JP2013229556A - チップ部品およびその製造方法 - Google Patents
チップ部品およびその製造方法 Download PDFInfo
- Publication number
- JP2013229556A JP2013229556A JP2012277079A JP2012277079A JP2013229556A JP 2013229556 A JP2013229556 A JP 2013229556A JP 2012277079 A JP2012277079 A JP 2012277079A JP 2012277079 A JP2012277079 A JP 2012277079A JP 2013229556 A JP2013229556 A JP 2013229556A
- Authority
- JP
- Japan
- Prior art keywords
- resistor
- film
- chip
- fuse
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 76
- 239000000758 substrate Substances 0.000 claims abstract description 300
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 82
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 82
- 230000001681 protective effect Effects 0.000 claims abstract description 27
- 238000005520 cutting process Methods 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims description 64
- 239000003990 capacitor Substances 0.000 claims description 36
- 238000005259 measurement Methods 0.000 claims description 26
- 238000000059 patterning Methods 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 12
- 238000010030 laminating Methods 0.000 claims description 6
- 230000000087 stabilizing effect Effects 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 abstract description 12
- 239000010408 film Substances 0.000 description 1305
- 239000004020 conductor Substances 0.000 description 183
- 239000010410 layer Substances 0.000 description 175
- 239000011347 resin Substances 0.000 description 107
- 229920005989 resin Polymers 0.000 description 107
- 238000002161 passivation Methods 0.000 description 99
- 238000010586 diagram Methods 0.000 description 57
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 57
- 239000010931 gold Substances 0.000 description 55
- 238000012545 processing Methods 0.000 description 48
- 230000008569 process Effects 0.000 description 45
- 238000009966 trimming Methods 0.000 description 45
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 41
- 229910052760 oxygen Inorganic materials 0.000 description 41
- 239000001301 oxygen Substances 0.000 description 41
- 229910010282 TiON Inorganic materials 0.000 description 38
- 238000004891 communication Methods 0.000 description 36
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 36
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 31
- 239000010703 silicon Substances 0.000 description 31
- 229910052710 silicon Inorganic materials 0.000 description 31
- 238000004544 sputter deposition Methods 0.000 description 31
- 230000002093 peripheral effect Effects 0.000 description 28
- 230000006870 function Effects 0.000 description 27
- 238000005530 etching Methods 0.000 description 26
- 239000000463 material Substances 0.000 description 26
- 239000011265 semifinished product Substances 0.000 description 26
- -1 AlSiCu Inorganic materials 0.000 description 24
- 229910000679 solder Inorganic materials 0.000 description 23
- 238000007747 plating Methods 0.000 description 21
- 229910052581 Si3N4 Inorganic materials 0.000 description 20
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 20
- 239000013039 cover film Substances 0.000 description 19
- 230000005540 biological transmission Effects 0.000 description 18
- 239000000203 mixture Substances 0.000 description 18
- 238000001020 plasma etching Methods 0.000 description 18
- 229910016570 AlCu Inorganic materials 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 238000000206 photolithography Methods 0.000 description 16
- 229920001721 polyimide Polymers 0.000 description 15
- 239000007788 liquid Substances 0.000 description 14
- 239000011159 matrix material Substances 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 13
- 229910004298 SiO 2 Inorganic materials 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 238000013461 design Methods 0.000 description 12
- 229910052737 gold Inorganic materials 0.000 description 12
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 11
- 239000004642 Polyimide Substances 0.000 description 11
- 239000010949 copper Substances 0.000 description 11
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 10
- 229910052759 nickel Inorganic materials 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 238000007772 electroless plating Methods 0.000 description 8
- 239000007769 metal material Substances 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 238000009713 electroplating Methods 0.000 description 6
- 229910006091 NiCrSi Inorganic materials 0.000 description 5
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 5
- 238000001312 dry etching Methods 0.000 description 5
- 229910001120 nichrome Inorganic materials 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000001039 wet etching Methods 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 125000004430 oxygen atom Chemical group O* 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/0814—Diodes only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C1/00—Details
- H01C1/14—Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C10/00—Adjustable resistors
- H01C10/50—Adjustable resistors structurally combined with switching arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C13/00—Resistors not provided for elsewhere
- H01C13/02—Structural combinations of resistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
- H01C17/006—Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistor chips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
- H01C17/06—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/40—Structural association with built-in electric component, e.g. fuse
- H01F27/402—Association of measuring or protective means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F29/00—Variable transformers or inductances not covered by group H01F21/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G2/00—Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
- H01G2/14—Protection against electric or thermal overload
- H01G2/16—Protection against electric or thermal overload with fusing elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/40—Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G5/00—Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
- H01G5/01—Details
- H01G5/019—Means for correcting the capacitance characteristics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G5/00—Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
- H01G5/38—Multiple capacitors, e.g. ganged
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/525—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
- H01L23/5256—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/0203—Particular design considerations for integrated circuits
- H01L27/0207—Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/20—Resistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49082—Resistor making
- Y10T29/49099—Coating resistive material on a base
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
- Non-Adjustable Resistors (AREA)
- Semiconductor Integrated Circuits (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Coils Or Transformers For Communication (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Ceramic Capacitors (AREA)
Abstract
【解決手段】チップ抵抗器はSi等の基板と、基板上に形成されたTiN等の抵抗体膜20および前記抵抗体膜に接するように積層されたアルミニウム系配線膜21をそれぞれ有する複数の抵抗体と、基板上に設けられた電極と、前記複数の抵抗体の前記アルミニウム系配線膜と一体化したアルミニウム系配線膜を有し、前記複数の抵抗体を前記電極にそれぞれ接続する切断可能な複数のヒューズFとを含む。複数のヒューズのうちの任意のヒューズを切断することにより、チップ抵抗器の抵抗値を所望の抵抗値に合わせ込む。切断されたヒューズは絶縁性の保護膜22、23で覆われる。
【選択図】図16
Description
また、チップ抵抗器は、年々小型化が進行しているので、高抵抗品を開発しようとしても、抵抗膜の配置面積の制約から、高抵抗化が困難であった。
さらに、チップ抵抗器は形状寸法精度を向上させなければ、基板実装時の搬送エラー等のトラブルを招き易いため、形状寸法精度の向上および微細加工精度の向上がチップ抵抗器の製造上における重要な課題であった。
この発明は、係る背景のもとになされたもので、小型で正確な特性値を有する信頼性の高いチップ部品を提供することを主たる目的とする。
また、この発明は、小型で信頼性が高く、正確な特性値を有するチップ部品の製造方法を提供するを他の目的とする。
請求項2記載の発明は、前記機能素子が、前記基板上に形成された抵抗体膜および前記抵抗体膜に接するように積層されたアルミニウム系配線膜を有する抵抗体を含み、前記チップ部品がチップ抵抗器である、請求項1記載のチップ部品である。
請求項4記載の発明は、前記機能素子が、前記基板上に形成されたコイル形成膜および前記コイル形成膜に接続されたアルミニウム系配線膜を有するコイル素子を含み、前記チップ部品がチップインダクタである、請求項1記載のチップ部品である。
請求項6記載の発明は、前記ヒューズの前記アルミニウム系配線膜と一体化したアルミニウム系配線膜からなる電極パッドをさらに含み、前記電極パッドに前記電極が接している、請求項1〜5のいずれか一項に記載のチップ部品である。
請求項8記載の発明は、基板上に機能素子を形成する工程と、前記機能素子に接するようにアルミニウム系配線膜を形成する工程と、前記機能素子およびアルミニウム系配線膜をパターニングすることにより、前記機能素子および前記アルミニウム系配線膜を有する複数の機能素子と、前記アルミニウム系配線膜を有し、前記複数の機能素子にそれぞれ接続された切断可能な複数のヒューズとを形成する工程と、前記複数のヒューズに電気的に接続されるように前記基板上に電極を形成する工程とを含む、チップ部品の製造方法である。
請求項10記載の発明は、前記機能素子を形成する工程は、抵抗体膜を形成する工程を含む、請求項8または9に記載のチップ部品の製造方法である。
請求項12記載の発明は、前記チップ部品の全抵抗値を測定する前に、前記機能素子の特性を安定化させるための熱処理工程をさらに含む、請求項11に記載のチップ部品の製造方法である。
請求項14記載の発明は、複数のチップ抵抗器領域を含む基板上に抵抗体膜を形成する工程と、前記抵抗体膜に接するようにアルミニウム系配線膜を積層する工程と、前記抵抗体膜およびアルミニウム系配線膜をパターニングすることにより、前記抵抗体膜および前記アルミニウム系配線膜を有する複数の抵抗体と、前記アルミニウム系配線膜を有し、前記複数の抵抗体にそれぞれ接続された切断可能な複数のヒューズとを、前記複数のチップ抵抗器領域にそれぞれ形成する工程と、前記複数のチップ抵抗器領域のそれぞれにおける全抵抗値をマルチプロービングによって一括測定する工程と、前記全抵抗値の測定結果に基づいて、前記複数のチップ抵抗器のそれぞれにおいて切断すべきヒューズを選択する工程と、前記選択されたヒューズを切断する工程と、前記複数のヒューズに電気的に接続されるように前記複数のチップ抵抗器領域にそれぞれ電極を形成する工程と、複数のチップ抵抗器領域の境界領域で前記基板を切断して複数のチップ抵抗器に分割する工程とを含む、チップ抵抗器の製造方法である。
請求項16記載の発明は、前記抵抗体膜およびアルミニウム系配線膜をパターニングする工程において、さらに、前記アルミニウム系配線膜からなる電極パッドが形成され、前記電極が前記電極パッドに接するように形成される、請求項14または15に記載のチップ抵抗器の製造方法である。
請求項18記載の発明は、前記ヒューズの切断部を覆うように前記基板上に絶縁膜を形成する工程をさらに含む、請求項14〜17のいずれか一項に記載のチップ抵抗器の製造方法である。
請求項6記載の発明によれば、電極の設置が容易にでき、微細な基板に正確に電極が配置されたチップ部品とすることができる。また、請求項1記載の発明と同様、半導体装置を製造するための装置や設備を使用してディスクリートなチップ部品を作ることができる。
請求項8記載の発明によれば、機能素子配置およびヒューズ配置を極めて細かなパターンで正確に作れ、特性値が安定したチップ部品を作ることができる。また、同一設計による多種類の特性値への対応が可能なチップ部品を製造することができる。
請求項10記載の発明によれば、機能素子配置およびヒューズ配置を極めて細かなパターンで正確に作れ、特性値が安定したチップ抵抗器を作ることができる。また、同一設計による多種類の特性値への対応が可能なチップ抵抗器を製造することができる。
請求項12記載の発明によれば、抵抗体の特性の安定化が図れ、抵抗値が安定したチップ部品を提供できる。
請求項13記載の発明によれば、耐水性が向上し、信頼性の向上したチップ部品の製造方法を提供することができる。
請求項15記載の発明によれば、ヒューズ切断後の抵抗値をさらに測定するため、ヒューズの切断処理の確実性を担保でき、抵抗値の信頼性が向上したチップ抵抗器を製造することができる。
請求項17記載の発明によれば、チップ抵抗器の抵抗特性を安定化させることができ、小型で正確な抵抗値のチップ抵抗器を製造することができる。
請求項18記載の発明によれば、ヒューズ切断時のヒューズ破片による不良回避が図れる製造方法とすることができる。また、耐水性が向上したチップ抵抗器を製造することができる。
図1(A)は、この発明の一実施形態に係るチップ抵抗器10の外観構成を示す図解的な斜視図であり、図1(B)は、チップ抵抗器10が基板上に実装された状態を示す側面図である。
シリコン基板11上において、第1接続電極12はシリコン基板11の一方短辺111に沿って設けられた短辺111方向に長手の矩形電極である。第2接続電極13は、シリコン基板11上の他方短辺112に沿って設けられた短辺112方向に長手の矩形電極である。抵抗回路網14は、シリコン基板11上の第1接続電極12と第2接続電極13とで挟まれた中央領域(回路形成面または素子形成面)に設けられている。そして、抵抗回路網14の一端側は第1接続電極12に電気的に接続されており、抵抗回路網14の他端側は第2接続電極13に電気的に接続されている。これら第1接続電極12、第2接続電極13および抵抗回路網14は、たとえば一例として、シリコン基板11上に半導体製造プロセスを用いて設けることができる。換言すれば、半導体装置を製造するための装置、設備を使用してディスクリートなチップ抵抗器10を製造することができる。特に、後述するフォトリソグラフィプロセスを用いることにより、微細で正確なレイアウトパターンの抵抗回路網14を形成することができる。
図2を参照して、チップ抵抗器10は、シリコン基板上面の一方短辺111に長辺が沿うように配置された平面視略矩形をした第1接続電極12と、シリコン基板上面の他方短辺112に長辺が沿うように配置された平面視略矩形をした第2接続電極13と、第1接続電極12および第2接続電極13間の平面視矩形の領域に設けられた抵抗回路網14とを含んでいる。
図3A、図3Bおよび図3Cを参照して、単位抵抗体Rの構成について説明をする。 基板としてのシリコン基板11の上面には絶縁層(SiO2)19が形成され、絶縁層19上に抵抗体膜20が配置されている。抵抗体膜20は、TiN、TiONまたはTiSiONにより形成される。この抵抗体膜20は、第1接続電極12と第2接続電極13との間を平行に直線状に延びる複数本の抵抗体膜(以下「抵抗体膜ライン」という)とされており、抵抗体膜ライン20は、ライン方向に所定の位置で切断されている場合がある。抵抗体膜ライン20上には、導体膜片21としてのたとえばアルミニウム膜が積層されている。各導体膜片21は、抵抗体膜ライン20上に、ライン方向に一定間隔Rを開けて積層されている。
図3Bおよび図3Cに示す図解的な断面図において、参照番号11はシリコン基板、19は絶縁層としての二酸化シリコンSiO2層、20は絶縁層19上に形成されたTiN、TiONまたはTiSiONの抵抗体膜、21はアルミニウム(Al)の配線膜、22は保護膜としてのSiN膜、23は保護層としてのポリイミド層を示している。配線膜21は、Alに換え、AlSi、AlSiCu、またはAlCuなどのアルミニウム系金属膜で形成されてもよい。配線膜21(ヒューズ膜Fを含む)をこのようにアルミニウム系金属膜で形成することにより、プロセス加工精度の向上を図れる。
この実施形態では、シリコン基板上11に形成された抵抗回路網14に含まれる単位抵抗体Rは、抵抗体膜ライン20と、抵抗体膜ライン20上に、ライン方向に一定間隔をあけて積層された複数の導体膜片21とを含み、導体膜片21が積層されていない一定間隔R部分の抵抗体膜ライン20が、1個の単位抵抗体Rを構成している。単位抵抗体Rを構成している抵抗体膜ライン20は、その形状および大きさが全て等しい。よって、基板上に作り込んだ同形同大の抵抗体膜は、ほぼ同値になるという特性に基づき、シリコン基板11上にマトリックス状に配列された多数個の単位抵抗体Rは、等しい抵抗値を有している。
図5(A)は、図2に示すチップ抵抗器10の平面図の一部分を拡大して描いたヒューズ膜Fを含む領域の部分拡大平面図であり、図5(B)は、図5(A)のB−Bに沿う断面構造を示す図である。
図6を参照して、第1接続電極12には、抵抗回路網14に含まれる基準抵抗回路R8の一端が接続されている。基準抵抗回路R8は、8個の単位抵抗体Rの直列接続からなり、その他端はヒューズ膜F1に接続されている。
接続用導体膜C2とヒューズ膜F4とには、32個の単位抵抗体Rの直列接続からなる抵抗回路R32の一端および他端が接続されている。
ヒューズ膜F4と接続用導体膜C5とには、32個の単位抵抗体Rの直列接続からなる抵抗回路体R32の一端および他端が接続されている。
ヒューズ膜F7および接続用導体膜C9には、8個の単位抵抗体Rの直列接続からなる抵抗回路R8の一端および他端が接続されている。
接続用導体膜C9およびヒューズ膜F10には、4個の単位抵抗体Rの直列接続からなる抵抗回路R4の一端および他端が接続されている。
接続用導体膜C12およびヒューズ膜F13には、1個の単位抵抗体Rからなる抵抗回路体R1の一端および他端が接続されている。
ヒューズ膜F13および接続用導体膜C15には、2個の単位抵抗体Rの並列接続からなる抵抗回路R/2の一端および他端が接続されている。
ヒューズ膜F16および接続用導体膜C18には、8個の単位抵抗体Rの並列接続からなる抵抗回路R/8の一端および他端が接続されている。
接続用導体膜C18およびヒューズ膜F19には、16個の単位抵抗体Rの並列接続からなる抵抗回路R/16の一端および他端が接続されている。
複数のヒューズ膜Fおよび接続用導体膜Cは、それぞれ、ヒューズ膜F1、接続用導体膜C2、ヒューズ膜F3、ヒューズ膜F4、接続用導体膜C5、ヒューズ膜F6、ヒューズ膜F7、接続用導体膜C8、接続用導体膜C9、ヒューズ膜F10、ヒューズ膜F11、接続用導体膜C12、ヒューズ膜F13、ヒューズ膜F14、接続用導体膜C15、ヒューズ膜F16、ヒューズ膜F17、接続用導体膜C18、ヒューズ膜F19、ヒューズ膜F20、接続用導体膜C21、接続用導体膜C22が、直線状に配置されて直列に接続されている。各ヒューズ膜Fが溶断されると、ヒューズ膜Fに隣接接続された接続用導体膜Cとの間の電気的接続が遮断される構成である。
チップ抵抗器30が、前述したチップ抵抗器10と異なるところは、抵抗回路網14における単位抵抗体Rの接続態様である。
図9は、図8に示す抵抗回路網における複数種類の抵抗回路の接続態様と、それらを接続するヒューズ膜Fの配列関係ならびにヒューズ膜Fに接続された複数種類の抵抗回路の接続関係を図解的に示す図である。
抵抗膜F6と接続用導体膜Cとには、32個の単位抵抗体Rの直列接続からなる抵抗回路R32の一端および他端が接続されている。
ヒューズ膜F7と接続用導体膜Cとには、16個の単位抵抗体Rの直列接続からなる抵抗回路R16の一端および他端が接続されている。
ヒューズ膜F9と接続用導体膜Cとには、4個の単位抵抗体Rの直列接続からなる抵抗回路R4の一端および他端が接続されている。
ヒューズ膜F10と接続用導体膜Cとには、2個の単位抵抗体Rの直列接続からなる抵抗回路R2の一端および他端が接続されている。
ヒューズ膜F12と接続用導体膜Cとには、2個の単位抵抗体Rの並列接続からなる抵抗回路R/2の一端および他端が接続されている。
ヒューズ膜F13と接続用導体膜Cとには、4個の単位抵抗体Rの並列接続からなる抵抗回路R/4の一端および他端が接続されている。
ヒューズ膜F17、F18、F19、F20、F21は電気的に接続されており、これらヒューズ膜F17〜F21と接続用導体膜Cとには、16個の単位抵抗体Rの並列接続からなる抵抗回路R/16の一端および他端が接続されている。
かかる構成であるから、抵抗回路の一端が接続されたいずれかのヒューズ膜Fが溶断されると、そのヒューズ膜Fに一端が接続された抵抗回路は、抵抗回路網14から電気的に切り離される。
そこで、電流を分散させるために、図10に示す電気回路を、図11(A)に示す電気回路構成となるように、抵抗回路網の接続構造を変更してもよい。すなわち、基準抵抗回路R/16を無くし、かつ、並列接続される抵抗回路は、最小の抵抗値をrとし、抵抗値rの抵抗単位体R1を複数組並列に接続した構成140を含む回路に変えるのである。
図12は、この発明のさらに他の実施形態に係るチップ抵抗器に備えられる抵抗回路網14の回路構成を電気回路図で示した図である。図12に示す抵抗回路網14の特徴は、複数種類の抵抗回路の直列接続と、複数種類の抵抗回路の並列接続とが直列に接続された回路構成となっていることである。
一方、並列接続された複数種類の抵抗回路には、それぞれ、直列にヒューズ膜Fが接続されている。従って、ヒューズ膜Fを溶断することにより、ヒューズ膜Fが直列に接続されている抵抗回路を、抵抗回路の並列接続から電気的に切り離すことができる。
また、より精度良く抵抗値を設定する場合は、要求抵抗値に近い直列接続側抵抗回路のヒューズ膜を予めカットしておけば、細かな抵抗値の調整を並列接続側の抵抗回路のヒューズ膜を溶断することにより行うことができ、所望の抵抗値への合わせ込みの精度が上がる。
図13に示す抵抗回路網14も、ヒューズ膜Fで短絡された複数種類の抵抗回路の直列接続と、ヒューズ膜Fが直列接続された複数種類の抵抗回路の並列接続とが直列に接続された回路構成となっている。
たとえば、前述したチップ抵抗器10(図1、図2参照)や、チップ抵抗器30(図8参照)では、抵抗回路を構成する抵抗体膜ライン20と導体膜片21の関係を平面視で表わすと、図14(A)に示す構成になっている。すなわち、図14(A)に示すように、所定間隔Rの領域の抵抗体膜ライン20部分が、一定の抵抗値rの単位抵抗体Rを形成している。そして単位抵抗体Rの両側には導体膜片21が積層され、当該導体膜片21で抵抗体膜ライン20が短絡されている。
ところで、たとえば図1、図2に示すチップ抵抗器10において、抵抗回路網14の配置領域を拡げることなく、抵抗回路網14の抵抗値を高めて、チップ抵抗器10の高抵抗化を図りたいといった要望がある。
図14(B)を参照して、抵抗体膜ライン20は、幅1.5μmで直線状に延びるライン状の抵抗体膜ライン20を含む。そして、抵抗体膜ライン20において、所定間隔R′の抵抗体膜ライン20部分が、一定の抵抗値r′の単位抵抗体R′を形成している。単位抵抗体R′の長さは、たとえば17μmにする。こうすれば、単位抵抗体R′の抵抗値r′は、図14(A)に示す単位抵抗体Rに比べて、ほぼ2倍のr′=160Ωの単位抵抗体とすることができる。
ステップS1:まず、基板11(実際には個々のチップ抵抗器10に切り分けられる前のシリコンウエハ(図17参照))が所定の処理室に配置され、その表面に、たとえば熱酸化法によって、絶縁層19としての二酸化シリコン(SiO2)層が形成される。
ステップS3:次に、たとえばスパッタ法によって、抵抗体膜20の表面全域にたとえばアルミニウム(Al)の配線膜21が積層形成される。積層された抵抗体膜20および配線膜21の2層の膜の合計膜厚は8000Å程度とされてもよい。配線膜21は、Alに換え、AlSi、AlSiCu、またはAlCuなどのアルミニウム系金属膜で形成されてもよい。配線膜21を、Al、AlSi、AlSiCu、またはAlCuなどのアルミニウム系金属膜で形成することにより、プロセス加工精度の向上を図れる。
ステップS5:そして、第1エッチング工程が行われる。すなわち、ステップS4で形成された第1レジストパターンをマスクとして、抵抗体膜20および配線膜21という積層された2層膜が、たとえば反応性イオンエッチング(RIE)によりエッチングされる。そして、エッチング後に第1レジストパターンは剥離される。
ステップS7:ステップS6で形成された第2レジストパターンをマスクとして、たとえばウェットエッチングにより、配線膜21のみが選択的にエッチングされる(第2エッチング工程)。エッチング後、第2レジストパターンが剥離される。これにより、図2に示した抵抗回路網14のレイアウトパターンが得られる。
ステップS13:この樹脂膜23に対して、前記第1接続電極12、第2接続電極13の開口に対応した領域に対する露光工程、およびその後の現像工程を行うことによって、フォトリソグラフィによる樹脂膜のパターニングを行うことができる。これにより、樹脂膜23に第1接続電極12および第2接続電極13のためのパッド開口が形成される。
ステップS15:次に、第1接続電極12および第2接続電極13を形成すべき位置に貫通孔を有するポリイミド膜23をマスクとしてパッシベーション膜22のエッチングが行われる。それによって、配線膜21を第1接続電極12の領域および第2接続電極13の領域において露出させるパッド開口が形成される。パッシベーション膜22のエッチングは、反応性イオンエッチング(RIE)によって行われてもよい。
ステップS18:その後、ウエハ表面に配列形成された多数個(たとえば50万個)の各チップ抵抗器を個々のチップ抵抗器10に分離するために、フォトリソグラフィによって第3のレジストパターンが形成される。レジスト膜はウエハの表面において、たとえば図18における各チップ抵抗器10を保護すべく設けられ、各チップ抵抗器10間がエッチングされるように形成される。
ステップS20:そして、たとえば図17(A)に示すように、表面に保護テープ100が貼着される。
ステップS22:そして、図17(C)に示すように、裏面側にキャリアテープ(熱発泡シート)200が貼られて、個々のチップ抵抗器に分離された多数個のチップ抵抗器10は、キャリアテープ200上に配列された状態で保持される。一方で、表面に貼着された保護テープは取り除かれる(図17(D))。
以上、この発明の実施形態として、チップ抵抗器を用いて説明したが、この発明は、チップ抵抗器以外のチップ部品に対しても適用することが可能である。
さらに、他のチップ部品の例として、チップインダクタを例示することができる。チップインダクタは、たとえば基板上に多層配線構造を有し、多層配線構造内にインダクタ(コイル)およびそれに関連する配線を有する部品で、多層配線構造内の任意のインダクタがヒューズにより回路に組み込まれたり、回路から切り離されたりできる構成のものである。かかるチップインダクタにおいても、この発明によるアルミニウム系配線膜により配線およびヒューズを一体的に形成することにより、小型で高性能のチップインダクタ(チップ部品)とすることができる。
<第1参考例に係る発明>
(1)第1参考例に係る発明の特徴
たとえば、第1参考例に係る発明の特徴は、以下のA1〜A11である。
(A1)基板と、前記基板上に形成された抵抗体膜、および前記抵抗体膜に接するように積層された配線膜をそれぞれ有する複数の抵抗体と、前記基板上に設けられた電極と、前記複数の抵抗体を前記電極にそれぞれ接続する切断可能な複数のヒューズとを含み、前記抵抗体膜が、NiCr、NiCrAl、NiCrSi、NiCrSiAl、TaN、TaSiO2、TiN、TiNO、およびTiSiONからなる群から選択した1種以上を含む材料からなることを特徴とする、チップ抵抗器。
(A2)前記抵抗体膜の温度係数が、1000ppm/℃未満であることを特徴とする、A1に記載のチップ抵抗器。
(A3)前記抵抗体膜の温度係数が、50ppm/℃〜200ppm/℃であることを特徴とする、A2に記載のチップ抵抗器。
この構成によれば、温度特性の影響を受けにくく、より正確な抵抗値のチップ抵抗器とすることができる。
(A4)前記抵抗体膜の膜厚が、300Å〜1μmであることを特徴とする、A1〜A3のいずれか一項に記載のチップ抵抗器。
(A5)前記抵抗体が、1μm〜1.5μmの線幅を有する線状要素を含むことを特徴とする、A1〜A4のいずれか一項に記載のチップ抵抗器。
この構成によれば、微細加工されたチップ抵抗器とすることができる。
(A6)前記抵抗体は、抵抗体膜上に、前記線状方向に一定間隔を開けて積層された導体膜を備え、前記導体膜が積層されていない前記一定間隔部分の抵抗体膜が1個の単位抵抗体を構成していることを特徴とする、A5記載のチップ抵抗器。
(A7)前記抵抗体膜上に積層された前記導体膜と、前記ヒューズとは同一レイヤーに形成された同一材料の金属膜を含むことを特徴とする、A1〜A6のいずれか一項に記載のチップ抵抗器。
(A8)前記単位抵抗体が複数個直列に接続され、抵抗回路が形成されていることを特徴とする、A6またはA7に記載のチップ抵抗器。
この構成によれば、抵抗値の調整がしやすい高抵抗化されたチップ抵抗器とすることができる。
(A9)前記抵抗回路は、複数種類形成されており、複数種類の抵抗回路は、等しい抵抗値を有する単位抵抗体が直列に等比数列的に増加されて接続された複数種類の直列抵抗回路を含むことを特徴とする、A8に記載のチップ抵抗器。
(A10)前記抵抗回路は、複数種類形成されており、複数種類の抵抗回路は、等しい抵抗値を有する単位抵抗体が並列に等比数列的に増加されて接続された複数種類の並列抵抗回路を含むことを特徴とする、A8に記載のチップ抵抗器。
(A11)前記抵抗回路は、複数種類形成されており、複数種類の抵抗回路は、等しい抵抗値を有する単位抵抗体が直列に等比数列的に増加されて接続された複数種類の直列抵抗回路、および、等しい抵抗値を有する単位抵抗体が並列に等比数列的に増加されて接続された複数種類の並列抵抗回路を含むことを特徴とする、A8に記載のチップ抵抗器。
(2)第1参考例に係る発明の実施形態
以下には、第1参考例の実施の形態を、添付図面を参照して詳細に説明する。なお、図19〜図38で示した符号は、これらの図面でのみ有効であり、他の実施形態に使用されていても、当該他の実施形態の符号と同じ要素を示すものではない。
図19(A)を参照して、第1参考例の一実施形態に係るチップ抵抗器a10は、基板a11上に形成された第1接続電極a12と、第2接続電極a13と、抵抗回路網a14とを備えている。基板a11は、平面視略長方形状の直方体形状で、一例として、長辺方向の長さL=0.3mm、短辺方向の幅W=0.15mm、厚みT=0.1mm程度の大きさの微少なチップである。基板a11は、平面視で角が面取りされた角ラウンド形状であってもよい。基板は、たとえばシリコン、ガラス、セラミック等で形成することができる。以下の実施形態では、基板a11がシリコン基板の場合を例にとって説明する。
基板a11上において、第1接続電極a12は基板a11の一方短辺a111に沿って設けられた短辺a111方向に長手の矩形電極である。第2接続電極a13は、基板a11上の他方短辺a112に沿って設けられた短辺a112方向に長手の矩形電極である。抵抗回路網a14は、基板a11上の第1接続電極a12と第2接続電極a13とで挟まれた中央領域(回路形成面または素子形成面)に設けられている。そして、抵抗回路網a14の一端側は第1接続電極a12に電気的に接続されており、抵抗回路網a14の他端側は第2接続電極a13に電気的に接続されている。これら第1接続電極a12、第2接続電極a13および抵抗回路網a14は、たとえば一例として、基板a11上に微細加工プロセスを用いて設けることができる。特に、後述するフォトリソグラフィプロセスを用いることにより、微細で正確なレイアウトパターンの抵抗回路網a14を形成することができる。
図20を参照して、チップ抵抗器a10は、基板a11上面の一方短辺a111に長辺が沿うように配置された平面視略矩形をした第1接続電極a12と、基板a11上面の他方短辺a112に長辺が沿うように配置された平面視略矩形をした第2接続電極a13と、第1接続電極a12および第2接続電極a13間の平面視矩形の領域に設けられた抵抗回路網a14とを含んでいる。
図21A、図21Bおよび図21Cを参照して、単位抵抗体Rの構成について説明をする。
図21Bおよび図21Cに示す図解的な断面図において、参照番号a11は基板、a19は絶縁層としての二酸化シリコンSiO2層、a20は絶縁層a19上に形成された抵抗体膜a21はアルミニウム(Al)の配線膜、a22は保護膜としてのSiN膜、a23は保護層としてのポリイミド層を示している。
いチップ抵抗器となるからである。
さらに、抵抗体膜a20は、1μm〜1.5μmの線幅を有する線状要素を含む構造であることが望ましい。抵抗回路の微細化と良好な温度特性とを両立できるからである。
配線膜a21は、Alに換え、AlSi、AlSiCu、またはAlCuなどのアルミニウム系金属膜で形成されてもよい。配線膜a21(ヒューズ膜Fを含む)をこのようにアルミニウム系金属膜で形成することにより、プロセス加工精度の向上を図れる。
この実施形態では、基板上11に形成された抵抗回路網a14に含まれる単位抵抗体Rは、抵抗体膜ラインa20と、抵抗体膜ラインa20上に、ライン方向に一定間隔をあけて積層された複数の導体膜片a21とを含み、導体膜片a21が積層されていない一定間隔R部分の抵抗体膜ラインa20が、1個の単位抵抗体Rを構成している。単位抵抗体Rを構成している抵抗体膜ラインa20は、その形状および大きさが全て等しい。よって、基板上に作り込んだ同形同大の抵抗体膜は、ほぼ同値になるという特性に基づき、基板a11上にマトリックス状に配列された多数個の単位抵抗体Rは、等しい抵抗値を有している。
図23(A)は、図20に示すチップ抵抗器a10の平面図の一部分を拡大して描いたヒューズ膜Fを含む領域の部分拡大平面図であり、図23(B)は、図23(A)のB−Bに沿う断面構造を示す図である。
図24を参照して、第1接続電極a12には、抵抗回路網a14に含まれる基準抵抗回路R8の一端が接続されている。基準抵抗回路R8は、8個の単位抵抗体Rの直列接続からなり、その他端はヒューズ膜F1に接続されている。
接続用導体膜C2とヒューズ膜F4とには、32個の単位抵抗体Rの直列接続からなる抵抗回路R32の一端および他端が接続されている。
ヒューズ膜F4と接続用導体膜C5とには、32個の単位抵抗体Rの直列接続からなる抵抗回路体R32の一端および他端が接続されている。
ヒューズ膜F7および接続用導体膜C9には、8個の単位抵抗体Rの直列接続からなる抵抗回路R8の一端および他端が接続されている。
接続用導体膜C9およびヒューズ膜F10には、4個の単位抵抗体Rの直列接続からなる抵抗回路R4の一端および他端が接続されている。
接続用導体膜C12およびヒューズ膜F13には、1個の単位抵抗体Rからなる抵抗回路体R1の一端および他端が接続されている。
ヒューズ膜F13および接続用導体膜C15には、2個の単位抵抗体Rの並列接続からなる抵抗回路R/2の一端および他端が接続されている。
ヒューズ膜F16および接続用導体膜C18には、8個の単位抵抗体Rの並列接続からなる抵抗回路R/8の一端および他端が接続されている。
接続用導体膜C18およびヒューズ膜F19には、16個の単位抵抗体Rの並列接続からなる抵抗回路R/16の一端および他端が接続されている。
複数のヒューズ膜Fおよび接続用導体膜Cは、それぞれ、ヒューズ膜F1、接続用導体膜C2、ヒューズ膜F3、ヒューズ膜F4、接続用導体膜C5、ヒューズ膜F6、ヒューズ膜F7、接続用導体膜C8、接続用導体膜C9、ヒューズ膜F10、ヒューズ膜F11、接続用導体膜C12、ヒューズ膜F13、ヒューズ膜F14、接続用導体膜C15、ヒューズ膜F16、ヒューズ膜F17、接続用導体膜C18、ヒューズ膜F19、ヒューズ膜F20、接続用導体膜Ca21、接続用導体膜Ca22が、直線状に配置されて直列に接続されている。各ヒューズ膜Fが溶断されると、ヒューズ膜Fに隣接接続された接続用導体膜Cとの間の電気的接続が遮断される構成である。
チップ抵抗器a30が、前述したチップ抵抗器a10と異なるところは、抵抗回路網a14における単位抵抗体Rの接続態様である。
図27は、図26に示す抵抗回路網における複数種類の抵抗回路の接続態様と、それらを接続するヒューズ膜Fの配列関係ならびにヒューズ膜Fに接続された複数種類の抵抗回路の接続関係を図解的に示す図である。
抵抗膜F6と接続用導体膜Cとには、32個の単位抵抗体Rの直列接続からなる抵抗回路R32の一端および他端が接続されている。
ヒューズ膜F7と接続用導体膜Cとには、16個の単位抵抗体Rの直列接続からなる抵抗回路R16の一端および他端が接続されている。
ヒューズ膜F9と接続用導体膜Cとには、4個の単位抵抗体Rの直列接続からなる抵抗回路R4の一端および他端が接続されている。
ヒューズ膜F10と接続用導体膜Cとには、2個の単位抵抗体Rの直列接続からなる抵抗回路R2の一端および他端が接続されている。
ヒューズ膜F12と接続用導体膜Cとには、2個の単位抵抗体Rの並列接続からなる抵抗回路R/2の一端および他端が接続されている。
ヒューズ膜F13と接続用導体膜Cとには、4個の単位抵抗体Rの並列接続からなる抵抗回路R/4の一端および他端が接続されている。
ヒューズ膜F17、F18、F19、F20、F21は電気的に接続されており、これらヒューズ膜F17〜F21と接続用導体膜Cとには、16個の単位抵抗体Rの並列接続からなる抵抗回路R/16の一端および他端が接続されている。
かかる構成であるから、抵抗回路の一端が接続されたいずれかのヒューズ膜Fが溶断されると、そのヒューズ膜Fに一端が接続された抵抗回路は、抵抗回路網a14から電気的に切り離される。
そこで、電流を分散させるために、図28に示す電気回路を、図29(A)に示す電気回路構成となるように、抵抗回路網の接続構造を変更してもよい。すなわち、基準抵抗回路R/16を無くし、かつ、並列接続される抵抗回路は、最小の抵抗値をrとし、抵抗値rの抵抗単位体R1を複数組並列に接続した構成a140を含む回路に変えるのである。
図30は、第1参考例のさらに他の実施形態に係るチップ抵抗器に備えられる抵抗回路網a14の回路構成を電気回路図で示した図である。図30に示す抵抗回路網a14の特徴は、複数種類の抵抗回路の直列接続と、複数種類の抵抗回路の並列接続とが直列に接続された回路構成となっていることである。
一方、並列接続された複数種類の抵抗回路には、それぞれ、直列にヒューズ膜Fが接続されている。従って、ヒューズ膜Fを溶断することにより、ヒューズ膜Fが直列に接続されている抵抗回路を、抵抗回路の並列接続から電気的に切り離すことができる。
また、より精度良く抵抗値を設定する場合は、要求抵抗値に近い直列接続側抵抗回路のヒューズ膜を予めカットしておけば、細かな抵抗値の調整を並列接続側の抵抗回路のヒューズ膜を溶断することにより行うことができ、所望の抵抗値への合わせ込みの精度が上がる。
図31に示す抵抗回路網a14も、ヒューズ膜Fで短絡された複数種類の抵抗回路の直列接続と、ヒューズ膜Fが直列接続された複数種類の抵抗回路の並列接続とが直列に接続された回路構成となっている。
たとえば、前述したチップ抵抗器a10(図19、図20参照)や、チップ抵抗器a30(図26参照)では、抵抗回路を構成する抵抗体膜ラインa20と導体膜片a21の関係を平面視で表わすと、図32(A)に示す構成になっている。すなわち、図32(A)に示すように、所定間隔Rの領域の抵抗体膜ラインa20部分が、一定の抵抗値rの単位抵抗体Rを形成している。そして単位抵抗体Rの両側には導体膜片a21が積層され、当該導体膜片a21で抵抗体膜ラインa20が短絡されている。
ところで、たとえば図19、図20に示すチップ抵抗器a10において、抵抗回路網a14の配置領域を拡げることなく、抵抗回路網a14の抵抗値を高めて、チップ抵抗器a10の高抵抗化を図りたいといった要望がある。
図32(B)を参照して、抵抗体膜ラインa20は、幅1.5μmで直線状に延びるライン状の抵抗体膜ラインa20を含む。そして、抵抗体膜ラインa20において、所定間隔R′の抵抗体膜ラインa20部分が、一定の抵抗値r′の単位抵抗体R′を形成している。単位抵抗体R′の長さは、たとえば17μmにする。こうすれば、単位抵抗体R′の抵抗値r′は、図32(A)に示す単位抵抗体Rに比べて、ほぼ2倍のr′=160Ωの単位抵抗体とすることができる。
ステップS1:まず、基板a11(実際には個々のチップ抵抗器a10に切り分けられる前のシリコンウエハ(図35参照))が所定の処理室に配置され、その表面に、たとえば熱酸化法によって、絶縁層a19としての二酸化シリコン(SiO2)層が形成される。
ステップS3:次に、たとえばスパッタ法によって、抵抗体膜a20の表面全域にたとえばアルミニウム(Al)の配線膜a21が積層形成される。積層された抵抗体膜a20および配線膜a21の2層の膜の合計膜厚は8000Å程度とされてもよい。配線膜a21は、Alに換え、AlSi、AlSiCu、またはAlCuなどのアルミニウム系金属膜で形成されてもよい。配線膜a21を、Al、AlSi、AlSiCu、またはAlCuなどのアルミニウム系金属膜で形成することにより、プロセス加工精度の向上を図れる。
ステップS5:そして、第1エッチング工程が行われる。すなわち、ステップS4で形成された第1レジストパターンをマスクとして、抵抗体膜a20および配線膜a21という積層された2層膜が、たとえば反応性イオンエッチング(RIE)によりエッチングされる。そして、エッチング後に第1レジストパターンは剥離される。
ステップS7:ステップS6で形成された第2レジストパターンをマスクとして、たとえばウェットエッチングにより、配線膜a21のみが選択的にエッチングされる(第2エッチング工程)。エッチング後、第2レジストパターンが剥離される。これにより、図20に示した抵抗回路網a14のレイアウトパターンが得られる。
ステップS13:この樹脂膜a23に対して、前記第1接続電極a12、第2接続電極a13の開口に対応した領域に対する露光工程、およびその後の現像工程を行うことによって、フォトリソグラフィによる樹脂膜のパターニングを行うことができる。これにより、樹脂膜a23に第1接続電極a12および第2接続電極a13のためのパッド開口が形成される。
ステップS15:次に、第1接続電極a12および第2接続電極a13を形成すべき位置に貫通孔を有するポリイミド膜a23をマスクとしてパッシベーション膜a22のエッチングが行われる。それによって、配線膜a21を第1接続電極a12の領域および第2接続電極a13の領域において露出させるパッド開口が形成される。パッシベーション膜a22のエッチングは、反応性イオンエッチング(RIE)によって行われてもよい。
ステップS18:その後、ウエハ表面に配列形成された多数個(たとえば50万個)の各チップ抵抗器を個々のチップ抵抗器a10に分離するために、フォトリソグラフィによって第3のレジストパターンが形成される。レジスト膜はウエハの表面において、たとえば図36における各チップ抵抗器a10を保護すべく設けられ、各チップ抵抗器a10間がエッチングされるように形成される。
ステップS20:そして、たとえば図35(A)に示すように、表面に保護テープa100が貼着される。
ステップS22:そして、図35(C)に示すように、裏面側にキャリアテープ(熱発泡シート)a200が貼られて、個々のチップ抵抗器に分離された多数個のチップ抵抗器a10は、キャリアテープa200上に配列された状態で保持される。一方で、表面に貼着された保護テープは取り除かれる(図35(D))。
図37は、第1参考例のチップ抵抗器が用いられる電子機器の一例であるスマートフォンの外観を示す斜視図である。スマートフォンa201は、扁平な直方体形状の筐体a202の内部に電子部品を収納して構成されている。筐体a202は表側および裏側に長方形状の一対の主面を有しており、その一対の主面が4つの側面で結合されている。筐体a202の一つの主面には、液晶パネルや有機ELパネル等で構成された表示パネルa203の表示面が露出している。表示パネルa203の表示面は、タッチパネルを構成しており、使用者に対する入力インターフェースを提供している。
ワンセグTV受信ICa213は、ワンセグ放送(携帯機器を受信対象とする地上デジタルテレビ放送)の電波を受信するための受信機を構成する電子回路を内蔵している。ワンセグTV受信ICa213の近傍には、複数のチップインダクタa221と、複数のチップ抵抗器a222とが配置されている。ワンセグTV受信ICa213、チップインダクタa221およびチップ抵抗器a222は、ワンセグ放送受信回路a223を構成している。チップインダクタa221およびチップ抵抗器a222は、正確に合わせ込まれたインダクタンスおよび抵抗をそれぞれ有し、ワンセグ放送受信回路a223に高精度な回路定数を与える。
FMチューナICa215は、その近傍において配線基板a211に実装された複数のチップ抵抗器a224および複数のチップインダクタa225とともに、FM放送受信回路a226を構成している。チップ抵抗器a224およびチップインダクタa225は、正確に合わせ込まれた抵抗値およびインダクタンスをそれぞれ有し、FM放送受信回路a226に高精度な回路定数を与える。
電源ICa219の近くには、複数のチップキャパシタa230および複数のチップダイオードa231が配線基板a211の実装面に実装されている。電源ICa219は、チップキャパシタa230およびチップダイオードa231とともに、電源回路a232を構成している。
また、スマートフォンa201の位置情報が必要とされるときには、マイクロコンピュータa218は、GPS受信ICa214が出力する位置情報を取得し、その位置情報を用いた演算処理を実行する。
フラッシュメモリa217は、通信によって取得したデータの記憶や、マイクロコンピュータa218の演算や、タッチパネルからの入力によって作成されたデータを記憶するために用いられる。マイクロコンピュータa218は、必要に応じて、フラッシュメモリa217に対してデータを書き込み、またフラッシュメモリa217からデータを読み出す。
<第2参考例に係る発明>
(1)第2参考例に係る発明の特徴
たとえば、第2参考例に係る発明の特徴は、以下のB1〜B16である。
(B1)基板と、前記基板上に形成された第1電極および第2電極と、基板上に形成され正の抵抗温度係数を有する第1材料からなる第1抵抗体膜、および前記第1抵抗体膜に接するように積層された第1配線膜を有する複数の第1抵抗体を含む第1抵抗回路網と、基板上に形成され負の抵抗温度係数を有する第2材料からなる第2抵抗体膜、および前記第2抵抗体膜に接するように積層された第2配線膜を有する複数の第2抵抗体を含み、前記第1抵抗回路網に接続された第2抵抗回路網と、前記第1電極に前記複数の第1抵抗体をそれぞれ接続する切断可能な複数の第1ヒューズと、前記第2電極に前記複数の第2抵抗体をそれぞれ接続する切断可能な複数の第2ヒューズとを含む、チップ抵抗器。
(B2)前記第1抵抗体膜が、抵抗温度係数が正の値となるように酸素の組成比を制御したTiONまたはTiONSiからなり、前記第2抵抗体膜が、抵抗温度係数が負の値となるように酸素の組成比を制御したTiONまたはTiONSiからなる、B1に記載のチップ抵抗器。
(B3)抵抗温度係数の絶対値が300ppm/℃以下であるB1または2に記載のチップ抵抗器。
(B4)前記第1抵抗回路網および前記第2抵抗回路網を接続する第3電極をさらに含む、B1〜B3のいずれか一項に記載のチップ抵抗器。
この構成によれば、第1電極と第3電極との間で第1抵抗回路網全体の抵抗値を測定し、第2電極と第3電極との間で第2抵抗回路網全体の抵抗値を測定することができる。これにより、チップ抵抗器全体の要求抵抗値に基づいて、第1抵抗回路網および第2抵抗回路網のそれぞれでトリミングの対象となる抵抗値を算出し、当該抵抗値を得るために切断すべき第1ヒューズおよび第2ヒューズを選択することができる。
(B5)前記第1電極および前記第2電極を露出させ、前記第1抵抗回路網、前記第2抵抗回路網および前記第3電極を覆う保護膜をさらに含む、B4に記載のチップ抵抗器。
(B6)前記複数の第1ヒューズおよび前記複数の第2ヒューズの少なくとも一つが切断されており、当該切断されたヒューズの切断面が前記保護膜によって覆われている、B5に記載のチップ抵抗器。
(B7)前記保護膜が、SiNからなってもよい。
(B8)前記保護膜を覆う樹脂膜をさらに含む、B5〜B7のいずれか一項に記載のチップ抵抗器。
(B9)前記樹脂膜が、ポリイミドからなってもよい。
(B10)前記樹脂膜が、前記第1電極および前記第2電極を露出させるように形成されている、B8またはB9に記載のチップ抵抗器。
(B11)前記第1配線膜および前記第2配線膜が、Alからなってもよい。
(B12)前記第1ヒューズおよび前記第2ヒューズが、Alからなってもよい。
(B13)前記第1電極および前記第2電極のそれぞれが、Ni層と、Au層とを含み、前記Au層が最表面に露出している、B1〜B12のいずれか一項に記載のチップ抵抗器。
(B14)前記第1電極および前記第2電極のそれぞれが、前記Ni層と前記Au層との間に介装されたPd層をさらに含む、B13に記載のチップ抵抗器。
この構成によれば、電極では、Au層を薄くすることによってAu層に貫通孔(ピンホール)ができてしまっても、Ni層とAu層との間に介装されたPd層が当該貫通孔を塞いでいるので、当該貫通孔からNi層が外部に露出されて酸化することを防止できる。
(B15)回路アセンブリは、以上のようなチップ抵抗器を備えることが好ましい。
(B16)電子機器は、以上のようなチップ抵抗器を備えることが好ましい。
(2)第2参考例に係る発明の実施形態
以下では、第2参考例の実施の形態を、添付図面を参照して詳細に説明する。なお、図39〜図54で示した符号は、これらの図面でのみ有効であり、他の実施形態に使用されていても、当該他の実施形態の符号と同じ要素を示すものではない。
このチップ抵抗器b1は、微小なチップ部品であり、図39(a)に示すように、直方体形状をなしている。チップ抵抗器b1の平面形状は、直交する二辺(長辺b81、短辺b82)がそれぞれ0.4mm以下、0.2mm以下の矩形である。好ましくは、チップ抵抗器b1の寸法に関し、長さL(長辺b81の長さ)が約0.3mmであり、幅W(短辺b82の長さ)が約0.15mmであり、厚さTが約0.1mmである。
チップ抵抗器b1は、チップ抵抗器b1の本体を構成する基板b2と、一対の外部接続電極となる第1電極b3および第2電極b4と、第1電極b3および第2電極b4によって外部接続される素子b5とを主に備えている。
側面b2Cは、表面b2Aおよび裏面b2Bにおける長手方向一方側(図39(a)における左手前側)の短辺b82間に架設されていて、側面b2Dは、表面b2Aおよび裏面b2Bにおける長手方向他方側(図39(a)における右奥側)の短辺b82間に架設されている。側面b2Cおよび側面b2Dは、当該長手方向における基板b2の両端面である。側面b2Eは、表面b2Aおよび裏面b2Bにおける短手方向一方側(図39(a)における左奥側)の長辺b81間に架設されていて、側面b2Fは、表面b2Aおよび裏面b2Bにおける短手方向他方側(図39(a)における右手前側)の長辺b81間に架設されている。側面b2Eおよび側面b2Fは、当該短手方向における基板b2の両端面である。側面b2Cおよび側面b2Dのそれぞれは、側面b2Eおよび側面b2Fのそれぞれと交差(詳しくは、直交)している。そのため、表面b2A〜側面b2Fにおいて隣り合うもの同士が直角を成している。
図39(b)は、チップ抵抗器が実装基板に実装された状態の回路アセンブリをチップ抵抗器の長手方向に沿って切断したときの模式的な断面図である。なお、図39(b)では、要部のみを断面で示している。
そして、チップ抵抗器b1を吸着した吸着ノズルb91を実装基板b9まで移動させる。このとき、チップ抵抗器b1の表面b2Aと実装基板b9の実装面b9Aとが互いに対向する。この状態で、吸着ノズルb91を移動させて実装基板b9に押し付け、チップ抵抗器b1において、第1電極b3を一方のランドb88の半田b13に接触させ、第2電極b4を他方のランドb88の半田b13に接触させる。次いで、半田b13を加熱すると、半田b13が溶融する。その後、半田b13が冷却されて固まると、第1電極b3と当該一方のランドb88とが半田b13を介して接合し、第2電極b4と当該他方のランドb88とが半田b13を介して接合する。つまり、2つのランドb88のそれぞれが、第1電極b3および第2電極b4において対応する電極に半田接合される。これにより、実装基板b9へのチップ抵抗器b1の実装(フリップチップ接続)が完了して、回路アセンブリb100が完成する。なお、外部接続電極として機能する第1電極b3および第2電極b4は、半田濡れ性の向上および信頼性の向上のために、金(Au)で形成するか、または、後述するように表面に金メッキを施すことが望ましい。
図40は、チップ抵抗器の平面図であり、第1電極、第2電極、第3電極および素子の配置関係ならびに素子の平面視の構成(レイアウトパターン)を示す図である。なお、説明の便宜上、図40では、チップ抵抗器b1の長さLと幅Wとの比率が、図39の場合と異なっている。
図41A、図41Bおよび図41Cを参照して、抵抗体Rの構成について説明をする。
絶縁層b20は、SiO2(酸化シリコン)からなる。絶縁層b20は、基板b2の表面b2Aの全域を覆っている。絶縁層b20の厚さは、約10000Åである。
抵抗体膜b21は、TiN、TiONまたはTiONSiにより形成されている。抵抗体膜b21の厚さは、約2000Åである。抵抗体膜b21は、第1電極b3と第3電極b6との間や第2電極b4と第3電極b6との間を平行に直線状に延びる複数本の抵抗体膜(以下「抵抗体膜ラインb21L」という)を構成していて、抵抗体膜ラインb21Lは、ライン方向に所定の位置で切断されている場合がある(図41A参照)。
そして、配線膜b22が積層された領域では、配線膜b22が隣り合う抵抗体R同士を電気的に接続することによって、当該配線膜b22で抵抗体膜ラインb21Lが短絡されている。よって、図42(b)に示す抵抗rの抵抗体Rの直列接続からなる抵抗回路が形成されている。
図43(a)は、図40に示すチップ抵抗器の平面図の一部分を拡大して描いたヒューズを含む領域の部分拡大平面図であり、図43(b)は、図43(a)のB−Bに沿う断面構造を示す図である。
また、ヒューズFは、導体膜Dと同一のレイヤーを用いる場合のみを説明したが、導体膜Dでは、その上に更に別の導体膜を積層するようにし、導体膜D全体の抵抗値を下げるようにしてもよい。なお、この場合であっても、ヒューズFの上に導体膜を積層しなければ、ヒューズFの溶断性が悪くなることはない。
また、図43では、一例として、図43(a)のB−B上に位置する第2ヒューズF2が切断された状態を示している。図43(b)に示すように、切断された第2ヒューズF2の切断箇所には、パッシベーション膜b23が入り込んでいて、第2ヒューズF2の切断面FMは、パッシベーション膜b23によって覆われている。
図44を参照して、素子b5における第1抵抗回路網b31および第2抵抗回路網b32のそれぞれは、基準抵抗回路R8と、抵抗回路R64、2つの抵抗回路R32、抵抗回路R16、抵抗回路R8、抵抗回路R4、抵抗回路R2、抵抗回路R1、抵抗回路R/2、抵抗回路R/4、抵抗回路R/8、抵抗回路R/16、抵抗回路R/32とを第1電極b3または第2電極b4からこの順番で直列接続することによって構成されている。基準抵抗回路R8および抵抗回路R64〜R2のそれぞれは、自身の末尾の数(R64の場合には「64」)と同数の抵抗体Rを直列接続することで構成されている。抵抗回路R1は、1つの抵抗体Rで構成されている。抵抗回路R/2〜R/32のそれぞれは、自身の末尾の数(R/32の場合には「32」)と同数の抵抗体Rを並列接続することで構成されている。抵抗回路の末尾の数の意味については、後述する図45および図46においても同じである。
図44に示すように全てのヒューズFが溶断されていない状態では、第1抵抗回路網b31および第2抵抗回路網b32は、第1電極b3および第3電極b6間に設けられた基準抵抗回路R8(8個の抵抗体Rの直列接続からなる)と第2電極b4および第3電極b6間に設けられた別の基準抵抗回路R8とを直列接続した抵抗回路を構成している。たとえば、1個の抵抗体Rの抵抗値rをr=8Ωとすれば、8r=64Ωの抵抗回路(基準抵抗回路R8)を2つ直列接続したものにより第1電極b3および第2電極b4が接続されたチップ抵抗器b1が構成されている。
図44に示すように基準抵抗回路R8および抵抗回路R64〜抵抗回路R/32を直列接続して第1抵抗回路網b31および第2抵抗回路網b32のそれぞれを構成する代わりに、図45に示すように第1抵抗回路網b31および第2抵抗回路網b32のそれぞれを構成しても構わない。詳しくは、第1電極b3または第2電極b4と第3電極b6との間で、基準抵抗回路R/16と、12種類の抵抗回路R/16、R/8、R/4、R/2、R1、R2、R4、R8、R16、R32、R64、R128の並列接続回路との直列接続回路によって第1抵抗回路網b31および第2抵抗回路網b32のそれぞれを構成してもよい。
図46に示す素子b5の特徴は、複数種類の抵抗回路の直列接続と、複数種類の抵抗回路の並列接続とを直列に接続することで第1抵抗回路網b31および第2抵抗回路網b32のそれぞれが構成されていることである。第1抵抗回路網b31および第2抵抗回路網b32のそれぞれにおいて、直列接続される複数種類の抵抗回路には、先の実施形態と同様、抵抗回路毎に、並列にヒューズFが接続されていて、直列接続された複数種類の抵抗回路は、全てヒューズFで短絡状態とされている。従って、ヒューズFを溶断すると、その溶断されるヒューズFで短絡されていた抵抗回路が、素子b5に電気的に組み込まれることになる。
かかる構成とすれば、たとえば、1kΩ以下の小抵抗は並列接続側で作り、1kΩ以上の抵抗回路を直列接続側で作れば、数Ωの小抵抗から数MΩの大抵抗までの広範な範囲の抵抗回路を、等しい基本設計で構成した抵抗の回路網(第1抵抗回路網b31および第2抵抗回路網b32)を用いて作ることができる。つまりチップ抵抗器b1では、一つまたは複数のヒューズFを選択して切断することにより、複数種類の抵抗値に、容易にかつ速やかに対応することができる。換言すれば、抵抗値の異なる複数の抵抗体Rを組み合わせることによって、様々な抵抗値のチップ抵抗器b1を共通の設計で実現することができる。
図47は、チップ抵抗器の模式的な断面図である。
次に、図47を参照して、チップ抵抗器b1についてさらに詳しく説明する。なお、説明の便宜上、図47では、前述した素子b5については簡略化して示しているとともに、基板b2以外の各要素にはハッチングを付している。
パッシベーション膜b23は、たとえばSiN(窒化シリコン)からなり、その厚さは、1000Å〜5000Å(ここでは、約3000Å)である。パッシベーション膜b23は、表面b2Aおよび側面b2C〜b2Fのそれぞれにおける全域に亘って設けられている。表面b2A上のパッシベーション膜b23は、抵抗体膜b21および抵抗体膜b21上の各配線膜b22(つまり、素子b5であって第1抵抗回路網b31および第2抵抗回路網b32の両方)を表面(図47の上側)から被覆していて、素子b5における各抵抗体Rの上面を覆っている。そのため、パッシベーション膜b23は、前述したトリミング対象領域Xにおける配線膜b22(ヒューズF)も覆っている(図43(b)参照)。また、パッシベーション膜b23は、素子b5(配線膜b22および抵抗体膜b21)に接しており、抵抗体膜b21以外の領域では絶縁層b20にも接している。これにより、表面b2A上のパッシベーション膜b23は、素子b5(第1抵抗回路網b31および第2抵抗回路網b32)、ヒューズF、第3電極b6および絶縁層b20の上から表面b2A全域を覆っている。そのため、パッシベーション膜b23によって、第1抵抗回路網b31、第2抵抗回路網b32および第3電極b6を保護することができる。また、表面b2Aでは、パッシベーション膜b23によって、抵抗体R間における配線膜b22以外での短絡(隣り合う抵抗体膜ラインb21L間における短絡)が防止されている。
樹脂膜b24は、表面b2A上のパッシベーション膜b23上に形成されていて、パッシベーション膜b23の表面(パッシベーション膜b23に被覆された抵抗体膜b21および配線膜b22も含む)の全域を被覆している。そのため、パッシベーション膜b23および樹脂膜b24によって、第1抵抗回路網b31、第2抵抗回路網b32および第3電極b6を二重に保護することができる。樹脂膜b24の周縁部は、平面視において、パッシベーション膜b23の端部b23A(表面b2Aの周縁部b85)と一致している。
ここで、第1電極b3および第2電極b4のそれぞれは、Ni層b33、Pd層b34およびAu層b35を表面b2A側からこの順で有している。そのため、第1電極b3および第2電極b4のそれぞれにおいて、Ni層b33とAu層b35との間にPd層b34が介装されている。第1電極b3および第2電極b4のそれぞれにおいて、Ni層b33は各接続電極の大部分を占めており、Pd層b34およびAu層b35は、Ni層b33に比べて格段に薄く形成されている。Ni層b33は、チップ抵抗器b1が実装基板b9に実装された際に(図39(b)参照)、各開口b25のパッド領域b22Pにおける配線膜b22のAlと、前述した半田b13とを中継する役割を有している。
図48A〜図48Mは、図47に示すチップ抵抗器の製造方法を示す図解的な断面図である。
そして、基板b30の表面b30Aを熱酸化して、表面b30AにSiO2等からなる絶縁層b20を形成する。
次いで、スパッタリングにより、TiONまたはTiONSiの第1抵抗体膜b21Aを形成する。第1抵抗体膜b21Aは、レジストパターンb36が形成されている領域では、レジストパターンb36上に形成され、レジストパターンb36が形成されていない領域では、絶縁層b20上に形成される。ここでのスパッタリングは、酸素および窒素を流しながら行われる。この際、Tiのターゲットに対して窒素や酸素が衝突することで、Tiの原子がターゲットから弾き飛ばされる。Tiの原子と窒素原子や酸素原子が結合することによって、TiONが生成され、第1抵抗体膜b21Aとなって絶縁層b20上やレジストパターンb36上に付着する。この際、絶縁層b20に付着したTiONと、絶縁層b20下の基板b30(ここでは、Siからなるシリコン基板)のSiとが結合すると、絶縁層b20上には、TiONSiからなる第1抵抗体膜b21Aが形成される。
その後、レジストパターンb36とともに、レジストパターンb36上の第1抵抗体膜b21Aおよび第1配線膜b22Aをリフトオフ(除去)する。これにより、第1抵抗回路網b31が形成される予定の領域だけに、第1抵抗体膜b21Aおよび第1配線膜b22Aが残る。
次いで、スパッタリングにより、TiONまたはTiONSiの第2抵抗体膜b21Bを形成する。第2抵抗体膜b21Bは、レジストパターンb37が形成されている領域では、レジストパターンb37上に形成され、レジストパターンb37が形成されていない領域では、絶縁層b20上に形成される。ここでのスパッタリングは、第1抵抗体膜b21Aを形成する場合のスパッタリングと同様である。そして、ここでのスパッタリングでは、第1抵抗体膜b21Aを形成する場合のスパッタリングと同様に、酸素流量が調整される。ただし、ここでのスパッタリングの際、第1抵抗体膜b21Aを形成する場合のスパッタリングとは異なり、完成した第2抵抗体膜b21Bの抵抗温度係数が負の値(好ましくは−300ppm/℃以上の負の値)となるように、酸素流量が(増えるように)調整される。これにより、完成した第2抵抗体膜b21Bは、抵抗温度係数が負の値となるよう酸素の組成比が制御されたTiONまたはTiONSi(第2材料)からなる。
そして、このように第2抵抗体膜b21Bを形成した後、別のスパッタリングによって、第2抵抗体膜b21Bに接するように第2抵抗体膜b21Bの上にアルミニウム(Al)の第2配線膜b22Bを積層する。
その後、フォトリソグラフィプロセスを用い、たとえばRIE等のドライエッチングによって、図48Dに示すように、第2抵抗体膜b21Bおよび第2配線膜b22Bを選択的に除去してパターニングする。これにより、平面視で、第2抵抗回路網b32が形成される予定の領域だけに、第2抵抗体膜b21Bが積層された一定幅の抵抗体膜ラインb21L(図41A参照)が一定間隔をあけて列方向に配列される構成を得る。このとき、部分的に抵抗体膜ラインb21Lおよび配線膜b22が切断された領域も形成されるとともに、前述したトリミング対象領域XにおいてヒューズFおよび導体膜Dが形成される(図40参照)。
図49は、図48Hの工程において溝を形成するために用いられるレジストパターンの一部の模式的な平面図である。
図48Hを参照して、レジストパターンb41をマスクとするプラズマエッチングにより、絶縁膜b45、絶縁層b20および基板b30のそれぞれを選択的に除去する。これにより、隣り合う素子b5(チップ部品領域Y)の間の境界領域Zにおいて基板b30の材料が除去される。その結果、平面視においてレジストパターンb41の開口b42と一致する位置(境界領域Z)には、絶縁膜b45および絶縁層b20を貫通して基板b30の表面b30Aから基板b30の厚さ途中まで到達する所定深さの溝b44が形成される。溝b44は、互いに対向する1対の側壁b44Aと、当該1対の側壁b44Aの下端(基板b30の裏面b30B側の端)の間を結ぶ底壁b44Bとによって区画されている。基板b30の表面b30Aを基準とした溝b44の深さは約100μmであり、溝b44の幅(対向する側壁b44Aの間隔)は約20μmであって、深さ方向全域に渡って一定である。
次に、図50および図51を参照して、トリミングの手順の詳細について説明する。図50および図51のそれぞれにおいて、RAは、第1抵抗回路網b31全体の当初(トリミング前)の抵抗値であり、RBは、第2抵抗回路網b32全体の当初(トリミング前)の抵抗値である。Raは、チップ抵抗器b1全体の要求抵抗値Rに基づいて第1抵抗回路網b31においてトリミングによって変化(詳しくは、増加)させるべき抵抗値(第1抵抗回路網b31においてトリミングの対象とすべき第1抵抗体R1の合計抵抗値)である。Rbは、前記要求抵抗値Rに基づいて第2抵抗回路網b32おいてトリミングによって変化(詳しくは、増加)させるべき抵抗値(第2抵抗回路網b32においてトリミングの対象とすべき第2抵抗体R2の合計抵抗値)である。また、TCRAは、第1抵抗回路網b31を構成する第1抵抗体膜b21Aに固有の抵抗温度係数であり、TCRBは、第2抵抗回路網b32を構成する第2抵抗体膜b21Bに固有の抵抗温度係数である。
要求抵抗値R=RA+Ra+RB+Rb…式(1)
一例として、チップ抵抗器b1全体の要求抵抗値Rをいずれの温度においても2000Ωとし、チップ抵抗器b1全体の抵抗温度係数TCRを0ppm/℃に合わせ込む場合を考える。抵抗温度係数TCRを0ppm/℃に合わせ込むと、たとえば、常温(25℃)におけるチップ抵抗器b1全体の抵抗値R25と、125℃におけるチップ抵抗器b1全体の抵抗値R125とは、いずれも2000Ωとなる。よって、TCR=0ppm/℃となり、R25=R125=2000ΩとなるようにRaおよびRbを算出して、算出後のRaおよびRbが発生するようにトリミングすればよい。
TCRA=(RA125−RA25)/(RA25・Δtemp)
=(Ra125−Ra25)/(Ra25・Δtemp)…式(2)
TCRB=(RB125−RB25)/(RB25・Δtemp)
=(Rb125−Rb25)/(Rb25・Δtemp)…式(3)
ここで、上記式(2)および式(3)において、Δtemp=100℃(=125℃−25℃)である。
次に、RaおよびRbを式(1)〜式(3)に基づいて算出する。
ここで、25℃の温度条件を加味して、25℃における要求抵抗値RをR25と表すと、式(1)は、次の式(4)として表すことができる。
また、125℃の温度条件を加味して、125℃における要求抵抗値RをR125と表すと、式(1)は、次の式(5)として表すことができる。
R125=RA125+Ra125+RB125+Rb125…式(5)
ここで、式(2)より、以下の式(6)および式(7)が得られ、式(6)および式(7)を合わせると、式(8)が得られる。また、式(3)より、以下の式(9)および式(10)が得られ、式(9)および式(10)を合わせると、式(11)が得られる。
Ra125=Ra25・Δtemp・TCRA+Ra25…式(7)
RA125+Ra125=TCRA・(RA25+Ra25)・Δtemp+(RA25+Ra25)
…式(8)
RB125=RB25・Δtemp・TCRB+RB25…式(9)
Rb125=Rb25・Δtemp・TCRB+Rb25…式(10)
RB125+Rb125=TCRB・(RB25+Rb25)・Δtemp+(RB25+Rb25)
…式(11)
また、式(5)に式(8)および式(11)を代入すると、次の式(12)が得られる。
=TCRA・(RA25+Ra25)・Δtemp+(RA25+Ra25)
+TCRB・(RB25+Rb25)・Δtemp+(RB25+Rb25)…式(12)
そして、式(4)および式(12)からなる連立方程式に、先程得られたTCRA(=500ppm/℃)、TCRB(=−400ppm/℃)、RA25(=800.0Ω)、RB25(=700.0Ω)およびΔtemp(=100℃)を代入して、Ra25およびRb25を算出する。ここで、前提として、R25=R125(=2000Ω)である。
そして、常温の第1抵抗回路網b31において88.9ΩのRa25が発生するように、1つまたは複数の第1ヒューズF1(88.9ΩのRa25を発生させるのにトリミングする必要がある第1ヒューズF1)を選択する。同様に、常温の第2抵抗回路網b32において411.1Ω分のRb25が発生するように、1つまたは複数の第2ヒューズF2(411.1ΩのRb25を発生させるのにトリミングする必要がある第2ヒューズF2)を選択する。
図48Iに戻り、ここでのトリミングの際、絶縁膜b45が素子b5を覆うカバー膜となっているので、溶断の際に生じた破片などが素子b5に付着して短絡が生じることを防止できる。また、絶縁膜b45がヒューズF(抵抗体膜b21)を覆っていることから、レーザ光のエネルギーをヒューズFに蓄えてヒューズFを確実に溶断することができる。
次いで、樹脂膜b46に熱処理(キュア処理)を施す。これにより、樹脂膜b46の厚みが熱収縮するとともに、樹脂膜b46が硬化して膜質が安定する。
図52は、第1電極および第2電極の製造工程を説明するための図である。
次いで、Ni層b33を別のめっき液に浸けることによって、当該Ni層b33の表面にPdめっきが施される。これにより、めっき液中のPdが化学的に還元析出されて、当該Ni層b33の表面にPd層b34が形成される(ステップS6)。
以上のように、第1電極b3および第2電極b4を無電解めっきによって形成するので、第1電極b3および第2電極b4を電解めっきによって形成する場合に比べて、第1電極b3および第2電極b4についての形成工程の工程数(たとえば、電解めっきで必要となるリソグラフィ工程やレジストマスクの剥離工程等)を削減してチップ抵抗器b1の生産性を向上できる。さらに、無電解めっきの場合には、電解めっきで必要とされるレジストマスクが不要であることから、レジストマスクの位置ずれによる第1電極b3および第2電極b4についての形成位置にずれが生じないので、第1電極b3および第2電極b4の形成位置精度を向上して歩留まりを向上できる。
具体的には、溝b44を形成した後に、図48Mに示すように、PET(ポリエチレンテレフタレート)からなる薄板状であって粘着面b72を有する支持テープb71が、粘着面b72において、各半製品b50における第1電極b3および第2電極b4側(つまり、表面b30A)に貼着される。これにより、各半製品b50が支持テープb71に支持される。ここで、支持テープb71として、たとえば、ラミネートテープを用いることができる。
以上のように、このチップ抵抗器b1では、一つまたは複数の第1ヒューズF1を選択して切断することにより、任意の第1抵抗体R1を第1抵抗回路網b31から切り離したり、第1抵抗回路網b31に組み込んだりすることができる。同様に、一つまたは複数の第2ヒューズF2を選択して切断することにより、任意の第2抵抗体R2を第2抵抗回路網b32から切り離したり、第2抵抗回路網b32に組み込んだりすることができる。このようにすることで、チップ抵抗器b1全体の抵抗値を任意の値に調整できるので、チップ抵抗器b1では、複数種類の抵抗値に、容易にかつ速やかに対応することができる。つまり、このチップ抵抗器b1では、同一設計構造で複数種類の要求抵抗値に容易に対応できる。また、チップ抵抗器b1においてこのように調整された抵抗値では、その許容差の絶対値が1%以下になっていて、精度が高くなっている。
たとえば、前述の実施形態では、チップ抵抗器b1の場合、複数の抵抗回路が公比r(0<r、r≠1)=2の等比数列をなす抵抗値を有する複数の抵抗回路を有している例を示したが、当該等比数列の公比は2以外の数であってもよい。
また、前述した第1電極b3および第2電極b4において、Ni層b33とAu層b35との間に介装されていたPd層b34を省略することもできる。Ni層b33とAu層b35との接着性が良好なので、Au層b35に前述したピンホールができないのであれば、Pd層b34を省略しても構わない。
ワンセグTV受信ICb213は、ワンセグ放送(携帯機器を受信対象とする地上デジタルテレビ放送)の電波を受信するための受信機を構成する電子回路を内蔵している。ワンセグTV受信ICb213の近傍には、複数のチップインダクタb221と、複数のチップ抵抗器b222とが配置されている。ワンセグTV受信ICb213、チップインダクタb221およびチップ抵抗器b222は、ワンセグ放送受信回路b223を構成している。チップインダクタb221およびチップ抵抗器b222は、正確に合わせ込まれたインダクタンスおよび抵抗をそれぞれ有し、ワンセグ放送受信回路b223に高精度な回路定数を与える。
FMチューナICb215は、その近傍において実装基板b9に実装された複数のチップ抵抗器b224および複数のチップインダクタb225とともに、FM放送受信回路b226を構成している。チップ抵抗器b224およびチップインダクタb225は、正確に合わせ込まれた抵抗値およびインダクタンスをそれぞれ有し、FM放送受信回路b226に高精度な回路定数を与える。
フラッシュメモリb217は、オペレーティングシステムプログラム、スマートフォンb201の内部で生成されたデータ、通信機能によって外部から取得したデータおよびプログラムなどを記録するための記憶装置である。
電源ICb219の近くには、複数のチップキャパシタb230および複数のチップダイオードb231が実装基板b9の実装面に実装されている。電源ICb219は、チップキャパシタb230およびチップダイオードb231とともに、電源回路b232を構成している。
また、スマートフォンb201の位置情報が必要とされるときには、マイクロコンピュータb218は、GPS受信ICb214が出力する位置情報を取得し、その位置情報を用いた演算処理を実行する。
フラッシュメモリb217は、通信によって取得したデータの記憶や、マイクロコンピュータb218の演算や、タッチパネルからの入力によって作成されたデータを記憶するために用いられる。マイクロコンピュータb218は、必要に応じて、フラッシュメモリb217に対してデータを書き込み、またフラッシュメモリb217からデータを読み出す。
<第3参考例に係る発明>
(1)第3参考例に係る発明の特徴
たとえば、第3参考例に係る発明の特徴は、以下のC1〜C17である。
(C1)基板と、前記基板上に形成された一対の電極と、基板上に形成され抵抗温度係数の絶対値が200ppm/℃以上の材料からなる抵抗体膜、および前記抵抗体膜に接するように積層された配線膜によって構成され、前記一対の電極の間に形成された複数の抵抗体と、前記一対の電極の間に前記複数の抵抗体をそれぞれ接続する切断可能な複数のヒューズとを含む、チップ抵抗器。
(C2)前記チップ抵抗器が、温度センサである、C1に記載のチップ抵抗器。
(C3)前記抵抗体膜が、抵抗温度係数の絶対値が200ppm/℃以上となるように酸素の組成比を制御したTiONまたはTiONSiからなる、C1またはC2に記載のチップ抵抗器。
この構成によれば、酸素の組成比を制御したTiONまたはTiONSiによって、抵抗温度係数の絶対値が200ppm/℃以上となる抵抗体膜を構成することができる。
(C4)前記抵抗体膜が、TiON、TiONSi、Pt、Ni、およびCuのうちの1種以上を含むものであってもよい。
(C5)前記ヒューズが、Alからなることが好ましい。
(C6)前記基板上に設けられ、前記抵抗体およびヒューズの上から前記基板の表面を覆うパッシベーション膜をさらに含む、C1〜C5のいずれか一項に記載のチップ抵抗器。
(C7)前記電極を露出させた状態で前記パッシベーション膜上に形成される保護樹脂膜をさらに含む、C6に記載のチップ抵抗器。
この構成によれば、パッシベーション膜および保護樹脂膜によって、基板の表面、抵抗体およびヒューズを二重に保護することができる。
(C8)抵抗温度係数の絶対値が200ppm/℃以上の材料からなる抵抗体膜を基板上に形成する工程と、前記抵抗体膜上に配線膜を形成する工程と、前記配線膜および前記抵抗体膜をエッチングによってパターニングすることにより、複数の抵抗体、および前記複数の抵抗体をそれぞれ切り離し可能な複数のヒューズを形成するエッチング工程と、前記複数の抵抗体の全抵抗値を測定する工程と、前記測定された全抵抗値に基づいて、前記複数のヒューズのなかから切断すべきヒューズを選択する工程と、前記選択されたヒューズを切断する工程とを含む、チップ抵抗器の製造方法。
(C9)前記チップ抵抗器が、温度センサである、C8に記載のチップ抵抗器の製造方法。
(C10)前記抵抗体膜を形成する工程が、前記チップ抵抗器の抵抗温度係数の絶対値が200ppm/℃以上となるように酸素の組成比を制御しながらTiONまたはTiONSiからなる抵抗体膜を形成する工程を含む、C8またはC9に記載のチップ抵抗器の製造方法。
(C11)前記抵抗体膜を形成する工程が、TiON、TiONSi、Pt、Ni、およびCuのうちの1種以上を含む抵抗体膜を形成する工程を含んでいてもよい。
(C12)前記エッチングが、反応性イオンエッチングを含む、C8〜C11のいずれか一項に記載のチップ抵抗器の製造方法。
(C13)前記ヒューズが、Alからなることが好ましい。
(C14)前記抵抗体およびヒューズの上から前記基板の表面を覆うパッシベーション膜を前記基板上に形成する工程をさらに含む、C8〜C13のいずれか一項に記載のチップ抵抗器の製造方法。
(C15)前記電極を露出させるように、前記パッシベーション膜上に保護樹脂膜を形成する工程をさらに含む、C14に記載のチップ抵抗器の製造方法。
この方法によれば、パッシベーション膜および保護樹脂膜によって、基板の表面、抵抗体およびヒューズを二重に保護することができる。
(C16)回路アセンブリは、以上のチップ抵抗器を備えていることが好ましい。
(C17)電子機器は、以上のチップ抵抗器を備えていることが好ましい。
(2)第3参考例に係る発明の実施形態
以下では、第3参考例の実施の形態を、添付図面を参照して詳細に説明する。なお、図55〜図70で示した符号は、これらの図面でのみ有効であり、他の実施形態に使用されていても、当該他の実施形態の符号と同じ要素を示すものではない。
このチップ抵抗器c1は、微小なチップ部品であり、図55(a)に示すように、直方体形状をなしている。チップ抵抗器c1の平面形状は、直交する二辺(長辺c81、短辺c82)がそれぞれ0.4mm以下、0.2mm以下の矩形である。好ましくは、チップ抵抗器c1の寸法に関し、長さL(長辺c81の長さ)が約0.3mmであり、幅W(短辺c82の長さ)が約0.15mmであり、厚さTが約0.1mmである。
チップ抵抗器c1は、チップ抵抗器c1の本体を構成する基板c2と、一対の外部接続電極となる第1接続電極c3および第2接続電極c4と、第1接続電極c3および第2接続電極c4によって外部接続される素子c5とを主に備えている。
側面c2Cは、表面c2Aおよび裏面c2Bにおける長手方向一方側(図55(a)における左手前側)の短辺c82間に架設されていて、側面c2Dは、表面c2Aおよび裏面c2Bにおける長手方向他方側(図55(a)における右奥側)の短辺c82間に架設されている。側面c2Cおよび側面c2Dは、当該長手方向における基板c2の両端面である。側面c2Eは、表面c2Aおよび裏面c2Bにおける短手方向一方側(図55(a)における左奥側)の長辺c81間に架設されていて、側面c2Fは、表面c2Aおよび裏面c2Bにおける短手方向他方側(図55(a)における右手前側)の長辺c81間に架設されている。側面c2Eおよび側面c2Fは、当該短手方向における基板c2の両端面である。側面c2Cおよび側面c2Dのそれぞれは、側面c2Eおよび側面c2Fのそれぞれと交差(詳しくは、直交)している。そのため、表面c2A〜側面c2Fにおいて隣り合うもの同士が直角を成している。
図55(b)に示すように、チップ抵抗器c1は、実装基板c9に実装される。この状態におけるチップ抵抗器c1および実装基板c9は、回路アセンブリc100を構成している。図55(b)における実装基板c9の上面は、実装面c9Aである。実装面c9Aには、実装基板c9の内部回路(図示せず)に接続された一対(2つ)のランドc88が形成されている。各ランドc88は、たとえば、Cuからなる。各ランドc88の表面には、半田c13が当該表面から突出するように設けられている。
そして、チップ抵抗器c1を吸着した吸着ノズルc91を実装基板c9まで移動させる。このとき、チップ抵抗器c1の表面c2Aと実装基板c9の実装面c9Aとが互いに対向する。この状態で、吸着ノズルc91を移動させて実装基板c9に押し付け、チップ抵抗器c1において、第1接続電極c3を一方のランドc88の半田c13に接触させ、第2接続電極c4を他方のランドc88の半田c13に接触させる。次いで、半田c13を加熱すると、半田c13が溶融する。その後、半田c13が冷却されて固まると、第1接続電極c3と当該一方のランドc88とが半田c13を介して接合し、第2接続電極c4と当該他方のランドc88とが半田c13を介して接合する。つまり、2つのランドc88のそれぞれが、第1接続電極c3および第2接続電極c4において対応する電極に半田接合される。これにより、実装基板c9へのチップ抵抗器c1の実装(フリップチップ接続)が完了して、回路アセンブリc100が完成する。なお、外部接続電極として機能する第1接続電極c3および第2接続電極c4は、半田濡れ性の向上および信頼性の向上のために、金(Au)で形成するか、または、後述するように表面に金メッキを施すことが望ましい。
図56は、チップ抵抗器の平面図であり、第1接続電極、第2接続電極および素子の配置関係ならびに素子の平面視の構成(レイアウトパターン)を示す図である。
図56を参照して、素子c5は、抵抗回路網となっている。具体的に、素子c5は、行方向(基板c2の長手方向)に沿って配列された8個の抵抗体Rと、列方向(基板c2の幅方向)に沿って配列された44個の抵抗体Rとで構成された合計352個の抵抗体Rを有している。これらの抵抗体Rは、素子c5の抵抗回路網を構成する複数の素子要素である。
図57A、図57Bおよび図57Cを参照して、抵抗体Rの構成について説明をする。
絶縁層c20は、SiO2(酸化シリコン)からなる。絶縁層c20は、基板c2の表面c2Aの全域を覆っている。絶縁層c20の厚さは、約10000Åである。
そして、配線膜c22が積層された領域では、配線膜c22が隣り合う抵抗体R同士を電気的に接続することによって、当該配線膜c22で抵抗体膜ラインc21Aが短絡されている。よって、図58(b)に示す抵抗rの抵抗体Rの直列接続からなる抵抗回路が形成されている。
図59(a)は、図56に示すチップ抵抗器の平面図の一部分を拡大して描いたヒューズを含む領域の部分拡大平面図であり、図59(b)は、図59(a)のB−Bに沿う断面構造を示す図である。
また、ヒューズFは、導体膜Dと同一のレイヤーを用いる場合のみを説明したが、導体膜Dでは、その上に更に別の導体膜を積層するようにし、導体膜D全体の抵抗値を下げるようにしてもよい。なお、この場合であっても、ヒューズFの上に導体膜を積層しなければ、ヒューズFの溶断性が悪くなることはない。
図60を参照して、素子c5は、基準抵抗回路R8と、抵抗回路R64、2つの抵抗回路R32、抵抗回路R16、抵抗回路R8、抵抗回路R4、抵抗回路R2、抵抗回路R1、抵抗回路R/2、抵抗回路R/4、抵抗回路R/8、抵抗回路R/16、抵抗回路R/32とを第1接続電極c3からこの順番で直列接続することによって構成されている。基準抵抗回路R8および抵抗回路R64〜R2のそれぞれは、自身の末尾の数(R64の場合には「64」)と同数の抵抗体Rを直列接続することで構成されている。抵抗回路R1は、1つの抵抗体Rで構成されている。抵抗回路R/2〜R/32のそれぞれは、自身の末尾の数(R/32の場合には「32」)と同数の抵抗体Rを並列接続することで構成されている。抵抗回路の末尾の数の意味については、後述する図61および図62においても同じである。
図60に示すように全てのヒューズFが溶断されていない状態では、素子c5は、第1接続電極c3および第2接続電極c4間に設けられた8個の抵抗体Rの直列接続からなる基準抵抗回路R8の抵抗回路を構成している。たとえば、1個の抵抗体Rの抵抗値rをr=8Ωとすれば、8r=64Ωの抵抗回路(基準抵抗回路R8)により第1接続電極c3および第2接続電極c4が接続されたチップ抵抗器c1が構成されている。
図60に示すように基準抵抗回路R8および抵抗回路R64〜抵抗回路R/32を直列接続して素子c5を構成する代わりに、図61に示すように素子c5を構成してもかまわない。詳しくは、第1接続電極c3および第2接続電極c4の間で、基準抵抗回路R/16と、12種類の抵抗回路R/16、R/8、R/4、R/2、R1、R2、R4、R8、R16、R32、R64、R128の並列接続回路との直列接続回路によって素子c5を構成してもよい。
図62に示す素子c5の特徴は、複数種類の抵抗回路の直列接続と、複数種類の抵抗回路の並列接続とが直列に接続された回路構成となっていることである。直列接続される複数種類の抵抗回路には、先の実施形態と同様、抵抗回路毎に、並列にヒューズFが接続されていて、直列接続された複数種類の抵抗回路は、全てヒューズFで短絡状態とされている。従って、ヒューズFを溶断すると、その溶断されるヒューズFで短絡されていた抵抗回路が、素子c5に電気的に組み込まれることになる。
かかる構成とすれば、たとえば、1kΩ以下の小抵抗は並列接続側で作り、1kΩ以上の抵抗回路を直列接続側で作れば、数Ωの小抵抗から数MΩの大抵抗までの広範な範囲の抵抗回路を、等しい基本設計で構成した抵抗の回路網を用いて作ることができる。つまりチップ抵抗器c1では、一つまたは複数のヒューズFを選択して切断することにより、複数種類の抵抗値に、容易にかつ速やかに対応することができる。換言すれば、抵抗値の異なる複数の抵抗体Rを組み合わせることによって、様々な抵抗値のチップ抵抗器c1を共通の設計で実現することができる。
図63は、チップ抵抗器の模式的な断面図である。
次に、図63を参照して、チップ抵抗器c1についてさらに詳しく説明する。なお、説明の便宜上、図63では、前述した素子c5については簡略化して示しているとともに、基板c2以外の各要素にはハッチングを付している。
パッシベーション膜c23は、たとえばSiN(窒化シリコン)からなり、その厚さは、1000Å〜5000Å(ここでは、約3000Å)である。パッシベーション膜c23は、表面c2Aおよび側面c2C〜c2Fのそれぞれにおける全域に亘って設けられている。表面c2A上のパッシベーション膜c23は、抵抗体膜c21および抵抗体膜c21上の各配線膜c22(つまり、素子c5)を表面(図63の上側)から被覆していて、素子c5における各抵抗体Rの上面を覆っている。そのため、パッシベーション膜c23は、前述したトリミング対象領域Xにおける配線膜c22(ヒューズF)も覆っている(図59(b)参照)。また、パッシベーション膜c23は、素子c5(配線膜c22および抵抗体膜c21)に接しており、抵抗体膜c21以外の領域では絶縁層c20にも接している。これにより、表面c2A上のパッシベーション膜c23は、素子c5、ヒューズFおよび絶縁層c20の上から表面c2A全域を覆っている。そのため、パッシベーション膜c23によって、基板c2の表面c2A、抵抗体RおよびヒューズFを保護することができる。また、表面c2Aでは、パッシベーション膜c23によって、抵抗体R間における配線膜c22以外での短絡(隣り合う抵抗体膜ラインc21A間における短絡)が防止されている。
樹脂膜c24は、表面c2A上のパッシベーション膜c23上に形成されていて、パッシベーション膜c23の表面(パッシベーション膜c23に被覆された抵抗体膜c21および配線膜c22も含む)の全域を被覆している。そのため、パッシベーション膜c23および樹脂膜c24によって、基板c2の表面c2A、抵抗体RおよびヒューズFを二重に保護することができる。樹脂膜c24の周縁部は、平面視において、パッシベーション膜c23の端部c23A(表面c2Aの周縁部c85)と一致している。
ここで、第1接続電極c3および第2接続電極c4のそれぞれは、Ni層c33、Pd層c34およびAu層c35を表面c2A側からこの順で有している。そのため、第1接続電極c3および第2接続電極c4のそれぞれにおいて、Ni層c33とAu層c35との間にPd層c34が介装されている。第1接続電極c3および第2接続電極c4のそれぞれにおいて、Ni層c33は各接続電極の大部分を占めており、Pd層c34およびAu層c35は、Ni層c33に比べて格段に薄く形成されている。Ni層c33は、チップ抵抗器c1が実装基板c9に実装された際に(図55(b)参照)、各開口c25のパッド領域c22Aにおける配線膜c22のAlと、前述した半田c13とを中継する役割を有している。
まず、図64Aに示すように、基板c2の元となる基板c30を用意する。この場合、基板c30の表面c30Aは、基板c2の表面c2Aであり、基板c30の裏面c30Bは、基板c2の裏面c2Bである。
図65は、素子の製造工程を説明するための図である。
具体的には、図65を参照して、スパッタリングにより、絶縁層c20の上に、TiONまたはTiONSiの抵抗体膜c21を全面に形成する(ステップS1)。スパッタリングは、酸素および窒素を流しながら行われる。この際、Tiのターゲットに対して窒素や酸素が衝突することで、Tiの原子がターゲットから弾き飛ばされる。Tiの原子と窒素原子や酸素原子とが結合することによって、TiONが生成され、抵抗体膜c21となって絶縁層c20上に付着する。この際、絶縁層c20に付着したTiONと、絶縁層c20下の基板c30(ここでは、Siからなるシリコン基板)のSiとが結合すると、絶縁層c20上には、TiONSiからなる抵抗体膜c21が形成される。
図66は、素子の製造工程におけるスパッタリングでの酸素流量と完成した抵抗体膜の抵抗温度係数との関係を示すグラフである。
ここで、抵抗温度係数とは、抵抗体膜c21(抵抗体R)の温度特性の1つであり、抵抗体膜c21を構成する物質に専ら依存するものである。スパッタリング中の酸素流量を調整することによって、抵抗体膜c21を構成するTiONまたはTiONSiの組成を調整して抵抗温度係数を所望の値となるように制御することができる。
その後、フォトリソグラフィプロセスを用い、たとえばRIE(Reactive Ion Etching:反応性イオンエッチング)等のドライエッチングにより抵抗体膜c21および配線膜c22を選択的に除去してパターニングする(ステップS3)。これにより、図57Aに示すように、平面視で、抵抗体膜c21が積層された一定幅の抵抗体膜ラインc21Aが一定間隔をあけて列方向に配列される構成を得る。このとき、部分的に抵抗体膜ラインc21Aおよび配線膜c22が切断された領域も形成されるとともに、前述したトリミング対象領域XにおいてヒューズFおよび導体膜Dが形成される(図56参照)。ここで、ドライエッチングによって、抵抗体膜ラインc21A(換言すれば、複数の抵抗体Rとなる部分)およびヒューズFを高精度に形成することができる。
図67は、図64Bの工程において溝を形成するために用いられるレジストパターンの一部の模式的な平面図である。
図64Bを参照して、レジストパターンc41をマスクとするプラズマエッチングにより、絶縁膜c45、絶縁層c20および基板c30のそれぞれを選択的に除去する。これにより、隣り合う素子c5(チップ部品領域Y)の間の境界領域Zにおいて基板c30の材料が除去される。その結果、平面視においてレジストパターンc41の開口c42と一致する位置(境界領域Z)には、絶縁膜c45および絶縁層c20を貫通して基板c30の表面c30Aから基板c30の厚さ途中まで到達する所定深さの溝c44が形成される。溝c44は、互いに対向する1対の側壁c44Aと、当該1対の側壁c44Aの下端(基板c30の裏面c30B側の端)の間を結ぶ底壁c44Bとによって区画されている。基板c30の表面c30Aを基準とした溝c44の深さは約100μmであり、溝c44の幅(対向する側壁c44Aの間隔)は約20μmであって、深さ方向全域に渡って一定である。
次いで、樹脂膜c46に熱処理(キュア処理)を施す。これにより、樹脂膜c46の厚みが熱収縮するとともに、樹脂膜c46が硬化して膜質が安定する。
図68は、第1接続電極および第2接続電極の製造工程を説明するための図である。
次いで、Ni層c33を別のめっき液に浸けることによって、当該Ni層c33の表面にPdめっきが施される。これにより、めっき液中のPdが化学的に還元析出されて、当該Ni層c33の表面にPd層c34が形成される(ステップS16)。
以上のように、第1接続電極c3および第2接続電極c4を無電解めっきによって形成するので、第1接続電極c3および第2接続電極c4を電解めっきによって形成する場合に比べて、第1接続電極c3および第2接続電極c4についての形成工程の工程数(たとえば、電解めっきで必要となるリソグラフィ工程やレジストマスクの剥離工程等)を削減してチップ抵抗器c1の生産性を向上できる。さらに、無電解めっきの場合には、電解めっきで必要とされるレジストマスクが不要であることから、レジストマスクの位置ずれによる第1接続電極c3および第2接続電極c4についての形成位置にずれが生じないので、第1接続電極c3および第2接続電極c4の形成位置精度を向上して歩留まりを向上できる。
具体的には、溝c44を形成した後に、図64Gに示すように、PET(ポリエチレンテレフタレート)からなる薄板状であって粘着面c72を有する支持テープc71が、粘着面c72において、各半製品c50における第1接続電極c3および第2接続電極c4側(つまり、表面c30A)に貼着される。これにより、各半製品c50が支持テープc71に支持される。ここで、支持テープc71として、たとえば、ラミネートテープを用いることができる。
以上のように、一つまたは複数のヒューズFを選択して切断することにより、第1接続電極c3および第2接続電極c4間の素子c5から任意の数の抵抗体Rを切り離したり、当該素子c5に任意の数の抵抗体Rを組み込んだりすることができる。これにより、チップ抵抗器c1全体(素子c5全体)の抵抗値を目標値に正確に合わせ込むことができる。さらに、抵抗体Rを構成する抵抗体膜c21は、抵抗温度係数の絶対値が200ppm/℃以上の材料からなることから、チップ抵抗器c1では、抵抗体Rの温度に対する感度が向上されている。以上の結果、より正確に抵抗値を合わせ込むことができ、かつ温度の検出に適したチップ抵抗器c1を提供できる。
たとえば、チップ抵抗器c1を温度センサとして用いたい場合、抵抗体Rを構成する抵抗体膜c21は、抵抗温度係数の絶対値が200ppm/℃以上の材料からなればよく、当該材料として、前述したTiONおよびTiONSi以外に、Pt、Ni、およびCuのいずれかと用いることもできる。つまり、抵抗体膜c21は、TiON、TiONSi、Pt、Ni、およびCuのうちの1種以上を含んでいればよい。ただし、Pt、Ni、およびCuのいずれかを用いる場合には、TiONおよびTiONSiの場合と異なり、酸素流量の調整による抵抗体Rの温度特性(抵抗温度係数)の制御が困難である。
また、基板c2の表面に絶縁層c20が形成されているが、基板c2が絶縁性の基板であれば、絶縁層c20を省くこともできる。
図69は、第3参考例のチップ部品が用いられる電子機器の一例であるスマートフォンの外観を示す斜視図である。スマートフォンc201は、扁平な直方体形状の筐体c202の内部に電子部品を収納して構成されている。筐体c202は表側および裏側に長方形状の一対の主面を有しており、その一対の主面が4つの側面で結合されている。筐体c202の一つの主面には、液晶パネルや有機ELパネル等で構成された表示パネルc203の表示面が露出している。表示パネルc203の表示面は、タッチパネルを構成しており、使用者に対する入力インターフェースを提供している。
ワンセグTV受信ICc213は、ワンセグ放送(携帯機器を受信対象とする地上デジタルテレビ放送)の電波を受信するための受信機を構成する電子回路を内蔵している。ワンセグTV受信ICc213の近傍には、複数のチップインダクタc221と、複数のチップ抵抗器c222とが配置されている。ワンセグTV受信ICc213、チップインダクタc221およびチップ抵抗器c222は、ワンセグ放送受信回路c223を構成している。チップインダクタc221およびチップ抵抗器c222は、正確に合わせ込まれたインダクタンスおよび抵抗をそれぞれ有し、ワンセグ放送受信回路c223に高精度な回路定数を与える。
FMチューナICc215は、その近傍において実装基板c9に実装された複数のチップ抵抗器c224および複数のチップインダクタc225とともに、FM放送受信回路c226を構成している。チップ抵抗器c224およびチップインダクタc225は、正確に合わせ込まれた抵抗値およびインダクタンスをそれぞれ有し、FM放送受信回路c226に高精度な回路定数を与える。
フラッシュメモリc217は、オペレーティングシステムプログラム、スマートフォンc201の内部で生成されたデータ、通信機能によって外部から取得したデータおよびプログラムなどを記録するための記憶装置である。
電源ICc219の近くには、複数のチップキャパシタc230および複数のチップダイオードc231が実装基板c9の実装面に実装されている。電源ICc219は、チップキャパシタc230およびチップダイオードc231とともに、電源回路c232を構成している。
また、スマートフォンc201の位置情報が必要とされるときには、マイクロコンピュータc218は、GPS受信ICc214が出力する位置情報を取得し、その位置情報を用いた演算処理を実行する。
フラッシュメモリc217は、通信によって取得したデータの記憶や、マイクロコンピュータc218の演算や、タッチパネルからの入力によって作成されたデータを記憶するために用いられる。マイクロコンピュータc218は、必要に応じて、フラッシュメモリc217に対してデータを書き込み、またフラッシュメモリc217からデータを読み出す。
11 基板(シリコン基板)
12 第1接続電極(外部接続電極)
13 第2接続電極(外部接続電極)
14 抵抗回路網
20、103 抵抗体膜(抵抗体膜ライン)
21 導体膜(配線膜)
F ヒューズ膜
C 接続用導体膜
Claims (18)
- 基板と、
前記基板上に形成されたアルミニウム系配線膜をそれぞれ有する複数の機能素子と、
前記基板上に設けられた電極と、
前記複数の機能素子の前記アルミニウム系配線膜と一体化したアルミニウム系配線膜を有し、前記複数の機能素子を前記電極にそれぞれ接続する切断可能な複数のヒューズとを含む、チップ部品。 - 前記機能素子が、前記基板上に形成された抵抗体膜および前記抵抗体膜に接するように積層されたアルミニウム系配線膜を有する抵抗体を含み、
前記チップ部品がチップ抵抗器である、請求項1記載のチップ部品。 - 前記機能素子が、前記基板上に形成された容量膜および前記容量膜に接続されたアルミニウム系配線膜を有するキャパシタ素子を含み、
前記チップ部品がチップコンデンサである、請求項1記載のチップ部品。 - 前記機能素子が、前記基板上に形成されたコイル形成膜および前記コイル形成膜に接続されたアルミニウム系配線膜を有するコイル素子を含み、
前記チップ部品がチップインダクタである、請求項1記載のチップ部品。 - 前記機能素子が、前記基板上に形成された接合構造部および前記接合構造部に接続されたアルミニウム系配線膜を有する単方向導電性素子を含み、
前記チップ部品がチップダイオードである、請求項1記載のチップ部品。 - 前記ヒューズの前記アルミニウム系配線膜と一体化したアルミニウム系配線膜からなる電極パッドをさらに含み、前記電極パッドに前記電極が接している、請求項1〜5のいずれか一項に記載のチップ部品。
- 少なくとも一つの前記ヒューズが切断されており、当該ヒューズの切断部を覆うように前記基板上に形成された絶縁性の保護膜をさらに含む、請求項1〜6のいずれか一項に記載のチップ部品。
- 基板上に機能素子を形成する工程と、
前記機能素子に接するようにアルミニウム系配線膜を形成する工程と、
前記機能素子およびアルミニウム系配線膜をパターニングすることにより、前記機能素子および前記アルミニウム系配線膜を有する複数の機能素子と、前記アルミニウム系配線膜を有し、前記複数の機能素子にそれぞれ接続された切断可能な複数のヒューズとを形成する工程と、
前記複数のヒューズに電気的に接続されるように前記基板上に電極を形成する工程とを含む、チップ部品の製造方法。 - 前記機能素子およびアルミニウム系配線膜をパターニングする工程において、さらに、前記アルミニウム系配線膜からなる電極パッドが形成され、
前記電極が前記電極パッドに接するように形成される、請求項8に記載のチップ部品の製造方法。 - 前記機能素子を形成する工程は、抵抗体膜を形成する工程を含む、請求項8または9に記載のチップ部品の製造方法。
- 前記チップ部品の全抵抗値を測定する工程と、
前記測定された全抵抗値に基づいて、切断すべきヒューズを選択する工程とを含み、
前記選択されたヒューズが切断される、請求項8,9または10に記載のチップ部品の製造方法。 - 前記チップ部品の全抵抗値を測定する前に、前記機能素子の特性を安定化させるための熱処理工程をさらに含む、請求項11に記載のチップ部品の製造方法。
- 前記ヒューズの切断部を覆うように前記基板上に絶縁性の保護膜を形成する工程とをさらに含む、請求項11または12に記載のチップ部品の製造方法。
- 複数のチップ抵抗器領域を含む基板上に抵抗体膜を形成する工程と、
前記抵抗体膜に接するようにアルミニウム系配線膜を積層する工程と、
前記抵抗体膜およびアルミニウム系配線膜をパターニングすることにより、前記抵抗体膜および前記アルミニウム系配線膜を有する複数の抵抗体と、前記アルミニウム系配線膜を有し、前記複数の抵抗体にそれぞれ接続された切断可能な複数のヒューズとを、前記複数のチップ抵抗器領域にそれぞれ形成する工程と、
前記複数のチップ抵抗器領域のそれぞれにおける全抵抗値をマルチプロービングによって一括測定する工程と、
前記全抵抗値の測定結果に基づいて、前記複数のチップ抵抗器のそれぞれにおいて切断すべきヒューズを選択する工程と、
前記選択されたヒューズを切断する工程と、
前記複数のヒューズに電気的に接続されるように前記複数のチップ抵抗器領域にそれぞれ電極を形成する工程と、
複数のチップ抵抗器領域の境界領域で前記基板を切断して複数のチップ抵抗器に分割する工程とを含む、チップ抵抗器の製造方法。 - 前記ヒューズを切断した後に、前記複数のチップ抵抗器領域のそれぞれにおける全抵抗値をマルチプロービングによって一括測定する工程をさらに含む、請求項14に記載のチップ抵抗器の製造方法。
- 前記抵抗体膜およびアルミニウム系配線膜をパターニングする工程において、さらに、前記アルミニウム系配線膜からなる電極パッドが形成され、
前記電極が前記電極パッドに接するように形成される、請求項14または15に記載のチップ抵抗器の製造方法。 - 前記複数のチップ抵抗器領域のそれぞれの全抵抗値を測定する前に、前記抵抗体の特性を安定化させるための熱処理工程をさらに含む、請求項14〜16のいずれか一項に記載のチップ抵抗器の製造方法。
- 前記ヒューズの切断部を覆うように前記基板上に絶縁膜を形成する工程をさらに含む、請求項14〜17のいずれか一項に記載のチップ抵抗器の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012277079A JP6259184B2 (ja) | 2012-02-03 | 2012-12-19 | チップ部品およびその製造方法 |
PCT/JP2013/050082 WO2013114912A1 (ja) | 2012-02-03 | 2013-01-08 | チップ部品およびその製造方法 |
CN201380004401.8A CN104025212B (zh) | 2012-02-03 | 2013-01-08 | 贴片部件及其制造方法、贴片电阻器的制造方法 |
CN201711169931.4A CN107895618A (zh) | 2012-02-03 | 2013-01-08 | 贴片电阻器 |
US14/376,417 US9484135B2 (en) | 2012-02-03 | 2013-01-08 | Chip component and method of producing the same |
US15/271,882 US9972427B2 (en) | 2012-02-03 | 2016-09-21 | Chip component and method of producing the same |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012022296 | 2012-02-03 | ||
JP2012022296 | 2012-02-03 | ||
JP2012042300 | 2012-02-28 | ||
JP2012042300 | 2012-02-28 | ||
JP2012067970 | 2012-03-23 | ||
JP2012067970 | 2012-03-23 | ||
JP2012081627 | 2012-03-30 | ||
JP2012081627 | 2012-03-30 | ||
JP2012277079A JP6259184B2 (ja) | 2012-02-03 | 2012-12-19 | チップ部品およびその製造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017236447A Division JP2018037693A (ja) | 2012-02-03 | 2017-12-08 | チップ抵抗器 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013229556A true JP2013229556A (ja) | 2013-11-07 |
JP6259184B2 JP6259184B2 (ja) | 2018-01-10 |
Family
ID=48904956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012277079A Active JP6259184B2 (ja) | 2012-02-03 | 2012-12-19 | チップ部品およびその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US9484135B2 (ja) |
JP (1) | JP6259184B2 (ja) |
CN (2) | CN107895618A (ja) |
WO (1) | WO2013114912A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019503563A (ja) * | 2016-01-14 | 2019-02-07 | シュルター アクチェンゲゼルシャフトSchurter AG | 活性化可能な温度ヒューズ |
JP2020035899A (ja) * | 2018-08-30 | 2020-03-05 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
CN116995066A (zh) * | 2023-06-30 | 2023-11-03 | 宁波鼎声微电子科技有限公司 | 一种igbt单晶硅门极电阻器及其制造方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9543208B2 (en) * | 2014-02-24 | 2017-01-10 | Infineon Technologies Ag | Method of singulating semiconductor devices using isolation trenches |
CN104992802B (zh) * | 2015-02-04 | 2019-07-23 | 上海长园维安电子线路保护有限公司 | 表面贴装型过电流保护元件 |
WO2018110054A1 (ja) * | 2016-12-12 | 2018-06-21 | 株式会社村田製作所 | Lcデバイス、lcデバイスの製造方法 |
CN106793728B (zh) * | 2016-12-13 | 2019-03-01 | 清华大学 | 用于移动式生物电信号放大器的屏蔽装置 |
KR102656423B1 (ko) * | 2016-12-30 | 2024-04-09 | 엘지디스플레이 주식회사 | 터치센싱시스템 및 이를 포함한 표시장치 |
JP6875198B2 (ja) * | 2017-05-31 | 2021-05-19 | 株式会社村田製作所 | インダクタ |
KR102653200B1 (ko) * | 2018-10-29 | 2024-04-01 | 삼성전기주식회사 | 인덕터 |
CN109411446A (zh) * | 2018-10-31 | 2019-03-01 | 中国电子科技集团公司第五十八研究所 | 1kω高精度电阻网络电路及其修调方法 |
JP7150571B2 (ja) * | 2018-11-13 | 2022-10-11 | ローム株式会社 | チップコンデンサおよびチップコンデンサの製造方法 |
KR20220030341A (ko) * | 2020-08-27 | 2022-03-11 | 삼성전자주식회사 | 반도체 소자 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57170568A (en) * | 1981-03-31 | 1982-10-20 | Siemens Ag | Thyristor and method of driving same |
JPS6365601A (ja) * | 1986-09-05 | 1988-03-24 | 日本電気株式会社 | ネツトワ−ク抵抗の製造方法 |
US4862136A (en) * | 1983-04-13 | 1989-08-29 | Birkner John M | Programmable resistance network |
JPH02298049A (ja) * | 1989-05-12 | 1990-12-10 | Nec Corp | 半導体集積回路 |
JPH07249501A (ja) * | 1993-09-29 | 1995-09-26 | Robert Bosch Gmbh | 電子回路 |
US6507272B1 (en) * | 2001-07-26 | 2003-01-14 | Maxim Integrated Products, Inc. | Enhanced linearity, low switching perturbation resistor string matrices |
JP2003535466A (ja) * | 2000-06-02 | 2003-11-25 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 受動素子 |
JP2005529494A (ja) * | 2002-06-11 | 2005-09-29 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 抵抗ラダー回路等の抵抗回路とその抵抗回路の製造方法 |
JP2007233922A (ja) * | 2006-03-03 | 2007-09-13 | Ricoh Co Ltd | 分圧回路、その分圧回路を使用した定電圧回路及び電圧検出回路、分圧回路のトリミング方法 |
JP2008047556A (ja) * | 2006-08-10 | 2008-02-28 | Tokai Rika Co Ltd | ラダー抵抗の調整パターン構造及びこれを有する電子部品 |
JP2008118622A (ja) * | 2006-10-12 | 2008-05-22 | Seiko Epson Corp | 抵抗回路、抵抗回路を備えたインターフェース回路及び電子機器 |
JP2009224723A (ja) * | 2008-03-18 | 2009-10-01 | Ricoh Co Ltd | 抵抗回路及びその抵抗回路の抵抗値調整方法 |
JP2010103508A (ja) * | 2008-09-25 | 2010-05-06 | Semiconductor Energy Lab Co Ltd | 半導体装置及びその作製方法 |
JP2011086750A (ja) * | 2009-10-15 | 2011-04-28 | Panasonic Corp | 薄膜チップ抵抗器 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3778886A (en) * | 1972-01-20 | 1973-12-18 | Signetics Corp | Semiconductor structure with fusible link and method |
US4228418A (en) * | 1979-03-28 | 1980-10-14 | The United States Of America As Represented By The Secretary Of The Army | Modular trim resistive network |
US4298856A (en) * | 1979-09-04 | 1981-11-03 | Western Electric Company, Incorporated | Metallized resistor and methods of manufacturing and adjusting the resistance of same |
US6060760A (en) * | 1997-08-13 | 2000-05-09 | Tritech Microelectronics, Ltd. | Optimal resistor network layout |
JP3852649B2 (ja) | 1998-08-18 | 2006-12-06 | ローム株式会社 | チップ抵抗器の製造方法 |
JP2001076912A (ja) | 1999-09-06 | 2001-03-23 | Rohm Co Ltd | チップ抵抗器におけるレーザトリミング方法 |
JP2004071865A (ja) * | 2002-08-07 | 2004-03-04 | Toyo Kohan Co Ltd | 抵抗層積層材および抵抗層積層材を用いた部品 |
JP3848247B2 (ja) | 2002-12-05 | 2006-11-22 | ローム株式会社 | チップ抵抗器およびその製造方法 |
WO2004040592A1 (ja) | 2002-10-31 | 2004-05-13 | Rohm Co., Ltd. | チップ抵抗器、その製造方法およびその製造方法に用いられるフレーム |
US7259703B2 (en) * | 2004-03-25 | 2007-08-21 | Texas Instruments Incorporated | Device for recording laser trim progress and for detecting laser beam misalignment |
JP2007232598A (ja) | 2006-03-01 | 2007-09-13 | Ngk Spark Plug Co Ltd | 温度センサ |
JP2008021726A (ja) * | 2006-07-11 | 2008-01-31 | Ricoh Co Ltd | トリミング回路及び半導体装置 |
JP4353258B2 (ja) * | 2007-02-20 | 2009-10-28 | セイコーエプソン株式会社 | 抵抗回路及び発振回路 |
GB0705579D0 (en) * | 2007-03-23 | 2007-05-02 | Pickering Interfaces Ltd | Resistor network and variable resistor simulator |
JP5433957B2 (ja) * | 2008-02-26 | 2014-03-05 | 株式会社リコー | 半導体装置 |
JP2009231359A (ja) | 2008-03-19 | 2009-10-08 | Hitachi Ltd | 厚膜抵抗器 |
JP5543146B2 (ja) | 2009-07-27 | 2014-07-09 | ローム株式会社 | チップ抵抗器およびチップ抵抗器の製造方法 |
JP5242614B2 (ja) | 2010-03-16 | 2013-07-24 | ローム株式会社 | チップ抵抗器およびその製造方法 |
JP2011204925A (ja) * | 2010-03-25 | 2011-10-13 | Seiko Instruments Inc | 半導体装置 |
JP6075114B2 (ja) * | 2013-02-27 | 2017-02-08 | ローム株式会社 | 半導体装置および半導体装置の製造方法 |
-
2012
- 2012-12-19 JP JP2012277079A patent/JP6259184B2/ja active Active
-
2013
- 2013-01-08 WO PCT/JP2013/050082 patent/WO2013114912A1/ja active Application Filing
- 2013-01-08 CN CN201711169931.4A patent/CN107895618A/zh active Pending
- 2013-01-08 US US14/376,417 patent/US9484135B2/en active Active
- 2013-01-08 CN CN201380004401.8A patent/CN104025212B/zh active Active
-
2016
- 2016-09-21 US US15/271,882 patent/US9972427B2/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57170568A (en) * | 1981-03-31 | 1982-10-20 | Siemens Ag | Thyristor and method of driving same |
US4862136A (en) * | 1983-04-13 | 1989-08-29 | Birkner John M | Programmable resistance network |
JPS6365601A (ja) * | 1986-09-05 | 1988-03-24 | 日本電気株式会社 | ネツトワ−ク抵抗の製造方法 |
JPH02298049A (ja) * | 1989-05-12 | 1990-12-10 | Nec Corp | 半導体集積回路 |
JPH07249501A (ja) * | 1993-09-29 | 1995-09-26 | Robert Bosch Gmbh | 電子回路 |
JP2003535466A (ja) * | 2000-06-02 | 2003-11-25 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 受動素子 |
US6507272B1 (en) * | 2001-07-26 | 2003-01-14 | Maxim Integrated Products, Inc. | Enhanced linearity, low switching perturbation resistor string matrices |
JP2005529494A (ja) * | 2002-06-11 | 2005-09-29 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 抵抗ラダー回路等の抵抗回路とその抵抗回路の製造方法 |
JP2007233922A (ja) * | 2006-03-03 | 2007-09-13 | Ricoh Co Ltd | 分圧回路、その分圧回路を使用した定電圧回路及び電圧検出回路、分圧回路のトリミング方法 |
JP2008047556A (ja) * | 2006-08-10 | 2008-02-28 | Tokai Rika Co Ltd | ラダー抵抗の調整パターン構造及びこれを有する電子部品 |
JP2008118622A (ja) * | 2006-10-12 | 2008-05-22 | Seiko Epson Corp | 抵抗回路、抵抗回路を備えたインターフェース回路及び電子機器 |
JP2009224723A (ja) * | 2008-03-18 | 2009-10-01 | Ricoh Co Ltd | 抵抗回路及びその抵抗回路の抵抗値調整方法 |
JP2010103508A (ja) * | 2008-09-25 | 2010-05-06 | Semiconductor Energy Lab Co Ltd | 半導体装置及びその作製方法 |
JP2011086750A (ja) * | 2009-10-15 | 2011-04-28 | Panasonic Corp | 薄膜チップ抵抗器 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019503563A (ja) * | 2016-01-14 | 2019-02-07 | シュルター アクチェンゲゼルシャフトSchurter AG | 活性化可能な温度ヒューズ |
JP2020035899A (ja) * | 2018-08-30 | 2020-03-05 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
JP7015754B2 (ja) | 2018-08-30 | 2022-02-03 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
CN116995066A (zh) * | 2023-06-30 | 2023-11-03 | 宁波鼎声微电子科技有限公司 | 一种igbt单晶硅门极电阻器及其制造方法 |
CN116995066B (zh) * | 2023-06-30 | 2024-06-04 | 宁波鼎声微电子科技有限公司 | 一种igbt单晶硅门极电阻器及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20140368965A1 (en) | 2014-12-18 |
JP6259184B2 (ja) | 2018-01-10 |
US9972427B2 (en) | 2018-05-15 |
CN104025212B (zh) | 2017-12-26 |
US20170076842A1 (en) | 2017-03-16 |
CN104025212A (zh) | 2014-09-03 |
WO2013114912A1 (ja) | 2013-08-08 |
CN107895618A (zh) | 2018-04-10 |
US9484135B2 (en) | 2016-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6259184B2 (ja) | チップ部品およびその製造方法 | |
WO2013111497A1 (ja) | チップ部品 | |
US10312002B2 (en) | Chip component and production method therefor | |
JP2015144241A (ja) | チップ部品およびその製造方法、ならびに当該チップ部品を備えた回路アセンブリおよび電子機器 | |
JP2015181155A (ja) | 半導体装置および半導体装置の製造方法 | |
JP6584574B2 (ja) | チップ部品およびその製造方法 | |
US10426032B1 (en) | Multilayer wiring structure and its manufacturing method | |
JP2014072241A (ja) | チップ部品 | |
JP2017130671A (ja) | チップ部品 | |
JP7063845B2 (ja) | チップ抵抗器 | |
JP2019195073A (ja) | チップ抵抗器 | |
JP6184088B2 (ja) | チップ抵抗器の製造方法 | |
JP6101465B2 (ja) | チップ部品 | |
JP7178982B2 (ja) | チップ抵抗器およびチップ部品 | |
JP6535073B2 (ja) | チップ部品 | |
TWI598790B (zh) | 觸控模組及其製造方法 | |
JP2014072239A (ja) | チップ部品 | |
TWI464754B (zh) | 電阻器模組及其製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170410 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171208 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6259184 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |