JP2020004475A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2020004475A
JP2020004475A JP2019139035A JP2019139035A JP2020004475A JP 2020004475 A JP2020004475 A JP 2020004475A JP 2019139035 A JP2019139035 A JP 2019139035A JP 2019139035 A JP2019139035 A JP 2019139035A JP 2020004475 A JP2020004475 A JP 2020004475A
Authority
JP
Japan
Prior art keywords
transistor
wiring
signal
potential
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2019139035A
Other languages
English (en)
Inventor
敦司 梅崎
Atsushi Umezaki
敦司 梅崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2020004475A publication Critical patent/JP2020004475A/ja
Priority to JP2021033574A priority Critical patent/JP2021103882A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/18Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages
    • G11C19/182Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes
    • G11C19/184Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes with field-effect transistors, e.g. MOS-FET
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/08104Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/01Modifications for accelerating switching
    • H03K19/017Modifications for accelerating switching in field-effect transistor circuits
    • H03K19/01707Modifications for accelerating switching in field-effect transistor circuits in asynchronous circuits
    • H03K19/01714Modifications for accelerating switching in field-effect transistor circuits in asynchronous circuits by bootstrapping, i.e. by positive feed-back
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • H03K19/018521Interface arrangements of complementary type, e.g. CMOS
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0876Supplementary capacities in pixels having special driving circuits and electrodes instead of being connected to common electrode or ground; Use of additional capacitively coupled compensation electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Logic Circuits (AREA)
  • Shift Register Type Memory (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Thin Film Transistor (AREA)
  • Electronic Switches (AREA)
  • Control Of El Displays (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

【課題】トランジスタが仮にディプレッション型である場合でも、安定して動作することができる半導体装置を提供する。【解決手段】開示する発明の一態様の半導体装置は、第1の電位を第1の配線に供給する機能を有する第1のトランジスタと、第2の電位を第1の配線に供給する機能を有する第2のトランジスタと、第1のトランジスタのゲートに第1のトランジスタがオンをオンにするための第3の電位を供給した後、第3の電位の供給を止める機能を有する第3のトランジスタと、第2の電位を第1のトランジスタのゲートに供給する機能を有する第4のトランジスタと、第1の信号にオフセットを施した第2の信号を生成する機能を有する第1の回路と、を有し、第4のトランジスタのゲートには、第2の信号が入力され、第2の信号の最小値は、第2の電位未満の値である。【選択図】図1

Description

本発明の一態様は、半導体装置及び表示装置に関する。
液晶テレビなどの大型表示装置の普及に伴い、より付加価値の高い表示装置の開発が進
められている。特に、一導電型のトランジスタのみを用いて駆動回路を構成する技術開発
が活発に進められている(特許文献1参照)。
図23に、特許文献1に記載された駆動回路を示す。特許文献1の駆動回路は、トラン
ジスタM1、トランジスタM2、トランジスタM3、トランジスタM4及び容量素子C1
を有する。特許文献1では、信号OUTをハイレベルとする場合には、トランジスタM1
のゲートを浮遊状態とし、容量素子C1の容量結合を用いてトランジスタM1のゲートの
電位を電位VDDよりも高くするブートストラップ動作が行われている。また、トランジ
スタM1のゲートを浮遊状態とするために、トランジスタM1のゲートと接続されるトラ
ンジスタ(例えばトランジスタM4)のゲートとソースとの間の電位差(以下、Vgsと
示す)を0[V]として、このトランジスタをオフにすることが行われている。
また、信号OUTをロウレベルとする場合には、信号INをハイレベルとして、トラン
ジスタM2及びトランジスタM3をオンにすることが行われている。
特開2002−328643号公報
トランジスタが仮にディプレッション型(ノーマリーオン型ともいう)である場合には
、トランジスタのVgsを0[V]としても、トランジスタがオフにならない。よって、
信号OUTをハイレベルとする場合において、トランジスタM3及びトランジスタM4が
オフにならないため、トランジスタM1のゲートを浮遊状態とすることができない。トラ
ンジスタM1のゲートを浮遊状態とすることができないと、ブートストラップ動作を正常
に行うことができずに、誤動作を起こすことがある。または、誤動作を起こさなくても、
動作可能な駆動周波数の範囲が狭くなることがある。
また、信号OUTをロウレベルとする場合において、表示装置の駆動回路の駆動電圧は
大きいため、トランジスタM2及びトランジスタM3のVgsも大きくなる。よって、ト
ランジスタの劣化が進み、やがて駆動回路が誤動作を起こすことがある。
そこで、本発明の一態様では、トランジスタが仮にディプレッション型であっても、安
定して動作することができる半導体装置を提供することを課題の一とする。また、トラン
ジスタの劣化を抑制することを課題の一とする。
開示する発明の一態様である半導体装置は、第1の電位を第1の配線に供給する機能を
有する第1のトランジスタと、第2の電位を第1の配線に供給する機能を有する第2のト
ランジスタと、第1のトランジスタのゲートに第1のトランジスタがオンになるための第
3の電位を供給した後、第3の電位の供給を止める機能を有する第3のトランジスタと、
第2の電位を第1のトランジスタのゲートに供給する機能を有する第4のトランジスタと
、第1の信号にオフセットを施した第2の信号を生成する機能を有する第1の回路と、を
有する。そして、第4のトランジスタのゲートには、第2の信号が入力される。また第2
の信号のロウレベルの電位は、第2の電位未満の電位である。
開示する発明の一態様である半導体装置は、第1の電位を第1の配線に供給する機能を
有する第1のトランジスタと、第2の電位を第1の配線に供給する機能を有する第2のト
ランジスタと、第1のトランジスタのゲートに第1のトランジスタがオンになるための第
3の電位を供給した後、第3の電位の供給を止める機能を有する第3のトランジスタと、
第2の電位を第1のトランジスタのゲートに供給する機能を有する第4のトランジスタと
、一方の電極に第1の信号が入力される容量素子と、容量素子の他方の電極に第4の電位
を供給する機能を有する第5のトランジスタと、を有する。そして、第4のトランジスタ
のゲートに、容量素子の他方の電極と接続される。また、第4の電位は、第2の電位未満
の電位である。
なお、上記半導体装置において、第2のトランジスタのゲートには、第1の信号が入力
されてもよい。
本発明の一態様により、トランジスタが仮にディプレッション型であっても、トランジス
タをオフにすることができる。また、トランジスタがオフのときのドレイン電流を小さく
することができる。よって、回路の誤動作を防止することができる。また、本発明の一態
様により、トランジスタのVgsを小さくすることができ、トランジスタの劣化を抑制す
ることができる。
本発明の一態様に係る半導体装置を説明するための図。 本発明の一態様に係る半導体装置を説明するための図。 本発明の一態様に係る半導体装置を説明するための図。 本発明の一態様に係る半導体装置を説明するための図。 本発明の一態様に係る半導体装置を説明するための図。 本発明の一態様に係る半導体装置を説明するための図。 本発明の一態様に係る半導体装置を説明するための図。 本発明の一態様に係る半導体装置を説明するための図。 本発明の一態様に係る半導体装置を説明するための図。 本発明の一態様に係る半導体装置を説明するための図。 本発明の一態様に係るシフトレジスタ回路を説明するための図。 本発明の一態様に係るシフトレジスタ回路を説明するための図。 本発明の一態様に係る表示装置を説明するための図。 本発明の一態様に係る酸化物材料の構造を説明する図。 本発明の一態様に係る酸化物材料の構造を説明する図。 本発明の一態様に係る酸化物材料の構造を説明する図。 本発明の一態様に係るトランジスタの構造を説明する図。 酸化物半導体層を用いたトランジスタ特性のグラフ。 トランジスタのオフ電流と測定時基板温度との関係を示す図。 本発明の一態様に係る電子機器を説明する図。 本発明の一態様に係る電子機器を説明する図。 本発明の一態様に係る半導体装置を説明するための図。 従来の駆動回路を説明する図。
本発明を説明するための実施の形態の一例について、図面を用いて以下に説明する。な
お、本発明の趣旨及びその範囲から逸脱することなく実施の形態の内容を変更することは
、当業者であれば容易である。よって、本発明は、以下に示す実施の形態の記載内容に限
定されない。
(実施の形態1)
本実施の形態では、入力信号にオフセットを施した信号を生成し、該信号によって駆動
する半導体装置の一例について説明する。
本実施の形態の半導体装置の構成について図1(A)を参照して説明する。図1(A)
は、本実施の形態における半導体装置の回路図を示す。図1(A)の半導体装置は、回路
100と、回路110と、を有する。回路100は、配線11、配線12、配線14及び
回路110と接続される。また、回路110は、配線15、配線13、配線16及び回路
100と接続される。なお、回路100及び回路110の構成に応じて、回路100及び
回路110と接続される配線等は適宜変更すればよい。
なお、明細書においては、XとYとが接続されている、と明示的に記載する場合は、X
とYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、X
とYとが直接接続されている場合とを含むものとする。
配線13には電位VL1が供給される。電位VL1は所定の電位である。なお、配線1
3は電位VL1を伝達する機能を有する。
配線14には電位VL2が供給される。電位VL2は所定の電位である。また、電位V
L2は電位VL1未満の電位である。なお、配線14は電位VL2を伝達する機能を有す
る。
配線15には電位VHが供給される。電位VHは所定の電位である。また、電位VHは
電位VL1を超えた電位である。なお、配線15は電位VHを伝達する機能を有する。
なお、配線13、配線14及び配線15を電源線ともいう。また、電位VL1、電位V
L2及び電位VHを電源電位ともいう。また、電位VL1、電位VL2及び電位VHは、
例えば電源回路等から供給される。
配線11には信号INが入力される。信号INは半導体装置の入力信号である。また、
信号INはデジタル信号であり、信号INのハイレベルの電位はVHであり、信号INの
ロウレベルの電位はVL1である。すなわち、配線11には電位VHと電位VL1とが選
択的に供給される。なお、配線11は信号INを伝達する機能を有する。
配線12には信号SEが入力される。信号SEはオフセット電圧を取得するタイミング
を制御するための信号である。また、信号SEはデジタル信号であり、信号SEのハイレ
ベルの電位はVL2を超えた電位であり、信号SEのロウレベルの電位はVL2又はVL
2未満の電位である。すなわち、配線12には、電位VL2を超えた電位と電位VL2又
はVL2未満の電位とが選択的に供給される。なお、配線12は信号SEを伝達する機能
を有する。
配線16からは信号OUTが出力される。信号OUTは半導体装置の出力信号である。
また、信号OUTはデジタル信号であり、信号OUTのハイレベルの電位はVHであり、
信号OUTのロウレベルの電位はVL1である。なお、配線16は信号OUTを伝達する
機能を有する。
なお、配線11、配線12及び配線16を信号線ともいう。また、信号INを入力信号
、信号SEを制御信号、信号OUTを出力信号ともいう。
回路100は、信号INにオフセットを施した信号INOを生成する機能を有する。す
なわち、回路100は、信号INの電位をオフセット電圧分だけ下げた信号INOを生成
する機能を有する。また、回路100は、信号INOを回路110に出力する機能を有す
る。
なお、信号INOのロウレベルの電位は、配線13の電位VL1よりも低い電位である
。また、信号INOのハイレベルの電位はVL1を超え、VH未満の電位であることが好
ましい。
回路110は、信号INO(回路100の出力信号)に応じて、信号OUTをハイレベ
ルとするかロウレベルとするかを選択する機能を有する。例えば、回路110がインバー
タ回路として機能する場合、回路110は、信号INOがハイレベルであるときには信号
OUTをロウレベルとし、信号INOがロウレベルであるときには信号OUTをハイレベ
ルとする機能を有する。また、回路110は、信号INOに応じて、配線15の電位を配
線16に出力するか、配線13の電位を配線16に出力するかを選択する機能を有する。
例えば、回路110は、信号INOがハイレベルである場合に配線13の電位を配線16
に出力し、信号INOがロウレベルである場合に配線15の電位を配線16に出力する機
能を有する。また、回路110は、ブートストラップ動作によって、信号OUTのハイレ
ベルの電位を配線15の電位VHと等しくする機能を有する。
次に、回路100及び回路110の具体例について図1(A)を参照して説明する。
回路100は、容量素子101及びトランジスタ102を有する。容量素子101の一
方の電極は配線11と接続される。トランジスタ102の第1の端子(ソース及びドレイ
ンの一方ともいう)は配線14と接続され、トランジスタ102の第2の端子は容量素子
101の他方の電極と接続され、トランジスタ102のゲートは配線12と接続される。
回路110は、トランジスタ111、トランジスタ112、トランジスタ113及びト
ランジスタ114を有する。トランジスタ111の第1の端子は配線15と接続され、ト
ランジスタ111の第2の端子は配線16と接続される。トランジスタ112の第1の端
子は配線13と接続され、トランジスタ112の第2の端子は配線16と接続され、トラ
ンジスタ112のゲートはトランジスタ114のゲートと接続される。トランジスタ11
3の第1の端子は配線15と接続され、トランジスタ113の第2の端子はトランジスタ
111のゲートと接続され、トランジスタ113のゲートは配線15と接続される。トラ
ンジスタ114の第1の端子は配線13と接続され、トランジスタ114の第2の端子は
トランジスタ111のゲートと接続され、トランジスタ114のゲートは容量素子101
の他方の電極と接続される。なお、トランジスタ111のゲートと他のトランジスタ(例
えばトランジスタ113、トランジスタ114等)の接続箇所をノードN1とする。
容量素子101は、配線11とトランジスタ102の第2の端子との間の電位差を保持
する機能を有する。よって、トランジスタ102の第2の端子が浮遊状態となる場合には
、配線11に入力される信号に応じて、トランジスタ102の第2の端子の電位も変動す
る。すなわち、信号INに応じて、信号INOの電位も変動する。
トランジスタ102は、配線14の電位VL2を容量素子101の他方の電極に供給す
る機能を有する。トランジスタ102が容量素子101の他方の電極に電位VL2を供給
するタイミングは、配線12の信号SEによって制御される。
なお、トランジスタ102は、電位VL1未満の電位を容量素子101の他方の電極に
供給すればよい。具体的には、トランジスタ102は、トランジスタ114の第1の端子
の電位未満の電位を、容量素子101の他方の電極に供給すればよい。
トランジスタ111は、配線15の電位VHを配線16に供給する機能を有する。また
、トランジスタ111は、ゲートと第2の端子との間の電位差を保持する機能を有する。
よって、ノードN1が浮遊状態である場合には、配線16の電位が上昇すれば、ノードN
1の電位も上昇する。
なお、配線15に信号が入力される場合には、トランジスタ111は、配線15の信号
を配線16に供給する機能を有する。
トランジスタ112は、配線13の電位VL1を配線16に供給する機能を有する。ト
ランジスタ112が電位VL1を配線16に供給するタイミングは、回路100から出力
される信号INO(容量素子101の他方の電極の電位)によって制御される。
トランジスタ113は、配線15の電位VHをトランジスタ111のゲートに供給する
機能を有する。また、トランジスタ113は、トランジスタ111のゲートに電位VHを
供給した後、トランジスタ111のゲートへの電位VHの供給を止める機能を有する。ま
た、トランジスタ113は、トランジスタ111がオンになった後からトランジスタ11
3がオフになるまで、トランジスタ111のゲートに電位VHを供給する機能を有する。
なお、トランジスタ113がトランジスタ111のゲートに供給する電位は、トランジ
スタ111がオンになる電位であればよい。
トランジスタ114は、配線13の電位VL1をトランジスタ111のゲートに供給す
る機能を有する。トランジスタ114が電位VL1をトランジスタ111のゲートに供給
するタイミングは、回路100から出力される信号INOによって制御される。
なお、本実施の形態の半導体装置が有するトランジスタ(例えばトランジスタ102、
トランジスタ111、トランジスタ112、トランジスタ113及びトランジスタ114
)は同じ導電型である。本実施の形態では、本実施の形態の半導体装置が有するトランジ
スタがNチャネル型であるものとして説明する。
次に、図1(A)の半導体装置の駆動方法の一例について、図1(B)を参照して説明
する。図1(B)は、図1(A)の半導体装置の駆動方法を説明するためのタイミングチ
ャートの一例である。
図1(A)の半導体装置の駆動方法について期間T0と期間T1とに分けて説明する。
期間T0は、容量素子101にオフセット電圧を保持させるための期間である。まず、
信号INをロウレベルとして、容量素子101の一方の電極の電位をVL1とする。また
、信号SEをハイレベルとして、トランジスタ102をオンにする。そして、配線14の
電位VL2を容量素子101の他方の電極に供給し、容量素子101の他方の電極の電位
をVL2とする。よって、容量素子101には、信号INのロウレベルの電位VL1と、
トランジスタ102によって供給される配線14の電位VL2との差(VL1−VL2)
が保持させる。この差(VL1−VL2)がオフセット電圧に相当する。
なお、期間T0においては、トランジスタ102はVL1未満の電位を容量素子101
の他方の電極に供給すればよい。
期間T1は、信号INにオフセットを施して信号INOを生成し、信号INOによって
回路110を駆動するための期間である。まず、信号SEをロウレベルとして、トランジ
スタ102をオフにすることで、容量素子101の他方の電極を浮遊状態とする。容量素
子101は、期間T0において電位差VL1−VL2を保持しているため、信号INから
電位差VL1−VL2に応じた値を引いた信号である信号INOが生成される。よって、
信号INがロウレベルになると、信号INOもロウレベルとなり、信号INOのロウレベ
ルの電位はVL1未満の電位となる。また、信号INがハイレベルになると、信号INO
もハイレベルとなり、信号INOのハイレベルの電位はVH未満の電位となる。
期間T1における図1(A)の半導体装置の駆動方法について、信号INがハイレベル
である場合とロウレベルである場合とに分けて説明する。
期間T1において、信号INがハイレベルになると、信号INOもハイレベルとなるた
め、トランジスタ112及びトランジスタ114がオンになる。よって、配線13の電位
VL1がトランジスタ112によって配線16に供給される。また、配線13の電位VL
1がトランジスタ114によってノードN1に供給される。ノードN1には、トランジス
タ113によって配線15の電位VHも供給されている。しかし、トランジスタ114の
W(チャネル幅)/L(チャネル長)比をトランジスタ113のW/L比よりも十分に大
きくしておけば、ノードN1の電位はトランジスタ111がオフになる程度の電位となる
ため、トランジスタ111はオフになる。よって、信号OUTはロウレベルとなり、その
電位はVL1となる。
一方、期間T1において、信号INがロウレベルになると、信号INOもロウレベルと
なるため、トランジスタ112及びトランジスタ114がオフになる。ノードN1には、
トランジスタ113によって配線15の電位VHが供給されるため、ノードN1の電位が
上昇する。よって、トランジスタ111がオンになり、配線15の電位VHがトランジス
タ111によって配線16に供給されるため、配線16の電位が上昇する。やがて、ノー
ドN1の電位が電位VHからトランジスタ113のしきい値電圧を引いた電位まで上昇す
ると、トランジスタ113がオフになり、ノードN1が浮遊状態となる。ノードN1が浮
遊状態となっても、配線16の電位は上昇している。また、トランジスタ111のゲート
と第2の端子との間には、トランジスタ113がオフになったときのノードN1と配線1
6との電位差が保持されている。よって、配線16の電位の上昇に伴って、ノードN1の
電位がさらに上昇し、電位VHよりも高くなる。いわゆるブートストラップ動作である。
よって、信号OUTがハイレベルとなり、その電位はVHとなる。
なお、配線15に信号が入力されている場合、配線15の信号が配線16に出力される
。例えば、配線15にクロック信号が入力される場合、信号INがロウレベルである期間
では、クロック信号が配線15から配線16に出力される。
以上のとおり、信号OUTをハイレベルとする場合には、トランジスタ114のゲート
の電位がVL1未満となるため、トランジスタ114のVgsを負の値とすることができ
る。よって、仮にトランジスタ114がディプレッション型であっても、トランジスタ1
14をオフにすることができる。または、仮にトランジスタ114のVgsが0[V]の
場合のドレイン電流が大きいトランジスタであっても、トランジスタ114のドレイン電
流を小さくすることができる。よって、トランジスタ111のゲートを浮遊状態とするこ
とができ、回路110の誤動作を防止することができる。
また、トランジスタ114と同様にトランジスタ112のVgsも負の値とすることが
できる。よって、仮にトランジスタ112がディプレッション型であっても、トランジス
タ112をオフにすることができる。または、仮にトランジスタ112のVgsが0[V
]の場合のドレイン電流が大きいトランジスタであっても、トランジスタ112のドレイ
ン電流を小さくすることができる。よって、配線16から配線13に流れる電流を防止又
は抑制することができるため、消費電力の削減を図ることができる。
また、信号OUTをロウレベルとする場合には、トランジスタ112及びトランジスタ
114のゲートの電位はVH未満の電位となるため、トランジスタ112及びトランジス
タ114のVgsを小さくすることができる。よって、トランジスタ112及びトランジ
スタ114の劣化を抑制することができる。
以上、図1(A)の半導体装置の駆動方法について説明した。
次に、図1(A)とは異なる半導体装置について、図2(A)、図2(B)、図3(A
)、図3(B)、図4(A)、図4(B)、図5(A)、図5(B)を参照して説明する
。なお、以下では、図1(A)と異なる部分について説明する。
図2(A)に示すように、図1(A)の半導体装置において、配線14を省略し、トラ
ンジスタ102の第1の端子を配線13と接続してもよい。そして、期間T0において配
線13に電位VL2を供給し、期間T1において配線13に電位VL1を供給してもよい
。この場合でも、期間T0において容量素子101の他方の電極に電位VL2を供給する
ことができるので、図1(A)の半導体装置と同様の動作を行うことができる。よって、
図1(A)の半導体装置と同様の効果を奏することができる。また、配線14を省略する
ことができるため、図1(A)の半導体装置と比較して配線の数を減らすことができる。
なお、図2(A)の半導体装置において、期間T0において配線13の電位を電位VL
1のままとし、配線11の電位を電位VL1を超え、電位VH未満の電位としてもよい。
この場合でも、期間T1において、信号INがロウレベルである場合に、容量素子101
の他方の電極の電位を電位VL1未満とすることができるので、図1(A)の半導体装置
と同様の動作を行うことができる。よって、図1(A)の半導体装置と同様の効果を奏す
ることができる。また、電源電位を一定とすることができるため、配線13に電位を供給
する電源回路等の構成を簡単にすることができる。
図2(B)に示すように、図1(A)の半導体装置において、配線14を省略し、トラ
ンジスタ102の第1の端子を配線15と接続してもよい。そして、期間T0において配
線15に電位VL2を供給し、期間T1において配線15に電位VHを供給してもよい。
この場合でも、期間T0において容量素子101の他方の電極に電位VL2を供給するこ
とができるので、図1(A)の半導体装置と同様の動作を行うことができる。よって、図
1(A)の半導体装置と同様の効果を奏することができる。また、配線14を省略するこ
とができるため、図1(A)の半導体装置と比較して配線の数を減らすことができる。
図3(A)に示すように、図1(A)の半導体装置において、配線14を省略し、トラ
ンジスタ102の第1の端子を配線12と接続し、トランジスタ102の第2の端子及び
ゲートを容量素子101の他方の電極と接続してもよい。そして、期間T0において信号
SEをロウレベルとし、期間T1において信号SEをハイレベルとしてもよい。この場合
でも、期間T0において容量素子101の他方の電極を電位VL1未満とすることができ
るので、図1(A)の半導体装置と同様の動作を行うことができる。よって、図1(A)
の半導体装置と同様の効果を奏することができる。また、配線14を省略することができ
るため、図1(A)の半導体装置と比較して配線の数を減らすことができる。
図3(B)に示すように、図1(A)の半導体装置において、配線12及び配線14を
省略し、トランジスタ102の第1の端子を配線13と接続し、トランジスタ102の第
2の端子及びゲートを容量素子101の他方の電極と接続してもよい。そして、期間T0
において配線13に電位VL2を供給し、期間T1において配線13に電位VL1を供給
してもよい。この場合でも、期間T0において容量素子101の他方の電極を電位VL1
未満とすることができるので、図1(A)の半導体装置と同様の動作を行うことができる
。よって、図1(A)の半導体装置と同様の効果を奏することができる。また、配線12
及び配線14を省略することができるため、図1(A)の半導体装置と比較して配線の数
を減らすことができる。
図4(A)に示すように、図1(A)の半導体装置において、配線12及び配線14を
省略し、トランジスタ102の第1の端子を配線15と接続し、トランジスタ102の第
2の端子及びゲートを容量素子101の他方の電極と接続してもよい。そして、期間T0
において配線15に電位VL2を供給し、期間T1において配線15に電位VHを供給し
てもよい。この場合でも、期間T0において容量素子101の他方の電極を電位VL1未
満とすることができるので、図1(A)の半導体装置と同様の動作を行うことができる。
よって、図1(A)の半導体装置と同様の効果を奏することができる。また、配線12及
び配線14を省略することができるため、図1(A)の半導体装置と比較して配線の数を
減らすことができる。
図4(B)に示すように、図1(A)の半導体装置において、トランジスタ112のゲ
ートを配線11と接続してもよい。図4(B)の半導体装置では、トランジスタ112が
配線13の電位VL1を配線16に供給するタイミングは信号INによって制御される。
信号INは信号INOよりも立ち下がり時間及び立ち上がり時間が短いため、トランジス
タ112のゲートが容量素子101の他方の電極と接続される場合と比較して、トランジ
スタ112がオン又はオフになるタイミングを早くすることができる。よって、配線13
の電位VL1を配線16に供給するタイミングも早くなるため、信号OUTの立ち下がり
時間を短くすることができる。また、トランジスタ112がオフになるタイミングが早く
なると、配線15と配線13との間の貫通電流が生じる時間を短くすることができるため
、消費電力の削減を図ることができる。
なお、図4(B)の半導体装置と同様に、図2(A)、図2(B)、図3(A)、図3
(B)、及び図4(A)の半導体装置においても、トランジスタ112のゲートを配線1
1と接続してもよい。この場合でも、図4(B)の半導体装置と同様の効果を奏すること
ができる。
図5(A)に示すように、図1(A)の半導体装置において、第1の端子が配線13と
接続され、第2の端子がトランジスタ111のゲートと接続され、ゲートが配線12と接
続されたトランジスタ115を設けてもよい。トランジスタ115は、配線13の電位V
L1をトランジスタ111のゲートに供給する機能を有する。トランジスタ115がトラ
ンジスタ111のゲートに電位VL1を供給するタイミングは、配線12の信号SEによ
って制御される。図5(A)の半導体装置では、期間T0において配線13の電位VL1
をトランジスタ111のゲートに供給することができるため、半導体装置を初期化するこ
とができる。よって、半導体装置の誤動作を防止することができる。
なお、図5(A)の半導体装置において、トランジスタ115の第1の端子を配線14
と接続してもよい。この場合でも、トランジスタ115の第1の端子が配線13と接続さ
れる場合と同様の動作を行うことができる。
なお、オフセット電圧を取得するタイミングと、初期化を行うタイミングとが異なる場
合には、トランジスタ115のゲートを初期化用の信号が入力される配線と接続してもよ
い。
なお、図2(A)、図2(B)、図3(A)、図3(B)、図4(A)及び図4(B)
の半導体装置においても、第1の端子が配線13又は配線14と接続され、第2の端子が
トランジスタ111のゲートと接続され、ゲートが配線12と接続されたトランジスタ1
15を設けてもよい。この場合でも、図5(A)の半導体装置と同様の効果を奏すること
ができる。
図5(B)に示すように、図1(A)の半導体装置において、トランジスタ113の第
2の端子及びゲートを配線17と接続してもよい。配線17には、電位VHを供給しても
よいし、電位VL1を超え、電位VH未満の電位を供給してもよいし、信号を入力しても
よい。配線17に入力する信号の例としては、信号INの反転信号がある。よって、配線
11がインバータ回路を介して配線17と接続されてもよい。こうすれば、トランジスタ
114がオンになるとき、トランジスタ113がオフになるため、配線15と配線13と
の間に電流が流れることを防止することができる。よって、消費電力の削減を図ることが
できる。また、トランジスタ113のW/L比よりも、トランジスタ114のW/L比を
十分に大きくする必要がなくなるため、トランジスタのサイズを小さくすることができる
なお、図2(A)、図2(B)、図3(A)、図3(B)、図4(A)、図4(B)及
び図5(A)の半導体装置においても、トランジスタ113の第2の端子及びゲートを配
線17と接続してもよい。この場合でも、図5(B)の半導体装置と同様の効果を奏する
ことができる。
図22(A)に示すように、図1(A)の半導体装置において、配線14を省略し、ト
ランジスタ102の第1の端子を配線13と接続し、一方の電極が配線12と接続され且
つ他方の電極が容量素子101の他方の電極と接続される容量素子103を設けてもよい
。容量素子103は配線12と容量素子101の他方の電極との間の電位差を保持する機
能を有する。また、図22(A)の半導体装置では、トランジスタ102は配線13の電
位VL1を容量素子101の他方の電極に供給する機能を有する。図22(A)の半導体
装置では、期間T0において、容量素子101の一方の電極にはロウレベルの信号INが
入力され、容量素子101の他方の電極には配線13の電位VL1がトランジスタ102
によって供給される。その後、信号SEがハイレベルからロウレベルになると、トランジ
スタ102がオフになり、且つ容量素子101の他方の電極の電位は容量素子103の容
量結合によって電位VL1から下がる。よって、期間T0において容量素子101の他方
の電極を電位VL1未満とすることができるため、図1(A)の半導体装置と同様の動作
を行うことができる。したがって、図1(A)の半導体装置と同様の効果を奏することが
できる。また、配線14を省略することができるため、図1(A)の半導体装置と比較し
て配線の数を減らすことができる。また、電位VL2を必要としないため、電源電位の数
を減らすことができる。
図22(B)に示すように、図22(A)の半導体装置において、トランジスタ102
の第1の端子を配線11と接続してもよい。この場合でも、期間T0において、ロウレベ
ルの信号INをトランジスタ102によって容量素子101の他方の電極に供給すること
ができるため、図22(A)の半導体装置と同様の動作を行うことができる。よって、図
22(A)の半導体装置と同様の効果を奏することができる。
なお、図22(A)及び図22(B)の半導体装置において、容量素子103を省略し
てもよい。この場合には、容量素子103の代わりに、トランジスタ102のゲートと第
2の端子との間の寄生容量を用いるとよい。
なお、図22(A)及び図22(B)の半導体装置において、容量素子103の一方の
電極を配線12とは異なる新たな配線と接続してもよい。この配線に入力する信号は、期
間T0において信号SEがハイレベルからロウレベルになった後に、ハイレベルからロウ
レベルになる信号であることが好ましい。こうすれば、トランジスタ102がオフになっ
た後に、容量素子101の他方の電極の電位を下げることができる。また、ロウレベルか
らハイレベルになるタイミングは、信号SEがハイレベルである期間であることが好まし
い。
なお、図2(A)、図2(B)、図3(A)、図3(B)、図4(A)、図4(B)、
図5(A)及び図5(B)の半導体装置においても、配線14を省略し、トランジスタ1
02の第1の端子を配線11又は配線13と接続し、一方の電極が配線12と接続され且
つ他方の電極が容量素子101の他方の電極と接続される容量素子103を設けてもよい
図示はしないが、図2(A)、図2(B)、図3(A)、図3(B)、図4(A)、図
4(B)、図5(A)、図5(B)、図22(A)及び図22(B)の半導体装置におい
て、トランジスタ111のゲートと第2の端子との間に容量素子を接続してもよい。こう
すれば、配線16とノードN1との間の容量値を大きくすることができる。よって、トラ
ンジスタ111のゲートと第2の端子との間に容量素子が設けられていない場合と比較し
て、信号INがロウレベルである期間においてノードN1をより高くすることがきる。つ
まり、トランジスタ111のVgsを大きくすることができる。よって、トランジスタ1
11のドレイン電流を大きくすることができ、信号OUTの立ち上がり時間を短くするこ
とができる。
図示はしないが、図2(A)、図2(B)、図3(A)、図3(B)、図4(A)、図
4(B)、図5(A)、図5(B)、図22(A)及び図22(B)の半導体装置におい
て、容量素子101としてMOS容量を用いてもよい。この場合、MOS容量として用い
るトランジスタのゲートを配線11と接続し、トランジスタのソース又はドレインをトラ
ンジスタ102の第2の端子と接続することが好ましい。こうすれば、配線11の電位は
トランジスタ102の第2の端子の電位よりも高いため、単位面積当たりの容量値を大き
くすることができる。
以上、図1(A)とは異なる構成の半導体装置について説明した。
なお、トランジスタ111のW/L比が大きいほど、信号OUTの立ち上がり時間を短
くすることができる。よって、トランジスタ111のW/L比は、半導体装置が有するト
ランジスタの中で一番大きいことが好ましい。すなわち、トランジスタ111のW/L比
は、トランジスタ102のW/L比、トランジスタ112のW/L比、トランジスタ11
3のW/L比、及びトランジスタ114のW/L比よりも大きいことが好ましい。
なお、トランジスタ112は配線16と接続された負荷に電位を供給するのに対し、ト
ランジスタ114はトランジスタ111のゲートに電位を供給する。また、トランジスタ
112のW/L比が大きいほど、信号OUTの立ち下がり時間を短くすることができる。
よって、トランジスタ112のW/L比は、トランジスタ114のW/L比よりも大きい
ことが好ましい。
なお、トランジスタ102は期間T0において容量素子101の他方の電極に電荷を供
給すればよいので、トランジスタ102のW/L比を大きくする必要はない。よって、ト
ランジスタ102のW/L比は、トランジスタ112又はトランジスタ114のW/L比
よりも小さいことが好ましい。
なお、容量素子101の容量値がトランジスタ112のゲート容量及びトランジスタ1
14のゲート容量の和よりも大きいほど、信号INOの振幅電圧を信号INの振幅電圧に
近づけることができる。よって、容量素子101の容量値は、トランジスタ112のゲー
ト容量及びトランジスタ114のゲート容量の和よりも大きいことが好ましい。また、容
量素子101の一方の電極がトランジスタのゲート電極と同じ材料であり、容量素子10
1の他方の電極がトランジスタのソース電極又はドレイン電極と同じ材料である場合、容
量素子101の一方の電極と他方の電極とが重なる面積は、トランジスタ112のゲート
とソースとが重なる面積、トランジスタ112のゲートとドレインとが重なる面積、トラ
ンジスタ114のゲートとソースとが重なる面積、及びトランジスタ114のゲートとド
レインとが重なる面積の和よりも大きいことが好ましい。
なお、期間T0において、配線13に電位VL1を供給せずに、配線13を浮遊状態と
してもよい。または、期間T0において、配線15に電位VHを供給せずに、配線15を
浮遊状態としてもよい。こうすれば、期間T0における誤動作を防止することができる。
なお、期間T1において、配線14に電位VL2を供給せずに、配線14を浮遊状態と
してもよい。
なお、信号INがハイレベルとなる期間において、ロウレベルとなる信号を配線15に
入力してもよい。こうすれば、トランジスタ114がオンになるとき、トランジスタ11
3がオフになるため、配線15と配線13との間に電流が流れることを防止することがで
きる。よって、消費電力の削減を図ることができる。また、トランジスタ113のW/L
比よりも、トランジスタ114のW/L比を十分に大きくする必要がなくなるため、トラ
ンジスタのサイズを小さくすることができる。
本実施の形態は、他の実施の形態等と適宜組み合わせて実施することが可能である。
(実施の形態2)
本実施の形態では、本発明の一態様である半導体装置をシフトレジスタ回路が有するフ
リップフロップ回路に用いる場合について説明する。なお、本実施の形態では、実施の形
態1と異なる部分について説明する。
本実施の形態の半導体装置について、図6(A)を参照して説明する。図6(A)は、
本実施の形態における半導体装置の回路図を示す。図6(A)の半導体装置は、トランジ
スタ111の第1の端子が配線23と接続され、トランジスタ113のゲートが配線21
と接続され、容量素子101の一方の電極が配線22と接続されるところが、図1(A)
の半導体装置と異なる。
配線21には信号IN1が入力される。信号IN1は、半導体装置の入力信号であり、
スタートパルスとして機能する信号である。例えば、信号IN1デジタル信号であり、信
号IN1のハイレベルの電位はVHであり、信号IN1のロウレベルの電位はVL1であ
る。なお、配線21は信号IN1を伝達する機能を有する。
配線22には信号IN2が入力される。信号IN2は、半導体装置の入力信号であり、
リセット信号として機能する信号である。例えば、信号IN2はデジタル信号であり、信
号IN2のハイレベルの電位はVHであり、信号IN2のロウレベルの電位はVL1であ
る。なお、配線22は信号IN2を伝達する機能を有する。
配線23には信号CKが入力される。信号CKは半導体装置の入力信号である。例えば
、信号CKはデジタル信号であり、信号CKのハイレベルの電位はVHであり、信号CK
のロウレベルの電位はVL1である。また、信号CKは、ハイレベルとロウレベルとを繰
り返すクロック信号である。なお、配線23は信号CKを伝達する機能を有する。
なお、配線21、配線22及び配線23を信号線とも呼ぶ。特に、配線23をクロック
信号線とも呼ぶ。
次に、図6(A)の半導体装置の駆動方法の一例について、図7を参照して説明する。
図7は、図6(A)の半導体装置の駆動方法を説明するためのタイミングチャートの一例
である。
期間T0では、信号IN2をロウレベルとして、容量素子101の一方の電極の電位を
VL1とする。また、信号SEをハイレベルとして、トランジスタ102をオンにする。
そして、配線14の電位VL2を容量素子101の他方の電極に供給し、容量素子101
の他方の電極の電位をVL2とする。よって、容量素子101には、信号IN2のロウレ
ベルの電位VL1と、トランジスタ102によって供給される配線14の電位VL2との
差(VL1−VL2)が保持される。この差(VL1−VL2)がオフセット電圧に相当
する。
期間T1では、信号SEをロウレベルとして、トランジスタ102をオフにすることで
、容量素子101の他方の電極を浮遊状態とする。容量素子101は、期間T0において
電位差VL1−VL2を保持しているため、信号IN2から電位差VL1−VL2に応じ
た値を引いた信号である信号IN2Oが生成される。よって、信号IN2がロウレベルに
なると、信号IN2Oもロウレベルとなり、信号IN2Oのロウレベルの電位はVL1未
満の電位となる。また、信号IN2がハイレベルになると、信号IN2Oもハイレベルと
なり、信号IN2Oのハイレベルの電位はVH未満の電位となる。
期間T1における図6(A)の半導体装置の駆動方法について、期間Ta、期間Tb、
期間Tc及び期間Tdに分けて説明する。
期間Taにおいて、信号IN2がロウレベルになるため、信号IN2Oもロウレベルと
なり、トランジスタ112及びトランジスタ114がオフになる。また、信号IN1がハ
イレベルになるため、トランジスタ113がオンになる。よって、配線15の電位VHが
ノードN1に供給されるため、ノードN1の電位が上昇する。ノードN1の電位が上昇す
ると、トランジスタ111がオンになり、配線23の信号CKが配線16に供給される。
期間Taでは信号CKはロウレベルであるため、信号OUTはロウレベルになり、その電
位はVL1となる。また、ノードN1の電位がVHからトランジスタ113のしきい値電
圧を引いた電位まで上昇すると、トランジスタ113がオフになる。よって、ノードN1
は浮遊状態になる。また、トランジスタ113がオフになったときのノードN1と配線1
6との間の電位差がトランジスタ111のゲートと第2の端子との間に保持される。
期間Tbにおいて、信号IN2がロウレベルのままなので、信号IN2Oもロウレベル
のままとなり、トランジスタ112及びトランジスタ114がオフのままになる。また、
信号IN1がロウレベルになるため、トランジスタ113はオフのままになる。よって、
ノードN1は浮遊状態のままとなる。また、ノードN1の電位は期間Taにおける電位を
保っているので、トランジスタ111はオンのままになり、配線23の信号CKが配線1
6に供給されたままになる。期間Tbでは、信号CKがハイレベルになるため、配線16
の電位は上昇する。このとき、トランジスタ111のゲートと第2の端子との間には、期
間TaにおけるノードN1と配線16との間の電位差が保持されている。よって、配線1
6の電位に伴って、ノードN1の電位がさらに上昇し、VHよりも高くなる。よって、信
号OUTがハイレベルとなり、その電位はVHとなる。
期間Tcでは、信号IN2がハイレベルになり、信号IN2Oがハイレベルになるため
、トランジスタ112及びトランジスタ114がオンになる。よって、配線13の電位V
L1がトランジスタ112によって配線16に供給され、さらにトランジスタ114によ
ってノードN1に供給される。また、信号IN1はロウレベルのままなので、トランジス
タ113はオフのままになる。よって、ノードN1の電位はVL1となり、トランジスタ
111はオフになる。よって、信号OUTはロウレベルとなり、その電位はVL1となる
期間Tdでは、信号IN2がロウレベルになり、信号IN2Oがロウレベルになるため
、トランジスタ112及びトランジスタ114はオフになる。また、信号IN1がロウレ
ベルのままなので、トランジスタ113はオフのままになる。よって、ノードN1は期間
Tcにおける電位VL1を維持し、トランジスタ111はオフになる。また、配線16は
期間Tcにおける電位VL1を維持するため、信号OUTはロウレベルのままになる。
以上のとおり、信号IN2をロウレベルとする場合には、トランジスタ114のゲート
の電位がVL1未満となるため、トランジスタ114のVgsを負の値とすることができ
る。よって、仮にトランジスタ114がディプレッション型であっても、トランジスタ1
14をオフにすることができる。または、仮にトランジスタ114のVgsが0[V]の
場合のドレイン電流が大きいトランジスタであっても、トランジスタ114のドレイン電
流を小さくすることができる。よって、トランジスタ111のゲートを浮遊状態とするこ
とができ、回路110の誤動作を防止することができる。
また、信号IN2をハイレベルとする場合には、トランジスタ112及びトランジスタ
114のゲートの電位はVH未満の電位となるため、トランジスタ112及びトランジス
タ114のVgsを小さくすることができる。よって、トランジスタ112及びトランジ
スタ114の劣化を抑制することができる。
以上、図6(A)の半導体装置の駆動方法について説明した。
次に、図6(A)とは異なる半導体装置について、図6(B)、図8(A)、図8(B
)、図9(A)、図9(B)及び図10(A)を参照して説明する。なお、また、以下で
は、図6(A)と異なる部分について説明する。
図6(B)に示すように、図6(A)の半導体装置において、トランジスタ113の第
1の端子を配線21と接続してもよい。図6(B)の半導体装置では、期間Taにおいて
、トランジスタ113は配線21の信号IN1をノードN1に供給する。期間Taでは信
号IN1がハイレベルであるため、ノードN1の電位が上昇する。そして、ノードN1の
電位がVHからトランジスタ113のしきい値電圧を引いた値になると、トランジスタ1
13がオフになる。また、期間Tb、期間Tc及び期間Tdでは、トランジスタ113が
オフとなる。よって、図6(A)の半導体装置と同様の動作を行うことができる。したが
って、図6(A)の半導体装置と同様の効果を奏することができる。また、配線15を省
略することができるため、図6(A)の半導体装置と比較して配線の数を減らすことがで
きる。
図8(A)に示すように、図6(B)の半導体装置において、回路100を配線22の
代わりに、配線21に接続してもよい。図8(A)の半導体装置では、回路100の配線
21の信号IN1にオフセットを施し、信号IN1にオフセットを施した信号IN1Oを
トランジスタ113のゲートに供給する。容量素子101の一方の電極は配線21と接続
され、容量素子101の他方の電極はトランジスタ113のゲートと接続される。トラン
ジスタ102の第1の端子は配線14と接続され、トランジスタ102の第2の端子は容
量素子101の他方の電極と接続され、トランジスタ102のゲートは配線12と接続さ
れる。また、容量素子101は配線21とトランジスタ113のゲートとの間の電位差を
保持する機能を有し、トランジスタ102は配線14の電位VL1をトランジスタ113
のゲートに供給する機能を有する。図8(A)の半導体装置では、トランジスタ113の
Vgsを負の値とすることができる。よって、ノードN1に供給される電荷量を気にせず
に、トランジスタ113のW/L比を大きくすることができる。よって、期間Taにおい
て、ノードN1の電位が所定の電位に達するまでの時間を短くすることができ、駆動周波
数を高くすることができる。
図8(B)に示すように、図6(B)の半導体装置において、回路100を配線22に
設け、さらに配線21にも設けてもよい。図8(B)では、配線22に設けられた回路1
00、該回路100が有する容量素子101及びトランジスタ102を、各々、回路10
0A、容量素子101A、トランジスタ102Aと示す。また、配線21に設けられた回
路100、該回路100が有する容量素子101及びトランジスタ102を、各々、回路
100B、容量素子101B、トランジスタ102Bと示す。回路100Aは図6(A)
に示した回路100と同様であり、回路100Bは図8(A)に示した回路100と同様
であるため、その説明を省略する。図8(B)の半導体装置では、図6(B)の半導体装
置と同様の効果、及び図8(A)の半導体装置と同様の効果を奏することができる。
図9(A)に示すように、図6(A)の半導体装置において、トランジスタ112のゲ
ートを配線24と接続してもよい。配線24には信号IN3が入力される。配線24は信
号IN3を伝達する機能を有する。信号IN3はデジタル信号であり、信号IN3のハイ
レベルの電位はVHであり、信号IN3のロウレベルはVL1である。また、信号IN3
としては、信号CKの反転信号であるクロック信号又は信号CKから位相がずれたクロッ
ク信号等がある。図9(A)の半導体装置では、期間Tdにおいて、トランジスタ112
がオンとオフとを繰り返すため、配線13の電位VL1を配線16に定期的に供給するこ
とができ、配線16の電位をVL1に維持しやすくすることができる。
なお、図6(B)、図8(A)及び図8(B)の半導体装置においても、トランジスタ
112のゲートを配線24と接続してもよい。この場合でも、図9(A)の半導体装置と
同様の効果を奏することができる。
なお、図6(A)、図6(B)、図8(A)及び図8(B)の半導体装置において、第
1の端子が配線13と接続され、第2の端子が配線16と接続され、ゲートが配線24と
接続されたトランジスタを設けてもよい。この場合でも、図9(A)の半導体装置と同様
の効果を奏することができる。
図9(B)に示すように、図6(A)の半導体装置において、第1の端子が配線23と
接続され、第2の端子が配線25と接続され、ゲートがトランジスタ111のゲートと接
続されたトランジスタ116を設けてもよい。トランジスタ116は、配線23の信号C
Kを配線25に供給する機能を有する。トランジスタ116が配線25に配線23の信号
CKを供給するタイミングは、ノードN1の電位によって制御される。また、トランジス
タ116は、配線25とノードN1との間の電位差を保持する機能を有する。また、配線
25からは信号OUTが出力される。配線25は信号OUTを伝達する機能を有する。な
お、図9(B)では、配線16から出力される信号OUTを信号OUTAと示し、配線2
5から出力される信号OUTを信号OUTBと示す。信号OUTAは、信号OUTBと同
様のタイミングでハイレベルとロウレベルとが反転する信号である。図9(B)の半導体
装置では、信号OUTAと信号OUTBとの一方をシフトレジスタの転送用の信号として
用い、信号OUTAと信号OUTBとの他方を負荷等の駆動用の信号として用いることが
できる。よって、図9(B)の半導体装置をフリップフロップ回路に用いることにより、
大きな負荷を駆動する場合でも、正常に動作することができる。
なお、図6(B)、図8(A)、図8(B)及び図9(A)の半導体装置においても、
第1の端子が配線23と接続され、第2の端子が配線25と接続され、ゲートがトランジ
スタ111のゲートと接続されたトランジスタ116を設けてもよい。この場合でも、図
9(B)の半導体装置と同様の効果を奏することができる。
図10(A)に示すように、図6(A)の半導体装置において、信号IN2を生成する
ための回路120を設けてもよい。回路120は、ノードN1、配線12及び容量素子1
01の一方の電極と接続される。回路120は、ノードN1及び配線12の信号SEに応
じた信号IN2を生成し、信号IN2を容量素子101の一方の電極に出力する機能を有
する。例えば、回路120は、信号SEがハイレベルである場合にノードN1の電位に関
わらず、信号IN2をロウレベルとする。また、回路120は、信号SEがロウレベルで
ある場合に、ノードN1の電位が高いとき(期間Ta、期間Tb等)に信号IN2をロウ
レベルとし、ノードN1の電位が低いとき(期間Tc、期間Td等)に信号IN2をハイ
レベルとする。すなわち、回路120は、NOR回路としての機能を有する。
なお、回路120は、ノードN1の代わりに、配線16と接続されてもよい。
なお、図6(B)、図8(A)、図8(B)、図9(A)及び図9(B)の半導体装置
においても、信号IN2を生成するための回路120を設けてもよい。
図示はしないが、図6(A)、図6(B)、図8(A)、図8(B)、図9(A)、図
9(B)及び図10(A)の半導体装置において、図2(A)の半導体装置と同様にトラ
ンジスタ102の第2の端子を配線13と接続してもよい。この場合でも、図2(A)の
半導体装置と同様の効果を奏する。
図示はしないが、図6(A)、図6(B)、図8(A)、図8(B)、図9(A)、図
9(B)及び図10(A)の半導体装置において、図2(B)の半導体装置と同様に、ト
ランジスタ102の第2の端子を配線15と接続してもよい。この場合でも、図2(B)
の半導体装置と同様の効果を奏する。
図示はしないが、図6(A)、図6(B)、図8(A)、図8(B)、図9(A)、図
9(B)及び図10(A)の半導体装置において、図3(A)の半導体装置と同様に、ト
ランジスタ102の第1の端子を配線12と接続し、トランジスタ102のゲートをトラ
ンジスタ102の第2の端子と接続してもよい。この場合でも、図3(A)の半導体装置
と同様の効果を奏する。
図示はしないが、図6(A)、図6(B)、図8(A)、図8(B)、図9(A)、図
9(B)及び図10(A)の半導体装置において、図3(B)の半導体装置と同様に、ト
ランジスタ102の第1の端子を配線13と接続し、トランジスタ102のゲートをトラ
ンジスタ102の第2の端子と接続してもよい。この場合でも、図3(B)の半導体装置
と同様の効果を奏する。
図示はしないが、図6(A)、図6(B)、図8(A)、図8(B)、図9(A)、図
9(B)及び図10(A)の半導体装置において、図4(A)の半導体装置と同様に、ト
ランジスタ102の第1の端子を配線15と接続し、トランジスタ102のゲートをトラ
ンジスタ102の第2の端子と接続してもよい。この場合でも、図4(A)の半導体装置
と同様の効果を奏する。
図示はしないが、図6(A)、図6(B)、図8(A)、図8(B)、図9(A)、図
9(B)及び図10(A)の半導体装置において、図4(B)の半導体装置と同様に、ト
ランジスタ112のゲートを容量素子101の一方の電極と接続してもよい。この場合で
も、図4(B)の半導体装置と同様の効果を奏する。
図示はしないが、図6(A)、図6(B)、図8(A)、図8(B)、図9(A)、図
9(B)及び図10(A)の半導体装置において、図5(A)の半導体装置と同様に、第
1の端子が配線13と接続され、第2の端子がトランジスタ111のゲートと接続され、
ゲートが配線12と接続されるトランジスタ115を設けてもよい。この場合でも、図5
(A)の半導体装置と同様の効果を奏する。
図示はしないが、図6(A)、図6(B)、図8(A)、図8(B)、図9(A)、図
9(B)及び図10(A)の半導体装置において、図22(A)及び図22(B)の半導
体装置と同様に、配線14を省略し、トランジスタ102の第1の端子を配線22又は配
線13と接続し、一方の電極が配線12と接続され且つ他方の電極が容量素子101の他
方の電極と接続される容量素子103を設けてもよい。この場合でも、図22(A)及び
図22(B)の半導体装置と同様の効果を奏する。
以上、図6(A)とは異なる構成の本実施の形態の半導体装置について説明した。
次に、回路120の具体例について説明する。
図10(B)は、回路120の回路図を示す。回路120は、トランジスタ121、ト
ランジスタ122及びトランジスタ123を有する。トランジスタ121の第1の端子は
配線15と接続され、トランジスタ121の第2の端子は容量素子101の一方の電極と
接続され、トランジスタ121のゲートは配線15と接続される。トランジスタ122の
第1の端子は配線13と接続され、トランジスタ122の第2の端子は容量素子101の
一方の電極と接続され、トランジスタ122のゲートはノードN1と接続される。トラン
ジスタ123の第1の端子は配線13と接続され、トランジスタ123の第2の端子は容
量素子101の一方の電極と接続され、トランジスタ123のゲートは配線12と接続さ
れる。
トランジスタ121は配線15の電位VHを容量素子101の一方の電極に供給する機
能を有する。トランジスタ122は配線13の電位VL1を容量素子101の一方の電極
に供給する機能を有する。トランジスタ123は配線13の電位VL1を容量素子101
の一方の電極に供給する機能を有する。なお、トランジスタ122が配線13の電位VL
1を容量素子101の一方の電極に供給するタイミングは、ノードN1の電位よって制御
される。トランジスタ123が配線13の電位VL1を容量素子101の一方の電極に供
給するタイミングは、配線12の信号SEによって制御される。
期間T0においては、信号SEがハイレベルになるため、トランジスタ123がオンに
なる。よって、トランジスタ122のオン又はオフに関わらず、配線13の電位VL1が
トランジスタ123によって容量素子101の一方の電極に供給されるため、信号IN2
はロウレベルになる。
期間T1においては、信号SEがロウレベルになるため、トランジスタ123がオフに
なる。よって、ノードN1の電位が高くなり、トランジスタ122がオンになる場合には
、配線13の電位VL1がトランジスタ122によって容量素子101の一方の電極に供
給されるため、信号IN2がロウレベルになる。一方、ノードN1の電位が低くなり、ト
ランジスタ122がオフになる場合には、配線13の電位VL1が容量素子101の一方
の電極に供給されないため、信号IN2がハイレベルになる。
なお、図10(C)に示すように、図10(B)の回路120において、トランジスタ
124、トランジスタ125及びトランジスタ126を設けてもよい。トランジスタ12
4の第1の端子は配線15と接続され、トランジスタ124の第2の端子は容量素子10
1の一方の電極と接続され、トランジスタ124のゲートはトランジスタ121の第2の
端子、トランジスタ122の第2の端子及びトランジスタ123の第2の端子と接続され
る。トランジスタ125の第1の端子は配線13と接続され、トランジスタ125の第2
の端子は容量素子101の一方の電極と接続され、トランジスタ125のゲートはノード
N1と接続される。トランジスタ126の第1の端子は配線13と接続され、トランジス
タ126の第2の端子は容量素子101の一方の電極と接続され、トランジスタ126の
ゲートは配線12と接続される。図10(C)の半導体装置では、ブートストラップ動作
を用いて、信号IN2のハイレベルの電位をVHとすることができ、また信号IN2のロ
ウレベルの電位をVL1とすることができる。
なお、図10(C)の回路120において、配線15の代わりに、配線23を用いても
よい。すなわち、トランジスタ121の第1の端子、トランジスタ121のゲート及びト
ランジスタ124の第1の端子を配線23と接続してもよい。こうすれば、期間Tdにお
いて、信号IN2をハイレベルとロウレベルとを繰り返す信号とすることができる。よっ
て、トランジスタ112及びトランジスタ114がオンになる時間を短くすることができ
るため、トランジスタ112及びトランジスタ114の劣化を抑制することができる。
以上、回路120の具体例について説明した。
なお、期間Tdの全て又は期間Tdの一部において、信号IN2をハイレベルとすれば
、トランジスタ112及びトランジスタ114がオンになる。よって、配線13の電位が
トランジスタ112によって配線16に供給され、さらにトランジスタ114によってノ
ードN1に供給される。よって、期間Tdにおいても、配線16及びノードN1の電位を
VL1に維持しやすくなる。
本実施の形態は、他の実施の形態等と適宜組み合わせて実施することが可能である。
(実施の形態3)
本実施の形態では、実施の形態2において説明した半導体装置をフリップフロップ回路
として用いたシフトレジスタ回路について説明する。なお、本実施の形態では、実施の形
態1、2と異なる部分について説明する。
本実施の形態のシフトレジスタ回路について、図11を参照して説明する。図11は、
本実施の形態におけるシフトレジスタ回路の回路図を示す。図11のシフトレジスタ回路
は、N(Nは自然数)個のフリップフロップ回路200を有する。ただし、図11には、
1段目乃至3段目のフリップフロップ回路200(フリップフロップ回路200_1、フ
リップフロップ回路200_2、フリップフロップ回路200_3と示す)のみを示す。
なお、図11のシフトレジスタ回路では、フリップフロップ回路200として、図6(
A)の半導体装置が用いられている。ただし、フリップフロップ回路200には、図6(
A)の半導体装置に限定されず、実施の形態2における半導体装置を適宜用いることが可
能である。
図11のシフトレジスタ回路の接続関係について説明する。i(iは2乃至N−1のい
ずれか一)段目のフリップフロップ回路200は、i段目の配線31(配線31_iと示
す)、i−1段目の配線31(配線31_i−1と示す)、i+1段目の配線31(配線
31_i+1と示す)、配線32、配線33、配線34、配線35と配線36との一方、
及び配線37と接続される。具体的には、i段目のフリップフロップ回路200において
、配線16がi段目の配線31と接続され、配線21がi−1段目の配線31と接続され
、配線22がi+1段目の配線31と接続される。また、配線15が配線32と接続され
、配線13が配線33と接続され、配線14が配線34と接続され、配線23が配線35
と配線36の一方と接続され、配線12が配線37と接続される。なお、1段目のフリッ
プフロップ回路200では、配線21が配線38と接続されるところが、i段目のフリッ
プフロップ回路200と異なる。
配線31からは信号OUTが出力され、配線31は信号OUTを伝達する機能を有する
配線32には電位VHが供給され、配線32は電位VHを伝達する機能を有する。
配線33には電位VL1が供給され、配線33は電位VL1を伝達する機能を有する。
配線34には電位VL2が供給され、配線34は電位VL2を伝達する機能を有する。
配線35には信号CK1が入力され、配線35は信号CK1伝達する機能を有する。ま
た、配線36には信号CK2が入力され、信号CK2を伝達する機能を有する。信号CK
1及び信号CK2は、信号CKと同様の信号である。ただし、信号CK1及び信号CK2
は、互いに反転した信号、または互いに位相が異なる信号である。
配線37には信号SEが入力され、配線37は信号SEを伝達する機能を有する。
配線38には信号SPが入力され、配線38は信号SPを伝達する機能を有する。信号
SPはシフトレジスタ回路のスタートパルスである。また、信号SPは、ハイレベルの電
位がVHであり、ロウレベルの電位がVL1であるデジタル信号である。
次に、図11のシフトレジスタ回路の駆動方法の一例について、図12を参照して説明
する。図12は、図11のシフトレジスタ回路の駆動方法を説明するためのタイミングチ
ャートの一例を示す。なお、図12では、1段目のフリップフロップ回路200の信号O
UT、2段目のフリップフロップ回路200の信号OUT、N段目のフリップフロップ回
路200の信号OUTを、各々、信号OUT1、信号OUT2、信号OUTNと示す。
期間T0においては、信号SEはハイレベルになる。よって、1段目乃至N段目のフリ
ップフロップ回路200のそれぞれは、実施の形態2で説明した期間T0における動作を
行う。
期間T1においては、信号SEがロウレベルになる。よって、1段目乃至N段目のフリ
ップフロップ回路200のそれぞれは、実施の形態2で説明した期間T1における動作を
行う。具体的には、i−1段目のフリップフロップ回路200の信号OUTがハイレベル
になると、i段目のフリップフロップ回路200は実施の形態2で説明した期間Taにお
ける動作を行う。よって、i段目のフリップフロップ回路200の信号OUTはロウレベ
ルとなる。その後、信号CK1及び信号CK2が反転すると、i段目のフリップフロップ
回路200は実施の形態2で説明した期間Tbにおける動作を行う。よって、i段目のフ
リップフロップ回路200の信号OUTはハイレベルとなる。その後、信号CK1及び信
号CK2が反転し、且つi+1段目のフリップフロップ回路200の信号OUTがハイレ
ベルになると、i段目のフリップフロップ回路200は実施の形態2で説明した期間Tc
における動作を行う。よって、i段目のフリップフロップ回路200の信号OUTがロウ
レベルとなる。その後、再びi−1段目のフリップフロップ回路200の信号OUTがハ
イレベルになるまで、i段目のフリップフロップ回路200は実施の形態2で説明した期
間Tdにおける動作を行う。よって、i段目のフリップフロップ回路200の信号OUT
はロウレベルを維持する。
図11のシフトレジスタ回路は、フリップフロップ回路200として図6(A)の半導
体装置を用いているため、図6(A)の半導体装置と同様の効果を奏することができる。
以上、図11のシフトレジスタ回路の駆動方法について説明した。
なお、図11のシフトレジスタ回路において、配線37を省略し、各フリップフロップ
回路200において配線12を配線38と接続してもよい。こうすれば、配線の数を減ら
すことができる。また、容量素子101にオフセット電圧を定期的に保持することができ
る。
なお、フリップフロップ回路200として図9(A)の半導体装置を用いる場合、配線
23を配線35と接続するときには、配線24を配線36と接続することが好ましい。こ
うすれば、配線数の増加を抑制することができる。
なお、フリップフロップ回路として図9(B)の半導体装置を用いる場合、配線25を
配線31と接続し、配線16を負荷と接続することが好ましい。こうすれば、負荷の影響
を受けない配線25の信号OUTBによって他の段のフリップフロップ回路200を駆動
することができるため、シフトレジスタ回路を安定して駆動させることができる。
本実施の形態は、他の実施の形態等と適宜組み合わせて実施することが可能である。
(実施の形態4)
本実施の形態では、実施の形態3のシフトレジスタ回路を駆動回路として用いた表示装
置について説明する。
また、駆動回路の一部または全体を、画素部と同じ基板上に一体形成し、システムオン
パネルを形成することができる。
表示装置に用いる表示素子としては液晶素子(液晶表示素子ともいう)、発光素子(発
光表示素子ともいう)を適用することができる。発光素子は、電流または電圧によって輝
度が制御される素子をその範疇に含んでおり、具体的には無機EL(Electro L
uminescence)、有機EL等が含まれる。また、電子インクなど、電気的作用
によりコントラストが変化する表示媒体も適用することができる。
図13(A)において、第1の基板4001上に設けられた画素部4002を囲むよう
にして、シール材4005が設けられ、第2の基板4006によって封止されている。図
13(A)においては、第1の基板4001上のシール材4005によって囲まれている
領域とは異なる領域に、別途用意された基板上に走査線駆動回路4004、信号線駆動回
路4003が実装されている。また別途形成された信号線駆動回路4003と、走査線駆
動回路4004または画素部4002に与えられる各種信号及び電位は、FPC4018
a(Flexible printed circuit)、FPC4018bから供給
されている。
図13(B)及び図13(C)において、第1の基板4001上に設けられた画素部4
002と、走査線駆動回路4004とを囲むようにして、シール材4005が設けられて
いる。また画素部4002と、走査線駆動回路4004の上に第2の基板4006が設け
られている。よって画素部4002と、走査線駆動回路4004とは、第1の基板400
1とシール材4005と第2の基板4006とによって、表示素子と共に封止されている
。図13(B)及び図13(C)においては、第1の基板4001上のシール材4005
によって囲まれている領域とは異なる領域に、別途用意された基板上に信号線駆動回路4
003が実装されている。図13(B)及び図13(C)においては、別途形成された信
号線駆動回路4003と、走査線駆動回路4004または画素部4002に与えられる各
種信号及び電位は、FPC4018から供給されている。
また図13(B)及び図13(C)においては、信号線駆動回路4003を別途形成し
、第1の基板4001に実装している例を示しているが、この構成に限定されない。走査
線駆動回路を別途形成して実装しても良いし、信号線駆動回路の一部または走査線駆動回
路の一部のみを別途形成して実装しても良い。
なお、別途形成した駆動回路の接続方法は、特に限定されるものではなく、COG(C
hip On Glass)方法、ワイヤボンディング方法、或いはTAB(Tape
Automated Bonding)方法などを用いることができる。図13(A)は
、COG方法により信号線駆動回路4003、走査線駆動回路4004を実装する例であ
り、図13(B)は、COG方法により信号線駆動回路4003を実装する例であり、図
13(C)は、TAB方法により信号線駆動回路4003を実装する例である。
また、表示装置は、表示素子が封止された状態にあるパネルと、該パネルにコントロー
ラを含むIC等を実装した状態にあるモジュールとを含む。
なお、本明細書中における表示装置とは、画像表示デバイス、表示デバイス、もしくは
光源(照明装置含む)を指す。また、コネクター、例えばFPCもしくはTABテープも
しくはTCPが取り付けられたモジュール、TABテープやTCPの先にプリント配線板
が設けられたモジュール、または表示素子にCOG方式によりIC(集積回路)が直接実
装されたモジュールも全て表示装置に含むものとする。
また、第1の基板上に設けられた画素部は、トランジスタを複数有している。
表示素子として、液晶素子を用いる場合、サーモトロピック液晶、低分子液晶、高分子
液晶、高分子分散型液晶、強誘電性液晶、反強誘電性液晶等を用いる。これらの液晶材料
は、条件により、コレステリック相、スメクチック相、キュービック相、カイラルネマチ
ック相、等方相等を示す。
また、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つ
であり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する
直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改
善するために5重量%以上のカイラル剤を混合させた液晶組成物を液晶層に用いると良い
。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が1msec以下と
短く、光学的等方性であるため配向処理が不要であり、視野角依存性が小さい。また配向
膜を設けなくてもよいのでラビング処理が不要となる。このため、ラビング処理によって
引き起こされる静電破壊を防止することができ、作製工程中の液晶表示装置の不良や破損
を軽減することができる。よって液晶表示装置の生産性を向上させることが可能となる。
また、液晶材料の固有抵抗は、1×10Ω・cm以上であり、好ましくは1×10
Ω・cm以上であり、さらに好ましくは1×1012Ω・cm以上である。なお、本明
細書における固有抵抗の値は、20℃で測定した値とする。
液晶表示装置に設けられる保持容量の大きさは、画素部に配置されるトランジスタのリ
ーク電流等を考慮して、所定の期間の間電荷を保持できるように設定される。保持容量の
大きさは、トランジスタのオフ電流等を考慮して設定すればよい。
液晶表示装置には、TN(Twisted Nematic)モード、IPS(In−
Plane−Switching)モード、FFS(Fringe Field Swi
tching)モード、ASM(Axially Symmetric aligned
Micro−cell)モード、OCB(Optical Compensated
Birefringence)モード、FLC(Ferroelectric Liqu
id Crystal)モード、AFLC(AntiFerroelectric Li
quid Crystal)モードなどを用いる。
また、ノーマリーブラック型の液晶表示装置、例えば垂直配向(VA)モードを採用し
た透過型の液晶表示装置としてもよい。垂直配向モードとしては、いくつか挙げられるが
、例えば、MVA(Multi−Domain Vertical Alignment
)モード、PVA(Patterned Vertical Alignment)モー
ド、ASVモードなどを用いることができる。
また、VA型の液晶表示装置にも適用することができる。VA型の液晶表示装置とは、
液晶表示パネルの液晶分子の配列を制御する方式の一種である。VA型の液晶表示装置は
、電圧が印加されていないときにパネル面に対して液晶分子が垂直方向を向く方式である
。また、画素(ピクセル)をいくつかの領域(サブピクセル)に分け、それぞれ別の方向
に分子を倒すよう工夫されているマルチドメイン化あるいはマルチドメイン設計といわれ
る方法を用いることができる。
また、表示装置において、ブラックマトリクス(遮光層)、偏光部材、位相差部材、反
射防止部材などの光学部材(光学基板)などは適宜設ける。例えば、偏光基板及び位相差
基板による円偏光を用いてもよい。また、光源としてバックライト、サイドライトなどを
用いてもよい。
また、画素部における表示方式は、プログレッシブ方式やインターレース方式等を用い
ることができる。また、カラー表示する際に画素で制御する色要素としては、RGB(R
は赤、Gは緑、Bは青を表す)の三色に限定されない。例えば、RGBW(Wは白を表す
)、又はRGBに、イエロー、シアン、マゼンタ等を一色以上追加したものがある。なお
、色要素のドット毎にその表示領域の大きさが異なっていてもよい。ただし、開示する発
明は、カラー表示の表示装置に限定されるものではなく、モノクロ表示の表示装置に適用
することもできる。
また、表示装置に含まれる表示素子として、エレクトロルミネッセンスを利用する発光
素子を適用することができる。エレクトロルミネッセンスを利用する発光素子は、発光材
料が有機化合物であるか、無機化合物であるかによって区別され、一般的に、前者は有機
EL素子、後者は無機EL素子と呼ばれている。
有機EL素子では、発光素子に電圧を印加することにより、一対の電極から電子および
正孔がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、それら
キャリア(電子および正孔)が再結合することにより、発光性の有機化合物が励起状態を
形成し、その励起状態が基底状態に戻る際に発光する。当該メカニズムから、このような
発光素子は電流励起型の発光素子と呼ばれる。
無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに
分類される。分散型無機EL素子は、発光材料の粒子をバインダ中に分散させた発光層を
有するものであり、発光メカニズムはドナー準位とアクセプター準位を利用するドナー−
アクセプター再結合型発光である。薄膜型無機EL素子は、発光層を誘電体層で挟み込み
、さらにそれを電極で挟んだ構造であり、発光メカニズムは金属イオンの内殻電子遷移を
利用する局在型発光である。
また、表示装置として、電子インクを駆動させる電子ペーパーを提供することも可能で
ある。電子ペーパーは、電気泳動表示装置(電気泳動ディスプレイ)とも呼ばれており、
紙と同じ読みやすさ、他の表示装置に比べ低消費電力、薄くて軽い形状とすることが可能
という利点を有している。
電気泳動表示装置は、様々な形態が考えられ得るが、プラスの電荷を有する第1の粒子
と、マイナスの電荷を有する第2の粒子とを含むマイクロカプセルが溶媒または溶質に複
数分散されたものであり、マイクロカプセルに電界を印加することによって、マイクロカ
プセル中の粒子を互いに反対方向に移動させて一方側に集合した粒子の色のみを表示する
ものである。なお、第1の粒子または第2の粒子は染料を含み、電界がない場合において
移動しないものである。また、第1の粒子の色と第2の粒子の色は異なるもの(無色を含
む)とする。
このように、電気泳動表示装置は、誘電定数の高い物質が高い電界領域に移動する、い
わゆる誘電泳動的効果を利用したディスプレイである。
上記マイクロカプセルを溶媒中に分散させたものが電子インクと呼ばれるものであり、
この電子インクはガラス、プラスチック、布、紙などの表面に印刷することができる。ま
た、カラーフィルタや色素を有する粒子を用いることによってカラー表示も可能である。
なお、マイクロカプセル中の第1の粒子および第2の粒子には、導電体材料、絶縁体材
料、半導体材料、磁性材料、液晶材料、強誘電性材料、エレクトロルミネセント材料、エ
レクトロクロミック材料、磁気泳動材料から選ばれた一種の材料、またはこれらの複合材
料を用いればよい。
また、電子ペーパーとして、ツイストボール表示方式を用いる表示装置も適用すること
ができる。ツイストボール表示方式とは、白と黒に塗り分けられた球形粒子を表示素子に
用いる電極層である第1の電極層及び第2の電極層の間に配置し、第1の電極層及び第2
の電極層に電位差を生じさせての球形粒子の向きを制御することにより、表示を行う方法
である。
本実施の形態で述べた表示装置に実施の形態3のシフトレジスタ回路を適用することで
、仮にトランジスタがディプレッション型であっても安定した駆動ができる表示装置を提
供することができる。
本実施の形態は、他の実施の形態等と適宜組み合わせて実施することが可能である。
(実施の形態5)
本実施の形態では、実施の形態1の半導体装置、実施の形態2の半導体装置、実施の形
態3のシフトレジスタ回路及び実施の形態4の表示装置に用いることができるトランジス
タについて説明する。
<酸化物半導体について>
以下では、酸化物半導体について詳述する。
酸化物半導体は、用いる酸化物半導体としては、少なくともインジウム(In)あるい
は亜鉛(Zn)を含むことが好ましい。特にInとZnを含むことが好ましい。また、該
酸化物半導体を用いたトランジスタの電気特性のばらつきを減らすためのスタビライザー
として、それらに加えてガリウム(Ga)を有することが好ましい。また、スタビライザ
ーとしてスズ(Sn)を有することが好ましい。また、スタビライザーとしてハフニウム
(Hf)を有することが好ましい。また、スタビライザーとしてアルミニウム(Al)を
有することが好ましい。
また、他のスタビライザーとして、ランタノイドである、ランタン(La)、セリウム
(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウ
ム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホ
ルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、
ルテチウム(Lu)のいずれか一種あるいは複数種を有してもよい。
例えば、酸化物半導体として、酸化インジウム、酸化スズ、酸化亜鉛、二元系金属の酸
化物であるIn−Zn系酸化物、Sn−Zn系酸化物、Al−Zn系酸化物、Zn−Mg
系酸化物、Sn−Mg系酸化物、In−Mg系酸化物、In−Ga系酸化物、三元系金属
の酸化物であるIn−Ga−Zn系酸化物(IGZOとも表記する)、In−Al−Zn
系酸化物、In−Sn−Zn系酸化物、Sn−Ga−Zn系酸化物、Al−Ga−Zn系
酸化物、Sn−Al−Zn系酸化物、In−Hf−Zn系酸化物、In−La−Zn系酸
化物、In−Ce−Zn系酸化物、In−Pr−Zn系酸化物、In−Nd−Zn系酸化
物、In−Sm−Zn系酸化物、In−Eu−Zn系酸化物、In−Gd−Zn系酸化物
、In−Tb−Zn系酸化物、In−Dy−Zn系酸化物、In−Ho−Zn系酸化物、
In−Er−Zn系酸化物、In−Tm−Zn系酸化物、In−Yb−Zn系酸化物、I
n−Lu−Zn系酸化物、四元系金属の酸化物であるIn−Sn−Ga−Zn系酸化物、
In−Hf−Ga−Zn系酸化物、In−Al−Ga−Zn系酸化物、In−Sn−Al
−Zn系酸化物、In−Sn−Hf−Zn系酸化物、In−Hf−Al−Zn系酸化物を
用いることができる。
In−Ga−Zn系の酸化物半導体材料は、無電界時の抵抗が十分に高くオフ電流を十分
に小さくすることが可能であり、かつ、電界効果移動度が高い特徴を有している。また、
In−Sn−Zn系酸化物半導体材料を用いたトランジスタは、In−Ga−Zn系の酸
化物半導体材料を用いたトランジスタよりも電界効果移動度を三倍以上にすることができ
、かつ、しきい値電圧を正にしやすい特徴を有している。これらの半導体材料は、本発明
の一態様における半導体装置を構成するトランジスタに用いることのできる好適な材料の
一つである。
なお、ここで、例えば、In−Ga−Zn系酸化物とは、InとGaとZnを主成分と
して有する酸化物という意味であり、InとGaとZnの比率は問わない。また、Inと
GaとZn以外の金属元素が入っていてもよい。
また、酸化物半導体として、InMO(ZnO)(m>0、且つ、mは整数でない
)で表記される材料を用いてもよい。なお、Mは、Ga、Fe、Mn及びCoから選ばれ
た一の金属元素または複数の金属元素を示す。また、酸化物半導体として、InSnO
(ZnO)(n>0、且つ、nは整数)で表記される材料を用いてもよい。
例えば、In:Ga:Zn=1:1:1(=1/3:1/3:1/3)あるいはIn:
Ga:Zn=2:2:1(=2/5:2/5:1/5)の原子数比のIn−Ga−Zn系
酸化物やその組成の近傍の酸化物を用いることができる。あるいは、In:Sn:Zn=
1:1:1(=1/3:1/3:1/3)、In:Sn:Zn=2:1:3(=1/3:
1/6:1/2)あるいはIn:Sn:Zn=2:1:5(=1/4:1/8:5/8)
の原子数比のIn−Sn−Zn系酸化物やその組成の近傍の酸化物を用いるとよい。
しかし、これらに限られず、必要とする半導体特性(移動度、しきい値、ばらつき等)
に応じて適切な組成のものを用いればよい。また、必要とする半導体特性を得るために、
キャリア密度や不純物濃度、欠陥密度、金属元素と酸素の原子数比、原子間結合距離、密
度等を適切なものとすることが好ましい。
例えば、In−Sn−Zn系酸化物では比較的容易に高い移動度が得られる。しかしな
がら、In−Ga−Zn系酸化物でも、バルク内欠陥密度を低減することにより移動度を
上げることができる。
なお、例えば、In、Ga、Znの原子数比がIn:Ga:Zn=a:b:c(a+b
+c=1)である酸化物の組成が、原子数比がIn:Ga:Zn=A:B:C(A+B+
C=1)の酸化物の組成の近傍であるとは、a、b、cが、
(a―A)+(b―B)+(c―C)≦r
を満たすことをいい、rは、例えば、0.05とすればよい。他の酸化物でも同様である
また、酸化物半導体層としては、電子供与体(ドナー)となる水分又は水素などの不純
物が低減されて高純度化されることが好ましい。具体的には、高純度化された酸化物半導
体層は、二次イオン質量分析法(SIMS:Secondary Ion Mass S
pectrometry)による水素濃度の測定値が、5×1019/cm以下、好ま
しくは5×1018/cm以下、より好ましくは5×1017/cm以下、更に好ま
しくは1×1016/cm以下である。また、ホール効果測定により測定できる酸化物
半導体層のキャリア密度は、1×1014/cm未満、好ましくは1×1012/cm
未満、更に好ましくは1×1011/cm未満である。
ここで、酸化物半導体層中の、水素濃度の分析について触れておく。半導体層中の水素
濃度測定は、二次イオン質量分析法で行う。SIMS分析は、その原理上、試料表面近傍
や、材質が異なる層との積層界面近傍のデータを正確に得ることが困難であることが知ら
れている。そこで、層中における水素濃度の厚さ方向の分布をSIMSで分析する場合、
対象となる層が存在する範囲において、値に極端な変動がなく、ほぼ一定の値が得られる
領域における平均値を、水素濃度として採用する。また、測定の対象となる層の厚さが小
さい場合、隣接する層内の水素濃度の影響を受けて、ほぼ一定の値が得られる領域を見い
だせない場合がある。この場合、当該層が存在する領域における、水素濃度の極大値又は
極小値を、当該層中の水素濃度として採用する。更に、当該層が存在する領域において、
極大値を有する山型のピーク、極小値を有する谷型のピークが存在しない場合、変曲点の
値を水素濃度として採用する。
スパッタリング法を用いて酸化物半導体層を作製する場合には、ターゲット中の水素濃
度のみならず、チャンバー内に存在する水、水素を極力低減しておくことが重要である。
具体的には、当該形成以前にチャンバー内をベークする、チャンバー内に導入されるガス
中の水、水素濃度を低減する、及びチャンバーからガスの排気する排気系における逆流を
防止するなどを行うことが効果的である。
酸化物半導体は単結晶でも、非単結晶でもよい。後者の場合、アモルファスでも、多結
晶でもよい。また、アモルファス中に結晶性を有する部分を含む構造でも、非アモルファ
スでもよい。
アモルファス状態の酸化物半導体は、比較的容易に平坦な表面を得ることができるため
、これを用いてトランジスタを作製した際の界面散乱を低減でき、比較的容易に、比較的
高い移動度を得ることができる。
また、結晶性を有する酸化物半導体では、よりバルク内欠陥を低減することができ、表
面の平坦性を高めればアモルファス状態の酸化物半導体以上の移動度を得ることができる
。表面の平坦性を高めるためには、平坦な表面上に酸化物半導体を形成することが好まし
く、具体的には、平均面粗さ(Ra)が1nm以下、好ましくは0.3nm以下、より好
ましくは0.1nm以下の表面上に形成するとよい。
なお、Raは、JIS B0601で定義されている中心線平均粗さを面に対して適用
できるよう三次元に拡張したものであり、「基準面から指定面までの偏差の絶対値を平均
した値」と表現でき、以下の式にて定義される。
なお、上記において、Sは、測定面(座標(x,y)(x,y)(x,y
)(x,y)で表される4点によって囲まれる長方形の領域)の面積を指し、Z
は測定面の平均高さを指す。Raは原子間力顕微鏡(AFM:Atomic Force
Microscope)にて評価可能である。
酸化物半導体膜は、単結晶、多結晶(ポリクリスタルともいう。)または非晶質などの
状態をとる。
好ましくは、酸化物半導体膜は、CAAC−OS(C Axis Aligned C
rystalline Oxide Semiconductor)膜とする。
CAAC−OS膜は、完全な単結晶ではなく、完全な非晶質でもない。CAAC−OS
膜は、非晶質相に結晶部および非晶質部を有する結晶−非晶質混相構造の酸化物半導体膜
である。なお、当該結晶部は、一辺が100nm未満の立方体内に収まる大きさであるこ
とが多い。また、透過型電子顕微鏡(TEM:Transmission Electr
on Microscope)による観察像では、CAAC−OS膜に含まれる非晶質部
と結晶部との境界は明確ではない。また、TEMによってCAAC−OS膜には粒界(グ
レインバウンダリーともいう。)は確認できない。そのため、CAAC−OS膜は、粒界
に起因する電子移動度の低下が抑制される。
CAAC−OS膜に含まれる結晶部は、c軸がCAAC−OS膜の被形成面の法線ベク
トルまたは表面の法線ベクトルに平行な方向に揃い、かつab面に垂直な方向から見て三
角形状または六角形状の原子配列を有し、c軸に垂直な方向から見て金属原子が層状また
は金属原子と酸素原子とが層状に配列している。なお、異なる結晶部間で、それぞれa軸
およびb軸の向きが異なっていてもよい。本明細書において、単に垂直と記載する場合、
85°以上95°以下の範囲も含まれることとする。また、単に平行と記載する場合、−
5°以上5°以下の範囲も含まれることとする。
なお、CAAC−OS膜において、結晶部の分布が一様でなくてもよい。例えば、CA
AC−OS膜の形成過程において、酸化物半導体膜の表面側から結晶成長させる場合、被
形成面の近傍に対し表面の近傍では結晶部の占める割合が高くなることがある。また、C
AAC−OS膜へ不純物を添加することにより、当該不純物添加領域において結晶部が非
晶質化することもある。
CAAC−OS膜に含まれる結晶部のc軸は、CAAC−OS膜の被形成面の法線ベク
トルまたは表面の法線ベクトルに平行な方向に揃うため、CAAC−OS膜の形状(被形
成面の断面形状または表面の断面形状)によっては互いに異なる方向を向くことがある。
なお、結晶部のc軸の方向は、CAAC−OS膜が形成されたときの被形成面の法線ベク
トルまたは表面の法線ベクトルに平行な方向となる。結晶部は、成膜することにより、ま
たは成膜後に加熱処理などの結晶化処理を行うことにより形成される。
CAAC−OS膜を用いたトランジスタは、可視光や紫外光の照射による電気特性の変
動を低減することが可能である。よって、当該トランジスタは、信頼性が高い。
なお、酸化物半導体膜を構成する酸素の一部は窒素で置換されてもよい。
なお、スパッタリング法を用いてCAAC−OS膜を成膜する場合には、雰囲気中の酸
素ガス比が高い方が好ましい。例えば、アルゴン及び酸素の混合ガス雰囲気中でスパッタ
リング法を行う場合には、酸素ガス比を30%以上とすることが好ましく、40%以上と
することがより好ましい。雰囲気中からの酸素の補充によって、CAACの結晶化が促進
されるからである。
また、スパッタリング法を用いてCAAC−OS膜を成膜する場合には、CAAC−O
S膜が成膜される基板を150℃以上に加熱しておくことが好ましく、170℃以上に加
熱しておくことがより好ましい。基板温度の上昇に伴って、CAACの結晶化が促進され
るからである。
また、CAAC−OS膜に対して、窒素雰囲気中又は真空中において熱処理を行った後
には、酸素雰囲気中又は酸素と他のガスとの混合雰囲気中において熱処理を行うことが好
ましい。先の熱処理で生じる酸素欠損を後の熱処理における雰囲気中からの酸素供給によ
って復元することができるからである。
また、CAAC−OS膜が成膜される膜表面(被成膜面)は平坦であることが好ましい
。CAAC−OS膜は、当該被成膜面に概略垂直となるc軸を有するため、当該被成膜面
に存在する凹凸は、CAAC−OS膜における結晶粒界の発生を誘発することになるから
である。よって、CAAC−OS膜が成膜される前に当該被成膜表面に対して化学機械研
磨(Chemical Mechanical Polishing:CMP)などの平
坦化処理を行うことが好ましい。また、当該被成膜面の平均ラフネスは、0.5nm以下
であることが好ましく、0.3nm以下であることがより好ましい。
次いで、CAACに含まれる結晶構造の一例について図14乃至図16を用いて詳細に
説明する。なお、特に断りがない限り、図14乃至図16は上方向をc軸方向とし、c軸
方向と直交する面をab面とする。なお、単に上半分、下半分という場合、ab面を境に
した場合の上半分、下半分をいう。また、図14において、丸で囲まれたOは4配位のO
を示し、二重丸で囲まれたOは3配位のOを示す。
図14(A)に、1個の6配位のInと、Inに近接の6個の4配位の酸素原子(以下
4配位のO)と、を有する構造を示す。ここでは、金属原子が1個に対して、近接の酸素
原子のみ示した構造を小グループと呼ぶ。図14(A)の構造は、八面体構造をとるが、
簡単のため平面構造で示している。なお、図14(A)の上半分および下半分にはそれぞ
れ3個ずつ4配位のOがある。図14(A)に示す小グループは電荷が0である。
図14(B)に、1個の5配位のGaと、Gaに近接の3個の3配位の酸素原子(以下
3配位のO)と、近接の2個の4配位のOと、を有する構造を示す。3配位のOは、いず
れもab面に存在する。図14(B)の上半分および下半分にはそれぞれ1個ずつ4配位
のOがある。また、Inも5配位をとるため、図14(B)に示す構造をとりうる。図1
4(B)に示す小グループは電荷が0である。
図14(C)に、1個の4配位のZnと、Znに近接の4個の4配位のOと、を有する
構造を示す。図14(C)の上半分には1個の4配位のOがあり、下半分には3個の4配
位のOがある。または、図14(C)の上半分に3個の4配位のOがあり、下半分に1個
の4配位のOがあってもよい。図14(C)に示す小グループは電荷が0である。
図14(D)に、1個の6配位のSnと、Snに近接の6個の4配位のOと、を有する
構造を示す。図14(D)の上半分には3個の4配位のOがあり、下半分には3個の4配
位のOがある。図14(D)に示す小グループは電荷が+1となる。
図14(E)に、2個のZnを含む小グループを示す。図14(E)の上半分には1個
の4配位のOがあり、下半分には1個の4配位のOがある。図14(E)に示す小グルー
プは電荷が−1となる。
ここでは、複数の小グループの集合体を中グループと呼び、複数の中グループの集合体
を大グループ(ユニットセルともいう。)と呼ぶ。
ここで、これらの小グループ同士が結合する規則について説明する。図14(A)に示
す6配位のInの上半分の3個のOは下方向にそれぞれ3個の近接Inを有し、下半分の
3個のOは上方向にそれぞれ3個の近接Inを有する。図14(B)に示す5配位のGa
の上半分の1個のOは下方向に1個の近接Gaを有し、下半分の1個のOは上方向に1個
の近接Gaを有する。図14(C)に示す4配位のZnの上半分の1個のOは下方向に1
個の近接Znを有し、下半分の3個のOは上方向にそれぞれ3個の近接Znを有する。こ
の様に、金属原子の上方向の4配位のOの数と、そのOの下方向にある近接金属原子の数
は等しく、同様に金属原子の下方向の4配位のOの数と、そのOの上方向にある近接金属
原子の数は等しい。Oは4配位なので、下方向にある近接金属原子の数と、上方向にある
近接金属原子の数の和は4になる。従って、金属原子の上方向にある4配位のOの数と、
別の金属原子の下方向にある4配位のOの数との和が4個のとき、金属原子を有する二種
の小グループ同士は結合することができる。その理由を以下に示す。例えば、6配位の金
属原子(InまたはSn)が下半分の4配位のOを介して結合する場合、4配位のOが3
個であるため、5配位の金属原子(GaまたはIn)、または4配位の金属原子(Zn)
のいずれかと結合することになる。
これらの配位数を有する金属原子は、c軸方向において、4配位のOを介して結合する
。また、このほかにも、層構造の合計の電荷が0となるように複数の小グループが結合し
て中グループを構成する。
図15(A)に、In−Sn−Zn−O系の層構造を構成する中グループのモデル図を
示す。図15(B)に、3つの中グループで構成される大グループを示す。なお、図15
(C)は、図15(B)の層構造をc軸方向から観察した場合の原子配列を示す。
図15(A)においては、簡単のため、3配位のOは省略し、4配位のOは個数のみ示
し、例えば、Snの上半分および下半分にはそれぞれ3個ずつ4配位のOがあることを丸
枠の3として示している。同様に、図15(A)において、Inの上半分および下半分に
はそれぞれ1個ずつ4配位のOがあり、丸枠の1として示している。また、同様に、図1
5(A)において、下半分には1個の4配位のOがあり、上半分には3個の4配位のOが
あるZnと、上半分には1個の4配位のOがあり、下半分には3個の4配位のOがあるZ
nとを示している。
図15(A)において、In−Sn−Zn−O系の層構造を構成する中グループは、上
から順に4配位のOが3個ずつ上半分および下半分にあるSnが、4配位のOが1個ずつ
上半分および下半分にあるInと結合し、そのInが、上半分に3個の4配位のOがある
Znと結合し、そのZnの下半分の1個の4配位のOを介して4配位のOが3個ずつ上半
分および下半分にあるInと結合し、そのInが、上半分に1個の4配位のOがあるZn
2個からなる小グループと結合し、この小グループの下半分の1個の4配位のOを介して
4配位のOが3個ずつ上半分および下半分にあるSnと結合している構成である。この中
グループが複数結合して大グループを構成する。
ここで、3配位のOおよび4配位のOの場合、結合1本当たりの電荷はそれぞれ−0.
667、−0.5と考えることができる。例えば、In(6配位または5配位)、Zn(
4配位)、Sn(5配位または6配位)の電荷は、それぞれ+3、+2、+4である。従
って、Snを含む小グループは電荷が+1となる。そのため、Snを含む層構造を形成す
るためには、電荷+1を打ち消す電荷−1が必要となる。電荷−1をとる構造として、図
14(E)に示すように、2個のZnを含む小グループが挙げられる。例えば、Snを含
む小グループが1個に対し、2個のZnを含む小グループが1個あれば、電荷が打ち消さ
れるため、層構造の合計の電荷を0とすることができる。
具体的には、図15(B)に示した大グループが繰り返されることで、In−Sn−Z
n−O系の結晶(InSnZn)を得ることができる。なお、得られるIn−S
n−Zn−O系の層構造は、InSnZn(ZnO)(mは0または自然数。
)とする組成式で表すことができる。
また、このほかにも、四元系金属の酸化物であるIn−Sn−Ga−Zn系酸化物や、
三元系金属の酸化物であるIn−Ga−Zn系酸化物(IGZOとも表記する。)、In
−Al−Zn系酸化物、Sn−Ga−Zn系酸化物、Al−Ga−Zn系酸化物、Sn−
Al−Zn系酸化物や、In−Hf−Zn系酸化物、In−La−Zn系酸化物、In−
Ce−Zn系酸化物、In−Pr−Zn系酸化物、In−Nd−Zn系酸化物、In−S
m−Zn系酸化物、In−Eu−Zn系酸化物、In−Gd−Zn系酸化物、In−Tb
−Zn系酸化物、In−Dy−Zn系酸化物、In−Ho−Zn系酸化物、In−Er−
Zn系酸化物、In−Tm−Zn系酸化物、In−Yb−Zn系酸化物、In−Lu−Z
n系酸化物や、二元系金属の酸化物であるIn−Zn系酸化物、Sn−Zn系酸化物、A
l−Zn系酸化物、Zn−Mg系酸化物、Sn−Mg系酸化物、In−Mg系酸化物や、
In−Ga系酸化物、などを用いた場合も同様である。
例えば、図16(A)に、In−Ga−Zn−O系の層構造を構成する中グループのモ
デル図を示す。
図16(A)において、In−Ga−Zn−O系の層構造を構成する中グループは、上
から順に4配位のOが3個ずつ上半分および下半分にあるInが、4配位のOが1個上半
分にあるZnと結合し、そのZnの下半分の3個の4配位のOを介して、4配位のOが1
個ずつ上半分および下半分にあるGaと結合し、そのGaの下半分の1個の4配位のOを
介して、4配位のOが3個ずつ上半分および下半分にあるInと結合している構成である
。この中グループが複数結合して大グループを構成する。
図16(B)に3つの中グループで構成される大グループを示す。なお、図16(C)
は、図16(B)の層構造をc軸方向から観察した場合の原子配列を示している。
ここで、In(6配位または5配位)、Zn(4配位)、Ga(5配位)の電荷は、そ
れぞれ+3、+2、+3であるため、In、ZnおよびGaのいずれかを含む小グループ
は、電荷が0となる。そのため、これらの小グループの組み合わせであれば中グループの
合計の電荷は常に0となる。
また、In−Ga−Zn−O系の層構造を構成する中グループは、図16(A)に示し
た中グループに限定されず、In、Ga、Znの配列が異なる中グループを組み合わせた
大グループも取りうる。
<チャネルが酸化物半導体層に形成されるトランジスタについて>
チャネルが酸化物半導体層に形成されるトランジスタについて図17(A)〜(D)を
参照して説明する。なお、図17(A)〜(D)は、トランジスタの構造例を示す断面模
式図である。
図17(A)に示すトランジスタは、導電層601(a)と、絶縁層602(a)と、
酸化物半導体層603(a)と、導電層605a(a)と、導電層605b(a)と、絶
縁層606(a)と、導電層608(a)と、を含んでいる。
導電層601(a)は、被素子形成層600(a)の上に設けられている。
絶縁層602(a)は、導電層601(a)の上に設けられている。
酸化物半導体層603(a)は、絶縁層602(a)を介して導電層601(a)に重
畳する。
導電層605a(a)及び導電層605b(a)のそれぞれは、酸化物半導体層603
(a)の上に設けられ、酸化物半導体層603(a)に電気的に接続されている。
絶縁層606(a)は、酸化物半導体層603(a)、導電層605a(a)、及び導
電層605a(b)の上に設けられている。
導電層608(a)は、絶縁層606(a)を介して酸化物半導体層603(a)に重
畳する。
なお、必ずしも導電層601(a)及び導電層608(a)の一方を設けなくてもよい
。また、導電層608(a)を設けない場合には、絶縁層606(a)を設けなくてもよ
い。
図17(B)に示すトランジスタは、導電層601(b)と、絶縁層602(b)と、
酸化物半導体層603(b)と、導電層605a(b)と、導電層605b(b)と、絶
縁層606(b)と、導電層608(b)と、を含んでいる。
導電層601(b)は、被素子形成層600(b)の上に設けられている。
絶縁層602(b)は、導電層601(b)の上に設けられている。
導電層605a(b)及び導電層605b(b)のそれぞれは、絶縁層602(b)の
一部の上に設けられている。
酸化物半導体層603(b)は、導電層605a(b)及び導電層605b(b)の上
に設けられ、導電層605a(b)及び導電層605b(b)に電気的に接続されている
。また、酸化物半導体層603(b)は、絶縁層602(b)を介して導電層601(b
)に重畳する。
絶縁層606(b)は、酸化物半導体層603(b)、導電層605a(b)、及び導
電層605b(b)の上に設けられている。
導電層608(b)は、絶縁層606(b)を介して酸化物半導体層603(b)に重
畳する。
なお、必ずしも導電層601(b)及び導電層608(b)の一方を設けなくてもよい
。導電層608(b)を設けない場合には、絶縁層606(b)を設けなくてもよい。
図17(C)に示すトランジスタは、導電層601(c)と、絶縁層602(c)と、
酸化物半導体層603(c)と、導電層605a(c)と、導電層605b(c)と、を
含んでいる。
酸化物半導体層603(c)は、領域604a(c)及び領域604b(c)を含んで
いる。領域604a(c)及び領域604b(c)は、互いに離間し、それぞれドーパン
トが添加された領域である。なお、領域604a(c)及び領域604b(c)の間の領
域がチャネル形成領域になる。酸化物半導体層603(c)は、被素子形成層600(c
)の上に設けられる。なお、必ずしも領域604a(c)及び領域604b(c)を設け
なくてもよい。
導電層605a(c)及び導電層605b(c)は、酸化物半導体層603(c)の上
に設けられ、酸化物半導体層603(c)に電気的に接続されている。また、導電層60
5a(c)及び導電層605b(c)の側面は、テーパ状である。
また、導電層605a(c)は、領域604a(c)の一部に重畳するが、必ずしもこ
れに限定されない。導電層605a(c)を領域604a(c)の一部に重畳させること
により、導電層605a(c)及び領域604a(c)の間の抵抗値を小さくすることが
できる。また、導電層605a(c)に重畳する酸化物半導体層603(c)の領域の全
てが領域604a(c)でもよい。
また、導電層605b(c)は、領域604b(c)の一部に重畳するが、必ずしもこ
れに限定されない。導電層605b(c)を領域604b(c)の一部に重畳させること
により、導電層605b(c)及び領域604b(c)の間の抵抗を小さくすることがで
きる。また、導電層605b(c)に重畳する酸化物半導体層603(c)の領域の全て
が領域604b(c)でもよい。
絶縁層602(c)は、酸化物半導体層603(c)、導電層605a(c)、及び導
電層605b(c)の上に設けられている。
導電層601(c)は、絶縁層602(c)を介して酸化物半導体層603(c)に重
畳する。絶縁層602(c)を介して導電層601(c)と重畳する酸化物半導体層60
3(c)の領域がチャネル形成領域になる。
また、図17(D)に示すトランジスタは、導電層601(d)と、絶縁層602(d
)と、酸化物半導体層603(d)と、導電層605a(d)と、導電層605b(d)
と、を含んでいる。
導電層605a(d)及び導電層605b(d)は、被素子形成層600(d)の上に
設けられる。また、導電層605a(d)及び導電層605b(d)の側面は、テーパ状
である。
酸化物半導体層603(d)は、領域604a(d)及び領域604b(d)と、を含
んでいる。領域604a(d)及び領域604b(d)は、互いに離間し、それぞれドー
パントが添加された領域である。また、領域604a(d)及び領域604b(d)の間
の領域がチャネル形成領域になる。酸化物半導体層603(d)は、例えば導電層605
a(d)、導電層605b(d)、及び被素子形成層600(d)の上に設けられ、導電
層605a(d)及び導電層605b(d)に電気的に接続される。なお、必ずしも領域
604a(d)及び領域604b(d)を設けなくてもよい。
領域604a(d)は、導電層605a(d)に電気的に接続されている。
領域604b(d)は、導電層605b(d)に電気的に接続されている。
絶縁層602(d)は、酸化物半導体層603(d)の上に設けられている。
導電層601(d)は、絶縁層602(d)を介して酸化物半導体層603(d)に重
畳する。絶縁層602(d)を介して導電層601(d)と重畳する酸化物半導体層60
3(d)の領域がチャネル形成領域になる。
さらに、図17(A)乃至図17(D)に示す各構成要素について説明する。
被素子形成層600(a)乃至被素子形成層600(d)としては、例えば絶縁層、又
は絶縁表面を有する基板などを用いることができる。また、予め素子が形成された層を被
素子形成層600(a)乃至被素子形成層600(d)として用いることもできる。
導電層601(a)乃至導電層601(d)のそれぞれは、トランジスタのゲートとし
ての機能を有する。なお、トランジスタのゲートとしての機能を有する層をゲート電極又
はゲート配線ともいう。
導電層601(a)乃至導電層601(d)としては、例えばモリブデン、マグネシウ
ム、チタン、クロム、タンタル、タングステン、アルミニウム、銅、ネオジム、若しくは
スカンジウムなどの金属材料、又はこれらを主成分とする合金材料の層を用いることがで
きる。また、導電層601(a)乃至導電層601(d)の形成に適用可能な材料の層の
積層により、導電層601(a)乃至導電層601(d)を構成することもできる。
絶縁層602(a)乃至絶縁層602(d)のそれぞれは、トランジスタのゲート絶縁
層としての機能を有する。
絶縁層602(a)乃至絶縁層602(d)としては、例えば酸化シリコン層、窒化シ
リコン層、酸化窒化シリコン層、窒化酸化シリコン層、酸化アルミニウム層、窒化アルミ
ニウム層、酸化窒化アルミニウム層、窒化酸化アルミニウム層、酸化ハフニウム層、又は
酸化ランタン層を用いることができる。また、絶縁層602(a)乃至絶縁層602(d
)に適用可能な材料の層の積層により絶縁層602(a)乃至絶縁層602(d)を構成
することもできる。
また、絶縁層602(a)乃至絶縁層602(d)としては、例えば元素周期表におけ
る第13族元素及び酸素元素を含む材料の絶縁層を用いることもできる。例えば、酸化物
半導体層603(a)乃至酸化物半導体層603(d)が第13族元素を含む場合に、酸
化物半導体層603(a)乃至酸化物半導体層603(d)に接する絶縁層として第13
族元素を含む絶縁層を用いることにより、該絶縁層と酸化物半導体層との界面の状態を良
好にすることができる。
第13族元素及び酸素元素を含む材料としては、例えば酸化ガリウム、酸化アルミニウ
ム、酸化アルミニウムガリウム、酸化ガリウムアルミニウムなどが挙げられる。なお、酸
化アルミニウムガリウムとは、ガリウムの含有量(原子%)よりアルミニウムの含有量(
原子%)が多い物質のことをいい、酸化ガリウムアルミニウムとは、ガリウムの含有量(
原子%)がアルミニウムの含有量(原子%)以上の物質のことをいう。例えば、Al
(x=3+α、αは0より大きく1より小さい値)、Ga(x=3+α、αは0
より大きく1より小さい値)、又はGaAl2−x3+α(xは0より大きく2より
小さい値、αは0より大きく1より小さい値)で表記される材料を用いることもできる。
また、絶縁層602(a)乃至絶縁層602(d)に適用可能な材料の層の積層により
絶縁層602(a)乃至絶縁層602(d)を構成することもできる。例えば、複数のG
で表記される酸化ガリウムを含む層の積層により絶縁層602(a)乃至絶縁層
602(d)を構成してもよい。また、Gaで表記される酸化ガリウムを含む絶縁
層及びAlで表記される酸化アルミニウムを含む絶縁層の積層により絶縁層602
(a)乃至絶縁層602(d)を構成してもよい。
また、トランジスタのチャネル長30nmとしたとき、酸化物半導体層603(a)乃
至酸化物半導体層603(d)の厚さを例えば5nm程度にしてもよい。このとき、酸化
物半導体層603(a)乃至酸化物半導体層603(d)がCAACの酸化物半導体層で
あれば、トランジスタにおける短チャネル効果を抑制することができる。
領域604a(c)、領域604b(c)、領域604a(d)、及び領域604b(
d)は、N型又はP型の導電型を付与するドーパントが添加され、トランジスタのソース
又はドレインとしての機能を有する。ドーパントとしては、例えば元素周期表における1
3族の元素(例えば硼素など)、元素周期表における15族の元素(例えば窒素、リン、
及び砒素の一つ又は複数)、及び希ガス元素(例えばヘリウム、アルゴン、及びキセノン
の一つ又は複数)の一つ又は複数を用いることができる。なお、トランジスタのソースと
しての機能を有する領域をソース領域ともいい、トランジスタのドレインとしての機能を
有する領域をドレイン領域ともいう。領域604a(c)、領域604b(c)、領域6
04a(d)、及び領域604b(d)にドーパントを添加することにより導電層との接
続抵抗を小さくすることができるため、トランジスタを微細化することができる。
導電層605a(a)乃至導電層605a(d)、及び導電層605b(a)乃至導電
層605b(d)のそれぞれは、トランジスタのソース又はドレインとしての機能を有す
る。なお、トランジスタのソースとしての機能を有する層をソース電極又はソース配線と
もいい、トランジスタのドレインとしての機能を有する層をドレイン電極又はドレイン配
線ともいう。
導電層605a(a)乃至導電層605a(d)、及び導電層605b(a)乃至導電
層605b(d)としては、例えばアルミニウム、マグネシウム、クロム、銅、タンタル
、チタン、モリブデン、若しくはタングステンなどの金属材料、又はこれらの金属材料を
主成分とする合金材料の層を用いることができる。例えば、銅、マグネシウム、及びアル
ミニウムを含む合金材料の層により、導電層605a(a)乃至導電層605a(d)、
及び導電層605b(a)乃至導電層605b(d)を構成することができる。また、導
電層605a(a)乃至導電層605a(d)、及び導電層605b(a)乃至導電層6
05b(d)に適用可能な材料の層の積層により、導電層605a(a)乃至導電層60
5a(d)、及び導電層605b(a)乃至導電層605b(d)を構成することもでき
る。例えば、銅、マグネシウム、及びアルミニウムを含む合金材料の層と銅を含む層の積
層により、導電層605a(a)乃至導電層605a(d)、及び導電層605b(a)
乃至導電層605b(d)を構成することができる。
また、導電層605a(a)乃至導電層605a(d)、及び導電層605b(a)乃
至導電層605b(d)としては、導電性の金属酸化物を含む層を用いることもできる。
導電性の金属酸化物としては、例えば酸化インジウム、酸化スズ、酸化亜鉛、インジウム
スズ酸化物、又はインジウム亜鉛酸化物を用いることができる。なお、導電層605a(
a)乃至導電層605a(d)、及び導電層605b(a)乃至導電層605b(d)に
適用可能な導電性の金属酸化物は、酸化シリコンを含んでいてもよい。
絶縁層606(a)及び絶縁層606(b)としては、絶縁層602(a)乃至絶縁層
602(d)に適用可能な材料の層を用いることができる。また、絶縁層606(a)及
び絶縁層606(b)に適用可能な材料の積層により、絶縁層606(a)及び絶縁層6
06(b)を構成してもよい。例えば、酸化シリコン層、酸化アルミニウム層などにより
絶縁層606(a)及び絶縁層606(b)を構成してもよい。例えば、酸化アルミニウ
ム層を用いることにより、酸化物半導体層603(a)及び酸化物半導体層603(b)
への不純物(水)の侵入抑制効果をより高めることができ、また、酸化物半導体層603
(a)及び酸化物半導体層603(b)中の酸素の脱離抑制効果を高めることができる。
導電層608(a)及び導電層608(b)のそれぞれは、トランジスタのゲートとし
ての機能を有する。なお、トランジスタが導電層601(a)及び導電層608(a)の
両方、又は導電層601(b)及び導電層608(b)の両方を含む構造である場合、導
電層601(a)及び導電層608(a)の一方、又は導電層601(b)及び導電層6
08(b)の一方を、バックゲート、バックゲート電極、又はバックゲート配線ともいう
。ゲートとしての機能を有する導電層を、チャネル形成層を介して複数設けることにより
、トランジスタの閾値電圧を制御しやすくすることができる。
導電層608(a)及び導電層608(b)としては、例えば導電層601(a)乃至
導電層601(d)に適用可能な材料の層を用いることができる。また、導電層608(
a)及び導電層608(b)に適用可能な材料の層の積層により導電層608(a)及び
導電層608(b)を構成してもよい。
また、絶縁層602(a)乃至絶縁層602(d)に適用可能な材料の積層によりチャ
ネル保護層としての機能を有する絶縁層を構成してもよい。
また、被素子形成層600(a)乃至被素子形成層600(d)の上に下地層を形成し
、該下地層の上にトランジスタを形成してもよい。このとき、下地層としては、例えば絶
縁層602(a)乃至絶縁層602(d)に適用可能な材料の層を用いることができる。
また、絶縁層602(a)乃至絶縁層602(d)に適用可能な材料の積層により下地層
を構成してもよい。例えば、酸化アルミニウム層及び酸化シリコン層の積層により下地層
を構成することにより、下地層に含まれる酸素が酸化物半導体層603(a)乃至酸化物
半導体層603(d)を介して脱離するのを抑制することができる。
また、酸化物半導体層603(a)乃至酸化物半導体層603(d)に接する絶縁層中
の酸素を過剰にすることにより、酸化物半導体層603(a)乃至酸化物半導体層603
(d)に供給されやすくなる。よって、酸化物半導体層603(a)乃至酸化物半導体層
603(d)中、又は当該絶縁層と酸化物半導体層603(a)乃至酸化物半導体層60
3(d)の界面における酸素欠陥を低減することができるため、酸化物半導体層603(
a)乃至酸化物半導体層603(d)のキャリア密度をより低減することができる。また
、これに限定されず、製造過程により酸化物半導体層603(a)乃至酸化物半導体層6
03(d)に含まれる酸素を過剰にした場合であっても、酸化物半導体層603(a)乃
至酸化物半導体層603(d)に接する上記絶縁層により、酸化物半導体層603(a)
乃至酸化物半導体層603(d)からの酸素の脱離を抑制することができる。
<酸化物半導体層にチャネルが形成されるトランジスタの特性について>
In、Sn、Znを主成分とする酸化物半導体をチャネル形成領域とするトランジスタ
は、該酸化物半導体を形成する際に基板を加熱して成膜すること、或いは酸化物半導体層
を形成した後に熱処理を行うことで良好な特性を得ることができる。なお、主成分とは組
成比で5atomic%以上含まれる元素をいう。
In、Sn、Znを主成分とする酸化物半導体層の成膜後に基板を意図的に加熱するこ
とで、トランジスタの電界効果移動度を向上させることが可能となる。また、トランジス
タのしきい値電圧をプラスシフトさせ、ノーマリ・オフ化させることが可能となる。
例えば、図18(A)〜(C)は、In、Sn、Znを主成分とし、チャネル長Lが3
μm、チャネル幅Wが10μmである酸化物半導体層と、厚さ100nmのゲート絶縁層
を用いたトランジスタの特性である。なお、Vは10Vとした。
図18(A)は基板を意図的に加熱せずにスパッタリング法でIn、Sn、Znを主成
分とする酸化物半導体層を形成したときのトランジスタ特性である。このとき電界効果移
動度は18.8cm/Vsecが得られている。一方、基板を意図的に加熱してIn、
Sn、Znを主成分とする酸化物半導体層を形成すると電界効果移動度を向上させること
が可能となる。図18(B)は基板を200℃に加熱してIn、Sn、Znを主成分とす
る酸化物半導体層を形成したときのトランジスタ特性を示すが、電界効果移動度は32.
2cm/Vsecが得られている。
電界効果移動度は、In、Sn、Znを主成分とする酸化物半導体層を形成した後に熱
処理をすることによって、さらに高めることができる。図18(C)は、In、Sn、Z
nを主成分とする酸化物半導体層を200℃でスパッタリング成膜した後、650℃で熱
処理をしたときのトランジスタ特性を示す。このとき電界効果移動度は34.5cm
Vsecが得られている。
また、基板加熱や熱処理は、酸化物半導体にとって悪性の不純物である水素や水酸基を
膜中に含ませないようにすること、或いは膜中から除去する作用がある。すなわち、酸化
物半導体中でドナー不純物となる水素を除去することで高純度化を図ることができ、それ
によってトランジスタのノーマリ・オフ化を図ることができ、酸化物半導体が高純度化さ
れることによりオフ電流を1aA/μm以下にすることができる。ここで、上記オフ電流
値の単位は、チャネル幅1μmあたりの電流値を示す。
図19に、トランジスタのオフ電流と測定時の基板温度(絶対温度)の逆数との関係を
示す。ここでは、簡単のため測定時の基板温度の逆数に1000を掛けた数値(1000
/T)を横軸としている。
図19に示すように、基板温度が125℃の場合には0.1aA/μm(1×10−1
A/μm)以下、85℃の場合には10zA/μm(1×10−20A/μm)以下で
あった。電流値の対数が温度の逆数に比例することから、室温(27℃)の場合には0.
1zA/μm(1×10−22A/μm)以下であると予想される。従って、オフ電流を
125℃において1aA/μm(1×10−18A/μm)以下に、85℃において10
0zA/μm(1×10−19A/μm)以下に、室温において1zA/μm(1×10
−21A/μm)以下にすることができる。
本実施の形態のトランジスタを実施の形態1及び実施の形態2において述べた半導体装
置に用いることにより、半導体装置を安定して動作させることができる。特に、本実施の
形態のトランジスタをトランジスタ102に用いることにより、トランジスタ102のオ
フ電流を小さくすることができる。よって、容量素子101から失われる電荷量を小さく
することができ、容量素子101にオフセット電圧を保持する回数を減らすことができる
本実施の形態は、他の実施の形態等と適宜組み合わせて実施することが可能である。
(実施の形態6)
本実施の形態においては、上記実施の形態で説明した半導体装置、シフトレジスタ回路
又は表示装置等を具備する電子機器の例について説明する。
図20(A)は携帯型遊技機であり、筐体9630、表示部9631、スピーカ963
3、操作キー9635、接続端子9636、記録媒体読込部9672、等を有する。図2
0(A)に示す携帯型遊技機は、記録媒体に記録されているプログラム又はデータを読み
出して表示部に表示する機能、他の携帯型遊技機と無線通信を行って情報を共有する機能
、等を有する。なお、図20(A)に示す携帯型遊技機が有する機能はこれに限定されず
、様々な機能を有する。
図20(B)はデジタルカメラであり、筐体9630、表示部9631、スピーカ96
33、操作キー9635、接続端子9636、シャッターボタン9676、受像部967
7、等を有する。図20(B)に示すデジタルカメラは、静止画を撮影する機能、動画を
撮影する機能、撮影した画像を自動または手動で補正する機能、アンテナから様々な情報
を取得する機能、撮影した画像、又はアンテナから取得した情報を保存する機能、撮影し
た画像、又はアンテナから取得した情報を表示部に表示する機能、等を有する。なお、図
20(B)に示すデジタルカメラが有する機能はこれに限定されず、様々な機能を有する
図20(C)はテレビ受像器であり、筐体9630、表示部9631、スピーカ963
3、操作キー9635、接続端子9636、等を有する。図20(C)に示すテレビ受像
機は、テレビ用電波を処理して画像信号に変換する機能、画像信号を処理して表示に適し
た信号に変換する機能、画像信号のフレーム周波数を変換する機能、等を有する。なお、
図20(C)に示すテレビ受像機が有する機能はこれに限定されず、様々な機能を有する
図20(D)は、電子計算機(パーソナルコンピュータ)用途のモニター(PCモニタ
ーともいう)であり、筐体9630、表示部9631等を有する。図20(D)に示すモ
ニターは、ウインドウ型表示部9653が表示部9631にある例について示している。
なお、説明のために表示部9631にウインドウ型表示部9653を示したが、他のシン
ボル、例えばアイコン、画像等であってもよい。パーソナルコンピュータ用途のモニター
では、入力時にのみ画像信号が書き換えられる場合が多く、上記実施の形態における表示
装置の駆動方法を適用する際に好適である。なお、図20(D)に示すモニターが有する
機能はこれに限定されず、様々な機能を有する。
図21(A)はコンピュータであり、筐体9630、表示部9631、スピーカ963
3、操作キー9635、接続端子9636、ポインティングデバイス9681、外部接続
ポート9680等を有する。図21(A)に示すコンピュータは、様々な情報(静止画、
動画、テキスト画像など)を表示部に表示する機能、様々なソフトウェア(プログラム)
によって処理を制御する機能、無線通信又は有線通信などの通信機能、通信機能を用いて
様々なコンピュータネットワークに接続する機能、通信機能を用いて様々なデータの送信
又は受信を行う機能、等を有する。なお、図21(A)に示すコンピュータが有する機能
はこれに限定されず、様々な機能を有する。
次に、図21(B)は携帯電話であり、筐体9630、表示部9631、スピーカ96
33、操作キー9635、マイクロフォン9638等を有する。図21(B)に示した携
帯電話は、様々な情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー
、日付又は時刻などを表示部に表示する機能、表示部に表示した情報を操作又は編集する
機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有する。な
お、図21(B)に示した携帯電話が有する機能はこれに限定されず、様々な機能を有す
る。
次に、図21(C)は電子ペーパー(E−bookともいう)であり、筐体9630、
表示部9631、操作キー9632等を有する。図21(C)に示した電子ペーパーは、
様々な情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は
時刻などを表示部に表示する機能、表示部に表示した情報を操作又は編集する機能、様々
なソフトウェア(プログラム)によって処理を制御する機能、等を有する。なお、図21
(C)に示した電子ペーパーが有する機能はこれに限定されず、様々な機能を有する。別
の電子ペーパーの構成について図21(D)に示す。図21(D)に示す電子ペーパーは
、図21(C)の電子ペーパーに太陽電池9651、及びバッテリー9652を付加した
構成について示している。表示部9631として反射型の表示装置を用いる場合、比較的
明るい状況下での使用が予想され、太陽電池9651による発電、及びバッテリー965
2での充電を効率よく行うことができ、好適である。なおバッテリー9652としては、
リチウムイオン電池を用いると、小型化を図れる等の利点がある。
本実施の形態において述べた電子機器に、実施の形態1の半導体装置、実施の形態2の
半導体装置、実施の形態3のシフトレジスタ回路又は実施の形態4の表示装置を適用する
ことで、仮にトランジスタがディプレッション型であっても駆動可能な電子機器を提供す
ることができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可
能である。
11 配線
12 配線
13 配線
14 配線
15 配線
16 配線
17 配線
21 配線
22 配線
23 配線
24 配線
25 配線
31 配線
31_i 配線
31_i−1 配線
32 配線
33 配線
34 配線
35 配線
36 配線
37 配線
38 配線
100 回路
101 容量素子
102 トランジスタ
103 容量素子
110 回路
111 トランジスタ
112 トランジスタ
113 トランジスタ
114 トランジスタ
115 トランジスタ
116 トランジスタ
120 回路
121 トランジスタ
122 トランジスタ
123 トランジスタ
124 トランジスタ
125 トランジスタ
126 トランジスタ
200 フリップフロップ回路
200_1 フリップフロップ回路
200_2 フリップフロップ回路
200_3 フリップフロップ回路
600 被素子形成層
601 導電層
602 絶縁層
603 酸化物半導体層
606 絶縁層
608 導電層
100A 回路
100B 回路
101A 容量素子
101B 容量素子
102A トランジスタ
102B トランジスタ
4001 基板
4002 画素部
4003 信号線駆動回路
4004 走査線駆動回路
4005 シール材
4006 基板
4018 FPC
4018a FPC
4018b FPC
604a 領域
604b 領域
605a 導電層
605b 導電層
9630 筐体
9631 表示部
9632 操作キー
9633 スピーカ
9635 操作キー
9636 接続端子
9638 マイクロフォン
9651 太陽電池
9652 バッテリー
9653 ウインドウ型表示部
9672 記録媒体読込部
9676 シャッターボタン
9677 受像部
9680 外部接続ポート
9681 ポインティングデバイス
IN 信号
INO 信号
IN1 信号
IN1O 信号
IN2 信号
IN2O 信号
IN3 信号
SE 信号
OUT 信号
OUTA 信号
OUTB 信号
OUT1 信号
OUT2 信号
OUTN 信号
VH 電位
VDD 電位
VL1 電位
VL2 電位
N1 ノード
T0 期間
T1 期間
Ta 期間
Tb 期間
Tc 期間
Td 期間
CK 信号
CK1 信号
CK2 信号
SP 信号
M1 トランジスタ
M2 トランジスタ
M3 トランジスタ
M4 トランジスタ
C1 容量素子

Claims (2)

  1. シフトレジスタ回路を有し、
    前記シフトレジスタ回路は、複数の出力信号を出力する機能を有し、
    前記シフトレジスタ回路は、第1のトランジスタ乃至第5のトランジスタと、容量素子と、を有し、
    前記第1のトランジスタのソース又はドレインの一方は、第1の配線と直接接続され、
    前記第1のトランジスタのソース又はドレインの他方は、第2の配線と直接接続され、
    前記第2のトランジスタのソース又はドレインの一方は、第3の配線と直接接続され、
    前記第2のトランジスタのソース又はドレインの他方は、前記第2の配線と直接接続され、
    前記第2のトランジスタのゲートは、第4の配線と直接接続され、
    前記第3のトランジスタのソース又はドレインの一方は、第5の配線と直接接続され、
    前記第3のトランジスタのソース又はドレインの他方は、前記第1のトランジスタのゲートと直接接続され、
    前記第4のトランジスタのソース又はドレインの一方は、前記第3の配線と直接接続され、
    前記第4のトランジスタのソース又はドレインの他方は、前記第1のトランジスタのゲートと直接接続され、
    前記第4のトランジスタのゲートは、前記第4の配線と直接接続され、
    前記第5のトランジスタのソース又はドレインの一方は、第6の配線と直接接続され、
    前記第5のトランジスタのソース又はドレインの他方は、前記第3のトランジスタのゲートと直接接続され、
    前記容量素子の一方の電極は、前記第5の配線と直接接続され、
    前記容量素子の他方の電極は、前記第3のトランジスタのゲートと直接接続され、
    前記第1のトランジスタは、前記第2のトランジスタ乃至前記第5のトランジスタよりも、チャネル幅が大きく、
    前記第2の配線は、前記複数の出力信号のうち第1の出力信号を伝達し、
    前記第4の配線は、前記複数の出力信号のうち第2の出力信号を伝達する半導体装置。
  2. シフトレジスタ回路を有し、
    前記シフトレジスタ回路は、複数の出力信号を出力する機能を有し、
    前記シフトレジスタ回路は、第1のトランジスタ乃至第5のトランジスタと、容量素子と、を有し、
    前記第1のトランジスタのソース又はドレインの一方は、第1の配線と直接接続され、
    前記第1のトランジスタのソース又はドレインの他方は、第2の配線と直接接続され、
    前記第2のトランジスタのソース又はドレインの一方は、第3の配線と直接接続され、
    前記第2のトランジスタのソース又はドレインの他方は、前記第2の配線と直接接続され、
    前記第2のトランジスタのゲートは、第4の配線と直接接続され、
    前記第3のトランジスタのソース又はドレインの一方は、第5の配線と直接接続され、
    前記第3のトランジスタのソース又はドレインの他方は、前記第1のトランジスタのゲートと直接接続され、
    前記第4のトランジスタのソース又はドレインの一方は、前記第3の配線と直接接続され、
    前記第4のトランジスタのソース又はドレインの他方は、前記第1のトランジスタのゲートと直接接続され、
    前記第4のトランジスタのゲートは、前記第4の配線と直接接続され、
    前記第5のトランジスタのソース又はドレインの一方は、第6の配線と直接接続され、
    前記第5のトランジスタのソース又はドレインの他方は、前記第3のトランジスタのゲートと直接接続され、
    前記容量素子の一方の電極は、前記第5の配線と直接接続され、
    前記容量素子の他方の電極は、前記第3のトランジスタのゲートと直接接続され、
    前記第1のトランジスタは、前記第2のトランジスタ乃至前記第5のトランジスタよりも、チャネル幅が大きく、
    前記第1の配線は、クロック信号を伝達し、
    前記第2の配線は、前記複数の出力信号のうち第1の出力信号を伝達し、
    前記第4の配線は、前記複数の出力信号のうち第2の出力信号を伝達する半導体装置。
JP2019139035A 2011-05-13 2019-07-29 半導体装置 Withdrawn JP2020004475A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021033574A JP2021103882A (ja) 2011-05-13 2021-03-03 半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011108133 2011-05-13
JP2011108133 2011-05-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017238199A Division JP6564836B2 (ja) 2011-05-13 2017-12-13 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021033574A Division JP2021103882A (ja) 2011-05-13 2021-03-03 半導体装置

Publications (1)

Publication Number Publication Date
JP2020004475A true JP2020004475A (ja) 2020-01-09

Family

ID=47141492

Family Applications (9)

Application Number Title Priority Date Filing Date
JP2012108073A Active JP5873755B2 (ja) 2011-05-13 2012-05-10 半導体装置及び表示装置
JP2014104064A Active JP5745726B2 (ja) 2011-05-13 2014-05-20 半導体装置、表示モジュール及び電子機器
JP2016006930A Withdrawn JP2016129338A (ja) 2011-05-13 2016-01-18 半導体装置
JP2017238199A Active JP6564836B2 (ja) 2011-05-13 2017-12-13 半導体装置
JP2019139035A Withdrawn JP2020004475A (ja) 2011-05-13 2019-07-29 半導体装置
JP2021033574A Withdrawn JP2021103882A (ja) 2011-05-13 2021-03-03 半導体装置
JP2022039045A Active JP7229404B2 (ja) 2011-05-13 2022-03-14 半導体装置
JP2023020819A Pending JP2023071734A (ja) 2011-05-13 2023-02-14 半導体装置
JP2023212693A Active JP7466753B2 (ja) 2011-05-13 2023-12-18 半導体装置

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2012108073A Active JP5873755B2 (ja) 2011-05-13 2012-05-10 半導体装置及び表示装置
JP2014104064A Active JP5745726B2 (ja) 2011-05-13 2014-05-20 半導体装置、表示モジュール及び電子機器
JP2016006930A Withdrawn JP2016129338A (ja) 2011-05-13 2016-01-18 半導体装置
JP2017238199A Active JP6564836B2 (ja) 2011-05-13 2017-12-13 半導体装置

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2021033574A Withdrawn JP2021103882A (ja) 2011-05-13 2021-03-03 半導体装置
JP2022039045A Active JP7229404B2 (ja) 2011-05-13 2022-03-14 半導体装置
JP2023020819A Pending JP2023071734A (ja) 2011-05-13 2023-02-14 半導体装置
JP2023212693A Active JP7466753B2 (ja) 2011-05-13 2023-12-18 半導体装置

Country Status (4)

Country Link
US (8) US8698551B2 (ja)
JP (9) JP5873755B2 (ja)
KR (8) KR101983976B1 (ja)
TW (8) TW202141508A (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202141508A (zh) * 2011-05-13 2021-11-01 日商半導體能源研究所股份有限公司 半導體裝置
US9742378B2 (en) 2012-06-29 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Pulse output circuit and semiconductor device
US9070546B2 (en) 2012-09-07 2015-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2014137398A (ja) * 2013-01-15 2014-07-28 Sony Corp 表示装置、表示駆動装置、駆動方法、および電子機器
JP6068748B2 (ja) * 2013-03-13 2017-01-25 株式会社半導体エネルギー研究所 半導体装置
JP6475424B2 (ja) 2013-06-05 2019-02-27 株式会社半導体エネルギー研究所 半導体装置
KR102072214B1 (ko) * 2013-07-09 2020-02-03 삼성디스플레이 주식회사 주사 구동 장치 및 이를 포함하는 표시 장치
JP6097653B2 (ja) * 2013-08-05 2017-03-15 株式会社ジャパンディスプレイ 薄膜トランジスタ回路およびそれを用いた表示装置
DE112014006046T5 (de) * 2013-12-27 2016-09-15 Semiconductor Energy Laboratory Co., Ltd. Licht emittierende Vorrichtung
TWI654613B (zh) 2014-02-21 2019-03-21 日商半導體能源研究所股份有限公司 半導體裝置及電子裝置
JP6629509B2 (ja) * 2014-02-21 2020-01-15 株式会社半導体エネルギー研究所 酸化物半導体膜
US10199006B2 (en) 2014-04-24 2019-02-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display module, and electronic device
JP6521794B2 (ja) * 2014-09-03 2019-05-29 株式会社半導体エネルギー研究所 半導体装置、及び電子機器
US10068927B2 (en) * 2014-10-23 2018-09-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display module, and electronic device
US20160358566A1 (en) * 2015-06-08 2016-12-08 Boe Technology Group Co., Ltd. Shift register unit and driving method thereof, gate driving circuit and display device
KR20170008375A (ko) * 2015-07-13 2017-01-24 에스케이하이닉스 주식회사 반도체 장치
CN105321491B (zh) * 2015-11-18 2017-11-17 武汉华星光电技术有限公司 栅极驱动电路和使用栅极驱动电路的液晶显示器
KR102473306B1 (ko) * 2015-11-18 2022-12-05 삼성디스플레이 주식회사 표시 장치
WO2018003931A1 (ja) * 2016-07-01 2018-01-04 シャープ株式会社 Tft回路およびシフトレジスタ回路
CN106205539A (zh) * 2016-08-31 2016-12-07 深圳市华星光电技术有限公司 一种双向扫描的栅极驱动电路、液晶显示面板
TWI606438B (zh) * 2017-02-16 2017-11-21 友達光電股份有限公司 移位暫存電路
WO2018163985A1 (ja) * 2017-03-10 2018-09-13 シャープ株式会社 走査線駆動回路およびこれを備えた表示装置
CN107785403B (zh) * 2017-10-30 2020-04-21 武汉天马微电子有限公司 一种显示面板及显示装置
TWI670703B (zh) 2018-06-15 2019-09-01 元太科技工業股份有限公司 畫素電路
CN109192140B (zh) * 2018-09-27 2020-11-24 武汉华星光电半导体显示技术有限公司 像素驱动电路和显示装置
CN111445863B (zh) 2020-05-14 2021-09-14 京东方科技集团股份有限公司 一种像素驱动电路及其驱动方法、显示装置
KR20220092124A (ko) * 2020-12-24 2022-07-01 엘지디스플레이 주식회사 레벨 쉬프터 및 표시 장치
KR102625976B1 (ko) * 2022-05-27 2024-01-16 숭실대학교 산학협력단 안정적으로 다중 주파수에서의 동작이 가능한 게이트 드라이버

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997025716A1 (fr) * 1996-01-11 1997-07-17 Thomson-Lcd Perfectionnement aux registres a decalage utilisant des transistors 'mis' de meme polarite
US20040155698A1 (en) * 2003-02-12 2004-08-12 Hajime Kimura Semiconductor device, electronic device having the same, and driving method of the same
JP2004266817A (ja) * 2003-02-12 2004-09-24 Semiconductor Energy Lab Co Ltd 半導体装置、電子機器及び半導体装置の駆動方法
WO2005104372A1 (en) * 2004-04-26 2005-11-03 Koninklijke Philips Electronics, N.V. Threshold voltage adjustment in thin film transistors
US20070296660A1 (en) * 2006-06-02 2007-12-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic apparatus having the same
JP2008009418A (ja) * 2006-06-02 2008-01-17 Semiconductor Energy Lab Co Ltd 液晶表示装置、液晶表示装置を具備した電子機器
JP2008089874A (ja) * 2006-09-29 2008-04-17 Semiconductor Energy Lab Co Ltd 液晶表示装置

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2851111C2 (de) * 1978-11-25 1980-09-25 Deutsche Itt Industries Gmbh, 7800 Freiburg Zweidimensionale Analog-Speicheranordnung
JPS6276878A (ja) * 1985-09-30 1987-04-08 Toshiba Corp 映像スクランブル信号処理装置
US5412346A (en) * 1993-12-13 1995-05-02 At&T Corp. Variable gain voltage signal amplifier
US5859630A (en) * 1996-12-09 1999-01-12 Thomson Multimedia S.A. Bi-directional shift register
TW344131B (en) * 1997-06-03 1998-11-01 Nat Science Council A 1.5V bootstrapped all-N-logic true-single-phase CMOS dynamic logic circuit suitable for low supply voltage and high speed pipelined
JP3017133B2 (ja) 1997-06-26 2000-03-06 日本電気アイシーマイコンシステム株式会社 レベルシフタ回路
US6798452B1 (en) * 1997-07-28 2004-09-28 Matsushita Electric Industrial Co., Ltd. Amplifying solid-state imaging device, method for driving the same and physical quantity distribution sensing semiconductor device
TW469484B (en) 1999-03-26 2001-12-21 Semiconductor Energy Lab A method for manufacturing an electrooptical device
FR2820212A1 (fr) * 2001-01-30 2002-08-02 St Microelectronics Sa Circuit de detection de mauvaise connexion d'alimentation
JP4785271B2 (ja) 2001-04-27 2011-10-05 株式会社半導体エネルギー研究所 液晶表示装置、電子機器
JP4439761B2 (ja) * 2001-05-11 2010-03-24 株式会社半導体エネルギー研究所 液晶表示装置、電子機器
US6366124B1 (en) * 2001-05-16 2002-04-02 Pericom Semiconductor Corp. BiDirectional active voltage translator with bootstrap switches for mixed-supply VLSI
JP4310939B2 (ja) * 2001-06-29 2009-08-12 カシオ計算機株式会社 シフトレジスタ及び電子装置
SG119161A1 (en) 2001-07-16 2006-02-28 Semiconductor Energy Lab Light emitting device
KR100403631B1 (ko) 2001-07-20 2003-10-30 삼성전자주식회사 비트라인 센스앰프 드라이버의 배치방법
CN100428319C (zh) 2002-04-08 2008-10-22 三星电子株式会社 驱动电路及液晶显示器
TWI293444B (en) * 2002-04-08 2008-02-11 Samsung Electronics Co Ltd Liquid crystal display device
CN100338879C (zh) 2002-12-25 2007-09-19 株式会社半导体能源研究所 配备了校正电路的数字电路及具有该数字电路的电子装置
KR100506005B1 (ko) * 2002-12-31 2005-08-04 엘지.필립스 엘시디 주식회사 평판표시장치
TWI228696B (en) 2003-03-21 2005-03-01 Ind Tech Res Inst Pixel circuit for active matrix OLED and driving method
WO2004102628A2 (en) * 2003-05-08 2004-11-25 The Trustees Of Columbia University In The City Of New York Examiner
GB0313041D0 (en) * 2003-06-06 2003-07-09 Koninkl Philips Electronics Nv Display device having current-driven pixels
JP2005005620A (ja) 2003-06-13 2005-01-06 Toyota Industries Corp スイッチトキャパシタ回路及びその半導体集積回路
US7368896B2 (en) * 2004-03-29 2008-05-06 Ricoh Company, Ltd. Voltage regulator with plural error amplifiers
KR101023726B1 (ko) * 2004-03-31 2011-03-25 엘지디스플레이 주식회사 쉬프트 레지스터
KR101057891B1 (ko) * 2004-05-31 2011-08-19 엘지디스플레이 주식회사 쉬프트 레지스터
KR20050121357A (ko) 2004-06-22 2005-12-27 삼성전자주식회사 쉬프트 레지스터와, 이를 갖는 스캔 구동 회로 및 표시 장치
GB0417132D0 (en) 2004-07-31 2004-09-01 Koninkl Philips Electronics Nv A shift register circuit
KR101110133B1 (ko) 2004-12-28 2012-02-20 엘지디스플레이 주식회사 액정표시장치 게이트 구동용 쉬프트레지스터
JP2007011139A (ja) 2005-07-01 2007-01-18 Toshiba Corp 液晶表示装置及びその製造方法
EP1998374A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5064747B2 (ja) * 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
TW200735027A (en) 2006-01-05 2007-09-16 Mitsubishi Electric Corp Shift register and image display apparatus containing the same
KR101437086B1 (ko) 2006-01-07 2014-09-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치와, 이 반도체장치를 구비한 표시장치 및 전자기기
JP5164383B2 (ja) * 2006-01-07 2013-03-21 株式会社半導体エネルギー研究所 半導体装置、表示装置、液晶表示装置、表示モジュール及び電子機器
EP1895545B1 (en) * 2006-08-31 2014-04-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP5090008B2 (ja) 2007-02-07 2012-12-05 三菱電機株式会社 半導体装置およびシフトレジスタ回路
JP4912186B2 (ja) 2007-03-05 2012-04-11 三菱電機株式会社 シフトレジスタ回路およびそれを備える画像表示装置
JP2008251094A (ja) 2007-03-30 2008-10-16 Mitsubishi Electric Corp シフトレジスタ回路およびそれを備える画像表示装置
JP2009017076A (ja) * 2007-07-03 2009-01-22 Seiko Epson Corp バッファ回路及び表示装置
TW200915290A (en) 2007-07-24 2009-04-01 Koninkl Philips Electronics Nv A shift register circuit
JP5538890B2 (ja) 2007-09-12 2014-07-02 シャープ株式会社 シフトレジスタ
JP2009094927A (ja) * 2007-10-11 2009-04-30 Seiko Epson Corp バッファ、レベルシフト回路及び表示装置
JP5106186B2 (ja) 2008-03-13 2012-12-26 三菱電機株式会社 ドライバ回路
US8314765B2 (en) 2008-06-17 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device, and electronic device
KR101520807B1 (ko) * 2009-01-05 2015-05-18 삼성디스플레이 주식회사 게이트 구동회로 및 이를 갖는 표시장치
KR101573460B1 (ko) * 2009-04-30 2015-12-02 삼성디스플레이 주식회사 게이트 구동회로
JP5436049B2 (ja) * 2009-05-29 2014-03-05 三菱電機株式会社 シフトレジスタ回路、シフトレジスタ回路の設計方法及び半導体装置
CN102024410B (zh) 2009-09-16 2014-10-22 株式会社半导体能源研究所 半导体装置及电子设备
WO2011043451A1 (en) 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Shift register and display device
CN107195328B (zh) 2009-10-09 2020-11-10 株式会社半导体能源研究所 移位寄存器和显示装置以及其驱动方法
TW202141508A (zh) * 2011-05-13 2021-11-01 日商半導體能源研究所股份有限公司 半導體裝置
CN103345941B (zh) * 2013-07-03 2016-12-28 京东方科技集团股份有限公司 移位寄存器单元及驱动方法、移位寄存器电路及显示装置
TWI654613B (zh) * 2014-02-21 2019-03-21 日商半導體能源研究所股份有限公司 半導體裝置及電子裝置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997025716A1 (fr) * 1996-01-11 1997-07-17 Thomson-Lcd Perfectionnement aux registres a decalage utilisant des transistors 'mis' de meme polarite
JPH11502355A (ja) * 1996-01-11 1999-02-23 トムソン−エルセデ 同じ極性を有するmisトランジスタを用いるシフトレジスタの改良
US6064713A (en) * 1996-01-11 2000-05-16 Thomson Lcd Shift register using "MIS" transistors of like polarity
US20040155698A1 (en) * 2003-02-12 2004-08-12 Hajime Kimura Semiconductor device, electronic device having the same, and driving method of the same
JP2004266817A (ja) * 2003-02-12 2004-09-24 Semiconductor Energy Lab Co Ltd 半導体装置、電子機器及び半導体装置の駆動方法
WO2005104372A1 (en) * 2004-04-26 2005-11-03 Koninklijke Philips Electronics, N.V. Threshold voltage adjustment in thin film transistors
US20070273426A1 (en) * 2004-04-26 2007-11-29 Koninklijke Philips Electronics, N.V. Threshold voltage adjustment in thin film transistors
JP2008506278A (ja) * 2004-04-26 2008-02-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 薄膜トランジスタのしきい値電圧調整
US20070296660A1 (en) * 2006-06-02 2007-12-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic apparatus having the same
JP2008009418A (ja) * 2006-06-02 2008-01-17 Semiconductor Energy Lab Co Ltd 液晶表示装置、液晶表示装置を具備した電子機器
JP2008089874A (ja) * 2006-09-29 2008-04-17 Semiconductor Energy Lab Co Ltd 液晶表示装置

Also Published As

Publication number Publication date
TWI717788B (zh) 2021-02-01
KR102151397B1 (ko) 2020-09-04
JP2018088680A (ja) 2018-06-07
JP2014200093A (ja) 2014-10-23
JP7229404B2 (ja) 2023-02-27
JP2024025827A (ja) 2024-02-26
US20220293029A1 (en) 2022-09-15
US20140247070A1 (en) 2014-09-04
KR101852752B1 (ko) 2018-04-30
KR20120127268A (ko) 2012-11-21
TW202141508A (zh) 2021-11-01
TWI587306B (zh) 2017-06-11
KR20170054360A (ko) 2017-05-17
US10559606B2 (en) 2020-02-11
KR101983976B1 (ko) 2019-05-30
US8698551B2 (en) 2014-04-15
TW201810287A (zh) 2018-03-16
JP5745726B2 (ja) 2015-07-08
US20120286855A1 (en) 2012-11-15
US20170062491A1 (en) 2017-03-02
TWI562156B (en) 2016-12-11
JP5873755B2 (ja) 2016-03-01
US20200335532A1 (en) 2020-10-22
KR102392242B1 (ko) 2022-05-02
JP2021103882A (ja) 2021-07-15
KR20230025421A (ko) 2023-02-21
US10062717B2 (en) 2018-08-28
KR102221936B1 (ko) 2021-03-04
US20230274679A1 (en) 2023-08-31
TWI633556B (zh) 2018-08-21
KR20210022607A (ko) 2021-03-03
US11295649B2 (en) 2022-04-05
JP6564836B2 (ja) 2019-08-21
JP2022091815A (ja) 2022-06-21
JP2012257211A (ja) 2012-12-27
US20190088689A1 (en) 2019-03-21
US20150325195A1 (en) 2015-11-12
TWI673718B (zh) 2019-10-01
TW201306037A (zh) 2013-02-01
JP2016129338A (ja) 2016-07-14
KR101720509B1 (ko) 2017-03-28
KR20200103604A (ko) 2020-09-02
KR20220054776A (ko) 2022-05-03
KR102499477B1 (ko) 2023-02-16
JP7466753B2 (ja) 2024-04-12
KR20150090006A (ko) 2015-08-05
TW201539460A (zh) 2015-10-16
US11682332B2 (en) 2023-06-20
TW202242890A (zh) 2022-11-01
US9508301B2 (en) 2016-11-29
TW201905929A (zh) 2019-02-01
KR20190060736A (ko) 2019-06-03
TW201709211A (zh) 2017-03-01
JP2023071734A (ja) 2023-05-23
US9106224B2 (en) 2015-08-11
TW202013383A (zh) 2020-04-01
TWI595495B (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
JP7229404B2 (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210406

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20210628