JP2014200083A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2014200083A
JP2014200083A JP2014047760A JP2014047760A JP2014200083A JP 2014200083 A JP2014200083 A JP 2014200083A JP 2014047760 A JP2014047760 A JP 2014047760A JP 2014047760 A JP2014047760 A JP 2014047760A JP 2014200083 A JP2014200083 A JP 2014200083A
Authority
JP
Japan
Prior art keywords
film
transistor
node
oxide
oxide semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014047760A
Other languages
English (en)
Other versions
JP6298662B2 (ja
Inventor
隆徳 松嵜
Takanori Matsuzaki
隆徳 松嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2014047760A priority Critical patent/JP6298662B2/ja
Publication of JP2014200083A publication Critical patent/JP2014200083A/ja
Application granted granted Critical
Publication of JP6298662B2 publication Critical patent/JP6298662B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C14/00Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down
    • G11C14/0054Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down in which the volatile element is a SRAM cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element
    • H10B10/125Static random access memory [SRAM] devices comprising a MOSFET load element the MOSFET being a thin film transistor [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components

Abstract

【課題】電源電圧の供給を停止してもデータの保持が可能である半導体装置、その作製方法、又はその駆動方法を提供することを目的の一とする。
【解決手段】第1の回路部に保持されたデータを第2の回路部に送信し、電源電圧の供給を停止している期間において該データを第2の回路部に保持しておき、再び電源電圧を供給した際に該データに基づくデータを第1の回路部に送信する。このような構成により、半導体装置は、電源電圧の供給を停止している間においてもデータを保持することが可能である。特に、第2の回路部は、酸化物半導体を有するトランジスタを備えていることで、データを正確に保持することができる。
【選択図】図1

Description

本発明は、物、方法、または、製造方法に関する。特に、本発明は、例えば、半導体装置、表示装置、発光装置、蓄電装置、それらの駆動方法、または、それらの製造方法に関する。本発明、例えば、酸化物半導体を有する半導体装置、表示装置、または、発光装置に関する。
特許文献1にはMOS型トランジスタを有する半導体基板上に、酸化物半導体層を有するトランジスタを有する半導体装置が記載されている。また特許文献2には酸化物半導体膜を用いたトランジスタは、オフ状態において極めてリーク電流が小さいことが記載されている。
特開2010−141230号公報 特開2012−257187号公報
本発明の一態様は、新規な半導体装置、その作製方法、又はその駆動方法などを提供することを目的の一とする。また、本発明の一態様は、特性の優れた半導体装置、その作製方法、又はその駆動方法などを提供することを目的の一とする。
また、本発明の一態様は、電源電圧の供給を停止してもデータの保持が可能である半導体装置、その作製方法、又はその駆動方法を提供することを目的の一とする。また、本発明の一態様は、占有面積が縮小された半導体装置、その作製方法、又はその駆動方法などを提供することを目的の一とする。また、本発明の一態様は、動作速度が向上した半導体装置、その作製方法、又はその駆動方法を提供することを目的の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様の半導体装置は、第1の回路部に保持されたデータを第2の回路部に送信し、電源電圧の供給を停止している期間において該データを第2の回路部に保持しておき、再び電源電圧を供給した際に該データに基づくデータを第1の回路部に送信する。このような構成により、半導体装置は、電源電圧の供給を停止している間においてもデータを保持することが可能である。
また、上記第2の回路部は、酸化物半導体を有するトランジスタと、ノードとを有していてもよい。そして、第1の回路部と、該ノードとは、酸化物半導体を有するトランジスタを介して電気的に接続されていてもよい。酸化物半導体を有するトランジスタは、オフ電流値が極めて小さいため、該ノードから該トランジスタを介して電荷がリークすることがほとんどない。そして、該ノードに保持したデータに基づいて、第2の回路部から第1の回路部にデータを送信することで、半導体装置は電源電圧の供給を停止している間においてもデータを正確に保持することができる。なお、酸化物半導体は、例えばシリコンと比較してバンドギャップが広いため、酸化物半導体を有するトランジスタのオフ電流値を極めて小さくすることができる。
また、本発明の一態様の半導体装置は、第1の回路部と、第2の回路部と、を有し、第1の回路部は、第1のノードと、第2のノードと、を有し、第2の回路部は、第1のトランジスタ乃至第6のトランジスタと、第1の容量素子と第2の容量素子と、を有し、第1のノードは、第1のトランジスタを介して、第2のトランジスタのゲートと、第1の容量素子の第1の電極と、に電気的に接続され、第2のノードは、第4のトランジスタを介して、第5のトランジスタのゲートと、第2の容量素子の第1の電極と、に電気的に接続され、第2のトランジスタのソース又はドレインの一方は、第3のトランジスタを介して、第2のノードと電気的に接続され、第5のトランジスタのソース又はドレインの一方は、第6のトランジスタを介して、第1のノードと電気的に接続され、第1のトランジスタ及び第4のトランジスタは、酸化物半導体を有することを特徴としている。
また、上記第1の回路部は、偶数個のインバータ回路が環状に接続された部分を有することを特徴とする。
本発明の一態様は、新規な半導体装置などを提供することが可能である。また、本発明の一態様は、電源電圧の供給を停止してもデータを保持することができる半導体装置などを提供することが可能である。
また、本発明の一態様は、占有面積を縮小することができる半導体装置を提供することが可能である。また、本発明の一態様は、動作速度を向上することができる半導体装置を提供することが可能である。
半導体装置等の一例を示す図。 タイミングチャート等の一例を示す図。 半導体装置等の一例を示す図。 半導体装置等の一例を示す図。 半導体装置等の一例を示す図。 半導体装置等の一例を示す図。 タイミングチャート等の一例を示す図。 半導体装置等の一例を示す図。 半導体装置等の一例を示す図。 半導体装置等の一例を示す図。 半導体装置等の一例を示す図。 半導体装置等の一例を示す図。 半導体装置等の一例を示す図。 半導体装置等の一例を示す図。 タイミングチャート等の一例を示す図。
本発明の実施の形態について、図面を参照して以下に説明する。ただし、本発明は以下の説明に限定されるものではない。本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは、当業者であれば容易に理解されるからである。したがって、本発明は以下に示す実施の形態の記載内容のみに限定して解釈されるものではない。なお、図面を用いて本発明の構成を説明するにあたり、同じものを指す符号は異なる図面間でも共通して用いる。
本明細書において接続とは電気的な接続を意味しており、電流、電圧または電位が、供給可能、或いは伝送可能な状態に相当する。従って、接続している状態とは、直接接続している状態を必ずしも指すわけではなく、電流、電圧または電位が、供給可能、或いは伝送可能であるように、配線、抵抗、ダイオード、トランジスタなどの回路素子を介して電気的に接続している状態も、その範疇に含む。
本明細書に添付した図面では、構成要素を機能ごとに分類し、互いに独立したブロックとしてブロック図を示しているが、実際の構成要素は機能ごとに完全に切り分けることが難しく、一つの構成要素が複数の機能に係わることもあり得る。
なお、トランジスタのソースとは、活性層として機能する半導体膜の一部であるソース領域、或いは上記半導体膜に電気的に接続されたソース電極を意味する。同様に、トランジスタのドレインとは、活性層として機能する半導体膜の一部であるドレイン領域、或いは上記半導体膜に電気的に接続されたドレイン電極を意味する。また、ゲートはゲート電極を意味する。
トランジスタが有するソースとドレインは、トランジスタのチャネル型及び各端子に与えられる電位の高低によって、その呼び方が入れ替わる。一般的に、nチャネル型トランジスタでは、低い電位が与えられる端子がソースと呼ばれ、高い電位が与えられる端子がドレインと呼ばれる。また、pチャネル型トランジスタでは、低い電位が与えられる端子がドレインと呼ばれ、高い電位が与えられる端子がソースと呼ばれる。本明細書では、便宜上、ソースとドレインとが固定されているものと仮定して、トランジスタの接続関係を説明する場合があるが、実際には上記電位の関係に従ってソースとドレインの呼び方が入れ替わる。
なお、ある一つの実施の形態の中で述べる内容(一部の内容でもよい)は、その実施の形態で述べる別の内容(一部の内容でもよい)、または/および、一つもしくは複数の別の実施の形態で述べる内容(一部の内容でもよい)に対して、適用、組み合わせ、または置き換えなどを行うことが出来る。
なお、図において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。
なお、図は、理想的な例を模式的に示したものであり、図に示す形状または値などに限定されない。例えば、製造技術による形状のばらつき、誤差による形状のばらつき、ノイズによる信号、電圧、もしくは電流のばらつき、または、タイミングのずれによる信号、電圧、もしくは電流のばらつきなどを含むことが可能である。
また、電圧は、ある電位と、基準の電位(例えば接地電位(GND)またはソース電位)との電位差のことを示す場合が多い。よって、電圧を電位と言い換えることが可能である。
本明細書においては、「電気的に接続する」と表現される場合であっても、現実の回路においては、物理的な接続部分がなく、配線が延在しているだけの場合もある。
なお、第1、第2として付される序数詞は便宜上用いるものであり、工程順または積層順を示すものではない。また、本明細書において発明を特定するための事項として固有の名称を示すものではない。
なお、「半導体」と表記した場合でも、例えば、導電性が十分低い場合は「絶縁体」としての特性を有する場合がある。また、「半導体」と「絶縁体」は境界が曖昧であり、厳密に区別できない場合がある。従って、本明細書に記載の「半導体」は、「絶縁体」と言い換えることができる場合がある。同様に、本明細書に記載の「絶縁体」は、「半導体」と言い換えることができる場合がある。
また、「半導体」と表記した場合でも、例えば、導電性が十分高い場合は「導電体」としての特性を有する場合がある。また、「半導体」と「導電体」は境界が曖昧であり、厳密に区別できない場合がある。従って、本明細書に記載の「半導体」は、「導電体」と言い換えることができる場合がある。同様に、本明細書に記載の「導電体」は、「半導体」と言い換えることができる場合がある。
(実施の形態1)
本実施の形態では、半導体装置の一例について説明する。図1は、半導体装置の一例を示す図である。
半導体装置は、第1の回路部101と、第2の回路部102と、を有する。
第1の回路部101は、第1のノード(Node1)(単にNode1とも表す)と、第2のノード(Node2)(単にNode2とも表す)と、を有する。第1の回路部101は、第1の配線103に電気的に接続されている。第1の配線103は、第1の電位V1(単にV1とも表す)を供給する機能を有する。V1は、第1の回路部101に供給される電源電圧である。V1は、本実施の形態ではVddとするが、これに限定されない。
第1の回路部101は、V1が供給されている期間において、Node1及びNode2に電位を保持することができる。すなわち、第1の回路部101は、記憶回路としての機能を有し、データ(信号ともいう)を保持することができる。
なお、Node2は、Node1に対して反転した電位を保持することができる。例えば、Node1が’H(High)’レベルの電位を保持することができる場合、Node2は’L(Low)’レベルの電位を保持することができる。
第2の回路部102は、第3のノード(Node3)(単にNode3とも表す)と、第4のノード(Node4)(単にNode4とも表す)と、を有する。また、第2の回路部102は、第1のトランジスタTr1(単にTr1とも表す)と、第2のトランジスタTr2(単にTr2とも表す)と、第3のトランジスタTr3(単にTr3とも表す)と、第4のトランジスタTr4(単にTr4とも表す)と、第5のトランジスタTr5(単にTr5とも表す)と、第6のトランジスタTr6(単にTr6とも表す)と、第1の容量素子C1(単にC1とも表す)と、第2の容量素子C2(単にC2とも表す)と、を有する。
なお、図1では、Tr1乃至Tr6は全てn型のトランジスタを用いる例を示したが、n型又はp型を適宜組み合わせた回路構成とすればよい。また、トランジスタと容量素子との間、トランジスタと配線との間、配線と容量素子との間などに、スイッチ素子(例えばトランジスタなど)や他の回路(例えばインバータ回路など)などを組み込んで、適宜回路構成を変更してもよい。例えば、Tr2と第2の配線104との間にスイッチ素子やインバータ回路を組み込み、Tr2と第2の配線104とを電気的に接続するような回路構成としてもよい。
図1の半導体装置では、Node1は、Tr1のソース又はドレインの一方と、電気的に接続されている。Tr1のソース又はドレインの他方は、C1の第1の電極(一方の電極ともいう)と、Tr2のゲートと、電気的に接続されている。すなわち、Node1は、Tr1を介して、C1の一方の電極及びTr2のゲートと電気的に接続されている。Tr2のソース又はドレインの一方は、Tr3のソース又はドレインの一方と電気的に接続されている。Tr3のソース又はドレインの他方は、Node2と電気的に接続されている。すなわち、Tr2のソース又はドレインの一方は、Tr3を介して、Node2と電気的に接続されている。
Node2は、Tr4のソース又はドレインの一方と、電気的に接続されている。Tr4のソース又はドレインの他方は、C2の第1の電極と、Tr5のゲートと、電気的に接続されている。すなわち、Node2は、Tr4を介して、C2の一方の電極及びTr5のゲートと電気的に接続されている。Tr5のソース又はドレインの一方は、Tr6のソース又はドレインの一方と電気的に接続されている。Tr6のソース又はドレインの他方は、Node1と電気的に接続されている。すなわち、Tr5のソース又はドレインの一方は、Tr6を介して、Node1と電気的に接続されている。
図1において、Tr1のソース又はドレインの他方と、C1の第1の電極と、Tr2のゲートとが接続される点を、第3のノード(Node3)と呼ぶ。また、Tr4のソース又はドレインの他方と、C2の第1の電極と、Tr5のゲートとが接続される点を、第4のノード(Node4)と呼ぶ。
また、C1の第2の電極(他方の電極ともいう)と、Tr2のソース又はドレインの他方と、C2の第2の電極と、Tr5のソース又はドレインの他方とは、第2の配線104に電気的に接続されている。第2の配線104は、第2の電位V2(単にV2とも表す)を供給することができる機能を有する。V2は、本実施の形態ではVssとするが、これに限定されず、回路構成に応じて適宜設定してもよい。例えば、V2はVddであってもよい。また、V2は固定されずに変更可能であってもよい。なお、Vdd及びVssは電源電圧を表し、Vdd>Vssである。また、Vssは、例えば接地電位とすることができるが、これに限定されない。
また、Tr1のゲートと、Tr4のゲートとは、第3の配線105に電気的に接続されている。第3の配線105は、第3の電位V3(単にV3とも表す)を供給することができる機能を有する。V3により、Tr1の導通(オンともいう)、又は、非導通(オフともいう)が制御される。また、V3により、Tr4の導通又は非導通が制御される。なお、Tr1のゲートと、Tr4のゲートとは、別々の配線に電気的に接続されていてもよい。
また、Tr3のゲートと、Tr6のゲートとは、第4の配線106に電気的に接続されている。第4の配線106は、第4の電位V4(単にV4とも表す)を供給することができる機能を有する。V4により、Tr3の導通又は非導通が制御される。また、V4により、Tr6の導通又は非導通が制御される。なお、Tr3のゲートと、Tr6のゲートとは、別々の配線に電気的に接続されていても良い。
また、Node3の電位により、Tr2の導通又は非導通が制御される。そして、Node4の電位により、第5のトランジスタTr5の導通又は非導通が制御される。
第2の回路部102は、Tr1及びTr4が非導通状態の期間において、Node3及びNode4に電位を保持することができる。すなわち、第2の回路部102は、記憶回路としての機能を有し、データを保持することができる。
本発明の一態様では、図1に示すような新規な半導体装置を提供することができる。
また、本発明の一態様の半導体装置は、図1の回路構成に限定されない。例えば、C1又はC2を設けない構成としてよい。また、C1、C2を設けない代わりにTr2、Tr5のゲート容量を用いてもよい。また、Tr2乃至Tr6の接続関係を適宜変更してもよい。
また、C1の第2の電極と、C2の第2の電極と、Tr2のソース又はドレインの他方と、Tr5のソース又はドレインの他方とは、それぞれ異なる配線に電気的に接続されていてもよい。
また、C1の第2の電極とC2の第2の電極とが一の配線に、Tr2のソース又はドレインの他方とTr5のソース又はドレインの他方とが他の一の配線に電気的に接続されていてもよい。また、C1の第2の電極とTr2のソース又はドレインの他方とが一の配線に、C2の第2の電極とTr5のソース又はドレインの他方とが他の一の配線に電気的に接続されていてもよい。また、C1の第2の電極とTr5のソース又はドレインの他方とが一の配線に、C2の第2の電極とTr2のソース又はドレインの他方とが他の一の配線に電気的に接続されていてもよい。
次に、図1の半導体装置の動作方法について説明する。図2は、図1の半導体装置の動作におけるタイミングチャートである。図1の半導体装置は、(1)電源電圧の供給を停止する前の書込動作と、(2)電源電圧の供給を停止する動作と、(3)再び電源電圧を供給する動作と、を行うことができる機能を有している。
また、(1)、(2)、(3)の動作に限定されるものではなく各動作の前後に他の動作を行ってもよい。例えば、(1)の動作の前に、Node3又はNode4に、初期化するための電位を入力する動作を行ってもよい。その場合、Node3又はNode4は、初期化電位を供給することができる配線と電気的に接続されていてもよい。Node3又はNode4と該配線との間にスイッチ素子等を設けてもよい。また、(1)、(2)、(3)の少なくとも一の動作を省いた構成としてもよい。
なお、この例において、電源電圧(単に、電源ともいう)を供給するとは、第1の回路部101へV1を供給することを指し、電源を投入する、又は、V1をONにするとも表現する。また、電源電圧の供給を停止するとは、第1の回路部101へV1の供給を停止することを指し、電源を遮断する、又は、V1をOFFにするとも表現する。また、電源を遮断した後、再び電源を投入することを、電源を復帰するとも表現する。
(1)電源電圧の供給を停止する前の書込動作(単に、書込動作ともいう)について説明する。
まず、図2のタイミングt1(単にt1とも表す)において、V3を’H’にし、Tr1及びTr4を導通させる。その結果、Node3には、Node1の電位(この例では、’H’とする)に対応した電位が入力される。また、Node4には、Node2の電位に対応した電位(この例では、’L’とする)が入力される。すなわち、Node1に保持されていたデータが、Tr1を介して、Node3に送信される。また、Node2に保持されていたデータが、Tr4を介して、Node4に送信される。この例では、V4は’L’にしておく。
次に、図2のタイミングt2(単にt2とも表す)において、V3を’L’にし、Tr1及びTr4を非導通にする。その結果、Node3及びNode4に電位が保持される。すなわち、Node1のデータがNode3に書き込まれ、Node2のデータがNode4に書き込まれる。上記のように、t1とt2との間の期間において、Tr1及びTr4が導通し、書込動作が行われる。
上記書込動作によってNode3に保持された電位(この例では、’H’)に基づき、Tr2が導通する。一方、Node4に保持された電位(この例では、’L’)に基づき、Tr5が非導通となる。
(2)電源電圧の供給を停止する動作(遮断動作ともいう)について説明する。
図2のタイミングt3(単にt3とも表す)において、V1をOFFにする。すなわち、第1の回路部101への電源電圧の供給を停止する。その結果、第1の回路部101において、Node1の電位が下がる。
この時、Tr1が非導通状態であるため、Tr1を介した電荷の移動は抑制される。すなわち、Node3の電位は保持される。同様に、Tr4が非導通状態であるため、Tr4を介した電荷の移動は抑制される。すなわち、Node4の電位は保持される。上記のように、半導体装置は、電源電圧の供給が停止している期間においても、データを保持することができる。
(3)再び電源電圧を供給する動作(復帰動作ともいう)について説明する。
図2のタイミングt4(単にt4とも表す)において、V1をONにする。すなわち、第1の回路部101へ再び電源電圧を供給する。
またt4と同時に、V4を’H’にし、Tr3及びTr6を導通させる。ここで、V4を’H’にするタイミングは、t4と同時でなくてもよく、V1をONにする前(t4より前)であってもよい。V1をONにする前に、Tr3及びTr6を導通させておくと、復帰動作の高速化が可能になる場合があるため好ましい。
Tr3を導通状態にした結果、第2の配線104が、導通状態のTr2及びTr3を介して、Node2と電気的に接続される。そして、Node2には、V2に対応した電位(この例では、’L’)が入力される。更に、Node1は、Node2に対して反転した電位となるため、Node1には’H’レベルの電位が入力される。すなわち、Node1及びNode2には、電源電圧の供給を停止する前に保持していた電位に対応した電位が入力されることになる。なお、Tr5が非導通状態であるため、第2の配線104とNode1とは非導通である。
本実施の形態では、Node1が’H’であり、Node2が’L’である例を示したが、それらは逆でもよい。逆の場合、上記書込動作の際にNode4に’H’が保持され、Tr5が導通状態になる。そして上記復帰動作の際には、第2の配線104が、Tr5及びTr6を介して、Node1と電気的に接続される。そして、Node1に’L’が入力され、Node2に反転した’H’が入力され、電源電圧の供給を停止する前のレベルとなる。
なお、Tr1、Tr3、Tr4、及びTr6のゲートに入力される電位は、上記に限定されない。回路構成に応じて適宜変更すればよい。例えば、Tr3とTr6のゲートに入力される電位は異なっていてもよい。その場合、Tr3のゲートとTr6のゲートとの間に回路(例えばインバータ回路等)を設けて電位を反転させる構成や、Tr3をn型としTr6をp型にする構成などが挙げられる。Tr1とTr4との関係についても同様に様々な構成を採用することができる。
以上のように、本実施の形態の半導体装置は、第1の回路部101に保持されたデータを第2の回路部102に送信し(書込動作)、電源電圧の供給を停止している期間において該データを第2の回路部102に保持しておき(遮断動作)、再び電源電圧を供給した際に該データに基づくデータを第1の回路部101に送信する(復帰動作)。このような構成により、半導体装置は、電源電圧の供給を停止している期間においてもデータを保持することが可能である。
ここで、Tr1乃至Tr6は、元素周期表における第14族の半導体(シリコンなど)を含有する半導体、有機半導体、化合物半導体、又は酸化物半導体等の様々な半導体を用いることができる。また、非晶質半導体、微結晶半導体、多結晶半導体、又は単結晶半導体等を用いることができる。
特に、Tr1及びTr4は、酸化物半導体を有していることが好ましい。酸化物半導体を有するトランジスタは、他の半導体に比べてオフ電流が極めて低いため、Node3及びNode4の電位の保持を極めて良好に行うことができる。酸化物半導体は、例えばシリコンと比較してバンドギャップが広いため、酸化物半導体を有するトランジスタのオフ電流値を極めて小さくすることができる。なお、Tr1及びTr4の一方又は双方が酸化物半導体を有していてもよい。
また、Tr2、Tr3、Tr5、及びTr6は、シリコンを有していることが好ましい。シリコンを有するトランジスタは、他の半導体に比べて移動度やオン電流を向上させることができるため、半導体装置の動作速度を向上させることができる。この場合、特に単結晶半導体を有していることが好ましい。また、Tr3及びTr6の動作速度は、上記復帰動作に特に影響する可能性があるため、Tr3及びTr6はシリコンを有していることが好ましい。また、Tr2、Tr3、Tr5、及びTr6の一又は複数がシリコンを有していてもよい。
また、Tr1及びTr4が酸化物半導体を有している場合、Tr2、Tr3、Tr5、及びTr6はシリコンを有していることが好ましい。その場合、シリコンを有するトランジスタ(Si−Trとも表す)の上方に、酸化物半導体を有するトランジスタ(OS−Trとも表す)を積層して設けることができるため、半導体装置の占有面積を縮小することができる。なお、Tr1及びTr4の一方又は双方が酸化物半導体を有していてもよい。また、Tr2、Tr3、Tr5、及びTr6の一又は複数がシリコンを有していてもよい。また、OS−Trの上方に、Si−Trを有する構造としても、占有面積を縮小することが可能である。
また、Tr2、Tr3、T5、及びTr6は、酸化物半導体を有していても好ましい。例えば第1の回路部101がシリコンを有するトランジスタを含むような場合、当該シリコンを有するトランジスタの上方に、酸化物半導体を有するトランジスタを積層して設けることができるため、半導体装置の占有面積を縮小することができる。なお、Tr2、Tr3、Tr5、及びTr6の一又は複数が酸化物半導体を有していてもよい。
なお、単結晶半導体を用いたトランジスタとしては、単結晶半導体基板を用いたバルクトランジスタ、SOI基板を用いた薄膜トランジスタ等が挙げられる。SOI基板のベース基板としては、ガラス基板や半導体基板等が挙げられる。非晶質半導体、微結晶半導体、又は多結晶半導体を用いたトランジスタとしては、ガラス基板又は半導体基板などの上に設けられた薄膜トランジスタ等が挙げられる。
また、Tr1及びTr4が酸化物半導体を有し、Tr2、Tr3、Tr5、及びTr6がシリコンを有する場合、シリコンを有するトランジスタに比べ、酸化物半導体を有するトランジスタの動作速度が遅い可能性がある。その場合、Tr1及びTr4のチャネル幅を、Tr2、Tr3、Tr5、及びTr6のチャネル幅より大きくして、Tr1及びTr4の電流駆動能力が向上させることは有効である。Tr1及びTr4のチャネル長を、Tr2、Tr3、Tr5、及びTr6のチャネル長より小さくしてもよい。
また、Tr2、Tr3、Tr5、及びTr6の動作速度を向上させることで、復帰動作を良好に行うことができる。その場合、Tr2、Tr3、Tr5、及びTr6のチャネル幅を、例えばTr1及びTr4のチャネル幅より大きくしておくとよい。また、第1の回路部101がトランジスタを有する場合、Tr2、Tr3、Tr5、及びTr6のチャネル幅を第1の回路部101のトランジスタのチャネル幅より大きくしておくとよい。また、Tr2、Tr3、Tr5、及びTr6のチャネル長を、Tr1及びTr4や、第1の回路部101のトランジスタのチャネル長より小さくしてもよい。特に、Tr2、Tr3、Tr5、及びTr6が酸化物半導体を有している場合、動作速度が遅い可能性があるため、上記のようにサイズの設計を行うと好ましい。
なお、酸化物半導体を有するトランジスタの例については、他の実施の形態で詳細に説明する。また、酸化物半導体を有するトランジスタと、シリコンを有するトランジスタとを積層する例についても、他の実施の形態で詳細に説明する。
本実施の形態の一部又は全部は、他の実施の形態の一部又は全部と自由に組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、半導体装置の一例について説明する。図3は、半導体装置の一例である。
図3(A)は、第1の回路部101の一例である。図3(B)は、図3(A)の詳細な回路構成の一例である。
第1の回路部101は、第1のインバータ回路Inv1(単にInv1とも表す)と、第2のインバータ回路Inv2(単にInv2とも表す)と、を有する。
Inv1の出力端子は、Inv2の入力端子と電気的に接続されている。また、Inv2の出力端子は、Inv1の入力端子と電気的に接続されている。
図3(B)に示すように、Inv1は、トランジスタTrA(単にTrAとも表す)と、トランジスタTrB(単にTrBとも表す)と、を有する。Inv2は、トランジスタTrC(単にTrCとも表す)と、トランジスタTrD(単にTrDとも表す)と、を有する。
Inv1の入力端子は、TrAのゲートと、TrBのゲートと、電気的に接続されている。TrAのソース又はドレインの一方は、V1を供給する機能を有する配線に電気的に接続されている。TrAのソース又はドレインの他方と、TrBのソース又はドレインの一方とは、Inv1の出力端子に電気的に接続されている。TrBのソース又はドレインの他方は、V2を供給する機能を有する配線に電気的に接続されている。
Inv2の入力端子は、TrCのゲートと、TrDのゲートと、電気的に接続されている。TrCのソース又はドレインの一方は、V1を供給する機能を有する配線に電気的に接続されている。TrCのソース又はドレインの他方と、TrDのソース又はドレインの一方とは、Inv2の出力端子に電気的に接続されている。TrDのソース又はドレインの他方は、V2を供給する機能を有する配線に電気的に接続されている。
Node1(他の図におけるNode1にも対応)は、Inv1の入力端子とInv2の出力端子とが接続する点である。Node2(他の図におけるNode2にも対応)は、Inv1の出力端子とInv2の入力端子とが接続する点である。
図3の回路は、Node1が’H’レベルの場合、Node2は’L’レベルとなり、電源電圧(V1、V2)が供給されている期間において、そのレベルが保持される。逆に、Node1が’L’レベルの場合、Node2は’H’レベルになる。図3の回路は、このような動作でデータの保持を行うラッチ回路の一例である。また、図3の回路のような回路をインバータループ回路という。インバータループ回路は、偶数個のインバータ回路を有し、各々のインバータ回路を環状に接続した回路部分を有するものを指す。なお、インバータループ回路は、当該回路部分以外の構成を有していてもよい。
図3のような回路は、通常、電源電圧の供給を停止した場合、Node1及びNode2の電位を保持することが困難である。そこで、図3のような回路を図1における第1の回路部101に適用し、上記書込動作、遮断動作、及び復帰動作を行うことで、電源電圧の供給を停止している期間においてもデータを保持することができる。
なお、第1の回路部101は、図3のようなインバータループ回路に限定されることはなく、他のラッチ回路又は様々な記憶回路等を適用することが可能である。
また、TrAと、TrBと、TrCと、TrDとの半導体材料などは、他の実施の形態に記載されたTr1乃至Tr6などの半導体材料などから適宜選択すればよい。特に、シリコンを有するトランジスタとすることで、半導体装置の動作速度を向上させることができる。その場合、特に単結晶シリコンを有することが好ましい。
また、図3(C)は第1の回路部101の一例である。Inv1の入力端子は、トランジスタTrE(単にTrEとも表す)のソース又はドレインの一方と電気的に接続されている。TrEのソース又はドレインの他方は、配線202と電気的に接続されている。すなわち、Inv1の入力端子は、TrEを介して配線202と電気的に接続されている。配線202は、第1のビット線としての機能を有し、データを送信する機能を有する。すなわち、配線202は、Node1に電位を供給することができる。
Inv2の入力端子は、トランジスタTrF(単にTrFとも表す)のソース又はドレインの一方と電気的に接続されている。TrFのソース又はドレインの他方は、配線203と電気的に接続されている。すなわち、Inv2の入力端子は、TrFを介して配線203と電気的に接続されている。配線203、第2のビット線としての機能を有し、データを送信する機能を有する。すなわち、配線202はNode2に電位を供給することができる。なお、配線203は、配線202の電位に対して反転した電位を供給することができる機能を有する。
また、TrEのゲート及びTrFのゲートは、配線201に電気的に接続されている。配線201は、ワード線としての機能を有し、TrE及びTrFの導通又は非導通を制御することができる機能を有する。
本実施の形態の一部又は全部は、他の実施の形態の一部又は全部と自由に組み合わせて用いることができる。
(実施の形態3)
本実施の形態では、半導体装置の一例について説明する。図4は、半導体装置の一例である。
図4の回路において、図1の回路と異なる点は、破線107及び破線108のような接続関係を有する点である。具体的には、Tr3のソース又はドレインの他方は、Node1に電気的に接続されている(破線107)。また、Tr6のソース又はドレインの他方は、Node2に電気的に接続されている(破線108)。その他の接続関係などは、図1と同様である。
本実施の形態により、図4のような新規な回路構成を有する半導体装置を提供することができる。また図4の回路は、破線107及び破線108のような接続関係を有することで、図1の回路に比べて、配線や電極等の交差部を減らすことや、配線や電極等の長さを短くすることができる可能性があるため、有効である。
また、図4の回路では、Tr2及びTr5がp型である場合を示した。そのため、Node1が’L’の場合、上記書込動作により、Node3に’L’が書き込まれ、Tr2が導通する。一方、Node2は’H’であり、Node4に’H’が書き込まれるため、Tr5は非導通になる。そして、上記遮断動作及び復帰動作を経て、V2(例えば、Vss=’L’レベルとする)がNode1に入力される。そして、Node1に対して反転した電位(’H’レベル)がNode2に入力される。その結果、Node1は電源遮断前のデータに対応した’L’になり、Node2も電源遮断前のデータに対応した’H’になる。
なお、図4ではTr2及びTr5がp型である場合を示したが、回路構成に応じてn型又はp型を適宜組み合わせて用いてもよい。
また、Tr1乃至Tr6の半導体材料、構造、又はサイズの設計等は、他の実施の形態と同様である。
以上のように、本実施の形態の半導体装置は、第1の回路部101に保持されたデータを第2の回路部102に送信し(書込動作)、電源電圧の供給を停止している期間において該データを第2の回路部102に保持しておき(遮断動作)、再び電源電圧を供給した際に該データに基づくデータを第1の回路部101に送信する(復帰動作)。このような構成により、半導体装置は、電源電圧の供給を停止している期間においてもデータを保持することが可能である。
本実施の形態の一部又は全部は、他の実施の形態の一部又は全部と自由に組み合わせて用いることができる。
(実施の形態4)
本実施の形態では、半導体装置の一例について説明する。図5(A)及び図5(B)は、半導体装置の一例である。
図5(A)の回路において、図1の回路と異なる点は、破線109及び破線110のような接続関係を有する点である。具体的には、Tr2のソース又はドレインの他方は、第5の配線111に電気的に接続されている(破線109)。また、Tr5のソース又はドレインの他方は、第5の配線111に電気的に接続されている(破線110)。その他の接続関係などは、図1と同様である。第5の配線111は、第5の電位V5(単にV5とも表す)を供給することができる機能を有する。V5は、本実施の形態ではVddとするが、これに限定されない。V5はVssであってもよい。なお、V5は、固定電位であってもよいし、変更可能であってもよい。
また、図5(A)の回路では、Tr2及びTr5がp型である場合を示した。そのため、Node1が’L’の場合、上記書込動作により、Node3に’L’が書き込まれ、Tr2が導通する。一方、Node2は’H’であり、Node4に’H’が書き込まれるため、Tr5は非導通になる。そして、上記遮断動作及び復帰動作を経て、V5(例えば、Vdd=’H’レベルとする)がNode2に入力される。また、Node2に対して反転した電位(’L’レベル)がNode1に入力される。その結果、Node1は電源遮断前のデータに対応した’L’になり、Node2も電源遮断前のデータに対応した’H’になる。
なお、図5(A)ではTr2及びTr5がp型である場合を示したが、回路構成に応じてn型又はp型を適宜組み合わせて用いてもよい。
図5(B)の回路において、図4の回路と異なる点は、破線109及び破線110のような接続関係を有する点である。具体的には、Tr2のソース又はドレインの他方は、第5の配線111に電気的に接続されている(破線109)。また、Tr5のソース又はドレインの他方は、第5の配線111に電気的に接続されている(破線110)。その他の接続関係などは、図4と同様である。第5の配線111は、V5を供給することができる機能を有する。V5は、本実施の形態ではVddとするが、これに限定されない。V5はVssであってもよい。なお、V5は、固定電位であってもよいし、変更可能であってもよい。
また、図5(B)の回路では、Tr2及びTr5がn型である場合を示した。そのため、Node1が’H’の場合、書込動作により、Node3に’H’が書き込まれ、Tr2が導通する。一方、Node2が’L’であり、Node4に’L’が書き込まれるため、Tr5は非導通になる。そして、上記遮断動作及び復帰動作を経て、V5(例えば、Vdd=’H’レベルとする)がNode1に入力される。また、Node1に対して反転した電位(’L’レベル)がNode2に入力される。その結果、Node1は電源遮断前のデータに対応した’H’になり、Node2も電源遮断前のデータに対応した’L’になる。
なお、図5(B)ではTr2及びTr5がn型である場合を示したが、回路構成に応じてn型又はp型を適宜組み合わせて用いてもよい。
また、Tr1乃至Tr6の半導体材料、構造、又はサイズの設計等は、他の実施の形態と同様である。
また、Tr2のソース又はドレインの他方と、Tr5のソース又はドレインの他方とは、異なる配線に電気的に接続されていてもよい。
本実施の形態により、図5(A)又は図5(B)のような新規な回路構成を有する半導体装置を提供することができる。また図5(B)の回路は、破線107及び破線108のような接続関係を有することで、図5(A)の回路に比べて、配線や電極等の交差部を減らすことや、配線や電極等の長さを短くすることができる可能性があるため、有効である。
また、本実施の形態の半導体装置は、第1の回路部101に保持されたデータを第2の回路部102に送信し(書込動作)、電源電圧の供給を停止している期間において該データを第2の回路部102に保持しておき(遮断動作)、再び電源電圧を供給した際に該データに基づくデータを第1の回路部101に送信する(復帰動作)。このような構成により、半導体装置は、電源電圧の供給を停止している期間においてもデータを保持することが可能である。
本実施の形態の一部又は全部は、他の実施の形態の一部又は全部と自由に組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、半導体装置の一例について説明する。図6は、半導体装置の一例である。
図6の回路において、図1と異なる点は、Tr3及びTr6を省略した点である。具体的には、Tr2のソース又はドレインの一方は、Node2に電気的に接続されている。すなわち、第2の配線104は、Tr2を介して、Node2と電気的に接続されている。また、Tr5のソース又はドレインの一方は、Node1に電気的に接続されている。すなわち、第2の配線104は、Tr5を介して、Node1に電気的に接続されている。
また、図6の回路において、図1と異なる点は、C1の第2の電極と、C2の第2の電極とが、第6の配線112に電気的に接続されている点である。本実施の形態では、第6の配線112の第6の電位V6(単にV6とも表す)が変更可能な場合について説明するが、V6は固定電位であってもよい。また、V6は、Vdd又はVssであってもよい。また、C1の第2の電極と、C2の第2の電極とは、異なる配線に電気的に接続されていてもよい。
次に、図6の半導体装置の動作方法((1)書込動作、(2)遮断動作、及び(3)復帰動作)について説明する。図7は、図6の半導体装置の動作におけるタイミングチャートである。
(1)書込動作について説明する。
まず、図7のタイミングt1において、V3及びV6を’H’にし、Tr1及びTr4を導通させる。その結果、Node3には、Node1の電位(この例では、’H’とする)に対応した電位が入力される。また、Node4には、Node2の電位に対応した電位(この例では、’L’とする)が入力される。
次に、図7のタイミングt2において、V3を’L’にし、Tr1及びTr4を非導通にする。またt2と同時に、V6を’L’にする。その結果、Node3は’L’になるため、Tr2は非導通になる。また、Node4は’L’より小さくなるため、Tr5も非導通になる。
なお、V6を’L’にするタイミングは、t2と同時でなくてもよく、V3を’L’にした後(t2より後)であってもよい。V6を’L’にするタイミングを、V3を’L’にするタイミングより遅らせることで、C1及びC2に保持される電荷の移動を抑制することができる場合があるため好ましい。
(2)遮断動作について説明する。
図7のタイミングt3において、V1をOFFにする。すなわち、第1の回路部101への電源電圧の供給を停止する。その結果、第1の回路部101におけるNode1の電位が下がる。しかし、図1と同様に、Tr1及びTr4が非導通状態であるため、Tr1及びTr4を介した電荷の移動は極力抑制される。
(3)復帰動作について説明する。
図7のタイミングt4において、V1をONにする。すなわち、第1の回路部101へ再び電源電圧を供給する。
同時(タイミングt4)に、V6を’H’にし、Tr2を導通させる。ここで、V6を’H’にするタイミングは、t4と同時でなくてもよく、V1をONにする前(t4より前)であってもよい。V1をONにする前に、Tr2を導通させておくと、復帰動作の高速化が可能になる場合があるため好ましい。
Tr2を導通状態にした結果、第2の配線104が、Tr2を介して、Node2と電気的に接続される。そして、Node2には、V2に対応した電位(この例では、’L’)が入力される。更に、Node1は、Node2に対して反転した電位となるため、Node1には’H’レベルの電位が入力される。すなわち、Node1及びNode2には、電源電圧の供給を停止する前に保持していた電位に対応した電位が入力されることになる。
上記の例では、Node1が’H’であり、Node2が’L’である例を示したが、それらは逆でもよい。
以上のように本実施の形態では、V6を可変にし、C1及びC2の容量値の書き換えを行う構成とした。C1及びC2における書換動作により、Tr2及びTr5の導通を制御し、復帰動作のタイミングを調整することができる。なお、書換動作は行わなくてもよい。
なお、図6では、C1の第2の電極と、C2の第2の電極とが、第6の配線112に電気的に接続されている構成について説明したが、これに限定されず、他の実施の形態に記載した構成を採用してもよい。例えば、C1の第2の電極とC2の第2の電極とは、第2の配線104と電気的に接続されていてもよい。図14(A)は、C1の第2の電極とC2の第2の電極とが第2の配線104に電気的に接続されている半導体装置の一例である。図14(A)の回路において、図6の回路と異なる点は、破線116及び破線117のような接続関係を有する点である。
また、図15は、図14(A)の回路のタイミングチャートである。
図14(A)の半導体装置では、Node1とNode3とを連動して動作させ、Node2とNode4とを連動して動作させる。まず、V3を’H’にしておき、Tr1及びTr4を導通状態にしておく。そして、図15のt1において、Node1に’L’が入力された場合、Node3も連動して’L’が入力される。一方、Node2には’H’が入力され、Node4も連動して’H’が入力される。その結果、Tr5が導通し、Tr2が非導通になる。このように図14(A)の半導体装置では、他の例のような書込動作とは異なる動作で第2の回路部102への書き込みが行われる。なお、他の例のような書込動作が不要であるとも言える。
次に遮断動作について説明する。図15のt3で、V1をOFFにする。すなわち、第1の回路部101への電源電圧の供給を停止する。その結果、第1の回路部101におけるNode2の電位が下がる。ここで、V1をOFFにする前に、V3を’L’にしておき、Tr1及びTr4を非導通状態にしておくことは、電源電圧の供給を停止した際にNode3及びNode4の電位を保持することができるため、有効である。
次に復帰動作について説明する。図15のt4で、V1をONにする。すなわち、第1の回路部101へ再び電源電圧を供給する。Tr5が導通状態であるため、Node1には、V2に対応した電位(この例では、’L’)が入力される。更に、Node2は、Node1に対して反転した電位となるため、Node2には’H’レベルの電位が入力される。すなわち、Node1及びNode2には、電源電圧の供給を停止する前に保持していた電位に対応した電位が入力されることになる。ここで、V1をONにした後、V3を’H’にし、Tr1及びTr4を導通させることは、再びNode1とNode3とを連動させ、Node2とNode4とを連動させることができるため、有効である。
なお、図14(A)ではTr2及びTr5がn型である場合を示したが、回路構成に応じてn型又はp型を適宜組み合わせて用いてもよい。
また、図14(B)は半導体装置の一例である。図14(B)の回路において、図14(A)の回路と異なる点は、破線118及び破線119のような接続関係を有する点である。具体的には、Tr2のソース又はドレインの一方は、Node1に電気的に接続されている(破線118)。また、Tr5のソース又はドレインの一方は、Node2に電気的に接続されている(破線119)。その他の接続関係などは、図14(A)と同様である。
また、図14(B)の回路では、Tr2及びTr5がp型である場合を示した。そのため、Node1が’L’の場合、Node3も連動して’L’が書き込まれ、Tr2が導通する。一方、Node2が’H’であり、Node4も連動して’H’が書き込まれるため、Tr5は非導通になる。そして、上記遮断動作及び復帰動作を経て、V2(この例では、’L’)がNode1に入力される。また、Node1に対して反転した電位(’H’レベル)がNode2に入力される。その結果、Node1は電源遮断前のデータに対応した’L’になり、Node2も電源遮断前のデータに対応した’H’になる。
なお、図14(B)ではTr2及びTr5がp型である場合を示したが、回路構成に応じてn型又はp型を適宜組み合わせて用いてもよい。
また、Tr1、Tr2、Tr4、Tr5の半導体材料、構造、又はサイズの設計等は、他の実施の形態と同様である。
本実施の形態により、図14(A)又は図14(B)のような新規な回路構成を有する半導体装置を提供することができる。また図14(B)の回路は、破線118及び破線119のような接続関係を有することで、図14(A)の回路に比べて、配線や電極等の交差部を減らすことや、配線や電極等の長さを短くすることができる可能性があるため、有効である。
本実施の形態の半導体装置においても、第1の回路部101に保持されたデータを第2の回路部102に送信し(書込動作)、電源電圧の供給を停止している期間において該データを第2の回路部102に保持しておき(遮断動作)、再び電源電圧を供給した際に該データに基づくデータを第1の回路部101に送信する(復帰動作)。このような構成により、半導体装置は、電源電圧の供給を停止している期間においてもデータを保持することが可能である。
本実施の形態の一部又は全部は、他の実施の形態の一部又は全部と自由に組み合わせて用いることができる。
(実施の形態6)
本実施の形態では、半導体装置の一例について説明する。図8は、半導体装置の一例である。
図8の回路において、図6の回路と異なる点は、破線113及び破線114のような接続関係を有する点である。具体的には、Tr2のソース又はドレインの一方は、Node1に電気的に接続されている(破線113)。また、Tr5のソース又はドレインの一方は、Node2に電気的に接続されている(破線114)。その他の接続関係などは、図6と同様である。
本実施の形態により、図8のような新規な回路構成を有する半導体装置を提供することができる。また図8の回路は、破線113及び破線114のような接続関係を有することで、図6の回路に比べて、配線や電極等の交差部を減らすことや、配線や電極等の長さを短くすることができる可能性があるため、有効である。
また、図8の回路では、Tr2及びTr5がp型である場合を示した。そのため、Node1が’L’の場合、上記書込動作により、Node3に’L’が書き込まれる。なお図8では、t1でV6を’L’とし、t2でV6を’H’に変更することで、C1及びC2において書換動作が行われる。そして、上記遮断動作及び復帰動作を経て、V2(例えば、Vss=’L’レベルとする)がNode1に入力される。また、Node1に対して反転した電位(’H’レベル)がNode2に入力される。その結果、Node1は電源遮断前のデータに対応した’L’になり、Node2も電源遮断前のデータに対応した’H’になる。
なお、図8ではTr2及びTr5がp型である場合を示したが、回路構成に応じてn型又はp型を適宜組み合わせて用いてもよい。
また、Tr1、Tr2、Tr4、及びT5の半導体材料、構造、又はサイズの設計等は、他の実施の形態と同様である。
以上のように、本実施の形態の半導体装置は、第1の回路部101に保持されたデータを第2の回路部102に送信し(書込動作)、電源電圧の供給を停止している期間において該データを第2の回路部102に保持しておき(遮断動作)、再び電源電圧を供給した際に該データに基づくデータを第1の回路部101に送信する(復帰動作)。このような構成により、半導体装置は、電源電圧の供給を停止している期間においてもデータを保持することが可能である。
本実施の形態の一部又は全部は、他の実施の形態の一部又は全部と自由に組み合わせて用いることができる。
(実施の形態7)
本実施の形態では、半導体装置の一例について説明する。図11乃至図13は、半導体装置の一例である。
図11(A)の半導体装置は、第1の回路部101と、第2の回路部102と、を有する。
第1の回路部101は、Node1を有する。第1の回路部101は、様々な回路を適用することができる。例えば、記憶回路、演算回路、又は選択回路など、様々な回路を適用することができる。
第2の回路部102は、Node3と、Tr1とを、有する。
Node1は、Tr1のソース又はドレインの一方に電気的に接続されている。Tr1のソース又はドレインの他方は、Node3に電気的に接続されている。すなわち、Node1は、Tr1を介してNode3に電気的に接続されている。なお、他の実施の形態に示すように、Node3に容量素子を電気的に接続してもよい。
図11(A)の半導体装置の動作を説明する。まず、V3によりTr1を導通させ、Node1のデータをNode3に送信し、V3によりTr1を非導通にし、Node3にデータを保持する(書込動作)。次に、第1の回路部101の電源電圧を遮断する(遮断動作)。そして、第1の回路部101の電源電圧を復帰させるとともに、V3によりTr1を導通させ、Node3のデータをNode1に送信する(復帰動作)。このようにして図11(A)の半導体装置はデータを保持することができる。
図11(B)の半導体装置は、第1の回路部101及び第2の回路部102が複数のノード有する例である。この場合も図11(A)と同様に動作し、電源電圧の供給を停止した際に、Node1の電位をNode3に保持し、Node2の電位をNode4に保持することができる。Node2の電位は、Node1の電位と、同じ電位であっても異なる電位であってもよい。
また、図11(B)では、第1の回路部101及び第2の回路部102が2個のノードを有する場合を示したが、3個以上有していてもよく、各々のノードの電位を第2の回路部102で保持する構成としてもよい。なお、他の実施の形態に示すように、Node3又はNode4に容量素子を電気的に接続してもよい。
図12の半導体装置は、第1の回路部101がNode1及びNode2を有し、第2の回路部102がNode3を有する例である。Node1の電位をNode3に保持させ、電源復帰後にNode3の電位をNode1又はNode2に入力することができる。また、電源復帰後にNode3の電位をNode1とNode2との両方に入力することもできる。
図12では、Node1はTr1を介してNode3に電気的に接続されている。また、Node2はTr4を介してNode3に電気的に接続されている。Tr1のゲートは第3の配線105に電気的に接続されている。Tr4のゲートは配線115に電気的に接続されている。第3の配線105は、V3を供給することができる機能を有し、Tr1の導通又は非導通を制御することができる機能を有する。また、配線115は、V7を供給することができる機能を有し、Tr4の導通又は非導通を制御することができる機能を有する。なお、他の実施の形態に示すように、Node3に容量素子を電気的に接続してもよい。
図13の半導体装置は、第1の回路部を複数有する例である。図13では、第1の回路部101と第1の回路部301とを有する。第1の回路部101がNode1を有し、第1の回路部301がNode11を有する。Node1又はNode11の電位をNode3に保持させ、電源復帰後にNode3の電位をNode1又はNode11に入力することができる。また、電源復帰後にNode3の電位をNode1とNode11との両方に入力することもできる。第1の回路部301は、様々な回路を適用することができる。例えば、記憶回路、演算回路、又は選択回路など、様々な回路を適用することができる。
図13では、Node1はTr1を介してNode3に電気的に接続されている。また、Node11はTr4を介してNode3に電気的に接続されている。Tr1のゲートは第3の配線105に電気的に接続されている。Tr4のゲートは配線115に電気的に接続されている。第3の配線105は、V3を供給することができる機能を有し、Tr1の導通又は非導通を制御することができる機能を有する。また、配線115は、V7を供給することができる機能を有し、Tr4の導通又は非導通を制御することができる機能を有する。なお、他の実施の形態に示すように、Node3に容量素子を電気的に接続してもよい。
なお、Tr1及びTr4の導電型、半導体材料、構造、又はサイズの設計等は、他の実施の形態と同様である。
以上のように、本実施の形態の半導体装置は、第1の回路部101又は第1の回路部301に保持されたデータを第2の回路部102に送信し(書込動作)、電源電圧の供給を停止している期間において該データを第2の回路部102に保持しておき(遮断動作)、再び電源電圧を供給した際に該データに基づくデータを第1の回路部101また第1の回路部301に送信する(復帰動作)。このような構成により、半導体装置は、電源電圧の供給を停止している期間においてもデータを保持することが可能である。
本実施の形態の一部又は全部は、他の実施の形態の一部又は全部と自由に組み合わせて用いることができる。
(実施の形態8)
本実施の形態では、半導体装置の一例について説明する。本実施の形態では、トランジスタのチャネルに適用できる酸化物半導体の例を示す。
酸化物半導体としては、少なくともインジウム(In)あるいは亜鉛(Zn)を含むことが好ましい。また、該酸化物半導体を用いたトランジスタの電気的特性のばらつきを減らすためのスタビライザーとして、それらに加えてガリウム(Ga)を有することが好ましい。また、スタビライザーとしてスズ(Sn)を有することが好ましい。また、スタビライザーとしてハフニウム(Hf)を有することが好ましい。また、スタビライザーとしてアルミニウム(Al)を有することが好ましい。また、スタビライザーとしてジルコニウム(Zr)を含むことが好ましい。
酸化物半導体の中でもIn−Ga−Zn系酸化物、In−Sn−Zn系酸化物などは、炭化シリコン、窒化ガリウム、または酸化ガリウムとは異なり、スパッタリング法や湿式法により電気的特性の優れたトランジスタを作製することが可能であり、量産性に優れるといった利点がある。また、炭化シリコン、窒化ガリウム、または酸化ガリウムとは異なり、上記In−Ga−Zn系酸化物は、ガラス基板上に、電気的特性の優れたトランジスタを作製することが可能である。また、基板の大型化にも対応が可能である。
また、他のスタビライザーとして、ランタノイドである、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)のいずれか一種または複数種を含んでいてもよい。
例えば、酸化物半導体として、酸化インジウム、酸化ガリウム、酸化スズ、酸化亜鉛、In−Zn系酸化物、Sn−Zn系酸化物、Al−Zn系酸化物、Zn−Mg系酸化物、Sn−Mg系酸化物、In−Mg系酸化物、In−Ga系酸化物、In−Ga−Zn系酸化物(IGZOとも表記する)、In−Al−Zn系酸化物、In−Sn−Zn系酸化物、Sn−Ga−Zn系酸化物、Al−Ga−Zn系酸化物、Sn−Al−Zn系酸化物、In−Hf−Zn系酸化物、In−La−Zn系酸化物、In−Pr−Zn系酸化物、In−Nd−Zn系酸化物、In−Sm−Zn系酸化物、In−Eu−Zn系酸化物、In−Gd−Zn系酸化物、In−Tb−Zn系酸化物、In−Dy−Zn系酸化物、In−Ho−Zn系酸化物、In−Er−Zn系酸化物、In−Tm−Zn系酸化物、In−Yb−Zn系酸化物、In−Lu−Zn系酸化物、In−Sn−Ga−Zn系酸化物、In−Hf−Ga−Zn系酸化物、In−Al−Ga−Zn系酸化物、In−Sn−Al−Zn系酸化物、In−Sn−Hf−Zn系酸化物、In−Hf−Al−Zn系酸化物を用いることができる。
なお、例えば、In−Ga−Zn系酸化物とは、InとGaとZnを含む酸化物という意味であり、InとGaとZnの比率は問わない。また、InとGaとZn以外の金属元素を含んでいてもよい。In−Ga−Zn系酸化物は、無電界時の抵抗が十分に高くオフ電流を十分に小さくすることが可能であり、また、移動度も高い。
例えば、In:Ga:Zn=1:1:1(=1/3:1/3:1/3)あるいはIn:Ga:Zn=2:2:1(=2/5:2/5:1/5)の原子比のIn−Ga−Zn系酸化物やその組成の近傍の酸化物を用いることができる。あるいは、In:Sn:Zn=1:1:1(=1/3:1/3:1/3)、In:Sn:Zn=2:1:3(=1/3:1/6:1/2)あるいはIn:Sn:Zn=2:1:5(=1/4:1/8:5/8)の原子比のIn−Sn−Zn系酸化物やその組成の近傍の酸化物を用いるとよい。
例えば、In−Sn−Zn系酸化物では比較的容易に高い移動度が得られる。しかしながら、In−Ga−Zn系酸化物でも、バルク内欠陥密度を低減することにより移動度を上げることができる。
酸化物半導体膜は、例えば非単結晶を有してもよい。非単結晶は、例えば、CAAC(C Axis Aligned Crystal)、多結晶、微結晶、非晶質部を有する。非晶質部は、微結晶、CAACよりも欠陥準位密度が高い。また、微結晶は、CAACよりも欠陥準位密度が高い。なお、CAACを有する酸化物半導体を、CAAC−OS(C Axis Aligned Crystalline Oxide Semiconductor)と呼ぶ。
酸化物半導体膜は、例えばCAAC−OSを有してもよい。CAAC−OSは、例えば、c軸配向し、a軸または/およびb軸はマクロに揃っていない。
酸化物半導体膜は、例えば微結晶を有してもよい。なお、微結晶を有する酸化物半導体を、微結晶酸化物半導体と呼ぶ。微結晶酸化物半導体膜は、例えば、1nm以上10nm未満のサイズの微結晶(ナノ結晶ともいう。)を膜中に含む。
酸化物半導体膜は、例えば非晶質部を有してもよい。なお、非晶質部を有する酸化物半導体を、非晶質酸化物半導体と呼ぶ。非晶質酸化物半導体膜は、例えば、原子配列が無秩序であり、結晶成分を有さない。または、非晶質酸化物半導体膜は、例えば、完全な非晶質であり、結晶部を有さない。
なお、酸化物半導体膜が、CAAC−OS、微結晶酸化物半導体、非晶質酸化物半導体の混合膜であってもよい。混合膜は、例えば、非晶質酸化物半導体の領域と、微結晶酸化物半導体の領域と、CAAC−OSの領域と、を有する。また、混合膜は、例えば、非晶質酸化物半導体の領域と、微結晶酸化物半導体の領域と、CAAC−OSの領域と、の積層構造を有してもよい。
なお、酸化物半導体膜は、例えば、単結晶を有してもよい。
酸化物半導体膜は、複数の結晶部を有し、当該結晶部のc軸が被形成面の法線ベクトルまたは表面の法線ベクトルに平行な方向に揃っていることが好ましい。なお、異なる結晶部間で、それぞれa軸およびb軸の向きが異なっていてもよい。そのような酸化物半導体膜の一例としては、CAAC−OS膜がある。
CAAC−OS膜に含まれる結晶部は、一辺が100nm未満の立方体内に収まる大きさであることが多い。また、透過型電子顕微鏡(TEM:Transmission Electron Microscope)による観察像では、CAAC−OS膜に含まれる結晶部と結晶部との境界は明確ではない。また、TEMによってCAAC−OS膜には明確な粒界(グレインバウンダリーともいう。)は確認できない。そのため、CAAC−OS膜は、粒界に起因する電子移動度の低下が抑制される。
CAAC−OS膜に含まれる結晶部は、例えば、c軸がCAAC−OS膜の被形成面の法線ベクトルまたは表面の法線ベクトルに平行な方向になるように揃い、かつab面に垂直な方向から見て金属原子が三角形状または六角形状に配列し、c軸に垂直な方向から見て金属原子が層状または金属原子と酸素原子とが層状に配列している。なお、異なる結晶部間で、それぞれa軸およびb軸の向きが異なっていてもよい。本明細書において、単に垂直と記載する場合、80°以上100°以下、好ましくは85°以上95°以下の範囲も含まれることとする。また、単に平行と記載する場合、−10°以上10°以下、好ましくは−5°以上5°以下の範囲も含まれることとする。
CAAC−OS膜は、例えば、X線回折(XRD:X−Ray Diffraction)装置を用い、out−of−plane法による分析を行うと、2θが31°近傍のピークが現れる場合がある。2θが31°近傍のピークは、InGaZnOの結晶であれば、(009)面に配向していることを示す。また、CAAC−OS膜は、例えば、2θが36°近傍のピークが現れる場合がある。2θが36°近傍のピークは、ZnGaの結晶であれば、(222)面に配向していることを示す。CAAC−OS膜は、好ましくは、2θが31°近傍にピークが現れ、2θが36°近傍にピークが現れない。
また、例えば、InGaZnOの結晶を有するCAAC−OS膜であれば、XRD装置を用い、c軸に垂直な方向からX線を入射させるin−plane法による分析を行うと、2θが56°近傍のピークが現れる場合がある。2θが56°近傍のピークは、InGaZnOの結晶の(110)面を示す。ここで、2θを56°近傍で固定し、表面の法線ベクトルを軸(φ軸)として試料を回転させながら分析(φスキャン)を行うと、a軸およびb軸の向きが揃っている単結晶酸化物半導体の場合は6つの対称性のピークが現れるが、CAAC−OS膜の場合は明瞭なピークが現れない。
なお、CAAC−OS膜において、結晶部の分布が一様でなくてもよい。例えば、CAAC−OS膜の形成過程において、酸化物半導体膜の表面側から結晶成長させる場合、被形成面の近傍に対し表面の近傍では結晶部の占める割合が高くなることがある。また、CAAC−OS膜へ不純物を添加することにより、当該不純物添加領域において結晶部の結晶性が低下することもある。
CAAC−OS膜に含まれる結晶部のc軸は、CAAC−OS膜の被形成面の法線ベクトルまたは表面の法線ベクトルに平行な方向になるように揃うため、CAAC−OS膜の形状(被形成面の断面形状または表面の断面形状)によっては互いに異なる方向を向くことがある。また、結晶部は、成膜したとき、または成膜後に加熱処理などの結晶化処理を行ったときに形成される。従って、結晶部のc軸は、CAAC−OS膜が形成されたときの被形成面の法線ベクトルまたは表面の法線ベクトルに平行な方向になるように揃う。
CAAC−OS膜を用いたトランジスタは、可視光や紫外光の照射による電気特性の変動が小さい。よって、当該トランジスタは、信頼性が高い。
CAAC−OS膜は、例えば、多結晶である金属酸化物ターゲットを用い、スパッタリング法によって成膜する。
また、CAAC−OS膜を成膜するために、以下の条件を適用することが好ましい。
成膜時の不純物混入を低減することで、不純物によって結晶状態が崩れることを抑制できる。例えば、処理室内に存在する不純物濃度(水素、水、二酸化炭素、及び窒素など)を低減すればよい。また、成膜ガス中の不純物濃度を低減すればよい。具体的には、露点が−80℃以下、好ましくは−100℃以下である成膜ガスを用いる。
また、成膜時の基板加熱温度を高めることで、基板到達後にスパッタリング粒子のマイグレーションが起こる。具体的には、基板加熱温度を100℃以上740℃以下、好ましくは200℃以上500℃以下として成膜する。成膜時の基板加熱温度を高めることで、平板状のスパッタリング粒子が基板に到達した場合、基板上でマイグレーションが起こり、スパッタリング粒子の平らな面が基板に付着する。
また、成膜ガス中の酸素割合を高め、電力を最適化することで成膜時のプラズマダメージを軽減すると好ましい。成膜ガス中の酸素割合は、30体積%以上、好ましくは100体積%とする。
また、酸化物半導体層は、単数の金属酸化物膜で構成されているとは限らず、積層された複数の金属酸化物膜で構成されていても良い。例えば、第1乃至第3の金属酸化物膜が順に積層されている半導体膜の場合、第1の金属酸化物膜及び第3の金属酸化物膜は、第2の金属酸化物膜を構成する金属元素の少なくとも1つを、その構成要素に含み、伝導帯下端のエネルギーが第2の金属酸化物膜よりも0.05eV以上、0.07eV以上、0.1eV以上または0.15eV以上、かつ2eV以下、1eV以下、0.5eV以下または0.4eV以下、真空準位に近い酸化物膜である。さらに、第2の金属酸化物膜は、少なくともインジウムを含むと、キャリア移動度が高くなるため好ましい。
上記構成の半導体膜をトランジスタが有する場合、ゲート電極に電圧を印加することで、半導体膜に電界が加わると、半導体膜のうち、伝導帯下端のエネルギーが小さい第2の金属酸化物膜にチャネル領域が形成される。即ち、第2の金属酸化物膜とゲート絶縁膜との間に第3の金属酸化物膜が設けられていることによって、ゲート絶縁膜と離隔している第2の金属酸化物膜に、チャネル領域を形成することができる。
また、第3の金属酸化物膜は、第2の金属酸化物膜を構成する金属元素の少なくとも1つをその構成要素に含むため、第2の金属酸化物膜と第3の金属酸化物膜の界面では、界面散乱が起こりにくい。従って、当該界面においてキャリアの動きが阻害されにくいため、トランジスタの電界効果移動度が高くなる。
また、第2の金属酸化物膜と第1の金属酸化物膜の界面に界面準位が形成されると、界面近傍の領域にもチャネル領域が形成されるために、トランジスタの閾値電圧が変動してしまう。しかし、第1の金属酸化物膜は、第2の金属酸化物膜を構成する金属元素の少なくとも1つをその構成要素に含むため、第2の金属酸化物膜と第1の金属酸化物膜の界面には、界面準位が形成されにくい。よって、上記構成により、トランジスタの閾値電圧等の電気的特性のばらつきを、低減することができる。
また、金属酸化物膜間に不純物が存在することによって、各膜の界面にキャリアの流れを阻害する界面準位が形成されることがないよう、複数の酸化物半導体膜を積層させることが望ましい。積層された金属酸化物膜の膜間に不純物が存在していると、金属酸化物膜間における伝導帯下端のエネルギーの連続性が失われ、界面近傍において、キャリアがトラップされるか、あるいは再結合により消滅してしまうからである。膜間における不純物を低減させることで、主成分である一の金属を少なくとも共に有する複数の金属酸化物膜を、単に積層させるよりも、連続接合(ここでは特に伝導帯下端のエネルギーが各膜の間で連続的に変化するU字型の井戸構造を有している状態)が形成されやすくなる。
連続接合を形成するためには、ロードロック室を備えたマルチチャンバー方式の成膜装置(スパッタリング装置)を用いて各膜を大気に触れさせることなく連続して積層することが必要となる。スパッタリング装置における各チャンバーは、酸化物半導体にとって不純物となる水等を可能な限り除去すべくクライオポンプのような吸着式の真空排気ポンプを用いて高真空排気(5×10−7Pa乃至1×10−4Pa程度まで)することが好ましい。または、ターボ分子ポンプとコールドトラップを組み合わせて排気系からチャンバー内に気体が逆流しないようにしておくことが好ましい。
高純度の真性な酸化物半導体を得るためには、各チャンバー内を高真空排気するのみならず、スパッタリングに用いるガスの高純度化も重要である。上記ガスとして用いる酸素ガスやアルゴンガスの露点を、−40℃以下、好ましくは−80℃以下、より好ましくは−100℃以下とし、使用するガスの高純度化を図ることで、酸化物半導体膜に水分等が取り込まれることを可能な限り防ぐことができる。
例えば、第1の金属酸化物膜または第3の金属酸化物膜は、アルミニウム、シリコン、チタン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、スズ、ランタン、セリウムまたはハフニウムを、第2の金属酸化物膜よりも高い原子数比で含む酸化物膜であればよい。具体的に、第1の金属酸化物膜または第3の金属酸化物膜として、第2の金属酸化物膜よりも上述の元素を1.5倍以上、好ましくは2倍以上、さらに好ましくは3倍以上高い原子数比で含む酸化物膜を用いると良い。前述の元素は酸素と強く結合するため、酸素欠損が酸化物膜に生じることを抑制する機能を有する。よって、上記構成により、第1の金属酸化物膜または第3の金属酸化物膜を、第2の金属酸化物膜よりも酸素欠損が生じにくい酸化物膜にすることができる。
なお、第1の金属酸化物膜及び第3の金属酸化物膜の厚さは、3nm以上100nm以下、好ましくは3nm以上50nm以下とする。また、第2の金属酸化物膜の厚さは、3nm以上200nm以下、好ましくは3nm以上100nm以下であり、さらに好ましくは3nm以上50nm以下である。
3層構造の半導体膜において、第1の金属酸化物膜乃至第3の金属酸化物膜は、非晶質または結晶質の両方の形態を取りうる。ただし、チャネル領域が形成される第2の金属酸化物膜が結晶質であることにより、トランジスタに安定した電気的特性を付与することができるため、第2の金属酸化物膜は結晶質であることが好ましい。
本実施の形態で示した酸化物半導体を、他の実施の形態で示した半導体装置に適用することで、新規な半導体装置を提供することできる。また、半導体装置の信頼性又は特性を向上させることができる。特に、他の実施の形態で示したTr1乃至Tr6に適用することで、トランジスタのオフ電流を極めて小さくすることができる。特に、Tr1及びTr4に適用することでNode3又はNode4における電位の保持を極めて良好に行うことができる。
本実施の形態の一部又は全部は、他の実施の形態の一部又は全部と自由に組み合わせて用いることができる。
(実施の形態9)
本実施の形態では、半導体装置の一例について説明する。本実施の形態では、Si−Trと、OS−Trと、を含む半導体装置の例を示す。特に、Si−TrとOS−Trとを積層した例について説明する。
本実施の形態では、チャネルが酸化物半導体層に形成されるトランジスタ902と、チャネルが単結晶シリコンウェハに形成されるトランジスタ901とを含んで構成される半導体装置の構造例及びその作製方法例について図9を参照して説明する。なお、トランジスタ902は、他の実施の形態に示すトランジスタなどとして適用することが可能である。
ただし、トランジスタ901は、シリコンの他、ゲルマニウム、シリコンゲルマニウム、単結晶炭化シリコンなどの半導体材料を用いていても良い。また、例えば、シリコンを用いたトランジスタは、SOI法により作製されたシリコン薄膜、気相成長法により作製されたシリコン薄膜などを用いて形成することができる。この場合、基板にはフュージョン法やフロート法で作製されるガラス基板、石英基板、半導体基板、セラミック基板等を用いることができる。ガラス基板としては、後の加熱処理の温度が高い場合には、歪み点が730℃以上のものを用いると良い。
図9に示す半導体装置においては、単結晶シリコンウェハを用いて形成されたトランジスタ901と、その上階層に酸化物半導体を用いて形成されたトランジスタ902とが形成されている。すなわち、本実施の形態で示す半導体装置は、シリコンウェハを基板として、その上層にトランジスタ層が設けられた三次元の積層構造を有する半導体装置であり、また、シリコンをチャネル形成領域に用いたトランジスタと酸化物半導体をチャネル形成領域に用いたトランジスタとを有するハイブリッド型の半導体装置である。
半導体材料を含む基板900を用いて作製されたトランジスタ901は、nチャネル型トランジスタ(NMOSFET)、pチャネル型トランジスタ(PMOSFET)のいずれも用いることができる。図9に示す例においては、トランジスタ901は、STI(Shallow Trench Isolation)905によって他の素子と絶縁分離されている。STI905を用いることにより、LOCOSによる素子分離法で発生した素子分離部のバーズビークを抑制することができ、素子分離部の縮小等が可能となる。一方で、構造の微細化小型化が要求されない半導体装置においてはSTI905の形成は必ずしも必要ではなく、LOCOS等の素子分離手段を用いることもできる。トランジスタ901が形成される基板900には、ボロンやリン、ヒ素等の導電性を付与する不純物が添加されたウェル904が形成されている。
図9におけるトランジスタ901は、基板900中に設けられたチャネル形成領域と、チャネル形成領域を挟むように設けられた不純物領域906(ソース領域及びドレイン領域ともいう)と、チャネル形成領域上に設けられたゲート絶縁膜907と、ゲート絶縁膜907上にチャネル形成領域と重畳するように設けられたゲート電極層908とを有する。ゲート電極層908は、加工精度を高めるための第1の材料からなるゲート電極層と、配線として低抵抗化を目的とした第2の材料からなるゲート電極層を積層した構造とすることができる。例えば、導電性を付与するリン等の不純物を添加した結晶性シリコンとニッケルシリサイドとの積層構造などが挙げられる。しかし、この構造に限らず、適宜要求される仕様に応じて材料、積層数、形状等を調整することができる。
なお、図9に示すトランジスタ901を、フィン型構造のトランジスタとしてもよい。フィン型構造とは、半導体基板の一部を板状の突起形状に加工し、突起形状の長尺方向を交差するようにゲート電極層を設けた構造である。ゲート電極層は、ゲート絶縁膜を介して突起構造の上面及び側面を覆う。第2のトランジスタをフィン型構造のトランジスタとすることで、チャネル幅を縮小してトランジスタの集積化を図ることができる。また、電流を多く流すことができ、加えて制御効率を向上させることができるため、トランジスタのオフ時の電流及び閾値電圧を低減することができる。
また、基板900中に設けられた不純物領域906には、コンタクトプラグ913、915が接続されている。ここでコンタクトプラグ913、915は、接続するトランジスタ901のソース電極やドレイン電極としても機能する。また、不純物領域906とチャネル形成領域の間には、不純物領域906と異なる不純物領域が設けられている。該不純物領域は、導入された不純物の濃度によって、LDD領域やエクステンション領域としてチャネル形成領域近傍の電界分布を制御する機能を果たす。ゲート電極層908の側壁には絶縁膜を介してサイドウォール絶縁膜909を有する。この絶縁膜やサイドウォール絶縁膜909を用いることで、LDD領域やエクステンション領域を形成することができる。
また、トランジスタ901は、絶縁膜910により被覆されている。絶縁膜910には保護膜としての機能を持たせることができ、外部からチャネル形成領域への不純物の侵入を防止することができる。また、絶縁膜910をCVD法による窒化シリコン等の材料とすることで、チャネル形成領域に単結晶シリコンを用いた場合には加熱処理によって水素化を行うことができる。また、絶縁膜910に引張応力又は圧縮応力を有する絶縁膜を用いることで、チャネル形成領域を構成する半導体材料に歪みを与えることができる。nチャネル型のトランジスタの場合にはチャネル形成領域となるシリコン材料に引張応力を、pチャネル型のトランジスタの場合にはチャネル形成領域となるシリコン材料に圧縮応力を付加することで、各トランジスタの電界効果移動度を向上させることができる。
さらに、絶縁膜910上に絶縁膜911が設けられ、その表面はCMPによる平坦化処理が施されている。これにより、トランジスタ901を含む階層よりも上の階層に高い精度で素子層を積層していくことができる。
トランジスタ901を含む階層よりも上層に、チャネルが酸化物半導体層に形成されるトランジスタ902を含む階層を形成する。トランジスタ902はトップゲート構造のトランジスタであり、酸化物半導体膜926の側面及び上面に接してソース電極層927及びドレイン電極層928を有し、これらの上のゲート絶縁膜929上にゲート電極層930を有している。また、トランジスタ902を覆うように絶縁膜932、933が形成されている。ここでトランジスタ902の作製方法について、以下に説明する。
絶縁膜924上に酸化物半導体膜926を形成する。絶縁膜924は、酸化珪素、窒化珪素、窒化酸化珪素、酸化窒化珪素、酸化アルミニウム、窒化アルミニウム、窒化酸化アルミニウムなどの無機の絶縁膜を用いることができる。特に、誘電率の低い(low−k)材料を用いることで、各種電極や配線の重なりに起因する容量を十分に低減することが可能になるため好ましい。なお、絶縁膜924に上記材料を用いた多孔性の絶縁膜を適用しても良い。多孔性の絶縁膜では、密度の高い絶縁膜と比較して誘電率が低下するため、電極や配線に起因する寄生容量を更に低減することが可能である。本実施の形態では、膜厚50nmの酸化アルミニウム膜上に膜厚300nm程度の酸化珪素膜を積層させて、絶縁膜924として用いる。
酸化物半導体膜926は、絶縁膜924上に形成した酸化物半導体膜を所望の形状に加工することで、形成することができる。上記酸化物半導体膜の膜厚は、2nm以上200nm以下、好ましくは3nm以上50nm以下、更に好ましくは3nm以上20nm以下とする。酸化物半導体膜は、酸化物半導体をターゲットとして用い、スパッタ法により成膜する。また、酸化物半導体膜は、希ガス(例えばアルゴン)雰囲気下、酸素雰囲気下、又は希ガス(例えばアルゴン)及び酸素混合雰囲気下においてスパッタ法により形成することができる。
なお、酸化物半導体膜をスパッタ法により成膜する前に、アルゴンガスを導入してプラズマを発生させる逆スパッタを行い、絶縁膜924の表面に付着している塵埃を除去することが好ましい。逆スパッタとは、ターゲット側に電圧を印加せずに、アルゴン雰囲気下で基板側にRF電源を用いて電圧を印加して基板近傍にプラズマを形成して表面を改質する方法である。なお、アルゴン雰囲気に代えて窒素、ヘリウムなどを用いてもよい。また、アルゴン雰囲気に酸素、亜酸化窒素などを加えた雰囲気で行ってもよい。また、アルゴン雰囲気に塩素、四フッ化炭素などを加えた雰囲気で行ってもよい。
本実施の形態では、In(インジウム)、Ga(ガリウム)、及びZn(亜鉛)を含むターゲットを用いたスパッタ法により得られる膜厚30nmのIn−Ga−Zn系酸化物半導体の薄膜を、酸化物半導体膜として用いる。上記ターゲットとして、好ましくは、原子数比がIn:Ga:Zn=1:1:1、4:2:3、3:1:2、1:1:2、2:1:3、または3:1:4で示されるターゲットを用いる。また、In、Ga、及びZnを含むターゲットの充填率は90%以上100%以下、好ましくは95%以上100%未満である。充填率の高いターゲットを用いることにより、成膜した酸化物半導体膜は緻密な膜となる。
なお、酸化物半導体膜としてIn−Zn系の材料を用いる場合、用いるターゲットの組成は、原子数比で、In:Zn=50:1乃至1:2(モル数比に換算するとIn:ZnO=25:1乃至1:4)、好ましくはIn:Zn=20:1乃至1:1(モル数比に換算するとIn:ZnO=10:1乃至1:2)、さらに好ましくはIn:Zn=1.5:1乃至15:1(モル数比に換算するとIn:ZnO=3:4乃至15:2)とする。例えば、In−Zn系酸化物半導体の形成に用いるターゲットは、原子数比がIn:Zn:O=X:Y:Zのとき、Z>1.5X+Yとする。Znの比率を上記範囲に収めることで、移動度の向上を実現することができる。
また、酸化物半導体膜としてIn−Sn−Zn系酸化物半導体膜をスパッタリング法で成膜する場合、好ましくは、原子数比がIn:Sn:Zn=1:1:1、2:1:3、1:2:2、または20:45:35で示されるIn−Sn−Zn−Oターゲットを用いる。
本実施の形態では、減圧状態に保持された処理室内に基板を保持し、処理室内の残留水分を除去しつつ水素及び水分が除去されたスパッタガスを導入し、上記ターゲットを用いて酸化物半導体膜を成膜する。成膜時に、基板温度を100℃以上600℃以下、好ましくは200℃以上400℃以下としても良い。基板を加熱しながら成膜することにより、成膜した酸化物半導体膜に含まれる不純物濃度を低減することができる。また、スパッタリングによる損傷が軽減される。処理室内の残留水分を除去するためには、吸着型の真空ポンプを用いることが好ましい。例えば、クライオポンプ、イオンポンプ、チタンサブリメーションポンプを用いることが好ましい。また、排気手段としては、ターボポンプにコールドトラップを加えたものであってもよい。クライオポンプを用いて処理室を排気すると、例えば、水素原子、水(HO)など水素原子を含む化合物等が排気されるため、当該処理室で成膜した酸化物半導体膜に含まれる不純物の濃度を低減できる。
成膜条件の一例としては、基板とターゲットの間との距離を100mm、圧力0.6Pa、直流(DC)電源0.5kW、酸素(酸素流量比率100%)雰囲気下の条件が適用される。なお、パルス直流(DC)電源を用いると、成膜時に発生する塵埃が軽減でき、膜厚分布も均一となるために好ましい。
また、スパッタリング装置の処理室のリークレートを1×10−10Pa・m/秒以下とすることで、スパッタリング法による成膜途中における酸化物半導体膜への、アルカリ金属、水素化物等の不純物の混入を低減することができる。また、排気系として上述した吸着型の真空ポンプを用いることで、排気系からのアルカリ金属、水素原子、水素分子、水、または水素化物等の不純物の逆流を低減することができる。
また、ターゲットの純度を、99.99%以上とすることで、酸化物半導体膜に混入するアルカリ金属、水素原子、水素分子、水、水酸基、または水素化物等を低減することができる。また、当該ターゲットを用いることで、酸化物半導体膜において、リチウム、ナトリウム、カリウム等のアルカリ金属の濃度を低減することができる。
なお、酸化物半導体膜に水素、水酸基及び水分がなるべく含まれないようにするために、成膜の前処理として、スパッタリング装置の予備加熱室で絶縁膜924までが形成された基板900を予備加熱し、基板900に吸着した水分又は水素などの不純物を脱離し排気することが好ましい。なお、予備加熱の温度は、100℃以上400℃以下、好ましくは150℃以上300℃以下である。また、予備加熱室に設ける排気手段はクライオポンプが好ましい。なお、この予備加熱の処理は省略することもできる。
なお、酸化物半導体膜926を形成するためのエッチングは、ドライエッチングでもウェットエッチングでもよく、両方を用いてもよい。ドライエッチングに用いるエッチングガスとしては、塩素を含むガス(塩素系ガス、例えば塩素(Cl)、三塩化硼素(BCl)、四塩化珪素(SiCl)、四塩化炭素(CCl)など)が好ましい。また、フッ素を含むガス(フッ素系ガス、例えば四弗化炭素(CF)、六弗化硫黄(SF)、三弗化窒素(NF)、トリフルオロメタン(CHF)など)、臭化水素(HBr)、酸素(O)、これらのガスにヘリウム(He)やアルゴン(Ar)などの希ガスを添加したガス、などを用いることができる。
ドライエッチング法としては、平行平板型RIE(Reactive Ion Etching)法や、ICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用いることができる。所望の形状にエッチングできるように、エッチング条件(コイル型の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極温度等)を適宜調節する。
酸化物半導体膜926を形成するためのレジストマスクをインクジェット法で形成してもよい。レジストマスクをインクジェット法で形成するとフォトマスクを使用しないため、製造コストを低減できる。
なお、次工程の導電膜を形成する前に逆スパッタを行い、酸化物半導体膜926及び絶縁膜924の表面に付着しているレジスト残渣などを除去することが好ましい。
なお、スパッタ等で成膜された酸化物半導体膜中には、不純物としての水分又は水素(水酸基を含む)が多量に含まれていることがある。水分又は水素はドナー準位を形成しやすいため、酸化物半導体にとっては不純物である。そこで、本実施の形態では、酸化物半導体膜中の水分又は水素などの不純物を低減(脱水化または脱水素化)するために、酸化物半導体膜926に対して、減圧雰囲気下、窒素や希ガスなどの不活性ガス雰囲気下、酸素ガス雰囲気下、又は超乾燥エア(CRDS(キャビティリングダウンレーザー分光法)方式の露点計を用いて測定した場合の水分量が20ppm(露点換算で−55℃)以下、好ましくは1ppm以下、好ましくは10ppb以下の空気)雰囲気下で、酸化物半導体膜926に加熱処理を施す。
酸化物半導体膜926に加熱処理を施すことで、酸化物半導体膜926中の水分又は水素を脱離させることができる。具体的には、250℃以上750℃以下、好ましくは400℃以上基板の歪み点未満の温度で加熱処理を行えば良い。例えば、500℃、3分間以上6分間以下程度で行えばよい。加熱処理にRTA法を用いれば、短時間に脱水化又は脱水素化が行えるため、ガラス基板の歪点を超える温度でも処理することができる。
本実施の形態では、加熱処理装置の一つである電気炉を用いる。
なお、加熱処理装置は電気炉に限られず、抵抗発熱体などの発熱体からの熱伝導又は熱輻射によって、被処理物を加熱する装置を備えていてもよい。例えば、GRTA(Gas Rapid Thermal Anneal)装置、LRTA(Lamp Rapid Thermal Anneal)装置等のRTA(Rapid Thermal Anneal)装置を用いることができる。LRTA装置は、ハロゲンランプ、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、高圧水銀ランプなどのランプから発する光(電磁波)の輻射により、被処理物を加熱する装置である。GRTA装置は、高温のガスを用いて加熱処理を行う装置である。気体には、アルゴンなどの希ガス、又は窒素のような、加熱処理によって被処理物と反応しない不活性気体が用いられる。
加熱処理においては、窒素、又はヘリウム、ネオン、アルゴン等の希ガスに、水分又は水素などが含まれないことが好ましい。又は、加熱処理装置に導入する窒素、又はヘリウム、ネオン、アルゴン等の希ガスの純度を、6N(99.9999%)以上、好ましくは7N(99.99999%)以上、(即ち不純物濃度を1ppm以下、好ましくは0.1ppm以下)とすることが好ましい。
以上の工程により、酸化物半導体膜926中の水素の濃度を低減し、高純度化することができる。それにより酸化物半導体膜の安定化を図ることができる。また、当該水素濃度が低減され高純度化された酸化物半導体膜を用いることで、耐圧性が高く、オフ電流の著しく低いトランジスタを作製することができる。上記加熱処理は、酸化物半導体膜の成膜以降であれば、いつでも行うことができる。
次いで、フォトリソグラフィ工程を用いて、ソース電極層927及びドレイン電極層928を形成する。具体的には、ソース電極層927及びドレイン電極層928は、スパッタ法や真空蒸着法で絶縁膜924上に導電膜を形成した後、当該導電膜を所定の形状に加工(パターニング)することで、形成することができる。
本実施の形態では、ソース電極層927及びドレイン電極層928として、膜厚100nmのタングステン膜を用いる。
なお、導電膜のエッチングの際に、酸化物半導体膜926がなるべく除去されないようにそれぞれの材料及びエッチング条件を適宜調節する。エッチング条件によっては、酸化物半導体膜926の露出した部分が一部エッチングされることで、溝部(凹部)が形成されることもある。
本実施の形態では、ソース電極層927及びドレイン電極層928となる導電膜に、タングステン膜を用いる。そのため、アンモニアと過酸化水素水を含む溶液(アンモニア過水)を用いて、選択的に上記導電膜をウェットエッチングすることができる。具体的には、31重量%の過酸化水素水と、28重量%のアンモニア水と、水とを、体積比5:2:2で混合したアンモニア過水を用いる。あるいは、四弗化炭素(CF)、塩素(Cl)、酸素を含むガスを用いて、上記導電膜をドライエッチングしても良い。
なお、フォトリソグラフィ工程で用いるフォトマスク数及び工程数を削減するため、透過した光に多段階の強度をもたせる多階調マスクによって形成されたレジストマスクを用いてエッチング工程を行ってもよい。多階調マスクを用いて形成したレジストマスクは複数の膜厚を有する形状となり、アッシングを行うことで更に形状を変形することができるため、異なるパターンに加工する複数のエッチング工程に用いることができる。すなわち、一枚の多階調マスクによって、少なくとも二種類以上の異なるパターンに対応するレジストマスクを形成することができる。よって露光マスク数を削減することができ、対応するフォトリソグラフィ工程も削減できるため、工程の簡略化が可能となる。
また、酸化物半導体膜926と、ソース電極層927及びドレイン電極層928との間に、ソース領域及びドレイン領域として機能する酸化物導電膜を設けるようにしても良い。酸化物導電膜の材料としては、酸化亜鉛を成分として含むものが好ましく、酸化インジウムを含まないものであることが好ましい。そのような酸化物導電膜として、酸化亜鉛、酸化亜鉛アルミニウム、酸窒化亜鉛アルミニウム、酸化亜鉛ガリウムなどを適用することができる。
例えば、酸化物導電膜を形成する場合、酸化物導電膜を形成するためのパターニングと、ソース電極層927及びドレイン電極層928を形成するためのパターニングとを一括で行うようにしても良い。
ソース領域及びドレイン領域として機能する酸化物導電膜を設けることで、酸化物半導体膜926とソース電極層927及びドレイン電極層928の間の抵抗を下げることができるので、トランジスタの高速動作を実現させることができる。また、ソース領域及びドレイン領域として機能する酸化物導電膜を設けることで、トランジスタの耐圧を高めることができる。
次いで、NO、N、又はArなどのガスを用いたプラズマ処理を行うようにしても良い。このプラズマ処理によって露出している酸化物半導体膜の表面に付着した水などを除去する。また、酸素とアルゴンの混合ガスを用いてプラズマ処理を行ってもよい。
なお、プラズマ処理を行った後、ソース電極層927及びドレイン電極層928と、酸化物半導体膜926とを覆うように、ゲート絶縁膜929を形成する。そして、ゲート絶縁膜929上において、酸化物半導体膜926と重なる位置にゲート電極層930を形成する。
本実施の形態では、スパッタ法で形成された膜厚20nmの酸化窒化珪素膜をゲート絶縁膜929として用いる。成膜時の基板温度は、室温以上400℃以下とすればよく、本実施の形態では300℃とする。
なお、ゲート絶縁膜929を形成した後に、加熱処理を施しても良い。加熱処理は、窒素、超乾燥空気、又は希ガス(アルゴン、ヘリウムなど)の雰囲気下において、好ましくは200℃以上400℃以下、例えば250℃以上350℃以下で行う。上記ガスは、水の含有量が20ppm以下、好ましくは1ppm以下、より好ましくは10ppb以下であることが望ましい。本実施の形態では、例えば、窒素雰囲気下で250℃、1時間の加熱処理を行う。あるいは、ソース電極層927及びドレイン電極層928を形成する前に、水分又は水素を低減させるための酸化物半導体膜に対して行った先の加熱処理と同様に、高温短時間のRTA処理を行っても良い。酸素を含むゲート絶縁膜929が設けられた後に、加熱処理が施されることによって、酸化物半導体膜926に対して行った先の加熱処理により、酸化物半導体膜926に酸素欠損が発生していたとしても、ゲート絶縁膜929から酸化物半導体膜926に酸素が供与される。そして、酸化物半導体膜926に酸素が供与されることで、酸化物半導体膜926において、ドナーとなる酸素欠損を低減し、化学量論的組成を満たすことが可能である。その結果、酸化物半導体膜926をi型に近づけることができ、酸素欠損によるトランジスタの電気特性のばらつきを軽減し、電気特性の向上を実現することができる。この加熱処理を行うタイミングは、ゲート絶縁膜929の形成後であれば特に限定されず、他の工程と兼ねることで、工程数を増やすことなく酸化物半導体膜926をi型に近づけることができる。
また、酸素雰囲気下で酸化物半導体膜926に加熱処理を施すことで、酸化物半導体に酸素を添加し、酸化物半導体膜926中においてドナーとなる酸素欠損を低減させても良い。加熱処理の温度は、例えば100℃以上350℃未満、好ましくは150℃以上250℃未満で行う。上記酸素雰囲気下の加熱処理に用いられる酸素ガスには、水、水素などが含まれないことが好ましい。又は、加熱処理装置に導入する酸素ガスの純度を、6N(99.9999%)以上、好ましくは7N(99.99999%)以上、(即ち酸素中の不純物濃度を1ppm以下、好ましくは0.1ppm以下)とすることが好ましい。
あるいは、イオン注入法又はイオンドーピング法などを用いて、酸化物半導体膜926に酸素を添加することで、ドナーとなる酸素欠損を低減させても良い。例えば、2.45GHzのマイクロ波でプラズマ化した酸素を酸化物半導体膜926に添加すれば良い。
ゲート電極層930は、ゲート絶縁膜929上に導電膜を形成した後、該導電膜をパターニングすることで形成することができる。
ゲート電極層930は、10nm乃至400nm、好ましくは100nm乃至300nmとする。本実施の形態では、スパッタ法により膜厚30nmの窒化タンタル上に膜厚135nmのタングステンを積層させてゲート電極用の導電膜を形成した後、該導電膜をエッチングにより所望の形状に加工(パターニング)することで、ゲート電極層930を形成する。なお、レジストマスクをインクジェット法で形成してもよい。レジストマスクをインクジェット法で形成するとフォトマスクを使用しないため、製造コストを低減できる。
以上の工程により、トランジスタ902が形成される。
なお、トランジスタ902はシングルゲート構造のトランジスタを用いて説明したが、必要に応じて、電気的に接続された複数のゲート電極を有することで、チャネル形成領域を複数有する、マルチゲート構造のトランジスタも形成することができる。
また、上記作製方法では、ソース電極層927及びドレイン電極層928が、酸化物半導体膜926の後に形成されている。よって、図9に示すように、上記作製方法によって得られるトランジスタ902は、ソース電極層927及びドレイン電極層928が、酸化物半導体膜926の上に形成されている。しかし、トランジスタ902は、ソース電極層及びドレイン電極層が、酸化物半導体膜926の下、すなわち、酸化物半導体膜926と絶縁膜924の間に設けられていても良い。
また、酸化物半導体膜926に接する絶縁膜は、第13族元素及び酸素を含む絶縁材料を用いるようにしても良い。酸化物半導体材料には第13族元素を含むものが多く、第13族元素を含む絶縁材料は酸化物半導体との相性が良く、これを酸化物半導体膜に接する絶縁膜に用いることで、酸化物半導体膜との界面の状態を良好に保つことができる。
第13族元素を含む絶縁材料とは、絶縁材料に一又は複数の第13族元素を含むことを意味する。第13族元素を含む絶縁材料としては、例えば、酸化ガリウム、酸化アルミニウム、酸化アルミニウムガリウム、酸化ガリウムアルミニウムなどがある。ここで、酸化アルミニウムガリウムとは、ガリウムの含有量(原子%)よりアルミニウムの含有量(原子%)が多いものを示し、酸化ガリウムアルミニウムとは、ガリウムの含有量(原子%)がアルミニウムの含有量(原子%)以上のものを示す。
例えば、ガリウムを含有する酸化物半導体膜に接して絶縁膜を形成する場合に、絶縁膜に酸化ガリウムを含む材料を用いることで酸化物半導体膜と絶縁膜の界面特性を良好に保つことができる。例えば、酸化物半導体膜と酸化ガリウムを含む絶縁膜とを接して設けることにより、酸化物半導体膜と絶縁膜の界面における水素のパイルアップを低減することができる。なお、絶縁膜に酸化物半導体の成分元素と同じ族の元素を用いる場合には、同様の効果を得ることが可能である。例えば、酸化アルミニウムを含む材料を用いて絶縁膜を形成することも有効である。なお、酸化アルミニウムは、水を透過させにくいという特性を有しているため、当該材料を用いることは、酸化物半導体膜への水の侵入防止という点においても好ましい。
また、酸化物半導体膜926に接する絶縁膜は、酸素雰囲気下による熱処理や、酸素ドープなどにより、絶縁材料を化学量論的組成より酸素が多い状態とすることが好ましい。酸素ドープとは、酸素をバルクに添加することをいう。なお、当該バルクの用語は、酸素を薄膜表面のみでなく薄膜内部に添加することを明確にする趣旨で用いている。また、酸素ドープには、プラズマ化した酸素をバルクに添加する酸素プラズマドープが含まれる。また、酸素ドープは、イオン注入法又はイオンドーピング法を用いて行ってもよい。
酸素ドープ処理を行うことにより、化学量論的組成より酸素が多い領域を有する絶縁膜を形成することができる。このような領域を備える絶縁膜と酸化物半導体膜が接することにより、絶縁膜中の過剰な酸素が酸化物半導体膜に供給され、酸化物半導体膜中、又は酸化物半導体膜と絶縁膜の界面における酸素欠陥を低減し、酸化物半導体膜をi型化又はi型に限りなく近くすることができる。
なお、化学量論的組成より酸素が多い領域を有する絶縁膜は、酸化物半導体膜926に接する絶縁膜のうち、上層に位置する絶縁膜又は下層に位置する絶縁膜のうち、どちらか一方のみに用いても良いが、両方の絶縁膜に用いる方が好ましい。化学量論的組成より酸素が多い領域を有する絶縁膜を、酸化物半導体膜926に接する絶縁膜の、上層及び下層に位置する絶縁膜に用い、酸化物半導体膜926を挟む構成とすることで、上記効果をより高めることができる。
また、酸化物半導体膜926の上層又は下層に用いる絶縁膜は、上層と下層で同じ構成元素を有する絶縁膜としても良いし、異なる構成元素を有する絶縁膜としても良い。また、酸化物半導体膜926に接する絶縁膜は、化学量論的組成より酸素が多い領域を有する絶縁膜の積層としても良い。
なお、本実施の形態においては、トランジスタ902はトップゲート構造としている。また、トランジスタ902にはバックゲート電極層923が設けられている。バックゲート電極層を設けた場合、さらにトランジスタ902のノーマリーオフ化を実現することができる。例えば、バックゲート電極層923の電位をGNDや固定電位とすることでトランジスタ902の閾値電圧をよりプラスとし、さらにノーマリーオフのトランジスタとすることができる。
このような、トランジスタ901及びトランジスタ902を電気的に接続して電気回路を形成するために、各階層間及び上層に接続のための配線層を単層又は多層積層する。
図9においては、トランジスタ901のソース及びドレインの一方は、コンタクトプラグ913を介して配線層914と電気的に接続している。一方、トランジスタ901のソース及びドレインの他方は、コンタクトプラグ915を介して配線層916と電気的に接続している。また、トランジスタ901のゲートは、コンタクトプラグ917、配線層918、コンタクトプラグ921、配線層922、及びコンタクトプラグ925を介してトランジスタ902のドレイン電極層928と電気的に接続している。
配線層914、918、916、922及びバックゲート電極層923は、絶縁膜中に埋め込まれている。これらの配線層等は、例えば銅、アルミニウム等の低抵抗な導電性材料を用いることが好ましい。また、CVD法により形成したグラフェンを導電性材料として用いて配線層を形成することもできる。グラフェンとは、sp結合を有する1原子層の炭素分子のシートのこと、または2乃至100層の炭素分子のシートが積み重なっているものをいう。このようなグラフェンを作製する方法として、金属触媒の上にグラフェンを形成する熱CVD法や、紫外光を照射して局所的にプラズマを発生させることで触媒を用いずにメタンからグラフェンを形成するプラズマCVD法などがある。
このような低抵抗な導電性材料を用いることで、配線層を伝播する信号のRC遅延を低減することができる。配線層に銅を用いる場合には、銅のチャネル形成領域への拡散を防止するため、バリア膜を形成する。バリア膜として、例えば窒化タンタル、窒化タンタルとタンタルとの積層、窒化チタン、窒化チタンとチタンとの積層等による膜を用いることができるが、配線材料の拡散防止機能、及び配線材料や下地膜等との密着性が確保される程度においてこれらの材料からなる膜に限られない。バリア膜は配線層とは別個の層として形成してもよく、バリア膜となる材料を配線材料中に含有させ、加熱処理によって絶縁膜に設けられた開口の内壁に析出させて形成しても良い。
絶縁膜911、912、919、920、933には、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、BPSG(Boron Phosphorus Silicate Glass)、PSG(Phosphorus Silicate Glass)、炭素を添加した酸化シリコン(SiOC)、フッ素を添加した酸化シリコン(SiOF)、Si(OC2H5)4を原料とした酸化シリコンであるTEOS(Tetraethyl orthosilicate)、HSQ(Hydrogen Silsesquioxane)、MSQ(MethylSilsesquioxane)、OSG(Organo Silicate Glass)、有機ポリマー系の材料等の絶縁体を用いることができる。特に半導体装置の微細化を進める場合には、配線間の寄生容量が顕著になり信号遅延が増大するため酸化シリコンの比誘電率(k=4.0乃至4.5)では高く、kが3.0以下の材料を用いることが好ましい。また該絶縁膜に配線を埋め込んだ後にCMP処理を行うため、絶縁膜には機械的強度が要求される。この機械的強度が確保できる限りにおいて、これらを多孔質(ポーラス)化させて低誘電率化することができる。絶縁膜は、スパッタリング法、CVD法、スピンコート法(Spin On Glass:SOGともいう)を含む塗布法等により形成する。
絶縁膜911、912、919、920、933には、配線材料をこれら絶縁膜中に埋め込んだ後、CMP等による平坦化処理を行う際のエッチングストッパとして機能させるための絶縁膜を別途設けてもよい。
コンタクトプラグ913、915、917、921、925は、絶縁膜に高アスペクト比の開口(ビアホール)を形成し、タングステン等の導電材料で埋め込むことで作製する。開口は、異方性の高いドライエッチングを行うことが好ましい。特に、反応性イオンエッチング法(RIE法)を用いることが好ましい。開口の内壁にはチタン膜、窒化チタン膜又はこれらの積層膜等からなるバリア膜(拡散防止膜)が設けられ、バリア膜の内部にタングステンやリン等をドープしたポリシリコン等の材料が充填される。例えばブランケットCVD法により、ビアホール内にタングステンを埋め込むことができ、CMPによりコンタクトプラグの上面は平坦化されている。
なお、本実施の形態の酸化物半導体膜は、脱水化処理又は脱水素化処理により、水素または水分が除去され、酸素を添加する処理により酸素欠損を補填することによって、i型(真性)化またはi型に限りなく近く実質的にi型(真性)である酸化物半導体膜とすることができる。なお、実質的に真性とは、酸化物半導体膜中にドナーに由来するキャリアが極めて少なく(ゼロに近く)、キャリア密度が1×1017/cm以下、1×1016/cm以下、1×1015/cm以下、1×1014/cm以下、1×1013/cm以下であることをいう。
またこのように、i型又は実質的にi型である酸化物半導体膜を備えるトランジスタは、特に優れたオフ電流特性を実現できる。例えば、酸化物半導体膜を用いたトランジスタがオフ状態のときのドレイン電流を、室温(25℃程度)にて1×10−18A以下、好ましくは1×10−21A以下、さらに好ましくは1×10−24A以下、または85℃にて1×10−15A以下、好ましくは1×10−18A以下、さらに好ましくは1×10−21A以下とすることができる。なお、トランジスタがオフ状態とは、n型のトランジスタの場合、ゲート電圧がしきい値電圧よりも十分小さい状態をいう。具体的には、ゲート電圧がしきい値電圧よりも1V以上、2V以上または3V以上小さければ、トランジスタはオフ状態となる。
なお、上記のドレイン電極層928は、他の実施の形態に示した第1の容量素子C1又は第2の容量素子C2等の第1の電極とすることもできる。その場合、ゲート電極層930と同層の電極層を、容量素子の第2の電極として用いてもよい。また、当該第1の電極として、酸化物半導体膜926と同層の膜を用いてもよく、酸化物半導体膜926の一部を用いてもよい。トランジスタ901と容量素子とを重ねて設けることで、半導体装置の占有面積を縮小できるため好ましい。
また、配線層918又は配線層922を、第1の容量素子C1又は第2の容量素子C2の第1の電極としてもよい。トランジスタ902と容量素子とを重ねて設けることで、半導体装置の占有面積を縮小できるため好ましい。
本実施の形態で示したSi−TrとOS−Trとを有する半導体装置を、他の実施の形態で示した半導体装置に適用することで、動作速度を向上させることができる。また、Si−TrとOS−Trとを積層した半導体装置、Si−Trと容量素子とを積層した半導体装置、又は、OS−Trと容量素子とを積層した半導体装置を、他の実施の形態で示した半導体装置に適用することで占有面積を縮小することができる。例えば、Si−TrをTr2、Tr3、Tr5、Tr6、TrA、TrB、TrC、又はTrD等に適用し、OS−TrをTr1又はTr4等に適用することは、特に有効である。
なお、本実施の形態では、Si−TrとOS−Trとが積層された例を示したが、これに限定されずSi−TrとOS−Trとが同一平面上に有していてもよい。また、半導体装置は、図9のようなOS−Trのみ、又は、Si−Trのみで構成されていてもよい。
また、本実施の形態では、トランジスタ901及びトランジスタ902として、トップゲート構造を用いた例を示したが、ボトムゲート構造を用いてもよく、チャネルエッチ型、チャネル保護型など、様々な構造のトランジスタとすることができる。また、バックゲート電極層923は設けなくてもよい。
本実施の形態の一部又は全部は、他の実施の形態の一部又は全部と自由に組み合わせて用いることができる。
(実施の形態10)
本発明の一態様に係る半導体装置は、デジタル信号処理、ソフトウェア無線、アビオニクス(通信機器、航法システム、自動操縦装置、飛行管理システム等の航空に関する電子機器)、ASICのプロトタイピング、医療用画像処理、音声認識、暗号、バイオインフォマティクス(生物情報科学)、機械装置のエミュレータ、電波天文学における電波望遠鏡等、幅広い分野の電子機器に用いることができる。
このような電子機器の例として、例えば民生機器としては、表示機器、パーソナルコンピュータ、記録媒体を備えた画像再生装置(DVD等の記録媒体を再生し、その画像を表示するディスプレイを有する装置)に用いることができる。その他に、本発明の一態様に係る半導体装置を用いることができる電子機器として、携帯電話、携帯型を含むゲーム機、携帯情報端末、電子書籍、ビデオカメラ、デジタルスチルカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、デジタルオーディオプレーヤ等)、複写機、ファクシミリ、プリンタ、プリンタ複合機等が挙げられる。これら電子機器の具体例を図10に示す。
図10(A)は、携帯型ゲーム機を示す図である。図10(A)に示す携帯型ゲーム機は、筐体5001、筐体5002、表示部5003、表示部5004、マイクロホン5005、スピーカ5006、操作キー5007、スタイラス5008等を有する。なお、図10(A)に示した携帯型ゲーム機は、2つの表示部5003と表示部5004とを有しているが、携帯型ゲーム機が有する表示部の数は、これに限定されない。
図10(B)は、携帯情報端末を示す図である。図10(B)に示す携帯情報端末は、第1の筐体5601、第2の筐体5602、第1の表示部5603、第2の表示部5604、接続部5605、操作キー5606等を有する。第1の表示部5603は第1の筐体5601に設けられており、第2の表示部5604は第2の筐体5602に設けられている。そして、第1の筐体5601と第2の筐体5602とは、接続部5605により接続されており、第1の筐体5601と第2の筐体5602の間の角度は、接続部5605により可動となっている。第1の表示部5603における映像の切り替えを、接続部5605における第1の筐体5601と第2の筐体5602との間の角度に従って、切り替える構成としても良い。また、第1の表示部5603及び第2表示部5604の少なくとも一方に、位置入力装置としての機能が付加された表示装置を用いるようにしても良い。なお、位置入力装置としての機能は、表示装置にタッチパネルを設けることで付加することができる。あるいは、位置入力装置としての機能は、フォトセンサとも呼ばれる光電変換素子を表示装置の画素部に設けることでも、付加することができる。
図10(C)は、ノート型パーソナルコンピュータを示す図である。図10(C)に示すノート型パーソナルコンピュータは、筐体5401、表示部5402、キーボード5403、ポインティングデバイス5404等を有する。
図10(D)は、電気冷凍冷蔵庫を示す図である。図10(D)に示す電気冷凍冷蔵庫は、筐体5301、冷蔵室用扉5302、冷凍室用扉5303等を有する。
図10(E)は、ビデオカメラを示す図である。図10(E)に示すビデオカメラは、第1の筐体5801、第2の筐体5802、表示部5803、操作キー5804、レンズ5805、接続部5806等を有する。操作キー5804及びレンズ5805は第1の筐体5801に設けられており、表示部5803は第2の筐体5802に設けられている。そして、第1の筐体5801と第2筐体5802とは、接続部5806により接続されており、第1の筐体5801と第2筐体5802の間の角度は、接続部5806により可動となっている。表示部5803における映像の切り替えを、接続部5806における第1の筐体5801と第2の筐体5802との間の角度に従って行う構成としても良い。
図10(F)は、普通自動車を示す図である。図10(F)に示す普通自動車は、車体5101、車輪5102、ダッシュボード5103、ライト5104等を有する。
本実施の形態の一部又は全部は、他の実施の形態の一部又は全部と自由に組み合わせて用いることができる。
101 第1の回路部
102 第2の回路部
103 第1の配線
104 第2の配線
105 第3の配線
106 第4の配線
107 破線
108 破線
109 破線
110 破線
111 第5の配線
112 第6の配線
115 配線
113 破線
114 破線
116 破線
117 破線
118 破線
119 破線
201 配線
202 配線
203 配線
301 第1の回路部
900 基板
901 トランジスタ
902 トランジスタ
904 ウェル
906 不純物領域
907 ゲート絶縁膜
908 ゲート電極層
909 サイドウォール絶縁膜
910 絶縁膜
911 絶縁膜
912 絶縁膜
913 コンタクトプラグ
914 配線層
915 コンタクトプラグ
916 配線層
917 コンタクトプラグ
918 配線層
919 絶縁膜
920 絶縁膜
921 コンタクトプラグ
922 配線層
923 バックゲート電極層
924 絶縁膜
925 コンタクトプラグ
926 酸化物半導体膜
927 ソース電極層
928 ドレイン電極層
929 ゲート絶縁膜
930 ゲート電極層
932 絶縁膜
933 絶縁膜
5001 筐体
5002 筐体
5003 表示部
5004 表示部
5005 マイクロホン
5006 スピーカ
5007 操作キー
5008 スタイラス
5101 車体
5102 車輪
5103 ダッシュボード
5104 ライト
5301 筐体
5302 冷蔵室用扉
5303 冷凍室用扉
5401 筐体
5402 表示部
5403 キーボード
5404 ポインティングデバイス
5601 筐体
5602 筐体
5603 表示部
5604 表示部
5605 接続部
5606 操作キー
5801 筐体
5802 筐体
5803 表示部
5804 操作キー
5805 レンズ
5806 接続部

Claims (3)

  1. 第1の回路部と、第2の回路部と、を有し、
    前記第1の回路部は、第1のノードと、第2のノードと、を有し、
    前記第2の回路部は、第1のトランジスタ乃至第6のトランジスタと、第1の容量素子と第2の容量素子と、を有し、
    前記第1のノードは、前記第1のトランジスタを介して、前記第2のトランジスタのゲートと、前記第1の容量素子の第1の電極と、に電気的に接続され、
    前記第2のノードは、前記第4のトランジスタを介して、前記第5のトランジスタのゲートと、前記第2の容量素子の第1の電極と、に電気的に接続され、
    前記第2のトランジスタのソース又はドレインの一方は、前記第3のトランジスタを介して、前記第2のノードと電気的に接続され、
    前記第5のトランジスタのソース又はドレインの一方は、前記第6のトランジスタを介して、前記第1のノードと電気的に接続され、
    前記第1のトランジスタ及び前記第4のトランジスタは、酸化物半導体を有することを特徴とする半導体装置。
  2. 第1の回路部と、第2の回路部と、を有し、
    前記第1の回路部は、第1のノードと、第2のノードと、を有し、
    前記第2の回路部は、第1のトランジスタ乃至第6のトランジスタと、第1の容量素子と第2の容量素子と、を有し、
    前記第1のノードは、前記第1のトランジスタを介して、前記第2のトランジスタのゲートと、前記第1の容量素子の第1の電極と、に電気的に接続され、
    前記第2のノードは、前記第4のトランジスタを介して、前記第5のトランジスタのゲートと、前記第2の容量素子の第1の電極と、に電気的に接続され、
    前記第2のトランジスタのソース又はドレインの一方は、前記第3のトランジスタを介して、前記第1のノードと電気的に接続され、
    前記第5のトランジスタのソース又はドレインの一方は、前記第6のトランジスタを介して、前記第2のノードと電気的に接続され、
    前記第1のトランジスタ及び前記第4のトランジスタは、酸化物半導体を有することを特徴とする半導体装置。
  3. 請求項1又は請求項2において、
    前記第1の回路部は、偶数個のインバータ回路が環状に接続された部分を有することを特徴とする半導体装置。
JP2014047760A 2013-03-14 2014-03-11 半導体装置 Expired - Fee Related JP6298662B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014047760A JP6298662B2 (ja) 2013-03-14 2014-03-11 半導体装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013051283 2013-03-14
JP2013051283 2013-03-14
JP2014047760A JP6298662B2 (ja) 2013-03-14 2014-03-11 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018032006A Division JP6532560B2 (ja) 2013-03-14 2018-02-26 半導体装置

Publications (2)

Publication Number Publication Date
JP2014200083A true JP2014200083A (ja) 2014-10-23
JP6298662B2 JP6298662B2 (ja) 2018-03-20

Family

ID=51523685

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014047760A Expired - Fee Related JP6298662B2 (ja) 2013-03-14 2014-03-11 半導体装置
JP2018032006A Expired - Fee Related JP6532560B2 (ja) 2013-03-14 2018-02-26 半導体装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018032006A Expired - Fee Related JP6532560B2 (ja) 2013-03-14 2018-02-26 半導体装置

Country Status (2)

Country Link
US (1) US9275987B2 (ja)
JP (2) JP6298662B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018019397A (ja) * 2016-07-19 2018-02-01 株式会社半導体エネルギー研究所 半導体装置
JP2018045755A (ja) * 2016-09-09 2018-03-22 株式会社半導体エネルギー研究所 記憶装置とその動作方法、並びに半導体装置、電子部品および電子機器
JP2018107806A (ja) * 2016-12-27 2018-07-05 株式会社半導体エネルギー研究所 半導体装置
JP2021101556A (ja) * 2015-08-21 2021-07-08 株式会社半導体エネルギー研究所 半導体装置及び電子機器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102334468B1 (ko) * 2009-10-30 2021-12-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9467047B2 (en) * 2011-05-31 2016-10-11 Semiconductor Energy Laboratory Co., Ltd. DC-DC converter, power source circuit, and semiconductor device
US8736315B2 (en) * 2011-09-30 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9236408B2 (en) 2012-04-25 2016-01-12 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device including photodiode
KR102329066B1 (ko) * 2014-02-28 2021-11-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 구동 방법, 및 전자 기기
US11302717B2 (en) * 2016-04-08 2022-04-12 Semiconductor Energy Laboratory Co., Ltd. Transistor and method for manufacturing the same
JP2020000686A (ja) * 2018-06-29 2020-01-09 株式会社大一商会 遊技機
KR20210154173A (ko) 2019-04-18 2021-12-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 릴레이 및 반도체 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151796A (ja) * 2009-12-25 2011-08-04 Semiconductor Energy Lab Co Ltd 記憶装置、半導体装置、及び電子機器
JP2012009839A (ja) * 2010-05-21 2012-01-12 Semiconductor Energy Lab Co Ltd 記憶装置、半導体装置
JP2012256404A (ja) * 2011-03-08 2012-12-27 Semiconductor Energy Lab Co Ltd 記憶素子、信号処理回路

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
KR100394896B1 (ko) 1995-08-03 2003-11-28 코닌클리케 필립스 일렉트로닉스 엔.브이. 투명스위칭소자를포함하는반도체장치
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP4103968B2 (ja) 1996-09-18 2008-06-18 株式会社半導体エネルギー研究所 絶縁ゲイト型半導体装置
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
EP1443130B1 (en) 2001-11-05 2011-09-28 Japan Science and Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
CN1445821A (zh) 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
EP2413366B1 (en) 2004-03-12 2017-01-11 Japan Science And Technology Agency A switching element of LCDs or organic EL displays
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
CN101057339B (zh) 2004-11-10 2012-12-26 佳能株式会社 无定形氧化物和场效应晶体管
KR100953596B1 (ko) 2004-11-10 2010-04-21 캐논 가부시끼가이샤 발광장치
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
CN101057338B (zh) 2004-11-10 2011-03-16 佳能株式会社 采用无定形氧化物的场效应晶体管
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI569441B (zh) 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI472037B (zh) 2005-01-28 2015-02-01 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
EP3614442A3 (en) 2005-09-29 2020-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufactoring method thereof
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
KR20090115222A (ko) 2005-11-15 2009-11-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치 제조방법
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
JP4662075B2 (ja) * 2007-02-02 2011-03-30 株式会社ブリヂストン 薄膜トランジスタ及びその製造方法
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
CN101663762B (zh) 2007-04-25 2011-09-21 佳能株式会社 氧氮化物半导体
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP5215158B2 (ja) 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
JP5781720B2 (ja) 2008-12-15 2015-09-24 ルネサスエレクトロニクス株式会社 半導体装置及び半導体装置の製造方法
EP2887395B1 (en) * 2009-11-20 2019-05-08 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile latch circuit and logic circuit, and semiconductor device using the same
EP2510541A4 (en) 2009-12-11 2016-04-13 Semiconductor Energy Lab NONVOLATILE LATCH CIRCUIT, LOGIC CIRCUIT, AND SEMICONDUCTOR DEVICE USING THE SAME
CN102668377B (zh) 2009-12-18 2015-04-08 株式会社半导体能源研究所 非易失性锁存电路和逻辑电路以及使用它们的半导体器件
CN105702631B (zh) 2009-12-28 2019-05-28 株式会社半导体能源研究所 半导体器件
WO2011089847A1 (en) 2010-01-20 2011-07-28 Semiconductor Energy Laboratory Co., Ltd. Signal processing circuit and method for driving the same
CN107947763B (zh) 2010-08-06 2021-12-28 株式会社半导体能源研究所 半导体集成电路
JP2013009285A (ja) * 2010-08-26 2013-01-10 Semiconductor Energy Lab Co Ltd 信号処理回路及びその駆動方法
TWI525619B (zh) 2011-01-27 2016-03-11 半導體能源研究所股份有限公司 記憶體電路
US8779488B2 (en) * 2011-04-15 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
JP5886496B2 (ja) * 2011-05-20 2016-03-16 株式会社半導体エネルギー研究所 半導体装置
TWI618075B (zh) * 2012-11-06 2018-03-11 半導體能源研究所股份有限公司 半導體裝置及其驅動方法
JP5807076B2 (ja) 2013-01-24 2015-11-10 株式会社半導体エネルギー研究所 半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151796A (ja) * 2009-12-25 2011-08-04 Semiconductor Energy Lab Co Ltd 記憶装置、半導体装置、及び電子機器
JP2012009839A (ja) * 2010-05-21 2012-01-12 Semiconductor Energy Lab Co Ltd 記憶装置、半導体装置
JP2012256404A (ja) * 2011-03-08 2012-12-27 Semiconductor Energy Lab Co Ltd 記憶素子、信号処理回路

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021101556A (ja) * 2015-08-21 2021-07-08 株式会社半導体エネルギー研究所 半導体装置及び電子機器
JP7167219B2 (ja) 2015-08-21 2022-11-08 株式会社半導体エネルギー研究所 半導体装置及び電子機器
JP2018019397A (ja) * 2016-07-19 2018-02-01 株式会社半導体エネルギー研究所 半導体装置
CN109478883A (zh) * 2016-07-19 2019-03-15 株式会社半导体能源研究所 半导体装置
JP2018045755A (ja) * 2016-09-09 2018-03-22 株式会社半導体エネルギー研究所 記憶装置とその動作方法、並びに半導体装置、電子部品および電子機器
US10297296B2 (en) 2016-09-09 2019-05-21 Semiconductor Energy Laboratory Co., Ltd. Storage device, method for operating storage device, semiconductor device, electronic component, and electronic device
JP2018107806A (ja) * 2016-12-27 2018-07-05 株式会社半導体エネルギー研究所 半導体装置
JP7264590B2 (ja) 2016-12-27 2023-04-25 株式会社半導体エネルギー研究所 半導体装置及びプログラマブルロジックデバイス

Also Published As

Publication number Publication date
JP2018125059A (ja) 2018-08-09
JP6532560B2 (ja) 2019-06-19
US20140264518A1 (en) 2014-09-18
JP6298662B2 (ja) 2018-03-20
US9275987B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
KR102556197B1 (ko) 기억 소자 및 프로그래머블 로직 디바이스
JP6298662B2 (ja) 半導体装置
KR102278873B1 (ko) 반도체 장치 및 반도체 장치의 제작 방법
JP6223668B2 (ja) 半導体装置
US9312851B2 (en) Semiconductor device and driving method thereof
US9479152B2 (en) Semiconductor device and method for driving semiconductor device
JP6250315B2 (ja) 半導体装置及びその駆動方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180226

R150 Certificate of patent or registration of utility model

Ref document number: 6298662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees