JP2016173551A - エレクトロクロミック表示装置 - Google Patents

エレクトロクロミック表示装置 Download PDF

Info

Publication number
JP2016173551A
JP2016173551A JP2015123915A JP2015123915A JP2016173551A JP 2016173551 A JP2016173551 A JP 2016173551A JP 2015123915 A JP2015123915 A JP 2015123915A JP 2015123915 A JP2015123915 A JP 2015123915A JP 2016173551 A JP2016173551 A JP 2016173551A
Authority
JP
Japan
Prior art keywords
layer
display
electrochromic
electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015123915A
Other languages
English (en)
Other versions
JP6610023B2 (ja
Inventor
吉智 岡田
Yoshitomo Okada
吉智 岡田
禎久 内城
Sadahisa Uchijo
禎久 内城
八代 徹
Toru Yashiro
徹 八代
平野 成伸
Shigenobu Hirano
成伸 平野
高橋 裕幸
Hiroyuki Takahashi
裕幸 高橋
匂坂 俊也
Toshiya Kosaka
俊也 匂坂
圭一郎 油谷
Keiichiro Yutani
圭一郎 油谷
碩燦 金
Seok-Chan Kim
碩燦 金
和明 辻
Kazuaki Tsuji
和明 辻
満美子 井上
Mamiko Inoue
満美子 井上
堀内 保
Tamotsu Horiuchi
保 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to PCT/JP2015/003292 priority Critical patent/WO2016002212A1/en
Priority to CN201580046188.6A priority patent/CN106796379B/zh
Priority to KR1020177002807A priority patent/KR20170024090A/ko
Priority to US15/315,970 priority patent/US10012885B2/en
Priority to EP15815975.6A priority patent/EP3164763B1/en
Publication of JP2016173551A publication Critical patent/JP2016173551A/ja
Application granted granted Critical
Publication of JP6610023B2 publication Critical patent/JP6610023B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1506Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/41Opaque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • G02F2001/1536Constructional details structural features not otherwise provided for additional, e.g. protective, layer inside the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • G02F2001/1552Inner electrode, e.g. the electrochromic layer being sandwiched between the inner electrode and the support substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • G02F2001/1635Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor the pixel comprises active switching elements, e.g. TFT
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • G02F2201/501Blocking layers, e.g. against migration of ions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/01Function characteristic transmissive
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/34Colour display without the use of colour mosaic filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/38Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using electrochromic devices

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】画素間でのクロストークを抑制することができ、表示画像の保持性能や耐光性に優れたエレクトロクロミック表示装置を提供する。
【解決手段】表示基板1と、表示基板1上に設けられた表示電極2と、表示電極2上に設けられたエレクトロクロミック層4と、表示基板1に対向して設けられた対向基板9と、対向基板9上に設けられた複数の対向電極8と、表示基板1と対向基板9との間に設けられた電解液層7とを備え、表示電極2とエレクトロクロミック層4との間にイットリウムを含む金属酸化物層3を有することを特徴とするエレクトロクロミック表示装置。
【選択図】図1

Description

本発明は、エレクトロクロミック表示装置に関する。
近年、紙に替わる電子媒体として電子ペーパーへのニーズが高まり、その開発が盛んに行われている。この電子ペーパーのような表示システムを実現する手段として、液晶ディスプレイや有機ELディスプレイなどの自発光表示技術の開発が進み、一部製品化されている。一方で、低消費電力かつ視認性に優れた反射型表示技術が、次世代電子ペーパーの表示技術として有望視されている。
反射型表示技術としては、帯電した白黒粒子を電場によって位置を反転させ、白黒の表示を切り替える電気泳動方式が広く知られており、電子書籍端末などで利用されているが、従来の技術では白黒表示に限られるため、フルカラーの反射型表示技術が大きく期待されている。これに対し、前記フルカラーの反射型表示技術として、この白黒表示の電気泳動方式にRGB(W)のカラーフィルターを重ね合わせることでカラー化を実現したフルカラー表示方式が知られている。
しかし、3色又は4色で空間を分割することから、色の鮮やかさや明るさに乏しいという問題があった。
そこで、カラーフィルターを設けず、反射型の表示素子を実現するための有望な技術として、エレクトロクロミズム(electrochromism)現象を利用したエレクトロクロミック表示方式が注目を集めている。エレクトロクロミック表示方式では、高い色再現性と表示メモリ性が期待できる。
エレクトロクロミズム現象は、ある特定の物質に電圧を印加すると可逆的な酸化還元反応が起こり、様々な色へと変化する現象をいう。このエレクトロクロミズム現象を引き起こすエレクトロクロミック化合物の発色/消色(以下、発消色という)を利用した表示装置がエレクトロクロミック表示装置である。
このようなエレクトロクロミック表示装置については、有機エレクトロクロミック化合物の分子設計により様々な色の発色が得られること、反射型の表示装置であること、表示メモリ性があること、低電圧で駆動できること等の理由から、電子ペーパー用途の表示装置技術の有力な候補として、材料開発からデバイス設計に至るまで、幅広く研究開発が行われている。
エレクトロクロミック表示装置は、エレクトロクロミック化合物の構造によって様々な色を発色できるため、多色表示装置として期待されている。エレクトロクロミック表示装置は、通常は一対の対向した電極間に電流を印加し、電極間に設けられたエレクトロクロミック化合物の酸化還元反応による呈色反応を用いた電気化学素子の1つである。そして、色鮮やかなフルカラー表示を実現させるためには、減法混色法を用いたイエロー色、シアン色及びマゼンタ色の3原色の重ね合わせた構造が必要となる。この例として、イエロー色、シアン色及びマゼンタ色の3つの素子の積層によるフルカラー表示技術(多色表示技術)が報告されている(非特許文献1参照)。
多色表示技術としては、一つの表示基板上に複数層の表示電極とエレクトロクロミック発色層とを積層する構成が提案されている(特許文献1〜4参照)。また、例えば、表示電極に対向する対向電極として、アクティブマトリクスTFTを使用したエレクトロクロミック表示装置が提案されている(特許文献1及び2参照)。これらの提案は、複数の表示電極に微細なパターニングが不要であることと、1つのアクティブマトリクスTFTパネルで3つの表示電極を切り替え、高い開口率でフルカラー表示画像が得られることに特徴がある。
しかしながら、これらの提案では、複数の表示電極が各々の画素で共通となっているために、画素間でのクロストーク(色の滲みや解像度の劣化)による表示画像の滲みや、複数の表示電極間でのクロストーク(複数層間での混色)による表示画像の保持性能に問題があった。すなわち、層内・層間でのクロストークが問題となっていた。
また、パッシブマトリクス駆動方式を用いたエレクトロクロミック表示装置において、画素間のクロストークの発生を抑制する方法として、表示電極とエレクトロクロミック層との間に酸化ニッケル層を設ける構成が提案されている(特許文献3及び4参照)。さらに、n型半導体として知られる酸化チタン層と、p型半導体として知られる酸化ニッケル層との積層構成によるダイオード構造により、エレクトロクロミック層の応答電圧をシフトさせる技術が提案されている(特許文献4参照)。
しかしながら、半導体特性が得られる酸化ニッケル層は黒色であるため、色鮮やかさや明るさなどの表示品質を低下させる要因となっており、酸化ニッケル層自体の光学透過性の改善が望まれていた。
そこで、本発明は上記課題を鑑み、画素間でのクロストークを抑制することができ、表示画像の保持性能や耐光性に優れたエレクトロクロミック表示装置を提供することを目的とする。
上記課題を解決するために、本発明のエレクトロクロミック表示装置は、一対の対向する電極と、前記一対の電極の一方に設けられたエレクトロクロミック層と、前記対向する電極の間に設けられた電解液層とを備え、
前記エレクトロクロミック層と、前記エレクトロクロミック層が設けられた前記電極との間にイットリウムを含む金属酸化物層を有することを特徴とする。
本発明によれば、画素間でのクロストークを抑制することができ、表示画像の保持性能や耐光性に優れたエレクトロクロミック表示装置を提供することができる。
本発明に係るエレクトロクロミック表示装置の一例を示す模式図である。 本発明に係るエレクトロクロミック表示装置の一例の要部拡大模式図を示す図である。 本発明に係るエレクトロクロミック表示装置の他の例を示す模式図である。 エレクトロクロミック表示装置のCV測定結果及び反射率変化の一例を示す図である。 エレクトロクロミック表示装置のCV測定結果及び反射率変化の他の例を示す図である。 エレクトロクロミック表示装置のCV測定結果及び反射率変化の他の例を示す図である。 エレクトロクロミック表示装置のCV測定結果及び反射率変化の他の例を示す図である。
以下、本発明に係るエレクトロクロミック表示装置について図面を参照しながら説明する。なお、本発明は以下に示す実施形態に限定されるものではなく、他の実施形態、追加、修正、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。
また以下の実施形態においては、一対の電極は、一方が、表示基板と該表示基板上に設けられた表示電極とからなるものであり、他方が、前記表示基板に対向して設けられた対向基板と該対向基板上に設けられた対向電極とからなるものを例にとって説明するが、本発明における一対の電極はこれらに限定されるものではない。
(第1の実施形態)
本発明に係るエレクトロクロミック表示装置の一実施形態について説明する。本実施形態に係るエレクトロクロミック表示装置を図1及び図2に示す。なお、図2は図1の要部拡大模式図である。
本実施形態に係るエレクトロクロミック表示装置は、表示基板と、前記表示基板上に設けられた表示電極と、前記表示電極上に設けられたエレクトロクロミック層と、前記表示基板に対向して設けられた対向基板と、前記対向基板上に設けられた複数の対向電極と、前記表示基板と前記対向基板との間に設けられた電解液層とを備え、前記表示電極と前記エレクトロクロミック層との間にイットリウムを含む金属酸化物層を有することを特徴とする。
図1には、表示基板1、表示電極2、イットリウムを含む金属酸化物層3、エレクトロクロミック層4、白色反射層6、電解液層7、対向電極8、対向基板9が図示されている。以下、イットリウムを含む金属酸化物層を「イットリウム含有層」と称することがある。
図1に示すように、表示基板1と対向基板9とは互いに対向しており、表示基板1上に、表示電極2、イットリウム含有層3、エレクトロクロミック層4、白色反射層6が形成されている。また、対向基板9上には複数の対向電極8が形成されており、表示基板1と対向基板9との間には電解質を溶解させた電解液が含浸されて電解液層7が形成されている。
図2に図1の点線A部分の拡大模式図を示す。酸化チタンを主成分とする金属酸化物層10aと10bがイットリウム含有層3の上下に形成されている。このように、酸化チタンを主成分とする金属酸化物層の間にイットリウム含有層3が形成されていることが好ましい。
以下、第1の実施形態に係るエレクトロクロミック表示装置を構成する各構成要素について詳細に説明する。
<表示基板>
表示基板1としては、透明な材料であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス基板、プラスチックフィルムなどが挙げられる。また、水蒸気バリア性、ガスバリア性、視認性を高めるために表示基板1の表裏面に透明絶縁層、反射防止層などがコーティングされていてもよい。
<表示電極>
表示電極2としては、透明性及び導電性を有する材料であれば特に制限はなく、目的に応じて適宜選択することができる。
表示電極2の材料としては、例えば、酸化インジウム、酸化亜鉛、酸化スズ、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物等の金属酸化物などが挙げられる。また、透明性を有する銀ナノワイヤー、金ナノワイヤー、カーボンナノチューブ、金属酸化物等のネットワーク電極又はこれらの複合層も選択可能である。
表示電極2の作製方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法などが挙げられる。
また、表示電極2の材料が塗布形成できるものであれば、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法、ノズルコート法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェットプリント法等の各種印刷法も用いることができる。
表示電極2の光学透過率は、特に制限はなく、目的に応じて適宜選択することができるが、60%以上100%未満が好ましく、90%以上100%未満がより好ましい。前記光学透過率が、60%未満であると、表示画像が暗くなり、明るさや色鮮やかさなどの表示性能が劣るという弊害が生じる。
また、表示電極2の膜厚は、特に制限されるわけではないが、ITO電極の場合であれば10〜300nmが好ましい。
表示電極2の表面抵抗率は、応答速度や表示均一性などエレクトロクロミック表示装置の表示性能に影響を与える重要な要素である。表示電極2の表面抵抗率は、エレクトロクロミック表示面積にも依存するが、100Ω/□以下が好ましく、さらに好ましくは10Ω/□以下である。
<対向基板及び対向電極>
対向基板9としては、透明、不透明を問わず用いることができる。すなわち、透明基板として、ガラス基板、プラスチックフィルム等の基板や、不透明な基板として、シリコン基板、ステンレス等の金属基板、又はこれらを積層したものなど、種々の基板を用いることができる。
本実施形態に係るエレクトロクロミック表示装置において、対向電極8は画素電極として作用する。
対向電極8の材料としては、導電性を有する材料であれば特に制限はなく、目的に応じて適宜選択することができる。例えば、酸化インジウム、酸化亜鉛、酸化スズ、インジウムスズ酸化物、インジウム亜鉛酸化物等の金属酸化物、あるいは亜鉛、白金等の金属、カーボン、又はそれらの複合膜などを用いることができる。
対向電極8の膜厚としては、特に制限されるわけではないが、10nm〜5μmが好ましい。
また、対向電極8が酸化還元反応により不可逆的に腐食されないように対向電極8を覆うように保護層が形成されていてもよい。
対向電極8は、画素ごとに分離して形成する必要があるため、その作製方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法などの成膜方法とシャドーマスク法、フォトリソグラフィ法、リフトオフ法などの各種パターニング技術を組み合わせて用いることができる。
また、対向電極8の材料が塗布形成できるものであれば、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法、ノズルコート法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェットプリント法等の各種印刷法も用いることができる。これらの中でも、パターニングが不可能なものについては前述の各種パターニング方法との組み合わせにより好適に対向電極8を形成することができる。
対向基板9上に形成される対向電極8は、エレクトロクロミック表示装置の画素電極として作用するため、対向基板9及び対向電極8としては、画素電極及び駆動回路が形成されたマトリクス表示基板からなるものが好ましい。例えば、ドットマトリクス表示に用いられるアクティブマトリクス装置やパッシブマトリクス装置などを用いることができる。中でも、TFT(Thin Film Transistor)を用いたアクティブマトリクスTFTを好適に用いることができる。
前記アクティブマトリクスTFTは、アモルファスシリコンやポリシリコンを例としたシリコン半導体や、インジウム−ガリウム−亜鉛酸化物(IGZO)を例とした酸化物半導体、グラフェンやカーボンナノチューブなどのカーボン半導体、ペンタセンを例とした有機半導体などを活性層に用いることができる。これらの中でも、比較的移動度が高い低温ポリシリコンTFTやIGZO−TFTなどが好適に用いることができる。
<<対向電極を覆う保護層>>
上述の対向電極8を覆う保護層としては、対向電極8の不可逆的な酸化還元反応による腐食を防止する役割を担う材料であれば、特に限定されるものではない。Al、SiO又はそれらを含む絶縁体材料、酸化亜鉛、酸化チタン又はこれらを含む半導体材料、あるいはポリイミド等の有機材料など、様々なものを用いることができる。これらの中でも、可逆的な酸化還元反応を示す材料が好ましい。
前記保護層としては、例えば、酸化アンチモン錫、酸化ニッケル等の導電性又は半導体性金属酸化物微粒子を、例えば、アクリル系、アルキド系、イソシアネート系、ウレタン系、エポキシ系、フェノール系などの結着樹脂(バインダ)により、対向電極8上に固定化したものが知られている。
前記保護層の形成方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法などが挙げられる。また、前記保護層材料が塗布形成できるものであれば、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法、ノズルコート法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェットプリント法等の各種印刷法も用いることができる。
また、前記保護層の膜厚は、特に制限されるわけではないが、50nm〜5μmが好ましい。
<エレクトロクロミック層>
エレクトロクロミック層4は、導電性微粒子又は半導体性微粒子からなる多孔質電極と、前記微粒子に担持され、酸化還元反応により呈色変化を示すエレクトロクロミック材料とを有する。
前記エレクトロクロミック材料としては、無機エレクトロクロミック化合物及び有機エレクトロクロミック化合物のいずれを用いても構わない。なお、エレクトロクロミズムを示すことで知られる導電性高分子も用いることができる。
前記無機エレクトロクロミック化合物としては、例えば、酸化タングステン、酸化モリブデン、酸化イリジウム、酸化チタンなどが挙げられる。
前記有機エレクトロクロミック化合物としては、例えば、ビオロゲン誘導体、希土類フタロシアニン誘導体、スチリル誘導体などが挙げられる。
前記導電性高分子としては、例えば、ポリピロール、ポリチオフェン、ポリアニリン、又はそれらの誘導体などが挙げられる。
また、エレクトロクロミック層4としては、導電性又は半導体性微粒子に有機エレクトロクロミック化合物を担持した構造を用いることが好ましい。具体的には、電極表面に粒径5nm〜50nm程度の微粒子を焼結し、その微粒子の表面にホスホン酸やカルボキシル基、シラノール基などの極性基を有する有機エレクトロクロミック化合物を化学吸着した構造が好ましい。このような構造であると、微粒子の大きな表面効果を利用して、効率よく有機エレクトロクロミック化合物に電子が注入されるため、従来のエレクトロクロミック表示装置と比較して高速に応答することができる。
さらに、微粒子を用いることで表示層として透明な膜を形成することができるため、エレクトロクロミック化合物の高い発色濃度を得ることができる。なお、複数種類の有機エレクトロクロミック化合物を導電性又は半導体性微粒子に担持することもできる。
具体的を以下に示すが、これに限られるものではない。ポリマー系、色素系のエレクトロクロミック化合物として、例えば、アゾベンゼン系、アントラキノン系、ジアリールエテン系、ジヒドロプレン系、ジピリジン系、スチリル系、スチリルスピロピラン系、スピロオキサジン系、スピロチオピラン系、チオインジゴ系、テトラチアフルバレン系、テレフタル酸系、トリフェニルメタン系、トリフェニルアミン系、ナフトピラン系、ビオロゲン系、ピラゾリン系、フェナジン系、フェニレンジアミン系、フェノキサジン系、フェノチアジン系、フタロシアニン系、フルオラン系、フルギド系、ベンゾピラン系、メタロセン系等の低分子系有機エレクトロクロミック化合物、ポリアニリン、ポリチオフェン等の導電性高分子化合物が用いられる。これらの中でも、発消色電位が低く、複数の表示電極構成においても良好な色値を示す点から、ビオロゲン系化合物、ジピリジン系化合物が好ましい。前記ビオロゲン系化合物としては、特許第3955641号公報、特開2007−171781号公報などに例示されている。前記ジピリジン系化合物としては、特開2007−171781号公報、特開2008−116718号公報などに例示されている。
上記の中でも、下記一般式(1)で表されるジピリジン系化合物が特に好ましい。これらの材料は発消色電位が低いため、複数の表示電極を有するエレクトロクロミック表示装置を構成した場合においても、還元電位により良好な発色の色値を示す。
Figure 2016173551
ただし、前記一般式(1)中、R1及びR2は、それぞれ独立に置換基を有してもよい炭素数1〜8のアルキル基又はアリール基を表し、R1又はR2の少なくとも一方は、COOH、PO(OH)及びSi(OC2k+1から選ばれる置換基を有することが好ましい。
nは、0、1又は2を表す。kは、0、1又は2を表す。
Xは、1価のアニオンを表す。前記一価のアニオンとしては、カチオン部と安定に対をなすものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、Brイオン(Br)、Clイオン(Cl)、ClOイオン(ClO )、PFイオン(PF )、BFイオン(BF )などが挙げられる。
Aは、置換基を有してもよい炭素数1〜20のアルキレン基、アリーレン基、又は複素環基を表す。
一方、金属錯体系又は金属酸化物系のエレクトロクロミック化合物としては、例えば、酸化チタン、酸化バナジウム、酸化タングステン、酸化インジウム、酸化イリジウム、酸化ニッケル、プルシアンブルー等の無機系エレクトロクロミック化合物が用いられる。
<<有機エレクトロクロミック化合物を担持させる導電性又は半導体性微粒子>>
前記導電性又は半導体性微粒子としては、特に制限はなく、目的に応じて適宜選択することができるが、中でも金属酸化物が好ましい。
前記金属酸化物としては、例えば、酸化チタン、酸化亜鉛、酸化スズ、酸化ジルコニウム、酸化セリウム、酸化イットリウム、酸化ホウ素、酸化マグネシウム、チタン酸ストロンチウム、チタン酸カリウム、チタン酸バリウム、チタン酸カルシウム、酸化カルシウム、フェライト、酸化ハフニウム、酸化タングステン、酸化鉄、酸化銅、酸化ニッケル、酸化コバルト、酸化バリウム、酸化ストロンチウム、酸化バナジウム、アルミノケイ酸、リン酸カルシウム、アルミノシリケート等を主成分とする金属酸化物が用いられる。
また、これらの金属酸化物は、単独で用いられてもよく、2種以上が混合され用いられてもよい。これらの中でも、電気伝導性等の電気的特性や光学的性質等の物理的特性の観点から、酸化チタン、酸化亜鉛、酸化スズ、酸化ジルコニウム、酸化鉄、酸化マグネシウム、酸化インジウム及び酸化タングステンから選ばれる1種、もしくはそれらの混合物が用いられたとき、発消色の応答速度に優れた多色表示が可能である。とりわけ、酸化チタンが用いられたとき、より発消色の応答速度に優れた多色表示が可能である。
また、前記導電性又は半導体性微粒子の形状は、特に制限はなく、目的に応じて適宜選択することができるが、エレクトロクロミック化合物を効率よく担持するために、単位体積当たりの表面積(以下、「比表面積」と称することもある)が大きい形状が用いられる。例えば、微粒子が、ナノ粒子の集合体であるときは、大きな比表面積を有するため、より効率的にエレクトロクロミック化合物が担持され、発消色の表示コントラスト比に優れた多色表示が可能である。
また、エレクトロクロミック層4の膜厚は、特に制限されるわけではないが、50nm〜5μmが好ましい。
<イットリウムを含む金属酸化物層>
本実施形態のエレクトロクロミック表示装置では、表示電極2とエレクトロクロミック層4との間に、イットリウムを含む金属酸化物層(イットリウム含有層と称する)を有することを特徴とする。すなわち、イットリウム含有層3は、酸化イットリウムを少なくとも含有する。
また、上述したように、イットリウム含有層3は、酸化チタンを主成分とする金属酸化物層10aと10bの間に形成されていることが好ましい(図2)。このような構成にすることにより、エレクトロクロミック層の発消色電位のコントロールが容易となり、表示品質を損なうことなく、明るく色鮮やかな表示が可能となる。以下、酸化チタンを主成分とする金属酸化物層を「酸化チタン含有層」と称することがあるが、両者は同じものである。酸化チタン含有層10a、10bは、酸化チタンを主成分とし、スパッタリング法などにより形成することができる。
酸化チタン含有層における酸化チタンの含有量は50〜100mol%が好ましく、50〜90mol%がより好ましい。100mol%ではRFスパッタリング時の異常放電により生産性が落ちる可能性がある。
また、酸化チタン含有層の膜厚は、特に制限されるわけではないが、1〜100nmが好ましい。
イットリウムは、アルミニウムや鉄とともにガーネットと呼ばれる複合酸化物をつくることが知られており、これらも好適に用いることができる。また、イットリウム含有層3は、酸化チタン、酸化亜鉛、酸化スズ、酸化ジルコニウム、酸化セリウム、酸化ホウ素、酸化マグネシウム、チタン酸ストロンチウム、チタン酸カリウム、チタン酸バリウム、チタン酸カルシウム、酸化カルシウム、フェライト、酸化ハフニウム、酸化タングステン、酸化銅、酸化ニッケル、酸化コバルト、酸化バリウム、酸化ストロンチウム、酸化バナジウム等及びこれらを2種以上含む酸化物との混合層でもよい。
酸化イットリウムはバンドギャップが約6eV程度であり、表示電極2からエレクトロクロミック層4への電荷注入障壁となる。これにより、エレクトロクロミック層4の発色・消色電位の閾値をシフトさせる効果をもたらす。
イットリウム含有層3における酸化イットリウムの含有量は、10mol%以上が好ましく、20mol%以上がより好ましく、40mol%以上100mol%以下が更に好ましい。前記含有量が、10mol%未満であると、他の元素の影響が支配的になり、エレクトロクロミック層4への電荷注入を抑えることができないなどの不具合が生じることがある。
また、イットリウム含有層3の膜厚は、特に制限されるわけではないが、1〜50nmが好ましい。50nmを超えると絶縁抵抗となり、表示電極からエレクトロクロミック層への電荷注入を阻害し、発消色電位が高くなりすぎる不具合が生じる。
本実施形態のエレクトロクロミック表示装置は、表示電極2と複数の対向電極8とのペアで構成されており、一部の対向電極8を駆動させることで、表示電極2に駆動した対向電極8に応じたパターンを表示させることができる。エレクトロクロミック層4のうち駆動した対向電極8に対向した箇所でエレクトロクロミック分子の還元反応が起こり、パターンが表示される。
従来の技術では、表示電極2とエレクトロクロミック層4が隣接する対向電極8との間で電気的に繋がっているために、局所的に起こった還元反応は時間とともに表示電極2やエレクトロクロミック層4内に電荷を放出し、結果として表示画像が拡散してしまう。この拡散速度は表示電極2やエレクトロクロミック層4の電気抵抗率に依存するのであるが、表示電極2経由の拡散が非常に大きいことがわかっている。
これに対し、イットリウムを含む金属酸化物層3(イットリウム含有層)を設けた場合、局所的に還元反応が起こったエレクトロクロミック層4から表示電極2へ電荷が放出されることを防ぐ“障壁”となる。そのため、本発明の効果の一つである隣接する対向電極8上のエレクトロクロミック層4への表示画像の滲み(画素間のクロストーク)を抑制し、表示画像の保持性能の優れたエレクトロクロミック表示装置を得ることができる。また、イットリウムを用いた場合、ニッケルを用いた場合の黒色化もなく、耐光性にも優れている。
<電解液層>
電解液層7に含有される電解液は、電解質と該電解質を溶解させるための溶媒とから構成される。前記電解液は、表示基板1と対向基板9を貼り合わせる際に表示電極2、エレクトロクロミック層4の表示基板1側に作製した層へ含浸させることができる。
また、表示電極2、エレクトロクロミック層4を作製する段階で電解質を各層内に分布させ、表示基板1と対向基板9を貼り合わせる際に溶媒のみを含浸させることも可能である。この方法では電解液の浸透圧によって各層への含浸速度を向上させることができる。
前記電解液としては、イオン液体等の溶融塩を含む液体電解質、固体電解質を溶媒に溶解した溶液等が用いられる。
電解質の材料としては、例えば、アルカリ金属塩、アルカリ土類金属塩等の無機イオン塩、4級アンモニウム塩や酸類、アルカリ類の支持塩等を用いることができる。例えば、LiClO、LiBF、LiAsF、LiPF、LiCFSO、LiCFCOO、KCl、NaClO、NaCl、NaBF、NaSCN、KBF、Mg(ClO、Mg(BFなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記イオン液体としては、特に制限されるものではなく、公知のものを用いることができる。中でも、有機のイオン液体は、室温を含む幅広い温度領域で液体を示す分子構造のものがあり好ましい。
前記分子構造としては、カチオン成分として、例えば、N,N−ジメチルイミダゾール塩、N,N−メチルエチルイミダゾール塩、N,N−メチルプロピルイミダゾール塩等のイミダゾール誘導体;N,N−ジメチルピリジニウム塩、N,N−メチルプロピルピリジニウム塩等のピリジニウム誘導体等の芳香族系の塩;トリメチルプロピルアンモニウム塩、トリメチルヘキシルアンモニウム塩、トリエチルヘキシルアンモニウム塩等のテトラアルキルアンモニウム等の脂肪族4級アンモニウム系化合物などが挙げられる。
アニオン成分としては、大気中の安定性の面でフッ素を含んだ化合物がよく、例えば、BF 、CFSO 、PF 、(CFSOなどが挙げられる。
これらのカチオン成分とアニオン成分の組み合わせにより処方したイオン液体を用いることができる。
前記溶媒としては、例えば、プロピレンカーボネート、アセトニトリル、γ−ブチロラクトン、エチレンカーボネート、スルホラン、ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルホキシド、1,2−ジメトキシエタン、1,2−エトキシメトキシエタン、ポリエチレングリコール、アルコール類などが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記電解液は低粘性の液体である必要はなく、ゲル状や高分子架橋型、液晶分散型などの様々な形態をとることが可能である。前記電解液はゲル状、固体状に形成することが、素子強度向上、信頼性向上、発色拡散の防止の点から好ましい。
固体化手法としては、特に制限されるものではないが、前記電解質と溶媒をポリマー樹脂中に保持することが好ましい。これにより高いイオン伝導度と固体強度が得られるためである。
さらに、前記ポリマー樹脂としては光硬化可能な樹脂が好ましい。熱重合や溶剤を蒸発させることにより薄膜化する方法に比べて、低温かつ短時間で素子を製造できるためである。
<白色反射層>
白色反射層6は、白色顔料粒子を分散した樹脂を塗布形成する方法等によって作製することができる。
白色反射層6に含まれる白色顔料粒子の材料としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、酸化チタン、酸化アルミニウム、酸化亜鉛、シリカ、酸化セシウム、酸化イットリウムなどが挙げられる。
前記白色顔料粒子を分散させる樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、ポリイミド樹脂やアクリル樹脂、ポリアミドイミド樹脂などの各種高分子樹脂材料を用いることができる。
白色反射層6を形成する方法としては、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法、ノズルコート法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェットプリント法等の各種印刷法を用いることができる。
また、白色反射層6の膜厚は、特に制限されるわけではないが、1〜20μmが好ましい。
(第2の実施形態)
次に、本発明に係るエレクトロクロミック表示装置におけるその他の実施形態について説明する。なお、上記実施形態と同様の点についての説明は省略する。本実施形態に係るエレクトロクロミック表示装置の模式図を図3に示す。
本実施形態に係るエレクトロクロミック表示装置は、表示基板と、前記表示基板上に設けられ、それぞれ異なる平面に設けられた複数の表示電極と、前記複数の表示電極上のそれぞれに設けられた複数のエレクトロクロミック層と、前記表示基板に対向して設けられた対向基板と、前記対向基板上に設けられた対向電極と、前記表示基板と前記対向基板との間に設けられた電解液層とを備え、前記複数の表示電極と前記複数のエレクトロクロミック層との間の少なくとも一箇所に、イットリウムを含む金属酸化物層を有することを特徴とする。
ここで、前記複数の表示電極と前記対向電極との間には、それぞれ絶縁層が設けられていることが好ましい。
図3に示すように、本実施形態におけるエレクトロクロミック表示装置は、互いに対向する表示基板1及び対向基板9を有している。
表示基板1側に第1の表示電極12、第1のイットリウムを含む金属酸化物層13、第1のエレクトロクロミック層14が形成されている。また、第1のエレクトロクロミック層14上に第1の絶縁層15が形成されている。
また、第1の絶縁層15上に第2の表示電極22が形成されており、第2の表示電極22上に第2のイットリウムを含む金属酸化物層23、第2のエレクトロクロミック層24が形成されている。また、第2のエレクトロクロミック層24上に第2の絶縁層25が形成されている。
また、第2の絶縁層25上に第3の表示電極32が形成されており、第3の表示電極32上に第3のイットリウムを含む金属酸化物層33、第3のエレクトロクロミック層34が形成されている。また、第3のエレクトロクロミック層34上に白色反射層6が形成されている。
そして、対向基板9の表面には、複数の対向電極8が形成されている。このように、複数の表示電極と対向電極8との間には、それぞれ絶縁層が設けられていることが好ましい。また、表示基板1と対向基板9との間に電解液層7が形成されている。
なお、以下、第1、第2、第3のイットリウムを含む金属酸化物層は、それぞれ第1、第2、第3のイットリウム含有層と称することがある。また、第2、第3のエレクトロクロミック層を中間エレクトロクロミック層と称することがあり、第2、第3の表示電極を中間表示電極と称することがある。
<イットリウムを含む金属酸化物層>
本実施形態のイットリウム含有層は前記第1の実施形態と同様のものを用いることができる。
本実施形態においては、複数ある表示電極とエレクトロクロミック層との間の少なくとも一箇所に、イットリウム含有層が設けられていればよい。すなわち、図3においては、第1のイットリウム含有層13、第2のイットリウム含有層23及び第3のイットリウム含有層33のうちいずれか1つがあればよい。本実施形態において、層内・層間のクロストークを抑制するためには、これらイットリウム含有層のうち2つが設けられていることが好ましく、3つが設けられていることがより好ましい。すなわち、複数の表示電極とエレクトロクロミック層との間の全てにイットリウム含有層が設けられていることが好ましく、これにより層内・層間のクロストークをより抑制することができる。
また、本実施形態のエレクトロクロミック表示装置は、前記第1の実施形態のエレクトロクロミック表示装置と同様に、イットリウム含有層が酸化チタンを主成分とする金属酸化物層の間に形成されていることが好ましい。なお、上述したように酸化チタンを主成分とする金属酸化物層を酸化チタン含有層と称する。イットリウム含有層が酸化チタン含有層の間に形成されていることにより、エレクトロクロミック層4が複数積層された場合でも、表示品質を損なうことなく、明るく色鮮やかな表示が可能となる。
本実施形態では図示を省略するが、第1のイットリウム含有層13の上下に第1及び第2の酸化チタン含有層が形成され、第1の酸化チタン含有層、第1のイットリウム含有層13、第2の酸化チタン含有層とがこの順で積層されていることが好ましい。
また、第2のイットリウム含有層23も同様に、第2のイットリウム含有層23の上下に第3及び第4の酸化チタン含有層が形成され、第3の酸化チタン含有層、第2のイットリウム含有層23、第4の酸化チタン含有層とがこの順で積層されていることが好ましい。
さらに、第3のイットリウム含有層33も同様に、第3のイットリウム含有層33の上下に第5及び第6の酸化チタン含有層が形成され、第5の酸化チタン含有層、第3のイットリウム含有層33、第6の酸化チタン含有層とがこの順で積層されていることが好ましい。
これらの酸化チタン含有層としては、前記第1の実施形態で用いられるものと同様のものを用いることができる。なお、前記第1〜6の酸化チタン含有層を全て形成することは必須ではないが、前記第1〜6の酸化チタン含有層を形成することが好ましい。
本実施形態におけるエレクトロクロミック表示装置は、複数のエレクトロクロミック層を有しているため、多色表示が可能となる。図3では、エレクトロクロミック層が3つのものが図示されているが、これに限られず、3つ以上であってもよい。この場合、表示電極上にイットリウム含有層、エレクトロクロミック層、絶縁層が順に形成されていればよい。
<中間表示電極>
本発明において、複数の表示電極のうち、表示基板1に接している第1の表示電極12以外の表示電極を中間表示電極と称することがある。すなわち、本実施形態においては、第2の表示電極22及び第3の表示電極32を中間表示電極と称することがある。中間表示電極としては、上述の表示電極2と同様のものを用いることができ、また上述したように、透明性及び導電性を有する材料であることが好ましい。
本実施形態において、中間表示電極は少なくともイオン透過性を有している。真空製膜法や各種印刷法で形成した中間表示電極のうち、イオン透過性に乏しいものについては微細な貫通孔を設けることでイオン透過性を補うことが可能である。
中間表示電極に微細貫通孔を設ける方法としては、以下のような公知の形成方法を用いることができる。
(1)前記中間表示電極を形成する前にあらかじめ下地層として凹凸を持つ層を形成しそのまま凹凸を有する中間表示電極とする方法。
(2)前記中間表示電極を形成する前にマイクロピラーなどの凸形状構造体を形成し、該表示電極形成後に該凸形状構造体を取り除く方法。
(3)前記中間表示電極を形成する前に発泡性の高分子重合体等を散布し、該中間表示電極を形成後に加熱や脱気する等の処理を施して発泡させる方法。
(4)直接中間表示電極に各種放射線を輻射して細孔を形成させる方法。
中間表示電極に設けられる微細貫通孔の孔径は、0.01μm〜100μmが好ましく、0.1μm〜5μmがより好ましい。前記貫通孔の孔径が、0.01μm未満であると、イオンの透過が悪くなる不具合が生じることがあり、100μmを超えると、目視できるレベル(通常のディスプレイでは1画素電極レベルの大きさ)であり、微細貫通孔直上の表示性能に不具合が生じることがある。
前記微細貫通孔の中間表示電極の表面積に対する孔面積の比(孔密度)は、特に制限はなく、目的に応じて適宜設定することができるが、0.01%〜40%が好ましく、20%〜40%がより好ましい。前記孔密度が、40%を超えると、中間表示電極の表面抵抗が大きくなるため、中間表示電極がない面積が広くなることによる発消色表示欠陥が出るという不具合が生じるおそれがある。一方、前記孔密度が、0.01%未満であると、電解質イオンの浸透性が悪くなるために同様に発消色表示に問題が生じるおそれがある。
<中間エレクトロクロミック層>
本発明において、複数のエレクトロクロミック層のうち、第1のエレクトロクロミック層14以外のエレクトロクロミック層を中間エレクトロクロミック層と称することがある。すなわち、本実施形態においては、第2のエレクトロクロミック層24及び第3のエレクトロクロミック層34を中間エレクトロクロミック層と称することがある。
第1〜第3のエレクトロクロミック層としては、上述のエレクトロクロミック層4と同様の材料・手法により形成することができる。また、中間エレクトロクロミック層には電解液のイオン透過性があることが好ましく、前記エレクトロクロミック層4と同様に、導電性又は半導体性微粒子に有機エレクトロクロミック化合物を担持した構造を用いることが特に好ましい。
前記中間エレクトロクロミック層は、第1のエレクトロクロミック層14とは異なる色を呈するエレクトロクロミック化合物からなることが好ましい。これによって多色表示が可能となる。また、第1〜第3のエレクトロクロミック層におけるそれぞれのエレクトロクロミック化合物は、その分子構造がそれぞれ類似していることが好ましい。このような類似構造を採用することにより、表示電極及び中間表示電極の発消色電位を揃えることができ、同一の電解質で容易に発消色を制御できる。
上述したように、表示電極及びエレクトロクロミック層は、多孔性及び光学透過性を有することが好ましい。中でも中間表示電極及びエレクトロクロミック層が多孔性及び光学透過性を有することが好ましい。
多孔性としては、目的に応じて適宜選択することができるが、孔径及び孔密度を以下のようにすることが好ましい。
微細貫通孔の孔径は、0.01μm〜100μmが好ましく、0.1μm〜5μmがより好ましい。
前記微細貫通孔の中間表示電極の表面積に対する孔面積の比(孔密度)は、目的に応じて適宜設定することができるが、0.01%〜40%が好ましく、20%〜40%がより好ましい。
また、光学透過性としては、光学透過率を以下のようにすることが好ましい。
光学透過率としては、目的に応じて適宜選択することができるが、60%以上100%未満が好ましく、90%以上100%未満がより好ましい。
<絶縁層>
上述したように複数の表示電極と対向電極8との間には、それぞれ絶縁層が設けられていることが好ましく、本実施形態においては、第1の絶縁層15及び第2の絶縁層25が図示されている。第1の絶縁層15又は第2の絶縁層25は、第1の表示電極12と第2の表示電極22、又は第2の表示電極22と第3の表示電極32とが電気的に絶縁されるように隔離するためのものである。
第1の表示電極12、第2の表示電極22及び第3の表示電極32は、対向電極8に対する電位を独立して制御するために、電気的に絶縁されて形成される必要がある。各表示電極間の絶縁性は各エレクトロクロミック層の層厚で制御することができるが、絶縁層を形成して制御することが好ましい。
また、図3には図示されていないが、さらに第4の表示電極、第4のエレクトロクロミック層を増やして設ける場合にも、それぞれの隣接する中間表示電極間での絶縁性を補償するための絶縁層を挿入することが好ましい。
前記絶縁層の材料としては、多孔質であればよく、特に限定されるものではないが、多孔性及び光学透過性を有するものが好ましい。また、絶縁性が高く、耐久性が高く、成膜性に優れた有機材料、無機材料、又はこれらの複合体が好ましい。
絶縁層の形成方法としては、例えば、焼結法(高分子微粒子や無機粒子をバインダ等に添加して部分的に融着させ粒子間に生じた孔を利用する)、抽出法(溶剤に可溶な有機物又は無機物類と溶剤に溶解しないバインダ等で構成層を形成した後に、溶剤で有機物又は無機物類を溶解させ細孔を得る)、高分子重合体等を加熱や脱気する等して発泡させる発泡法、良溶媒と貧溶媒を操作して高分子類の混合物を相分離させる相転換法、各種放射線を輻射して細孔を形成させる放射線照射法等の公知の形成方法を用いることができる。
具体的には、金属酸化物微粒子(例えば、SiO粒子、Al粒子等)と樹脂結着剤からなる樹脂混合粒子膜、多孔性有機膜(例えば、ポリウレタン樹脂、ポリエチレン樹脂等)、多孔質膜上に形成した無機絶縁材料膜などが好適に用いることができる。
前記絶縁層を構成する金属酸化物微粒子の粒径は、5nm〜300nmが好ましく、10nm〜80nmがより好ましい。前記粒径は、電解液浸透性を付与するために多孔性を有することが好ましく、空隙率を大きくするためには大きな粒径の金属酸化物微粒子がより好ましい。
ここで、絶縁層上に形成される前記表示電極層の導電性のためには、小さな粒径の金属酸化物微粒子を用いた平坦な絶縁層を形成することが好ましい。また、球形の金属酸化物微粒子ではなく、針状や数珠状、鎖状の金属酸化物微粒子は空隙率の高さから電解液浸透性に有利である。すなわち、これらの金属酸化物微粒子の積層体や複合体により空隙率の高さと平坦性を実現する絶縁層が特に有用である。
前記絶縁層は無機膜と組み合わせて用いることが好ましい。これは、後に形成される第2の表示電極22又は第3の表示電極32をスパッタリング法により形成する際に、既に形成した絶縁層やエレクトロクロミック層の有機物質へのダメージを低減させる効果がある。
前記無機膜の材料としては、少なくともZnSを含む材料が好ましい。前記ZnSは、スパッタ法によって、エレクトロクロミック層などにダメージを与えることなく高速に成膜できる利点を持つ。
ZnSを主な成分として含む材料としては、例えば、ZnS−SiO、ZnS−SiC、ZnS−Si、ZnS−Geなどが挙げられる。ZnSの含有率は、絶縁層を形成した際の結晶性を良好に保つために、50mol%〜90mol%が好ましい。したがって、ZnS−SiO(モル比=8/2)、ZnS−SiO(モル比=7/3)、ZnS、ZnS−ZnO−In−Ga(モル比=60/23/10/7)がより好ましい。
このような絶縁層の材料を用いることにより、薄膜で良好な絶縁効果が得られ、多層化による膜強度低下及び膜剥離を防止することができる。
また、絶縁層の膜厚は、特に制限されるわけではないが、10nm〜2μmが好ましい。
<電解液層>
本実施形態において、電解液層7は前記第1の実施形態と同様のものを用いることができる。
本実施形態における電解液層7は、第1、第2の絶縁層、第1〜第3のエレクトロクロミック層、第1〜第3の表示電極、対向電極8のいずれか又は全てにわたって含浸される。
<白色反射層>
本実施形態において、白色反射層6は前記第1の実施形態と同様のものを用いることができる。
<その他の層>
本実施形態においては、上記の他にその他の層をさらに有していてもよい。前記その他の層としては、キズ、剥離などによる欠陥を防止するためのハードコート層や、反射を抑制するためのAR(Anti−Reflection)コート層などが挙げられる。
前記ハードコート層としては、溶液を塗布して形成するもので、UV硬化樹脂、熱硬化樹脂など、特に限定されるものではなく、一般的な光学部材用のハードコート材料を用いることができる。また、上述したハードコート材料とARコート材料のみで、層を形成してもよい。
(エレクトロクロミック表示装置の製造方法)
本発明のエレクトロクロミック表示装置の製造方法は、表示基板上に表示電極を形成する工程と、前記表示電極上にイットリウムを含む金属酸化物層を形成する工程と、前記イットリウムを含む金属酸化物層上にエレクトロクロミック層を形成する工程と、前記表示基板と対向する対向基板上に複数の対向電極を形成する工程と、前記表示基板と前記対向基板との間に電解液層を形成する工程とを少なくとも有することを特徴とする。
また、前記表示電極上にイットリウムを含む金属酸化物層を形成する工程は、前記表示電極上に酸化チタン含有層を形成し、前記酸化チタン含有層上にイットリウムを含む金属酸化物層を形成し、前記イットリウムを含む金属酸化物層上に酸化チタン含有層を形成することが好ましい。
本発明のエレクトロクロミック表示装置の製造方法によれば、簡便な方法によって、層内・層間のクロストークを抑制できるエレクトロクロミック表示装置の製造方法を提供できる。
以下、本発明を実施例及び比較例を挙げて説明する。なお、本発明はここに例示される実施例に限定されるものではない。なお実施例中、酸化チタン含有層は、酸化チタンの含有量が50mol%である。
(実施例1)
<エレクトロクロミック表示装置の作製>
図1及び図2に示す実施例1のエレクトロクロミック表示装置を以下のようにして作製した。
−表示電極、イットリウムを含む金属酸化物層及びエレクトロクロミック層の作製−
表示基板1としての40mm×40mmのガラス基板上に、スパッタリング法により厚み100nmのITO(インジウムスズ酸化物)膜を20mm×20mmの領域、及び引き出し部分にメタルマスクを介して形成し、表示電極2を作製した。
次に、表示電極2上に、スパッタリング法により、厚み10nmの第1の酸化チタン含有層10a、厚み5nmのイットリウムを含む金属酸化物層3としての酸化イットリウム(Y)層(酸化イットリウムの含有量100mol%)、厚み10nmの第2の酸化チタン含有層10bを順次形成した。
次に、第2の酸化チタン含有層10b上に、酸化チタン微粒子分散液(SP210、昭和タイタニウム社製)をスピンコートし、120℃で15分間のアニール処理により、酸化チタン粒子膜を形成した。
次に、前記酸化チタン粒子膜上に、マゼンタ色に発色するエレクトロクロミック化合物であるビオロゲン化合物(4,4’−(1−phenyl−1H−pyrrole−2,5−diyl)bis(1−(4−(phosphonomethyl)benzyl)pyridinium)bromide)の1重量%2,2,3,3−テトラフロロプロパノール溶液をスピンコートし、120℃で10分間のアニール処理により、酸化チタン粒子とエレクトロクロミック化合物とからなるエレクトロクロミック層4を形成した。エレクトロクロミック層4の厚みは約1μmであった。
−白色反射層の作製−
次に、エレクトロクロミック層4の上に、平均一次粒子径250nmの白色酸化チタン粒子分散液(酸化チタン微粒子(CR50、石原産業社製)45重量%、水性ポリエステル系ウレタン樹脂(HW350、DIC社製)5重量%、2,2,3,3−テトラフロロプロパノール50重量%)をスピンコートし、厚さ5μmの白色反射層6を形成し、表示基板1を作製した。
−対向基板の作製−
対向基板9としての40mm×40mmのガラス基板上に、スパッタリング法により、7mm×15mmの領域を3か所、及びそれぞれの引き出し部分にメタルマスクを介して、厚み100nmのITO膜を形成し、対向電極8とした。
対向電極8には保護層として平均粒径20nmの酸化アンチモン錫微粒子分散液(三菱マテリアル社製、酸化アンチモン錫微粒子固形分濃度5重量%、水性ポリエステル系ウレタン樹脂(HW350、DIC社製)5重量%、2,2,3,3−テトラフロロプロパノール90重量%)をスピンコートし、厚さ250nmの保護層を形成し、対向基板9を作製した。
−エレクトロクロミック表示装置の作製−
電解質として過塩素酸テトラブチルアンモニウム、溶媒としてジメチルスルホキシド及びポリエチレングリコール(分子量:200)、さらにUV硬化接着剤(PTC10 十条ケミカル社製)を1.2:5.4:6:16で混合した電解液を用意し、対向基板9側に滴下塗布した。その後、表示基板1と重ね合わせ、対向基板9側よりUV光照射硬化させて貼り合わせ、実施例1のエレクトロクロミック表示装置を作製した。なお、電解液層7の厚さはビーズスペーサを電解液層7に0.2重量%混合することにより10μmに設定した。
(比較例1)
<エレクトロクロミック表示装置の作製>
以下のようにして、イットリウムを含む金属酸化物層3を設けなかった以外は、実施例1と同様にして、比較例1のエレクトロクロミック表示装置を作製した。
−表示電極及びエレクトロクロミック層の作製−
表示基板1としての40mm×40mmのガラス基板上に、スパッタリング法により厚み100nmのITO膜を20mm×20mmの領域、及び引き出し部分にメタルマスクを介して形成し、表示電極2を作製した。
次に、表示電極2上に、酸化チタン微粒子分散液(SP210、昭和タイタニウム社製)をスピンコートし、120℃で15分間のアニール処理により、酸化チタン粒子膜を形成した。
次に、前記酸化チタン粒子膜上に、マゼンタ色に発色するエレクトロクロミック化合物であるビオロゲン化合物(4,4’−(1−phenyl−1H−pyrrole−2,5−diyl)bis(1−(4−(phosphonomethyl)benzyl)pyridinium)bromide)の1重量%2,2,3,3−テトラフロロプロパノール溶液をスピンコートし、120℃で10分間のアニール処理により、酸化チタン粒子とエレクトロクロミック化合物とからなるエレクトロクロミック層4を形成した。エレクトロクロミック層4の厚みは約1μmであった。
(比較例2)
<エレクトロクロミック表示装置の作製>
以下のようにして、イットリウムを含まない金属酸化物層を設けた以外は、実施例1と同様にして、比較例2のエレクトロクロミック表示装置を作製した。なお、イットリウム含有層3の代わりにZnS−SiO層を形成した。
−表示電極、金属酸化物層及びエレクトロクロミック層の作製−
表示基板1としての40mm×40mmのガラス基板上に、スパッタリング法により厚み100nmのITO膜を20mm×20mmの領域、及び引き出し部分にメタルマスクを介して形成し、表示電極2を作製した。
次に、表示電極2上に、スパッタリング法により、厚み10nmの第1の酸化チタン含有層10a、厚み10nmの(イットリウムを含まない)金属酸化物層としてのZnS−SiO層、厚み10nmの第2の酸化チタン含有層10bを順次形成した。ZnS−SiO層の形成に用いたスパッタリングターゲットの組成比は、ZnS:SiO=80mol%:20mol%とした。
次に、第2の酸化チタン含有層10b上に、酸化チタン微粒子分散液(SP210、昭和タイタニウム社製)をスピンコートし、120℃で15分間のアニール処理により、酸化チタン粒子膜を形成した。
次に、前記酸化チタン粒子膜上に、マゼンタ色に発色するエレクトロクロミック化合物であるビオロゲン化合物(4,4’−(1−phenyl−1H−pyrrole−2,5−diyl)bis(1−(4−(phosphonomethyl)benzyl)pyridinium)bromide)の1重量%2,2,3,3−テトラフロロプロパノール溶液をスピンコートし、120℃で10分間のアニール処理により、酸化チタン粒子とエレクトロクロミック化合物とからなるエレクトロクロミック層4を形成した。エレクトロクロミック層4の厚みは約1μmであった。
(比較例3)
<エレクトロクロミック表示装置の作製>
以下のようにして、イットリウムを含まない金属酸化物層を設けた以外は、実施例1と同様にして、比較例3のエレクトロクロミック表示装置を作製した。なお、イットリウム酸化物層の代わりにBi−B層を形成した。
−表示電極、金属酸化物層及びエレクトロクロミック層の作製−
表示基板1としての40mm×40mmのガラス基板上に、スパッタリング法により厚み100nmのITO膜を20mm×20mmの領域、及び引き出し部分にメタルマスクを介して形成し、表示電極2を作製した。
次に、表示電極2上に、スパッタリング法により、厚み10nmの第1の酸化チタン含有層10a、厚み10nmの(イットリウムを含まない)金属酸化物層としてのBi−B層、厚み10nmの第2の酸化チタン含有層10bを順次形成した。Bi−B層の形成に用いたスパッタリングターゲットの組成比は、Bi−B=66.6mol%:33.4mol%とした。
次に、第2の酸化チタン含有層10b上に、酸化チタン微粒子分散液(SP210、昭和タイタニウム社製)をスピンコートし、120℃で15分間のアニール処理により、酸化チタン粒子膜を形成した。
次に、前記酸化チタン粒子膜上に、マゼンタ色に発色するエレクトロクロミック化合物であるビオロゲン化合物(4,4’−(1−phenyl−1H−pyrrole−2,5−diyl)bis(1−(4−(phosphonomethyl)benzyl)pyridinium)bromide)の1重量%2,2,3,3−テトラフロロプロパノール溶液をスピンコートし、120℃で10分間のアニール処理により、酸化チタン粒子とエレクトロクロミック化合物とからなるエレクトロクロミック層4を形成した。エレクトロクロミック層4の厚みは約1μmであった。
(評価)
作製した実施例1、比較例1、比較例2及び比較例3のエレクトロクロミック表示装置について、以下のようにして、電気光学特性、表示画像保持性能、耐光性評価を評価した。
<電気光学特性の評価>
表示電極2を作用電極とし、3つの対向電極8のうちの1つを参照電極及びカウンター電極として、サイクリックボルタンメトリー(CV)法により電気特性を評価した。また同時に、550nmの反射光強度を測定し、光学特性も評価した。
測定には電気化学アナライザーALS660C(BAS(Bioanalytical Systems)社製)及び分光器USB4000(オーシャンオプティクス社製)を用いた。反射光強度は、標準白色板(日本色彩研究所製)からの反射率を100%とした。CV測定の掃引速度は0.5V/secで測定し、さらに電圧に対する反射率変化を測定した。
実施例1の結果を図4に、比較例1の結果を図5に、比較例2の結果を図6に、比較例3の結果を図7に示した。図中、実線で表されるグラフは電流値を示し、破線で表されるグラフは透過率を示す。また、矢印は対応する軸を示す。
実施例1の酸化ピーク電位(消色電位)は+5.5V、比較例1の酸化ピーク電位は+0.4V、比較例3の酸化ピークは+6.0Vであった。また、比較例2では酸化還元反応に伴う電流がほとんど観測されず、また反射率変化もほとんど観測されなかった。この結果から、イットリウムを含む金属酸化物層3を設けることによって酸化還元反応が起こるピーク電位がシフトし、発色及び消色反応に閾値ができることが判明した。
また、イットリウムを含まない絶縁性の金属酸化物層としてZnS−SiO層を設けた場合(比較例2)、エレクトロクロミック層4の発消色反応がほとんど観測されなかった。このことから、イットリウムを含む金属酸化物層3が発消色のピーク電位のコントロールに有効であることが示された。
<表示画像保持性能>
続いて経時での解像度変化を確認するために、表示画像保持性能を評価した。実施例1、比較例1のそれぞれの表示電極を負極に、それぞれの3つの対向電極8のうちの1つを正極に接続し、十分な発色濃度が得られるまで+5Vの電圧をそれぞれ印加した。選択した対向電極8に対向したエレクトロクロミック層4上に、対向電極8の形状を反映したマゼンタ色の発色領域が観測された。それぞれのエレクトロクロミック表示装置でのマゼンタ色の発色領域の550nmの反射率が5%に達するまでの時間は実施例1では約2秒、比較例1では約0.5秒であった。
その後、それぞれの表示電極2と対向電極8の接続を開放した。開放して10分後には、実施例1では対向電極8を反映したパターンが判別できたものの、比較例1では対向電極8のパターンは判別できず、滲んだマゼンタ色の領域が残っていた。比較例1に比べて実施例1の表示画像保持性能は高かった。
<耐光性評価>
実施例1、比較例1及び比較例3で作製したエレクトロクロミック表示装置について12時間の光照射試験を実施した。蛍光灯下で試料に1000ルクスの光が照射されるように設定した。光照射後、実施例1及び比較例1においては外観に目立った変化は見られなかったものの、比較例3のエレクトロクロミック表示装置は外観が黒色化していた。このときの波長550nmの反射率変化は、標準白色板(日本色彩研究所製)からの反射率を100%として、約45%から約30%へ低下していた。
(実施例2)
<エレクトロクロミック表示装置の作製>
図3に示す実施例2のエレクトロクロミック表示装置を以下のようにして作製した。
−第1の表示電極、第1のイットリウム含有層及び第1のエレクトロクロミック層の作製−
表示基板1としての40mm×40mmのガラス基板上に、スパッタリング法により厚み100nmのITO膜を20mm×20mmの領域、及び引き出し部分にメタルマスクを介して形成し、第1の表示電極12を作製した。
次に、第1の表示電極12上に、スパッタリング法により、厚み5nmの第1の酸化チタン含有層10a、厚み5nmの第1のイットリウム含有層13としての酸化イットリウム(Y)層(酸化イットリウムの含有量100mol%)、厚み5nmの第2の酸化チタン含有層10bを順次形成した。
次に、第2の酸化チタン含有層10b上に、酸化チタン微粒子分散液(SP210、昭和タイタニウム社製)をスピンコートし、120℃で15分間のアニール処理により、酸化チタン粒子膜を形成した。
次に、前記酸化チタン粒子膜上に、マゼンタ色に発色するエレクトロクロミック化合物であるビオロゲン化合物(4,4’−(1−phenyl−1H−pyrrole−2,5−diyl)bis(1−(4−(phosphonomethyl)benzyl)pyridinium)bromide)の1重量%2,2,3,3−テトラフロロプロパノール溶液をスピンコートし、120℃で10分間のアニール処理により、酸化チタン粒子とエレクトロクロミック化合物とからなる第1のエレクトロクロミック層14を形成した。第1のエレクトロクロミック層14の厚みは約1μmであった。
−第1の絶縁層の形成−
平均一次粒径20nmのシリカ微粒子分散液(シリカ固形分濃度13重量%、ポリビニルアルコール樹脂(PVA500、日本酢ビ・ポバール社製)2重量%、2,2,3,3−テトラフロロプロパノール85重量%)をスピンコートし、120℃のホットプレートで10分間アニール処理し、厚さ約1μmである多孔性の第1の絶縁層15を得た。さらに、平均粒径450nmのシリカ粒子分散液(シリカ固形分濃度1重量%、2−プロパノール99重量%)をスピンコートした。続いて、この上にZnS−SiO(80mol%:20mol%)をスパッタリング法により厚みが100nmとなるように形成し、第1の絶縁層15を形成した。
−第2の表示電極及び第2のイットリウム含有層の形成−
さらに、第1の絶縁層15上に、スパッタリング法により、厚み100nmのITO膜を、第1の表示電極12で形成したITO膜と重なる部分の20mm×20mmの領域に形成した。また、メタルマスクを介して、第1の表示電極12の引き出し部分とは異なる部分に引き出し部分を形成し、第2の表示電極22を得た。
次に、第2の表示電極22上に、スパッタリング法により、厚み10nmの第3の酸化チタン含有層、厚み10nmの第2のイットリウム含有層23としての酸化イットリウム含有層、厚み10nmの第4の酸化チタン含有層(酸化イットリウムの含有量100mol%)を順次形成した。
さらに、2−プロパノール浴中で3分間超音波照射を行い、先に散布した平均粒径450nmのシリカ粒子を除去し、微細貫通孔を有する第2の表示電極22、及び第2のイットリウム含有層(酸化イットリウムの含有量100mol%)23を形成した。なお、第1の表示電極12からの引き出し部分と第2の表示電極22からの引き出し部分の間の抵抗は、40MΩ以上であり、絶縁状態であった。
−第2のエレクトロクロミック層の作製−
前記第4の酸化チタン含有層上に、酸化チタン微粒子分散液(SP210、昭和タイタニウム社製)をスピンコートし、120℃で15分間のアニール処理により、酸化チタン粒子膜を形成した。
次に、酸化チタン粒子膜上に、イエロー発色するエレクトロクロミック化合物であるビオロゲン化合物(4,4’−(4,4’−(1,3,4−oxadiazole−2,5−diyl)bis(4,1−phenylene))bis(1−(8−phosphonooctyl)pyridinium)bromide)の1重量%2,2,3,3−テトラフロロプロパノール溶液をスピンコートし、120℃で10分間のアニール処理により、酸化チタン粒子とエレクトロクロミック化合物からなる第2のエレクトロクロミック層24を形成した。第2のエレクトロクロミック層24は厚さ約1μmであった。
−第2の絶縁層の形成−
平均一次粒径20nmのシリカ微粒子分散液(シリカ固形分濃度13重量%、ポリビニルアルコール樹脂(PVA500、日本酢ビ・ポバール社製)2重量%、2,2,3,3−テトラフロロプロパノール85重量%)をスピンコートし、120℃のホットプレートで10分間アニール処理し、厚さ約1μmである多孔性の第2の絶縁層25を得た。さらに、平均粒径450nmのシリカ粒子分散液(シリカ固形分濃度1重量%、2−プロパノール99重量%)をスピンコートした。続いて、この上にZnS−SiO(80mol%:20mol%)をスパッタリング法により厚みが100nmとなるように形成し、第2の絶縁層25を形成した。
−第3の表示電極及び第3のイットリウム含有層の形成−
さらに、第2の絶縁層25上に、スパッタリング法により、厚み100nmのITO膜を、第1の表示電極12及び第2の表示電極22で形成したITO膜と重なる部分の20mm×20mmの領域に形成した。また、メタルマスクを介して、第1の表示電極12及び第2の表示電極22引き出し部分とは異なる部分に引き出し部分を形成し、第3の表示電極32を形成した。
次に、第3の表示電極32上に、スパッタリング法により、厚み10nmの第5の酸化チタン含有層、厚み10nmの第3のイットリウム含有層33としての酸化イットリウム含有層(酸化イットリウムの含有量100mol%)、厚み10nmの第6の酸化チタン含有層を順次形成した。
さらに、2−プロパノール浴中で3分間超音波照射を行い、先に散布した平均粒径450nmのシリカ粒子を除去し、微細貫通孔を有する第3の表示電極32、及び第3のイットリウム含有層(酸化イットリウムの含有量100mol%)33を形成した。
なお、第2の表示電極22からの引き出し部分と第3の表示電極32からの引き出し部分の間の抵抗は40MΩ以上であり、絶縁状態であった。
−第3のエレクトロクロミック層の作製−
前記第6の酸化チタン含有層上に、酸化チタン微粒子分散液(SP210、昭和タイタニウム社製)をスピンコートし、120℃で15分間のアニール処理により、酸化チタン粒子膜を形成した。
次に、酸化チタン粒子膜上に、シアン発色するエレクトロクロミック化合物であるビオロゲン化合物(4,4’−(isoxazole−3,5−diyl)bis(1−(2−phosphonoethyl)pyridinium)bromide)の1重量%2,2,3,3−テトラフロロプロパノール溶液をスピンコートし、120℃で10分間のアニール処理により、酸化チタン粒子とエレクトロクロミック化合物からなる第3のエレクトロクロミック層34を形成した。第3のエレクトロクロミック層34は厚さ約1μmであった。
−白色反射層の作製−
次に、第3のエレクトロクロミック層34上に、平均一次粒子径250nmの白色酸化チタン粒子分散液(酸化チタン微粒子(CR50、石原産業社製)45重量%、水性ポリエステル系ウレタン樹脂(HW350、DIC社製)5重量%、2,2,3,3−テトラフロロプロパノール50重量%)をスピンコートし、厚さ5μmの白色反射層6を形成し、表示基板1を作製した。
−対向基板の作製−
対向基板9としての40mm×40mmのガラス基板上に、スパッタリング法により、7mm×15mmの領域を3か所、及びそれぞれの引き出し部分にメタルマスクを介して、厚み100nmのITO膜を形成し、対向電極8とした。
対向電極8には保護層として平均粒径20nmの酸化アンチモン錫微粒子分散液(三菱マテリアル社製、酸化アンチモン錫微粒子固形分濃度5重量%、水性ポリエステル系ウレタン樹脂(HW350、DIC社製)5重量%、2,2,3,3−テトラフロロプロパノール90重量%)をスピンコートし、厚さ250nmの保護層を形成し、対向基板9を作製した。
−エレクトロクロミック表示装置の作製−
電解質として過塩素酸テトラブチルアンモニウム、溶媒としてジメチルスルホキシド及びポリエチレングリコール(分子量:200)、さらにUV硬化接着剤(PTC10 十条ケミカル社製)を1.2:5.4:6:16で混合した電解液を用意し、対向基板9側に滴下塗布した。その後、表示基板1と重ね合わせ、対向基板9側よりUV光照射硬化させて貼り合わせ、実施例2のエレクトロクロミック表示装置を作製した。なお、電解質層の厚さはビーズスペーサを電解層に0.2重量%混合することにより10μmに設定した。
<評価>
作製した実施例2のエレクトロクロミック表示装置について、以下のようにして発色特性の評価を行った。
<<発色試験>>
3つの対向電極8のうち1か所を正極に、第1の表示電極12を負極につなぎ、定電圧電源を用いて+6Vの電圧を十分な発色濃度となるまで0.5秒間印加した。その結果、エレクトロクロミック層に、選択された対向電極の形状を反映した、マゼンタ色の領域が観測された。
続いて、先ほど選択した対向電極8とは異なる別の1か所の対向電極8を正極に、第2の表示電極22を負極につなぎ、定電圧電源を用いて+6Vの電圧を0.5秒間印加した。選択された対向電極の形状を反映したイエロー色の領域が観測された。このとき先に発色していたマゼンタの領域には変化がなかった。
続いて残りの1か所の対向電極8を正極に、第3の表示電極32を負極につなぎ、定電圧電源を用いて+6Vの電圧を0.5秒間印加した。選択された対向電極8の形状を反映したシアン色の領域が観測された。このとき先に発色していたマゼンタならびにイエローの領域にはほとんど変化がなかった。
第3の表示電極32を開放して1分間経過後でもマゼンタ、イエロー、シアンのそれぞれの領域の色は混ざることなく残っていた。
(比較例4)
<エレクトロクロミック表示装置の作製>
以下のようにして、イットリウムを含む金属酸化物層を設けなかった以外は、実施例2と同様にして、比較例4のエレクトロクロミック表示装置を作製した。
−第1の表示電極及び第1のエレクトロクロミック層の作製−
表示基板1としての40mm×40mmのガラス基板上に、スパッタリング法により厚み100nmのITO膜を20mm×20mmの領域、及び引き出し部分にメタルマスクを介して形成し、第1の表示電極12を作製した。
次に、第1の表示電極12上に、酸化チタン微粒子分散液(SP210、昭和タイタニウム社製)をスピンコートし、120℃で15分間のアニール処理により、酸化チタン粒子膜を形成した。
次に、前記酸化チタン粒子膜上に、マゼンタ色に発色するエレクトロクロミック化合物であるビオロゲン化合物(4,4’−(1−phenyl−1H−pyrrole−2,5−diyl)bis(1−(4−(phosphonomethyl)benzyl)pyridinium)bromide)の1重量%2,2,3,3−テトラフロロプロパノール溶液をスピンコートし、120℃で10分間のアニール処理により、酸化チタン粒子とエレクトロクロミック化合物とからなる第1のエレクトロクロミック層14を形成した。第1のエレクトロクロミック層14の厚みは約1μmであった。
−第2の表示電極の形成−
さらに、第1の絶縁層15上に、スパッタリング法により、厚み100nmのITO膜を、第1の表示電極12で形成したITO膜と重なる部分の20mm×20mmの領域に形成した。また、メタルマスクを介して、第1の表示電極12とは異なる部分に引き出し部分を形成し、第2の表示電極22を得た。
さらに、2−プロパノール浴中で3分間超音波照射を行い、先に散布した平均粒径450nmのシリカ粒子を除去し、微細貫通孔を有する第2の表示電極22を形成した。なお、第1の表示電極12からの引き出し部分と第2の表示電極22からの引き出し部分の間の抵抗は40MΩ以上であり、絶縁状態であった。
−第2のエレクトロクロミック層の作製−
第2の表示電極22上に、酸化チタン微粒子分散液(SP210、昭和タイタニウム社製)をスピンコートし、120℃で15分間のアニール処理により、酸化チタン粒子膜を形成した。
次に、酸化チタン粒子膜上に、イエロー発色するエレクトロクロミック化合物であるビオロゲン化合物(4,4’−(4,4’−(1,3,4−oxadiazole−2,5−diyl)bis(4,1−phenylene))bis(1−(8−phosphonooctyl)pyridinium)bromide)の1重量%2,2,3,3−テトラフロロプロパノール溶液をスピンコートし、120℃で10分間のアニール処理により、酸化チタン粒子とエレクトロクロミック化合物からなる第2のエレクトロクロミック層24を形成した。第2のエレクトロクロミック層24は厚さ約1μmであった。
−第3の表示電極の形成−
さらに、第2の絶縁層25上に、スパッタリング法により、厚み100nmのITO膜を、第1の表示電極12及び第2の表示電極22で形成したITO膜と重なる部分の20mm×20mmの領域に形成した。また、メタルマスクを介して、第1の表示電極12及び第2の表示電極22とは異なる部分に引き出し部分を形成し、第3の表示電極32を得た。
さらに、2−プロパノール浴中で3分間超音波照射を行い、先に散布した平均粒径450nmのシリカ粒子を除去し、微細貫通孔を有する第3の表示電極32を形成した。なお、第2の表示電極22からの引き出し部分と第3の表示電極32からの引き出し部分の間の抵抗は40MΩ以上であり、絶縁状態であった。
−第3のエレクトロクロミック層の作製−
第3の表示電極32上に、酸化チタン微粒子分散液(SP210、昭和タイタニウム社製)をスピンコートし、120℃で15分間のアニール処理により、酸化チタン粒子膜を形成した。
次に、酸化チタン粒子膜上に、シアン発色するエレクトロクロミック化合物であるビオロゲン化合物(4,4’−(isoxazole−3,5−diyl)bis(1−(2−phosphonoethyl)pyridinium)bromide)の1重量%2,2,3,3−テトラフロロプロパノール溶液をスピンコートし、120℃で10分間のアニール処理により、酸化チタン粒子とエレクトロクロミック化合物からなる第3のエレクトロクロミック層34を形成した。第3のエレクトロクロミック層34は厚さ約1μmであった。
<評価>
作製した比較例4のエレクトロクロミック表示装置について、以下のようにして発色特性の評価を行った。
<<発色試験>>
3つの対向電極8のうち1か所を正極に、第1の表示電極12を負極につなぎ、定電圧電源を用いて+6Vの電圧を十分な発色濃度となるまで0.5秒間印加した。その結果、第1のエレクトロクロミック層14に、選択された対向電極8の形状を反映した、マゼンタ色の領域が観測された。
続いて、先ほど選択した対向電極8とは異なる別の1か所の対向電極8を正極に、第2の表示電極22を負極につなぎ、定電圧電源を用いて+6Vの電圧を0.5秒間印加した。選択された対向電極8の形状を反映したイエロー色の領域が観測された。このとき先に発色していたマゼンタの領域にはさらにイエロー色の発色が認められ、レッド色に色が変化した。
続いて残りの1か所の対向電極8を正極に、第3の表示電極32を負極につなぎ、定電圧電源を用いて+6Vの電圧を0.5秒間印加した。選択された対向電極8の形状を反映したシアン色の領域が観測された。このとき先に発色していたマゼンタの領域にもさらにシアンの発色が見られ、黒色に色へと色が変化した。また、先に発色していたイエローの領域にはマゼンタとシアンの発色が見られ、こちらも黒色へと色が変化した。
第3の表示電極32を開放して1分間経過後にはマゼンタ、イエロー、シアンのそれぞれの領域の色は同様の黒色へと色が変化していた。比較例4の表示画像保持性能は実施例2と比べて格段に悪く、マゼンタ、イエロー及びシアン色を同時に表示させることができなかった。
(実施例3)
<エレクトロクロミック表示装置の作製>
実施例2において、対向電極8及び対向基板9として3.5インチサイズのアクティブマトリクスTFTを備えた駆動基板を用い、表示基板1、第1の表示電極12、第2の表示電極22、第3の表示電極32のサイズを変えた以外は、実施例2と同様にして、実施例3のエレクトロクロミック表示装置を以下のように作製した。使用した駆動基板はQVGAの3.5インチ低温ポリシリコンTFTであり、画素サイズは223.6μm×223.6μmであった。
−第1の表示電極及び第1のエレクトロクロミック層の形成−
表示基板1として90mm×90mmのガラス基板を用いて、表示基板1上にスパッタリング法により厚み100nmのITO膜を、75mm×60mmの領域及び引き出し部分にメタルマスクを介して形成し、第1の表示電極12を作製した。
次に、第1の表示電極12上に、スパッタリング法により、第1の表示電極12を覆うように、厚み10nmの第1の酸化チタン含有層10a、厚み5nmの第1のイットリウム含有層13として酸化イットリウム含有層(酸化イットリウムの含有量100mol%)、厚み10nmの第2の酸化チタン含有層10bで順次形成した。
次に、第2の酸化チタン含有層10b上に、酸化チタン微粒子分散液(SP210、昭和タイタニウム社製)をスピンコートし、120℃で15分間のアニール処理により、酸化チタン粒子膜を形成した。
次に、前記酸化チタン粒子膜上に、マゼンタ色発色するエレクトロクロミック化合物であるビオロゲン化合物(4,4’−(1−phenyl−1H−pyrrole−2,5−diyl)bis(1−(4−(phosphonomethyl)benzyl)pyridinium)bromide)の1重量%2,2,3,3−テトラフロロプロパノール溶液をスピンコートし、120℃で10分間のアニール処理により、酸化チタン粒子とエレクトロクロミック化合物からなる第1のエレクトロクロミック層14を形成した。
−第1の絶縁層の形成−
平均一次粒径20nmのシリカ微粒子分散液(シリカ固形分濃度13重量%、ポリビニルアルコール樹脂(PVA500、日本酢ビ・ポバール社製)2重量%、2,2,3,3−テトラフロロプロパノール85重量%)をスピンコートし、120℃のホットプレートで10分間アニール処理し、厚み約1μmである多孔性の第1の絶縁層15を得た。さらに、平均粒径450nmのシリカ粒子分散液(シリカ固形分濃度1重量%、2−プロパノール99重量%)をスピンコートした。続いて、この上にZnS−SiO(80mol%:20mol%)スパッタリング法により厚みが100nmとなるように形成し、第1の絶縁層15を形成した。
−第2の表示電極、第2のイットリウム含有層及び第2のエレクトロクロミック層の形成−
さらに、第1の絶縁層15上に、スパッタリング法により、厚み100nmのITO膜を、第1の表示電極12で形成したITO膜と重なる部分の75mm×60mmの領域に形成した。また、メタルマスクを介して、第1の表示電極12の引き出し部分とは異なる部分に引き出し部分を形成し、第2の表示電極22を得た。
次に、第2の表示電極22上に、スパッタリング法により、第2の表示電極22を覆うように、厚み10nmの第3の酸化チタン含有層、厚み10nmの第2のイットリウム含有層23として酸化イットリウム含有層(酸化イットリウムの含有量100mol%)、厚み10nmの第4の酸化チタン含有層を順次形成した。
さらに、2−プロパノール浴中で3分間超音波照射を行い、先に散布した平均粒径450nmのシリカ粒子を除去し、微細貫通孔を有する第2の表示電極22及び第2のイットリウム含有層(酸化イットリウムの含有量100mol%)23を形成した。
次に、この上に酸化チタン微粒子分散液(SP210、昭和タイタニウム社製)をスピンコートし、120℃で15分間のアニール処理により、酸化チタン粒子膜を形成した。
次に、前記酸化チタン粒子膜上に、イエロー色に発色するエレクトロクロミック化合物であるビオロゲン化合物(4,4’−(4,4’−(1,3,4−oxadiazole−2,5‐diyl)bis(4,1−phenylene))bis(1−(8−phosphonooctyl)pyridinium)bromide)の1重量%2,2,3,3−テトラフロロプロパノール溶液をスピンコートし、120℃で10分間のアニール処理により、酸化チタン粒子とエレクトロクロミック化合物からなる第2のエレクトロクロミック層24を形成した。
−第2の絶縁層の形成−
平均一次粒径20nmのシリカ微粒子分散液(シリカ固形分濃度13重量%、ポリビニルアルコール樹脂(PVA500、日本酢ビ・ポバール社製)2重量%、2,2,3,3−テトラフロロプロパノール85重量%)をスピンコートし、120℃のホットプレートで10分間アニール処理し、厚み約1μmである多孔性の第2の絶縁層25を得た。さらに、平均粒径450nmのシリカ粒子分散液(シリカ固形分濃度1重量%、2−プロパノール99重量%)をスピンコートした。続いて、この上にZnS−SiO(80mol%:20mol%)をスパッタリング法により厚みが100nmとなるように形成し、第2の絶縁層25を形成した。
−第3の表示電極、第3のイットリウム含有層及び第3のエレクトロクロミック層の形成−
次に、第2の絶縁層25上に、スパッタリング法により、厚み100nmのITO膜を、第2の表示電極22で形成したITO膜と重なる部分の75mm×60mmの領域に形成した。また、メタルマスクを介して、第1の表示電極12ならびに第2の表示電極22のそれぞれの引き出し部分とは異なる部分に引き出し部分を形成し、第3の表示電極32を得た。
次に、第3の表示電極32上に、スパッタリング法により、第3の表示電極32を覆うように、厚み10nmの第5の酸化チタン含有層、厚み10nmの第3のイットリウム含有層33として酸化イットリウム含有層(酸化イットリウムの含有量100mol%)、厚み10nmの第6の酸化チタン含有層を順次形成した。
さらに、2−プロパノール浴中で3分間超音波照射を行い、先に散布した平均粒径450nmのシリカ粒子を除去し、微細貫通孔を有する第3の表示電極32及び第3のイットリウム含有層(酸化イットリウムの含有量100mol%)33を形成した。
次に、この上に酸化チタン微粒子分散液(SP210、昭和タイタニウム社製)をスピンコートし、120℃で15分間のアニール処理により、酸化チタン粒子膜を形成した。
次に、前記酸化チタン粒子膜上に、シアン色に発色するエレクトロクロミック化合物であるビオロゲン化合物(4,4’−(isoxazole−3,5−diyl)bis(1−(2−phosphonoethyl)pyridinium)bromide)の1重量%2,2,3,3−テトラフロロプロパノール溶液をスピンコートし、120℃で10分間のアニール処理により、酸化チタン粒子とエレクトロクロミック化合物からなる第3のエレクトロクロミック層34を形成した。
−白色反射層の作製−
次に、第3のエレクトロクロミック層34上に、平均一次粒子径250nmの白色酸化チタン粒子分散液(酸化チタン微粒子(CR50、石原産業社製)45重量%、水性ポリエステル系ウレタン樹脂(HW350、DIC社製)5重量%、2,2,3,3−テトラフロロプロパノール50重量%)をスピンコートし、厚さ5μmの白色反射層6を形成し、表示基板1を作製した。
−対向基板の作製−
対向基板9としてのQVGAの3.5インチ低温ポリシリコンTFT基板上の画素電極部に保護層として平均粒径20nmの酸化アンチモン錫微粒子分散液(三菱マテリアル社製、酸化アンチモン錫微粒子固形分濃度5重量%、水性ポリエステル系ウレタン樹脂(HW350、DIC社製)5重量%、2,2,3,3−テトラフロロプロパノール90重量%)をスピンコートし、厚さ250nmの保護層を形成し、対向基板9を作製した。
−エレクトロクロミック表示装置の作製−
電解質として過塩素酸テトラブチルアンモニウム、溶媒としてジメチルスルホキシド及びポリエチレングリコール(分子量:200)、さらにUV硬化接着剤(PTC10、十条ケミカル社製)を1.2:5.4:6:16で混合した電解液を用意し、対向基板9側に滴下塗布した。その後、表示基板1と重ね合わせ、対向基板9側よりUV光照射硬化させて貼り合わせ、実施例3のエレクトロクロミック表示装置を作製した。なお、電解液層7の厚さはビーズスペーサを電解液層7に0.2重量%混合することにより10μmに設定した。
<評価>
作製した実施例3のエレクトロクロミック表示装置について、以下のようにして、発色試験を行った。
<<発色試験>>
作製した実施例3のエレクトロクロミック表示装置をFPGA(field−programmable gate array)を搭載したTFTの駆動装置及びパソコンと接続し、以下のような発色試験を実施した。
8.9mmの領域をマゼンタ発色するように該当する領域の画素電極及び第1の表示電極12に電圧を印加するようにTFTを動作させた。約1秒間で該当する領域にマゼンタ色の発色が得られた。
また、その領域と一部を重なるようにさらに他の領域に8.9mmの領域をイエロー発色するように、該当する領域の画素電極及び第2の表示電極22に電圧を印加するようにTFTを動作させた。約1.2秒間で該当する領域でイエロー色の発色が得られた。重なった領域ではレッド色の発色が得られた。
さらにマゼンタ、イエロー色を表示させた領域と一部を重なるようにさらに他の領域に8.9mmの領域をシアン発色するように、該当する領域の画素電極及び第3の表示電極32に電圧を印加するようにTFTを動作させた。約1秒間で該当する領域にシアン色の発色が得られ、マゼンタ色と重なる領域にはブルー色の領域が、イエロー色と重なる領域にはグリーン色の領域が、レッド色と重なる領域には黒色の領域が得られた。
表示された画像は、1分間経過後でもほぼ発色直後のままの状態で保持されていた。
1 表示基板
2 表示電極
3 イットリウム含有層
4 エレクトロクロミック層
6 白色反射層
7 電解液層
8 対向電極
9 対向基板
10a、10b 酸化チタン含有層
12 第1の表示電極
13 第1のイットリウム含有層
14 第1のエレクトロクロミック層
15 第1の絶縁層
22 第2の表示電極
23 第2のイットリウム含有層
24 第2のエレクトロクロミック層
25 第2の絶縁層
32 第3の表示電極
33 第3のイットリウム含有層
34 第3のエレクトロクロミック層
特開2012−128217号公報 特開2012−137736号公報 特許第5007520号公報 特開2008−180999号公報
N.Kobayashi et al.,Proceeding of IDW’04,1753(2004)

Claims (8)

  1. 一対の対向する電極と、
    前記一対の電極の一方に設けられたエレクトロクロミック層と、
    前記対向する電極の間に設けられた電解液層とを備え、
    前記エレクトロクロミック層と、前記エレクトロクロミック層が設けられた前記電極との間にイットリウムを含む金属酸化物層を有することを特徴とするエレクトロクロミック表示装置。
  2. 前記一対の電極は、
    一方が、表示基板と該表示基板上に設けられた表示電極とからなるものであり、
    他方が、前記表示基板に対向して設けられた対向基板と該対向基板上に設けられた対向電極とからなるものである、
    ことを特徴とする請求項1に記載のエレクトロクロミック表示装置。
  3. 表示基板と、
    前記表示基板上に設けられ、それぞれ異なる平面に設けられた複数の表示電極と、
    前記複数の表示電極上のそれぞれに設けられた複数のエレクトロクロミック層と、
    前記表示基板に対向して設けられた対向基板と、
    前記対向基板上に設けられた対向電極と、
    前記表示基板と前記対向基板との間に設けられた電解液層とを備え、
    前記複数の表示電極と前記複数のエレクトロクロミック層との間の少なくとも一箇所に、イットリウムを含む金属酸化物層を有することを特徴とするエレクトロクロミック表示装置。
  4. 前記複数の表示電極と前記対向電極との間には、それぞれ絶縁層が設けられていることを特徴とする請求項3に記載のエレクトロクロミック表示装置。
  5. 前記表示電極及び前記エレクトロクロミック層は、多孔性及び光学透過性を有することを特徴とする請求項3又は4に記載のエレクトロクロミック表示装置。
  6. 前記絶縁層は、多孔性及び光学透過性を有することを特徴とする請求項4又は5に記載のエレクトロクロミック表示装置
  7. 前記イットリウムを含む金属酸化物層が、酸化チタン含有層と酸化チタン含有層との間に形成されていることを特徴とする請求項1から6のいずれかに記載のエレクトロクロミック表示装置。
  8. 前記対向基板及び前記対向電極は、画素電極及び駆動回路が形成されたマトリクス表示基板からなることを特徴とする請求項2から7のいずれかに記載のエレクトロクロミック表示装置。
JP2015123915A 2014-07-01 2015-06-19 エレクトロクロミック表示装置 Active JP6610023B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2015/003292 WO2016002212A1 (en) 2014-07-01 2015-06-30 Electrochromic display device
CN201580046188.6A CN106796379B (zh) 2014-07-01 2015-06-30 电致变色显示装置
KR1020177002807A KR20170024090A (ko) 2014-07-01 2015-06-30 일렉트로크로믹 표시 장치
US15/315,970 US10012885B2 (en) 2014-07-01 2015-06-30 Electrochromic display device
EP15815975.6A EP3164763B1 (en) 2014-07-01 2015-06-30 Electrochromic display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014136142 2014-07-01
JP2014136142 2014-07-01
JP2015053355 2015-03-17
JP2015053355 2015-03-17

Publications (2)

Publication Number Publication Date
JP2016173551A true JP2016173551A (ja) 2016-09-29
JP6610023B2 JP6610023B2 (ja) 2019-11-27

Family

ID=57008907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015123915A Active JP6610023B2 (ja) 2014-07-01 2015-06-19 エレクトロクロミック表示装置

Country Status (4)

Country Link
US (1) US10012885B2 (ja)
JP (1) JP6610023B2 (ja)
KR (1) KR20170024090A (ja)
CN (1) CN106796379B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021534466A (ja) * 2018-08-23 2021-12-09 日東電工株式会社 高光変調用極薄型エレクトロクロミックデバイス

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10294415B2 (en) 2014-06-09 2019-05-21 iGlass Technology, Inc. Electrochromic composition and electrochromic device using same
US10344208B2 (en) 2014-06-09 2019-07-09 iGlass Technology, Inc. Electrochromic device and method for manufacturing electrochromic device
JP2018010106A (ja) 2016-07-13 2018-01-18 株式会社リコー エレクトロクロミック装置及びその製造方法、並びにエレクトロクロミック調光装置
EP3498452A3 (en) 2017-12-18 2019-08-28 Ricoh Company, Ltd. Method and apparatus for forming three-dimensional curved surface on laminated substrate, and three-dimensional curved laminated substrate
US11319484B2 (en) 2018-04-24 2022-05-03 Ricoh Company, Ltd. Electrochromic element and method for manufacturing electrochromic element
CN110501853B (zh) * 2018-05-18 2022-11-22 深圳华信嘉源科技有限公司 一种高对比度三电极电调光器件及其制备和控制方法
JP7367363B2 (ja) 2018-07-25 2023-10-24 株式会社リコー エレクトロクロミック組成物及びエレクトロクロミック素子
WO2020022381A1 (en) 2018-07-25 2020-01-30 Ricoh Company, Ltd. Electrochromic compound, electrochromic composition, and electrochromic element
EP3712695B1 (en) 2019-03-20 2022-02-23 Ricoh Company, Ltd. Electrochromic device, wearable device, and method for driving electrochromic device
CN111061108B (zh) * 2019-11-25 2021-08-13 中国科学技术大学 一种基于三氧化钼薄膜的电致变色玻璃、其制备方法和应用
US11630365B2 (en) 2019-11-29 2023-04-18 Ricoh Company, Ltd. Electrochromic element and production method thereof, electrochromic light-adjusting element, electrochromic light-adjusting lens, and electrochromic device
JP7472705B2 (ja) 2020-07-29 2024-04-23 株式会社リコー エレクトロクロミック素子、エレクトロクロミック調光素子、及びエレクトロクロミック装置
CN111933091B (zh) * 2020-08-27 2022-06-21 努比亚技术有限公司 一种电致变色膜驱动电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164256A (ja) * 2010-02-08 2011-08-25 Konica Minolta Holdings Inc 電気化学表示素子
JP2012137736A (ja) * 2010-12-07 2012-07-19 Ricoh Co Ltd エレクトロクロミック表示素子、表示装置及び情報機器
JP2012194412A (ja) * 2011-03-17 2012-10-11 Ricoh Co Ltd エレクトロクロミック表示素子
WO2014025900A1 (en) * 2012-08-08 2014-02-13 Kinestral Technologies, Inc. Electrochromic multi-layer devices with composite electrically conductive layers

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525554A (en) * 1975-07-03 1977-01-17 Canon Inc Terminal for indicating a light image
US4832463A (en) * 1987-09-08 1989-05-23 Tufts University Thin film ion conducting coating
US7029833B2 (en) 2002-02-15 2006-04-18 Ricoh Company, Ltd. Image display medium, process for forming image, and multicolor image-forming apparatus
EP1745327A4 (en) 2004-05-14 2010-12-15 Ricoh Co Ltd MULTICOLOR DISPLAY ELEMENT
US7525716B2 (en) 2005-03-04 2009-04-28 Ricoh Company, Ltd. Display device and display apparatus
US7489432B2 (en) 2005-03-25 2009-02-10 Ricoh Company, Ltd. Electrochromic display device and display apparatus
JP5007520B2 (ja) 2006-04-11 2012-08-22 ソニー株式会社 エレクトロクロミック素子、及びこれを用いたエレクトロクロミック装置
WO2008081541A1 (ja) 2006-12-28 2008-07-10 Ricoh Company, Ltd. 有機無機複合材料及びその製造方法、並びに機能性電極及び機能性素子
JP2008180999A (ja) 2007-01-25 2008-08-07 Sony Corp エレクトロクロミック素子、及びこれを具備するエレクトロクロミック装置
JP4549363B2 (ja) 2007-05-18 2010-09-22 株式会社リコー 電気泳動粒子及びこれを利用した画像表示装置
CN101483945A (zh) * 2008-01-11 2009-07-15 上海广电电子股份有限公司 绿色无机薄膜电致发光显示器
JP5240499B2 (ja) 2008-03-11 2013-07-17 株式会社リコー エレクトロクロミック材料
JP5453725B2 (ja) 2008-03-11 2014-03-26 株式会社リコー エレクトロクロミック化合物およびそれを用いたエレクトロクロミック表示素子
JP5353092B2 (ja) 2008-07-03 2013-11-27 株式会社リコー 電気泳動分散液、並びにこれを用いた画像表示媒体、及び画像表示装置
JP5487709B2 (ja) 2008-07-03 2014-05-07 株式会社リコー エレクトロクロミック表示装置並びにその製造方法及び駆動方法
JP5310145B2 (ja) 2008-08-20 2013-10-09 株式会社リコー 電気泳動液、及びそれを用いた表示素子
EP2488601B1 (en) 2009-10-16 2016-09-28 Ricoh Company, Ltd. Electrochromic compound, electrochromic composition, and display element
JP5589801B2 (ja) * 2010-03-12 2014-09-17 株式会社リコー エレクトロクロミック表示装置及びその製造方法
JP5742440B2 (ja) 2010-05-13 2015-07-01 株式会社リコー エレクトロクロミック表示素子
US8753987B2 (en) * 2010-06-08 2014-06-17 Sumitomo Metal Mining Co., Ltd. Method of manufacturing metal oxide film
JP5782860B2 (ja) 2010-08-03 2015-09-24 株式会社リコー エレクトロクロミック表示装置並びにその製造方法及び駆動方法
JP5790403B2 (ja) * 2010-12-07 2015-10-07 株式会社リコー エレクトロクロミック表示装置
JP5866759B2 (ja) 2010-12-16 2016-02-17 株式会社リコー エレクトロクロミック表示装置およびその駆動方法
JP2012141584A (ja) 2010-12-17 2012-07-26 Ricoh Co Ltd イオン伝導体およびエレクトロクロミック表示装置
JP5998519B2 (ja) 2011-05-31 2016-09-28 株式会社リコー 表示装置および駆動方法
JP6085914B2 (ja) 2011-11-28 2017-03-01 株式会社リコー エレクトロクロミック化合物、エレクトロクロミック組成物及び表示素子
JP6098143B2 (ja) * 2012-03-23 2017-03-22 株式会社リコー エレクトロクロミック表示装置及びエレクトロクロミック表示装置の製造方法
JP5966526B2 (ja) 2012-03-30 2016-08-10 株式会社リコー エレクトロクロミック表示装置の製造方法
JP2013254196A (ja) 2012-05-11 2013-12-19 Ricoh Co Ltd エレクトロクロミック表示装置
CN104487890B (zh) 2012-07-23 2018-04-27 株式会社理光 电致变色装置和用于制造电致变色装置的方法
JP6036427B2 (ja) 2013-03-15 2016-11-30 株式会社リコー エレクトロクロミック表示素子
JP6318633B2 (ja) 2014-01-15 2018-05-09 株式会社リコー エレクトロクロミック表示装置及びその製造方法
JP6323154B2 (ja) * 2014-05-13 2018-05-16 株式会社リコー エレクトロクロミック表示素子及びその製造方法、並びに表示装置、情報機器及びエレクトロクロミック調光レンズ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164256A (ja) * 2010-02-08 2011-08-25 Konica Minolta Holdings Inc 電気化学表示素子
JP2012137736A (ja) * 2010-12-07 2012-07-19 Ricoh Co Ltd エレクトロクロミック表示素子、表示装置及び情報機器
JP2012194412A (ja) * 2011-03-17 2012-10-11 Ricoh Co Ltd エレクトロクロミック表示素子
WO2014025900A1 (en) * 2012-08-08 2014-02-13 Kinestral Technologies, Inc. Electrochromic multi-layer devices with composite electrically conductive layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021534466A (ja) * 2018-08-23 2021-12-09 日東電工株式会社 高光変調用極薄型エレクトロクロミックデバイス

Also Published As

Publication number Publication date
CN106796379A (zh) 2017-05-31
KR20170024090A (ko) 2017-03-06
CN106796379B (zh) 2020-12-18
US10012885B2 (en) 2018-07-03
JP6610023B2 (ja) 2019-11-27
US20170131609A1 (en) 2017-05-11

Similar Documents

Publication Publication Date Title
JP6610023B2 (ja) エレクトロクロミック表示装置
JP5782860B2 (ja) エレクトロクロミック表示装置並びにその製造方法及び駆動方法
JP6597373B2 (ja) エレクトロクロミック素子、表示装置及びその駆動方法
JP5790403B2 (ja) エレクトロクロミック表示装置
JP6323154B2 (ja) エレクトロクロミック表示素子及びその製造方法、並びに表示装置、情報機器及びエレクトロクロミック調光レンズ
JP2013210581A (ja) エレクトロクロミック表示装置の製造方法及びエレクトロクロミック表示装置
JP2013225099A (ja) エレクトロクロミック表示装置及びエレクトロクロミック表示装置の製造方法
JP6064761B2 (ja) エレクトロクロミック装置及びその製造方法
JP6003332B2 (ja) エレクトロクロミック装置及びその製造方法
JP6244710B2 (ja) エレクトロクロミック表示装置及びその製造方法、並びに駆動方法
JP2015096879A (ja) エレクトロクロミック装置及びその製造方法
JP2016218359A (ja) エレクトロクロミック素子の駆動方法
JP6171812B2 (ja) エレクトロクロミック表示素子、エレクトロクロミック調光レンズ、表示装置及び情報機器並びにエレクトロクロミック表示素子の製造方法
JP2012155017A (ja) エレクトロクロミック表示装置の駆動方法および表示装置
JP2012194412A (ja) エレクトロクロミック表示素子
JP2017026750A (ja) エレクトロクロミック素子、調光眼鏡及びエレクトロクロミック素子の製造方法
JP2016156930A (ja) エレクトロクロミック表示素子、表示装置、情報機器、エレクトロクロミック表示素子の製造方法、エレクトロクロミック調光レンズ
JP5630248B2 (ja) エレクトロクロミック表示素子
JP5994241B2 (ja) エレクトロクロミック表示装置
JP2012128218A (ja) エレクトロクロミック表示装置
JP6728670B2 (ja) エレクトロクロミック表示装置及びその製造方法
JP6244687B2 (ja) エレクトロクロミック表示装置
EP3164763B1 (en) Electrochromic display device
JP5526887B2 (ja) エレクトロクロミック表示装置
JP2015132753A (ja) エレクトロクロミック表示装置及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191014

R151 Written notification of patent or utility model registration

Ref document number: 6610023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151