JP2017147441A - スルーホールを充填してボイド及び他の欠陥を低減する方法 - Google Patents

スルーホールを充填してボイド及び他の欠陥を低減する方法 Download PDF

Info

Publication number
JP2017147441A
JP2017147441A JP2017013346A JP2017013346A JP2017147441A JP 2017147441 A JP2017147441 A JP 2017147441A JP 2017013346 A JP2017013346 A JP 2017013346A JP 2017013346 A JP2017013346 A JP 2017013346A JP 2017147441 A JP2017147441 A JP 2017147441A
Authority
JP
Japan
Prior art keywords
current density
copper
hole
holes
asd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017013346A
Other languages
English (en)
Inventor
ナガラジャン・ジャヤラジュ
Jayaraju Nagarajan
レオン・バルスタッド
Barstad Leon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Electronic Materials LLC
Original Assignee
Rohm and Haas Electronic Materials LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm and Haas Electronic Materials LLC filed Critical Rohm and Haas Electronic Materials LLC
Publication of JP2017147441A publication Critical patent/JP2017147441A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/423Plated through-holes or plated via connections characterised by electroplating method
    • H05K3/424Plated through-holes or plated via connections characterised by electroplating method by direct electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0094Filling or covering plated through-holes or blind plated vias, e.g. for masking or for mechanical reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/423Plated through-holes or plated via connections characterised by electroplating method
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/072Electroless plating, e.g. finish plating or initial plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0723Electroplating, e.g. finish plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Automation & Control Theory (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

【課題】直流めっき法は、ボイド形成を抑制し、ディンプルを低減し、ノジュールを排除する。
【解決手段】ある期間後に、スルーホールの壁が等角めっきされる(II)。高電流密度期間の終わりまでには、スルーホールは、その中心に、またはその中心近くに充填され(III)、ビア様形状を形成する。全スルーホールが充填されて(V)ボイドを含まなくなるまで、より低い直流密度の印加がビア様形状を充填し始める(IV)。このスルーホールは、ディンプル及びノジュールも含まない。
【選択図】図2

Description

本発明は、スルーホールを充填してボイド及び他の欠陥を低減する方法を対象とする。より具体的には、本発明は、高電流密度の直流サイクルを所定期間使用してスルーホールを充填し、続いて、低電流密度を所定期間印加することにより、スルーホールを充填してボイド及び他の欠陥を低減する方法を対象とする。
高密度配線は、スルーホールを有するプリント回路板の製作における重要な設計である。これらのデバイスの小型化は、より薄いコア材料、低減された線幅、及びより小さい直径のスルーホールの組み合わせに依存する。スルーホールの直径は、75μm〜125μmの範囲である。アスペクト比がより高くなるにつれて、銅めっきによるスルーホールの充填がますます困難になっている。結果として、より大きいボイド及びより深いディンプルがもたらされる。スルーホール充填の別の問題は、それらの充填傾向である。一端が閉鎖されたビアとは異なり、スルーホールは、基板を貫通し、両端が開放している。ビアは下から上まで充填している。対照的に、スルーホールが銅で充填される場合、銅は、スルーホールの中心の壁上に堆積し始める傾向があり、そこで、それが中心を塞いで「バタフライウイング」または2つのビアを形成する。これらの2つのビアが充填されて、これらのホールの堆積が完了する。したがって、ビアを充填するために使用される銅めっき浴は、典型的には、スルーホールを充填するために使用されるものとは異なる。めっき浴水平化剤及び他の浴添加物を選択して、正しい種類の充填を可能にする。添加物の正しい組み合わせが選択されない場合、銅めっきは、望ましくない銅の等角堆積をもたらす。図1は、スルーホールを充填するための基板に対する従来の直流印加の電流密度(ASD)対時間(分)の図表である。カソード電流が基板に印加される。スルーホールが充填されるまで電流密度を変化させることなく、電流密度が100分間等の所与の期間印加される。
多くの場合、銅は、スルーホールを完全に充填することができず、両端が充填されていないままである。中心に銅堆積物が充填されており、両端が充填されていない不完全なスルーホールは、「ドッグボーニング」と称されることもある。それらのホールの上及び下の空間は、ディンプルと称される。スルーホール充填中の全ディンプル排除は珍しく、予測不可能である。ディンプルの深さは、恐らく、スルーホール充填性能を定量化するために最も一般に使用される測定基準である。ディンプル要件は、スルーホールの直径及び厚さに依存し、製造業者によって異なる。ディンプルに加えて、ボイドと称されるギャップまたはホールも、銅スルーホール充填物内に生じ得る。より大きいディンプルがパネルのさらなる加工に影響を及ぼし、より大きいボイドがデバイス性能に影響を及ぼす。理想的なプロセスは、ボイドを有することなく、高度の平面性で、すなわち、一貫性をもたせて、スルーホールを完全に充填して、最適な信頼性及び電気特性、ならびに電気デバイスにおける最適な線幅及びインピーダンス制御のための可能な限り薄い表面厚さを提供する。
前述の問題に対処するために、本産業は、スルーホールを塞いで充填しようと試みる場合に、典型的には、2つの異なる電気めっき浴を使用する。上述のように2つのビアがスルーホール内に形成されるまでスルーホールを充填するために、第1の銅浴が使用される。第1の浴を、特にビアの充填を対象とする実質的に異なる製剤を有する第2の浴に置き換えて、充填プロセスを完了する。しかしながら、このプロセスは、多大な時間を必要とするのみならず、非効率的でもある。このスルーホール充填プロセスは、第1の浴がビア充填浴で置き換えられなければならないときを判断するために注意深く監視されなければならない。正しい時点で浴を取り換えることができなければ、典型的には、ディンプル及びボイド形成がもたらされる。さらに、2つの別個のめっき浴を単一のプロセスに使用することにより、製造業者及び顧客の両方にかかる費用が増大する。このめっきプロセスは、浴を取り換えるために停止されなければならず、それ故にプロセス効率をさらに低減する。
加えて、プリント回路板等の基板の厚さも増加している。多くの従来のプリント回路板は、現在、100μmを越える厚さを有する。従来の直流めっきが、ある状況下での100μm以下の厚さを有するプリント回路板への許容されるスルーホール充填の提供に成功している一方で、200μm以上等の100μmを超える厚さ範囲を有する板のスルーホールを充填しようとする試みは、満足できるものではない。多くの場合、これらのスルーホールは、深さ10μmを超える許容されない量のディンプルを有し、スルーホールにおける平均ボイド面積は、10%〜15%超過している。
金属めっきの際に直面する別の問題は、金属堆積物上でのノジュールの形成である。ノジュールは、めっきされる金属の結晶であると考えられており、めっきされた表面から生じる。ノジュールの直径は、1ミクロン未満〜最大数ミリメートルの範囲であり得る。ノジュールは、様々な電気的、機械的、及び審美的理由から望ましくない。例えば、ノジュールは、電子物品筺体の内部及び外部の両方で電子組立体への空気流を冷却することによって、容易に引き離され、運搬されるが、そこでそれらは短絡不良を引き起こし得る。したがって、ノジュールは、めっきされた基板が電子物品に組み立てられる前に除去されなければならない。ノジュールを除去する従来の方法は、各金属めっきされた基板のレーザー検査、続いて、顕微鏡を使用した労働者によるノジュールの手動での除去を含む。かかる従来の方法は、労働者によるエラーの余地を残し、非効率的である。
したがって、プリント回路板等の基板のスルーホール充填を改善する方法の必要性が存在する。
方法は、基板の表面及び複数のスルーホールの壁上に無電解銅層、銅フラッシュ層、またはそれらの組み合わせを含む、前記複数のスルーホールを有する前記基板を提供することと、銅電気めっき浴中に前記基板を浸漬することと、ある電流密度を第1の所定期間印加すること、続いて、より低い直流密度を第2の所定期間印加することを含む直流サイクルによって、前記スルーホールを銅で充填することとを含む。
本方法は、スルーホール充填中のディンプル形成及びボイドを低減または抑制する。ディンプルの深さは、典型的には、10μm未満である。低減されたディンプルの深さ及びボイド面積がつきまわり性を改善し、故に、基板の表面上に実質的に均一の銅層を提供し、良好なスルーホール充填も提供する。加えて、本方法を使用して、200μm以上の厚さ範囲を有する基板のゾゥホールを充填することができる。本方法は、ノジュール形成も抑制する。
基板のスルーホールを充填するための従来のDC電流印加のASD対時間(分)の図表である。 基板への直流の印加によるスルーホール充填の概略図であり、初期電流密度がその後の電流密度よりも高い。 ビア様形状を有するスルーホールの断面画像である。 ボイドを含まない完全に充填されたスルーホールの断面画像である。 スルーホールを充填するために使用される本発明のDCサイクルの電流密度(ASD)対時間(分)の図表である。 中心にボイドを有するスルーホールの断面画像である。 中心にボイドを有するスルーホールの断面画像である。
本明細書を通して使用されるとき、下記の略語は、文脈が別途明らかに示さない限り、以下の意味を有する:g=グラム、mL=ミリリットル、L=リットル、cm=センチメートル、μm=ミクロン、ppm=mg/Lの100万分、℃=摂氏温度、g/L=1リットル当たりのグラム、DC=直流、ASD=アンペア/dm、DI=脱イオン化、wt%=重量パーセント、T=ガラス転移温度、ボイド=別様に銅金属で充填されたスルーホール内の銅を含まない空隙、ディンプル深さ=ディンプルの最深点から基板の表面上にめっきされた銅のレベルまでの距離、単一のスルーホールのボイド面積=0.5A×0.5B×π(式中、Aがボイドの高さであり、Bがボイドのスルーホール内のその最大幅点での直径である)、スルーホール面積=スルーホールの高さ×スルーホールの直径、%ボイド面積=ボイド面積/スルーホール面積×100%。
「プリント回路板」及び「プリント配線板」という用語は、本明細書を通して同義に使用される。「めっき」及び「電気めっき」という用語は、本明細書を通して同義に使用される。「つきまわり性」という用語は、より高い電流密度領域と同じ厚さを有する低電流密度領域におけるめっきする能力を意味する。「サイクル」という用語は、同じ順序で繰り返される一連の事象を意味する。「即座に」という用語は、ステップが介在しないことを意味する。すべての量は、別途述べられない限り、重量パーセントである。すべての数値範囲は、その上限及び下限を含み、任意の順序で組み合わせ可能であるが、かかる数値範囲が合計100%にされることが論理的である場合を除く。
本発明は、複数のスルーホールを含む基板を含む銅電気めっき浴に直流またはDCを印加することにより、スルーホールを銅で電気めっきすることを対象とする。本発明の複数のスルーホールを有する基板の直流電気めっきサイクルは、最初に第1の所定電流密度を銅電気めっき浴中に浸漬された基板に第1の所定期間印加し、続いて、第1の所定電流密度をより低い第2の所定電流密度に低減し、より低い第2の所定電流密度を銅電気めっき浴中の基板に第2の所定期間印加することによって開始される。任意に、このDCサイクルは、同じ所定の高及び低電流密度で同じ所定期間繰り返され得るか、またはその後の電気めっきDCサイクルは、各々の個別のサイクルがその後の第2の電流密度よりも高い第1の電流密度で始まる限り、異なる高電流密度及び第1の所定期間、続いて、異なる低電流密度及び第2の所定期間を有し得る。高電流密度期間は、好ましくは、低電流密度期間よりも短い。好ましくは、初期電流密度の直後により低い電流密度が続く。この方法は、スルーホール内のボイド形成を低減または排除し、ディンプルサイズを低減し、ノジュール形成を抑制または排除する。
図2は、本発明のスルーホール充填法の概略図である。高電流密度が最初に印加される電気めっき法の初期段階のスルーホールIが図解されている。ある期間後に、スルーホールの壁が等角めっきされる(II)。高電流密度期間の終わりまでには、スルーホールは、その中心に、またはその中心近くに充填され(III)、ビア様形状を形成する。全スルーホールが充填されて(V)ボイドを含まなくなるまで、より低い直流密度の印加がビア様形状を充填し始める(IV)。このスルーホールは、ディンプル及びノジュールも含まない。
一般に、電流密度は、0.5ASD〜最大5ASDの範囲であり得るが、但し、めっきサイクルの第1の電流密度がめっきサイクルの第2の電流密度よりも常に高いことを条件とする。好ましくは、初期または第1の電流密度は、1ASD〜5ASDであり、第2のまたは低電流密度は、0.5ASD〜3ASDである。より好ましくは、高電流密度は、1.5ASD〜4ASDであり、低電流密度は、0.5ASD〜2ASDである。
めっき時間は異なり得る。好ましくは、高電流密度は、低電流密度よりも短い期間を有する。好ましくは、高電流密度めっき時間は、5分間〜30分間、より好ましくは、10分間〜25分間である。好ましくは、低電流密度期間は、60分間〜200分間、より好ましくは、90分間〜180分間の範囲であり得る。
好ましくは、銅電気めっき浴は、スルーホールを充填する電気めっき法中に撹拌されて、銅浴添加物が基板の表面及びスルーホール上に均一に堆積するように促進する。任意の従来のめっき浴撹拌装置を使用することができる。高電流密度が印加されているとき、撹拌速度は、低電流密度の印加中よりも遅い。一般に、浴撹拌は、高電流密度中では4L/分〜8L/分、低電流密度中では8L/分〜24L/分である。めっき温度は、室温〜60℃の範囲である。
スルーホールを充填する前に、基板は、好ましくは、無電解銅が基板の表面及びスルーホールの壁に隣接するように、無電解銅層でめっきされる。従来の無電解銅めっき浴、ならびに従来の無電解めっき法を使用して、銅層を堆積させることができる。かかる無電解銅浴及び方法は、当該技術分野及び文献で周知である。市販の無電解銅浴の一例は、CIRCUPOSIT(商標)880無電解プロセスめっき製剤及び方法(Dow Electronic Materials,Marlborough,MAから入手可能)である。無電解銅は、典型的には、0.25μm〜6μm、より典型的には、0.25μm〜3μmの厚さを有し得る。任意に、無電解銅は、電解フラッシュ銅層でめっきされて、それを腐食から保護する。無電解銅層に隣接する電気めっきされたフラッシュ銅の厚さは、0.5μm〜15μm、典型的には、1μm〜10μm、より典型的には、1μm〜5μmの範囲である。従来の電解銅浴を使用して、フラッシュ銅層をめっきすることができる。かかる銅浴は、当該技術分野及び文献で周知である。
基板のスルーホールの直径は、典型的には、75μm〜125μmの範囲である。スルーホールは、基板の幅を横断し、その深さは、典型的には、100μm〜400μmである。基板の厚さは、100μm以上、典型的には、200μm〜300μmの範囲であり得る。
基板としては、繊維ガラス等の繊維及び前述の含浸実施形態を含む、熱硬化性樹脂、熱可塑性樹脂、及びそれらの組み合わせを含み得るプリント回路板が挙げられる。
熱可塑性樹脂としては、アセタール樹脂、アクリル、例えば、アクリル酸メチル、セルロース樹脂、例えば、酢酸エチル、プロピオン酸セルロース、酢酸酪酸セルロース、及び硝酸セルロース、ポリエーテル、ナイロン、ポリエチレン、ポリスチレン、スチレンブレンド、例えば、アクリロニトリルスチレン及びコポリマーならびにアクリロニトリルブタジエンスチレンコポリマー、ポリカーボネート、ポリクロロトリフルオロエチレン、及びビニルポリマー及びコポリマー、例えば、酢酸ビニル、ビニルアルコール、ビニルブチラール、塩化ビニル、塩化酢酸ビニルコポリマー、塩化ビニリデン、及びビニルホルマールが挙げられるが、これらに限定されない。
熱硬化性樹脂としては、フタル酸アリル、フラン、メラミンホルムアルデヒド、フェノールホルムアルデヒド、及びフェノールフルフラールコポリマー(単独で、またはブタジエンアクリロニトリルコポリマーもしくはクリロニトリルブタジエンスチレンコポリマーと配合して)、ポリアクリル酸エステル、シリコーン、尿素ホルムアルデヒド、エポキシ樹脂、アリル樹脂、フタル酸グリセリル、及びポリエステルが挙げられるが、これらに限定されない。
プリント配線板は、低または高T樹脂を含み得る。低T樹脂は160℃未満のTを有し、高T樹脂は160℃以上のTを有する。典型的には、高T樹脂は、160℃〜280℃または170℃〜240℃等のTを有する。高Tポリマー樹脂としては、ポリテトラフルオロエチレン(PTFE)及びポリテトラフルオロエチレンブレンドが挙げられるが、これらに限定されない。かかるブレンドとしては、例えば、ポリフェネレンオキシド及びシアン酸エステルを有するPTFEが挙げられる。高Tを有する樹脂を含むポリマー樹脂の他のクラスとしては、エポキシ樹脂、例えば、二官能性及び多官能性エポキシ樹脂、ビマレイミド/トリアジン及びエポキシ樹脂(BTエポキシ)、エポキシ/ポリフェニレンオキシド樹脂、アクリロニトリルブタジエンスチレン、ポリカーボネート(PC)、ポリフェニレンオキシド(PPO)、ポリフェネレンエーテル(PPE)、ポリフェニレンサルファイド(PPS)、ポリサルフォン(PS)、ポリアミド、ポリエステル、例えば、ポリエチレンテレフタラート(PET)及びポリブチレンテレフタラート(PBT)、ポリエーテルケトン(PEEK)、液晶ポリマー、ポリウレタン、ポリエーテルイミド、エポキシーズ、及びそれらの複合体が挙げられるが、これらに限定されない。
スルーホールを塞いで充填するための従来のエポキシ電気めっき浴が使用され得る。スルーホール充填を対象とする1つの浴製剤のみが使用され、最初の浴製剤がビア充填浴製剤に変更されてスルーホール充填を完了する従来のプロセスが回避される。銅イオン源に加えて、好ましくは、銅電気めっき浴は、1つ以上の光沢剤、水平化剤、及び抑制剤を含む。従来の光沢剤、水平化剤、及び抑制剤が使用され得る。
銅イオン源としては、水溶性ハロゲン化物、硝酸塩、酢酸塩、硫酸塩、ならびに他の有機及び無機銅塩が挙げられるが、これらに限定されない。かかる銅塩のうちの1つ以上の混合物を使用して、銅イオンを提供することができる。例としては、硫酸銅五水和物等の硫酸銅、塩化銅、硝酸銅、水酸化銅、及びスルファミン酸銅が挙げられる。銅塩の従来の量がこれらの組成物に使用され得る。銅塩は、50g/L〜350g/L、典型的には、100g/L〜250g/Lの量で浴中に含まれる。
酸としては、硫酸、塩酸、フッ化水素酸、リン酸、硝酸、スルファミン酸、及びアルキルスルホン酸が挙げられるが、これらに限定されない。かかる酸は、従来の量で含まれる。典型的には、かかる酸は、エポキシ浴中に25g/L〜350g/Lの量で含まれる。
光沢剤としては、3−メルカプト−プロピルスルホン酸及びそのナトリウム塩、2−メルカプト−エタンスルホン酸及びそのナトリウム塩、ならびにビススルホプロピルジスルフィド及びそのナトリウム塩、3−(ベンズチアゾイル−2−チオ)−プロピルスルホン酸ナトリウム塩、3−メルカプトプロパン−1−スルホン酸ナトリウム塩、エチレンジチオジプロピルスルホン酸ナトリウム塩、ビス−(p−スルホフェニル)−ジスルフィドジナトリウム塩、ビス−(ω−スルホブチル)−ジスルフィドジナトリウム塩、ビス−(ω−スルホヒドロキシプロピル)−ジスルフィドジナトリウム塩、ビス−(ω−スルホプロピル)−ジスルフィドジナトリウム塩、ビス−(ω−スルホプロピル)−スルフィドジナトリウム塩、メチル−(ω−スルホプロピル)−ジスルフィドナトリウム塩、メチル−(ω−スルホプロピル)−トリスルフィドジナトリウム塩、O−エチル−ジチオ炭酸−S−(ω−スルホプロピル)−エステル、チオグリコール酸カリウム塩、チオリン酸−O−エチル−ビス−(ω−スルホプロピル)−エステルジナトリウム塩、チオリン酸−トリス(ω−スルホプロピル)−エステル三ナトリウム塩、N,N−ジメチルジチオカルバミン酸(3−スルホプロピル)エステルナトリウム塩、(O−エチルジチオカルボナト)−S−(3−スルホプロピル)−エステルカリウム塩、3−[(アミノ−イミノメチル)−チオ]−1−プロパンスルホン酸、及び3−(2−ベンズチアゾリルチオ)−1−プロパンスルホン酸ナトリウム塩が挙げられるが、これらに限定されない。好ましくは、光沢剤は、ビススルホプロピルジスルフィドまたはそのナトリウム塩である。典型的には、光沢剤は、1ppb〜500ppm、好ましくは、50ppb〜10ppmの量で含まれる。
スルーホール充填のためにエポキシ電気めっき浴中に含まれる水平化剤は、好ましくは、複素環式芳香族化合物とエポキシ化合物の反応生成物である。かかる化合物の合成は、米国特許第8,268,158号等の文献に開示されている。より好ましくは、水平化剤は、以下の式の少なくとも1つのイミダゾール化合物の反応生成物であり、
式中、R、R、及びRは独立して、H、(C−C12)アルキル、(C−C12)アルケニル、及びアリールから選択されるが、但し、R及びRの両方がHではないことを条件とする。すなわち、これらの反応生成物は、R及びRのうちの少なくとも1つが、(C−C12)アルキル、(C−C12)アルケニル、またはアリールである、少なくとも1つのイミダゾールを含有する。かかるイミダゾール化合物は、4位及び/または5位で、(C−C12)アルキル、(C−C12)アルケニル、またはアリールで置換される。好ましくは、R、R、及びRは独立して、H、(C−C)アルキル、(C−C)アルケニル、及びアリール、より好ましくは、H、(C−C)アルキル、(C−C)アルケニル、及びアリール、さらにより好ましくは、H、(C−C)アルキル、(C−C)アルケニル、及びアリールである。(C−C12)アルキル基及び(C−C12)アルケニル基は各々任意に、ヒドロキシル基、ハロゲン、及びアリール基のうちの1つ以上で置換されてもよい。好ましくは、置換(C−C12)アルキル基は、アリール置換(C−C12)アルキル基であり、より好ましくは、(C−C)アルキルである。例示の(C−C)アルキル基としては、ベンジル、フェネチル、及びメチルナフチルが含まれるが、これらに限定されない。あるいは、(C−C12)アルキル基及び(C−C12)アルケニル基の各々は、それぞれ、アリール基と縮合した環状アルキルまたは環状アルケニル基を含有し得る。本明細書で使用されるとき、「アリール」という用語は、水素原子の除去により芳香族または複素環式芳香族部分から誘導される任意の有機ラジカルを指す。好ましくは、このアリール基は、6〜12個の炭素原子を含有する。本発明におけるこのアリール基は、任意に、(C−C)アルキル及びヒドロキシルのうちの1つ以上で置換されてもよい。例示のアリール基としては、フェニル、トリル、キシリル、ヒドロキシトリル、フェノリル、ナフチル、フラニル、及びチオフェニルが挙げられるが、これらに限定されない。このアリール基は、好ましくは、フェニル、キシリル、またはナフチルである。例示の(C−C12)アルキル基及び置換(C−C12)アルキル基としては、メチル、エチル、n−プロピル、イソ−プロピル、n−ブチル、イソ−ブチル、sec−ブチル、n−ペンチル、2−ペンチル、3−ペンチル、2−(2−メチル)ブチル、2−(2,3−ジメチル)ブチル、2−(2−メチル)ペンチル、ネオペンチル、ヒドロキシメチル、ヒドロキシエチル、ヒドロキシプロピル、シクロペンチル、ヒドロクスシクロペンチル、シクロペンチルメチル、シクロペンチルエチル、シクロヘキシル、シクロヘキシルメチル、ヒドロキシクロヘキシル、ベンジル、フェネチル、ナフチルメチル、テトラヒドロナフタレニル、及びテトラヒドロナフチルメチルが挙げられるが、これらに限定されない。例示の(C−C)アルケニル基としては、アリル、スチレニル、シクロペンテニル、シクロペンチルメチル、シクロペンテニルエチル、シクロヘキセニル、シクロヘキセニルメチル、及びインデニルが挙げられるが、これらに限定されない。好ましくは、少なくとも1つのイミダゾール化合物は、4位または5位で、C−C)アルキル、(C−C)アルケニル、またはアリールで置換される。より好ましくは、少なくとも1つのイミダゾールは、4位または5位で(C−C)アルキル、(C−C)アルケニル、またはアリールで置換される。さらにより好ましくは、少なくとも1つのイミダゾールは、4位または5位で、メチル、エチル、プロピル、ブチル、アリル、またはアリールで置換される。このイミダゾール化合物は、一般に、Sigma−Aldrich(St.Louis,Missouri)等の様々な供給源から市販されているか、または文献の方法から調製することができる。
上述のイミダゾール化合物のうちの1つ以上が、以下の式を有する1つ以上のエポキシ化合物と反応し、
式中、Y及びYは独立して、水素及び(C−C)アルキルから選択され、R及びRは独立して、水素、CH、及びOHから選択され、pは、1〜6であり、qは、1〜20である。好ましくは、Y及びYの両方がHである。pが2である場合、各RがHであり、RがH及びCHから選択され、qが1〜10であることが好ましい。pが3である場合、少なくとも1つのRがCH及びOHから選択され、qが1であることが好ましい。pが4である場合、R及びRの両方がHであり、qが1であることが好ましい。式(II)の例示の化合物としては、1,4−ブタンジオールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジ(エチレングリコール)ジグリシジルエーテル、ポリ(エチレングリコール)ジグリシジルエーテル化合物、グリセロールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ジ(プロピレングリコール)ジグリシジルエーテル、及びポリ(プロピレングリコール)ジグリシジルエーテル化合物が挙げられるが、これらに限定されない。式IIのポリ(エチレングリコール)ジグリシジルエーテル化合物は、R及びRの各々がHであり、pが2であり、qが3〜20であり、好ましくは、qが3〜15であり、より好ましくは、qが3〜12であり、さらにより好ましくは、qが3〜10である化合物である。例示のポリ(エチレングリコール)ジグリシジルエーテル化合物としては、トリ(エチレングリコール)ジグリシジルエーテル、テトラ(エチレングリコール)ジグリシジルエーテル、ペンタ(エチレングリコール)ジグリシジルエーテル、ヘキサ(エチレングリコール)ジグリシジルエーテル、ノナ(エチレングリコール)ジグリシジルエーテル、デカ(エチレングリコール)ジグリシジルエーテル、及びドデカ(エチレングリコール)ジグリシジルエーテルが挙げられる。式IIのポリ(プロピレングリコール)ジグリシジルエーテル化合物は、Rの各々がHであり、Rのうちの1つがCHであり、pが2であり、qが3〜20であり、好ましくは、qが3〜15であり、より好ましくは、qが3〜12であり、さらにより好ましくは、qが3〜10である化合物である。例示のポリ(プロピレングリコール)ジグリシジルエーテル化合物としては、トリ(プロピレングリコール)ジグリシジルエーテル、テトラ(プロピレングリコール)ジグリシジルエーテル、ペンタ(プロピレングリコール)ジグリシジルエーテル、ヘキサ(プロピレングリコール)ジグリシジルエーテル、ノナ(プロピレングリコール)ジグリシジルエーテル、デカ(プロピレングリコール)ジグリシジルエーテル、及びドデカ(プロピレングリコール)ジグリシジルエーテルが挙げられる。好適なポリ(エチレングリコール)ジグリシジルエーテル化合物及びポリ(プロピレングリコール)ジグリシジルエーテル化合物は、350〜10000、好ましくは、380〜8000の数平均分子量を有するものである。
エポキシ電気めっき浴中に含まれ得る他の添加物は、1つ以上の錯化剤、1つ以上の塩化物イオン源、安定剤、例えば、機械的特性を調整し、速度制御を提供し、粒状構造を精製し、かつ堆積応力を修正するもの等、緩衝剤、抑制剤、及び担体である。それらは、従来の量でエポキシ電気めっき浴中に含まれ得る。
これらの方法は、スルーホール充填中のボイド及びディンプル形成を低減または抑制する。スルーホールの%ボイド面積が低減または排除される。高電流密度の直後に低電流密度が続く方法は、スルーホール充填に0%〜2%等の10%〜15%以下のボイドを提供することができる。ディンプル形成は10μm以下であり、好ましくは、ディンプルサイズは5μm以下であり、スルーホール中にボイドは存在しない。ディンプル及びボイドの深さを低減することにより、つきまわり性が改善され、それ故に、基板の表面上に実質的に均一の銅層を提供する。
以下の実施例は、本発明をさらに例証するために包含されており、その範囲を限定するようには意図されていない。
実施例1
複数のスルーホールを有するFR4/ガラスエポキシ切り取り試片(幅5cm、長さ15cm、及び厚さ200μm)は、Tech Circuitによって提供されたものであった。スルーホールは、100μmの平均直径を有した。切り取り試片をCIRCUPOSIT(商標)880無電解プロセスめっき製剤及び方法(Dow Electronic Materials,Marlborough,MAから入手可能)でめっきして、切り取り試片の一面及びスルーホールの壁上に銅層を形成した。切り取り試片上の銅層の厚さは、0.3μmであった。従来の銅洗浄剤を使用して切り取り試片を事前洗浄した。その後、切り取り試片を以下の表に示される式を有する銅電気めっき浴を収容したハーリングセル内に設置した。
切り取り試片を従来のDC整流器に接続した。ハーリングセル内の対極は、DT−4イリジウムでコーティングされたチタン不溶性アノードであった。電気めっき中、めっき浴を4L/分で空気撹拌した。DC電流密度を2ASDに設定した。銅電気めっきを室温で20分間行って、図3に示されるものと実質的に同じビア様形状を形成した。従来の光学顕微鏡をLeica Application Suit V3(Leica Microsystemsから入手可能)と組み合わせて使用して、区分した試料をディンプル及びボイドについて試験した。図3は、上記の表の銅電気めっき浴を使用して、2ASDの高電流密度で、室温で20分間めっきされた、FR4/ガラスエポキシ切り取り試片(幅5cm、長さ15cm、及び厚さ200μm)の断面画像である。20分後、電流密度を1ASDに低減し、8L/分で浴撹拌し、銅電気めっきを合計90分間継続して、図4に示されるようにスルーホールを完全に充填した。めっき後、切り取り試片をDI水ですすぎ、断面区分し、従来の光学顕微鏡をLeica Application Suit V3と組み合わせて用いて、スルーホール充填について試験した。図4は、スルーホールのうちの1つの断面画像である。試験されたスルーホールはすべて、ボイドを含まないように見えた。加えて、試験されたディンプルはすべて、5μm未満であった。ノジュールは観察されなかった。図5は、スルーホールを充填するために使用された電流密度(ASD)対時間(分)のDCサイクルの図表である。
実施例2(比較)
複数のスルーホールを有するFR4/ガラスエポキシ切り取り試片(幅5cm、長さ15cm、及び厚さ200μm)は、Tech Circuitによって提供されたものであった。スルーホールは、100μmの平均直径を有した。切り取り試片をCIRCUPOSIT(商標)880無電解プロセスめっき製剤及び方法(Dow Electronic Materials,Marlborough,MA)でめっきして、切り取り試片の一面及びスルーホールの壁上に銅層を形成した。各切り取り試片の銅層の厚さは、0.3μmであった。従来の銅洗浄剤を使用して切り取り試片を事前洗浄した。その後、切り取り試片を実施例1の表に示される式を有する銅電気めっき浴を収容したハーリングセル内に設置した。
切り取り試片を従来のDC整流器に接続した。ハーリングセル内の対極は、不溶性アノードであった。電気めっき中、めっき浴を4L/分で空気撹拌した。めっきを室温で63分間行った。電流密度を1.5ASDに設定し、変更しなかった。DCの図表は、めっき時間を除いて図1に示されるものと実質的に同じであった。
電気めっき後、切り取り試片をハーリングセルから取り除き、DI水ですすぎ、スルーホール充填の分析のために区分した。従来の光学顕微鏡をLeica Application Suit V3と組み合わせて使用して、区分した試料をボイド、ディンプル、及びノジュールについて試験した。ノジュールが観察されず、ディンプルが5μm以下のように見えたが、図6及び7に示されるように、観察されたスルーホールのうちの実質的にすべてが主要なボイド形成を有した。

Claims (9)

  1. a)基板の表面及び複数のスルーホールの壁上に無電解銅層、銅フラッシュ層、またはそれらの組み合わせを備える、前記複数のスルーホールを有する前記基板を提供することと、
    b)アノードを備える銅電気めっき浴中に前記基板を浸漬することと、
    c)ある電流密度を第1の所定期間印加すること、続いて、より低い電流密度を第2の所定期間印加することを含む直流サイクルによって、前記スルーホールを銅で充填することと、を含む、方法。
  2. 前記電流密度が1ASD〜5ASDの範囲である、請求項1に記載の方法。
  3. 前記電流密度が1.5ASD〜4ASDの範囲である、請求項2に記載の方法。
  4. 前記より低い電流密度が0.5ASD〜2ASDの範囲である、請求項1に記載の方法。
  5. 前記より低い電流密度が0.5ASD〜2ASDの範囲である、請求項1に記載の方法。
  6. 前記第1の所定期間が5分間〜30分間である、請求項1に記載の方法。
  7. 前記第2の所定期間が60分間〜200分間である、請求項1に記載の方法。
  8. 前記基板の厚さが100μm以上である、請求項1に記載の方法。
  9. 前記基板の厚さが200μm〜300μmである、請求項8に記載の方法。

JP2017013346A 2016-02-15 2017-01-27 スルーホールを充填してボイド及び他の欠陥を低減する方法 Pending JP2017147441A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662295291P 2016-02-15 2016-02-15
US62/295,291 2016-02-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018192686A Division JP2019023352A (ja) 2016-02-15 2018-10-11 スルーホールを充填してボイド及び他の欠陥を低減する方法

Publications (1)

Publication Number Publication Date
JP2017147441A true JP2017147441A (ja) 2017-08-24

Family

ID=58017919

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017013346A Pending JP2017147441A (ja) 2016-02-15 2017-01-27 スルーホールを充填してボイド及び他の欠陥を低減する方法
JP2018192686A Pending JP2019023352A (ja) 2016-02-15 2018-10-11 スルーホールを充填してボイド及び他の欠陥を低減する方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018192686A Pending JP2019023352A (ja) 2016-02-15 2018-10-11 スルーホールを充填してボイド及び他の欠陥を低減する方法

Country Status (6)

Country Link
US (1) US10512174B2 (ja)
EP (1) EP3205750B1 (ja)
JP (2) JP2017147441A (ja)
KR (1) KR102070039B1 (ja)
CN (1) CN107087353A (ja)
TW (1) TW201742523A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145502A (ja) * 2016-02-15 2017-08-24 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC スルーホールを充填してボイド及び他の欠陥を低減する方法
JP2020017712A (ja) * 2018-07-26 2020-01-30 健鼎(無錫)電子有限公司Tripod (WUXI) Electronic Co., Ltd. 回路基板構造の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7087758B2 (ja) * 2018-07-18 2022-06-21 住友金属鉱山株式会社 銅張積層板
TWI704852B (zh) * 2018-11-28 2020-09-11 先豐通訊股份有限公司 電路板的電鍍方法及其所製成的電路板
US11746433B2 (en) * 2019-11-05 2023-09-05 Macdermid Enthone Inc. Single step electrolytic method of filling through holes in printed circuit boards and other substrates
CN112739022A (zh) * 2020-12-22 2021-04-30 江西志博信科技股份有限公司 一种hdi技术应用印刷电路板的工艺
US20220213610A1 (en) * 2021-01-06 2022-07-07 Rohm And Haas Electronic Materials Llc Photoresist resolution capabilities by copper electroplating anisotropically
EP4063533A1 (en) * 2021-03-25 2022-09-28 Atotech Deutschland GmbH & Co. KG A process for electrochemical deposition of copper with different current densities
TWI754593B (zh) 2021-06-01 2022-02-01 欣興電子股份有限公司 線路板的層間導通結構與其製造方法
KR20240034865A (ko) * 2021-08-05 2024-03-14 맥더미드 엔쏜 인코포레이티드 나노쌍정 구리의 전착을 위한 조성물 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253490A (ja) * 2002-02-27 2003-09-10 Hideo Honma ビアホール及びスルーホールを有する基板のめっき方法
JP2005093934A (ja) * 2003-09-19 2005-04-07 Shinko Electric Ind Co Ltd スルーホールの充填方法
JP2007180359A (ja) * 2005-12-28 2007-07-12 Shinko Electric Ind Co Ltd スルーホールの充填方法
JP2009021581A (ja) * 2007-06-15 2009-01-29 Meltex Inc プリント配線板製造用の埋設銅めっき方法及びその埋設銅めっき方法を用いて得られるプリント配線板

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3751289A (en) 1971-08-20 1973-08-07 M & T Chemicals Inc Method of preparing surfaces for electroplating
JPH0978251A (ja) 1995-09-13 1997-03-25 Hitachi Chem Co Ltd 無電解銅めっきの前処理液
DE69929967T2 (de) * 1998-04-21 2007-05-24 Applied Materials, Inc., Santa Clara Elektroplattierungssystem und verfahren zur elektroplattierung auf substraten
KR100665745B1 (ko) 1999-01-26 2007-01-09 가부시키가이샤 에바라 세이사꾸쇼 구리도금방법 및 그 장치
JP3124523B2 (ja) 1999-01-28 2001-01-15 日本エレクトロプレイテイング・エンジニヤース株式会社 銅メッキ方法
ATE375611T1 (de) 1999-08-16 2007-10-15 Siemens Vdo Automotive Inc Mehrachsiges verbindungssystem
US6280602B1 (en) * 1999-10-20 2001-08-28 Advanced Technology Materials, Inc. Method and apparatus for determination of additives in metal plating baths
JP4394234B2 (ja) 2000-01-20 2010-01-06 日鉱金属株式会社 銅電気めっき液及び銅電気めっき方法
JP3594894B2 (ja) * 2000-02-01 2004-12-02 新光電気工業株式会社 ビアフィリングめっき方法
JP2002245484A (ja) 2001-02-15 2002-08-30 Osaka Gas Co Ltd 行動生成システム及びコンピュータマネキンの行動生成用プログラム
JP4762423B2 (ja) 2001-03-05 2011-08-31 石原薬品株式会社 ボイドフリー銅メッキ方法
JP4809546B2 (ja) 2001-06-07 2011-11-09 石原薬品株式会社 有機溶媒を用いたボイドフリー銅メッキ方法
JP2003041393A (ja) 2001-07-30 2003-02-13 Atotech Japan Kk 銅メッキ方法
US6911068B2 (en) 2001-10-02 2005-06-28 Shipley Company, L.L.C. Plating bath and method for depositing a metal layer on a substrate
US6773573B2 (en) 2001-10-02 2004-08-10 Shipley Company, L.L.C. Plating bath and method for depositing a metal layer on a substrate
TW200401848A (en) 2002-06-03 2004-02-01 Shipley Co Llc Leveler compounds
JP2004342750A (ja) 2003-05-14 2004-12-02 Toshiba Corp 電子デバイスの製造方法
JP4157985B2 (ja) 2003-06-09 2008-10-01 石原薬品株式会社 前処理式の銅メッキ方法
US7879218B1 (en) 2003-12-18 2011-02-01 Novellus Systems, Inc. Deposit morphology of electroplated copper
JP4457843B2 (ja) * 2004-10-15 2010-04-28 住友ベークライト株式会社 回路基板の製造方法
US20070017006A1 (en) * 2005-07-25 2007-01-25 Mike Tsai Band ends joint
TWI347373B (en) 2006-07-07 2011-08-21 Rohm & Haas Elect Mat Formaldehyde free electroless copper compositions
TWI347982B (en) 2006-07-07 2011-09-01 Rohm & Haas Elect Mat Improved electroless copper compositions
JP4932370B2 (ja) * 2006-07-28 2012-05-16 日本マクダーミッド株式会社 電解めっき方法、プリント配線板及び半導体ウェハー
JP5558675B2 (ja) 2007-04-03 2014-07-23 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. 金属メッキ組成物
WO2008157612A1 (en) 2007-06-21 2008-12-24 Enthone Inc. Codeposition of copper nanoparticles in through silicon via filling
JP2009041097A (ja) 2007-08-10 2009-02-26 Rohm & Haas Electronic Materials Llc 銅めっき方法
JP2009141049A (ja) * 2007-12-05 2009-06-25 New Japan Radio Co Ltd スルーホールフィリング方法
JP5191331B2 (ja) * 2008-09-26 2013-05-08 新日本無線株式会社 スルーホールフィリング方法
JP5012759B2 (ja) * 2008-10-24 2012-08-29 大日本印刷株式会社 貫通電極基板の製造方法
US8500983B2 (en) * 2009-05-27 2013-08-06 Novellus Systems, Inc. Pulse sequence for plating on thin seed layers
US20100320809A1 (en) 2009-06-11 2010-12-23 Roleder Jon W Retractable foot support for pedicure lounger
US20120175264A1 (en) 2009-09-28 2012-07-12 Basf Se Wafer pretreatment for copper electroplating
TWI487815B (zh) 2010-01-27 2015-06-11 Ebara Corp 鍍覆方法與鍍覆裝置
US8268157B2 (en) 2010-03-15 2012-09-18 Rohm And Haas Electronic Materials Llc Plating bath and method
US20110220512A1 (en) 2010-03-15 2011-09-15 Rohm And Haas Electronic Materials Llc Plating bath and method
KR20110129170A (ko) 2010-05-25 2011-12-01 삼성전기주식회사 와이어 본딩 장치 및 방법
JP2012127003A (ja) 2010-12-15 2012-07-05 Rohm & Haas Electronic Materials Llc 銅層を均一にする電気めっき方法
EP2537962A1 (en) 2011-06-22 2012-12-26 Atotech Deutschland GmbH Method for copper plating
JP6029342B2 (ja) * 2012-06-15 2016-11-24 新光電気工業株式会社 配線基板及びその製造方法
US9689083B2 (en) 2013-06-14 2017-06-27 Lam Research Corporation TSV bath evaluation using field versus feature contrast
JP2015106653A (ja) * 2013-11-29 2015-06-08 イビデン株式会社 プリント配線板の製造方法
CN104532318A (zh) * 2014-12-31 2015-04-22 广州兴森快捷电路科技有限公司 一种电镀填通孔的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253490A (ja) * 2002-02-27 2003-09-10 Hideo Honma ビアホール及びスルーホールを有する基板のめっき方法
JP2005093934A (ja) * 2003-09-19 2005-04-07 Shinko Electric Ind Co Ltd スルーホールの充填方法
JP2007180359A (ja) * 2005-12-28 2007-07-12 Shinko Electric Ind Co Ltd スルーホールの充填方法
JP2009021581A (ja) * 2007-06-15 2009-01-29 Meltex Inc プリント配線板製造用の埋設銅めっき方法及びその埋設銅めっき方法を用いて得られるプリント配線板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145502A (ja) * 2016-02-15 2017-08-24 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC スルーホールを充填してボイド及び他の欠陥を低減する方法
JP2020017712A (ja) * 2018-07-26 2020-01-30 健鼎(無錫)電子有限公司Tripod (WUXI) Electronic Co., Ltd. 回路基板構造の製造方法

Also Published As

Publication number Publication date
US20170238427A1 (en) 2017-08-17
JP2019023352A (ja) 2019-02-14
EP3205750B1 (en) 2019-10-23
EP3205750A1 (en) 2017-08-16
TW201742523A (zh) 2017-12-01
KR20170095731A (ko) 2017-08-23
KR102070039B1 (ko) 2020-01-29
CN107087353A (zh) 2017-08-22
US10512174B2 (en) 2019-12-17

Similar Documents

Publication Publication Date Title
JP2019023352A (ja) スルーホールを充填してボイド及び他の欠陥を低減する方法
JP6345955B2 (ja) スルーホールを充填する方法
JP6073438B2 (ja) 貫通孔の充填
JP6423601B2 (ja) スルーホールのフィリング方法
JP2019214795A (ja) スルーホールを充填してボイド及び他の欠陥を低減する方法
JP2011213717A (ja) めっき浴および方法
TW202336274A (zh) 用於填充通孔以減少空隙之方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180619