP 100 EOC特異的HLAクラスIIリガンド起源タンパク質(uniprot推奨遺伝子名)のワードクラウド。フォントサイズ(3〜11)は、各起源タンパク質のHLAリガンドを提示する、がん患者の絶対数と相関する。 TOP100 EOC関連HLAクラスIリガンドの細胞起源を示す。非標識定量法によって分析された、OvCa 84の濃縮細胞集団のクラスI免疫ペプチドーム内のHLAリガンドの相対存在量の火山型プロット。左側パネルは、(A)腫瘍細胞(CD45−Epcam+)と対比した腫瘍浸潤白血球(CD45+)であり、右側パネルは、(B)腫瘍細胞と対比した間質細胞(CD45−EpCam−)を示す。水平破線は、有意性閾値を示す(p<0.05)。TOP100 EOC排他的リガンド(MUC16(赤)、DDR1、EYA2、SOX9、TLR7、OASL)、ならびに白血球関連抗原(CD132、CD8、LSP1)および間質(内皮細胞)関連抗原(vWF)由来のリガンドが、強調表示される。 リガンド提示のための代理マーカーとしての免疫組織化学染色および血清レベルを示す。低(IRS4)、中(IRS6)、および高(IRS12)免疫反応性スコアを有するMUC16(CA−125)に対する、高悪性度漿液性卵巣がんの免疫組織化学染色(A)。メソテリン(右、IRS8)およびIDO1(左、IRS12;全て200×倍率)に対する免疫組織化学染色(B)。選択されたTOP100 EOC関連抗原のHLAリガンド提示と、起源タンパク質発現との相関。MUC16(n=23)、IDO1(n=23)、およびMSLN(n=16)の発現は、手術当日に、CA−125(n=30)の免疫組織化学染色(C)または血清マーカー分析(D)によって分析された。MSLNについては、HLAクラスII免疫ペプチドームデータが利用可能であった場合のみが含まれた。非パラメトリックマンホイットニー検定を用いて、統計的有意性が試験された(p<0.05が有意と見なされた)。 MUC16およびMSLNの予後の関連性を示す。免疫組織化学的染色は、文書化された最適な腫瘍減量を有する患者からの71個の高悪性度漿液性EOCサンプルを使用して、TMA上で実施された。(A)MUC16発現(左側パネル、低発現スコア<7、n=41;高発現スコア≧ 7、n=30)、およびMSLN発現(右側パネル、低発現<6、n=15;高発現≧6、n=52)が、全生存期間に及ぼす影響を描写する、カプラン・マイヤープロット。(B)上皮内区画(左側パネルCD3E、低浸潤<7細胞/HPF、n=13;高浸潤≧7、n=57)内へのまたは線維血管間質(右側パネル、CD3S、低浸潤<7細胞/HPF、n=40;高浸潤≧7、n=30)内へのCD3 T細胞浸潤が、患者の全生存期間に及ぼす影響。(C)上皮内CD3T細胞(上側パネル、低MSLN/高CD3E、n=11;低MSLN/低CD3E、n=40;高MSLN/低CD3E、n=14;高MSLN/高CD3E、n=1)、または線維血管性CD3 T細胞(下側パネル、低MSLN/高CD3S、n=30;高MSLN/低CD3S、n=7;低MSLN/低CD3S、n=21;高MSLN/高CD3S、n=8)CD3およびMLN染色組み合わせ(全てのスコアのカットオフは上記の通り)のサブグループ分析。 EOCおよび良性卵巣組織のフローサイトメトリー分析を示す。CD45+白血球、CD45−CD31+内皮細胞、およびCD45−EpCam+腫瘍または上皮細胞の選択を示す、OvCa 48のゲーティングストラテジーの例示的な提示。 EOCのHLAリガンド起源タンパク質同定の飽和分析を示す。起源タンパク質の同定の飽和分析は、HLAクラスI(A)およびHLAクラスII(B)リガンドタンパク質について別々に示される。ユニークな起源タンパク質の平均数は、各起源数について、34のEOC起源からの1000回の無作為抽出によって計算されている。指数回帰を用いて、EOCの起源タンパク質受託(点線)の最大到達可能範囲が判定された。 EOCサンプル間のHLAリガンド提示の頻度および数を示す。クラスI(上部)およびクラスII(下部)抗原の双方について、選択されたEOC関連抗原のHLA提示ならびに異なるHLA提示ペプチドの数(色分け)が、個々のEOC(患者番号は各列の上部にある)について視覚化される。
材料と方法
組織サンプル
全ての組織サンプルは、ヘルシンキ宣言の原則に従って患者の告知に基づく同意を得た後に、University Hospital of Tubingenで採取された。全ての研究プロトコルは、地域の施設内審査委員会によって承認された。特に明記されない場合は、サンプルは、さらなる使用まで−80℃で保存された。University Hospital of TubingenのDepartment of Transfusion Medicineにおいて、HLA−Ready Gene System(Innotrain,Kronberg,Germany)を使用して、配列特異的プライマー(SSP)PCRによって2桁HLAタイピングが実施され、ソフトウエア(Olerup,Stockholm,Sweden)によって評価された。高分解能4桁HLAタイピングは、GSGType HLA Primer Setを使用して、GS Junior Sequencer(どちらもRoche,Basel、Switzerland)上で次世代配列決定により実施された。正常組織は、Bio−Options Inc,CA,USA;BioServe,Beltsville,MD,USA;Capital BioScienceInc,Rockville,MD,USA;GeneticistInc.,Glendale,CA,USA;University Hospital of Geneva;University Hospital of Heidelberg;University Hospital Munich;ProteoGenex Inc.,Culver City,CA、USA;University Hospital of Tubingenから入手された。全ての患者の告知に基づく同意書は、外科手術または検死解剖前に得られた。組織は切除の直後に衝撃凍結されて、TUMAPの単離まで−70℃未満で保存された。
組織解離
EOCならびに良性卵巣および卵管の組織は、腫瘍切除/減量術または卵管摘出術卵管卵巣摘出術を受ける患者から新鮮に採取した。組織を<2mmに細かく刻んで、10%ウシ胎仔血清(Lonza、Basel、Switzerland)を含むDMEM(Life Technologies)中の400U/mlコラゲナーゼIV型、5U/mlディスパーゼ(どちらもLife Technologies,Carlsbad,CA)、および0.1mg/ml DNAse(Roche,Basel,Switzerland)を含有する、酵素解離溶液に移した。解離は、回転振盪機(Infors HT,Basel,Switzerland)上で37℃で3時間実施した。残りの組織断片(典型的に最初の重量の<1%)は、100μmの細胞ストレーナー(BD,Franklin Lakes,NJ)を用いて、除去した。単一細胞懸濁液をPBSで2回洗浄し、塩化アンモニウム溶解緩衝液を使用して赤血球を溶解した。
HLA表面分子定量
HLA表面発現は、QIFIKIT定量フローサイトメトリーアッセイ(Dako,Glostrup,Denmark)を用いて、製造会社の使用説明書に従って判定した。細胞は、汎HLAクラスI特異的モノクローナル抗体W6/32、HLA−DR特異的L243またはそれぞれのアイソタイプ対照のいずれかで染色した。細胞型の識別は、CD45(AmCyanクローン2D1、BD)、CD31(PeCy7、クローンWM59、Biolegend,SanDiego,CA)、EpCam(APC、クローンHEA125、Miltenyi,Bergisch−Gladbach,Germany)およびCD34(APCCy7、クローン581、Biolegend)に対する蛍光標識抗体による表面マーカー染色に基づいた。LSR SORP Fortessa装置(BD)上での分析の直前に、7−AAD(BioLegend)を生存マーカーとして添加した。蛍光強度中央値を表面分子発現の計算のために使用して、各サンプルについて三重反復試験を記録した。
細胞分離:
細胞分離は、2つの連続的な磁気活性化細胞分離(MACS)プロトコルを用いて、製造会社の使用説明書(Miltenyi)に従って実施した。分離は、XSカラムおよびsuperMACS分離器(どちらもMiltenyi)を用いて実施した。最初の分離は、CD45白血球の陽性選択を目的とした。引き続いて、負の画分をEpCam腫瘍細胞について濃縮した。残りのCD45CD45EpCam画分は、間質細胞画分に相当すると想定された。
HLAリガンド単離
HLAクラスIおよびII分子は、以前記載されたように42、標準イムノアフィニティー精製によって単離した。汎HLAクラスI特異的mAb W6/32をHLAクラスI単離のために使用し、pan−HLAクラスII mAb Tu39ならびにHLA−DR特異的mAb L243をHLAクラスII単離のために使用した。
LC−MS/MSによる免疫ペプチドーム分析
免疫ペプチドーム分析は、ナノエレクトロンスプレーイオン源を備え、Ultimate 3000 RSLCナノUHPLCシステム(Dionex,Sunnyvale,CA)に連結された、LTQ OrbitrapXL質量分光計(Thermo Fisher,Waltham,MA)上で実施した。ペプチドサンプルは、4μL/分の流速で10分間にわたり、2cm PepMap 100 C18 Nanotrapカラム(Dionex)上に、3%の溶媒B(20%HO、80%アセトニトリル、および0.04%ギ酸)と共に充填された。分離は、50℃で作動するカラムオーブン内に取り付けられた、粒度2μmの50cm PepMap C18カラム(Dionex)上で行った。適用された勾配は、175nil/分(nil/min)の流速で140分以内に3から30%の溶媒Bの範囲であった。(溶媒A:99%HO、1%ACN、および0.1%ギ酸;溶媒B:20%H2O、80%ACN、および0.1%ギ酸)。質量分析は、データ依存性獲得モードで、トップ5法を用いて実施した(すなわち、各調査スキャンの間に、5つの最も豊富な前駆イオンがフラグメンテーションのために選択された)。調査スキャンは、Orbitrap内で60,000の分解能で記録した。MS/MS分析は、衝突誘起解離(CID、正規化衝突エネルギー35%、活性化時間30ms、分離幅1.3m/z)と、引き続くリニアトラップ四重極(LTQ)内での分析によって実施した。HLAクラスIリガンドの質量範囲は400〜650m/zに制限され、可能な荷電状態2+および3+がフラグメンテーションのために選択された。HLAクラスIIでは、陽性荷電状態≧2を有するフラグメンテーションを考慮に入れて、質量範囲を300〜1500m/zに設定した。
HLAクラスIサンプルを5回の技術的複製中で分析した一方で、HLAクラスIIサンプルについては、典型的に3回の技術的複製を得た。最初の試験は動的除外なしで実行されたのに対して、引き続く試験では5秒間の動的除外を有効にした。
質量分析データ処理および解析
MSデータ解析は、Proteome Discoverer 1.3(ThermoFisher)を用いて実施した。ピークリストは、Mascot検索エンジン(Mascot 2.2.04、Matrix Science,Boston,MA)を用いて、Swiss−Protデータベース(www.uniprot.org、2013年9月27日公開、20,279件の審査済みタンパク質配列を含む)に含まれるヒトプロテオームに対して検索した。処理のための質量許容差は、前駆イオンでは5ppm、断片イオンでは0.5Daであった。切断特異性は選択されず、許容される唯一の動的修飾は酸化されたメチオニンであった。q≦0.05(5%FDR)の目標値で、パーコレーターアルゴリズムを用いて、ペプチド信頼度を判定した。追加的な処理後フィルターは、Mascot Ionscore≧20、検索エンジン順位=1、およびHLAクラスIリガンドでは8〜12アミノ酸のペプチド長、HLAクラスIIリガンドでは12〜25アミノ酸のペプチド長であった。保存が原因で配列が複数のタンパク質にマッピングされる場合、タンパク質の分類を無効にして、ペプチドの複数のアノテーションを保証した。HLAアノテーションは、SYFPEITHIで(www.syfpeithi.de)およびNETMHC 3.4(http://www.cbs.dtu.dk/services/NetMHC/)ホストされるHLA予測アルゴリズムを用いて実施した。結果があいまいな場合、複数の対立遺伝子に言及された。比較プロファイリングでは、「一発屋」、すなわち、1つの起源のみで提示されてPSMカウント≦ 5を有するペプチドは、双方のデータセットから除去した。
腫瘍と対比したCD45、および腫瘍と対比した間質細胞のペプチドの非標識定量法は、Sieve 2.1(ThermoFisher)を用いて実施した。各細胞濃縮画分について少なくとも3つのMS生ファイルの複製、ならびに組織全体MHC沈殿からの結果を、2.5分の最大保持時間(RT)移行で全体的に整列した。フレームは、最大RT幅3.5分および質量許容差5ppmのMSスキャン事象に基づいて生成した。同定は、Mascot検索結果を用いて、Proteome Discovererから移入した(上記参照)。全イオン電流クロマトグラム正規化を用いて、サンプル強度の差異に対応した。
HLAクラスIリガンドの免疫原性解析
ペプチド特異的細胞傷害性リンパ球(CTL)のプライミングは、人工抗原提示細胞(aAPC)が関与する確立されたプロトコールを用いて行った(30)。aAPCは、ストレプトアビジン被覆ポリスチレンビーズ(直径5.6μm;Bangs Laboratories,Fishers,IN)からなった。ビーズを1mlあたり2×10個の粒子に再懸濁し、それぞれ10nMのビオチン化ペプチド−MHC複合体および10nMの刺激性抗CD28抗体(ATCC,Manassas,VAから得られたクローン9.3)と共に、室温で30分間インキュベートした。T細胞は、CD8磁気細胞単離キット(Miltenyi)を用いて、健常ドナーの全血から単離した。ウェルあたり100万個のT細胞を96ウェルプレート(Corning,Corning,NY,USA)内で培養し、5ng/mlのIL−12(PromoCell,Heidelberg,Germany)の存在下において、同数の負荷されたaAPCで刺激した。T細胞は、毎週の刺激間隔で合計3回刺激した。各刺激に引き続いて2日後に、40U/mlのIL−2を添加した。T細胞プライミングは、最後の刺激ラウンドの1週間後に、MHC多量体染色によって評価した。
組織マイクロアレイ(TMA)の構築
少なくともFIGO病期分類II〜IIIの卵巣または卵管の高悪性度漿液性がん(EOC)を有して、1999年から2008年の間にUniversity Women’s Hospital in Tubingenで手術された患者の連続パラフィン包埋腫瘍サンプルが、Institute of Pathologyのアーカイブから検索された。公表された基準(43)に従って組織学的サブタイプおよびグレーディングを確認した後、最初に154例を研究に含めた。組織マイクロアレイ(TMA)は、以前記載されたように(44)構築した。本発明者らは、各患者の直径0.6mmの6つのコア(原発腫瘍の2つの異なる部位からのそれぞれ最大3つのコア−少なくとも2つの別個のコア)を使用した。さらに、本発明者らは、リガンド分析のために、前向きに収集された症例の原発腫瘍からのパラフィン包埋組織を使用して、TMAを構築した。3μm厚さの切片を切断して再水和し、免疫組織化学検査のための特定の前処理に供した。全部で23の症例が、免疫スコアリング、および免疫ペプチドームデータとの相関について、評価可能であった。
免疫組織化学検査
以下の一次抗体および希釈を免疫組織化学検査のために使用した:CD3(1:100、ラットモノクローナルSP7、DCS,Hamburg,Germany)、CD8(1:200、マウスモノクローナルC8/144B、DAKO)、MUC16(1:450、マウスモノクローナルM11、DAKO,Glostrup,Denmark)、IDO1(1:25、マウスモノクローナル、ABCAM,Cambridge,UK)、およびMSLN(1:100、マウスモノクローナルSPM143、GeneTex,Irvine,CA,USA)。組織切片は、95℃で36分間にわたりEDTA緩衝液(pH8.6)で前処理した。免疫組織化学的染色は、自動免疫染色装置上でiView DAB検出キット(どちらもVentana,Tucson,AZ,USA)を使用して、製造会社の使用説明書に従って実施した。
免疫スコアリング
TILの定量は、最初に、各コアについて少なくとも2つのHPFをカウントすることで、高倍率視野(HPF=400×)あたりの免疫染色細胞の平均数を評価することで実施した。第2のステップでは、左右の三重コアセットのHPFあたりのリンパ球の平均数を計算し、全てのコアを合わせて計算した。この両側性平均のカウントを、さらなる計算に使用した。線維血管腫瘍間質(CD3SおよびCD8S)および腫瘍の上皮内区画(CD3EおよびCD8E)は、別々に評価した。
CA125の発現については、IDO1およびMSLN染色強度を0〜3で等級付けし、腫瘍細胞の百分率(1:0〜10%;2:10〜50%;3:50〜80%;4:80〜100%)に関する1〜4のスコアを乗じた。全てのパラメーターについて、症例を四分位で分割し、2つの四分位間の最良の分離を高発現と低発現との間のカットオフ値として定義した。154例のTMA患者のうち、71人の患者が文書化された最適な腫瘍減量(<1cmの残存腫瘍量)を経験しており、TIL、およびタンパク質発現について、成功裏に評価された。免疫染色および臨床データ分析は、独立した研究者によって実施された。
統計解析/可視化
特に言及されない場合は、Graphpad Prism 6.0(Graphpad software,La Jolla,CA,USA)またはMicrosoft Office 2010(Microsoft)を用いて、全ての数値および統計解析を生成した。ワードクラウドは、オンラインアプレット(www.wordle.net)を用いて作成した。カプラン・マイヤー分析は、SPSS統計ソフトウエア(バージョン21、IBM Corp.,Armonk,NY,USA)を用いて実施した。別段の指定がない限り、両側独立スチューデントt検定を実施した。0.05未満のP値は、統計学的に有意と見なされた。ダゴスティーノ・ピアソンオムニバス検定を用いて正規性を検証し、F検定を用いて等分散を検証した。図1では、2つの比較群の間の不等分散のために、ウェルチの修正を加えた両側独立スチューデントt検定が用いられた。図4では非パラメトリックマン・ホイットニー検定を用いたが、これは、サンプルサイズが小さかったため全例で正規分布が評価され得なかったためである。データセットが正規分布を示さなかったため、スピアマン相関を用いてMSLNおよびMUC16のIHCスコアを相関させた。図5の2つのカプラン・マイヤー生存曲線を比較するP値は、Graphpad Prismの対数ランク(Mantel−Cox)検定を用いて計算した。
実施例1:細胞表面のHLAカウントおよびHLAタイピング
T細胞媒介性免疫療法の開発のための主要な必要条件は、腫瘍細胞表面のMHC分子の発現である。したがって、本発明者らは、酵素的解離によって得られた、卵巣腫瘍の異なる細胞サブセット(n=11)ならびに卵巣および卵管からの良性組織(n=8)上のフローサイトメトリーによって、HLA−A、B、CならびにHLA−DR分子の数を分析および定量した。分析は、白血球(CD45)、腫瘍/上皮細胞(Epcam)、および内皮細胞(CD31;後者は7つの卵巣腫瘍のサブセットのみ)の細胞型特異的HLA発現の別個の定量を目的とした。完全なゲーティングストラテジーについては、図6を参照されたい。細胞あたりのHLA分子の中央値は、異なる細胞型および個々の患者の双方において不均一であり、約5,000〜150,000個のHLAクラスIおよび約500〜330,000個のHLA−DR分子に及んだ。HLA−A、B、およびC分子の数は、良性組織と対比して、腫瘍から単離された白血球上で有意に高く(p=0.0205)、腫瘍内で進行中の炎症反応が示唆がされた。良性組織由来の上皮細胞と腫瘍細胞を比較すると、HLAクラスI発現の強い差異もまた見られた。HLAクラスI分子発現は、腫瘍細胞(約75,000子/細胞)上で有意に(p=0.0021)高かったが、内皮細胞(約95,000分子/細胞)などのその他の間質細胞の範囲内にとどまった。驚くことに、本発明者らは、EOC細胞上のHLA−DRの強い発現(約105,000分子/細胞)からある程度桁外れに強い発現(>300,000分子/細胞)を証明したのに対して、良性上皮細胞はHLA−DRに対して実質的に陰性であった(p=0.0108)。全体として、本発明者らは、腫瘍内のMHCクラスIおよびクラスII発現の増加を観察し得た。
HLAリガンドーム解析および比較プロファイリングは、EOC特異的抗原提示を明らかにする。EOCのHLAリガンドレパートリーをマッピングするために、発明者らは、バルク腫瘍組織からHLA分子を単離し、合計34のEOCについて質量分析を実施して、HLAリガンドームを特性決定した(患者特性およびHLAタイピングについては表7を参照されたい)。
MHCクラスIについて、本発明者らは、9,136種の異なる供給源タンパク質(平均1,239個/サンプル)から出現する22,920種のユニークなペプチド(平均1,263個/サンプル)を同定し得て、これは、推定された最大到達可能範囲の>90%に達する(図7aを参照されたい)。
実施例2、(Example 2,)関連HLAリガンドのトップの同定
この膨大なデータのカタログから、EOCの最も特異的なHLAリガンドを抽出することを目指して、本発明者らは、HLAリガンド起源タンパク質を、PBMC(n=30)、骨髄(n=10)、肝臓(n=15)、結腸(n=12)、卵巣(n=4)、および腎臓(n=16)からのサンプルからなる、良性起源の社内データベース(「HLA良性リガンドデータベース」)と比較した。HLA良性リガンドデータベースは、10,012個の起源タンパク質に相当する31,032個のペプチドを含有し、健常ドナーからの血液または骨髄、ならびに組織病理学的に評価された正常組織を使用して確立され、全てEOCで使用されるのと全く同じパイプラインで分析された。比較プロファイリングでは、「一発屋」(すなわち、1つの起源のみで提示されて低いPSMカウントを有するペプチド)を双方のデータセットから除去して、偽陽性ヒットに対応した。2つのそれぞれのデータセットの比較解析(図2Aを参照されたい)から、試験された患者のうち少なくとも3人においてEOCによって排他的に提示される、379個のMHCクラスI起源タンパク質が明らかにされ、EOC特異的HLAペプチドのレパートリーが強調された。それらの提示頻度に従って格付けされたTOP100 EOC特異的起源タンパク質が、図2Bに視覚化される。この分析によってもたらされた最も重要なEOC特異的HLAリガンド起源タンパク質は、がん抗原125(CA−125)としてもまた知られているムチン16(MUC16)であった。全体で80種を超える異なるMUC16由来HLAリガンド(表8を参照されたい)が、患者のほぼ80%(26/34)において提示された。
これらのデータは、多数の異なるHLAアロタイプによるMUC16の頻繁なプロセシングおよび提示を強調し、それはいかなるその他のEOC特異的抗原にも並ぶものがなく、βアクチン(全体で149種の異なるペプチドが同定されている)などの頻繁に(>95%)提示されるハウスキーピングタンパク質によってのみ反映される。TOP100 EOC特異的起源タンパク質の中で、MUC1またはKLK10のようなその他のよく確立された腫瘍関連抗原、ならびにインドールアミン−2,3−ジオキシゲナーゼ(IDO1)またはガレクチン1(LGALS1)のような免疫回避機能が文献で十分に立証されている抗原が、同定された。
抗腫瘍免疫応答の支持または駆動における、CD4 T細胞の能力のために、本発明者らは、同じアプローチを用いて、EOC(n=22)におけるMHCクラスII提示ペプチドをさらに分析し、2,330個の起源タンパク質(平均319個/サンプル)に相当する9,162個のペプチド(平均598個/サンプル)を得て、これは達成可能範囲の>80%に達する(図7Bを参照されたい)。MHCクラスIIのHLA良性リガンドデータセットは、骨髄(n=5)、PBMC(n=13)、結腸(n=2)、肝臓(n=7)、および腎臓(n=17)に由来する、1,719個の起源タンパク質に相当する、7,267個のペプチドを含有した。TOP100 MHCクラスII提示抗原の解析により、より不均一で複雑な状況が明らかにされた(図2C)。注目すべきことに、MHCは、MUC16の確立されたリガンドであるメソテリン(MSLN)のペプチドを提示して、ほぼ50%の患者で同定され得た(10/22;図2D)。MUC16それ自体は、TOP100クラスII抗原の中には存在しなかったが、それでもなお、それぞれのリガンドが4人の患者において検出され得た。
TOP100 EOCHLAリガンド起源タンパク質以外に、本発明者らは、それらの豊富さを検証する臨床応用のためにこれまで使用されてきた、確立されたがん精巣および腫瘍関連抗原(Her2neu、WT1、NY−ESO−1、hTert、およびp53)をさらに探した。本発明者らは、NY−ESO−1を除く全ての抗原についてHLA提示ペプチドを同定し得たが、それらのいずれもEOC上で排他的に提示されなかった(表9)。低頻度(3/34)ではあるが、EOC特異的提示を示す唯一のリガンドは、Her2neu由来のHLAクラスIリガンドであった(ただし、HLAクラスIIではない)。
実施例3:EOC関連HLA提示ペプチドの細胞起源
EOCはがん細胞を具現するだけでなく、むしろ異なる細胞型の異種起源混合物に相当するので、本発明者らは、MHCクラスI TOP100抗原が、確かに元来がん細胞によって提示されたかどうかを尋ねた。この目的のために、本発明者らは、EOCおよび分離されたCD45白血球、EpCam腫瘍細胞、ならびに2つのマーカーについて陰性の間質細胞を消化し(濃縮効率については表10を参照されたい)、引き続いて本発明者らは、各サブセットについて個別にHLAリガンドミクス(ligandomics)を実施した。
表10: 細胞濃縮効率:
細胞の百分率は、MACSortingの前(PreSort)および後の各画分で示される
本発明者らは、非標識定量法を用いて、合計5個のEOC中の各同定されたHLAリガンドの供給源を判定した(代表的な例については図3を参照されたい)。予期されたように、(4/5)EOCサンプル上で同定されたMUC16由来HLAリガンドは、濃縮の効率次第で中央値が5倍の過剰発現(1.8〜135倍の範囲)で、濃縮がん細胞上で常に過剰発現された。同じことが、DDR1、SOX9、CRABP1/2、EYA2、LAMC2、MUC1またはKLK10のようなその他の頻繁に提示されたいくつかのTOP100抗原についても当てはまった。しかし、その他のいくつかの抗原、特に、Toll様受容体(TLR3、TLR7)または2’−5’−オリゴアデニル酸シンターゼ様タンパク質シンターゼ(OASL)などのインターフェロンによって上方制御されることが知られているものは、腫瘍細胞によって提示されることが明白に示され得ず、むしろCD45+白血球および/または間質細胞上で強い過剰発現を示した。腫瘍関連抗原の他に、本発明者らは、細胞型特異的発現を有する起源タンパク質からのリガンドもまた認識した。例えば、CD8、CD132またはリンパ球特異的タンパク質1(LSP1)に由来するリガンドは、CD45+細胞上で高度に過剰発現することが見出され、間質の内皮細胞によって発現される可能性が高いフォン・ウィルブランド(van Willebrand)因子(vWF)は、間質サブセット内で高度に過剰発現することが見いだされ、この細胞型特異的アプローチの強みが強調された。
実施例4:MUC16誘導リガンドの免疫原性解析
ペプチドワクチンの応用性にとって、免疫原性は必須である。同定されたHLAリガンドの免疫原性を評価するために、本発明者らは、人工抗原提示細胞と健常ドナーの血液から単離されたT細胞とが関与する、T細胞プライミングプロトコルを用いた。トップのEOC関連抗原MUC16に関するこの分析の結果が、表11に提示される。これまでに試験された23種の異なるペプチドのうち、18種が少なくとも1/3のドナーにおいて免疫原性であることが示された。このほぼ80%の認識率は、ヒト集団におけるT細胞を認識する未感作MUC16の存在を確認する。その他のTOP100抗原(例えば、IDO1、LGALS1)でも、同様の結果が得られている。
表11: MUC16 / CA-125からのHLAリガンドを提示したEOCの免疫原性分析
実施例5:HLAリガンド提示のためのバイオマーカー
抗原特異的がん免疫療法(例えば、ペプチドワクチン接種、養子T細胞移入)は、短い時間枠で候補抗原の厳密な選択を必要とする。しかし、HLAリガンドーム解析は、適切な材料の欠如のために、常に可能であるとは限らない。実現可能な代案は、腫瘍細胞上のHLAリガンドの存在を予測するためのバイオマーカーの使用であろう。免疫組織化学検査によって分析されたタンパク質発現(免疫反応性スコア、IRS)が、HLAリガンド提示の代理マーカーの役割を果たすかどうかを評価するために、本発明者らは、免疫組織化学検査によって、TOP100 MHCクラスI抗原MUC16およびIDO1ならびにTOP100 MHCクラスII抗原MSLNを分析し、染色強度(図4A)を同一腫瘍上のHLAリガンドの存在または非存在と相関させた。MUC16およびMSLNの双方について、染色スコアは、各起源タンパク質のHLAリガンドを提示する腫瘍上で有意に高かった(図4C)。手術日に判定されたCA−125血清レベルについても同様であり(図4D)、ペプチドワクチン接種の候補抗原の適切な選択のために、これらのパラメーターを使用し得ることが示唆される。対照的に、IDO1はリガンド提示との有意な関連性を示さなかった。
実施例6:MUC16/MSLN軸の予後関連性
免疫療法の標的としてのそれらの重要性のために、本発明者らは、MSLNおよびMUC16もまた、本発明者らの免疫ペプチドーム集団と類似した患者における予後関連性を有するかどうかを評価することを希望した。この目的のために、本発明者らは、高悪性度漿液性卵巣がん(FIGO病期分類II〜III)の組織マイクロアレイ(TMA)中の免疫組織化学検査によって、双方の抗原の発現ならびにT細胞浸潤の程度を分析した。予後に関連する交絡因子を回避するために、本発明者らは、至適に減量されたがん(<1cm未満の残留塊)を有する71人の患者に、本発明者らの分析を限定した。
本発明者らはMUC16染色の予後効果を観察しなかった一方で、強いMSLN染色は、顕著な境界有意性(p=0.0572)で、全生存期間中央値の50ヶ月から28ヶ月への減少と関連していた(図5A)。それらの予後の関連性が異なるにもかかわらず、MUC16およびMSLNの染色スコアは、直接的かつ非常に有意な相関を示した(スピアマン相関係数r=0.5237;95%ci=0.3159−0.6835、両側有意性p<0.001)。
T細胞浸潤の評価のために、本発明者らは、腫瘍(CD3E)および線維血管間質(CD3S)の上皮内区画におけるCD3 T細胞の数を別々に評価した。注目すべきことに、上皮内T細胞の数が有意な(p<0.0063)予後の影響を示したのに対して、周囲の間質の浸潤のみでは、予後の関連性はなかった(図5B)。MSLNとCD3染色を組み合わせたサブグループ解析においてのみ、CD3E(p<0.001)およびCD3S(p<0.0049)の双方について、低MSLNおよび高T細胞浸潤を有する腫瘍に対する有意な予後の利点が観察された(図5C)。最も顕著なことに、高い腫瘍内T細胞浸潤(CD3E)と低いMSLN染色の組み合わせは、長期のがん生存者(3年を超えて生存が確認された10/11人の患者)のサブセットを画定した。
参考文献
Allison, J. P. et al., Science 270 (1995)
Andersen, R. S. et al.,Nat.Protoc. 7 (2012)
Appay, V. et al., Eur.J Immunol. 36 (2006)
Banchereau, J. et al., Cell 106 (2001)
Beatty, G. et al., J Immunol 166 (2001)
Beggs, J. D., Nature 275(1978)
Benjamini, Y. et al., Journal of the Royal StatisticalSociety.Series B (Methodological), Vol.57(1995)
Boulter, J. M. et al., Protein Eng16 (2003)
Braumuller, H. et al., Nature(2013)
Brossart, P. et al., Blood 90 (1997)
Bruckdorfer, T. et al.,Curr.Pharm.Biotechnol. 5 (2004)
Card, K. F. et al., CancerImmunol.Immunother. 53 (2004)
Chanock, S. J. et al.,Hum.Immunol. 65 (2004)
Cohen, C. J. et al., J Mol.Recognit. 16 (2003a)
Cohen, C. J. et al., J Immunol. 170 (2003b)
Cohen, S. N. et al.,Proc.Natl.Acad.Sci.U.S.A 69 (1972)
Coligan JE et al., (1995)
Colombetti, S. et al., J Immunol. 176 (2006)
Dengjel, J. et al., Clin CancerRes 12 (2006)
Denkberg, G. et al., J Immunol. 171 (2003)
Falk, K. et al., Nature 351 (1991)
Fong, L. et al.,Proc.Natl.Acad.Sci.U.S.A 98 (2001)
Gabrilovich, D. I. et al., Nat.Med 2 (1996)
Gattinoni, L. et al.,Nat.Rev.Immunol. 6 (2006)
Gnjatic, S. et al., ProcNatl.Acad.Sci.U.S.A 100 (2003)
Godkin, A. et al., Int.Immunol 9 (1997)
Green MR et al., 4th,(2012)
Greenfield EA, 2nd,(2014)
Hwang, M. L. et al., J Immunol. 179 (2007)
Jung, G. et al., Proc Natl Acad Sci U S A 84 (1987)
Kibbe AH, rd, (2000)
Krieg, A. M., Nat.Rev.Drug Discov.5 (2006)
Liddy, N. et al., Nat.Med. 18 (2012)
Ljunggren, H. G. et al., J Exp.Med162 (1985)
Longenecker, B. M. et al., AnnN.Y.Acad.Sci. 690 (1993)
Lukas, T. J. et al.,Proc.Natl.Acad.Sci.U.S.A 78 (1981)
Lundblad RL, 3rd, (2004)
Meziere, C. et al., J Immunol 159 (1997)
Morgan, R. A. et al., Science 314 (2006)
Mori, M. et al., Transplantation 64 (1997)
Mortara, L. et al., Clin CancerRes. 12 (2006)
Mueller, L. N. et al., JProteome.Res. 7 (2008)
Mueller, L. N. et al., Proteomics.7 (2007)
Mumberg, D. et al.,Proc.Natl.Acad.Sci.U.S.A 96 (1999)
Pinheiro J et al., (2015)
Plebanski, M. et al., Eur.JImmunol 25 (1995)
Porta, C. et al., Virology 202 (1994)
Rammensee, H. G. et al.,Immunogenetics 50 (1999)
Rini, B. I. et al., Cancer 107 (2006)
Rock, K. L. et al., Science 249 (1990)
Rodenko, B. et al., Nat.Protoc. 1 (2006)
Saiki, R. K. et al., Science 239 (1988)
Seeger, F. H. et al.,Immunogenetics 49 (1999)
Sherman F et al., (1986)
Singh-Jasuja, H. et al., CancerImmunol.Immunother. 53 (2004)
Small, E. J. et al., J Clin Oncol.24 (2006)
Sturm, M. et al.,BMC.Bioinformatics. 9 (2008)
Teufel, R. et al., Cell Mol.LifeSci. 62 (2005)
Tran, E. et al., Science 344 (2014)
Walter, S. et al., J.Immunol. 171 (2003)
Walter, S. et al., Nat Med. 18 (2012)
Willcox, B. E. et al., ProteinSci. 8 (1999)
Zaremba, S. et al., Cancer Res. 57 (1997)
Siegel, R., Ma, J., Zou, Z. & Jemal, CA Cancer J. Clin. 64, 9-29 (2014).
Coleman, R.L.et al Nat. Rev. Clin. Oncol. 10, 211-224 (2013).
Herzog, T.J. & Pothuri,B.. Nat. Clin. Pract. Oncol. 3, 604-611 (2006).
Kandalaft, L.E., Powell,D.J., Jr., Singh, N. & Coukos, G. J.Clin. Oncol. 29, 925-933 (2011).
Zhang,L., et al. N. Engl. J. Med. 348,203-213 (2003).
Schlienger,K., et al. Clin. Cancer Res. 9,1517-1527 (2003).
Matsuzaki,J., et al. Proc. Natl. Acad. Sci. U. S. A. 107, 7875-7880 (2010).
Fisk, B., Blevins, T.L.,Wharton, J.T. & Ioannides, C.G. J.Exp. Med. 181, 2109-2117 (1995).
Curiel,T.J., et al. Nat. Med. 10, 942-949 (2004).
Vlad,A.M., et al. Cancer Immunol. Immunother. 59,293-301 (2010).
Hodi,F.S., et al. Proc. Natl. Acad. Sci. U. S. A. 105, 3005-3010 (2008).
Robert,C., et al. Lancet 384, 1109-1117 (2014).
Wolchok,J.D., et al. N. Engl. J. Med. 369, 122-133 (2013).
Rosenberg,S.A., et al.. Clin. Cancer Res. 17, 4550-4557 (2011).
Walter,S., et al. Nat. Med. 18, 1254-1261 (2012).
Rosenberg,S.A. Sci. Transl. Med. 4, 127ps128 (2012).
Tran,E., et al.. Science 344,641-645 (2014).
Mantia-Smaldone, G.M., Corr,B. & Chu, C.S. Hum. Vaccin.Immunother. 8, 1179-1191 (2012).
Haridas, D., et al. FASEB J. 28, 4183-4199(2014).
Deng, J., et al. Cancer MetastasisRev. 32, 535-551 (2013).
Luo,L.Y., et al. Cancer Res. 63, 807-811(2003).
Uyttenhove,C., et al. Nat. Med. 9, 1269-1274 (2003).
Sorensen,R.B., et al.. PLoS One 4, e6910 (2009).
vanden Brule, F., et al. Lab. Invest. 83, 377-386 (2003).
Rubinstein,N., et al. Cancer Cell 5, 241-251(2004).
Perez-Diez,A., et al. Blood 109, 5346-5354(2007).
Braumuller,H., et al. Nature 494, 361-365(2013).
Hassan,R. & Ho, M. Eur. J. Cancer 44, 46-53 (2008).
Schoggins,J.W., et al. Nature 472, 481-485(2011).
Walter,S., et al. J. Immunol. 171,4974-4978 (2003).
Couzin-Frankel,J. Cancer immunotherapy. Science 342, 1432-1433 (2013).
Mellman,I., Coukos, G. & Dranoff, G. Nature480, 480-489 (2011).
Perez,S.A., et al. Cancer 116, 2071-2080(2010).
Matsushita,H., et al. Nature 482, 400-404(2012).
Robbins,P.F., et al. Nat. Med. 19, 747-752 (2013).
Gubin,M.M., et al. Nature 515, 577-581 (2014).
Andersen,R.S., et al. Cancer Res. 72,1642-1650 (2012).
Lu,Y.C., et al. Clin. Cancer Res. 20, 3401-3410 (2014).
Rolland, P., Deen, S.,Scott, I., Durrant, L. & Spendlove, I. Clin.CancerRes. 13,3591-3596 (2007).
Cheng,W.F., et al. Br. J. Cancer 100,1144-1153 (2009).
Berlin,C., et al. Leukemia (2014).
Blaustein, A. & Kurman,R.J. Blaustein's pathology of the femalegenital tract, (Springer, New York, NY, 2011).
Pham, D.L., et al. Int. J. Gynecol. Pathol. 32, 358-367 (2013).

Claims (39)

  1. 配列番号1〜配列番号549、および配列番号1〜配列番号xxx(SEQ ID No.xxx)と少なくとも88%相同的なその変異配列の群から選択されるアミノ酸配列を含んでなるペプチドおよびその薬学的に許容可能な塩であって;前記変異体が、主要組織適合性複合体(MHC)分子と結合し、および/またはT細胞を前記変異体ペプチドと交差反応させ;前記ペプチドが完全長ポリペプチドでない、ペプチド。
  2. MHCクラスIまたはII分子に結合する能力を有し、前記MHCに結合すると、CD4および/またはCD8T細胞によって認識されることができるようになる、請求項1に記載のペプチド。
  3. そのアミノ酸配列が、配列番号1〜配列番号549のいずれか1つに記載のアミノ酸、特に配列番号1〜配列番号319のいずれか1つに記載のアミノ酸の連続したストレッチを含む、請求項1または2に記載のペプチドまたはその変異体。
  4. 前記ペプチドまたはその変異体が、8〜100、好ましくは8〜30、より好ましくは8〜16のアミノ酸の全長を有し、最も好ましくは前記ペプチドが、配列番号1〜配列番号549のいずれかに記載のアミノ酸配列、特に配列番号1〜配列番号319のいずれか1つに記載のアミノ酸配列からなり、またはそれから本質的になる、請求項1〜3のいずれか一項に記載のペプチドまたはその変異体。
  5. 前記ペプチドが、修飾され、および/または非ペプチド結合を含む、請求項1〜4のいずれか一項に記載のペプチドまたはその変異体。
  6. 前記ペプチドが、特にHLA−DR抗原関連不変鎖(Ii)のN末端アミノ酸を含んでなる融合タンパク質の一部である、請求項1〜5のいずれか一項に記載のペプチドまたはその変異体。
  7. 請求項1〜6のいずれか一項に記載のペプチドまたはその変異体をエンコードする核酸であって、任意選択的に異種プロモーター配列と結合する、核酸。
  8. 請求項7に記載の核酸を発現する、発現ベクター。
  9. 請求項1〜6のいずれか一項に記載のペプチド、請求項7に記載の核酸または請求項8に記載の発現ベクターを含んでなり、好ましくは樹状細胞などの抗原提示細胞である、組換え宿主細胞。
  10. 医療において使用するための、請求項1〜6のいずれか一項に記載のペプチドまたはその変異体、請求項7に記載の核酸、請求項8に記載の発現ベクター、または請求項9に記載の宿主細胞。
  11. 請求項1〜6のいずれか一項に記載のペプチドを提示する、または請求項7に記載の核酸を発現する、または請求項8に記載の発現ベクターを有する、請求項9に記載の宿主細胞を培養するステップと、前記ペプチドまたはその変異体を前記宿主細胞またはその培養液から単離するステップとを含んでなる、請求項1〜6のいずれか一項に記載のペプチドまたはその変異体を製造する方法。
  12. T細胞を、適切な抗原提示細胞の表面に、または抗原提示細胞を模倣する人工コンストラクトの表面に発現される抗原負荷ヒトクラスIまたはII MHC分子に、前記T細胞を抗原特異的様式で活性化するのに十分な時間にわたり、生体外で接触させるステップを含んでなり、前記抗原が、請求項1〜4のいずれか一項に記載のペプチドである、活性化Tリンパ球を製造するインビトロ法。
  13. 請求項1〜4のいずれか一項に記載のアミノ酸配列を含んでなるポリペプチドを提示する細胞を選択的に認識する、請求項12に記載の方法によって製造される活性化Tリンパ球。
  14. 請求項13で定義される活性T細胞の有効数を患者に投与するステップを含んでなる、その標的細胞が、請求項1〜4のいずれか一項に記載のアミノ酸配列を含んでなるポリペプチドを提示する患者において、標的細胞を死滅させる方法。
  15. MHC分子と結合すると、好ましくは請求項1〜5のいずれか一項に記載のペプチドまたはその変異体である、請求項1〜5のいずれか一項に記載のペプチドまたはその変異体を特異的に認識する、特に可溶性または膜結合抗体である、抗体。
  16. がんの診断および/または治療において、またはがんに対する薬剤の製造において使用するための、請求項1〜6のいずれか一項に記載のペプチド、請求項7に記載の核酸、請求項8に記載の発現ベクター、請求項9に記載の細胞、請求項13に記載の活性化Tリンパ球または請求項15に記載の抗体の使用。
  17. がんが、ペプチド配列番号1〜配列番号549がそれに由来するタンパク質の過剰発現を示す、卵巣がん、非小細胞肺がん、小細胞肺がん、腎臓がん、脳がん、結腸または直腸がん、胃がん、肝臓がん、膵臓がん、前立腺がん、白血病、乳がん、メルケル細胞がん、黒色腫、食道がん、膀胱がん、子宮がん、胆嚢がん、胆管がん、およびその他の腫瘍の群から選択される、請求項16に記載の使用。
  18. (a)請求項1〜6のいずれか一項に記載のペプチド変異体、請求項7に記載の核酸、請求項8に記載の発現ベクター、請求項10に記載の細胞、請求項13に記載の活性化Tリンパ球、または請求項15に記載の抗体を含有する医薬組成物を溶液または凍結乾燥形態で含んでなる容器;
    (b)任意選択的に、前記凍結乾燥製剤のための希釈剤または再構成溶液を含有する第2の容器;
    (c)任意選択的に、配列番号1〜配列番号549からなる群から選択される少なくとももう1つのペプチド、および
    (d)任意選択的に、(i)前記溶液の使用、または(ii)前記凍結乾燥製剤の再構成および/または使用のための取扱説明書
    を含んでなるキット。
  19. (iii)緩衝液、(iv)希釈剤、(V)フィルター、(vi)針、または(V)シリンジの1つまたは複数をさらに含んでなる、請求項18に記載のキット。
  20. 前記ペプチドが、配列番号1〜配列番号549からなる群から選択される、請求項18または19に記載のキット。
  21. a)前記個々の患者からの腫瘍サンプルによって提示される、腫瘍関連ペプチド(TUMAP)を同定するステップと;
    b)a)で同定された前記ペプチドを、正常組織との比較で腫瘍における免疫原性および/または過剰提示について予備選別されたペプチド貯蔵庫と比較するステップと;
    c)少なくとも1つのペプチドを、前記患者において同定されたTUMAPと一致する前記貯蔵庫から選択するステップと;
    d)ステップc)に基づいて、前記(sid)個別化ワクチンを製造および/または処方するステップと
    を含んでなる、個々の患者のための化合物ベースのおよび/または細胞療法のための個別化抗がんワクチンを製造する方法。
  22. 前記TUMAPが、
    a1)前記腫瘍サンプルからの発現データを前記腫瘍サンプルの組織型に対応する正常組織サンプルからの発現データと比較して、前記腫瘍サンプルにおいて過剰発現されまたは異常に発現されるタンパク質を同定するステップと;
    a2)発現データを腫瘍サンプル中のMHCクラスIおよび/またはクラスII分子と結合しているMHCリガンドの配列と相関させて、腫瘍によって過剰発現されまたは異常に発現されるタンパク質に由来するMHCリガンドを同定するステップと
    を含んでなる方法によって同定される、請求項21に記載の方法。
  23. 結合ペプチドを前記腫瘍サンプルから単離されたMHC分子から溶出させて、前記溶出したリガンドを配列決定することで、MHCリガンドの配列が同定される、請求項21または22に記載の方法。
  24. 前記腫瘍サンプルの組織型に対応する前記正常組織が、前記同一患者から得られる、請求項21〜23のいずれか一項に記載の方法。
  25. 前記貯蔵庫に包含される前記ペプチドが、
    aa.正常組織または組織群と比較して悪性組織で過剰発現される遺伝子を同定するステップを含んでなる、マイクロアレイまたは配列決定ベース発現プロファイリングなどの高度並列法によって、ゲノム規模メッセンジャーリボ核酸(mRNA)発現解析を実施するステップと;
    ab.ステップaaで検出された、選択的に発現されまたは過剰発現される遺伝子によってコードされる、ペプチドを選択するステップと;
    ac.健常ドナーまたは前記患者からのヒトT細胞を使用した生体外免疫原性アッセイを含んでなる、前記選択されたペプチドによる生体内T細胞応答の誘導を判定するステップ;または
    ba.HLAリガンドを前記腫瘍サンプルから質量分析を使用して同定するステップと;
    bb.正常組織または組織群と比較して悪性組織で過剰発現される遺伝子を同定するステップを含んでなる、マイクロアレイまたは配列決定ベース発現プロファイリングなどの高度並列法によって、ゲノム規模メッセンジャーリボ核酸(mRNA)発現解析を実施するステップと;
    bc.前記同定されたHLAリガンドを前記遺伝子発現データと比較するステップと;
    bd.ステップbcで検出された、選択的に発現されまたは過剰発現される遺伝子によってコードされる、ペプチドを選択するステップと;
    be.ステップbdから選択されたTUMAPを腫瘍組織上で再検出し、健常組織上の検出欠如または希な検出が、mRNAレベルにおける過剰発現の関連性を裏付けるステップと;
    bf.健常ドナーまたは前記患者からのヒトT細胞を使用した生体外免疫原性アッセイを含んでなる、前記選択されたペプチドによる生体内T細胞応答の誘導を判定するステップと
    に基づいて同定される、請求項21〜24のいずれか一項に記載の方法。
  26. 前記貯蔵庫に包含される前記ペプチドの免疫原性が、生体外免疫原性アッセイ、個々のHLA結合についての患者免疫モニタリング、MHC多量体染色、ELISPOTアッセイおよび/または細胞内サイトカイン染色を含んでなる方法によって判定される、請求項21〜25のいずれか一項に記載の方法。
  27. 前記貯蔵庫が、配列番号1〜配列番号549からなる群から選択される複数のペプチドを含んでなる、請求項21〜26のいずれか一項に記載の方法。
  28. 前記個々の患者からの正常な対応する組織と比較して前記腫瘍サンプルに特有の少なくとも1つの変異を同定するステップと、前記ワクチンに包含するために、または細胞療法を作成するために、前記変異に関連があるペプチドを選択するステップとをさらに含んでなる、請求項21〜27のいずれか一項に記載の方法。
  29. 前記少なくとも1つの変異が、全ゲノム配列決定によって同定される、請求項28に記載の方法。
  30. HLAリガンドと反応性である、好ましくは組換え可溶性または膜結合T細胞受容体であるT細胞受容体であって、前記リガンドが、配列番号1〜配列番号549からなる群から選択されるアミノ酸配列と少なくとも75%の同一性を有する、T細胞受容体。
  31. 前記アミノ酸配列が、配列番号1〜配列番号549と少なくとも88%同一である、請求項30に記載のT細胞受容体。
  32. 前記アミノ酸配列が、配列番号1〜配列番号549のいずれかからなる、請求項30または31に記載のT細胞受容体。
  33. 前記T細胞受容体が可溶性分子として提供され、任意選択的に、免疫刺激ドメインまたは毒素などのさらなるエフェクター機能を保有する、請求項30〜32のいずれか一項に記載のT細胞受容体。
  34. 請求項30〜33のいずれか一項に記載のTCRをエンコードする核酸であって、任意選択的に異種プロモーター配列と結合する、核酸。
  35. 請求項34に記載の核酸を発現できる、発現ベクター。
  36. 請求項34に記載の核酸、または請求項15に記載の抗体をコードする核酸、または請求項35に記載の発現ベクターを含んでなる、好ましくはT細胞またはNK細胞である、宿主細胞。
  37. 請求項36に記載の宿主細胞を培養するステップと、前記T細胞受容体を前記宿主細胞および/またはその培養液から単離するステップとを含んでなる、請求項30〜33のいずれか一項に記載のT細胞受容体を製造する方法。
  38. a)配列番号1〜配列番号549からなる群から選択されるペプチド;
    b)a)に記載のペプチドおよび/またはペプチドMHC複合体と反応性のT細胞受容体;
    c)a)に記載のペプチドと、HLA−DR抗原関連不変鎖(Ii)のN末端のアミノ酸1〜80とを含んでなる融合タンパク質;
    d)a)〜c)のいずれかをコードする核酸、または前記核酸を含んでなる発現ベクター;
    e)d)の発現ベクターを含んでなる宿主細胞;
    f)T細胞を、抗原特異的様式でT細胞を活性化するのに十分な時間にわたり、適切な抗原提示細胞の表面に発現されるa)に記載のペプチドと生体外で接触させるステップを含んでなる方法、ならびにこれらの活性化T細胞を自己または他の患者に移入する方法によって得られる、活性化Tリンパ球;
    g)a)に記載のペプチドおよび/またはペプチド−MHC複合体および/またはa)に記載のペプチドを提示する細胞と反応性であり、例えば、免疫活性化ドメインまたは毒素との融合によって潜在的に修飾される、抗体、または可溶性T細胞受容体;
    h)配列番号1〜配列番号549からなる群から選択されるペプチドを認識し、および/または配列番号1〜配列番号549からなる群から選択されるペプチドとMHC分子との複合体を認識する、アプタマー;
    i)a)〜h)のいずれかに記載のコンジュゲートされまたは標識されたペプチドまたはスキャフォールド
    からなる群から選択される、少なくとも1つの活性成分と、薬学的に許容可能な担体、および任意選択的に、薬学的に許容可能な賦形剤および/または安定剤を含んでなる医薬組成物。
  39. 請求項1〜5のいずれか一項に記載のペプチドまたはその変異体、好ましくはMHC分子と結合している請求項1〜5のいずれか一項に記載のペプチドまたはその変異体を特異的に認識する、アプタマー。
JP2020071602A 2015-07-15 2020-04-13 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ Active JP7074370B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562192670P 2015-07-15 2015-07-15
GBGB1512369.8A GB201512369D0 (en) 2015-07-15 2015-07-15 Novel peptides and combination of peptides for use in immunotherapy against epithelial ovarian cancer and other cancers
GB1512369.8 2015-07-15
US62/192,670 2015-07-15

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018501316A Division JP6862411B2 (ja) 2015-07-15 2016-07-14 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ

Publications (2)

Publication Number Publication Date
JP2020171283A true JP2020171283A (ja) 2020-10-22
JP7074370B2 JP7074370B2 (ja) 2022-05-24

Family

ID=54013984

Family Applications (10)

Application Number Title Priority Date Filing Date
JP2018501316A Active JP6862411B2 (ja) 2015-07-15 2016-07-14 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
JP2020052558A Active JP7074367B2 (ja) 2015-07-15 2020-03-24 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
JP2020059702A Active JP7239992B2 (ja) 2015-07-15 2020-03-30 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
JP2020068264A Active JP7074369B2 (ja) 2015-07-15 2020-04-06 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
JP2020071602A Active JP7074370B2 (ja) 2015-07-15 2020-04-13 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
JP2020074570A Active JP7239993B2 (ja) 2015-07-15 2020-04-20 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
JP2020078116A Pending JP2020182458A (ja) 2015-07-15 2020-04-27 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
JP2020082964A Pending JP2020198875A (ja) 2015-07-15 2020-05-11 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
JP2020086514A Active JP7205919B2 (ja) 2015-07-15 2020-05-18 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
JP2020090207A Pending JP2021000078A (ja) 2015-07-15 2020-05-25 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2018501316A Active JP6862411B2 (ja) 2015-07-15 2016-07-14 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
JP2020052558A Active JP7074367B2 (ja) 2015-07-15 2020-03-24 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
JP2020059702A Active JP7239992B2 (ja) 2015-07-15 2020-03-30 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
JP2020068264A Active JP7074369B2 (ja) 2015-07-15 2020-04-06 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ

Family Applications After (5)

Application Number Title Priority Date Filing Date
JP2020074570A Active JP7239993B2 (ja) 2015-07-15 2020-04-20 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
JP2020078116A Pending JP2020182458A (ja) 2015-07-15 2020-04-27 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
JP2020082964A Pending JP2020198875A (ja) 2015-07-15 2020-05-11 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
JP2020086514A Active JP7205919B2 (ja) 2015-07-15 2020-05-18 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
JP2020090207A Pending JP2021000078A (ja) 2015-07-15 2020-05-25 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ

Country Status (37)

Country Link
US (22) US9889159B2 (ja)
EP (2) EP3705491A1 (ja)
JP (10) JP6862411B2 (ja)
KR (2) KR20220075451A (ja)
CN (2) CN114163501A (ja)
AU (4) AU2016293047B9 (ja)
BR (2) BR122023024959A2 (ja)
CA (2) CA3221097A1 (ja)
CL (5) CL2018000124A1 (ja)
CO (1) CO2018000252A2 (ja)
CR (4) CR20180027A (ja)
CY (1) CY1123505T1 (ja)
DK (1) DK3322717T3 (ja)
EA (1) EA201890027A1 (ja)
ES (1) ES2807832T3 (ja)
GB (1) GB201512369D0 (ja)
HK (1) HK1253574A1 (ja)
HR (1) HRP20201281T1 (ja)
HU (1) HUE049937T2 (ja)
IL (3) IL308200A (ja)
LT (1) LT3322717T (ja)
MA (3) MA41717A1 (ja)
MD (1) MD3322717T2 (ja)
ME (1) ME03808B (ja)
MX (1) MX2018000543A (ja)
MY (1) MY189596A (ja)
NZ (1) NZ739128A (ja)
PE (1) PE20180693A1 (ja)
PH (1) PH12018500005A1 (ja)
PL (1) PL3322717T3 (ja)
PT (1) PT3322717T (ja)
RS (1) RS60647B1 (ja)
SG (7) SG10202100298SA (ja)
SI (1) SI3322717T1 (ja)
UA (1) UA124875C2 (ja)
WO (1) WO2017009400A1 (ja)
ZA (1) ZA201800129B (ja)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3176170T3 (en) 2012-06-13 2019-01-28 Incyte Holdings Corp SUBSTITUTED TRICYCLIC RELATIONS AS FGFR INHIBITORS
ES2893725T3 (es) 2013-04-19 2022-02-09 Incyte Holdings Corp Heterocíclicos bicíclicos como inhibidores del FGFR
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
MA41551A (fr) 2015-02-20 2017-12-26 Incyte Corp Hétérocycles bicycliques utilisés en tant qu'inhibiteurs de fgfr4
CN107438607B (zh) 2015-02-20 2021-02-05 因赛特公司 作为fgfr抑制剂的双环杂环
GB201507030D0 (en) * 2015-04-24 2015-06-10 Immatics Biotechnologies Gmbh Immunotherapy against lung cancers, in particular NSCLC
MY189596A (en) 2015-07-15 2022-02-18 Immatics Biotechnologies Gmbh A novel peptides for use in immunotherapy against epithelial ovarian cancer and other cancers
PE20181535A1 (es) 2015-12-16 2018-09-26 Gritstone Oncology Inc Identificacion, fabricacion y uso de neoantigeno
JP7075125B2 (ja) 2016-05-25 2022-05-25 イマティクス バイオテクノロジーズ ゲーエムベーハー 標的としてのおよび胆嚢がんおよび胆管がんおよびその他のがんに対する免疫療法で使用するための新規ペプチド、ペプチド組み合わせ
GB201609193D0 (en) 2016-05-25 2016-07-06 Immatics Biotechnologies Gmbh Novel peptides, combination of peptides as targets for use in immunotherapy against gallbladder cancer and cholangiocarcinoma and other cancers
EP4317432A3 (en) 2016-12-08 2024-04-17 Immatics Biotechnologies GmbH T cell receptors with improved pairing
DE102016123893A1 (de) 2016-12-08 2018-06-14 Immatics Biotechnologies Gmbh T-Zellrezeptoren mit verbesserter Bindung
TWI796314B (zh) * 2017-01-27 2023-03-21 德商英麥提克生物技術股份有限公司 用於卵巢癌和其他癌症免疫治療的新型肽和肽組合物
LT3573647T (lt) 2017-01-27 2023-06-12 Immatics Biotechnologies Gmbh Nauji peptidai ir peptidų deriniai, skirti naudoti imunoterapijai prieš kiaušidžių ir kitų tipų vėžį
AR110857A1 (es) 2017-01-27 2019-05-08 Immatics Biotechnologies Gmbh Péptidos y combinaciones de péptidos para el uso en la inmunoterapia contra el cáncer de ovario y otros tipos de cáncer
AR111960A1 (es) 2017-05-26 2019-09-04 Incyte Corp Formas cristalinas de un inhibidor de fgfr y procesos para su preparación
RS61817B1 (sr) 2017-07-14 2021-06-30 Immatics Biotechnologies Gmbh Poboljšani polipeptidni molekul sa dvojnom specifičnošću
EP3694532A4 (en) 2017-10-10 2021-07-14 Gritstone Oncology, Inc. IDENTIFICATION OF NEOANTIGENS BY MEANS OF HOT SPOTS
JP2021503897A (ja) 2017-11-22 2021-02-15 グリットストーン オンコロジー インコーポレイテッド 新生抗原のためのジャンクションエピトープ提示の低減
DE102017127984B4 (de) 2017-11-27 2019-12-05 Immatics US, Inc. Verfahren für die Vermehrung und Aktivierung von γδ-T-Zellen
WO2019157298A1 (en) 2018-02-09 2019-08-15 Immatics US, Inc. Methods for manufacturing t cells
BR112020022392A2 (pt) 2018-05-04 2021-02-02 Incyte Corporation formas sólidas de um inibidor de fgfr e processos para preparação das mesmas
MA52493A (fr) 2018-05-04 2021-03-10 Incyte Corp Sels d'un inhibiteur de fgfr
CN110531077B (zh) * 2018-05-25 2023-07-07 荣昌生物制药(烟台)股份有限公司 间皮素免疫组化检测试剂盒
WO2020028562A1 (en) * 2018-07-31 2020-02-06 Loma Linda University Snail sirna-loaded mesoporous silica nanoparticles
WO2020185532A1 (en) 2019-03-08 2020-09-17 Incyte Corporation Methods of treating cancer with an fgfr inhibitor
US20200297768A1 (en) 2019-03-19 2020-09-24 Immatics US, Inc. Cd28 t cell cultures, compositions, and methods of using thereof
MX2021014552A (es) 2019-05-27 2022-02-11 Immatics Us Inc Vectores viricos y uso de los mismos en terapias celulares adoptivas.
EP3980776A1 (en) 2019-06-06 2022-04-13 Immatics Biotechnologies GmbH Sorting with counter selection using sequence similar peptides
EP3990483A4 (en) * 2019-06-25 2024-02-21 Univ Montreal NOVEL TUMOR-SPECIFIC ANTIGENS FOR OVARIAN CANCER AND THEIR APPLICATIONS
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US20210032370A1 (en) 2019-08-02 2021-02-04 Immatics Biotechnologies Gmbh Recruiting agent further binding an mhc molecule
CR20220169A (es) 2019-10-14 2022-10-27 Incyte Corp Heterociclos bicíclicos como inhibidores de fgfr
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
JP2023505258A (ja) 2019-12-04 2023-02-08 インサイト・コーポレイション Fgfr阻害剤としての三環式複素環
WO2021113462A1 (en) 2019-12-04 2021-06-10 Incyte Corporation Derivatives of an fgfr inhibitor
CA3168729A1 (en) 2020-02-24 2021-09-02 Melinda MATA Methods for expanding t cells for the treatment of cancer and related malignancies
DE102020106710A1 (de) 2020-03-11 2021-09-16 Immatics US, Inc. Wpre-mutantenkonstrukte, zusammensetzungen und zugehörige verfahren
DE102020111571A1 (de) 2020-03-11 2021-09-16 Immatics US, Inc. Wpre-mutantenkonstrukte, zusammensetzungen und zugehörige verfahren
TW202227616A (zh) 2020-08-21 2022-07-16 美商英麥提克斯股份有限公司 分離cd8+選擇t細胞的方法
WO2022147029A2 (en) 2020-12-31 2022-07-07 Immatics US, Inc. Cd8 polypeptides, compositions, and methods of using thereof
EP4326858A1 (en) * 2021-04-23 2024-02-28 VLP Therapeutics, Inc. Galectin-targeting immunotherapy
WO2022233957A1 (en) 2021-05-05 2022-11-10 Immatics Biotechnologies Gmbh Bma031 antigen binding polypeptides
CN113241177A (zh) * 2021-05-19 2021-08-10 上海宝藤生物医药科技股份有限公司 一种评估免疫力水平的方法、装置、设备及存储介质
WO2022261160A1 (en) 2021-06-09 2022-12-15 Incyte Corporation Tricyclic heterocycles as fgfr inhibitors
WO2023025851A1 (en) * 2021-08-24 2023-03-02 Immatics US, Inc. Selection of immune cells using peptide mhc complexes generated by conditional ligand exchange
TW202332765A (zh) 2021-09-20 2023-08-16 美商英麥提克斯股份有限公司 用於t細胞療法之t細胞群體的單核球耗盡
WO2023081925A1 (en) 2021-11-08 2023-05-11 Immatics Biotechnologies Gmbh Adoptive cell therapy combination treatment and compositions thereof
US20230348561A1 (en) 2022-04-28 2023-11-02 Immatics US, Inc. Dominant negative tgfbeta receptor polypeptides, cd8 polypeptides, cells, compositions, and methods of using thereof
WO2023212697A1 (en) 2022-04-28 2023-11-02 Immatics US, Inc. Membrane-bound il-15, cd8 polypeptides, cells, compositions, and methods of using thereof
US20240066127A1 (en) 2022-04-28 2024-02-29 Immatics US, Inc. Il-12 polypeptides, il-15 polypeptides, il-18 polypeptides, cd8 polypeptides, compositions, and methods of using thereof
WO2023215825A1 (en) 2022-05-05 2023-11-09 Immatics US, Inc. Methods for improving t cell efficacy
CN114657158B (zh) * 2022-05-25 2022-10-21 深圳吉诺因生物科技有限公司 Ido1相关疫苗及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008500033A (ja) * 2004-05-25 2008-01-10 イマティクス バイオテクノロジーズ ゲーエムベーハー Mhc分子を結合する腫瘍関連ペプチド
JP2013521789A (ja) * 2010-03-19 2013-06-13 イマティクス バイオテクノロジーズ ゲーエムベーハー 消化管癌および胃癌を含む数種の腫瘍に対する新規免疫療法
WO2015018805A1 (en) * 2013-08-05 2015-02-12 Immatics Biotechnologies Gmbh Novel immunotherapy against several tumors, such as lung cancer, including nsclc

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004006837A2 (en) 2002-07-12 2004-01-22 The Johns Hopkins University Mesothelin vaccines and model systems
AU2003299643A1 (en) * 2002-12-04 2004-06-23 Diadexus, Inc. Compositions, splice variants and methods relating to colon specific genes and proteins
US20110177079A1 (en) * 2004-09-08 2011-07-21 Ludwig Institute For Cancer Research Cancer-testis antigens
WO2006106912A1 (ja) * 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha 癌関連抗原アナログペプチド、およびその利用
EP1760089B1 (en) * 2005-09-05 2009-08-19 Immatics Biotechnologies GmbH Tumor-associated peptides binding to human leukocyte antigen (HLA) class I or II molecules and related anti-cancer vaccine
DE602005020047D1 (de) 2005-09-05 2010-04-29 Immatics Biotechnologies Gmbh Tumor-assoziierte Peptide, welche an unterschiedliche menschliche Leukozytenantigene der Klasse II binden
US8124408B2 (en) * 2006-10-04 2012-02-28 Janssen Pharmaceutica N.V. Preparation of inactivated artificial antigen presenting cells and their use in cell therapies
US8097242B2 (en) 2006-10-05 2012-01-17 The Board Of Trustees Of The University Of Arkansas Target CA125 peptides for cancer immunotherapy
CA2863010C (en) * 2007-07-27 2017-01-24 Immatics Biotechnologies Gmbh Novel immunotherapy against neuronal and brain tumors
MX2010001090A (es) * 2007-07-27 2010-04-07 Immatics Biotechnologies Gmbh Nuevos epitopos inmunogenicos para inmunoterapia.
US20100260764A1 (en) * 2007-08-29 2010-10-14 Marinkovich M Peter Compositions and methods for inhibiting squamous cell carcinoma
DK2119726T5 (en) 2008-05-14 2018-03-26 Immatics Biotechnologies Gmbh Novel and powerful MHC class II peptides derived from survivin and neurocan
ES2536465T3 (es) * 2008-10-01 2015-05-25 Immatics Biotechnologies Gmbh Composición de péptidos tumor-asociados y relacionados con la vacuna contra el cáncer para el tratamiento de glioblastoma (GBM) y otros cánceres
GB201006360D0 (en) * 2010-04-16 2010-06-02 Immatics Biotechnologies Gmbh Method for differentially quantifying naturally processed HLA-restricted peptides for cancer, autoimmune and infectious diseases immunotherapy development
US9688991B2 (en) * 2012-07-13 2017-06-27 Albert Einstein College Of Medicine, Inc. Aptamer-targetted antigen delivery
TWI666026B (zh) * 2013-03-29 2019-07-21 日商大日本住友製藥股份有限公司 Wt1抗原胜肽結合疫苗
GB201319446D0 (en) * 2013-11-04 2013-12-18 Immatics Biotechnologies Gmbh Personalized immunotherapy against several neuronal and brain tumors
IL260877B2 (en) * 2015-03-27 2023-10-01 Immatics Biotechnologies Gmbh New peptides and a combination of peptides for use in immunotherapy against different types of tumors
GB201505305D0 (en) * 2015-03-27 2015-05-13 Immatics Biotechnologies Gmbh Novel Peptides and combination of peptides for use in immunotherapy against various tumors
GB201507030D0 (en) 2015-04-24 2015-06-10 Immatics Biotechnologies Gmbh Immunotherapy against lung cancers, in particular NSCLC
MY189596A (en) 2015-07-15 2022-02-18 Immatics Biotechnologies Gmbh A novel peptides for use in immunotherapy against epithelial ovarian cancer and other cancers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008500033A (ja) * 2004-05-25 2008-01-10 イマティクス バイオテクノロジーズ ゲーエムベーハー Mhc分子を結合する腫瘍関連ペプチド
JP2013521789A (ja) * 2010-03-19 2013-06-13 イマティクス バイオテクノロジーズ ゲーエムベーハー 消化管癌および胃癌を含む数種の腫瘍に対する新規免疫療法
WO2015018805A1 (en) * 2013-08-05 2015-02-12 Immatics Biotechnologies Gmbh Novel immunotherapy against several tumors, such as lung cancer, including nsclc

Also Published As

Publication number Publication date
PL3322717T3 (pl) 2020-11-16
ME03808B (me) 2021-04-20
US20210260123A1 (en) 2021-08-26
AU2020203971B2 (en) 2021-11-25
JP2018531581A (ja) 2018-11-01
SI3322717T1 (sl) 2020-09-30
US20200316125A1 (en) 2020-10-08
JP2020167995A (ja) 2020-10-15
JP7074369B2 (ja) 2022-05-24
CN114163501A (zh) 2022-03-11
UA124875C2 (uk) 2021-12-08
US20230285458A1 (en) 2023-09-14
LT3322717T (lt) 2020-08-25
US11819518B2 (en) 2023-11-21
CL2019003313A1 (es) 2020-03-13
EP3322717B1 (en) 2020-06-10
JP7239993B2 (ja) 2023-03-15
JP7205919B2 (ja) 2023-01-17
CR20200408A (es) 2020-10-08
MA50542A (fr) 2020-09-09
DK3322717T3 (da) 2020-08-10
GB201512369D0 (en) 2015-08-19
PE20180693A1 (es) 2018-04-23
AU2022200745A1 (en) 2022-02-24
US20210260122A1 (en) 2021-08-26
SG10202100294WA (en) 2021-02-25
US10722538B2 (en) 2020-07-28
JP7074367B2 (ja) 2022-05-24
US20200155603A1 (en) 2020-05-21
IL256697B (en) 2022-05-01
IL308200A (en) 2024-01-01
RS60647B1 (sr) 2020-09-30
US20230241106A1 (en) 2023-08-03
EP3322717A1 (en) 2018-05-23
SG10202100296PA (en) 2021-02-25
ES2807832T3 (es) 2021-02-24
US20190381103A1 (en) 2019-12-19
US20180117085A1 (en) 2018-05-03
AU2016293047B2 (en) 2020-09-17
EA201890027A1 (ru) 2018-06-29
CO2018000252A2 (es) 2018-05-31
HRP20201281T1 (hr) 2020-11-13
US20210252066A1 (en) 2021-08-19
SG10202100291XA (en) 2021-02-25
CR20180027A (es) 2018-07-23
MX2018000543A (es) 2018-05-22
CN107922469A (zh) 2018-04-17
NZ739128A (en) 2022-04-29
EP3705491A1 (en) 2020-09-09
SG10202100297QA (en) 2021-02-25
HUE049937T2 (hu) 2020-11-30
US20200000849A1 (en) 2020-01-02
CL2018000124A1 (es) 2018-05-18
PH12018500005A1 (en) 2018-07-09
US11071756B2 (en) 2021-07-27
US10639332B2 (en) 2020-05-05
IL292131A (en) 2022-06-01
US20200000850A1 (en) 2020-01-02
US11246889B2 (en) 2022-02-15
MD3322717T2 (ro) 2020-11-30
CL2019003311A1 (es) 2020-03-13
US11806366B2 (en) 2023-11-07
BR122023024959A2 (pt) 2024-01-16
BR112017028558A2 (pt) 2018-09-04
US11278571B2 (en) 2022-03-22
US10639331B2 (en) 2020-05-05
JP2020127401A (ja) 2020-08-27
HK1253574A1 (zh) 2019-06-21
US9889159B2 (en) 2018-02-13
US10888587B2 (en) 2021-01-12
AU2022200745B2 (en) 2024-01-18
AU2016293047B9 (en) 2020-10-29
US10568909B2 (en) 2020-02-25
SG10202100298SA (en) 2021-02-25
US20210106623A1 (en) 2021-04-15
WO2017009400A1 (en) 2017-01-19
KR20180030506A (ko) 2018-03-23
AU2020203971A1 (en) 2020-07-02
US20230190813A1 (en) 2023-06-22
US10881690B2 (en) 2021-01-05
SG10202100295RA (en) 2021-02-25
JP7074370B2 (ja) 2022-05-24
US20210106624A1 (en) 2021-04-15
MY189596A (en) 2022-02-18
JP2020198875A (ja) 2020-12-17
US20230086100A1 (en) 2023-03-23
AU2016293047A1 (en) 2018-02-08
JP2020182458A (ja) 2020-11-12
CA2992506A1 (en) 2017-01-19
SG10202100292VA (en) 2021-02-25
JP2020156480A (ja) 2020-10-01
US20210252064A1 (en) 2021-08-19
KR20220075451A (ko) 2022-06-08
JP7239992B2 (ja) 2023-03-15
CL2019003310A1 (es) 2020-04-24
ZA201800129B (en) 2018-12-19
CA3221097A1 (en) 2017-01-19
CY1123505T1 (el) 2022-03-24
JP2020182451A (ja) 2020-11-12
US20170035807A1 (en) 2017-02-09
CL2019003312A1 (es) 2020-03-13
JP2021000078A (ja) 2021-01-07
US20200316127A1 (en) 2020-10-08
MA42441B1 (fr) 2020-07-29
US10463696B2 (en) 2019-11-05
PT3322717T (pt) 2020-07-27
AU2020256318A1 (en) 2020-11-12
IL256697A (en) 2018-03-29
CR20200410A (es) 2020-10-12
US20200316126A1 (en) 2020-10-08
AU2016293047A2 (en) 2018-03-15
MA41717A1 (fr) 2019-05-31
JP6862411B2 (ja) 2021-04-21
US10869897B2 (en) 2020-12-22
US20230241107A1 (en) 2023-08-03
US20230201259A1 (en) 2023-06-29
CR20200409A (es) 2020-10-16
US20210252065A1 (en) 2021-08-19
JP2020191862A (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
JP7074370B2 (ja) 上皮性卵巣がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
JP2021040639A (ja) 前立腺がんおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
JP2019511214A (ja) 子宮がん治療法
JP2022502015A (ja) がんに対する免疫療法で使用するためのb*44拘束性ペプチドおよび関連方法
JP2020530759A (ja) Nsclc、sclc、およびその他のがんをはじめとする肺がんに対する免疫療法で使用するための新規ペプチドおよびペプチド併用
JP2021045150A (ja) Amlおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
JP2021045124A (ja) Nhlおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
JP2022502358A (ja) がんに対するa*01拘束性ペプチドおよびペプチド組み合わせによる免疫療法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220502

R150 Certificate of patent or registration of utility model

Ref document number: 7074370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150