JP2017501420A - ナノギャップ電極およびその製造方法 - Google Patents

ナノギャップ電極およびその製造方法 Download PDF

Info

Publication number
JP2017501420A
JP2017501420A JP2016549198A JP2016549198A JP2017501420A JP 2017501420 A JP2017501420 A JP 2017501420A JP 2016549198 A JP2016549198 A JP 2016549198A JP 2016549198 A JP2016549198 A JP 2016549198A JP 2017501420 A JP2017501420 A JP 2017501420A
Authority
JP
Japan
Prior art keywords
electrode
nanogap
gap
gap region
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016549198A
Other languages
English (en)
Other versions
JP2017501420A5 (ja
JP6517826B2 (ja
Inventor
池田 修二
修二 池田
オールダム マーク
オールダム マーク
エス.ノードマン エリック
エス.ノードマン エリック
Original Assignee
クオンタムバイオシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クオンタムバイオシステムズ株式会社 filed Critical クオンタムバイオシステムズ株式会社
Publication of JP2017501420A publication Critical patent/JP2017501420A/ja
Publication of JP2017501420A5 publication Critical patent/JP2017501420A5/ja
Application granted granted Critical
Publication of JP6517826B2 publication Critical patent/JP6517826B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/60Detection means characterised by use of a special device
    • C12Q2565/607Detection means characterised by use of a special device being a sensor, e.g. electrode

Abstract

生体分子を検出するためのシステムは、第1電極および第1電極に隣接する第2電極を含むナノギャップ電極装置を備える。第1電極は、生体分子を通して流すことを可能にする寸法のナノギャップにより第2電極から分離される。ナノギャップは、少なくとも第1ギャップ領域及び第2ギャップ領域を有する。第2ギャップ領域は、第1ギャップ領域を有する面に対してゼロ度を超える角度で配向する。システムは、さらに、ナノギャップ電極装置に接続された電気回路を含むことができる。電気回路は、ナノギャップを通る生体分子の流れに関して第1電極および第2電極から電気信号を受信する。

Description

[0001]本発明はナノギャップ電極およびその製造方法に関し、参照することにより本願に組み込まれる2013年10月16日に出願された日本特許出願2013−215828に対して、優先権を主張する。
[0002]近年、対向した電極部間にナノスケールの間隙(ギャップ)が形成された電極構造(以下、ナノギャップ電極と呼ぶ)が注目されており、ナノギャップ電極を用いた電子デバイスや、バイオデバイス等について研究が盛んに行われている。例えば、バイオデバイスの分野では、ナノギャップ電極を利用し、DNAの塩基配列を解析する分析装置が考えられている(例えば、国際公開第2011/108540号は、参照することによりその全体が本明細書に組み込まれる)。
[0003]この分析装置では、ナノギャップ電極の電極部間にあるナノスケールでなる中空状の間隙(以下、ナノギャップと呼ぶ)に一本鎖DNAを通過させ、当該一本鎖DNAの塩基が電極部間のナノギャップを通過したときに電極部間を流れる電流を計測してゆき、当該電流値を基に一本鎖DNAを構成する塩基を同定し得るようになされている。
[0004]このような分析装置では、ナノギャップ電極の電極部間の距離が大きくなると、検出できる電流値が小さくなってしまい、高感度で試料を分析することが困難になるため、電極部間のナノギャップを小さく形成し得ることが望まれている。そのため、電極部間の距離が小さなナノギャップ電極の開発が進められている(例えば、特開2006−234799号公報参照)。
[0005]参照によりその全体が本明細書に組み込まれる特開2006−234799号公報では、基板上に金属層/SAM(Self−Assembled Monolayer)またはAl層/金属層の3層構造を作製し、その後、SAMまたはAl層を除去することで垂直ナノギャップを製造する方法が開示されている。また、特開2006−234799号公報では、一方の電極部として基板上に設けた第1の金属層の側面にSAMを形成し、当該SAMと接触するように他方の電極部となる第2の金属層を基板上に形成した後、当該SAMを除去することにより第1の金属層と第2の金属層との間にプラナーナノギャップを作製する方法が開示されている。
[0006]しかしながら、かかる構成でなるナノギャップ電極では、電極部間の距離を小さく形成し得るものの、その一方で、電極部間の距離を小さくした分だけ、測定対象となる一本鎖DNAを含んだ溶液がナノギャップを通過し難くなるという問題が生じる。
[0007]そこで、本発明は、以上の点を考慮してなされたもので、第1電極部および第2電極部間のナノギャップの幅を小さくしても、測定対象を含んだ流体が容易にナノギャップを通過できるナノギャップ電極およびその製造方法を提案することを目的とする。
[0008]本開示は、ナノギャップ電極装置及びシステムを提供する。本明細書に提供されたナノギャップ電極デバイスおよびシステムは、上述の課題の少なくとも一部を解決することができる。
[0009]いくつかの実施形態においては、ナノギャップ電極は、基板上に形成された第1電極部と、絶縁層上の第1電極部に形成されたギャップ形成層上、または第1電極部に形成されたギャップ形成層上のいずれかに形成され、第1電極部に対して対向配置された第2電極部と、第1電極部および第2電極部間に、基板の面方向に延びる第1ギャップ領域と基板に対して直立に延び、末端が第1ギャップ領域と接続またはオーバーラップした第2ギャップ領域とからなるナノギャップとを備える。
[0010]いくつかの実施形態においては、ナノギャップ電極は、基板上に形成された第1電極部と、基板上のギャップ形成層に形成され、第1電極部に対して対向配置された第2電極部と、第1電極部および第2電極部間に、基板の面方向に延びる第1ギャップ領域と、基板に対して直立に延び、末端が第1ギャップ領域と接続またはオーバーラップした第2ギャップ領域とからなるナノギャップとを備える。
[0011]本開示のある態様では、ナノギャップ電極は、基板上に形成された第1電極部と、第1電極部に絶縁層を介して形成されたギャップ形成層上または第1電極部に形成されたギャップ形成層上のいずれかに形成され、第1電極部に対して対向配置された第2電極部と、第1電極部および第2電極部間に、前記基板の面方向に延びる第1ギャップ領域および前記基板に対して直立に延び末端が前記第1ギャップ領域と接続またはオーバーラップした第2ギャップ領域からなるナノギャップと、を備える。ある実施形態では、第1電極部は、薄膜部と、薄膜部よりも膜厚の厚い厚膜部と、薄膜部と厚膜部の間に形成された厚膜部よりも膜厚の薄い第1電極側ギャップ形成部とを含む。第2電極部は、絶縁層およびギャップ形成層を介してまたはギャップ形成層のみを介して薄膜部に配置された基体部と、先端が厚膜部に向かって基体部から延び、それにより第1電極側ギャップ形成部と第2電極側ギャップ形成部の間の第1ギャップ領域および厚膜部と第2電極側のギャップ形成部との間の第2ギャップ領域を形成した第2電極側ギャップ形成部と、を含む。
[0012]別の態様では、ナノギャップ電極は、基板上に形成された第1電極部と、基板上のギャップ形成層に形成され、第1電極部に対して対向配置された第2電極部と、第1電極部および第2電極部間に、基板の面方向に延びる第1ギャップ領域と、基板に対して直立に延び、末端が第1ギャップ領域と接続した第2ギャップ領域とからなるナノギャップとを備える。ある実施形態では、第2電極部は、ギャップ形成層を介して基板上に配置された基体部と、第1電極部と第2電極側ギャップ形成部の間に提供された第1ギャップ領域および第2ギャップ領域と第1電極部に乗り上げるように形成された第2電極側ギャップ形成部とを含む。
[0013]ある実施形態では、第1ギャップ領域の幅と第2ギャップ領域の幅は、ギャップ形成層の膜厚と同じ寸法になる。
[0014]別の態様では、生体分子を検出するシステムは、第1電極および第1電極に隣接する第2電極を含むナノギャップ電極装置と、ナノギャップ電極装置に接続した電気回路とを備え、第1電極は、生体分子を通して流すことを可能にする寸法のナノギャップにより第2電極から分離され、ナノギャップは、少なくとも第1ギャップ領域および第2ギャップ領域を有し、第2ギャップ領域は、第1ギャップ領域を有する面に対してゼロ度を超える角度で配向し、電気回路は、ナノギャップを通る生体分子の流れに関して第1電極および第2電極から電気信号を受信する。
[0015]いくつかの実施形態では、第2ギャップ領域は、第1ギャップ領域を有する面に対して略25度を超える角度で配向する。また、第2ギャップ領域は、第1ギャップ領域を有する面に対して略45度を超える角度で配向する。また、第2ギャップ領域は、第1ギャップ領域を有する面に対して略90度の角度で配向する。
[0016]いくつかの実施形態では、第1電極は、基板に隣接する。また、第2電極は、第1電極と接触している絶縁層に隣接する。また、第1電極は、第1部分および第1部分に隣接する第2部分を備え、第1部分および第2部分は、基板と隣接し、第1部分は、第2部分より大きな厚みを有する。また、第1部分は、第2ギャップ領域を部分的に規定する表面を有し、第2部分は、第1ギャップ領域を部分的に規定する表面を有する。
[0017]いくつかの実施形態では、第1電極または第2電極の一部は、単一原子先端を有する。また、第2ギャップ領域の終端は、第1ギャップ領域と接続されている。また、ナノギャップ電極装置と流体連通する少なくとも1つのチャネルをさらに備え、ナノギャップに生体分子を向かわせるように構成されている。また、チャネルは、マイクロ流体構造と統合される。
[0018]いくつかの実施形態では、電気回路は、電気信号から生体分子またはその部分を向かわせるようにプログラムされたコンピュータプロセッサの一部である。また、ナノギャップ電極装置は、ナノギャップ電極装置のアレイの一部である。また、ナノギャップ電極装置は、アレイの他のナノギャップ電極装置に対して独立してアドレス可能である。
[0019]いくつかの実施形態では、ナノギャップは、終端が第1ギャップ領域と接続された第3ギャップ領域を有する。
[0020]別の態様では、生体分子を検知するシステムは、第1電極および第1電極に隣接する第2電極を含むナノギャップ電極装置を備え、第1電極は、生体分子を通して流すことを可能にする寸法のナノギャップにより第2電極から分離され、ナノギャップは、少なくとも第1ギャップ領域および第2ギャップ領域を有し、第2ギャップ領域は、第1ギャップ領域を有する面に対して略90度の角度で配向し、第2ギャップ領域の終端は、第1ギャップ領域に接続されている。
[0021]いくつかの実施形態では、第1電極は、基板に隣接する。また、第2電極は、第1電極と接触している絶縁層に隣接する。また、第1電極は、第1部分および第1部分に隣接する第2部分を備え、第1部分および第2部分は、基板と隣接し、第1部分は、第2部分より大きな厚みを有する。また、第1部分は、第2ギャップ領域を部分的に規定する表面を有し、第2部分は、第1ギャップ領域を部分的に規定する表面を有する。
[0022]いくつかの実施形態では、第1電極または第2電極の一部は、単一原子先端を有する。また、ナノギャップ電極装置と流体連通する少なくとも1つのチャネルをさらに備え、ナノギャップに生体分子を向かわせるように構成されている。また、チャネルは、マイクロ流体構造と統合される。
[0023]いくつかの実施形態では、ナノギャップ電極装置は、ナノギャップ電極装置のアレイの一部である。また、ナノギャップ電極装置は、アレイの他のナノギャップ電極装置に対して独立してアドレス可能である。
[0024]いくつかの実施形態では、ナノギャップは、終端が第1ギャップ領域と接続された第3ギャップ領域を有する。
[0025]本開示は、生体分子を検出するために上述したまたは明細書内で記載された装置又はシステムを使用することを含む生体分子を検出する方法を提供する。
[0026]ある態様では、生体分子を検出する方法は、(a)第1電極および前記第1電極に隣接する第2電極を有するナノギャップ電極装置に生体分子を向かわせる工程と、(b)ナノギャップを通る生体分子の流れに関して電気信号を測定する工程と、(c)(b)で測定した電気信号を使用して生体分子を検出する工程と、を備え、第1電極は、生体分子を通して流すことを可能にする寸法のナノギャップにより第2電極から分離され、ナノギャップは、少なくとも第1ギャップ領域および第2ギャップ領域を有し、第2ギャップ領域は、第1ギャップ領域を有する面に対してゼロ度を超える角度で配向する。
[0027]いくつかの実施形態では、検出する工程は、生体分子またはその部分を示す参照信号に対して電気信号を比較する。また、検出する工程は、生体分子またはその部分を識別することを備える。また、生体分子は、核酸分子である。また、生体分子は、(c)の検出する工程は、核酸分子をシーケンシングする。
[0028]いくつかの実施形態では、電気信号は、電流を含む。電流は、トンネル電流である。
[0029]いくつかの実施形態では、第2ギャップ領域は、第1ギャップ領域を有する面に対して略90度の角度で配向する。いくつかの実施形態では、第1電極または第2電極の一部は、単一原子先端を有する。いくつかの実施形態では、生体分子は、ナノギャップ電極装置と流体連通する少なくとも1つのチャネルを通してナノギャップ電極装置に向かう。いくつかの実施形態では、ナノギャップ電極装置は、独立してアドレス可能なナノギャップ電極装置のアレイの一部である。いくつかの実施形態では、ナノギャップを通る生体分子の流れに関し、生体分子の一の部分は第1ギャップ領域を通って流れ、生体分子の他の部分は第2ギャップ領域を通って流れる。
[0030]本開示は、上述したまたは本明細書内で記載する装置又はシステムを製造する方法も提供する。
[0031]ある態様では、生体分子を検出する際に使用するナノギャップ電極を製造する方法は、(a)基板に隣接する第1電極形成部を提供する工程と、(b)第1電極形成部の表面に隣接するギャップ形成層を形成する工程と、(c)ギャップ形成層に隣接する第2電極形成部を形成する工程と、(d)第1電極部と第2電極部の間にナノギャップを形成するためにギャップ形成層の一部(一の部分)を除去する工程と、を備え、ナノギャップは、生体分子をナノギャップを通して流すことを可能にする寸法であり、ナノギャップは、少なくとも第1ギャップ領域および第2ギャップ領域を有し、第2ギャップ領域は、第1ギャップ領域を有する面に対してゼロ度を超える角度で配向する。
[0032]いくつかの実施形態では、(c)の工程に続き、第1電極形成部の表面、ギャップ形成層の第2部分(他の部分)の表面、および第2電極形成部の表面を露出する工程をさらに含む。また、それぞれが所定の形を有する第1電極部及び第2電極部を提供するため、第2電極形成部、ギャップ形成層および第1電極形成部をパターニングする工程をさらに含む。
[0033]いくつかの実施形態では、第2ギャップ領域は、第1ギャップ領域を有する面に対して略25度を超える角度で配向する。また、第2ギャップ領域は、第1ギャップ領域を有する面に対して略45度を超える角度で配向する。また、第2ギャップ領域は、第1ギャップ領域を有する面に対して略90度の角度で配向する。
[0034]いくつかの実施形態では、単一原子先端を有するために第1電極部および/または第2電極部を加工する工程をさらに含む。いくつかの実施形態では、それぞれが単一原子先端を有するために第1電極部および第2電極部を加工する工程をさらに含む。いくつかの実施形態では、ナノギャップと流体連通する少なくとも1つのチャネルを提供する工程をさらに備える。いくつかの実施形態では、(a)の工程は、電極形成部の他の部分より厚さが薄い電極形成部の一の部分に隣接する絶縁層を形成し、絶縁層に隣接するギャップ形成層を形成する工程を含む。いくつかの実施形態では、第2ギャップ領域の終端は、第1ギャップ領域に接続されている。いくつかの実施形態では、第1電極形成部は、段差を有する。いくつかの実施形態では、第1ギャップ領域は、基板に平行である。
[0035]別の態様では、ナノギャップ電極を製造する方法は、基板上で複数の異なるレベル(段差)を有する第1電極形成部を形成し、その後第1電極形成部の低い方のレベルに沿ってギャップ形成層を形成し、それにより基板の面方向に沿ったかつ基板に対して直立のギャップ形成層を形成する第1工程と、ギャップ形成層に第2電極形成部を形成し、その後第1電極形成部の表面、基板に直立に延びるギャップ形成層の表面、および第2電極形成部の表面を露出する第2工程と、ギャップ形成層と第1電極形成部はマスクを使用することによりそれぞれが所定の形を有する第1電極部および第2電極部を形成し、第1電極部と第2電極部の間の基板の面方向に沿いかつ直立したギャップ形成層を形成し、第2電極形成部をパターンニングする第3工程と、第2ナノギャップ領域の終端は第1電極部と第2電極部の間にあると共に第1ナノギャップ領域と接続またはオーバーラップし、基板の面方向に沿った第1ナノギャップ領域と基板に直立して延びる第2ナノギャップ領域を含むナノギャップを形成してギャップ形成層を除去する第4工程とを含む。
[0036]別の態様では、ナノギャップ電極を製造する方法は、基板上で第1電極形成部を形成し、その後第1電極形成部および基板上でギャップ形成層を形成し、それにより基板の面方向に沿ったかつ基板に対して直立のギャップ形成層を形成する第1工程と、ギャップ形成層に第2電極形成部を形成する第2工程と、ギャップ形成層と第1電極形成部はマスクを使用することによりそれぞれが所定の形を有する第1電極部および第2電極部を形成し、第1電極部と第2電極部の間の基板の面方向に沿いかつ直立したギャップ形成層を形成し、第2電極形成部をパターンニングする第3工程と、第2ナノギャップ領域の終端は第1電極部と第2電極部の間にあると共に第1ナノギャップ領域と接続またはオーバーラップし、基板の面方向に沿った第1ナノギャップ領域と基板に直立して延びる第2ナノギャップ領域を含むナノギャップを形成してギャップ形成層を除去する第4工程とを含む。
[0037]別の態様では、ナノギャップ電極を製造する方法は、基板上で複数の異なるレベル(段差)を有する第1電極形成部を形成し、その後第1電極形成部の低い方のレベルに沿ってギャップ形成層を形成し、それにより基板の面方向に沿ったかつ基板に対して直立のギャップ形成層を形成することと、ギャップ形成層に第2電極形成部を形成し、その後第1電極形成部の表面、基板に直立に延びるギャップ形成層の表面、および第2電極形成部の表面を露出することと、ギャップ形成層と第1電極形成部はマスクを使用することによりそれぞれが所定の形を有する第1電極部および第2電極部を形成し、第1電極部と第2電極部の間の基板の面方向に沿いかつ直立したギャップ形成層を形成し、第2電極形成部をパターンニングすることと、第2ナノギャップ領域の終端は第1電極部と第2電極部の間にあると共に第1ナノギャップ領域と接続し、基板の面方向に沿った第1ナノギャップ領域と基板に直立して延びる第2ナノギャップ領域を含むナノギャップを形成してギャップ形成層を除去することとを含む。ある実施形態では、第1電極形成部を形成することは、レベルが異なる第1電極形成部上で膜厚の小さい領域に絶縁体層を形成することと、その次に第1電極形成部と絶縁体層のレベル差にそってギャップ形成層を形成することを含む。そして、パターニングをすることは、絶縁体層をパターニングすることと、マスクを用いて、膜厚の小さい第1電極部の領域に絶縁体層を配置することを含む。
[0038]別の態様では、ナノギャップ電極を製造する方法は、基板の部分の上で第1電極形成部を形成し、その後第1電極形成部および基板上でギャップ形成層を形成し、それにより基板の面方向に沿ったかつ基板に対して直立のギャップ形成層を形成する第1工程と、ギャップ形成層に第2電極形成部を形成する第2工程と、ギャップ形成層と第1電極形成部はマスクを使用することによりそれぞれが所定の形を有する第1電極部および第2電極部を形成し、第1電極部と第2電極部の間の基板の面方向に沿いかつ直立したギャップ形成層を形成し、第2電極形成部をパターンニングする第3工程と、第2ナノギャップ領域の終端は第1電極部と第2電極部の間にあると共に第1ナノギャップ領域と接続またはオーバーラップし、基板の面方向に沿った第1ナノギャップ領域と基板に直立して延びる第2ナノギャップ領域を含むナノギャップを形成してギャップ形成層を除去する第4工程とを含む。
[0039]さまざまな実施形態によると、試料流体が基板の面方向に沿った第1ナノギャップ領域だけでなく基板に対して直立に延びる第2ナノギャップ領域を通過することができるナノギャップ電極を形成することが可能であり、第2ナノギャップ領域の終端は第1ナノギャップ領域と接続またはオーバーラップするように形成され、第1電極部と第2電極部の間のナノギャップは、小さな幅を有するように選択され、試料流体は、ナノギャップを容易に通過できる。
[0040]いくつかの実施形態では、ナノチャンネルは、高い割合の試料がナノギャップ電極と相互作用するようなDNAであり得る試料の流れを制御するように、1つまたは複数のナノギャップ電極に関連して構成され得る。
[0041]別の実施形態では、安定したG0先端は、試料をより信頼性高く正確に測定するように、ナノギャップ電極と関連付けられて形成されてもよい。
[0042]本発明の追加の態様及び利点は、以下の詳細な説明から当業者には容易に明らかになるであろうと、本開示の例示的な実施形態だけが示され且つ説明されている。実現されるが、他の及び異なる実施形態が本開示とそのいくつかの詳細は、本開示から逸脱することなく様々な自明な点で修正できる。したがって、図面および説明は、事実上の例示であり、制限ではないとみなすべきである。
参照による組み込み
[0043]各個々の刊行物、特許、または特許出願が具体的かつ個別に参照により組み込まれることが示されたかのように本明細書で言及される全ての刊行物、特許、および特許出願は、本明細書と同程度に、参考により組み込まれる。
[0044]本発明の新規な特徴は、添付の特許請求の範囲に詳細に記載される。本発明の特徴および利点のより良い理解は、本発明の原理を利用する例示的な実施形態及び添付図面により以下の詳細な説明を参照することによって得られるであろう。
ナノギャップ電極の全体構成を示す概略図である。 ナノギャップ電極の上面構成を示す上面図である。 ナノギャップ電極の側断面構成を示す側断面図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の全体構成を示す概略図である。 ナノギャップ電極の上面構成を示す上面図である。 ナノギャップ電極の側断面構成を示す側断面図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノギャップ電極の製造方法の説明に供する概略図である。 ナノチャネル面で切断した部分断面で、集積ナノチャネルを伴うナノギャップ電極チップの部分断面図である。 ナノチャネル面で切断した部分断面で、縦断面構成を示す側断面図である。 集積ナノチャネルとナノギャップ電極チップの側断面構成を示す側断面図である。 集積ナノチャネルとナノギャップ電極チップの側断面構成を示す側断面図で、その中央部の部分を拡大した側断面図である。 ナノギャップ電極チップを製造する方法を示す概略図である。 ナノギャップ電極チップを製造する方法を示す概略図である。 ナノギャップ電極チップを製造する方法を示す概略図である。 ナノギャップ電極チップを製造する方法を示す概略図である。 ナノギャップ電極チップを製造する方法を示す概略図である。 ナノギャップ電極チップを製造する方法を示す概略図である。 ナノギャップ電極チップを製造する方法を示す追加の概略図である。 ナノギャップ電極チップを製造する方法を示す追加の概略図である。 ナノギャップ電極チップを製造する方法を示す追加の概略図である。 ナノギャップ電極チップを製造する方法を示す追加の概略図である。 本図は、本開示の装置、システムおよび方法を実装するようにプログラムされたまたは構成されたコンピュータ制御システムを示す。
[0064]以下、図面を参照して本発明の実施形態について詳細に説明する。本発明の種々の実施形態は、本明細書に図示して説明されるが、このような実施態様は、例として与えられているに過ぎないことは当業者には明らかであろう。本発明から逸脱することなく、多数のバリエーション、変化および置換が、当業者には明白である。ここに記載された発明の実施形態に対する種々の代替形態を採用してもよいことを理解すべきである。
[0065]本明細書で用いられる用語「ギャップ」は、一般に、物質内に形成され又はさもなくば設けられた孔、チャネルまたは通路を指す。その物質は、基板のような固体物質であってもよい。ギャップは、検知回路またはその検知回路に接続された電極の隣接または近傍に配置することができる。ギャップは、0.1ナノメートル(nm)から約1000nmのオーダーの特徴的な幅または直径を有している。ナノメートルのオーダーの幅を有するギャップは、「ナノギャップ」と呼ばれることがある。ある実施形態では、ナノギャップは、約0.1ナノメータ(nm)から50nmまで、0.5nmから30nm、0.5nmから10nmまで,0.5nmから5nmまで、0.5nmから2nmまで、又は、2nm、1nm、0.9nm、0.8nm、0.7nm、0.6nm、又は0.5nm以下の幅を有する。いくつかの場合では、ナノギャップは、少なくとも約0.5nm、0.6nm、0.7nm、0.8nm、0.9nm、1nm、2nm、3nm、4nm、又は5nmの幅を有する。いくつかの場合では、ナノギャップの幅は、生体分子又は生体分子のサブユニット(例えば、モノマー)の直径より小さい。
[0066]本明細書で用いられる用語「電極」とは、一般に、電流を測定するために使用できる物質やパーツを指す。電極(電極部)は、他の電極へのまたは他の電極からの電流を測定することができる。場合によっては、電極は、チャネル(例えば、ナノギャップ)に配置され、チャネルに流れる電流を測定することができる。電流は、トンネル電流が可能である。そのような電流は、ナノギャップを通って生体分子(例えば、タンパク質)の流れによって検出することができる。また、電極に接続された検出回路は、電流を発生するために電極間に印加される電圧を提供する。代替としてまたは加えて、電極は、生体分子(例えば、アミノ酸サブユニットまたはタンパク質のモノマー)と関連付けられた電気コンダクタンスを測定および/または同定することに使用できる。この場合においては、トンネル電流は、電気コンダクタンスに関連付けることができる。
[0067]本明細書中で用いられる用語「生体分子」は、一般に、ナノギャップ電極間に電流や電位で間合せることができる任意の生物学的物質を指す。生体分子は、核酸分子、タンパク質、炭水化物であり得る。生体分子は、ヌクレオチド又はアミノ酸などの1つまたは複数のサブユニットを含む。
[0068]本明細書中で用いられる用語「核酸」は、一般に、1つまたは複数の核酸サブユニットを含む分子を指す。核酸は、1つまたは複数の、リン酸(A)、シトシン(C)、グアニン(G)、チミン(T)、ウラシル(U)、またはそれらの変異体から選ばれる1つまたは複数のサブユニットを含むことができる。ヌクレオチドは、A、C、G、T、U、又は変異体を含む。
このようなサブユニットは、一つ以上のA、C、G、T、U、または1以上の相補的なA、C、G、T、Uに固有な他のサブユニット、またはプリン(AまたはG、またはそれらの変異体)またはピリミジン塩基(すなわち、C、T、U、またはその改変体)と相補的でありうる。サブユニットは、塩基の個々の核酸塩基または塩基のグループ(例えば、AA、TA、AT、GC、CG、CT、TC、GT、TG、AC、CAまたはこれらのウラシル同等物)を分解することができる。また、核酸は、デオキシリボ核酸(DNA)またはリボ核酸(RNA)、またはその誘導体である。核酸は一本鎖または二本鎖であり得る。
[0069]本明細書で用いられる用語「タンパク質」とは、一般に、生物学的分子を指すか、1個以上のアミノ酸モノマーを有する高分子を指す。50個以下のアミノ酸を含むタンパク質は、例えば「ペプチド」として参照される。アミノ酸モノマーは、天然に存在するおよび/または合成されもの、例えば、20、21、22の天然に存在するアミノ酸などから選択することができる。またある場合には、20個のアミノ酸が、被験体の遺伝子コードでエンコードされる。タンパク質は、約500の天然および非天然のアミノ酸から選択されたアミノ酸を含んでいてもよい。また、タンパク質は、イソロイシン、ロイシン、リシン、メチオニン、フェニルアラニン、トレオニン、トリプトファン、バリン、アルギニン、ヒスチジン、アラニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、プロリン、セリン、チロシンから選ばれる1種または2種以上のアミノ酸を含むことができる。
[0070]本明細書で用いられる用語「レベル差(段差)」とは、一般に、所与の軸(例えば、Z軸)に沿って異なる寸法、場合によっては異なる厚さを有する部分を指す。たとえば、レベル差(段差)は、ある部分における第1厚さと別の部分における第1厚さとは異なる第2厚さを有する部分である。
ナノギャップ電極とその方法
[0071]本発明は、一本鎖DNAまたはRNAを含むDNAまたはRNAのような生体分子を検出することに用いることができる方法およびシステムを提供する。場合によって、生体分子またはその一部(例えば、サブユニット)は、生体分子またはその一部がナノギャップに位置している時、ナノギャップ内の一対の電極を使って、一の電極から他の電極へ流れる電流を測定することにより検出できる。生体分子は、電流測定が生体分子又はその一部(例えば、生体分子のサブユニット)を検出するために行われている間、ナノギャップを通って流れることができる。
[0072]ナノギャップは、複数のナノギャップを有するナノギャップアレイの一部とすることができる。各ナノギャップは、複数の電極を含むことができる。各ナノギャップの電極(本明細書では「ナノギャップ電極」)は、そのアレイの他のナノギャップ電極に対して独立してアドレス可能とすることができる。
[0073]電流は、トンネル電流とすることができる。そのような電流は、ナノギャップを通る生体分子の流れによって検出することができる。いくつかの場合では、電極に接続された検知回路は、電流を発生するために電極間に印加される電圧を提供する。代替としてまたは加えて、電極は、標的種(例えば、核酸分子の塩基)に関連付けられた電気コンダクタンスを測定および/または同定することができる。このような場合においては、トンネル電流は、電気コンダクタンスに関連付けることができる。
[0074]本開示は、ナノギャップの幅が実質的に小さく、G0先端が第1電極部および第2電極部の一部として形成されるとしても、試料流体(例えば、液体培地中の生体分子)は、第1電極部と第2電極部の間であってナノチャネルと関連するナノギャップを容易に通過できるナノギャップ電極を提供する。ナノギャップ電極においては、溶液が基板と同一平面上に第1ギャップ領域NG1だけでなく、基板を有する面に対してある角度(例えば、直角)で延びる第2ギャップ領域NG2を通過することができる。その角度は、約0°より大きく、または少なくとも約1°,2°,3°,4°,5°,6°,7°,8°,9°,10°,15°,20°,25°,30°,35°,40°,45°,50°,60°,70°,80°,90°,100,110°,120°,130°,or 135°より大きくてもよい。第2ギャップ領域NG2の終端は、第1ギャップ領域NG1と接続またはオーバーラップすることができる。また、第一電極部及び第2電極部の間のナノギャップNGが小さな幅WIを有するように形成される場合には、生体分子(例えば、一本鎖または二本鎖DNA)を含む溶液は、ナノギャップNGを容易に通過できる。
[0075]図1において、符号1はナノギャップ電極を示し、所定形状の第1電極部3が基板2上に設けられているとともに、当該第1電極部3に設けた薄膜部3a上に絶縁層7とギャップ形成層としての絶縁層6を介して第2電極部4が設けられており、これら第1電極部3および第2電極部4によって、幅がナノスケール(例えば1000[nm]以下)でなる中空状のナノギャップNGを形成している。そして、本発明では、基板2の面方向に沿って配置された第1ギャップ領域NG1と、基板2に対して直立するように配置され、末端が第1ギャップ領域NG1と連通した第2ギャップ領域NG2とでなる2方向に延びるナノギャップNGが、第1電極部3および第2電極部4間に形成されている点に特徴を有している。なお、基板2は、例えばシリコン基板8と、当該シリコン基板8上に形成された層状の酸化シリコン層9とから構成されており、例えばチタンナイトライド(TiN)等の金属部材からなる第1電極部3が、当該酸化シリコン層9上に形成された構成を有する。
[0076]基板8は、IV族半導体又はIII‐V族半導体のような半導体から形成される。基板8に使用される半導体の例としては、シリコン、ゲルマニウム、ガリウムヒ素を含む。
[0077]実際上、この実施形態の場合、第1電極部3は、絶縁層6と絶縁層7とが表面に積層されている薄膜部3aと、当該薄膜部3aに一端が一体形成された帯状の第1電極側ギャップ形成部3bと、当該第1電極側ギャップ形成部3bの他端に一体形成された厚膜部3cとから構成されている。第1電極部3は、薄膜部3aおよび第1電極側ギャップ形成部3bの膜厚が、厚膜部3cの膜厚よりも薄く形成されており、膜厚の薄い薄膜部3aおよび第1電極側ギャップ形成部3bの上方に第2電極部4が配置された構成を有する。これにより第1電極部3は、薄膜部3aと、第1電極側ギャップ形成部3bの一部とに対して第2電極部4が重なるように配置され、一方、膜厚の厚い厚膜部3cには第2電極部4が重なることなく、厚膜部3cの上面が外部に露出し得るように形成されている。
[0078]このバンド状の第2電極側ギャップ形成部4bは、図では矩形として示されているが、これは必須の構成要件ではない。はっきりした角を有する実質的に小さな長方形の特徴は、であるフォトリソグラフィ方法を用いて作製することは難しい。電極端は丸めることができので、限られた数の原子が、ナノギャップの最短距離を提供する。
[0079]図1に示すようにいくつかの実施形態の場合、第1電極部3は、帯状の第1電極側ギャップ形成部3bを中心に薄膜部3aおよび厚膜部3cの外郭形状がほぼ左右対称に形成されている。いくつかの実施形態では、第1電極部3は、例えば、薄膜部3aの外郭形状が略⊃形に形成され、厚膜部3cの外郭形状が略⊂形に形成されており、薄膜部3aおよび厚膜部3cの各中央先端部分に、帯状の第1電極側ギャップ形成部3bの端部が一体形成された構成を有してもよい。
[0080]いくつかの実施形態では、第1電極部3は、厚膜部3cの膜厚が、薄膜部3aおよび第1電極側ギャップ形成部3bの膜厚よりも厚く形成されていてもよい。したがって、膜厚が厚い厚膜部3cには、第1電極側ギャップ形成部3bとの膜厚差分の高さを有したギャップ形成側面11bが形成されている。この第1電極部3は、薄膜部3aおよび第1電極側ギャップ形成部3bの各膜厚が同一に形成され、第1電極側ギャップ形成部3bと厚膜部3cとの間にのみ段差を有し、これら面一に形成された薄膜部3aおよび第1電極側ギャップ形成部3b上方に第2電極部4が配置された構成を有してもよい。
[0081]他の実施形態では、第1電極側ギャップ形成部3bは、厚膜部3cのギャップ形成側面11bに対して直角に配置された平面状のギャップ形成上面11aを有していてもよく、当該ギャップ形成上面11aに対し第1ギャップ領域NG1(ナノギャップNG)を介して第2電極部4の第2電極側ギャップ形成部4bが対向配置されていてもよい。ここで、第1電極部3の薄膜部3aは、絶縁層6と絶縁層7を介して第2電極部4の基体部4aが設けられた構成を有し、当該絶縁層6と絶縁層7により第2電極部4と電気的に絶縁されている。
[0082]いくつかの実施形態では、絶縁層6は、絶縁層7と酸化シリコン層9とは異なるエッチング条件を有する、例えばシリコンナイトライド(SiN)等の絶縁部材から形成されている。他の実施形態では、この絶縁層6は、絶縁層7上に形成され、第1電極部3の薄膜部3aとほぼ同じ外郭形状を有し、薄膜部3aの中央先端部分付近の所定の領域では、絶縁層7の側面に沿って形成されている。この絶縁層6は、製造過程において行われるナノギャップ形成時のウェットエッチング(後述する)により外周面が削られており、外郭形状が当該薄膜部3aよりも僅かに小さく形成されている。この実施形態では、絶縁層7は、絶縁層6と酸化シリコン層9とは異なるエッチング条件を有し、第1電極部3と第2電極部4とを絶縁し得る、例えばアルミナ(Al)等の絶縁部材から形成されてもよい。また、この絶縁層7は、第1電極部の薄膜部3aとほぼ同じ外郭形状を有し、上面と側面の一部とに絶縁層6が形成されてもよい。
[0083]第2電極部4は、例えばチタンナイトライド(TiN)等の金属部材により形成されており、絶縁層6上に積層形成された基体部4aと、当該基体部4aに一端が一体形成された帯状の第2電極側ギャップ形成部4bとを有しもよい。第2電極部4は、基体部4aが第1電極部3の薄膜部3aと同様の外郭形状を有しており、当該基体部4aの外周が第1電極部3の薄膜部3aの外周と一致するように第1電極部3上に配置されている。そして、第2電極側ギャップ形成部4bの膜厚が、基体部4aの膜厚よりも厚く選定されている。
[0084]第2電極部4の第2電極側ギャップ形成部4bは、x方向に延びる長手方向の長さが、第1電極部3にてx方向に延びる第1電極側ギャップ形成部3bの長手方向の長さよりも短く選定されている。これにより第2電極部4は、図1のナノギャップ電極1の上面構成を示す図2Aのように、第2電極側ギャップ形成部4bの外周が第1電極側ギャップ形成部3bの外周と一致するように配置されているものの、当該第2電極側ギャップ形成部4bの長さが、第1電極側ギャップ形成部3bの長さよりも短く形成されている分、第2電極側ギャップ形成部4bの先端と、厚膜部3cとの間に、外部と連通した幅W1の第2ギャップ領域NG2(ナノギャップNG)を形成し得るようになされている。
[0085]第2電極側ギャップ形成部4bは、図2AのA‐A´部分の側断面構成を示す図2Bのように、根元が基体部4aにて片持ち支持され、その先端が厚膜部3cに向けて延びており、第1電極側ギャップ形成部3bにおけるギャップ形成上面11aとの間に、絶縁層6の膜厚分の幅W1でなる第1ギャップ領域NG1(ナノギャップNG)を形成している。実際上、第2電極側ギャップ形成部4bは、図2Bに示したように、裏側にあるギャップ対向下面12aが、第1電極側ギャップ形成部3bにおけるギャップ形成上面11aと対向配置されており、ギャップ対向下面12aと、第1電極部3のギャップ形成上面11aとの間に、基板2の面方向に延びた第1ギャップ領域NG1を形成し得る。
[0086]いくつかの実施形態では、第2電極側ギャップ形成部4bは、図1、図2Aおよび図2Bに示すように、第1電極部3の厚膜部3cにおけるギャップ形成側面11bに対して、ギャップ対向先端面12bが対向配置されており、ギャップ対向先端面12bと、第1電極部3のギャップ形成側面11bとの間に、基板2に対して直立(基板2の面方向と直交するz方向)に配置され、末端が第1ギャップ領域NG1と連通した第2ギャップ領域NG2を形成し得る。
[0087]このように第1電極部3および第2電極部4間には、ギャップ形成上面11aおよびギャップ対向下面12a間における第1ギャップ領域NG1と、ギャップ形成側面11bおよびギャップ対向先端面12b間における第2ギャップ領域NG2とで構成されたナノギャップNGが形成され得る。なお、第1電極部3および第2電極部4間に形成されるナノギャップNGは、第1電極側ギャップ形成部3bおよび第2電極側ギャップ形成部4bの長手方向たるx方向と基板2上にて直交するy方向に向けて貫通しており、例えば基板2上においてy方向に流れる溶液等がナノギャップNG(第1ギャップ領域NG1および第2ギャップ領域NG2)を通過し得るようになされている。
[0088]ギャップ形成上面11aおよびギャップ対向下面12a間の第1ギャップ領域NG1における幅W1と、ギャップ形成側面11bおよびギャップ対向先端面12b間の第2ギャップ領域NG2における幅W1は、絶縁層6の膜厚とほぼ同じ寸法に形成されてもよい。ナノギャップNGは、幅W1が約0.1〜50ナノメートルnm、0.5〜30nm、0.5〜10nm、0.5〜5nm、0.5〜2nm、又は、2nm以下、1nm以下、0.9nm以下、0.8nm以下、0.7nm以下、0.6nm以下、0.5nm以下であるように形成される。また、ナノギャップの幅は、生体分子または生体分子のサブユニット(例えばモノマー)の直径より小さくてもよい。
[0089]いくつかの実施形態では、このようなナノギャップ電極1は、例えば図示しない電源によって第1電極部3と第2電極部4との間に一定の電圧が印加され、その状態で一本鎖DNAを含んだ溶液が第1電極部3および第2電極部4間のナノギャップNGを流れ得る。ナノギャップ電極1は、溶液の流れに乗って運搬されてきた一本鎖DNAが第1電極部3および第2電極部4間のナノギャップNGを通過したときに、第1電極部3および第2電極部4間に流れる電流値を電流計にて計測させてゆき、その電流値の変化から一本鎖DNAの塩基配列を特定し得る。
[0090]他の実施形態では、本発明のナノギャップ電極1は、第1電極部3および第2電極部4間のナノギャップNGの幅W1を小さく選定することで、高感度で試料を分析し得るとともに、この際、一本鎖DNAを含んだ溶液を、基板2と平行した第1ギャップ領域NG1だけでなく、基板2に対して直立に配置された第2ギャップ領域NG2にも通過させることができるので、その分より多くの溶液が容易にナノギャップNGを通過し得る。
[0091]次に、図1のナノギャップ電極1の製造方法について説明する。先ず始めに、例えば酸化シリコン層9がシリコン基板8上に形成された基板2を用意し、当該酸化シリコン層9の全面または一部に、例えばCVD(Chemical Vapor Deposition)法またはALD(Atomic Layer Deposition)法によりチタンナイトライド(TiN)でなる層状の電極形成層を形成する。
[0092]次に、フォトリソグラフィ技術によって、当該電極形成層をパターニングし、図3Aと、図3AのB‐B´部分の側断面構成を示す図3Bのように、当該電極形成層の表面の所定領域をエッチングして段差を設け、膜厚が薄く四辺状に凹んだ薄膜領域13と、当該薄膜領域13よりも膜厚が厚く、薄膜領域13との境に段差分の高さの側面14aを有した四辺状の厚膜領域14とを有する第1電極形成部31を形成する。なお、この際、エッチングにより形成された第1電極形成部31の薄膜領域13には、後の工程において第1電極部3の薄膜部3aおよび第1電極側ギャップ形成部3bが形成され、一方、厚膜領域14には、後の工程において第1電極部3の厚膜部3cが形成され得る。
[0093]続いて、第1電極形成部31の全面に例えばCVD法によりアルミナ(Al2O3)でなる層状の絶縁層を形成する。フォトリソグラフィ技術によって当該絶縁層をパターニングし、図3Cと、図3CのC‐C´部分の側断面構成を示す図3Dのように、当該絶縁層の表面の所定の領域をエッチングして、第1電極形成部31の薄膜領域13上に絶縁層7を形成する。
[0094]次いで、図3Cとの対応部分に同一符号を付して示す図3Eと、図3EのD‐D´部分の側断面構成を示す図3Fのように、絶縁層7と段差を有した第1電極形成部31の全面に、例えばCVD法によりシリコンナイトライド(SiN)でなる層状の絶縁層6を形成し、第1電極形成部31に形成された段差とほぼ同じ形状の段差を有した絶縁層6を第1電極形成部31上に設ける。この場合、第1電極形成部31の薄膜領域13および厚膜領域14の上面には、基板2の面方向に沿った絶縁層6が形成され、第1電極形成部31の側面14aには、基板2に対して直立に延びた絶縁層6が形成され得る。また、絶縁層7の上面には、基板2の面方向に沿った絶縁層6が形成され、絶縁層7の側面には、基板2に対して直立に延びた絶縁層6が形成され得る。なお、一例として図3Fに示した絶縁層6は、絶縁層7が形成された第1電極形成部31に沿ってコンフォーマルに形成されており、薄膜領域13上に形成された絶縁層6の膜厚と、側面14aに沿って形成された絶縁層6の膜厚とがほぼ同一に形成されている。
[0095]次いで、図3Eとの対応部分に同一符号を付して示す図4Aと、図4AのE‐E´部分の側断面構成を示す図4Bのように、絶縁層6の全面に、例えばCVD法によってチタンナイトライド(TiN)からなる層状の第2電極形成部32を形成する。これにより、第2電極形成部32には、第1電極形成部31の薄膜領域13の表面13aと対向した対向下面32aと、第1電極形成部31の厚膜領域14における側面14aと対向した対向側面32bとが形成され得る。
[0096]次いで、第2電極形成部32や、さらには第1電極形成部31における厚膜領域14上の絶縁層6、第1電極形成部31の厚膜領域14を、例えばCMP(Chemical Mechanical Polishing)等の平坦化処理によってオーバ研磨してゆき、図4Aとの対応部分に同一符号を付して示す図4Cと、図4CのF‐F´部分の側断面構成を示す図4Dのように、第1電極形成部31の薄膜領域13に第2電極形成部32を残存させるとともに、第1電極形成部31の厚膜領域14の表面を外部に露出させて、基板2に対し直立に延びた絶縁層6部分の表面を、第1電極形成部31および第2電極形成部32間から外部に露出させる。
[0097]いくつかの実施形態では、平坦化処理は、CMP(Chemical Mechanical Polishing)のように、第1電極形成部31を研磨することなく、第2電極形成部32と、第1電極形成部31の厚膜領域14上の絶縁層6とだけを研磨し、第1電極形成部31の厚膜領域14、絶縁層6、および第2電極形成部32の各表面を全て外部に露出させるようにしてもよい。
[0098]次いで、図4Cとの対応部分に同一符号を付して示す図4Eと、図4EのG‐G´部分の側断面構成を示す図4Fのように、フォトリソグラフィ技術によってパターニングしたレジストマスク15を、外部に露出している第2電極形成部32上、絶縁層6上、および第1電極形成部31上に形成する。ここで、レジストマスク15は、図1に示す最終的に形成される第1電極部3の外郭形状に合わせて、その外郭形状が形成されている。
[0099]いくつかの実施形態では、レジストマスク15は、第1電極部3の薄膜部3aの外郭形状に合わせて略⊃形に形成された基体形成領域15aと、第1電極部3の第1電極側ギャップ形成部3bの外郭形状に合わせて帯状に形成されたギャップ形成領域15bと、第1電極部3の厚膜部3cの外郭形状に合わせて略⊂形に形成された基体形成領域15cとを有する。そして、レジストマスク15は、一方の基体形成領域15aとギャップ形成領域15bとが第2電極形成部32上に配置されるとともに、ギャップ形成領域15bの末端が絶縁層6上に配置され、さらに他方の基体形成領域15cが第1電極形成部31の厚膜領域14上に配置され得る。
[0100]次いで、レジストマスク15に覆われておらず、外部に露出した第1電極形成部31と第2電極形成部32とを、例えばドライエッチングにより除去してもよい。具体的には、図4Eとの対応部分に同一符号を付して示す図5Aと、図5AのH‐H´部分の側断面構成を示す図5Bのように、第2電極形成部32をレジストマスク15でパターニングし、レジストマスク15に覆われた領域に第2電極部4を形成し、また、第1電極形成部31の厚膜領域14をレジストマスク15でパターニングして、レジストマスク15に覆われた領域に厚膜部3cを形成してもよい。
[0101]この際、第2電極部4の基体部4aは、レジストマスク15の基体形成領域15aにより第2電極形成部32がパターニングされることで形成され得る。同様に、ギャップ対向下面12aおよびギャップ対向先端面12bを有した第2電極側ギャップ形成部4bは、レジストマスク15のギャップ形成領域15bにより第2電極形成部32がパターニングされることで形成され得る。一方、第1電極部3の厚膜部3cには、第2電極部4のギャップ対向先端面12bと対向するギャップ形成側面11bが形成され得る。レジストマスク15に覆われていない外部に露出した第1電極形成部31を除去した領域には、酸化シリコン層9が露出する。同様に、レジストマスク15に覆われていない外部に露出した第2電極形成部32を除去した領域では、基板2の面方向に延び、かつ基板2に対して直立に延びた絶縁層6が露出することがある。そのため、当該絶縁層6に覆われている第1電極形成部31の薄膜領域13は、この段階ではパターニングされないことがある。
[0102]次いで、レジストマスク15に覆われていない外部に露出した絶縁層6を、例えばドライエッチングにより除去してもよい。この際、絶縁層6を除去するドライエッチングは、第1電極形成部31および第2電極形成部32を除去するドライエッチングとは別のガスにより行ってもよい。これにより、図5Aとの対応部分に同一符号を付して示す図5Cと、図5CのI‐I´部分の側断面構成を示す図5Dのように、レジストマスク15に覆われておらず、絶縁層6が除去された領域には、絶縁層7と第1電極形成部31の薄膜領域13が残存して外部に露出する。また、絶縁層6は、第2電極部4の外郭形状(基体部4aおよび第2電極側ギャップ形成部4b)に合わせて残存し、さらに、第2電極側ギャップ形成部4bの先端と、第1電極形成部31の厚膜部3cとの間に基板2に対して直立するように残存する。
[0103]いくつかの実施形態では、例えばドライエッチングにより、レジストマスク15に覆われていない部分に露出している第1電極形成部31と第2電極形成部32とを除去した後、第2電極形成部32が除去されたことにより外部に露出した絶縁層6を別のエッチングにより除去しているが、第1電極形成部31と第2電極形成部32と絶縁層6とを同じエッチングにより続けて除去してもよい。
[0104]いくつかの場合では、膜厚が例えば2nmでなる膜厚の薄い絶縁層6が形成されているときには、第1電極形成部31と第2電極形成部32とを除去する際に、第2電極形成部32の下に形成されている絶縁層6も同時に除去されることがある。この場合は、絶縁層6が除去されたことにより外部に露出した第1電極形成部31の薄膜領域13および絶縁層7の表面もエッチングされ、第1電極形成部31および絶縁層7に段差が形成されることがある。
[0105]その後、レジストマスクに覆われていない外部に露出した絶縁層7を、例えばドライエッチングにより除去する。この際、絶縁層7を除去するドライエッチングは、第1電極形成部31および第2電極形成部32を除去するドライエッチングと絶縁層6を除去するドライエッチングとは別のガスにより行てもよい。これにより、絶縁層7が除去された領域には、第1電極形成部31の薄膜領域13が残存して外部に露出する場合がある。
[0106]次いで、レジストマスク15に覆われていない外部に露出した第1電極形成部31を、例えばドライエッチングなどの異方性除去プロセスにより除去し、当該第1電極形成部31をパターニングすることにより第1電極部3を形成した後、レジストマスク15をプラズマアッシング又はリキッドレジストストリッパーを使用することにより除去し、図5Cとの対応部分に同一符号を付して示す図5Eと、図5EのJ‐J´部分の側断面構成を示す図5Fのように、レジストマスク15に覆われていた第1電極部3および第2電極部4を外部に露出させる。
[0107]これにより、基板2上には、膜厚の薄い薄膜部3aおよび第1電極側ギャップ形成部3bと、膜厚の厚い厚膜部3cとを有した第1電極部3が形成され、第1電極部3の薄膜部3a上に、絶縁層7と絶縁層6を介して第2電極部4の基体部4aが設けられ、第1電極側ギャップ形成部3b上に、絶縁層6を介して第2電極部4の第2電極側ギャップ形成部4bが設けられ得る。また、第1電極部3は、厚膜部3cの表面と、第2電極部4の表面とが面一に形成され、基板2の面方向において厚膜部3cが絶縁層6を介して第2電極側ギャップ形成部4bと並ぶように対向配置され得る。すなわち、第2電極側ギャップ形成部4bは、ギャップ対向下面12aが、第1電極側ギャップ形成部3bのギャップ形成上面11aに絶縁層6を介して対向配置され、かつ、ギャップ対向先端面12bが、厚膜部3cのギャップ形成側面11bに絶縁層6を介して対向配置され得る。
[0108]次いで、ギャップ形成上面11aおよびギャップ対向下面12a間の絶縁層6と、ギャップ形成側面11bおよびギャップ対向先端面12b間の絶縁層6とを、例えばウェットエッチングにより除去する。これにより、図1、図2Aおよび図2Bに示すように、ギャップ形成上面11aとギャップ対向下面12aとの間には、基板2の面方向に延びる第1ギャップ領域NG1が形成される。また、ギャップ形成側面11bとギャップ対向先端面12bとの間には、基板2に対し直立に延び、下末端が前記第1ギャップ領域と連通した第2ギャップ領域NG2が形成される。かくして、これら第1ギャップ領域NG1および第2ギャップ領域NG2で構成されたナノギャップNGを有したナノギャップ電極1を製造し得る。
[0109]本明細書に記載された製造方法によって製造されるナノギャップ電極1は、第1電極部3および第2電極部4間に形成する絶縁層6の膜厚が、第1電極部3および第2電極部4間に形成されるナノギャップNGの幅W1となることから、製造過程において絶縁層6の膜厚を単に調整するだけで、所望の幅でなるナノギャップNGを容易に製造し得る。また、絶縁層6の膜厚は、極めて薄く形成し得ることから、その分、第1電極部3および第2電極部4間に形成されるナノギャップNGの幅W1も小さくし得る。
[0110]いくつかの実施形態では、第1電極部3の第1電極側ギャップ形成部3bと、第2電極部4の第2電極側ギャップ形成部4bとの間にある絶縁層6を除去する際、第1電極部3の薄膜部3aと第2電極部4の基体部4aとの間にある絶縁層6も、ウェットエッチングに用いる薬液に触れることから外周面が削られ、その結果、外郭が当該薄膜部3aおよび基体部4aよりも僅かに小さく形成され得る。また、絶縁層7の側面と第2電極部4の第2電極側ギャップ形成部4bとの間に形成されている絶縁層6は、ウェットエッチングに用いる薬液に触れにくいため、エッチングされずに残存し得る。
[0111]いくつかの実施形態では、本発明のナノギャップ電極1では、薄膜部3aと厚膜部3cとの間に膜厚の薄い第1電極側ギャップ形成部3bを有した第1電極部3を基板2上に設け、当該薄膜部3a上に絶縁層7と絶縁層6を介して第2電極部4を設けてもよい。いくつかの実施形態では、このナノギャップ電極1では、第2電極部4に形成した第2電極側ギャップ形成部4bを、第1電極部3の第1電極側ギャップ形成部3bに対向配置し、これら第1電極側ギャップ形成部3bおよび第2電極側ギャップ形成部4b間に、基板2の面方向に延びる第1ギャップ領域NG1を形成してもよい。いくつかの実施形態では、このナノギャップ電極1では、第2電極部4の第2電極側ギャップ形成部4bの先端を、第1電極部3の厚膜部3cに対向配置し、これら第2電極側ギャップ形成部4bおよび厚膜部3c間に、基板2に対して直立に延び、末端が第1ギャップ領域NG1と連通した第2ギャップ領域NG2を形成してもよい。
[0112]これにより、ナノギャップ電極1では、第1電極部3および第2電極部4間のナノギャップNGの幅W1を小さく選定することで、高感度で試料を分析し得るとともに、第1電極部3および第2電極部4間のナノギャップNGの幅W1を小さく選定した際、一本鎖DNAを含んだ溶液を、基板2と平行した第1ギャップ領域NG1だけでなく、基板2に対して直立に配置された第2ギャップ領域NG2にも通過させることができるので、その分より多くの溶液が容易にナノギャップNGを通過できる。
[0113]いくつかの実施形態では、ナノギャップ電極1の製造方法としては、先ず始めに、基板2上に形成した第1電極形成部31に段差と絶縁層7を形成した後、この段差と絶縁層7に沿って、基板2の面方向に延び、かつ基板2に対して直立にも延びた絶縁層6を形成する。次いで、絶縁層6上に第2電極形成部32を形成した後、第1電極形成部31の表面、基板2に対して直立に延びた絶縁層6の表面、および第2電極形成部32の表面を外部にたとえばCMPにより露出させ、レジストマスク15を用いて、これら第2電極形成部32、絶縁層6、絶縁層7、および第1電極形成部31をパターニングしてもよい。
[0114]これにより、所定形状の第1電極部3および第2電極部4を形成し得るとともに、基板2の面方向に延び、かつ基板2に対し直立にも延びた絶縁層6を、第1電極部3および第2電極部4間に形成する。最後に、第1電極部3および第2電極部4間の絶縁層6を除去することで、基板2の面方向に延びる第1ギャップ領域NG1と、基板2に対して直立に延び、末端が第1ギャップ領域NG1と連通した第2ギャップ領域NG2とからなるナノギャップNGを、第1電極部3および第2電極部4間に形成する。
[0115]かくして、第1電極部3および第2電極部4間のナノギャップNGの幅W1を小さくしても、第1ギャップ領域NG1だけでなく第2ギャップ領域NG2にも溶液が通過し得、その分、測定対象たる一本鎖DNAを含んだ溶液が、ナノギャップNGが単一のナノギャップ領域を有した場合より容易にナノギャップNGを通過し得るナノギャップ電極1を製造できる。
[0116]このような製造方法を利用する実施形態では、絶縁層6の膜厚を調整するだけで第1電極部3および第2電極部4間のナノギャップNGの幅W1を容易に調整し得る。さらに、この製造方法では、絶縁層6の膜厚は極めて薄く形成し得ることから、当該絶縁層6の膜厚に対応した極めて小さい幅W1のナノギャップNG(第1ギャップ領域NG1および第2ギャップ領域NG2)を容易に、かつ確実に形成できる。
[0117]図1との対応部分に同一符号を付して示す図6において、符号21はナノギャップ電極を示し、図1に示すナノギャップNGの側断面形状が略¬形に形成されている点で相違している。そして、基板2の面方向に沿って配置された第1ギャップ領域NG3と、基板2に対して直立するように配置され、末端が第1ギャップ領域NG3と連通した第2ギャップ領域NG4とでなる2方向に延びるナノギャップNGが、第1電極部23および第2電極部24間に形成されている点に特徴を有している。
[0118]いくつかの実施形態では、基板2には、第1電極部23が酸化シリコン層9上に設けられているとともに、第1電極部23と対をなす第2電極部24がギャップ形成層としての導電層26を介して酸化シリコン層9上に設けられており、第1電極部23の帯状の第1電極側ギャップ形成部23b上方に、第2電極部24の第2電極側ギャップ形成部24bが乗り上げるように配置され、これら第1電極側ギャップ形成部23bおよび第2電極側ギャップ形成部24b間に、幅がナノスケール(例えば1000[nm]以下)でなる中空状のナノギャップNGが形成され得る。
[0119]いくつかの実施形態では、第1電極部23は、全体が例えばチタンナイトライド(TiN)等の金属部材から形成されており、所定形状に形成された基体部23aと、長手方向の一端が基体部23aに一体成形された第1電極側ギャップ形成部23bとを有してもよい。なお、図6に示す第1電極部23の基体部23aは、図6の上面構成を示す図7Aのように、外郭形状が略⊃形に形成されており、帯状の第1電極側ギャップ形成部23bの一端が、当該基体部23aの先端中央部に一体形成された構成を有する。図7AのK‐K´部分の側断面構成を示す図7Bのように、第1電極側ギャップ形成部23bは、基板2の面方向に沿って延びる平面状のギャップ形成上面28aと、このギャップ形成上面28aの末端から基板2に対して直立に延びる平面状のギャップ形成先端面28bとを有し、これらギャップ形成上面28aおよびギャップ形成先端面28bがナノギャップNGを介して第2電極部24と対向配置されてもよい。
[0120]第2電極部24は、全体が例えばチタンナイトライド(TiN)等の金属部材から形成されており、基板2上に導電層26を介して設けられた基体部24aと、長手方向の根元が基体部24aに一体成形され、かつ第1電極部23の第1電極側ギャップ形成部23bにナノギャップNGを介して乗り上げるように形成された第2電極側ギャップ形成部24bとを有している。なお、導電層26は、酸化シリコン層9とは異なるエッチング条件を有する、例えばチタン(Ti)等の導電部材から形成されてもよい。
[0121]いくつかの実施形態では、図7Aにて点線で示すように、導電層26は、第2電極部24の基体部24aとほぼ同じ外郭形状を有するものの、製造過程において行われるナノギャップ形成時のウェットエッチング(後述する)により外周面が削られており、外郭形状が当該基体部24aよりも僅かに小さく形成されてことができる。
[0122]図6および図7Aに一例として示す第2電極部24の基体部24aは、外郭形状が、第1電極部23の基体部23aと対称な略⊂形に形成されており、帯状の第2電極側ギャップ形成部24bの根元が、当該基体部24aの先端中央部に一体形成されてもよい。また、第2電極側ギャップ形成部24bは、その外郭が、第1電極側ギャップ形成部23bの外郭と一致するように配置されているとともに、図7Bに示したように、ナノギャップNGを介して第1電極側ギャップ形成部23bに対向配置されてもよい。
[0123]いくつかの実施形態では、この第2電極側ギャップ形成部24bは、第1電極側ギャップ形成部23bのギャップ形成上面28aに対し、ギャップ対向下面29aを対向配置させ、このギャップ対向下面29aと、ギャップ形成上面28aとの間に、基板2の面方向に沿って第1ギャップ領域NG3を形成し得る。また、第2電極部24は、ギャップ対向下面29aから基板2に向けて延びるギャップ対向側面29bを基体部24aに有しており、第1電極側ギャップ形成部23bのギャップ形成先端面28bに対しギャップ対向側面29bを対向配置させ、当該ギャップ対向側面29bと、ギャップ形成先端面28bとの間に、基板2に対して直立に配置され、末端が第1ギャップ領域NG3と連通した第2ギャップ領域NG4を形成し得る。
[0124]本明細書に記載のようにナノギャップ電極21が構成された結果、第1電極部23および第2電極部24間には、ギャップ形成上面28aおよびギャップ対向下面29a間における第1ギャップ領域NG3と、ギャップ形成先端面28bおよびギャップ対向側面29b間における第2ギャップ領域NG4とで構成されたナノギャップNGが形成され得るようになされている。なお、第1電極部23および第2電極部24間に形成されるナノギャップNGは、第1電極側ギャップ形成部23bおよび第2電極側ギャップ形成部24bの長手方向たるx方向と基板2上にて直交するy方向に向けて貫通しており、ナノギャップ電極21は例えば基板2上においてy方向に流れる溶液等がナノギャップNG(第1ギャップ領域NG3および第2ギャップ領域NG4)を通過し得るようになされている。
[0125]いくつかの実施形態では、導電層26の側面と第1電極側ギャップ形成部23bのギャップ形成先端面28bとが対向配置されており、その間の領域にもナノギャップが形成されている。導電性を有する導電層26は電極として機能し得るので、この部分もナノギャップ電極として機能し得る。
[0126]いくつかの実施形態では、図7Bに示すように、ギャップ形成上面28aおよびギャップ対向下面29a間の第1ギャップ領域NG3における幅W1と、ギャップ形成先端面28bおよびギャップ対向側面29b間の第2ギャップ領域NG4における幅W1は、導電層26の膜厚とほぼ同じ寸法に形成されてもよい。したがって、ギャップ領域は、幅W1が約0.1〜50ナノメートルnm、0.5〜30nm、0.5〜10nm、0.5〜5nm、0.5〜2nm、又は、5nm以下、4nm以下、3nm以下、2nm以下、1nm以下、0.9nm以下、0.8nm以下、0.7nm以下、0.6nm以下、0.5nm以下であるように形成されてもよい。いくつかの場合では、ナノギャップの幅は、生体分子または生体分子のサブユニット(例えばモノマー)の直径より小さくてもよい。
[0127]いくつかの実施形態では、ナノギャップ電極21は、例えば図示しない電源によって第1電極部23と第2電極部24との間に一定の電圧が印加され、その状態で一本鎖又は二本鎖DNAを含んだ溶液が、図示しない案内手段によって、第1電極部23および第2電極部24間のナノギャップNGを流れ得るように導かれてもよい。ナノギャップ電極21は、溶液の流れに乗って運搬されてきた一本鎖DNAが第1電極部23および第2電極部24間のナノギャップNGを通過したときに、第1電極部23および第2電極部24間に流れる電流値を電流計にて計測させてゆき、その電流値の変化から一本鎖DNA又は二本鎖の塩基配列を特定し得る。
[0128]いくつかの実施形態では、本発明のナノギャップ電極21でも、第1電極部23および第2電極部24間のナノギャップNGの幅W1を小さく選定することで、高感度で試料を分析し得るとともに、この際、一本鎖DNA又は二本鎖を含んだ溶液を、基板2と平行した第1ギャップ領域NG3だけでなく、基板2に対して直立に配置された第2ギャップ領域NG4にも通過させることができるので、その分より多くの溶液がナノギャップNGを通過し得る。
[0129]図8Aはナノ電極21の上面構成を示す上面図であり、図8Bは図8AのL‐L´部分の側断面構成を示す側断面図である。図8Aおよび図8Bに示すように、先ず始めに、例えば酸化シリコン層9がシリコン基板8上に形成された基板2を用意し、例えばチタンナイトライド(TiN)からなり、フォトリソグラフィ技術によって四辺状にパターニングされた第1電極形成部41を酸化シリコン層9の一部領域に形成してもよい。いくつかの実施形態では、パターニングされた第1電極形成部41には、上面41aと基板2との境に膜厚分の高さの側面41bが形成され得る。このようにして形成された第1電極形成部41は、後の工程においてパターニングされ、第1電極部23の基体部23aおよび第1電極側ギャップ形成部23bとなり得る。
[0130]次いで、図8Aとの対応部分に同一符号を付して示す図8Cと、図8CのM‐M´部分の側断面構成を示す図8Dのように、側面41bを有した第1電極形成部41上および基板2上に、例えばCVD法によりチタン(Ti)でなる層状の導電層26を形成することができる。これにより導電層26には、第1電極形成部41の側面41bにより基板2との境に形成された段差とほぼ同じ形状の段差が表面に形成され得る。
[0131]いくつかの実施形態では、第1電極形成部41の上面41aおよび基板2上には、基板2の面方向に沿った導電層26が形成され、第1電極形成部41の側面41bには、基板2に対して直立に延びた導電層26が形成され得る。なお、一例として図8Dに示すように、導電層26は、第1電極形成部41および基板2に沿ってコンフォーマルに形成され、第1電極形成部41の上面41aに形成された導電層26の膜厚と、側面41bに沿って形成された導電層26の膜厚とがほぼ同一に形成されてもよい。
[0132]次いで、図8Cとの対応部分に同一符号を付して示す図8Eと、図8EのN‐N´部分の側断面構成を示す図8Fのように、導電層26の全面に、例えばCVD法によってチタンナイトライド(TiN)からなる層状の第2電極形成部42を形成する。ここで、第2電極形成部42には、導電層26に形成された段差とほぼ同じ形状の段差が形成され得る。これにより、第2電極形成部42の下面には、第1電極形成部41の上面41aと導電層26を介して対向する対向下面42aが形成されるとともに、第1電極形成部41の側面41bと導電層26を介して対向する対向側面42bが形成される。
[0133]次いで、図8Eとの対応部分に同一符号を付して示す図9Aと、図9AのO‐O´部分の側断面構成を示す図9Bのように、フォトリソグラフィ技術によりパターニングしたレジストマスク44によって、第2電極形成部42と導電層26とをパターニングして、第1電極形成部41の上面41aの一部領域と、第1電極形成部41が形成されていない基板2上の領域とに導電層26と第2電極形成部42とを残存させてもよい。
[0134]いくつかの実施形態では、例えばドライエッチングなどのような異方性エッチングプロセスにより、レジストマスク44に覆われていない部分に露出している第2電極形成部42を除去することができる。これにより外部に露出した導電層26も同じドライエッチングにより続けて除去することができる。あるいは、第2電極形成部42と導電層26とを条件の異なる別のドライエッチングにしてもよい。導電層26の膜厚が例えば2nmと薄いときには、第2電極形成部42と導電層26とを除去する際に、導電層26の下に形成されている第1電極形成部41の表面もエッチングされることもあり、この場合は、第1電極形成部41の上面41aに段差が形成されることがある。
[0135]その後、レジストマスク44をプラズマアッシング又はリキッドレジストストリッパーを使用することにより除去して、レジストマスク44に覆われていた第2電極形成部42を外部に露出させることができる。これにより、図9Aとの対応部分に同一符号を付して示す図9Cと、図9CのP‐P´部分の側断面構成を示す図9Dのように、第1電極形成部41の上面41aの少なくとも一部の上に、導電層26と第2電極形成部42とが乗り上げた領域と、上面41aが外部に露出した領域とが形成されてもよい。
[0136]次いで、図9Cとの対応部分に同一符号を付して示す図9Eと、図9EのQ‐Q´部分の側断面構成を示す図9Fのように、フォトリソグラフィ技術によりパターニングした新たなレジストマスク45を、外部に露出している第1電極形成部41から第2電極形成部42に亘って設けてもよい。ここで、レジストマスク45は、図6に示す最終的に形成される第1電極部23および第2電極部24を合わせた外郭形状に形成されてもよい。
[0137]いくつかの実施形態では、レジストマスク45は、第1電極部23の基体部23aの外郭形状に合わせて略⊃形に形成された基体形成領域45aと、第1電極側ギャップ形成部23bおよび第2電極側ギャップ形成部24bの外郭形状に合わせて帯状に形成されたギャップ形成領域45bと、第2電極部24の基体部24aの外郭形状に合わせて略⊂形に形成された基体形成領域45cとを有する。そして、レジストマスク45は、一方の基体形成領域45aが、第2電極形成部42がない第1電極形成部41の上面41a上に配置されるとともに、他方の基体形成領域45cとギャップ形成領域45bとが第2電極形成部42上に配置され得る。
[0138]次いで、レジストマスク45に覆われていない外部に露出した第1電極形成部41と第2電極形成部42とを、例えばドライエッチングにより除去し、図9Eとの対応部分に同一符号を付して示す図10Aと、図10AのR‐R´部分の側断面構成を示す図10Bのように、第1電極形成部41に基体部23aを形成するとともに、基体部24aおよび第2電極側ギャップ形成部24bでなる第2電極部24を第2電極形成部42から形成してもよい。
[0139]いくつかの実施形態では、第2電極部24の基体部24aは、レジストマスク45の基体形成領域45cにより第2電極形成部42がパターニングされることで形成され、ギャップ対向下面29aおよびギャップ対向側面29bを有した第2電極側ギャップ形成部24bは、レジストマスク45のギャップ形成領域45bにより第2電極形成部42がパターニングされることで形成され得る。また、レジストマスク45に覆われていない外部に露出した第1電極形成部41を除去した領域には、酸化シリコン層9が露出し、レジストマスク45に覆われていない外部に露出した第2電極形成部42を除去した領域には、導電層26が露出してもよい。
[0140]次いで、レジストマスク45に覆われていない外部に露出した導電層26を、例えばドライエッチングなどの異方性エッチングプロセスにより除去することができる。なお、導電層26を除去するドライエッチングは、第1電極形成部41および第2電極形成部42を除去するドライエッチングとは別のガスにより行てもよい。これにより、図10Aとの対応部分に同一符号を付して示す図10Cと、図10CのS‐S´部分の側断面構成を示す図10Dのように、基板2上の導電層26が除去された領域には、酸化シリコン層9が露出させることができる。また、導電層26が除去された領域には、後に第1電極側ギャップ形成部23bを形成するために残存させていた第1電極形成部41が露出してもよい。
[0141]次いで、レジストマスク45に覆われていない露出した第1電極形成部41を、例えばドライエッチングによって除去した後、レジストマスク45をプラズマアッシング又はリキッドレジストストリッパーを使用することにより除去することができる。これにより、図10Cとの対応部分に同一符号を付して示す図10Eと、図10EのT‐T´部分の側断面構成を示す図10Fのように、レジストマスク45のギャップ形成領域45bがあった領域に第1電極形成部41を残存させ、ギャップ形成上面28aおよびギャップ形成先端面28bを有した第1電極側ギャップ形成部23bを形成し、当該第1電極側ギャップ形成部23bを備えた第1電極部23を形成する。
[0142]このようにして形成された第1電極側ギャップ形成部23bは、ギャップ形成上面28aが、第2電極側ギャップ形成部24bのギャップ対向下面29aに対し、導電層26を介して対向配置され、また、ギャップ形成先端面28bが、第2電極側ギャップ形成部24bのギャップ対向側面29bに対し、導電層26を介して対向配置され得る。
[0143]次いで、ギャップ形成上面28aおよびギャップ対向下面29a間の導電層26と、ギャップ形成先端面28bおよびギャップ対向側面29b間の導電層26を、例えばウェットエッチングにより除去することができる。これにより、図6、図7Aおよび図7Bに示すように、ギャップ形成上面28aとギャップ対向下面29aとの間には、基板2の面方向に延びる第1ギャップ領域NG3が形成されてもよい。また、ギャップ形成先端面28bとギャップ対向側面29bとの間には、基板2に対して直立に延び、上末端が第1ギャップ領域NG3と連通した第2ギャップ領域NG4が形成されてもよい。かくして、第1電極部23および第2電極部24間に、これら第1ギャップ領域NG3および第2ギャップ領域NG4で構成された側断面¬形のナノギャップNGを有したナノギャップ電極21を製造し得る。
[0144]本明細書で提供される製造方法によって製造されるナノギャップ電極21は、第1電極部23および第2電極部24間に形成する導電層26の膜厚が、第1電極部23および第2電極部24間に形成されるナノギャップNGの幅W1となることから、製造過程において導電層26の膜厚を単に調整するだけで、所望の幅でなるナノギャップNGを容易に製造し得る。また、導電層26の膜厚は、極めて薄く形成し得ることから、その分、第1電極部23および第2電極部24間に形成されるナノギャップNGの幅W1も小さくし得る。
[0145]いくつかの実施形態では、第1電極側ギャップ形成部23bと、第2電極側ギャップ形成部24bとの間にある導電層26を除去する際、第2電極部24の基体部24aと酸化シリコン層9との間にある導電層26も、ウェットエッチングに用いる薬液に触れることから外周面が削られ、その結果、外郭が当該基体部24aよりも僅かに小さく形成され得る。
[0146]いくつかの実施形態では、本発明のナノギャップ電極21では、第1電極側ギャップ形成部23bを有した第1電極部23を基板2上に設け、当該基板2上に導電層26を介して第2電極部24を設けるようにしてもよい。さらなる実施形態では、このナノギャップ電極21では、第2電極部24に形成した第2電極側ギャップ形成部24bを、第1電極部23の第1電極側ギャップ形成部23bの上方にて対向配置させ、これら第1電極側ギャップ形成部23bおよび第2電極側ギャップ形成部24b間に、基板2の面方向に延びる第1ギャップ領域NG3を形成してもよい。また、このナノギャップ電極21は、第1電極部23の第1電極側ギャップ形成部23bの先端を、第2電極部24の基体部24aに対向配置し、これら第1電極側ギャップ形成部23bおよび基体部24a間に、基板2に対して直立に延び、末端が第1ギャップ領域NG3と連通した第2ギャップ領域NG4を形成したナノギャップNGを有してもよい。
[0147]これにより、ナノギャップ電極21では、第1電極部23および第2電極部24間のナノギャップNGの幅W1を小さく選定することで、高感度で試料を分析し得るとともに、第1電極部23および第2電極部24間のナノギャップNGの幅W1を小さく選定した際、一本鎖DNAを含んだ溶液を、基板2と平行した第1ギャップ領域NG3だけでなく、基板2に対して直立に配置された第2ギャップ領域NG4にも通過させることができるので、その分より多くの溶液が容易にナノギャップNGを通過できる。
[0148]ナノギャップ電極21の製造するためのいくつかの方法としては、先ず始めに、基板2の一部領域に第1電極形成部41を形成して基板2と第1電極形成部41との間に段差を設け、これら基板2上および第1電極形成部41上に導電層26を形成し、基板2の面方向に延び、かつ基板2に対して直立にも延びた導電層26を段差部分に設けてもよい。次いで、導電層26上に第2電極形成部42を形成した後、第1電極形成部41、導電層26、および第2電極形成部42を、レジストマスク44,45を用いてパターニングしてもよい。
[0149]これにより、所定形状の第1電極部23および第2電極部24を形成することができる。この場合、第1電極部23の第1電極側ギャップ形成部23bに、導電層26を介して第2電極部24の第2電極側ギャップ形成部24bが乗り上げた段差形状を形成し、これにより基板2の面方向に延び、かつ基板2に対し直立にも延びた導電層26を、第1電極部23および第2電極部24間に形成することができる。最後に、第1電極部23および第2電極部24間の導電層26を除去することで、基板2の面方向に延びる第1ギャップ領域NG3と、基板2に対して直立に延び、末端が第1ギャップ領域NG3と連通した第2ギャップ領域NG4とからなるナノギャップNGを、第1電極部23および第2電極部24間に形成する。
[0150]かくして、第1電極部23および第2電極部24間のナノギャップNGの幅W1を小さくしても、第1ギャップ領域NG3だけでなく第2ギャップ領域NG4にも溶液が通過し得、その分、測定対象たる一本鎖又は二本鎖DNAを含んだ溶液が容易にナノギャップNGを通過し得るナノギャップ電極21を製造できる。
[0151]本明細書に記載された製造方法を利用して、導電層26の膜厚を調整するだけで第1電極部23および第2電極部24間のナノギャップNGの幅W1を容易に調整し得る。さらに、この製造方法では、導電層26の膜厚は極めて薄く形成し得ることから、当該導電層26の膜厚に対応した極めて小さい幅W1のナノギャップNG(第1ギャップ領域NG3および第2ギャップ領域NG4)をも形成できる。
[0152]いくつかの実施形態では、ナノギャップ電極を通してDNAを流すことが望ましい場合がある。DNAの動きは、電気泳動、電気浸透流または圧力駆動流によって作ることができる。一端が先に入り他端が続くように、ナノギャップ電極を通過するときにDNAを配向することが望ましい。また、DNAの多くの割合は、ナノギャップ電極の周りを横切るよりも、ナノギャップ電極に沿って向けられることを確実にすることが望ましい。したがって、クローズチャンネル構造を統合し、DNAがナノギャップ電極のギャップを通して制御された態様で流れるようにすることが望ましい。チャネルは、可変幅の微細加工技術を用いて作成することができる。また、チャネルは、複数のマスクを使用して異なる深さで作製されてもよい。また、別体のカバーは、クローズチャンネルを構築する基板上に統合するオープンチャンネルに追加することができる。カバーは、検査するために透明であってもよい。そのカバーは、接着、融合結合、ファンデルワールス力、又は物理的にクランプで取り付けることができる。
[0153]他の実施形態では、クローズチャンネルは、半導体プロセスを用いてナノギャップ電極チップに統合できる。クローズチャンネルは、様々な幅を持つ微細加工技術を用いて作成することができる。クローズチャンネルは、複数のマスクを使用して異なる深さで作製されてもよい。クローズチャネルは、犠牲層をエッチングにより形成することができる。他の実施形態では、犠牲層とエッチング剤は、好ましくは犠牲層がエッチング剤に接触した他の材料よりもはるかに速い速度で除去できるように選択されてもよい。
[0154]いくつかの実施形態では、クローズチャネルは、ナノチャネル内の軸方向にDNAを向けさせるのを助けるためにナノチャネルの近傍で狭い幅と浅い深さの寸法を有してもよい。DNAのもつれを抑制するために、狭い幅と浅い深さは、50xより小さく、10xより小さく、4xより小さく、1xより小さくすることができる。ここで、xは、センサで使用される溶液中のDNAのクーン(Kuhn)長である。クーン長は、低いイオン強度と共に増加する。狭い幅および/または深さは、1ナノメートル(nm)未満、500nm未満、200nm未満、100nm未満、50nm未満、20nm未満であってもよい。
[0155]いくつかの実施形態ではナノギャップ電極に関連付けられたクローズチャネルは、独立したマイクロ流体構造と統合することができる。マイクロ流体構造は、接着あるいはクランプで取り付けてナノギャップ電極チップでシールを作成することができる。マイクロ流体構造は、金属材料、高分子材料(例えば、ポリジメチルシロキサン、又はPDMS)やガラスのいずれかであってもよい。マイクロ流体構造は、プラスチックやガラスであってもよい。マイクロ流体構造は、流れの方向付けを支援する分岐チャネル及び/又は弁を有していてもよい。マイクロ流体構造に統合された電極は、洗いやすい領域における電気泳動電極を提供してもよい。
[0156]いくつかの実施形態では、複数のナノギャップ電極センサは、ナノギャップ電極チップに組み込むことができる。いくつかの実施形態では複数のナノギャップ電極センサは、ナノギャップ電極チップの覆われたチャネルと接続する。いくつかの実施形態ではナノギャップ電極チップを解釈又は制御するための電子回路は、1つまたは複数のナノギャップ電極からなる基板上に製造することができる。
[0157]いくつかの実施形態では、クローズチャネルは、基板に平行および直立のナノギャップ電極の両方を作成することができ、そのナノギャップ電極に関連したギャップは、薄膜の膜厚と実質的に同じギャップ間隔を有し、薄膜として塗布される材料をウェットエッチングにより作成することができる。いくつかの実施形態では、クローズチャネルは、基板に平行なナノギャップ電極と連結することができ、ギャップは、薄膜の膜厚と実質的に同じギャップ間隔を有し、薄膜として塗布される材料をウェットエッチングにより作成することができる。他の実施形態ではクローズチャネルは、基板に直立なナノギャップ電極と連結することができ、薄膜の膜厚と実質的に同じギャップ間隔を有し、薄膜として塗布される材料をウェットエッチングにより作成することができる。
[0158]図11Aは、基板と平行なナノギャップ表面と統合された流体チャネルを有するナノギャップ電極チップ101の一実施形態の上面図を示す。図11Aの上部は、ナノチャネル中央の部分断面である。上部絶縁層110では、流体入口ポート123と流体出口ポート124は、アウトレットポート124に接続するナノチャネル116に接続する。部分断面では、第一ナノギャップ電極103は、ギャップを作製しかつナノギャップに制御された試料導入を許すナノチャネル116を形成するために使われる犠牲材料に隣接している。第2ナノギャップ電極104も、ナノチャネル116を形成するために利用する犠牲材料に隣接しているが、ギャップ間隔W2を有するナノギャップは、この図では表されていない。上部絶縁層110は、第1ナノギャップ電極103及び第2ナノギャップ電極104との電気的接続パッド130に接続する、または、関連する回路(図示せず)によって、必要に応じて他の相互接続を有し、シリコン基板108層上の電子回路とすることができる電気的接続部に接続するアクセス穴部を有する。
[0159]図11Bは、図11Aでの垂直断面A‐A′を通して側面を示す。図11Bでは、基板102は、シリコン基板108と絶縁層109を含むことができる。まず、ナノギャップ電極103は、第2ナノギャップ電極104とナノチャネル116でナノギャップ電極を形成してもよい。絶縁層107は、その上にナノチャネル116の製造のために平坦な表面を提供する。絶縁層110は、ナノチャネル116のために上面を提供し、インレットポート123及びアウトレットポート124のためのシール面を提供する。図11Bは、インレットポート123と選択的厚チャネル部132と間で、流体としてナノチャネル116に接続することを示している。アウトレット側では、ナノチャネル116は、アウトレットポート124に接続する選択的厚チャネル部133を接続する。ギャップ間隔W2は、この図に表されている。
[0160]いくつかの実施形態では、試料の流体フローおよび/または動きは、逆にすることができる。いくつかの実施形態ではナノチャネル116が一本鎖DNAまたはRNAの多重測定を可能する複数のナノギャップ電極と交差していてもよい。
[0161]図12Aは、図11Aの横方向断面B‐B′を通して側面を示している。第1ナノギャップ電極103は、ナノチャネル116により第2ナノギャップ電極104から分離されている。絶縁層107は、ナノチャネル116の平坦な表面を提供する。絶縁層110は、ナノチャネル116の上面を提供する。
[0162]図12Bは、図12Aのナノギャップ部の拡大図を示している。犠牲ナノギャップ層106がエッチングされるとき、ナノギャップは、第1ナノギャップ電極103と第2ナノギャップ電極104との間に形成される。第2ナノギャップ電極104は、オーバーラップ距離W3で第1ナノギャップ電極103とオーバーラップしていてもよい。オーバーラップ距離W3は、50nm未満、20nm未満、10nm未満であってもよい。ギャップ間隔W2は、この図面に表れている。
[0163]次に、図13Aにより、図11A、図11B、図12Aおよび図12Bのナノギャップ電極101の製造方法について説明する。まず、例えば、シリコン基板108上に形成されうるシリコン酸化物層109が調製されている基板102が用意される。そして、電極形成用窒化チタン(TiN)膜が、酸化シリコン層109の全体表面または一部表面に例えば気相堆積法(CVD)により形成される。
[0164]次に、図13Aおよび図13Aの横方向断面A‐A′を示す図13Bに示すように、電極形成層は、第1ナノギャップ電極103を作製するフォトリソグラフィ技術を用いてパターニングされる。
[0165]図13C‐13Fに、図13Aと同様の構成要素には同様の参照符号を付して示す。
[0166]図13Cおよび図13Cの横方向断面B‐B′を示す図13Dに示すように、絶縁層107は、塗布され、それから、例えばCMP(Chemical Mechanical Polishing)のような平坦化プロセスを用いて研磨又は過研磨してもよい。
[0167]シリコンナイトライド(SiN)から作製されてもよい薄膜ナノチャネル形成層106は、例えば気相堆積法(CVD)により全面に形成され、図13E及び横方向断面C‐C′を示す図13Fに示すようにフォトリソグラフィ技術を用いてパターニングされてもよい。
[0168]フォトリソグラフィ技術を用いて、SiNの選択的第2ナノチャネル形成層が、薄膜ナノチャネル形成層106に追加されてもよい。
[0169]図14Aおよび図14AのD‐D′線に沿った横方向断面を示した図14Bに示すように、第2ナノギャップ電極104は、フォトリソグラフィ技術を使用して追加されてもよい。上部絶縁層110は、例えば気相堆積法を用いて、第1ナノギャップ電極103、第2ナノギャップ電極、薄膜ナノチャネル形成層106、絶縁層107を被覆し、構造の表面に形成してもよい。アクセスポートと電気パッドへアクセスは、フォトリソグラフィ技術を用いて作成することができる。任意のSiNフィーチャーは、それからウェットエッチングされ、薄膜ナノチャネル形成層の残りの部分を除去し、図14C及び図14CのE‐E′線に沿った縦方向断面図に示すように、ナノチャネル116を作製することができる。
[0170]個々の塩基配列を決定するために、ギャップを規定する原子の数を制限することが望ましい場合がある。ギャップの片側又は両側で単一原子先端を有することが好ましい。いくつかの実施形態では、表面粗さによって起こる天然由来の先端又は先端対を使用して実施される場合がある。いくつかの実施形態では先端の品質は、より良い測定品質や安定性のために改良することができる。
[0171]いくつかの実施形態ではギャップは電気化学的方法を用いて狭くすることができる。電気化学的方法を使用したギャップの狭化は、ギャップが所望のギャップ幅に、または所望のギャップ幅より大きいまたは小さい幅に達するまでに行うことができる。所望のギャップは、安定性が高く、一般に単結晶の先端を有する。金の例えば12.7Kオームの抵抗に応じて、G0(2e/h)に関連付けられたコンダクタンスのような単一原子の接続は、中間状態で安定したギャップの作成に利用できるようになっている。電着された先端は、Calvo et al in Physica status solidi(a),vol.204,issue 6,pp.1677‐1685とBoussaad et al in Appl.Phys.Lett.80,2398 2002に記載あるように(各々は参照することにより全体が組み入れられる)、初期に安定的なG0先端を形成することはできない。エレクトロマイグレーションは、先端の中で原子の移動の起こすに充分な電子風を作成するにはトンネル電流が低すぎるかもしれない。
[0172]ギャップ間隔の配列(アレイ)は、コンピュータプロセッサによって実行されるソフトウェアによって狭めることができる。電気化学的堆積をもたらすために、また堆積速度すなわちギャップの狭化速度を制御するため、電圧が印加され変更される。電気化学プロセスによって発生する電流をモニタすることができると、バイアス電圧は、ギャップ狭化の速度および/または進行を制御するため、変更および/または調節することができる。
[0173]電気化学的堆積プロセスは、単一方向または両方向に起こり、バイアス電位は反転すると、電流が逆になり、堆積方向が反転する。同一の材料の、例えば、金、白金、タングステン、イリジウム、またはその他の金属を含む2つの名目上平行平板電極で開始される典型的な単一方向の電着プロセスは、カソードが名目上平坦であり、アノードが堆積された小さい鋭い突起を有する構造に帰結する。一対の電極の両方が鋭い先端を有することが望ましい場合には、単一方向堆積プロセスは不十分かもしれない。両方向の電着プロセスは、一対の鋭い先端を作成するために利用することができる。電極の金属は、2つの電極の間を行き来することができ、そのプロセスは、追加の金属が電極の平坦部から「補充」されるように先端の継続的な鋭化を引き起こす。ソフトウェアは、連続的または断続的に電着プロセスの電流レベルを監視し、第2の電極の電位を固定しておいて第1電極に印加される電位の符号を反転させることにより、または、2つの電位は、絶対値は同じままにして、互いを基準にして逆転することにより、印加極性を逆にしてもよい。電位の逆転は、時間につれて増加させまたは減少させてもよい。電位差は、一方の極性と他方の極性が異なることもある。
[0174]電着法は、さまざまな流体の担体としては、脱イオン水、HCl、KAu(CN)、KHCO、KOHを含むことができ、約10μAより大きい電流、約5μAから10μAの電流、約2μAから5μAの電流、約1μAから2μAの電流、又は約1μA未満の電流を含む可能性のある堆積プロセス中に異なる時期における成膜電流を使用することができる。電圧源又は電流源は、電着プロセスを生じさせ促進するために電位差を提供することができる。電圧源は、印加電圧を約1V、2V、3V、4V、または5V以上の電圧を適用することができる。用いられる溶液の濃度は、電着の初期期間の後に変更することができる。追加的な作用電極および/又は参照電極は、システムの一部として利用することができ、ナノギャップ電極の両電極に対して溶液の電位を制御することができる。
[0175]トンネル電流は、ナノギャップ電極の間隔の幅を決定するために利用され、指数電流レベルは、間隔を空ける寸法を決定するために利用されてもよい。トンネル電流の測定は、電着過程の一部としてなされ、又は、トンネル電流の測定がなされる間電着プロセスが一時的に停止し、その後電着プロセスを再始動してもよい。
[0176]電着プロセスは、安定した単一原子先端や先端対の形成に対してより最適な制御を提供し得るエレクトロマイグレーションプロセスと結合することができる。エレクトロマイグレーションでは、電流は、一方の電極から他方の電極へ向けられてもよい。たとえば、約5μA、4μA、3μA、2μA、又は1μA以下の定電流が、一方の電極から他方の電極へ、約5V、4V、3V、2V、又は1V以下の可変電圧で向けられてもよい。あるいは、約5μA、4μA、3μA、2μA、又は1μA以下の可変電流が、一方の電極から他方の電極へ、約5V、4V、3V、2V、又は1V以下の可変電圧で向けられてもよい。
[0177]いくつかの実施形態では、エレクトロマイグレーションプロセスは、エレクトロマイグレーションプロセスで使用するものとは別の流体環境を活用してもよい。いくつかの実施形態では、流体環境は、水性反応剤、有機反応剤、水性及び/又は有機反応剤の混合物を含んでもよい。いくつかの実施形態では、有機反応剤及び水性反応剤は、混和し得る空気、非反応性ガス又は真空であってもよい。電着プロセスは、最終的に所望されたものより狭いギャップを形成するのに利用され、エレクトロマイグレーションプロセスは、ギャップの幅を広くして、より安定した先端または先端対を形成するために利用される。この2つのプロセスは入れ替えてもよく、電着プロセスは、例えば、より小さい最終的に所望される先端のギャップ間隔を形成するために使用することができる。エレクトロマイグレーションプロセスは、より安定的な先端および/または所望の間隔の先端間隔を作製するために用いられ、特にナノギャップ電極の先端近くで減少した結晶粒界を有することができる。また、電着とエレクトロマイグレーションを同時に組み合わせる方法を利用してもよい。
[0178]いくつかの実施形態では、電着法とエレクトロマイグレーション法は、ギャップを形成するために一緒に使用可能であり、電着法が結合されたナノギャップ電極から材料を除去し、エレクトロマイグレーション法が結合されたナノギャップ電極のある部分から結合されたナノギャップ電極の別の部分へ材料を移動し、結合されたナノギャップ電極の最狭部は、さらに、エレクトロマイグレーション法により狭められる。他の実施形態では、電着法とエレクトロマイグレーション法は、ギャップを形成するために一緒に使用可能であり、電着法が結合されたナノギャップ電極から材料を除去し、エレクトロマイグレーション法が結合されたナノギャップ電極のある部分から結合されたナノギャップ電極の別の部分へ材料を移動し、結合されたナノギャップ電極の最狭部は、さらに、エレクトロマイグレーション法により厚くなり、結合されたナノギャップ電極の狭められた部分をより結晶化させる。他の実施形態では、電着法とエレクトロマイグレーション法では、ギャップを形成するために一緒に使用可能であり、電着法が結合されたナノギャップ電極に材料を追加し、エレクトロマイグレーション法が結合されたナノギャップ電極のある部分から結合されたナノギャップ電極の別の部分へ材料を移動し、結合されたナノギャップ電極の最狭部は、さらに、エレクトロマイグレーション法により狭められる。
[0179]いくつかの実施形態では、電着法とエレクトロマイグレーション法は、ギャップを形成するために一緒に使用可能であり、電着法が分離されたナノギャップ電極に材料を追加することができ、エレクトロマイグレーション方法が分離されたナノギャップ電極のある部分から材料を結合されたナノギャップ電極の別の部分に移動する。その結果、分離されたナノギャップ電極の分離は、エレクトロマイグレーション法により増加させることができる。他の実施形態では、電着法とエレクトロマイグレーション法は、ギャップを形成するために一緒に使用可能であり、電着法が分離されたナノギャップ電極から材料を除去するが、エレクトロマイグレーション法が分離されたナノギャップ電極のある部分から結合されたナノギャップ電極の別の部分に材料を移動する。その結果、分離されたナノギャップ電極の分離は、エレクトロマイグレーション法により絞られる。いくつかの実施形態では、電着法が分離されたナノギャップ電極の両側に材料を堆積し、他の実施形態では、電着法が分離されたナノギャップ電極の両側から材料を除去するが、さらなる態様において、電着法は、ナノギャップ電極の一方の電極から材料を除去して、ナノ電極の他方の電極に材料を追加する場合がある。電着法およびエレクトロマイグレーション法が一緒に利用される一部の実施形態では、第1の方法は、第2の方法を伴わず、一定の期間利用してもよいし、いずれの方法でも、一時に一緒に利用され得、第2の方法は、第1の方法を伴わず一定の期間利用されてもよい。いかなる方法の混合又は組み合わせも可能である。
[0180]電着法を利用することができるいくつかの実施形態では、制限抵抗は、材料の除去を制限するように利用することができる。他の実施形態では、電流を監視し、付加する電位を制限すると、材料のG0に応じた割合である測定したコンダクタンスに基づいて、原料の速度が減速及び/又は停止し、あるいは減速してから停止することができる。
[0181]電着法及び/又はエレクトロマイグレーション法が行われたナノギャップ電極のアレイは、個々のナノギャップ電極の個々の電圧及び/又は測定と制御を同時に行ってもよいし、あるいは、例えばナノギャップ電極の集合、たとえば行または列を同時に行ってもよいし、又は、各ナノギャップ電極を連続して順に実施してもよい。いくつかの実施形態では、プロセッサは、ナノギャップ電極を含むチップに関連しており、A/D変換器及び/又はデジタル‐アナログ変換器(DAC)回路及び/又はトランスインピーダンス増幅器及び/又は統合電流計を含むことができ、外部プロセッサでもよく、ナノギャップ電極のアレイに関連する電流及び電圧のすべてを直接監視および制御を行うのに不十分な能力を有することができ、それにより、逐次的方法を必要とすることにより、1つの又は集合のナノギャップ電極は、別のナノギャップ電極に対する電着および/またはエレクトロマイグレーションプロセスの一つまたは複数の作用を完了する前に完了した電着法および/またはエレクトロマイグレーションプロセスの一つまたは複数の作用を有してもよい。例えば、電着プロセスでは、複数のたとえば異なる濃度を有する流体反応剤を利用してもよい。第1反応剤を使用する一つ以上の作用が、他のナノギャップ電極の1つ以上の作用が行われる前に、ナノギャップ電極のサブセットで行われることができるが、すべてのナノギャップ電極は、流体反応剤を他の反応剤と交換する前に行われた同じ1つ又は2つ以上の作用を有してもよい。ナノギャップ電極のアレイの一部として、例えばバルブ(例えば、マイクロバルブまたはナノバルブ)を用いて流体制御が実施される他の実施形態では、ナノギャップ電極の1つ以上の行または列は、ナノギャップ電極アレイの他の部材に対応して供給される異なる反応剤を有することができるが、ナノギャップ電極の他の部材に対して第1反応剤を第2の反応剤と交換する前に、異なるナノギャップ電極配列の異なる集合に対して完了するまで行うことができる。
[0182]いくつかの実施形態では、先端形成はウェーハレベルで行われてもよい。いくつかの実施形態では、先端形成は、チップレベルで行われてもよい。いくつかの実施形態では、先端形成は、安定性の問題を解決するためにシーケンス器で行われてもよい。先端形成及び/又は先端改良は、ユーザによって開始された方法の一部としてDNAシーケンスアッセイのように行ってもよい。
[0183]いくつかの実施形態では、ナノギャップ電極は、ナノギャップ電極を形成するのに使用される材料とは異なる材料から形成することができるナノ間隙を形成することにより製造することができる。ナノ間隙は、その後ナノギャップ電極のギャップとなる可能性のある領域を形成することができ、ナノ間隙は、後のアッセイにおいて、試料流体にナノギャップ電極のアクセスを可能にするように後で除去することができる。電着法は、ナノ間隙が平坦電極である開始電極の上または近接して形成されるよう、さらに開始電極を第2電極に接続することができるよう、利用することができる。エレクトロマイグレーションプロセス及び/又は電着法は、ナノ間隙から材料を移動(除去)するために利用し、ナノギャップ電極を形成することができる。
[0184]他の実施形態では、ナノギャップ電極は、異方性KOH111エッチングおよび/または集束イオンビームエッチング又はナノ間隙の加工に適した別のプロセスにより少なくとも一部形成されたナノ間隙を形成することにより形成されてもよい。また、ナノギャップ電極は、シリコンなどの第1材料から形成されてもよく、本明細書で説明した作用と互換性のある任意の材料でもよい。その後の作用において、金属堆積は、ナノギャップ電極の第2電極を形成するように実施することができる。選択的な第2材料は、硝酸珪素や、ナノ間隙の第1材料を除去するウェットエッチングなどの除去プロセス中に元の位置に残る任意の他の適切な材料などの付加的な層に形成しても良いし、2層のナノ間隙を形成するように使用されてもよい。後続の作用において、シリコンは、少なくとも部分的には、ナノギャップ電極に流体がアクセスし得るように除去され、金属および選択的な第2材料は残るかもしれない。電着および/またはエレクトロマイグレーションプロセスは、ナノギャップ電極を分離し、ナノギャップ電極のナノギャップを形成するために利用することができる。第2材料は、1つの電極と流体が接触することを最小限にするために用いられることがあるが、それにより、さもなければ第1電極の比較的大きな表面積から起こるかもしれないバックグランド電流を最小限に抑えることができる。合理的な許容差を必要としながらも、ナノ間隙の大きさは、例えば、イオン電流を使用するDNAシーケンスのための有用なナノ間隙を形成するのに必要なものよりも緩い許容値要件を有することができ、フィードバックに続いて使用される電着および/またはエレクトロマイグレーション法は、ナノ間隙のサイズのバリエーションにおけるバリエーションを補償するために利用することができる。
[0185]本明細書においては、本実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の方法で変更されて実施されることがある。たとえば、様々な材料が、電極部3、4(23、24)、基板2、絶縁層6、空隙形成層となる導電層26、絶縁層7、レジストマスク15、44、45などの材料として適用されうる。また、ナノギャップ電極1、21を製造する際に形成されるそれぞれの層は、必嬰に応じて、例えばスパッタリング法などの種々の他の方法を使用して形成することができる。
[0186]また、上記実施形態において、ナノギャップ電極について説明したが、その中で、一本鎖または二本鎖のDNAは、電極間のナノギャップNGを通過することができ、一本鎖または二本鎖DNAの塩基が電極部間のナノギャップNGを通過する際の電極間に流れる電流の値は、電流計で測定されうる。しかし、本発明はこれらの実施例に限定されるものではない。ナノギャップ電極は、様々な他の用途にも用いることができる。場合によっては、一本鎖および二本鎖DNAを測定対象として説明したが、本開示は、そのような対象に限られるものではなく、他の対象(例えば、RNAまたはタンパク質)が用いられてもよいことが理解されよう。液体と気体などの様々な種類の流体は、試料流体として利用されることができる。また、ウィルス、細菌、タンパク質、ペプチド、炭水化物、脂質、有機および無機分子を含む種々の他の種類の測定対象物を、測定対象とすることができる。
[0187]また、上述した実施形態では、隙間形成層となる絶縁層6(導電層26)は、コンフォーマルな形状をなすように形成されることを記載した。しかし、本発明は、これらの実施例に限定されるものではない。たとえば、絶縁層6(導電層26)は、コンフォーマルな形状をなすように形成されることなく、成膜条件(温度、圧力、使用ガス、流量比等)を変化させて成膜の位置に依存した膜厚を変更することができる。
[0188]絶縁層6(導電層26)は、コンフォーマルな形状をなすように層を成膜することなく、成膜の位置に依存して膜厚を変更する場合に、絶縁層6(導電層26)から形成されるナノギャップNGは、基板2の面方向に沿った第1ギャップ領域NG1(NG3)と基板2に対して直立に延びる第2ギャップ領域の間で異なる幅を有してもよい。第2ギャップ領域NG2(NG4)の終端は、第1ギャップ領域NG1(NG3)と接続又は重なることがあってもよい。たとえば、フォトレジストに含まれるポリマーは、側面41bに貼着され、導電層26は、側面41bに形成されるので、側面41bを含む第1電極形成部41が形成されるときに、第1電極部23のギャップ形成先端面28bと第2電極部24のギャップ対向側面29bの幅は、ポリマーの厚み分だけ大きくなることがある。その結果、第2ギャップ領域NG4の幅は、第1ギャップ領域NG3の幅よりも大きくすることができる。このポリマーが、第1電極形成部41の側面41bに貼着されていない場合は、側面41b上に形成される導電層26の膜厚は、導電層26を形成する時に気相堆積法(CVD)の条件を変更して被覆程度を減少させることによって、上面41aに形成された導電層26の膜厚よりも薄くしてもよい。結果として、第2ギャップ領域NG4の幅は、第1ギャップ領域NG3の幅よりも小さくすることができる。
[0189]この場合においても、溶液は、基板2面方向に沿った第1ギャップ領域NG1(NG3)だけでなく、基板2に対して直立に延びる第2ギャップ領域NG2(NG4)を通過することができる。上述したように、第1電極部3(23)と第2電極部分4(24)の間のナノギャップNGが、小さな幅W1を有するように選択されている場合でも、一本鎖または二本鎖DNAを測定対象として含む溶液は、ナノギャップNGを容易に通過できる。
[0190]第2電極部4の基体部4aは、絶縁層6および7上の第1電極部3の薄膜部3aの上に配置することができる。絶縁層6の膜厚は、絶縁層7を形成することなく増やすことができ、ギャップ形成層としての絶縁層6上のみに形成されている第1電極部3の薄膜部3a上に第2電極部4の基体部4aを配置することができる。
[0191]いくつかの実施形態では、導電性材料から形成される導電層26は、ギャップ形成層として適用されると上述した。しかし、本発明は、この実施形態に限定されるものではない。絶縁材料からなる絶縁層が、ギャップ形成層として適用され利用されてもよい。
コンピュータ制御システム
[0192]本開示は、開示の方法を実施するためにプログラムされたコンピュータ制御システムを提供する。図15は、プログラムまたは他の生体分子、タンパク質のような塩基配列を決定するように構成されたコンピュータシステム1501を示している。コンピュータシステム1501は、本明細書の別の箇所に制御部26および226とすることができる。コンピュータシステム1501は、中央処理ユニット(CPU)もまた、本明細書において、「プロセッサ」および「コンピュータプロセッサ」1505、シングルコアまたはマルチコアプロセッサ、または並列処理のために複数のプロセッサを有する。コンピュータシステム1501はまた、メモリまたはメモリロケーション1510(例えばランダム・アクセス・メモリ、読み出し専用メモリ、フラッシュメモリ)、電子的記憶装置1515(例えば、ハードディスク)、1つまたは複数の他のシステムと通信を行うための通信インタフェース1520(ネットワークアダプタ)、および、キャッシュ、メモリ、データ記憶装置及び/又は電子ディスプレイアダプタなどの周辺装置1525が含まれる。メモリ1510は、記憶部1515と、インタフェース1520と周辺機器1525は通信バス(実線)、マザーボードなどを介して1505と連通している。記憶部1515と、データを記憶するデータ記憶装置(あるいはデータ・リポジトリ)にすることができる。コンピュータシステム1501は、通信インタフェース1520を用いてコンピュータネットワーク(「ネットワーク」)1530に接続させることができる。ネットワーク1530は、インターネット、インターネット/エクストラネット、またはインターネットと通信しているイントラネット/エクストラネットとにすることができる。場合によっては、ネットワーク1530は、電気通信及びデータネットワークである。ネットワーク1530は、1つまたは複数のコンピュータサーバ、分散コンピューティング、クラウドコンピューティングなど)を有効にすることができる。ネットワーク1530、コンピュータシステム1501を用いて、場合によっては、ピアツーピア・ネットワークは、コンピュータシステム1501に結合された装置では、クライアントまたはサーバとして動作するようにすることができる。
[0193]CPU1505は、一連の機械読取可能命令のプログラム、またはソフトウェアで実施できることを実行できる。手順は、メモリ1510等のメモリロケーションに記憶することができる。手順は、プログラムまたは他の方法で本発明の方法を実施するためのCPU(1505)を構成するCPU1505に導入される。CPU1505によって実行される操作の例には、フェッチ、復号、実行、およびライトを含めることができる。
[0194]CPU1505は、集積回路等の回路の一部であってもよい。システム1501の1つまたは複数の他の部品を回路に含めることができる。場合によっては、回路は、ASIC(特定用途向け集積回路)である。
[0195]記憶部1515には、ファイル、ドライバ、ライブラリおよび保存プログラムなどを格納できる。記憶部1515は、ユーザデータが、例えば、ユーザー・プリファレンス、ユーザー・プログラムを格納することができる。場合によっては、コンピュータシステム1501は、コンピュータシステム1501の外部にある一つまたは複数の付加的なデータ記憶装置を、イントラネットまたはインターネットを介してコンピュータシステム1501と通信しているリモートサーバー上などに含めることができる。
[0196]コンピュータシステム1501は、ネットワーク1530を介して、1つ又は複数のリモート・コンピュータ・システムと通信できる。たとえば、コンピュータシステム1501は、ユーザのリモート・コンピュータ・システムと通信することができる。ユーザは、ネットワーク1530を介してコンピュータシステム1501にアクセスすることができる。
[0197]本明細書に記載される方法は、機械(例えば、コンピュータプロセッサ)で実行可能なコードをコンピュータシステム1501の電子的な保存場所に保存されるのは、例えば、メモリ1510、電子記憶部1515などにより実現することができる。機械実行可能又は機械可読コードのソフトウェアの形で提供することができる。使用中のコードは、プロセッサ1505によって実行することができる。場合によっては、コードを記憶部1515から取得し、プロセッサ1505によりアクセス可能なメモリ1510に記憶することができる。すると、場合によっては、電子記憶装置1515は除外でき、機械による実行可能な命令は、メモリ1510に格納される。
[0198]コードは機械コードを実行するように適合されたプロセッサで使用する事前コンパイルおよび構成することができ、又はランタイム中にコンパイルすることができる。コードは、コードはコンパイル済みまたはとしてコンパイルされた方法で実行できるようにするには、選択可能なプログラミング言語で供給することができる。
[0199]本明細書に記載のシステムおよび方法の態様は、コンピュータシステム1501のようなプログラミングで実現することができる。技術の諸側面は一般的に、マシン(またはプロセッサ)が実行可能コード及び/又は機械読み取り可能媒体で具体化された関連データの形で、「製品」、「製造物」として考えられる。マシン実行可能コードは、メモリ(例えば、読み出し専用メモリ、ランダム・アクセス・メモリ、フラッシュメモリ)、またはハードディスクなどの電子記憶装置に記憶することができる。「Storage」タイプの媒体は、コンピュータ、プロセッサ等の有形記憶、あるいはこれに関連するモジュール、各種半導体メモリ、テープドライブ、ディスクドライブなどの、ソフトウェアプログラミングのためにいつでも非一時的な記憶域を提供することが含まれる。ソフトウェアのすべてまたは一部は、常にインターネットやその他の通信ネットワークを介して通信することができる。このような通信は、例えば、管理サーバまたはホストコンピュータにアプリケーション・サーバーのコンピュータプラットフォームへ、たとえば、コンピュータまたはプロセッサから別のソフトウェアのロードを可能にすることができる。したがって、ソフトウェア要素を支えることができるメディアのタイプは、有線、光電話ネットワークおよびさまざまなエアリンクを通じてローカルデバイス間の物理インタフェースをまたいで使用されような光学的、電気的、電磁気的な波を含む。有線または無線リンク、光リンク等のように、そのような波を伝送する物理要素も、ソフトウェアをいれた媒体と見なすことができる。ここで、非一時的で、具体的な「ストレージ・メディア」に限定されていない限り、コンピュータまたはマシン「読み取り可能媒体」といった用語は、実行のためにプロセッサへの命令の提供に関与するあらゆる媒体を指す。
[0200]したがって、マシン(またはコンピュータ)が読み取り可能な媒体は、コンピュータ実行可能コード(コンピュータプログラム)のような、多くの形態、有形記憶媒体が、搬送波媒体または物理伝送媒体を含むがこれに限られない。不揮発性の記憶媒体は、例えば、図面に示すような光又は磁気ディスクの任意のコンピュータにストレージデバイスのいずれかなどのデータベースを実装するために使用される。揮発性記憶媒体は、動的メモリ、コンピュータプラットフォームのメイン・メモリなどが含まれる。具体的な伝送媒体は、同軸ケーブル、銅線および光ファイバー、コンピュータシステム内のバスを構成する配線を含んでいる。キャリア波伝送媒体は、電気もしくは電磁信号の形態、または無線周波数(RF)の間に発生するもののような音波又は光波、赤外線(IR)通信をすることができる。一般的なコンピュータ読み取り可能な媒体は、例えばフロッピーディスク、フレキシブルディスク、ハードディスク、磁気テープ、その他の磁気媒体、CD‐ROM、DVD‐ROMまたはDVD、他の光学式媒体、パンチカード紙テープ、穴のパターンのその他の物理的な記憶媒体、RAM、ROM、PROM、EPROM、フラッシュEPROM、他のメモリチップやカートリッジ、搬送波輸送データ又は命令は、搬送波を搬送するケーブルやリンク、コンピュータプログラムコードおよび/またはデータを読むことができるその他の媒体を含む。これらの形式のコンピュータ読み取り可能媒体の多くが実行のためにプロセッサに1つ以上の一つ又はそれより多くの命令のシーケンスを持っている可能性がある。
[0201]装置、システム、及び方法は、本開示の併用および/またはその他の装置、システム、または方法による改質、例えば、特許文献JP2013‐36865A、US2012/0322055A、US2013/0001082A、US2012/0193237A、US2010/0025249A、JP2011‐163934A、JP2005‐257687A、JP2011‐163934AとJP2008‐32529A(各々は、全体が参照により本明細書に組み込まれる)に記載されたもの等であってもよい。
[0202]本発明の好ましい実施形態は、本明細書に図示して説明してきたが、このような実施態様は、例として与えられているに過ぎないことは当業者には明らかであろうが、本発明は、本明細書中で提供される特定の実施例により限定されるものではない。本発明は上述したように、本明細書の実施形態の説明および例示は、限定的な意味で解釈されることを意図していない。多数のバリエーション、変化および置換が、本発明から逸脱することなく、当業者にとっては明白である。また、本発明のすべての態様は、さまざまな条件や変数に依存する本明細書の特定の記載は、構成または相対比率に限定されるものではないことを理解しなければならない。これは、本明細書で説明する本発明の実施形態の様々な代替物を採用して本発明を実施できることは、理解されるべきであり、本発明はそのような代替、変更、変形または等価物をカバーすることを意図している。これは、以下の特許請求の範囲は、本発明の範囲を規定し、これらの請求項の範囲およびその同等物内の方法および構造がこれに包含されることが意図される。

Claims (54)

  1. 第1電極および前記第1電極に隣接する第2電極を含むナノギャップ電極装置であって、前記第1電極は、前記生体分子を通して流すことを可能にする寸法のナノギャップにより前記第2電極から分離され、前記ナノギャップは、少なくとも第1ギャップ領域および第2ギャップ領域を有し、前記第2ギャップ領域は、前記第1ギャップ領域を有する面に対してゼロ度を超える角度で配向する、ナノギャップ電極装置と、
    前記ナノギャップ電極装置に接続した電気回路であって、前記ナノギャップを通る前記生体分子の流れに関して前記第1電極および前記第2電極から電気信号を受信する電気回路と
    を備える、
    生体分子を検出するシステム。
  2. 前記第2ギャップ領域は、前記第1ギャップ領域を有する前記面に対して略25度を超える角度で配向する、請求項1に記載のシステム。
  3. 前記第2ギャップ領域は、前記第1ギャップ領域を有する前記面に対して略45度を超える角度で配向する、請求項2に記載のシステム。
  4. 前記第2ギャップ領域は、前記第1ギャップ領域を有する前記面に対して略90度の角度で配向する、請求項3に記載のシステム。
  5. 前記第1電極は、基板に隣接する、請求項1に記載のシステム。
  6. 前記第2電極は、前記第1電極と接触している絶縁層に隣接する、請求項5に記載のシステム。
  7. 前記第1電極は、第1部分および前記第1部分に隣接する第2部分を備え、前記第1部分および前記第2部分は、前記基板と隣接し、前記第1部分は、前記第2部分より大きな厚みを有する、請求項5に記載のシステム。
  8. 前記第1部分は、前記第2ギャップ領域を部分的に規定する表面を有し、前記第2部分は、前記第1ギャップ領域を部分的に規定する表面を有する、請求項7に記載のシステム。
  9. 前記第1電極または前記第2電極の一部は、単一原子先端を有する、請求項1に記載のシステム。
  10. 前記第2ギャップ領域の終端は、前記第1ギャップ領域と接続されている、請求項1に記載のシステム。
  11. 前記ナノギャップ電極装置と流体連通する少なくとも1つのチャネルをさらに備え、前記ナノギャップに前記生体分子を向かわせるように構成された、請求項1に記載のシステム。
  12. 前記チャネルは、マイクロ流体構造と統合される、請求項11に記載のシステム。
  13. 前記電気回路は、前記電気信号から前記生体分子またはその部分を向かわせるようにプログラムされたコンピュータプロセッサの一部である、請求項1に記載のシステム。
  14. 前記ナノギャップ電極装置は、ナノギャップ電極装置のアレイの一部である、請求項1に記載のシステム。
  15. 前記ナノギャップ電極装置は、前記アレイの他のナノギャップ電極装置に対して独立してアドレス可能である、請求項14に記載のシステム。
  16. 前記ナノギャップは、終端が前記第1ギャップ領域と接続された第3ギャップ領域を有する、請求項1に記載のシステム。
  17. 第1電極および前記第1電極に隣接する第2電極を含むナノギャップ電極装置を備え、
    前記第1電極は、前記生体分子を通して流すことを可能にする寸法のナノギャップにより前記第2電極から分離され、
    前記ナノギャップは、少なくとも第1ギャップ領域および第2ギャップ領域を有し、
    前記第2ギャップ領域は、前記第1ギャップ領域を有する面に対して略90度の角度で配向し、
    前記第2ギャップ領域の終端は、前記第1ギャップ領域に接続されている、
    生体分子を検知するシステム。
  18. 前記第1電極は、基板に隣接する、請求項17に記載のシステム。
  19. 前記第2電極は、前記第1電極と接触している絶縁層に隣接する、請求項18に記載のシステム。
  20. 前記第1電極は、第1部分および前記第1部分に隣接する第2部分を備え、前記第1部分および前記第2部分は、前記基板と隣接し、前記第1部分は、前記第2部分より大きな厚みを有する、請求項18に記載のシステム。
  21. 前記第1部分は、前記第2ギャップ領域を部分的に規定する表面を有し、前記第2部分は、前記第1ギャップ領域を部分的に規定する表面を有する、請求項20に記載のシステム。
  22. 前記第1電極または前記第2電極の一部は、単一原子先端を有する、請求項17に記載のシステム。
  23. 前記ナノギャップ電極装置と流体連通する少なくとも1つのチャネルをさらに備え、前記ナノギャップに前記生体分子を向かわせるように構成された、請求項17に記載のシステム。
  24. 前記チャネルは、マイクロ流体構造と統合される、請求項23に記載のシステム。
  25. 前記ナノギャップ電極装置は、ナノギャップ電極装置のアレイの一部である、請求項17に記載のシステム。
  26. 前記ナノギャップ電極装置は、前記アレイの他のナノギャップ電極装置に対して独立してアドレス可能である、請求項25に記載のシステム。
  27. 前記ナノギャップは、終端が前記第1ギャップ領域と接続された第3ギャップ領域を有する、請求項17に記載のシステム。
  28. (a)第1電極および前記第1電極に隣接する第2電極を有するナノギャップ電極装置に生体分子を向かわせる工程であって、前記第1電極は、前記生体分子を通して流すことを可能にする寸法のナノギャップにより前記第2電極から分離され、前記ナノギャップは、少なくとも第1ギャップ領域および第2ギャップ領域を有し、前記第2ギャップ領域は、前記第1ギャップ領域を有する面に対してゼロ度を超える角度で配向する工程と、
    (b)前記ナノギャップを通る前記生体分子の流れに関して電気信号を測定する工程と、
    (c)(b)で測定した前記電気信号を使用して前記生体分子を検出することと、
    を備える、
    生体分子を検出する方法。
  29. 前記検出する工程は、前記生体分子またはその部分を示す参照信号に対して前記電気信号を比較することを備える、請求項28に記載の方法。
  30. 前記検出する工程は、前記生体分子またはその部分を識別することを備える、請求項28に記載の方法。
  31. 前記生体分子は、核酸分子である、請求項28に記載の方法。
  32. 前記生体分子は、(c)の検出する工程は、前記核酸分子をシーケンシングすることを備える、請求項31に記載の方法。
  33. 前記電気信号は、電流を含む、請求項28に記載の方法。
  34. 前記電流は、トンネル電流である、請求項33に記載の方法。
  35. 前記第2ギャップ領域は、前記第1ギャップ領域を有する前記面に対して略90度の角度で配向する、請求項28に記載の方法。
  36. 前記第1電極または前記第2電極の一部は、単一原子先端を有する、請求項28に記載の方法。
  37. 前記生体分子は、前記ナノギャップ電極装置と流体連通する少なくとも1つのチャネルを通して前記ナノギャップ電極装置に向かう、請求項28に記載の方法。
  38. 前記ナノギャップ電極装置は、独立してアドレス可能なナノギャップ電極装置のアレイの一部である、請求項28に記載の方法。
  39. 前記ナノギャップを通る前記生体分子の流れに関し、前記生体分子の一の部分は前記第1ギャップ領域を通って流れ、前記生体分子の他の部分は前記第2ギャップ領域を通って流れる、請求項28に記載の方法。
  40. 請求項1乃至27のいずれかに記載のシステムを製造する方法。
  41. 生体分子を検出するために請求項1乃至27のいずれかに記載のシステムを使用することを備える、生体分子を検出する方法。
  42. (a)基板に隣接する第1電極形成部を提供する工程と、
    (b)前記第1電極形成部の表面に隣接するギャップ形成層を形成する工程と、
    (c)前記ギャップ形成層に隣接する第2電極形成部を形成する工程と、
    (d)前記第1電極部と前記第2電極部の間にナノギャップを形成するために前記ギャップ形成層の一部を除去する工程と、
    を備え、
    前記ナノギャップは、生体分子を前記ナノギャップを通して流すことを可能にする寸法であり、
    前記ナノギャップは、少なくとも第1ギャップ領域および第2ギャップ領域を有し、
    前記第2ギャップ領域は、前記第1ギャップ領域を有する面に対してゼロ度を超える角度で配向する、
    生体分子を検出する際に使用するナノギャップ電極を製造する方法。
  43. (c)の工程に続き、前記第1電極形成部の表面、前記ギャップ形成層の第2部分の表面、および前記第2電極形成部の表面を露出する工程をさらに備える、請求項42に記載の方法。
  44. それぞれが所定の形を有する第1電極部及び第2電極部を提供するため、前記第2電極形成部、前記ギャップ形成層および前記第1電極形成部をパターニングする工程をさらに含む、請求項43に記載の方法。
  45. 前記第2ギャップ領域は、前記第1ギャップ領域を有する前記面に対して略25度を超える角度で配向する、請求項42に記載の方法。
  46. 前記第2ギャップ領域は、前記第1ギャップ領域を有する前記面に対して略45度を超える角度で配向する、請求項45に記載の方法。
  47. 前記第2ギャップ領域は、前記第1ギャップ領域を有する前記面に対して略90度の角度で配向する、請求項46に記載の方法。
  48. 単一原子先端を有するために前記第1電極部および/または前記第2電極部を加工する工程をさらに備える、請求項42に記載の方法。
  49. それぞれが単一原子先端を有するために前記第1電極部および前記第2電極部を加工する工程をさらに備える、請求項48に記載の方法。
  50. 前記ナノギャップと流体連通する少なくとも1つのチャネルを提供する工程をさらに備える、請求項42に記載の方法。
  51. (a)の工程は、前記電極形成部の他の部分より厚さが薄い前記電極形成部の一の部分に隣接する絶縁層を形成し、前記絶縁層に隣接する前記ギャップ形成層を形成する工程を備える、請求項42に記載の方法。
  52. 前記第2ギャップ領域の終端は、前記第1ギャップ領域に接続されている、請求項42に記載の方法。
  53. 前記第1電極形成部は、段差を有する、請求項42に記載の方法。
  54. 前記第1ギャップ領域は、前記基板に平行である、請求項42に記載の方法。
JP2016549198A 2013-10-16 2014-10-15 ナノギャップ電極およびその製造方法 Expired - Fee Related JP6517826B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013215828 2013-10-16
JP2013215828A JP2015077652A (ja) 2013-10-16 2013-10-16 ナノギャップ電極およびその製造方法
PCT/US2014/060742 WO2015057870A1 (en) 2013-10-16 2014-10-15 Nano-gap electrode pair and method of manufacturing same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019079598A Division JP2019164142A (ja) 2013-10-16 2019-04-18 ナノギャップ電極およびその製造方法

Publications (3)

Publication Number Publication Date
JP2017501420A true JP2017501420A (ja) 2017-01-12
JP2017501420A5 JP2017501420A5 (ja) 2017-12-14
JP6517826B2 JP6517826B2 (ja) 2019-05-22

Family

ID=52828663

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2013215828A Pending JP2015077652A (ja) 2013-10-16 2013-10-16 ナノギャップ電極およびその製造方法
JP2016549198A Expired - Fee Related JP6517826B2 (ja) 2013-10-16 2014-10-15 ナノギャップ電極およびその製造方法
JP2019079598A Withdrawn JP2019164142A (ja) 2013-10-16 2019-04-18 ナノギャップ電極およびその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013215828A Pending JP2015077652A (ja) 2013-10-16 2013-10-16 ナノギャップ電極およびその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019079598A Withdrawn JP2019164142A (ja) 2013-10-16 2019-04-18 ナノギャップ電極およびその製造方法

Country Status (7)

Country Link
US (2) US10261066B2 (ja)
EP (1) EP3058357A4 (ja)
JP (3) JP2015077652A (ja)
KR (1) KR20160086335A (ja)
CN (1) CN106133511A (ja)
TW (1) TWI674405B (ja)
WO (1) WO2015057870A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095844A1 (ja) * 2018-11-06 2020-05-14 株式会社Screenホールディングス 電極基板
JP2021517647A (ja) * 2018-04-09 2021-07-26 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 分子認識のためのナノポアを備えたトンネリング接合の製造
KR20230045916A (ko) * 2021-09-29 2023-04-05 한국기술교육대학교 산학협력단 이온전도도 측정기 및 이를 이용한 이온전도도 측정방법

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108540A1 (ja) 2010-03-03 2011-09-09 国立大学法人大阪大学 ヌクレオチドを識別する方法および装置、ならびにポリヌクレオチドのヌクレオチド配列を決定する方法および装置
US9535033B2 (en) 2012-08-17 2017-01-03 Quantum Biosystems Inc. Sample analysis method
EP3578987A1 (en) 2013-09-18 2019-12-11 Quantum Biosystems Inc. Biomolecule sequencing devices, systems and methods
JP2015077652A (ja) 2013-10-16 2015-04-23 クオンタムバイオシステムズ株式会社 ナノギャップ電極およびその製造方法
US10438811B1 (en) 2014-04-15 2019-10-08 Quantum Biosystems Inc. Methods for forming nano-gap electrodes for use in nanosensors
TW201602355A (zh) * 2014-04-28 2016-01-16 量子生物系統公司 奈米間隙電極裝置、系統及其形成方法
US20160177383A1 (en) * 2014-12-16 2016-06-23 Arizona Board Of Regents On Behalf Of Arizona State University Nanochannel with integrated tunnel gap
WO2017001484A1 (en) * 2015-06-30 2017-01-05 F. Hoffmann-La Roche Ag Design and methods for measuring analytes using nanofabricated device
JP2018533935A (ja) * 2015-10-08 2018-11-22 クオンタムバイオシステムズ株式会社 核酸配列決定の装置、システム、及び方法
CN105742496A (zh) * 2016-03-31 2016-07-06 南开大学 利用双材料微悬臂实现连续变化纳米间隙的芯片及制备方法
US10889857B2 (en) 2017-02-01 2021-01-12 Seagate Technology Llc Method to fabricate a nanochannel for DNA sequencing based on narrow trench patterning process
US10640827B2 (en) * 2017-02-01 2020-05-05 Seagate Technology Llc Fabrication of wedge shaped electrode for enhanced DNA sequencing using tunneling current
US10641726B2 (en) 2017-02-01 2020-05-05 Seagate Technology Llc Fabrication of a nanochannel for DNA sequencing using electrical plating to achieve tunneling electrode gap
US10731210B2 (en) 2017-02-01 2020-08-04 Seagate Technology Llc Fabrication of nanochannel with integrated electrodes for DNA sequencing using tunneling current
US10761058B2 (en) 2017-02-01 2020-09-01 Seagate Technology Llc Nanostructures to control DNA strand orientation and position location for transverse DNA sequencing
US20180259475A1 (en) 2017-03-09 2018-09-13 Seagate Technology Llc Vertical nanopore coupled with a pair of transverse electrodes having a uniform ultrasmall nanogap for dna sequencing
US10752947B2 (en) 2017-03-09 2020-08-25 Seagate Technology Llc Method to amplify transverse tunneling current discrimination of DNA nucleotides via nucleotide site specific attachment of dye-peptide
US11740226B2 (en) 2017-10-13 2023-08-29 Analog Devices International Unlimited Company Designs and fabrication of nanogap sensors
CN110420673B (zh) * 2019-08-14 2022-06-03 京东方科技集团股份有限公司 一种微流控器件及其驱动方法、微流控系统
US20220373542A1 (en) * 2019-10-25 2022-11-24 University Of Utah Research Foundation Micro-Balance Biosensors to Detect Whole Viruses
CN110993487A (zh) * 2019-11-22 2020-04-10 国家纳米科学中心 一种亚10纳米间隙结构的制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020168810A1 (en) * 2001-03-30 2002-11-14 The Penn State Research Foundation Lateral nanostructures by vertical processing
US20040124084A1 (en) * 2002-12-31 2004-07-01 Lee James W. Separation and counting of single molecules through nanofluidics, programmable electrophoresis, and nanoelectrode-gated tunneling and dielectric detection
US20050051768A1 (en) * 2003-09-06 2005-03-10 Kim Seong Jin Method for manufacturing organic molecular device
US20050112860A1 (en) * 2003-11-20 2005-05-26 Park Chan W. Method for manufacturing nano-gap electrode device
WO2011108540A1 (ja) * 2010-03-03 2011-09-09 国立大学法人大阪大学 ヌクレオチドを識別する方法および装置、ならびにポリヌクレオチドのヌクレオチド配列を決定する方法および装置
JP2013518283A (ja) * 2010-01-27 2013-05-20 インターナショナル・ビジネス・マシーンズ・コーポレーション 分子を検出する半導体デバイスを形成する方法ならびに分子を検出する集積回路、クロマトグラフィ・デバイス及び半導体デバイス
WO2013100949A1 (en) * 2011-12-28 2013-07-04 Intel Corporation Nanogap transducers with selective surface immobilization sites

Family Cites Families (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194673A (ja) 1986-02-20 1987-08-27 Fujitsu Ltd 半導体装置の製造方法
JPS6437640A (en) 1987-08-03 1989-02-08 Mitsubishi Electric Corp Control system for cache memory
US5151164A (en) 1990-02-09 1992-09-29 The University Of Maryland Enhanced capillary zone electrophoresis and apparatus for performance thereof
US5122248A (en) 1990-05-18 1992-06-16 Northeastern University Pulsed field capillary electrophoresis
US5092972A (en) 1990-07-12 1992-03-03 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Field-effect electroosmosis
JPH04302151A (ja) 1991-03-29 1992-10-26 Toshiba Corp 電荷結合装置の製造方法
US5262031A (en) 1991-06-21 1993-11-16 Hewlett-Packard Company Electroosmotic flow control apparatus for capillary electrophoresis
JPH05281276A (ja) 1991-07-31 1993-10-29 Toshiba Corp 液中静電力検出装置
JP3560990B2 (ja) 1993-06-30 2004-09-02 株式会社東芝 固体撮像装置
US5585069A (en) 1994-11-10 1996-12-17 David Sarnoff Research Center, Inc. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
US5885470A (en) 1997-04-14 1999-03-23 Caliper Technologies Corporation Controlled fluid transport in microfabricated polymeric substrates
US5906723A (en) 1996-08-26 1999-05-25 The Regents Of The University Of California Electrochemical detector integrated on microfabricated capillary electrophoresis chips
WO1998022625A1 (en) 1996-11-20 1998-05-28 The Regents Of The University Of Michigan Microfabricated isothermal nucleic acid amplification devices and methods
JPH10283230A (ja) 1997-03-31 1998-10-23 Nec Corp ファイルデータ格納装置およびプログラムを記録した機械読み取り可能な記録媒体
WO1998049549A1 (en) 1997-04-30 1998-11-05 Orion Research, Inc. Capillary electrophoretic separation system
ATE508200T1 (de) 1999-02-23 2011-05-15 Caliper Life Sciences Inc Sequenzierung durch inkorporation
US6521428B1 (en) 1999-04-21 2003-02-18 Genome Technologies, Llc Shot-gun sequencing and amplification without cloning
US6635163B1 (en) 1999-06-01 2003-10-21 Cornell Research Foundation, Inc. Entropic trapping and sieving of molecules
AU6771100A (en) 1999-08-13 2001-03-13 U.S. Genomics, Inc. Methods and apparatuses for stretching polymers
US6762059B2 (en) 1999-08-13 2004-07-13 U.S. Genomics, Inc. Methods and apparatuses for characterization of single polymers
WO2001063273A2 (en) 2000-02-22 2001-08-30 California Institute Of Technology Development of a gel-free molecular sieve based on self-assembled nano-arrays
US6491805B1 (en) 2000-05-23 2002-12-10 Agilent Technologies, Inc. Sample-analysis system with antisynchronously driven contactless conductivity detector
AU2001259128A1 (en) 2000-04-24 2001-11-07 Eagle Research And Development, Llc An ultra-fast nucleic acid sequencing device and a method for making and using the same
US6413792B1 (en) 2000-04-24 2002-07-02 Eagle Research Development, Llc Ultra-fast nucleic acid sequencing device and a method for making and using the same
US8232582B2 (en) 2000-04-24 2012-07-31 Life Technologies Corporation Ultra-fast nucleic acid sequencing device and a method for making and using the same
US6447663B1 (en) 2000-08-01 2002-09-10 Ut-Battelle, Llc Programmable nanometer-scale electrolytic metal deposition and depletion
US6755956B2 (en) 2000-10-24 2004-06-29 Ut-Battelle, Llc Catalyst-induced growth of carbon nanotubes on tips of cantilevers and nanowires
CA2450109A1 (en) 2001-06-11 2003-05-22 Genorx, Inc. Electronic detection of biological molecules using thin layers
US20030104428A1 (en) 2001-06-21 2003-06-05 President And Fellows Of Harvard College Method for characterization of nucleic acid molecules
US6890409B2 (en) 2001-08-24 2005-05-10 Applera Corporation Bubble-free and pressure-generating electrodes for electrophoretic and electroosmotic devices
JP2003090815A (ja) 2001-09-18 2003-03-28 Japan Science & Technology Corp 遺伝子の電気化学的検出方法と核酸チップ
KR100438828B1 (ko) 2001-11-08 2004-07-05 삼성전자주식회사 칩 상의 전기적 미세 검출기
US6905586B2 (en) * 2002-01-28 2005-06-14 Ut-Battelle, Llc DNA and RNA sequencing by nanoscale reading through programmable electrophoresis and nanoelectrode-gated tunneling and dielectric detection
AU2003269813A1 (en) 2002-04-16 2003-12-31 Princeton University Gradient structures interfacing microfluidics and nanofluidics, methods for fabrication and uses thereof
US7744816B2 (en) 2002-05-01 2010-06-29 Intel Corporation Methods and device for biomolecule characterization
JP2003332555A (ja) 2002-05-09 2003-11-21 Fuji Film Microdevices Co Ltd 固体撮像素子およびその製造方法
JP4075765B2 (ja) 2002-10-30 2008-04-16 日本電気株式会社 分離装置およびその製造方法、ならびに分析システム
US7410564B2 (en) 2003-01-27 2008-08-12 Agilent Technologies, Inc. Apparatus and method for biopolymer identification during translocation through a nanopore
JP3787630B2 (ja) 2003-02-14 2006-06-21 独立行政法人情報通信研究機構 ナノギャップ電極の製造方法
WO2004085609A2 (en) 2003-02-28 2004-10-07 Brown University Nanopores, methods for using same, methods for making same and methods for characterizing biomolecules using same
WO2005008450A2 (en) 2003-03-28 2005-01-27 The Regents Of The University Of California Method and apparatus for nanogap device and array
JP4259902B2 (ja) 2003-04-01 2009-04-30 日立オムロンターミナルソリューションズ株式会社 情報読み取り装置、情報読み取り装置用プログラム
DE10331126B4 (de) * 2003-07-09 2005-09-01 Krohne Ag Coriolis-Massendurchflußmeßgerät und Verfahren zum Betreiben eines Coriolis-Massendurchflußmeßgeräts
US20120254715A1 (en) 2003-07-10 2012-10-04 David Charles Schwartz Visualizer and editor for single molecule analysis
JP4289938B2 (ja) 2003-07-11 2009-07-01 富士通テン株式会社 盗難防止装置、及び盗難防止方法
US20050048513A1 (en) 2003-08-28 2005-03-03 Alex Harwit Rapid hybridization based on cyclical electric fields
US7390622B2 (en) 2003-10-16 2008-06-24 Hai Kang Life Corporation Limited Apparatus and methods for detecting nucleic acid in biological samples
US7279337B2 (en) 2004-03-10 2007-10-09 Agilent Technologies, Inc. Method and apparatus for sequencing polymers through tunneling conductance variation detection
US20050202446A1 (en) 2004-03-11 2005-09-15 Yang Dan-Hui D. Methods for biopolymer sequencing using metal inclusions
EP1720119A4 (en) 2004-03-31 2008-01-23 Matsushita Electric Ind Co Ltd MEMORY CARD AND MEMORY CARD SYSTEM
US20050227239A1 (en) 2004-04-08 2005-10-13 Joyce Timothy H Microarray based affinity purification and analysis device coupled with solid state nanopore electrodes
US8105471B1 (en) 2004-07-19 2012-01-31 Han Sang M Nanofluidics for bioseparation and analysis
US20060057585A1 (en) 2004-09-10 2006-03-16 Mcallister William H Nanostepper/sensor systems and methods of use thereof
US8563237B2 (en) 2004-09-30 2013-10-22 Agilent Technologies, Inc. Biopolymer resonant tunneling with a gate voltage source
WO2006052242A1 (en) 2004-11-08 2006-05-18 Seirad, Inc. Methods and systems for compressing and comparing genomic data
US7892414B1 (en) 2004-11-19 2011-02-22 The United States Of America As Represented By The Secretary Of Army Electrochemical biosensors, applications and methods of making biosensors
TWI273237B (en) 2004-12-13 2007-02-11 Nat Applied Res Laboratories Coulomb blockade device operated under room temperature
EP1841883A4 (en) 2004-12-28 2009-02-25 Japan Science & Tech Agency METHOD FOR THE ANALYSIS OF NUCLEOBASES TO SINGLE MOLECULAR BASIS
KR100679704B1 (ko) 2005-01-10 2007-02-06 한국과학기술원 분자소자와 바이오 센서를 위한 나노갭 또는 나노 전계효과 트랜지스터 제작방법
US20060210995A1 (en) 2005-03-15 2006-09-21 Joyce Timothy H Nanopore analysis systems and methods of using nanopore devices
EP2348300A3 (en) 2005-04-06 2011-10-12 The President and Fellows of Harvard College Molecular characterization with carbon nanotube control
JP4804028B2 (ja) 2005-04-25 2011-10-26 東京応化工業株式会社 ナノ構造体の製造方法
TWI287041B (en) 2005-04-27 2007-09-21 Jung-Tang Huang An ultra-rapid DNA sequencing method with nano-transistors array based devices
US20060275911A1 (en) 2005-06-03 2006-12-07 Shih-Yuan Wang Method and apparatus for moleclular analysis using nanostructure-enhanced Raman spectroscopy
US7326328B2 (en) 2005-07-19 2008-02-05 General Electric Company Gated nanorod field emitter structures and associated methods of fabrication
US20080215252A1 (en) 2005-07-25 2008-09-04 Tomoji Kawai Method of Determining Base Sequence of Nucleic Acid and Apparatus Therefor
KR100849384B1 (ko) 2005-10-21 2008-07-31 한국생명공학연구원 나노갭 및 나노갭 센서의 제조방법
JP2009516388A (ja) 2005-11-18 2009-04-16 レプリソールス テクノロジーズ アーベー 多層構造の形成方法
US8055979B2 (en) 2006-01-20 2011-11-08 Marvell World Trade Ltd. Flash memory with coding and signal processing
JP5808515B2 (ja) 2006-02-16 2015-11-10 454 ライフ サイエンシーズ コーポレイション 核酸配列データのプライマー伸長誤差を補正するためのシステムおよび方法
JP4869985B2 (ja) 2006-03-06 2012-02-08 株式会社Jvcケンウッド 液晶表示装置及びその製造方法
CN100535649C (zh) * 2006-03-30 2009-09-02 中国科学院电子学研究所 三维纳隙网格阵列微电极生物传感芯片
US20080202931A1 (en) 2006-06-15 2008-08-28 Dimiter Nikolov Petsev Ion Specific Control of the Transport of Fluid and Current in Fluidic Nanochannels
CN103203256B (zh) 2006-07-19 2015-09-23 博纳基因技术有限公司 纳米口装置阵列:它们的制备以及在大分子分析中的应用
JP4765813B2 (ja) 2006-07-28 2011-09-07 三菱瓦斯化学株式会社 二重鎖dna量の電気化学的測定方法
EP2049436B1 (en) 2006-08-11 2012-10-17 Agency for Science, Technology and Research Nanowire sensor, nanowire sensor array and method of fabricating the same
US7638034B2 (en) 2006-09-21 2009-12-29 Los Alamos National Security, Llc Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions
JP2008146538A (ja) 2006-12-13 2008-06-26 Intec Web & Genome Informatics Corp マイクロrna検出装置、方法およびプログラム
GB0625070D0 (en) 2006-12-15 2007-01-24 Imp Innovations Ltd Characterization of molecules
JP2008186975A (ja) 2007-01-30 2008-08-14 Renesas Technology Corp 半導体装置の製造方法
US8003319B2 (en) 2007-02-02 2011-08-23 International Business Machines Corporation Systems and methods for controlling position of charged polymer inside nanopore
WO2008124706A2 (en) 2007-04-06 2008-10-16 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Devices and methods for target molecule characterization
US9034637B2 (en) * 2007-04-25 2015-05-19 Nxp, B.V. Apparatus and method for molecule detection using nanopores
EP2014761B1 (en) 2007-06-22 2016-09-28 Sony Deutschland GmbH A device for processing an analyte and a method of processing and/or detecting an analyte using said device
AT505495A1 (de) 2007-07-04 2009-01-15 Arc Austrian Res Centers Gmbh Verfahren zur identifizierung und quantifizierung von organischen und biochemischen substanzen
US8273532B2 (en) 2007-10-02 2012-09-25 President And Fellows Of Harvard College Capture, recapture, and trapping of molecules with a nanopore
CA2702276C (en) 2007-10-09 2019-04-02 Hsueh-Chia Chang Microfluidic platforms for multi-target detection
US20090242429A1 (en) * 2008-01-07 2009-10-01 Ravil Sitdikov Electrochemical Biosensor
GB0801142D0 (en) 2008-01-22 2008-02-27 Imp Innovations Ltd Label-free molecule detection and measurement
WO2009131724A2 (en) * 2008-01-24 2009-10-29 Massachusetts Institute Of Technology Insulated nanogap devices and methods of use thereof
JP5142763B2 (ja) 2008-02-29 2013-02-13 日本電信電話株式会社 分子分析方法および分子分析素子
US8440063B2 (en) 2008-03-26 2013-05-14 Massachusetts Institute Of Technology Electrokinetic concentration devices
US20090246788A1 (en) 2008-04-01 2009-10-01 Roche Nimblegen, Inc. Methods and Assays for Capture of Nucleic Acids
KR20110013377A (ko) * 2008-04-02 2011-02-09 이 아이 듀폰 디 네모아 앤드 캄파니 불소화된 탄소 나노튜브를 이용하는 전자 소자
JP5360528B2 (ja) 2008-05-07 2013-12-04 国立大学法人北陸先端科学技術大学院大学 ギャップで分断された薄膜の製造方法、およびこれを用いたデバイスの製造方法
WO2009158141A1 (en) 2008-05-30 2009-12-30 The Trustees Of The University Of Pennsylvania Piezoelectric aln rf mem switches monolithically integrated with aln contour-mode resonators
CN104359874B (zh) 2008-06-06 2018-07-06 生物纳米基因公司 集成分析装置及相关制造方法和分析技术
EP2664677B1 (en) 2008-06-30 2018-05-30 BioNano Genomics, Inc. Methods for single-molecule whole genome analysis
TWI383144B (zh) 2008-09-23 2013-01-21 Univ Nat Chiao Tung 感測元件、製造方法及其生物檢測系統
WO2010075570A2 (en) 2008-12-24 2010-07-01 New York University Methods, computer-accessible medium, and systems for score-driven whole-genome shotgun sequence assemble
JP2010227735A (ja) 2009-03-25 2010-10-14 Tohoku Univ マイクロ流路デバイス
WO2010111605A2 (en) 2009-03-27 2010-09-30 Nabsys, Inc. Devices and methods for analyzing biomolecules and probes bound thereto
JP5372570B2 (ja) 2009-03-30 2013-12-18 株式会社日立ハイテクノロジーズ ナノポアを用いたバイオポリマー決定方法、システム、及びキット
WO2010117470A2 (en) 2009-04-10 2010-10-14 Pacific Biosciences Of California, Inc. Nanopore sequencing devices and methods
US9810680B2 (en) 2009-04-16 2017-11-07 Nanonex Corporation Nanogap electronic detector for measuring properties of a biomolecule stretched in a nanochannel, and method thereof
US8926904B2 (en) 2009-05-12 2015-01-06 Daniel Wai-Cheong So Method and apparatus for the analysis and identification of molecules
CN101920932A (zh) 2009-06-10 2010-12-22 中国科学院半导体研究所 制作纳米尺寸间距的电极的方法
TWI424160B (zh) 2009-06-17 2014-01-21 Univ Nat Chiao Tung 結合矽奈米線閘極二極體之感測元件、製造方法及其檢測系統
US8110410B2 (en) 2009-06-29 2012-02-07 International Business Machines Corporation Nanofludic field effect transistor based on surface charge modulated nanochannel
US8313633B2 (en) * 2009-07-28 2012-11-20 Polestar Technologies, Inc. Molecular imprinted nanosensors and process for producing same
JP5413892B2 (ja) 2009-08-31 2014-02-12 オリヱント化学工業株式会社 有機・ナノ炭素複合系薄膜太陽電池
EP2483669A1 (en) * 2009-09-30 2012-08-08 GE Healthcare Bio-Sciences AB Nanoplasmonic device
WO2011067961A1 (ja) 2009-12-02 2011-06-09 独立行政法人科学技術振興機構 流路デバイス及びそれを含むサンプル処理装置
US8969090B2 (en) * 2010-01-04 2015-03-03 Life Technologies Corporation DNA sequencing methods and detectors and systems for carrying out the same
CN102687027B (zh) 2010-02-02 2016-05-25 阿利桑那卅评议会 用于测序聚合物的受控的隧道间隙设备
JP5336402B2 (ja) 2010-02-10 2013-11-06 有限会社バイオデバイステクノロジー サンプル採取量の補正方法とそれを用いた測定方法
JP5764296B2 (ja) 2010-03-31 2015-08-19 株式会社日立ハイテクノロジーズ 生体ポリマーの特性解析法
US8940663B2 (en) 2010-04-07 2015-01-27 Board Of Regents, The University Of Texas System Nano-scale biosensors
US8568878B2 (en) 2010-04-08 2013-10-29 The Board Of Trustees Of The Leland Stanford Junior University Directly fabricated nanoparticles for raman scattering
US8652779B2 (en) 2010-04-09 2014-02-18 Pacific Biosciences Of California, Inc. Nanopore sequencing using charge blockade labels
WO2012009578A2 (en) 2010-07-14 2012-01-19 The Curators Of The University Of Missouri Nanopore-facilitated single molecule detection of nucleic acids
JP5594728B2 (ja) * 2010-07-23 2014-09-24 松尾博文 直流スイッチ
US8518227B2 (en) 2010-09-16 2013-08-27 Old Dominion University Research Foundation Nanopore-based nanoparticle translocation devices
JP2012110258A (ja) 2010-11-22 2012-06-14 Nippon Steel Chem Co Ltd 塩基配列の決定方法及び塩基配列の決定方法に用いる測定用デバイス
JP2012118709A (ja) 2010-11-30 2012-06-21 Brother Ind Ltd 配信システム、ストレージ容量決定プログラム、及びストレージ容量決定方法
CN103282518B (zh) 2010-12-17 2016-11-16 纽约哥伦比亚大学理事会 使用经修饰的核苷酸和纳米孔检测的dna边合成边测序
US8986524B2 (en) 2011-01-28 2015-03-24 International Business Machines Corporation DNA sequence using multiple metal layer structure with different organic coatings forming different transient bondings to DNA
US20120193231A1 (en) 2011-01-28 2012-08-02 International Business Machines Corporation Dna sequencing using multiple metal layer structure with organic coatings forming transient bonding to dna bases
WO2012120387A1 (en) 2011-03-09 2012-09-13 Abionic Sa Rapid quantification of biomolecules in a selectively functionalized nanofluidic biosensor and method thereof
CN102180440A (zh) * 2011-04-06 2011-09-14 北京大学 一种微纳机电器件中纳米间隙电极的制备方法
JP6126083B2 (ja) 2011-05-17 2017-05-10 キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッドCanon U.S. Life Sciences, Inc. マイクロ流体デバイス内で外部ヒータ・システムを使用するシステムおよび方法
ITRM20110252A1 (it) 2011-05-23 2012-11-24 Istituto Naz Per La Ricerca S Ul Cancro Metodo di analisi di singola molecola mediante rilevazione delle collisioni di una molecola target su nanopori funzionalizzati.
WO2012164679A1 (ja) 2011-05-31 2012-12-06 株式会社日立製作所 生体分子情報解析装置
US9926552B2 (en) 2011-06-06 2018-03-27 Cornell University Microfluidic device for extracting, isolating, and analyzing DNA from cells
US8546080B2 (en) 2011-06-17 2013-10-01 International Business Machines Corporation Molecular dispensers
EP2737536B1 (en) 2011-07-27 2018-05-09 The Board of Trustees of the University of Illionis Nanopore sensors for biomolecular characterization
WO2013066456A2 (en) 2011-08-03 2013-05-10 The Johns Hopkins University Articles comprising templated crosslinked polymer films for electronic detection of nitroaromatic explosives
JP5670278B2 (ja) 2011-08-09 2015-02-18 株式会社日立ハイテクノロジーズ ナノポア式分析装置
EP2573554A1 (en) 2011-09-21 2013-03-27 Nxp B.V. Apparatus and method for bead detection
JP2013090576A (ja) 2011-10-24 2013-05-16 Hitachi Ltd 核酸分析デバイス及びそれを用いた核酸分析装置
WO2013074546A1 (en) 2011-11-14 2013-05-23 The Regents Of The University Of California Two- chamber dual-pore device
US20140231274A1 (en) 2011-11-22 2014-08-21 Panasonic Corporation Single molecule detection method and single molecule detection apparatus for biological molecule, and disease marker testing apparatus
US20130186758A1 (en) 2011-12-09 2013-07-25 University Of Delaware Current-carrying nanowire having a nanopore for high-sensitivity detection and analysis of biomolecules
JP2013156167A (ja) 2012-01-30 2013-08-15 Osaka Univ 物質の移動速度の制御方法および制御装置、並びに、これらの利用
US10139417B2 (en) 2012-02-01 2018-11-27 Arizona Board Of Regents On Behalf Of Arizona State University Systems, apparatuses and methods for reading an amino acid sequence
KR20140138526A (ko) 2012-03-29 2014-12-04 오사카 유니버시티 폴리뉴클레오티드의 염기 서열을 결정하는 방법, 및 폴리뉴클레오티드의 염기 서열을 결정하는 장치
WO2013154999A2 (en) 2012-04-09 2013-10-17 The Trustees Of Columbia University In The City Of New York Method of preparation of nanopore and uses thereof
US9310326B2 (en) 2012-06-14 2016-04-12 Samsung Electronics Co., Ltd. Device for determining a monomer molecule sequence of a polymer comprising different electrodes and use thereof
TWI498520B (zh) 2012-06-29 2015-09-01 Ibm 從一安裝表面分離一元件的裝置及方法
US9551682B2 (en) 2012-06-29 2017-01-24 Intel Corporation High throughput biochemical detection using single molecule fingerprinting arrays
KR101882865B1 (ko) 2012-07-03 2018-07-27 삼성전자주식회사 핵산의 염기 서열을 결정하는 방법
US9535033B2 (en) 2012-08-17 2017-01-03 Quantum Biosystems Inc. Sample analysis method
KR20140031559A (ko) 2012-09-04 2014-03-13 전홍석 그래핀을 이용한 핵산 염기서열결정 장치
JP6063693B2 (ja) 2012-10-03 2017-01-18 株式会社日立ハイテクノロジーズ 分析装置及び分析方法
US20140103945A1 (en) 2012-10-05 2014-04-17 Miami University Apparatus and method for demonstrating quantized conductance
CN102914395B (zh) * 2012-11-06 2015-04-08 苏州新锐博纳米科技有限公司 基于金属纳米间隙的纳米应力传感器及其制备方法
US8906215B2 (en) 2012-11-30 2014-12-09 International Business Machines Corporation Field effect based nanosensor for biopolymer manipulation and detection
JP6282036B2 (ja) 2012-12-27 2018-02-21 クオンタムバイオシステムズ株式会社 物質の移動速度の制御方法および制御装置
JP5951527B2 (ja) 2013-03-07 2016-07-13 株式会社東芝 検体検出装置及び検出方法
US9222130B2 (en) 2013-03-15 2015-12-29 Keith Oxenrider Method and apparatus for sequencing molecules
JP6054790B2 (ja) 2013-03-28 2016-12-27 三菱スペース・ソフトウエア株式会社 遺伝子情報記憶装置、遺伝子情報検索装置、遺伝子情報記憶プログラム、遺伝子情報検索プログラム、遺伝子情報記憶方法、遺伝子情報検索方法及び遺伝子情報検索システム
US9012329B2 (en) 2013-04-04 2015-04-21 International Business Machines Corporation Nanogap in-between noble metals
US9188578B2 (en) 2013-06-19 2015-11-17 Globalfoundries Inc. Nanogap device with capped nanowire structures
JP2018027018A (ja) 2013-08-27 2018-02-22 クオンタムバイオシステムズ株式会社 生体分子熱変性装置及びその製造方法
JP2016536599A (ja) 2013-08-27 2016-11-24 クオンタムバイオシステムズ株式会社 ナノギャップ電極およびその製造方法
EP3578987A1 (en) 2013-09-18 2019-12-11 Quantum Biosystems Inc. Biomolecule sequencing devices, systems and methods
JP6334115B2 (ja) 2013-09-18 2018-05-30 クオンタムバイオシステムズ株式会社 生体分子シーケンシング装置、方法、及びプログラム
JP2015077652A (ja) 2013-10-16 2015-04-23 クオンタムバイオシステムズ株式会社 ナノギャップ電極およびその製造方法
US9551697B2 (en) 2013-10-17 2017-01-24 Genia Technologies, Inc. Non-faradaic, capacitively coupled measurement in a nanopore cell array
US9546398B2 (en) 2013-11-14 2017-01-17 Agilent Technologies, Inc. Polymerase idling method for single molecule DNA sequencing
KR20160130380A (ko) 2014-01-24 2016-11-11 퀀텀 바이오시스템즈 가부시키가이샤 생체분자를 서열화하기 위한 디바이스, 시스템 및 방법
JP2015154750A (ja) 2014-02-20 2015-08-27 国立大学法人大阪大学 生体分子シーケンシング装置用電極、生体分子シーケンシング装置、方法、及びプログラム
CN106537400B (zh) 2014-02-26 2019-04-09 南托米克斯公司 安全的移动基因组浏览设备及用于其的方法
TW201602355A (zh) 2014-04-28 2016-01-16 量子生物系統公司 奈米間隙電極裝置、系統及其形成方法
US9658184B2 (en) 2014-05-07 2017-05-23 International Business Machines Corporation Increasing the capture zone by nanostructure patterns
JP2017517749A (ja) 2014-05-08 2017-06-29 クオンタムバイオシステムズ株式会社 調節可能なナノギャップ電極用のデバイス及び方法
WO2015170784A1 (en) 2014-05-08 2015-11-12 Osaka University Nanogap electrodes with dissimilar materials
WO2015170782A1 (en) 2014-05-08 2015-11-12 Osaka University Devices, systems and methods for linearization of polymers
US9362162B2 (en) 2014-08-14 2016-06-07 Globalfoundries Inc. Methods of fabricating BEOL interlayer structures
EP3315461B1 (en) 2015-06-23 2021-07-07 BGI Shenzhen Micro-porous electrode and method for analysis of chemical substances
JP2018533935A (ja) 2015-10-08 2018-11-22 クオンタムバイオシステムズ株式会社 核酸配列決定の装置、システム、及び方法
WO2017179581A1 (en) 2016-04-11 2017-10-19 Quantum Biosystems Inc. Systems and methods for biological data management
KR20190075010A (ko) 2016-04-27 2019-06-28 퀀텀 바이오시스템즈 가부시키가이샤 생체분자의 측정 및 시퀀싱을 위한 시스템 및 방법
WO2018025887A1 (en) 2016-08-02 2018-02-08 Quantum Biosystems Inc. Devices and methods for creation and calibration of a nanoelectrode pair
TW201928340A (zh) 2017-09-27 2019-07-16 日商量子生物系統公司 奈米電極裝置及其製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020168810A1 (en) * 2001-03-30 2002-11-14 The Penn State Research Foundation Lateral nanostructures by vertical processing
US20040124084A1 (en) * 2002-12-31 2004-07-01 Lee James W. Separation and counting of single molecules through nanofluidics, programmable electrophoresis, and nanoelectrode-gated tunneling and dielectric detection
US20050051768A1 (en) * 2003-09-06 2005-03-10 Kim Seong Jin Method for manufacturing organic molecular device
US20050112860A1 (en) * 2003-11-20 2005-05-26 Park Chan W. Method for manufacturing nano-gap electrode device
JP2013518283A (ja) * 2010-01-27 2013-05-20 インターナショナル・ビジネス・マシーンズ・コーポレーション 分子を検出する半導体デバイスを形成する方法ならびに分子を検出する集積回路、クロマトグラフィ・デバイス及び半導体デバイス
WO2011108540A1 (ja) * 2010-03-03 2011-09-09 国立大学法人大阪大学 ヌクレオチドを識別する方法および装置、ならびにポリヌクレオチドのヌクレオチド配列を決定する方法および装置
WO2013100949A1 (en) * 2011-12-28 2013-07-04 Intel Corporation Nanogap transducers with selective surface immobilization sites

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021517647A (ja) * 2018-04-09 2021-07-26 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 分子認識のためのナノポアを備えたトンネリング接合の製造
JP7090733B2 (ja) 2018-04-09 2022-06-24 エフ.ホフマン-ラ ロシュ アーゲー 分子認識のためのナノポアを備えたトンネリング接合の製造
WO2020095844A1 (ja) * 2018-11-06 2020-05-14 株式会社Screenホールディングス 電極基板
JP7372683B2 (ja) 2018-11-06 2023-11-01 国立大学法人大阪大学 電極基板および電極基板の製造方法
KR20230045916A (ko) * 2021-09-29 2023-04-05 한국기술교육대학교 산학협력단 이온전도도 측정기 및 이를 이용한 이온전도도 측정방법
KR102629165B1 (ko) 2021-09-29 2024-01-29 한국기술교육대학교 산학협력단 이온전도도 측정기 및 이를 이용한 이온전도도 측정방법

Also Published As

Publication number Publication date
WO2015057870A1 (en) 2015-04-23
US10261066B2 (en) 2019-04-16
US10466228B2 (en) 2019-11-05
JP2015077652A (ja) 2015-04-23
CN106133511A (zh) 2016-11-16
US20190310240A1 (en) 2019-10-10
TWI674405B (zh) 2019-10-11
US20160320364A1 (en) 2016-11-03
KR20160086335A (ko) 2016-07-19
JP6517826B2 (ja) 2019-05-22
EP3058357A4 (en) 2017-05-24
EP3058357A1 (en) 2016-08-24
TW201606300A (zh) 2016-02-16
JP2019164142A (ja) 2019-09-26

Similar Documents

Publication Publication Date Title
JP2019164142A (ja) ナノギャップ電極およびその製造方法
US11959904B2 (en) Nanopore sensing with a fluidic passage
US10557167B2 (en) Biomolecule sequencing devices, systems and methods
US8858764B2 (en) Electron beam sculpting of tunneling junction for nanopore DNA sequencing
JP5717634B2 (ja) 流体チャネル内の生体分子および他の分析物の電圧感知のための、長手方向に変位されるナノスケールの電極の使用
CN103975240B (zh) 金刚石电极纳米间隙换能器
CN107683337B (zh) 微孔电极及分析化学物质的方法
US8764968B2 (en) DNA sequencing using multiple metal layer structure with organic coatings forming transient bonding to DNA bases
JP6636455B2 (ja) 生体分子配列決定装置、システムおよび方法
CN109196117B (zh) 用于通过隧穿识别进行核酸测序的方法和系统
US9650668B2 (en) Use of longitudinally displaced nanoscale electrodes for voltage sensing of biomolecules and other analytes in fluidic channels
US8652337B1 (en) Self-formed nanometer channel at wafer scale

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171013

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20171013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181018

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190418

R150 Certificate of patent or registration of utility model

Ref document number: 6517826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees