JP2014229838A - 半導体装置及び半導体装置の製造方法 - Google Patents

半導体装置及び半導体装置の製造方法 Download PDF

Info

Publication number
JP2014229838A
JP2014229838A JP2013110373A JP2013110373A JP2014229838A JP 2014229838 A JP2014229838 A JP 2014229838A JP 2013110373 A JP2013110373 A JP 2013110373A JP 2013110373 A JP2013110373 A JP 2013110373A JP 2014229838 A JP2014229838 A JP 2014229838A
Authority
JP
Japan
Prior art keywords
semiconductor layer
gate trench
opening
semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013110373A
Other languages
English (en)
Other versions
JP6136571B2 (ja
Inventor
優一 美濃浦
Yuichi Minoura
優一 美濃浦
岡本 直哉
Naoya Okamoto
直哉 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013110373A priority Critical patent/JP6136571B2/ja
Priority to US14/248,727 priority patent/US9312350B2/en
Priority to TW103113246A priority patent/TWI549300B/zh
Priority to CN201410171412.1A priority patent/CN104183636B/zh
Publication of JP2014229838A publication Critical patent/JP2014229838A/ja
Priority to US15/058,747 priority patent/US9728618B2/en
Application granted granted Critical
Publication of JP6136571B2 publication Critical patent/JP6136571B2/ja
Priority to US15/636,930 priority patent/US9947781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Abstract

【課題】ゲートリセスや開口部の底面の端部が中央部よりも深く形成されることのない、耐圧が高く、信頼性の高い半導体装置を提供する。【解決手段】基板の上に、窒化物半導体により形成された第1の半導体層と、前記第1の半導体層の上に、窒化物半導体により形成された第2の半導体層と、前記第2の半導体層、または、前記第2の半導体層及び前記第1の半導体層に形成されたゲートトレンチと、前記ゲートトレンチに形成されたゲート電極と、前記第2の半導体層の上に形成されたソース電極及びドレイン電極と、を有し、前記ゲートトレンチは、前記ゲートトレンチの底面の中央部よりも、底面の端部が浅く形成されており、前記ゲートトレンチにおける壁面の一部は、a面を含む面により形成されており、前記ゲートトレンチにおける底面の中央部は、c面であり、前記ゲートトレンチの底面の前記端部は、c面からa面に至る傾斜面により形成されている半導体装置により上記課題を解決する。【選択図】 図4

Description

本発明は、半導体装置及び半導体装置の製造方法に関するものである。
窒化物半導体であるGaN、AlN、InN等または、これらの混晶である材料は、広いバンドギャップを有しており、高出力電子デバイスまたは短波長発光デバイス等として用いられている。このうち、高出力デバイスとしては、電界効果型トランジスタ(FET:Field-Effect Transistor)、特に、高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)に関する技術が開発されている(例えば、特許文献1)。このような窒化物半導体を用いたHEMTは、高出力・高効率増幅器、大電力スイッチングデバイス等に用いられる。
ところで、高出力・高効率増幅器、スイッチングデバイス等においては、特性としてノーマリーオフであることが求められている。また、ノーマリーオフは安全動作の観点からも重要である。しかしながら、GaNを用いたHEMTにおいては、GaNにおけるピエゾ分極や自発分極の作用により電子走行層において発生した2DEG(Two-Dimensional Electron Gas)における電子の密度が極めて高く、ノーマリーオフにすることが困難とされている。このため、GaNを用いたHEMTにおいて、ノーマリーオフにするための様々な方法が検討されている。
HEMTをノーマリーオフにする方法の一つとしては、ゲートリセスを形成する方法がある。具体的には、ゲート電極直下における電子供給層に、リセスを形成することにより、ゲート電極直下の領域における2DEGを消失させて、ノーマリーオフにする方法である。
また、窒化物半導体を用いた半導体装置としては、積層された窒化物半導体層にU字状の開口部を形成し、この開口部に酸化膜を形成した構造のいわゆるUMOS(U Metal Oxide Semiconductor)構造のトランジスタがある。
特開2002−359256号公報 特開2012−124442号公報 特開2010−62381号公報
ところで、ゲートリセスが形成されているHEMTにおいて、ゲートリセスを形成する場合、一般的にドライエッチングにより窒化物半導体層の一部を除去することにより形成する。図1には、ドライエッチングによりゲートリセスが形成されたHEMTを示す。このHEMTは、基板811の上に、GaNにより電子走行層821、AlGaNにより電子供給層822、n−GaNによりキャップ層823が、この順で積層して形成されている。また、ゲート電極841が形成される領域の直下においては、キャップ層823及び電子供給層822の一部をドライエッチングにより除去することにより、ゲートリセス850が形成されている。ゲート電極841は、このように形成されたゲートリセス850の内側における壁面及び底面において、ゲート絶縁膜となる絶縁層831を介して形成されている。尚、ソース電極842及びドレイン電極843は、電子供給層822に接して形成されている。
このような構造のHEMTでは、ゲート電極841の直下においては、ゲートリセス850が形成されているため、電子供給層822の厚さが薄くなっている。よって、電子走行層821における電子走行層821と電子供給層822との界面近傍には、2DEG821aが生成されるが、ゲート電極841の直下においては、電子供給層822の厚さが薄くなっているため、2DEG821aが消失している。これにより、HEMTをノーマリーオフにすることができる。
ところで、このような構造のHEMTにおいては、ゲートリセス850をドライエッチングにより形成した場合、ゲートリセス850の底面の端部850aが、底面の他の部分、例えば、底面の中央部850b等よりも多く除去されてしまう。即ち、ゲートリセス850の底面の端部850aが、底面の他の部分、例えば、底面の中央部850b等よりも深く形成されてしまう。このような現象は、窒化物半導体において、ゲートリセスをドライエッチングにより形成する際に生じる特有の問題である。このように、ゲートリセス850の底面の端部850aが、底面の中央部850b等よりも深く形成されると、電圧を印加した場合に、ゲートリセス850の底面の端部850aに電界が集中する。これにより、ゲートリセス850の底面の端部850aより破壊が生じ、信頼性の低下を招く。
また、UMOS構造のトランジスタにおいて開口部を形成する場合にも、一般的にドライエッチングにより窒化物半導体層の一部を除去することにより形成する。図2に、ドライエッチングにより開口部が形成されているUMOS構造のトランジスタを示す。このUMOS構造のトランジスタは、n−GaNにより形成された基板911の表面の上に、n−GaN層921、p−GaN層922、n−GaN層923が、この順で積層して形成されている。ゲート電極941が形成される領域の直下においては、n−GaN層923、p−GaN層922、n−GaN層921の一部をドライエッチングにより除去することにより、ゲートトレンチ950が形成されている。ゲート電極941は、このように形成されたゲートトレンチ950の内側における壁面及び底面において、ゲート絶縁膜となる絶縁層931を介して形成されている。尚、ソース電極942は、n−GaN層923に接して形成されており、ドレイン電極943は、基板911の裏面に形成されている。従って、このUMOS構造のトランジスタが動作する際には、電流は、電流は基板911に対し縦方向に流れる。
このような構造のUMOS構造のトランジスタにおいて、ゲートトレンチ950をドライエッチングにより形成した場合、ゲートトレンチ950の底面の端部950aが、底面の他の部分、例えば、底面の中央部950b等よりも多く除去されてしまう。即ち、ゲートトレンチ950の底面の端部950aが、底面の他の部分、例えば、底面の中央部950b等よりも深く形成されてしまう。このような現象は、前述したゲートリセスの場合と同様に、窒化物半導体において、開口部をドライエッチングにより形成する際に生じる特有の問題である。このように、ゲートトレンチ950の底面の端部950aが、底面の中央部950b等よりも深く形成されると、電圧を印加した場合に、ゲートトレンチ950の底面の端部950aにおいて電界が集中する。これにより、ゲートトレンチ950の底面の端部950aより破壊が生じ、信頼性の低下を招く。
このため、GaN等の窒化物半導体を用いた半導体装置において、ゲートリセスや開口部の底面の端部が中央部よりも深く形成されることのない、耐圧が高く、信頼性の高い半導体装置及び半導体装置の製造方法が求められている。
本実施の形態の一観点によれば、基板の上に、窒化物半導体により形成された第1の半導体層と、前記第1の半導体層の上に、窒化物半導体により形成された第2の半導体層と、前記第2の半導体層、または、前記第2の半導体層及び前記第1の半導体層に形成されたゲートトレンチと、前記ゲートトレンチに形成されたゲート電極と、前記第2の半導体層の上に形成されたソース電極及びドレイン電極と、を有し、前記ゲートトレンチは、前記ゲートトレンチの底面の中央部よりも、底面の端部が浅く形成されており、前記ゲートトレンチにおける壁面の一部は、a面を含む面により形成されており、前記ゲートトレンチにおける底面の中央部は、c面であり、前記ゲートトレンチの底面の前記端部は、c面からa面に至る傾斜面により形成されていることを特徴とする。
また、本実施の形態の他の一観点によれば、導電性を有する基板の一方の面の上に、窒化物半導体により形成された第1の導電型の第1の半導体層と、前記第1の半導体層の上に、窒化物半導体により形成された第2の導電型の第2の半導体層と、前記第2の半導体層の上に、窒化物半導体により形成された第1の導電型の第3の半導体層と、前記第3の半導体層、前記第2の半導体層及び前記第1の半導体層に形成されたゲートトレンチと、前記ゲートトレンチに形成された絶縁層と、前記ゲートトレンチにおける前記絶縁層の上に形成されたゲート電極と、前記第3の半導体層の上に形成されたソース電極と、前記基板の他方の面の上に形成されたドレイン電極と、を有し、前記ゲートトレンチは、前記ゲートトレンチの底面の中央部よりも、底面の端部が浅く形成されており、前記ゲートトレンチにおける壁面の一部は、a面を含む面により形成されており、前記ゲートトレンチにおける底面の中央部は、c面であり、前記ゲートトレンチの底面の前記端部は、c面からa面に至る傾斜面により形成されていることを特徴とする。
また、本実施の形態の他の一観点によれば、基板の上に、窒化物半導体により第1の半導体層を形成し、前記第1の半導体層の上に、窒化物半導体により第2の半導体層を形成する工程と、前記第2の半導体層、または、前記第2の半導体層及び前記第1の半導体層に、第1の開口部をドライエッチングにより形成する工程と、前記第1の開口部の底面に、第2の開口部をドライエッチングにより形成し、c面となる前記第1の開口部の底面と、a面となる前記第2の開口部の壁面と、により角部を形成する工程と、前記第2の開口部を形成した後、ウェットエッチングによって、前記角部より除去することにより傾斜面を形成し、ゲートトレンチを形成する工程と、前記ゲートトレンチに、ゲート電極を形成する工程と、前記第2の半導体層上にソース電極及びドレイン電極を形成する工程と、を有することを特徴とする。
また、本実施の形態の他の一観点によれば、導電性を有する基板の一方の面の上に、窒化物半導体により第1の導電型の第1の半導体層を形成し、前記第1の半導体層の上に、窒化物半導体により第2の導電型の第2の半導体層を形成し、前記第2の半導体層の上に、窒化物半導体により第1の導電型の第3の半導体層を形成する工程と、前記第3の半導体層、前記第2の半導体層及び前記第1の半導体層に、第1の開口部をドライエチングにより形成する工程と、前記第1の開口部の底面に、第2の開口部をドライエッチングにより形成し、c面となる前記第1の開口部の底面と、a面となる前記第2の開口部の壁面と、により角部を形成する工程と、前記第2の開口部を形成した後、ウェットエッチングによって、前記角部より除去することにより傾斜面を形成し、ゲートトレンチを形成する工程と、前記ゲートトレンチに、絶縁層を形成する工程と、前記ゲートトレンチに形成された前記絶縁層の上、ゲート電極を形成する工程と、前記第3の半導体層上にソース電極を形成する工程と、前記基板の他方の面にドレイン電極を形成する工程と、を有することを特徴とする。
開示の半導体装置及び半導体装置の製造方法によれば、GaN等の窒化物半導体を用いた半導体装置において、耐圧を向上させるとともに、信頼性を向上させることができる。
ゲートリセスが形成されているHEMTの説明図 UMOS構造のトランジスタの説明図 第1の実施の形態における半導体装置の上面図 第1の実施の形態における半導体装置の構造図 第1の実施の形態における半導体装置の製造方法の工程図(1) 第1の実施の形態における半導体装置の製造方法の工程図(2) 第1の実施の形態における半導体装置の製造方法の工程図(3) 第1の実施の形態における半導体装置の製造方法の工程図(4) 第1の実施の形態におけるゲートリセスの形成方法の説明図 GaNにおけるウェットエッチングの説明図 第1の実施の形態における半導体装置の製造工程を説明する上面図(1) 第1の実施の形態における半導体装置の製造工程を説明する上面図(2) 第1の実施の形態における半導体装置の製造工程を説明する上面図(3) 第2の実施の形態における半導体装置の上面図 第2の実施の形態における半導体装置の構造図 第2の実施の形態における半導体装置の製造方法の工程図(1) 第2の実施の形態における半導体装置の製造方法の工程図(2) 第2の実施の形態における半導体装置の製造方法の工程図(3) 第2の実施の形態における半導体装置の製造方法の工程図(4) 第2の実施の形態におけるゲートリセスの形成方法の説明図 第2の実施の形態における半導体装置の製造工程を説明する上面図(1) 第2の実施の形態における半導体装置の製造工程を説明する上面図(2) 第2の実施の形態における半導体装置の製造工程を説明する上面図(3) 第3の実施の形態におけるディスクリートパッケージされた半導体デバイスの説明図 第3の実施の形態における電源装置の回路図 第3の実施の形態における高出力増幅器の構造図
実施するための形態について、以下に説明する。尚、同じ部材等については、同一の符号を付して説明を省略する。
〔第1の実施の形態〕
(半導体装置)
第1の実施の形態における半導体装置であるHEMTについて、図3及び図4に基づき説明する。尚、図3は本実施の形態における半導体装置の上面図であり、図4は、図3における一点鎖線3A−3Bにおいて切断した断面図である。本実施の形態においては、複数のHEMTを同一基板上に形成したものについて説明するが、形成されるHEMTは1つであってもよい。
本実施の形態における半導体装置は、基板11上に、窒化物半導体により、初期成長層12、バッファ層13、電子走行層21、電子供給層22、キャップ層23が、この順で積層形成されている。また、ゲート電極41が形成される領域のキャップ層23及び電子供給層22の一部をドライエッチングにより除去することにより、ゲートトレンチ50が形成されている。ゲート電極41は、このように形成されたゲートトレンチ50の内側における壁面及び底面において、ゲート絶縁膜となる絶縁層31を介して形成されている。即ち、ゲートトレンチ50の内側における壁面及び底面には、絶縁層31が形成されており、ゲート電極41は、絶縁層31の上に形成されている。尚、ソース電極42及びドレイン電極43は、電子供給層22に接して形成されている。また、図3に示すように、複数のHEMTが形成されている場合には、各々のHEMTのゲート電極41はゲートバスライン61に接続される。また、ソース電極42はブリッジ部62aを介しソースバスライン62に接続され、ドレイン電極43はドレインバスライン63に接続される。
本実施の形態における半導体装置では、ゲート電極41の直下においては、ゲートトレンチ50が形成されているため、ゲートトレンチ50が形成されている領域における電子供給層22の厚さが薄くなっている。よって、電子走行層21における電子走行層21と電子供給層22との界面近傍には、2DEG21aが生成されるが、ゲート電極41の直下においては、電子供給層22の厚さが薄くなっているため、2DEG21aが消失している。これにより、本実施の形態における半導体装置は、ノーマリーオフとなる。
また、本実施の形態における半導体装置では、ゲートトレンチ50は、ゲートトレンチ50の底面の端部50aが、底面の他の部分、例えば、底面の中央部50bよりも浅く形成されている。これにより、ゲートトレンチ50の底面の端部50aにおいて電界が集中することが抑制されるため、半導体装置の耐圧を向上させ、信頼性を高めることができる。尚、このように形成されるゲートトレンチ50の底面の中央部50bはc面(0001)となっており、ゲートトレンチ50の壁面50cはa面(11−20)となっている。
尚、上記においては、電子走行層21にGaNを用い、電子供給層22にAlGaNを用いたMIS(metal insulator semiconductor)構造のHEMTについて説明した。しかしながら、本実施の形態における半導体装置は、電子走行層21にGaNを用い、電子供給層22にInAlNを用いたHEMTであってもよく、絶縁層31が形成されていないショットキー型のHEMTであってもよい。また、本願においては、n型を第1の導電型と、p型を第2の導電型と記載する場合がある。
(半導体装置の製造方法)
次に、第1の実施の形態における半導体装置の製造方法について、図5から図8に基づき説明する。
最初に、図5(a)に示すように、基板11上に、初期成長層12、バッファ層13、電子走行層21、電子供給層22及びキャップ層23からなる窒化物半導体層をエピタキシャル成長により形成する。これにより、電子走行層21において、電子走行層21と電子供給層22との界面近傍には2DEG21aが生成される。窒化物半導体層をエピタキシャル成長により形成する際には、MOCVD(Metal Organic Chemical Vapor Deposition:有機金属気相成長)法が用いられる。尚、本実施の形態においては、このように形成された窒化物半導体層の表面は、c面(0001)となっている。また、これらの窒化物半導体層は、MOCVDに代えて、MBE(Molecular Beam Epitaxy:分子線エピタキシー)法により形成してもよい。
基板11は、例えば、サファイア基板、Si基板、SiC基板を用いることができる。本実施の形態では、基板11には、Si基板が用いられている。初期成長層12は、膜厚が約100nmのAlNにより形成されており、バッファ層13は、膜厚が約100nmのAlGaNにより形成されている。
電子走行層21は、膜厚が約1μmのi−GaNにより形成されている。
電子供給層22は、膜厚が約30nmのAlGaNにより形成されており、AlGa1−XNと表わした場合に、Xの値が0.1〜0.3になるように形成されている。電子供給層22は、i−AlGaNであっても、n−AlGaNであってもよい。本実施の形態においては、電子供給層22は、n−AlGaNにより形成されている。
キャップ層23は、膜厚が約5nmのn−GaNにより形成されている。
これら窒化物半導体層をMOCVDにより成膜する際には、Alの原料ガスにはTMA(トリメチルアルミニウム)が用いられ、Gaの原料ガスにはTMG(トリメチルガリウム)が用いられ、Nの原料ガスにはNH(アンモニア)が用いられる。尚、これらの原料ガスは、水素(H)をキャリアガスとしてMOVPE装置の反応炉に供給される。また、これらの窒化物半導体層を形成する際に、反応炉内に供給されるアンモニアガスは、100〜10000sccmの流量であり、窒化物半導体層を形成する際の成長圧力、即ち、反応炉内の圧力は50Torr〜300Torrである。
具体的には、初期成長層12は、原料ガスとしてTMAとNHの混合ガスを用いて、基板温度1000℃〜1300℃の条件で、AlNを成長させることにより形成する。
バッファ層13は、原料ガスとしてTMGとTMAとNHの混合ガスを用いて、基板温度900℃〜1300℃の条件で、AlGaNを成長させることにより形成する。尚、反応炉内に供給されるTMGとTMAの流量比を調整することにより、所望の組成比のAlGaNを成長させることができる。
電子走行層21は、原料ガスとしてTMGとNHの混合ガスを用いて、基板温度900℃〜1100℃の条件で、GaNを成長させることにより形成する。
電子供給層22は、原料ガスとしてTMGとTMAとNHの混合ガスを用いて、基板温度900℃〜1300℃の条件で、n−AlGaNを成長させることにより形成する。電子供給層22には、n型となる不純物元素としてSiがドープされており、Siの濃度が1×1018cm−3〜1×1020cm−3、例えば、1×1019cm−3となるようにドープされている。Siの原料ガスとしては、SiH等が用いられる。尚、反応炉内に供給されるTMGとTMAの流量比を調整することにより、所望の組成比のn−AlGaNを成長させることができる。
キャップ層23は、原料ガスとしてTMGとNHの混合ガスを用いて、基板温度900℃〜1100℃の条件で、n−GaNを成長させることにより形成する。キャップ層23には、n型となる不純物元素としてSiがドープされており、Siの濃度が1×1018cm−3〜1×1020cm−3、例えば、1×1019cm−3となるようにドープされている。Siの原料ガスとしては、SiH等が用いられる。
次に、図5(b)に示すように、キャップ層23の上に、ハードマスク71を形成する。具体的には、キャップ層23の上に、CVD(Chemical Vapor Deposition)により、厚さが約200nmのSi膜を形成する。この後、Si膜の上に、フォトレジストを塗布し、露光装置による露光、現像を行うことにより、不図示のレジストパターンを形成する。この後、エッチングガスとしてフッ素系ガスを用いたRIE(Reactive Ion Etching)等のドライエッチングにより、レジストパターンの形成されていない領域におけるSi膜を除去する。これにより、キャップ層23の上に、ハードマスク71が形成される。この後、不図示のレジストパターンは、有機溶剤等により除去する。尚、上記においては、Si膜をドライエッチングにより除去する場合について説明したが、エッチング液としてバッファードフッ酸等を用いたウェットエッチングにより、Si膜を除去してもよい。また、ハードマスク71を形成している材料は、CVD、スパッタリング、SOG等により形成されたSiOであってもよい。このように形成されるハードマスク71は、電子走行層21におけるGaNのm軸<1−100>に沿ったフィンガー状の開口部71aを有している。
次に、図5(c)に示すように、ハードマスク71をマスクとしてRIE等によるドライエッチングにより、キャップ層23及び電子供給層22の一部を除去することにより、第1の開口部72を形成する。このドライエッチングにおいては、塩素系ガスがエッチングガスとして用いられる。この際、第1の開口部72における壁面72aは、a面(11−20)または、a面(11−20)に近い面となるように、基板11面に対し開口部72の壁面72aが略垂直となるようなエッチングが行われる。上記においては、第1の開口部72の底面72bが電子供給層22となる場合について説明した。しかしながら、第1の開口部72は、第1の開口部72の底面72bが、キャップ層23となるように形成されていてもよく、第1の開口部72の底面72bにおいて、電子供給層22が完全に除去され電子走行層21が露出していてもよい。
次に、図6(a)に示すように、ハードマスク71及び第1の開口部72の底面72bにおいて露出している電子供給層22等の上に、レジストパターン73を形成する。このレジストパターン73は、第1の開口部72の底面72bの中央部に、開口部73aが形成されているものである。具体的には、ハードマスク71及び第1の開口部72の底面72bにおいて露出している電子供給層22等の上に、フォトレジストを塗布し、露光装置による露光、現像を行うことにより、レジストパターン73を形成する。
次に、図6(b)に示すように、レジストパターン73の開口部73aにおける電子供給層22の一部を塩素系のガスをエッチングガスとして用いたRIE等のドライエッチングにより除去することにより、第2の開口部74を形成する。この際、第1の開口部72の底面72bに対し、第2の開口部74の底面74bが数nm程度深くなるように、塩素系のガスをエッチングガスとして用いたRIE等のドライエッチングにより第2の開口部74を形成する。これにより、第2の開口部74の壁面74aは、第1の開口部72の底面72bと第2の開口部74の底面74bとの間に形成される。この後、レジストパターン73は、有機溶剤等により除去する。
次に、図6(c)に示すように、第1の開口部72の底面72bにおける電子供給層22の一部をウェットエッチングにより除去する。このウェットエッチングでは、エッチング液として、高温のKOH溶液またはTMAH(水酸化テトラメチルアンモニウム)溶液が用いられ、例えば、温度が75℃で濃度が2mol/LのKOH溶液、温度が75℃で濃度が25%のTMAH溶液が用いられる。尚、このウェットエッチングに用いられるエッチング液としては、KOH溶液またはTMAH溶液以外のアルカリ系のエッチング液を用いることも可能である。このように、第1の開口部72と第2の開口部74とを加工することにより、ゲートトレンチ50を形成する。このゲートトレンチ50は、底面の端部50aが基板11面に対し10°から30°の角度の傾斜を有する傾斜面により形成されており、底面の端部50aは、底面の中央部50bよりも浅い位置に形成される。また、第2の開口部74の底面74bはc面(1000)であるため、ウェットエッチングにおいては殆ど除去されることがない。従って、第2の開口部74の底面74bが、ゲートトレンチ50における底面の中央部50bとなる。
このウェットエッチングの工程について、図9に基づき、より詳細に説明する。図9(a)は、図6(b)に示される状態における要部拡大図である。この状態においては、上述したように、第1の開口部72の底面72bに第2の開口部74が形成されている。また、第1の開口部72及び第2の開口部74が形成されている領域を除く領域のキャップ層23の上には、ハードマスク71が形成されている。第2の開口部74の底面74bは、第1の開口部72の底面72bよりも深い位置に形成されており、第2の開口部74の底面74bと第1の開口部72の底面72bとの間で段部が形成される。本実施の形態においては、第1の開口部72の底面72bにおける第2の開口部74側の端を第1の開口部72の底面72bの角部72cと記載する。尚、この状態においては、第1の開口部72の壁面72a及び第2の開口部74の壁面74aはa面(11−20)、またはこれに近いものである。また、第1の開口部72の底面72b及び第2の開口部74の底面74bはc面(0001)、またはこれに近いものである。
図9(a)に示す状態より、高温のKOH溶液またはTMAH溶液を用いてウェットエッチングを行うことにより、第1の開口部72の底面72bの角部72cより徐々にエッチングが進行する。これにより、図9(b)に示すように、基板11面に対し10°〜30°の傾斜面72dが形成される。この際、第1の開口部72の壁面72aは、上にハードマスク71が形成されているため、殆どエッチングされることはない。
この後、更にウェットエッチングを行うことにより、図9(c)に示すように、第1の開口部72の底面72bの角部72cを基点として進行したエッチングが更に進行し、傾斜面72dと第2の開口部74の底面74bとが接続される。これにより、ゲートトレンチ50が形成される。このゲートトレンチ50においては、傾斜面72dにより底面の端部50aが形成され、第2の開口部74の底面74dにより底面の中央部50bが形成されている。即ち、第1の開口部72の底面72bはc面(0001)、またはこれに近いものであり、第2の開口部74の壁面はa面(11−20)、またはこれに近いものである。よって、図10に示されるように、第1の開口部72の底面72bの角部72cにおけるGaはダングリングボンドを有しており、このようなダングリングボンドを有するGaは除去されやすいため、この部分よりエッチングが進行してゆく。
次に、図7(a)に示すように、ハードマスク71をウェットエッチングにより除去する。このウェットエッチングにおいては、エッチング液としてフッ酸等が用いられる。尚、図11は、この状態における上面図であり、図7(a)は、図11における一点鎖線11A−11Bにおいて切断した断面図である。
次に、図7(b)に示すように、ソース電極42及びドレイン電極43が形成される領域のキャップ層23を除去し、電子供給層22を露出させる。この際、電子供給層22の一部を除去してもよい。具体的には、キャップ層23の上にフォトレジストを塗布し、露光装置による露光、現像を行うことにより、ソース電極42及びドレイン電極43が形成される領域に開口を有する不図示のレジストパターンを形成する。この後、RIE等のドライエッチングによりレジストパターンが形成されていない領域のキャップ層23を除去し、電子供給層22を露出させる。尚、不図示のレジストパターンは有機溶剤等により除去する。
次に、図7(c)に示すように、ゲートトレンチ50の形成されている領域の電子供給層22等の上及びキャップ層23の上に、絶縁膜31tを形成する。具体的には、絶縁膜31tは、ALD(Atomic Layer Deposition)により、厚さが約50nmのAlを成膜することにより形成する。形成される絶縁膜31tは、酸化物、窒化物であれば、Al以外であってもよく、例えば、SiO、HfO、Ga、Si等から選ばれる1又は2以上の材料により形成された膜であってもよく、更に、これらを積層した膜であってもよい。
次に、図8(a)に示すように、ソース電極42及びドレイン電極43が形成される領域における絶縁膜31tを除去し、電子供給層22を露出させる。このように、ソース電極42及びドレイン電極43が形成される領域における絶縁膜31tを除去することにより、残存する絶縁膜31tにより絶縁層31が形成される。具体的には、絶縁膜31tの上に、フォトレジストを塗布し、露光装置による露光、現像を行うことにより、ソース電極42及びドレイン電極43が形成される領域に開口を有する不図示のレジストパターンを形成する。この後、レジストパターンの形成されていない領域の絶縁膜31tをドライエッチングまたはウェットエッチング等により除去することにより、ゲート絶縁膜となる絶縁層31を形成する。尚、絶縁膜31tがAlにより形成されている場合には、絶縁膜31tを除去する際には、イオンミリング等により除去してもよい。また、不図示のレジストパターンは、有機溶剤等により除去する。
次に、図8(b)に示すように、ソース電極42及びドレイン電極43を形成する。具体的には、絶縁層31及び電子供給層22の表面にフォトレジストを塗布し、露光装置による露光、現像を行うことにより、ソース電極42及びドレイン電極43が形成される領域に開口を有する不図示のレジストパターンを形成する。この後、レジストパターンが形成されている面に、Ti/Alからなる積層金属膜を真空蒸着により成膜する。この際成膜される積層金属膜は、厚さが約10nmのTi膜と、厚さが約300nmのAl膜とが積層されたものである。この後、有機溶剤等に浸漬させることにより、レジストパターンの上に形成された積層金属膜をレジストパターンとともにリフトオフにより除去する。これにより、残存する積層金属膜によりソース電極42及びドレイン電極43が形成される。この後、窒素雰囲気中において、400℃〜1000℃の温度、例えば、700℃の温度で、RTA(Rapid Thermal Anneal)等の熱処理を行う。これにより、ソース電極42及びドレイン電極43において、オーミックコンタクトを確立させる。尚、図12は、この状態における上面図であり、図8(b)は、図12における一点鎖線12A−12Bにおいて切断した断面図である。
次に、図8(c)に示すように、ゲート電極41を形成する。具体的には、絶縁層31、ソース電極42及びドレイン電極43の表面にフォトレジストを塗布し、露光装置による露光、現像を行うことにより、ゲート電極41が形成される領域に開口を有する不図示のレジストパターンを形成する。この後、レジストパターンが形成されている面に、Ni/Auからなる積層金属膜を真空蒸着により成膜する。この後、有機溶剤等に浸漬させることにより、レジストパターンの上に形成された積層金属膜をレジストパターンとともにリフトオフにより除去する。これにより、ゲートトレンチ50において、残存する積層金属膜によりゲート電極41が形成される。図13は、この状態における上面図であり、図8(c)は、図13における一点鎖線13A−13Bにおいて切断した断面図である。
この後、不図示の層間絶縁膜を形成し、配線等を形成したものであってもよい。
以上の工程により、本実施の形態における半導体装置を製造することができる。
〔第2の実施の形態〕
(半導体装置)
次に、第2の実施の形態における半導体装置であるUMOS構造のトランジスタについて、図14及び図15に基づき説明する。尚、図14は本実施の形態における半導体装置の上面図であり、図15は、図14における一点鎖線14A−14Bにおいて切断した断面図である。本実施の形態においては、複数のUMOS構造のトランジスタを同一基板上に形成したものについて説明するが、形成されるUMOS構造のトランジスタは1つであってもよい。
本実施の形態における半導体装置は、基板111の表面、即ち、一方の面の上に、窒化物半導体により、第1の半導体層121、第2の半導体層122、第3の半導体層123が、この順で積層形成されている。尚、基板111は、n型基板、例えば、n−GaN基板である。第1の半導体層121は、n型であり、例えば、n−GaNにより形成されており、第2の半導体層122は、p型であり、例えば、p−GaNにより形成されており、第3の半導体層123は、n型であり、例えば、n−GaNにより形成されている。
また、ゲート電極141が形成される領域の第3の半導体層123、第2の半導体層122、第1の半導体層121の一部をドライエッチングにより除去することにより、ゲートトレンチ150が形成されている。ゲート電極141は、このように形成された、ゲートトレンチ150の内側における壁面及び底面において、ゲート絶縁膜となる絶縁層131を介して形成されている。即ち、ゲートトレンチ150の内側における壁面及び底面には、絶縁層131が形成されており、ゲート電極141は、絶縁層131の上に形成されている。尚、ソース電極142は第3の半導体層123の上に形成されており、ドレイン電極143は、基板111の裏面、即ち、一方の面とは反対側の他方の面に形成されている。また、図14に示すように、複数のUMOS構造のトランジスタが形成されている場合には、各々のUMOS構造のトランジスタのゲート電極141は、ゲートバスライン161に接続され、ソース電極142はソースバスライン162に接続される。
本実施の形態における半導体装置では、ゲートトレンチ150は、ゲートトレンチ150の底面の端部150aが、底面の他の部分、例えば、底面の中央部150bよりも浅く形成されている。これにより、ゲートトレンチ150の底面の端部150aにおいて電界が集中することが抑制されるため、半導体装置の耐圧を向上させ、信頼性を高めることができる。尚、このように形成されるゲートトレンチ150の底面の中央部150bはc面(0001)となっており、ゲートトレンチ150の壁面150cはa面(11−20)となっている。
本実施の形態における半導体装置をより詳細に説明するため、ソース電極142とドレイン電極143との間には、ドレイン電極143が正となるように、バイアス電圧が定常的に印加されている場合について考える。
この場合において、ゲート電極141に電圧が印加されていないオフ状態においては、ゲートトレンチ150における底面の端部150a及び第1の半導体層121と第2の半導体層122との間のpn接合において電界が集中する。特に、UMOS構造のトランジスタにおいては、ゲートトレンチ150における底面の端部150aに電界が集中しやすく、破壊等が生じやすい。本実施の形態における半導体装置においては、ゲートトレンチ150において、底面の中央部150bよりも底面の端部150aの方が浅い位置に形成されているため、電界の集中を緩和させることができ、耐圧を向上させることができる。
また、ゲート電極141に電圧が印加されているオン状態においては、ソース電極142を基準とした正のバイアスがゲート電極141に印加される。この際、p−GaN等により形成されている第2の半導体層122において、絶縁層131との界面近傍には反転層が形成されるため、ソース電極142とドレイン電極143との間が導通する。この際、本実施の形態における半導体装置においては、電流経路となるゲートトレンチ150の壁面150cは、非極性面であるa面(11−20)であるため、GaNによる分極電荷の影響を受けにくく移動度が高い。よって、オン抵抗を低くすることができる。また、ゲートトレンチ150の側壁が、特許文献2に示されるように、テーパ状に形成されている場合では、GaNの分極電荷によって、ゲート閾値電圧が変動してしまい、オン抵抗及び流れる電流量にバラツキが生じるため、歩留り等が低下してしまう。しかしながら、本実施の形態における半導体装置においては、ゲートトレンチ150の側壁150cは非極性面であるため、ゲート閾値電圧に及ぼす影響は極めて小さく、半導体装置における歩留りを向上させることができる。
(半導体装置の製造方法)
次に、第2の実施の形態における半導体装置の製造方法について、図16から図19に基づき説明する。
最初に、図16(a)に示すように、基板111の表面、即ち、一方の面の上に、第1の半導体層121、第2の半導体層122及び第3の半導体層123からなる窒化物半導体層をエピタキシャル成長により形成する。窒化物半導体層をエピタキシャル成長により形成する際には、MOCVD法が用いられる。尚、本実施の形態においては、このように形成された窒化物半導体層の表面は、c面(0001)となっている。また、これらの窒化物半導体層は、MOCVDに代えて、MBE法により形成してもよい。
基板111には、n−Gan基板が用いられており、n型となる不純物元素としてSiが、約1×1019cm−3のドーピング濃度でドープされている。
第1の半導体層121は、膜厚が約10μmのn−GaNにより形成されており、第2の半導体層122は、膜厚が約1μmのp−GaNにより形成されており、第3の半導体層123は、膜厚が約100nmのn−GaNにより形成されている。これにより、基板111の上には、第1の半導体層121であるn−Gan、第2の半導体層122であるp−GaN、第3の半導体層123であるn−GaNが順に積層されて形成される。
これら窒化物半導体層をMOCVDにより成膜する際には、Gaの原料ガスにはTMG(トリメチルガリウム)が用いられ、Nの原料ガスにはNH(アンモニア)が用いられる。尚、これらの原料ガスは、水素(H)をキャリアガスとしてMOVPE装置の反応炉に供給される。また、これらの窒化物半導体層を形成する際に、反応炉内に供給されるアンモニアガスは、100〜10000sccmの流量であり、窒化物半導体層を形成する際の成長圧力、即ち、反応炉内の圧力は50Torr〜300Torrである。
具体的には、第1の半導体層121は、原料ガスとしてTMGとNHの混合ガス及びn型となる不純物元素を含む原料ガスを用いて、基板温度900℃〜1100℃の条件で、n−GaNを成長させることにより形成する。n型となる不純物元素としては、Siが挙げられ、原料ガスとしてSiH等を用いて、Siのドーピング濃度が、1×1015cm−3〜1×1018cm−3、例えば、5×1016cm−3となるようにドープする。
第2の半導体層122は、原料ガスとしてTMGとNHの混合ガス及びp型となる不純物元素を含む原料ガスを用いて、基板温度900℃〜1100℃の条件で、p−GaNを成長させることにより形成する。p型となる不純物元素としては、Mgが挙げられる。具体的には、原料ガスとしてCp2Mg(bis-cycropentadienyl magnesium)等を用いて、Mgのドーピング濃度が、5×1018cm−3〜5×1029cm−3、例えば、1×1019cm−3となるようにドープする。尚、第2の半導体層122を成膜した後は、N2雰囲気中において、400℃〜1000℃の温度で熱処理を行うことにより、p型に活性化させる。
第3の半導体層123は、原料ガスとしてTMGとNHの混合ガス及びn型となる不純物元素を含む原料ガスを用いて、基板温度900℃〜1100℃の条件で、n−GaNを成長させることにより形成する。n型となる不純物元素としては、Siが挙げられ、原料ガスとしてSiH等を用いて、Siのドーピング濃度が、1×1015cm−3〜1×1018cm−3、例えば、5×1016cm−3となるようにドープする。
次に、図16(b)に示すように、第3の半導体層123の上に、ハードマスク171を形成する。具体的には、第3の半導体層123の上に、CVDにより、厚さが約500nmのSi膜を形成する。この後、Si膜の上に、フォトレジストを塗布し、露光装置による露光、現像を行うことにより、不図示のレジストパターンを形成する。この後、エッチングガスとしてフッ素系ガスを用いたRIE等のドライエッチングにより、レジストパターンの形成されていない領域におけるSi膜を除去することにより、第3の半導体層123の上に、ハードマスク171が形成される。この後、不図示のレジストパターンは、有機溶剤等により除去する。尚、上記においては、Si膜をドライエッチングにより除去する場合について説明したが、エッチング液としてバッファードフッ酸等を用いたウェットエッチングにより、Si膜を除去してもよい。また、ハードマスク171を形成している材料は、CVD、スパッタリング、SOG等により形成されたSiOであってもよい。このように形成されるハードマスク171は、電子走行層21におけるGaNのm軸<1−100>に沿ったフィンガー状の開口部171aを有している。
次に、図16(c)に示すように、ハードマスク171をマスクとしてRIE等によるドライエッチングにより、第3の半導体層123、第2の半導体層122及び第1の半導体層121の一部を除去することにより、第1の開口部172を形成する。このドライエッチングにおいては、塩素系ガスがエッチングガスとして用いられる。この際、第1の開口部172における壁面172aは、a面(11−20)または、a面(11−20)に近い面となるように、基板111面に対し開口部172の壁面172aが略垂直となるようなエッチングが行われる。これにより、底面172bにおいて第1の半導体層121が露出している第1の開口部171が形成される。
次に、図17(a)に示すように、ハードマスク171及び第1の開口部172の底面172bにおいて露出している第1の半導体層121等の上に、レジストパターン173を形成する。このレジストパターン173は、第1の開口部172の底面172bの中央部に、開口部173aが形成されているものである。具体的には、ハードマスク171及び第1の開口部172の底面172bにおいて露出している第1の半導体層121等の上に、フォトレジストを塗布し、露光装置による露光、現像を行うことにより、レジストパターン173を形成する。
次に、図17(b)に示すように、レジストパターン173の開口部173aにおける第1の半導体層121の一部をRIE等のドライエッチングにより除去することにより、第2の開口部174を形成する。この際、第1の開口部172の底面172bに対し、第2の開口部174の底面174bが数nm〜数十nm程度深くなるように、RIE等のドライエッチングにより第2の開口部174を形成する。これにより、第2の開口部174の壁面174aは、第1の開口部172の底面172bと第2の開口部174の底面174bとの間に形成される。この後、レジストパターン173は、有機溶剤等により除去する。
次に、図17(c)に示すように、第1の開口部172の底面172bにおける第1の半導体層121の一部をウェットエッチングにより除去する。このウェットエッチングでは、エッチング液として、高温のKOH溶液またはTMAH(水酸化テトラメチルアンモニウム)溶液が用いられ、例えば、温度が75℃で濃度が2mol/LのKOH溶液、温度が75℃で濃度が25%のTMAH溶液が用いられる。尚、このウェットエッチングに用いられるエッチング液としては、KOH溶液またはTMAH溶液以外のアルカリ系のエッチング液を用いることも可能である。このように、第1の開口部172と第2の開口部174とを加工することにより、ゲートトレンチ150を形成する。このゲートトレンチ150は、底面の端部150aが基板111面に対し10°から30°の角度の傾斜を有する傾斜面により形成されており、底面の端部150aは、底面の中央部150bよりも浅い位置に形成される。また、第2の開口部174の底面174bはc面(1000)であるため、ウェットエッチングにおいては殆ど除去されることがない。従って、第2の開口部174の底面174bが、ゲートトレンチ150における底面の中央部150bとなる。
このウェットエッチングの工程について、図20に基づき、より詳細に説明する。図20(a)は、図17(b)に示される状態における要部拡大図である。この状態においては、上述したように、第1の開口部172の底面172bに第2の開口部174が形成されている。また、第1の開口部172及び第2の開口部174が形成されている領域を除く領域の第3の半導体層123の上には、ハードマスク171が形成されている。第2の開口部174の底面174bは、第1の開口部172の底面172bよりも深い位置に形成されており、第2の開口部174の底面174bと第1の開口部172の底面172との間で段部が形成される。本実施の形態においては、第1の開口部172の底面172bにおける第2の開口部174側の端を第1の開口部172の底面172bの角部172cと記載する。尚、この状態においては、第1の開口部172の壁面172a及び第2の開口部174の壁面174aはa面(11−20)、またはこれに近いものである。また、第1の開口部172の底面172b及び第2の開口部174の底面174bはc面(0001)、またはこれに近いものである。
図20(a)に示す状態より、高温のKOH溶液またはTMAH溶液を用いてウェットエッチングを行うことにより、第1の開口部172の底面172bの角部172cより徐々にエッチングが進行する。これにより、図20(b)に示すように、基板111面に対し10°〜30°の傾斜面172dが形成される。この際、第1の開口部172の壁面172aは、上にハードマスク171が形成されているため、殆どエッチングされることはない。
この後、更にウェットエッチングを行うことにより、図20(c)に示すように、第1の開口部172の底面172bの角部172cを基点として進行したエッチングが更に進行し、傾斜面172dと第2の開口部174の底面174bとが接続される。これにより、ゲートトレンチ150が形成される。この、ゲートトレンチ150においては、傾斜面172dにより底面の端部150aが形成され、第2の開口部174の底面174dにより底面の中央部150bが形成されている。即ち、第1の開口部172の底面172bはc面(0001)、またはこれに近いものであり、第2の開口部174の壁面はa面(11−20)、またはこれに近いものである。よって、図10に示されるように、第1の開口部172の底面172bの角部172cにおけるGaはダングリングボンドを有しており、このようなダングリングボンドを有するGaは除去されやすいため、この部分よりエッチングが進行してゆく。
次に、図18(a)に示すように、ハードマスク171をウェットエッチングにより除去する。このウェットエッチングにおいては、エッチング液としてフッ酸等が用いられる。尚、図21は、この状態における上面図であり、図18(a)は、図21における一点鎖線21A−21Bにおいて切断した断面図である。
次に、図18(b)に示すように、基板111の裏面、即ち、他方の面にドレイン電極143を形成する。具体的には、Ti/Alからなる積層金属膜を真空蒸着により成膜することによりドレイン電極143を形成する。この際成膜される積層金属膜は、厚さが約10nmのTi膜と、厚さが約300nmのAl膜とが積層されたものである。
次に、図18(c)に示すように、ソース電極142を形成する。具体的には、第3の半導体層123及び、ゲートトレンチ150において露出している第1の半導体層121の上にフォトレジストを塗布し、露光装置による露光、現像を行う。これにより、ソース電極142が形成される領域に開口を有する不図示のレジストパターンを形成する。この後、レジストパターンが形成されている面に、Ti/Alからなる積層金属膜を真空蒸着により成膜する。この際成膜される積層金属膜は、厚さが約10nmのTi膜と、厚さが約300nmのAl膜とが積層されたものである。この後、有機溶剤等に浸漬させることにより、レジストパターンの上に形成された積層金属膜をレジストパターンとともにリフトオフにより除去する。これにより、残存する積層金属膜によりソース電極142が形成される。この後、窒素雰囲気中において、400℃〜1000℃の温度、例えば、700℃の温度で、RTA等の熱処理を行う。これにより、ソース電極142及びドレイン電極143において、オーミックコンタクトを確立させる。尚、図22は、この状態における上面図であり、図18(c)は、図22における一点鎖線22A−22Bにおいて切断した断面図である。
次に、図19(a)に示すように、ゲートトレンチ150の形成されている領域の第1の半導体層121等の上及び第3の半導体層123の上に、絶縁膜131tを形成する。具体的には、絶縁膜131tは、ALDにより、厚さが約50nmのAlを成膜することにより形成する。形成される絶縁131tは、酸化物、窒化物であれば、Al以外であってもよく、例えば、SiO、HfO、Ga、Si等から選ばれる1又は2以上の材料により形成された膜であってもよく、また、これらを積層した膜であってもよい。
次に、図19(b)に示すように、ゲート電極141を形成する。具体的には、絶縁膜131tの表面にフォトレジストを塗布し、露光装置による露光、現像を行うことにより、ゲート電極141が形成される領域に開口を有する不図示のレジストパターンを形成する。この後、レジストパターンが形成されている面に、Ni/Auからなる積層金属膜を真空蒸着により成膜する。この後、有機溶剤等に浸漬させることにより、レジストパターンの上に形成された積層金属膜をレジストパターンとともにリフトオフにより除去する。これにより、ゲートトレンチ150において、残存する積層金属膜によりゲート電極141が形成される。
次に、図19(c)に示すように、ソース電極142を覆う絶縁膜131tを除去することにより、ソース電極142を露出させる。具体的には、絶縁膜131tの上に、フォトレジストを塗布し、露光装置による露光、現像を行うことにより、ソース電極142を露出させる領域に開口を有する不図示のレジストパターンを形成する。この後、レジストパターンの形成されていない領域の絶縁膜131tをドライエッチングまたはウェットエッチング等により除去することにより、ゲート絶縁膜となる絶縁層131を形成する。尚、絶縁膜131tがAlにより形成されている場合には、絶縁膜131tを除去する際には、イオンミリング等により除去してもよい。また、不図示のレジストパターンは、有機溶剤等により除去する。また、図23は、この状態における上面図であり、図19(c)は、図23における一点鎖線23A−23Bにおいて切断した断面図である。
この後、不図示の層間絶縁膜を形成し、配線等を形成したものであってもよい。また、ソース電極142の一部を第2の半導体層122であるp−GaN等に接触させることにより、ボディダイオードを形成してもよい。
以上の工程により、本実施の形態における半導体装置を製造することができる。
〔第3の実施の形態〕
次に、第3の実施の形態について説明する。本実施の形態は、半導体デバイス、電源装置及び高周波増幅器である。
本実施の形態における半導体デバイスは、第1または第2の実施の形態における半導体装置をディスクリートパッケージしたものであり、このようにディスクリートパッケージされた半導体デバイスについて、図24に基づき説明する。尚、図24は、ディスクリートパッケージされた半導体装置の内部を模式的に示すものであり、電極の配置等については、第1または第2の実施の形態に示されているものとは、異なっている。また、本実施の形態においては、第1または第2の実施の形態における半導体装置においてHEMTまたはUMOS構造のトランジスタを1つ形成した場合について説明する場合がある。
最初に、第1または第2の実施の形態において製造された半導体装置をダイシング等により切断することにより、GaN系の半導体材料のHEMT等の半導体チップ410を形成する。この半導体チップ410をリードフレーム420上に、ハンダ等のダイアタッチ剤430により固定する。尚、この半導体チップ410は、第1または第2の実施の形態におけるいずれかの半導体装置に相当するものである。
次に、ゲート電極411をゲートリード421にボンディングワイヤ431により接続し、ソース電極412をソースリード422にボンディングワイヤ432により接続し、ドレイン電極413をドレインリード423にボンディングワイヤ433により接続する。尚、ボンディングワイヤ431、432、433はAl等の金属材料により形成されている。また、本実施の形態においては、ゲート電極411はゲート電極パッドであり、第1の実施の形態における半導体装置のゲート電極41または第2の実施の形態における半導体装置のゲート電極141と接続されている。また、ソース電極412はソース電極パッドであり、第1の実施の形態における半導体装置のソース電極42または第2の実施の形態における半導体装置のソース電極142と接続されている。また、ドレイン電極413はドレイン電極パッドであり、第1の実施の形態における半導体装置のドレイン電極43または第2の実施の形態における半導体装置のドレイン電極143と接続されている。
次に、トランスファーモールド法によりモールド樹脂440による樹脂封止を行なう。このようにして、GaN系の半導体材料を用いたHEMT等のディスクリートパッケージされている半導体デバイスを作製することができる。
次に、本実施の形態における電源装置及び高周波増幅器について説明する。本実施の形態における電源装置及び高周波増幅器は、第1または第2の実施の形態におけるいずれかの半導体装置を用いた電源装置及び高周波増幅器である。
最初に、図25に基づき、本実施の形態における電源装置について説明する。本実施の形態における電源装置460は、高圧の一次側回路461、低圧の二次側回路462及び一次側回路461と二次側回路462との間に配設されるトランス463を備えている。一次側回路461は、交流電源464、いわゆるブリッジ整流回路465、複数のスイッチング素子(図25に示す例では4つ)466及び一つのスイッチング素子467等を備えている。二次側回路462は、複数のスイッチング素子(図25に示す例では3つ)468を備えている。図25に示す例では、第1または第2の実施の形態における半導体装置を一次側回路461のスイッチング素子466及び467として用いている。尚、一次側回路461のスイッチング素子466及び467は、ノーマリーオフの半導体装置であることが好ましい。また、二次側回路462において用いられているスイッチング素子468はシリコンにより形成される通常のMISFET(metal insulator semiconductor field effect transistor)を用いている。
次に、図26に基づき、本実施の形態における高周波増幅器について説明する。本実施の形態における高周波増幅器470は、例えば、携帯電話の基地局用パワーアンプに適用してもよい。この高周波増幅器470は、ディジタル・プレディストーション回路471、ミキサー472、パワーアンプ473及び方向性結合器474を備えている。ディジタル・プレディストーション回路471は、入力信号の非線形歪みを補償する。ミキサー472は、非線形歪みが補償された入力信号と交流信号とをミキシングする。パワーアンプ473は、交流信号とミキシングされた入力信号を増幅する。図26に示す例では、パワーアンプ473は、第1または第2の実施の形態における半導体装置を有している。方向性結合器474は、入力信号や出力信号のモニタリング等を行なう。図26に示す回路では、例えば、スイッチの切り替えにより、ミキサー472により出力信号を交流信号とミキシングしてディジタル・プレディストーション回路471に送出することが可能である。
以上、実施の形態について詳述したが、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。
上記の説明に関し、更に以下の付記を開示する。
(付記1)
基板の上に、窒化物半導体により形成された第1の半導体層と、
前記第1の半導体層の上に、窒化物半導体により形成された第2の半導体層と、
前記第2の半導体層、または、前記第2の半導体層及び前記第1の半導体層に形成されたゲートトレンチと、
前記ゲートトレンチに形成されたゲート電極と、
前記第2の半導体層の上に形成されたソース電極及びドレイン電極と、
を有し、
前記ゲートトレンチは、前記ゲートトレンチの底面の中央部よりも、底面の端部が浅く形成されており、
前記ゲートトレンチにおける壁面の一部は、a面を含む面により形成されており、
前記ゲートトレンチにおける底面の中央部は、c面であり、
前記ゲートトレンチの底面の前記端部は、c面からa面に至る傾斜面により形成されていることを特徴とする半導体装置。
(付記2)
前記第1の半導体層は、GaNを含む材料により形成されており、
前記第2の半導体層は、AlGaNを含む材料により形成されていることを特徴とする付記1に記載の半導体装置。
(付記3)
前記ゲートトレンチには、絶縁層が形成されており、
前記ゲート電極は、前記絶縁層の上に形成されていることを特徴とする付記1または2に記載の半導体装置。
(付記4)
前記第2の半導体層の上には、窒化物半導体により形成された第1の導電型の第3の半導体が形成されていることを特徴とする付記1から3のいずれかに記載の半導体装置。
(付記5)
導電性を有する基板の一方の面の上に、窒化物半導体により形成された第1の導電型の第1の半導体層と、
前記第1の半導体層の上に、窒化物半導体により形成された第2の導電型の第2の半導体層と、
前記第2の半導体層の上に、窒化物半導体により形成された第1の導電型の第3の半導体層と、
前記第3の半導体層、前記第2の半導体層及び前記第1の半導体層に形成されたゲートトレンチと、
前記ゲートトレンチに形成された絶縁層と、
前記ゲートトレンチにおける前記絶縁層の上に形成されたゲート電極と、
前記第3の半導体層の上に形成されたソース電極と、
前記基板の他方の面の上に形成されたドレイン電極と、
を有し、
前記ゲートトレンチは、前記ゲートトレンチの底面の中央部よりも、底面の端部が浅く形成されており、
前記ゲートトレンチにおける壁面の一部は、a面を含む面により形成されており、
前記ゲートトレンチにおける底面の中央部は、c面であり、
前記ゲートトレンチの底面の前記端部は、c面からa面に至る傾斜面により形成されていることを特徴とする半導体装置。
(付記6)
前記第1の半導体層、前記第2の半導体層、前記第3の半導体層は、GaNを含む材料により形成されていることを特徴とする付記5に記載の半導体装置。
(付記7)
前記第1の導電型はn型であって、前記第1の半導体層及び前記第3の半導体層は、不純物元素としてSiがドープされており、
前記第2の導電型はp型であって、前記第2の半導体層は、不純物元素としてMgがドープされていることを特徴とする付記5または6に記載の半導体装置。
(付記8)
基板の上に、窒化物半導体により第1の半導体層を形成し、前記第1の半導体層の上に、窒化物半導体により第2の半導体層を形成する工程と、
前記第2の半導体層、または、前記第2の半導体層及び前記第1の半導体層に、第1の開口部をドライエッチングにより形成する工程と、
前記第1の開口部の底面に、第2の開口部をドライエッチングにより形成し、c面となる前記第1の開口部の底面と、a面となる前記第2の開口部の壁面と、により角部を形成する工程と、
前記第2の開口部を形成した後、ウェットエッチングによって、前記角部より除去することにより傾斜面を形成し、ゲートトレンチを形成する工程と、
前記ゲートトレンチに、ゲート電極を形成する工程と、
前記第2の半導体層上にソース電極及びドレイン電極を形成する工程と、
を有することを特徴とする半導体装置の製造方法。
(付記9)
前記第1の半導体層は、GaNを含む材料により形成されており、
前記第2の半導体層は、AlGaNを含む材料により形成されていることを特徴とする付記8に記載の半導体装置の製造方法。
(付記10)
前記第1の半導体層及び前記第2の半導体層は、MOCVDにより形成されていることを特徴とする付記8または9に記載の半導体装置の製造方法。
(付記11)
前記ゲートトレンチを形成した後に、前記ゲートトレンチに、絶縁層を形成する工程を有し、
前記ゲート電極を形成する工程において、前記ゲート電極は、前記ゲートトレンチに形成された絶縁層の上に形成されることを特徴とする付記8から10のいずれかに記載の半導体装置の製造方法。
(付記12)
導電性を有する基板の一方の面の上に、窒化物半導体により第1の導電型の第1の半導体層を形成し、前記第1の半導体層の上に、窒化物半導体により第2の導電型の第2の半導体層を形成し、前記第2の半導体層の上に、窒化物半導体により第1の導電型の第3の半導体層を形成する工程と、
前記第3の半導体層、前記第2の半導体層及び前記第1の半導体層に、第1の開口部をドライエチングにより形成する工程と、
前記第1の開口部の底面に、第2の開口部をドライエッチングにより形成し、c面となる前記第1の開口部の底面と、a面となる前記第2の開口部の壁面と、により角部を形成する工程と、
前記第2の開口部を形成した後、ウェットエッチングによって、前記角部より除去することにより傾斜面を形成し、ゲートトレンチを形成する工程と、
前記ゲートトレンチに、絶縁層を形成する工程と、
前記ゲートトレンチに形成された前記絶縁層の上、ゲート電極を形成する工程と、
前記第3の半導体層上にソース電極を形成する工程と、
前記基板の他方の面にドレイン電極を形成する工程と、
を有することを特徴とする半導体装置の製造方法。
(付記13)
前記第1の半導体層、前記第2の半導体層、前記第3の半導体層は、GaNを含む材料により形成されていることを特徴とする付記12に記載の半導体装置の製造方法。
(付記14)
前記第1の半導体層、前記第2の半導体層及び前記第3の半導体層は、MOCVDにより形成されていることを特徴とする付記12または13に記載の半導体装置の製造方法。
(付記15)
前記ゲートトレンチにおける壁面の一部は、a面を含む面により形成されていることを特徴とする付記8から14のいずれかに記載の半導体装置の製造方法。
(付記16)
前記ウェットエッチングは、KOHまたはTMAHを用いて行なうことを特徴とする付記8から15のいずれかに記載の半導体装置の製造方法。
(付記17)
付記1から7のいずれかに記載の半導体装置を有することを特徴とする電源装置。
(付記18)
付記1から7のいずれかに記載の半導体装置を有することを特徴とする増幅器。
11 基板
12 初期成長層
13 バッファ層
21 電子走行層(第1の半導体層)
21a 2DEG
22 電子供給層(第2の半導体層)
23 キャップ層(第3の半導体層)
31 絶縁層
31t 絶縁膜
41 ゲート電極
42 ソース電極
43 ドレイン電極
50 ゲートトレンチ
50a ゲートトレンチの底面の中央部
50b ゲートトレンチの底面の端部
50c ゲートトレンチの壁面
72 第1の開口部
72a 第1の開口部の壁面
72b 第1の開口部の底面
72c 第1の開口部の角部
74 第2の開口部
74a 第2の開口部の壁面
74b 第2の開口部の底面
111 基板
121 第1の半導体層(n−GaN)
122 第2の半導体層(p−GaN)
123 第3の半導体層(n−GaN)
131 絶縁層
131t 絶縁膜
141 ゲート電極
142 ソース電極
143 ドレイン電極
150 ゲートトレンチ
150a ゲートトレンチの底面の中央部
150b ゲートトレンチの底面の端部
150c ゲートトレンチの壁面
172 第1の開口部
172a 第1の開口部の壁面
172b 第1の開口部の底面
172c 第1の開口部の角部
174 第2の開口部
174a 第2の開口部の壁面
174b 第2の開口部の底面

Claims (8)

  1. 基板の上に、窒化物半導体により形成された第1の半導体層と、
    前記第1の半導体層の上に、窒化物半導体により形成された第2の半導体層と、
    前記第2の半導体層、または、前記第2の半導体層及び前記第1の半導体層に形成されたゲートトレンチと、
    前記ゲートトレンチに形成されたゲート電極と、
    前記第2の半導体層の上に形成されたソース電極及びドレイン電極と、
    を有し、
    前記ゲートトレンチは、前記ゲートトレンチの底面の中央部よりも、底面の端部が浅く形成されており、
    前記ゲートトレンチにおける壁面の一部は、a面を含む面により形成されており、
    前記ゲートトレンチにおける底面の中央部は、c面であり、
    前記ゲートトレンチの底面の前記端部は、c面からa面に至る傾斜面により形成されていることを特徴とする半導体装置。
  2. 前記第1の半導体層は、GaNを含む材料により形成されており、
    前記第2の半導体層は、AlGaNを含む材料により形成されていることを特徴とする請求項1に記載の半導体装置。
  3. 導電性を有する基板の一方の面の上に、窒化物半導体により形成された第1の導電型の第1の半導体層と、
    前記第1の半導体層の上に、窒化物半導体により形成された第2の導電型の第2の半導体層と、
    前記第2の半導体層の上に、窒化物半導体により形成された第1の導電型の第3の半導体層と、
    前記第3の半導体層、前記第2の半導体層及び前記第1の半導体層に形成されたゲートトレンチと、
    前記ゲートトレンチに形成された絶縁層と、
    前記ゲートトレンチにおける前記絶縁層の上に形成されたゲート電極と、
    前記第3の半導体層の上に形成されたソース電極と、
    前記基板の他方の面の上に形成されたドレイン電極と、
    を有し、
    前記ゲートトレンチは、前記ゲートトレンチの底面の中央部よりも、底面の端部が浅く形成されており、
    前記ゲートトレンチにおける壁面の一部は、a面を含む面により形成されており、
    前記ゲートトレンチにおける底面の中央部は、c面であり、
    前記ゲートトレンチの底面の前記端部は、c面からa面に至る傾斜面により形成されていることを特徴とする半導体装置。
  4. 前記第1の半導体層、前記第2の半導体層、前記第3の半導体層は、GaNを含む材料により形成されていることを特徴とする請求項3に記載の半導体装置。
  5. 基板の上に、窒化物半導体により第1の半導体層を形成し、前記第1の半導体層の上に、窒化物半導体により第2の半導体層を形成する工程と、
    前記第2の半導体層、または、前記第2の半導体層及び前記第1の半導体層に、第1の開口部をドライエッチングにより形成する工程と、
    前記第1の開口部の底面に、第2の開口部をドライエッチングにより形成し、c面となる前記第1の開口部の底面と、a面となる前記第2の開口部の壁面と、により角部を形成する工程と、
    前記第2の開口部を形成した後、ウェットエッチングによって、前記角部より除去することにより傾斜面を形成し、ゲートトレンチを形成する工程と、
    前記ゲートトレンチに、ゲート電極を形成する工程と、
    前記第2の半導体層上にソース電極及びドレイン電極を形成する工程と、
    を有することを特徴とする半導体装置の製造方法。
  6. 導電性を有する基板の一方の面の上に、窒化物半導体により第1の導電型の第1の半導体層を形成し、前記第1の半導体層の上に、窒化物半導体により第2の導電型の第2の半導体層を形成し、前記第2の半導体層の上に、窒化物半導体により第1の導電型の第3の半導体層を形成する工程と、
    前記第3の半導体層、前記第2の半導体層及び前記第1の半導体層に、第1の開口部をドライエチングにより形成する工程と、
    前記第1の開口部の底面に、第2の開口部をドライエッチングにより形成し、c面となる前記第1の開口部の底面と、a面となる前記第2の開口部の壁面と、により角部を形成する工程と、
    前記第2の開口部を形成した後、ウェットエッチングによって、前記角部より除去することにより傾斜面を形成し、ゲートトレンチを形成する工程と、
    前記ゲートトレンチに、絶縁層を形成する工程と、
    前記ゲートトレンチに形成された前記絶縁層の上、ゲート電極を形成する工程と、
    前記第3の半導体層上にソース電極を形成する工程と、
    前記基板の他方の面にドレイン電極を形成する工程と、
    を有することを特徴とする半導体装置の製造方法。
  7. 前記ゲートトレンチにおける壁面の一部は、a面を含む面により形成されていることを特徴とする請求項5または6に記載の半導体装置の製造方法。
  8. 前記ウェットエッチングは、KOHまたはTMAHを用いて行なうことを特徴とする請求項5から7のいずれかに記載の半導体装置の製造方法。
JP2013110373A 2013-05-24 2013-05-24 半導体装置及び半導体装置の製造方法 Active JP6136571B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013110373A JP6136571B2 (ja) 2013-05-24 2013-05-24 半導体装置及び半導体装置の製造方法
US14/248,727 US9312350B2 (en) 2013-05-24 2014-04-09 Semiconductor device and manufacturing method thereof
TW103113246A TWI549300B (zh) 2013-05-24 2014-04-10 半導體裝置及其製造方法
CN201410171412.1A CN104183636B (zh) 2013-05-24 2014-04-25 半导体器件及其制造方法
US15/058,747 US9728618B2 (en) 2013-05-24 2016-03-02 Semiconductor device and manufacturing method thereof
US15/636,930 US9947781B2 (en) 2013-05-24 2017-06-29 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013110373A JP6136571B2 (ja) 2013-05-24 2013-05-24 半導体装置及び半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2014229838A true JP2014229838A (ja) 2014-12-08
JP6136571B2 JP6136571B2 (ja) 2017-05-31

Family

ID=51934798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013110373A Active JP6136571B2 (ja) 2013-05-24 2013-05-24 半導体装置及び半導体装置の製造方法

Country Status (4)

Country Link
US (3) US9312350B2 (ja)
JP (1) JP6136571B2 (ja)
CN (1) CN104183636B (ja)
TW (1) TWI549300B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022030079A (ja) * 2020-08-06 2022-02-18 株式会社東芝 半導体装置
US11276774B2 (en) 2019-01-04 2022-03-15 Kabushiki Kaisha Toshiba Semiconductor device, inverter circuit, driving device, vehicle, and elevator

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6054620B2 (ja) * 2012-03-29 2016-12-27 トランスフォーム・ジャパン株式会社 化合物半導体装置及びその製造方法
JP6401053B2 (ja) * 2014-12-26 2018-10-03 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
JP2017054960A (ja) 2015-09-10 2017-03-16 株式会社東芝 半導体装置
ITUB20155536A1 (it) * 2015-11-12 2017-05-12 St Microelectronics Srl Transistore hemt di tipo normalmente spento includente una trincea contenente una regione di gate e formante almeno un gradino, e relativo procedimento di fabbricazione
US10069002B2 (en) 2016-07-20 2018-09-04 Semiconductor Components Industries, Llc Bond-over-active circuity gallium nitride devices
TWI706566B (zh) * 2016-08-01 2020-10-01 晶元光電股份有限公司 一種高功率半導體元件
US10204995B2 (en) * 2016-11-28 2019-02-12 Infineon Technologies Austria Ag Normally off HEMT with self aligned gate structure
CN106449419A (zh) * 2016-12-08 2017-02-22 西安电子科技大学 基于Ga2O3材料的U型栅MOSFET及其制备方法
GB2565805B (en) 2017-08-23 2020-05-13 X Fab Semiconductor Foundries Gmbh Noff III-nitride high electron mobility transistor
CN111183523A (zh) * 2018-01-12 2020-05-19 英特尔公司 在源极区和漏极区之间包括第一和第二半导体材料的晶体管及其制造方法
US11164950B2 (en) * 2019-03-07 2021-11-02 Toyoda Gosei Co., Ltd. Semiconductor device and production method
CN109841677A (zh) * 2019-03-28 2019-06-04 英诺赛科(珠海)科技有限公司 高电子迁移率晶体管及其制造方法
JP7151620B2 (ja) * 2019-05-15 2022-10-12 株式会社デンソー 半導体装置の製造方法
TWI811394B (zh) * 2019-07-09 2023-08-11 聯華電子股份有限公司 高電子遷移率電晶體及其製作方法
JP7242489B2 (ja) * 2019-09-18 2023-03-20 株式会社東芝 半導体装置
JP7470008B2 (ja) * 2020-10-19 2024-04-17 株式会社東芝 半導体装置
WO2023035103A1 (en) * 2021-09-07 2023-03-16 Innoscience (Suzhou) Technology Co., Ltd. Semiconductor device and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327766A (ja) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd 半導体装置
JP2005210105A (ja) * 2003-12-26 2005-08-04 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
US20070114567A1 (en) * 2005-11-18 2007-05-24 General Electric Company Vertical heterostructure field effect transistor and associated method
WO2008093824A1 (ja) * 2007-02-01 2008-08-07 Rohm Co., Ltd. GaN系半導体素子
JP2008211172A (ja) * 2007-01-31 2008-09-11 Matsushita Electric Ind Co Ltd 半導体装置および半導体装置の製造方法
JP2008311489A (ja) * 2007-06-15 2008-12-25 Rohm Co Ltd 窒化物半導体素子および窒化物半導体素子の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0034877A3 (en) * 1980-01-28 1981-09-09 General Electric Company Mildew resistant rtv silicone compositions
SE512813C2 (sv) 1997-05-23 2000-05-15 Ericsson Telefon Ab L M Förfarande för framställning av en integrerad krets innefattande en dislokationsfri kollektorplugg förbunden med en begravd kollektor i en halvledarkomponent, som är omgiven av en dislokationsfri trench samt integrerad krets framställd enligt förfarandet
US6020226A (en) * 1998-04-14 2000-02-01 The United States Of America As Represented By The Secretary Of The Air Force Single layer integrated metal process for enhancement mode field-effect transistor
JP4631103B2 (ja) * 1999-05-19 2011-02-16 ソニー株式会社 半導体装置およびその製造方法
US20020055193A1 (en) * 2000-04-28 2002-05-09 Trw, Inc. Process perturbation to measured-modeled method for semiconductor device technology modeling
JP4857487B2 (ja) 2001-05-30 2012-01-18 富士電機株式会社 トレンチ型半導体装置の製造方法
JP4663156B2 (ja) 2001-05-31 2011-03-30 富士通株式会社 化合物半導体装置
JP4865189B2 (ja) * 2002-02-21 2012-02-01 古河電気工業株式会社 GaN系電界効果トランジスタ
US7091573B2 (en) * 2002-03-19 2006-08-15 Infineon Technologies Ag Power transistor
US20050139838A1 (en) 2003-12-26 2005-06-30 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JP2008205414A (ja) * 2007-01-26 2008-09-04 Rohm Co Ltd 窒化物半導体素子、窒化物半導体パッケージおよび窒化物半導体素子の製造方法
US7859021B2 (en) * 2007-08-29 2010-12-28 Sanken Electric Co., Ltd. Field-effect semiconductor device
JP2009164235A (ja) * 2007-12-28 2009-07-23 Rohm Co Ltd 窒化物半導体素子およびその製造方法
JP5442229B2 (ja) 2008-09-04 2014-03-12 ローム株式会社 窒化物半導体素子の製造方法
JP2010118556A (ja) * 2008-11-13 2010-05-27 Furukawa Electric Co Ltd:The 半導体装置および半導体装置の製造方法
JP2011134985A (ja) * 2009-12-25 2011-07-07 Fuji Electric Co Ltd トレンチゲート型半導体装置とその製造方法
JP5728922B2 (ja) 2010-12-10 2015-06-03 富士通株式会社 半導体装置及び半導体装置の製造方法
JP2012169470A (ja) 2011-02-15 2012-09-06 Nippon Telegr & Teleph Corp <Ntt> 半導体装置およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327766A (ja) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd 半導体装置
JP2005210105A (ja) * 2003-12-26 2005-08-04 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
US20070114567A1 (en) * 2005-11-18 2007-05-24 General Electric Company Vertical heterostructure field effect transistor and associated method
JP2008211172A (ja) * 2007-01-31 2008-09-11 Matsushita Electric Ind Co Ltd 半導体装置および半導体装置の製造方法
WO2008093824A1 (ja) * 2007-02-01 2008-08-07 Rohm Co., Ltd. GaN系半導体素子
JP2008311489A (ja) * 2007-06-15 2008-12-25 Rohm Co Ltd 窒化物半導体素子および窒化物半導体素子の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11276774B2 (en) 2019-01-04 2022-03-15 Kabushiki Kaisha Toshiba Semiconductor device, inverter circuit, driving device, vehicle, and elevator
JP2022030079A (ja) * 2020-08-06 2022-02-18 株式会社東芝 半導体装置
JP7332548B2 (ja) 2020-08-06 2023-08-23 株式会社東芝 半導体装置

Also Published As

Publication number Publication date
US20140346525A1 (en) 2014-11-27
US9947781B2 (en) 2018-04-17
CN104183636B (zh) 2017-06-20
US9312350B2 (en) 2016-04-12
JP6136571B2 (ja) 2017-05-31
TWI549300B (zh) 2016-09-11
US9728618B2 (en) 2017-08-08
US20170309737A1 (en) 2017-10-26
US20160204241A1 (en) 2016-07-14
TW201448227A (zh) 2014-12-16
CN104183636A (zh) 2014-12-03

Similar Documents

Publication Publication Date Title
JP6136571B2 (ja) 半導体装置及び半導体装置の製造方法
JP5784440B2 (ja) 半導体装置の製造方法及び半導体装置
JP6161246B2 (ja) 半導体装置及び半導体装置の製造方法
JP5114947B2 (ja) 窒化物半導体装置とその製造方法
JP5957994B2 (ja) 半導体装置の製造方法
KR101357357B1 (ko) 반도체 장치 및 반도체 장치의 제조 방법
KR101358489B1 (ko) 반도체 장치 및 반도체 장치의 제조 방법
TWI466292B (zh) 半導體裝置
CN103325822B (zh) 化合物半导体器件及其制造方法
JP5990976B2 (ja) 半導体装置及び半導体装置の製造方法
US20140264364A1 (en) Semiconductor device
JP2013074068A (ja) 半導体装置及び半導体装置の製造方法
US20130083569A1 (en) Manufacturing method of compound semiconductor device
JP2013197315A (ja) 半導体装置及び半導体装置の製造方法
JP2017085062A (ja) 半導体装置、電源装置、増幅器及び半導体装置の製造方法
JP2017195299A (ja) 半導体装置及び半導体装置の製造方法
JP6252122B2 (ja) 半導体装置及び半導体装置の製造方法
JP2017228685A (ja) 半導体装置及び半導体装置の製造方法
JP6107922B2 (ja) 半導体装置
JP2019160966A (ja) 半導体装置及び半導体装置の製造方法
JP2014220338A (ja) 半導体装置
JP2015228458A (ja) 化合物半導体装置及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R150 Certificate of patent or registration of utility model

Ref document number: 6136571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150