JP2013100227A - 有機金属化学気相成長法による、高品質のN面GaN、InNおよびAlNならびにそれらの合金のヘテロエピタキシャル成長の方法 - Google Patents
有機金属化学気相成長法による、高品質のN面GaN、InNおよびAlNならびにそれらの合金のヘテロエピタキシャル成長の方法 Download PDFInfo
- Publication number
- JP2013100227A JP2013100227A JP2013004398A JP2013004398A JP2013100227A JP 2013100227 A JP2013100227 A JP 2013100227A JP 2013004398 A JP2013004398 A JP 2013004398A JP 2013004398 A JP2013004398 A JP 2013004398A JP 2013100227 A JP2013100227 A JP 2013100227A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- nitride
- growth
- iii
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 79
- 238000005229 chemical vapour deposition Methods 0.000 title claims abstract description 7
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 6
- 239000002184 metal Substances 0.000 title claims abstract description 6
- 239000000956 alloy Substances 0.000 title abstract description 8
- 229910045601 alloy Inorganic materials 0.000 title abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 111
- 150000004767 nitrides Chemical class 0.000 claims abstract description 71
- 229910052594 sapphire Inorganic materials 0.000 claims description 43
- 239000010980 sapphire Substances 0.000 claims description 43
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 27
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 26
- 238000000151 deposition Methods 0.000 claims description 23
- 239000013078 crystal Substances 0.000 claims description 22
- 230000006911 nucleation Effects 0.000 claims description 20
- 238000010899 nucleation Methods 0.000 claims description 20
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 6
- 230000003746 surface roughness Effects 0.000 claims description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 abstract description 80
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 abstract description 10
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 4
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 165
- 229910002601 GaN Inorganic materials 0.000 description 80
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 57
- 239000010408 film Substances 0.000 description 56
- 239000000203 mixture Substances 0.000 description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 23
- 239000000463 material Substances 0.000 description 17
- 229910052738 indium Inorganic materials 0.000 description 16
- 230000008569 process Effects 0.000 description 16
- 239000011777 magnesium Substances 0.000 description 15
- 238000010586 diagram Methods 0.000 description 13
- 229910052733 gallium Inorganic materials 0.000 description 13
- 239000002243 precursor Substances 0.000 description 13
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 13
- 230000008021 deposition Effects 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- 238000000137 annealing Methods 0.000 description 10
- 229910052742 iron Inorganic materials 0.000 description 10
- 239000012535 impurity Substances 0.000 description 9
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 8
- 238000010348 incorporation Methods 0.000 description 7
- 230000000977 initiatory effect Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005121 nitriding Methods 0.000 description 6
- 239000002344 surface layer Substances 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000011109 contamination Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical group [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000001451 molecular beam epitaxy Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- 229910002704 AlGaN Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 238000000089 atomic force micrograph Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 4
- 238000000879 optical micrograph Methods 0.000 description 4
- 238000005424 photoluminescence Methods 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- DIIIISSCIXVANO-UHFFFAOYSA-N 1,2-Dimethylhydrazine Chemical compound CNNC DIIIISSCIXVANO-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229910052596 spinel Inorganic materials 0.000 description 3
- 239000011029 spinel Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 3
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- QBJCZLXULXFYCK-UHFFFAOYSA-N magnesium;cyclopenta-1,3-diene Chemical compound [Mg+2].C1C=CC=[C-]1.C1C=CC=[C-]1 QBJCZLXULXFYCK-UHFFFAOYSA-N 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02378—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
- Led Devices (AREA)
- Semiconductor Lasers (AREA)
Abstract
【解決手段】N面III族窒化物膜を成長させるための方法であって、(a)ミラー指数結晶面に対して誤配向角を伴う成長表面を有する基板を提供すること、(b)前記成長表面上または前記成長表面の上方で層を形成することであって、前記層は、前記層上で形成される1つ以上の後続の層に対するN極性配向を設定すること、および、(c)前記層上でN面III族窒化物膜を成長させることであって、前記N面III族窒化物膜は、前記層によって設定されるN極性配向を有することを含む。
【選択図】なし
Description
本出願は、以下の同時係属中の同一人に譲渡された米国特許出願の利益を、米国特許法第119条(e)の下に主張する。上記特許出願とは、
Stacia Keller,Umesh K.MishraおよびNicholas A.Fichtenbaumによって2006年11月15日に出願された、米国仮特許出願第60/866,035号(名称“METHOD FOR HETEROEPITAXIAL GROWTH OF HIGH−QUALITY N−FACE GaN,InN,AND AlN AND THEIR ALLOYS BY METAL ORGANIC CHEMICAL VAPOR DEPOSITION”、代理人整理番号第30794.207−US−P1(2007−121−1))であり、この米国特許出願は本明細書において参照により援用される。
Siddharth Rajan,Chang Soo Suh,James S.SpeckおよびUmesh K.Mishraによって、2006年9月18日に出願された、米国特許出願第11/523,286号(名称“N−POLAR ALUMINUM GALLIUM NITRIDE/GALLIUM NITRIDE ENHANCEMENT−MODE FIELD EFFECT TRANSISTOR”、代理人整理番号第30794.148−US−U1 (2006−107−2))であって、Siddharth Rajan,Chang Soo Suh,James S.SpeckおよびUmesh K.Mishraによって、2005年9月16日に出願された、米国特許出願第60/717,996号(名称“N−POLAR ALUMINUM GALLIUM NITRIDE/GALLIUM NITRIDE ENHANCEMENT−MODE FIELD EFFECT TRANSISTOR”、代理人整理番号第30794.148−US−P1(2006−107−1))に対する優先権を主張する、出願と、
Nicholas A.Fichtenbaum,Umesh K.MishraおよびStacia Kellerによって、2006年11月15日に出願された米国仮特許出願第60/866,019号(名称“LIGHT EMITTING DIODE AND LASER DIODE USING N−FACE GaN, InN, and AlN AND THEIR ALLOYS”、代理人整理番号第30794.208−US−P1(2007−204−1))と
であり、これらの出願は本明細書において参照により援用される。
(1.発明の分野)
本発明は、III族窒化物材料の成長に関し、具体的には、有機金属化学気相成長法(MOCVD)による、高品質の窒素(N)面窒化物ガリウム(GaN)、インジウム窒化(InN)、窒化アルミニウム(AlN)、およびそれらの合金のヘテロエピタキシャル成長の方法に関する。
(注記:本出願は、括弧内の1つ以上の参照番号、例えば、[x]によって明細書の全体を通して示されるような、多数の異なる出版物を参照する。これらの参照番号に従って順序付けられた、これらの異なる出版物のリストは、下記の「参考文献」と題された項で見ることができる。これらの出版物のそれぞれは、参照することにより本願に組み込まれる)。
本発明は、III族窒化物材料の成長を記載し、具体的には、高品質のN面GaN、InN、AlN、およびそれらの合金、ならびにMOCVDによって成長させられ同材料を備えるヘテロ構造のヘテロエピタキシャル成長の方法に関する。
本発明は、例えば、以下の項目も提供する。
(項目1)
N面III族窒化物膜を成長させるための方法であって、
(a)h、i、k、lがミラー指数である、基板のミラー指数結晶面[h,i,k,l]に対して0.5〜10度の間の誤配向角を伴う成長表面を有する基板を提供することと、
(b)該成長表面上で該N面III族窒化物膜を成長させることであって、該面III族窒化物膜は、誤配向角がない基板上で成長させられるN面III族窒化物膜よりも平滑である、ことと
を包含する、方法。
(項目2)
前記ミラー指数は、h=1、i=0、k=0およびl=−1であり、前記基板は、炭化ケイ素である、項目1に記載の方法。
(項目3)
前記ミラー指数は、h=0、i=0、k=0およびl=1であり、前記基板は、サファイアである、項目1に記載の方法。
(項目4)
前記ミラー指数は、h=1、k=1、l=1であり、前記基板は、シリコンである、項目1に記載の方法。
(項目5)
前記基板は、(001)Siである、項目1に記載の方法。
(項目6)
前記成長させることは、有機金属化学気相成長法(MOCVD)による、項目1に記載の方法。
(項目7)
前記N面III族窒化物膜は、窒素化された誤配向基板上で成長させられる、項目1に記載の方法。
(項目8)
前記誤配向基板上にAlN層を形成し、該AlN層上で前記N面III族窒化物膜を成長させることをさらに含む、項目1に記載の方法。
(項目9)
(Al,Ga,In)N核形成層は、ステップフロー成長モードを使用して前記AlN層上に堆積される、項目8に記載の方法。
(項目10)
前記AlN層は、後で堆積されるIII族窒化物層に対してN極性を設定する、項目8に記載の方法。
(項目11)
前記誤配向基板は、サファイア基板である、項目7に記載の方法。
(項目12)
窒素化により前記サファイア基板上に形成されるAlN層上にIII族窒化物核形成層を堆積させることと、前記III族窒化物核形成層上で前記N面III族窒化物膜を成長させることとをさらに含む、項目11に記載の方法。
(項目13)
前記III族窒化物核形成層は、ステップフロー成長モードを使用して堆積される、項目12に記載の方法。
(項目14)
前記III族窒化物核形成層は、少なくとも部分的にドーピングされる、項目12に記載の方法。
(項目15)
前記N面III族窒化物膜を成長させることは、
(a)前記核形成層上で、第1のN面III族窒化物層をドーピングし、成長させることと、
(b)第2のN面III族窒化物層の少なくとも一部がドーピングされるように、該第1のN面III族層上で第2のN面III族窒化物層を成長させることと
を含む、項目14に記載の方法。
(項目16)
前記誤配向基板は、研磨された炭素極炭化ケイ素基板である、項目8に記載の方法。
(項目17)
前記AlN層上に、変化する組成を有するIII族窒化物層を堆積させることをさらに含み、該変化する組成を有する該III族窒化物層のAl組成は、AlNからGaNへ組成傾斜される、項目16に記載の方法。
(項目18)
前記組成傾斜III族窒化物層は、少なくとも部分的にドーピングされる、項目17に記載の方法。
(項目19)
N面を有する前記III族窒化物層の成長は、
(a)前記組成傾斜III族窒化物層上で、N面を有する第1のIII族窒化物層をドーピングし、成長させることと、
(b)N面を有する第2のIII族窒化物層の少なくとも一部がドーピングされるように、N面を有する第2のIII族窒化物層を成長させることと
を含む、項目18に記載の方法。
(項目20)
項目1に記載の方法を使用して製造されるデバイス。
(項目21)
急激なp型ドーピングプロファイルを有するIII族窒化物膜を作製するための方法であって、
(a)h、i、k、lがミラー指数である、基板のミラー指数結晶面[h,i,k,l]に対して0.5〜10度の間の誤配向角を伴う成長表面を有する基板を提供することと、
(b)該成長表面上で急激なp型ドーピングプロファイルを有するN面III族窒化物膜を成長させることと
を含み、N面を有する該III族窒化物膜は、誤配向角がない基板上で成長させられるN面III族窒化物膜よりも平滑である、方法。
(項目22)
窒化物デバイスの電荷輸送特性を強化するための方法であって、
h、i、k、lがミラー指数である、基板のミラー指数結晶面[h,i,k,l]に対して0.5〜10度の間の誤配向角を伴う成長表面を有する基板上で成長させられるN面窒化物層を使用して、該窒化物デバイスを製造することと、
誤配向基板上で成長させられる該誤配向N面(Al,Ga,In)N層の誤配向方向と実質的に垂直に、該窒化物デバイスのチャネルを整列させることと
を含み、該電荷輸送特性は該誤配向方向において強化される、方法。
好適な実施形態の次の説明において、その一部を形成し、本発明を実践することができる、具体的実施形態が例証として示される、添付図面を参照する。他の実施形態を利用してもよく、本発明の範囲を逸脱しない限り、構造的変更を行ってもよいことを理解されたい。
本発明は、従来のGa極GaN上で製造することができないトランジスタの作製を可能にするであろう。本発明はまた、新規の分極を用いたバンド構造設計を可能にして、より効率的なLEDおよびLDを作製するであろう。Ga極ヘテロ構造と比較して、N極ヘテロ構造における逆分極場は、より低い動作電圧をもたらし、p―n型接合の空乏領域の幅を縮小し、キャリア注入を向上させて、デバイス性能の進展につながる。N極表面上の堆積は、Ga極表面と比較してインジウムのより高い組成を伴うInGaNの成長を可能にし、色のスペクトルの黄色および赤色部分へのLED波長の付勢を容易にする。加えて、本発明は、GaNを用いたデバイスでより高いp型ドーピングレベルの使用を可能にし、向上したデバイス性能につながる。さらに、本発明を使用して、N面トランジスタ(HEMT)、N面LED、およびN面LD等の、新規の電子および光電子窒化物デバイスが可能となるであろう。
(サファイア上の成長)
サファイア上の成長に対して、本発明は、下記によって実現される。
a.MOCVDリアクタに誤配向サファイア基板を入れ、H2環境下にて約1090℃の表面温度でアニーリングする。
b.次いで、約980℃の表面温度で数秒間、NH3およびH2中で基板を窒素化させ、成長のN面極性を設定するサファイア上の薄いAlN層の形成につながる。
c.次いで、NH3およびトリメチルガリウム(TMG)をリアクタに流し込み、AlN上でGaNの成長を開始する。それにより、まず厚さ約20nmのGaN層を中成長温度(約950℃の表面温度)で堆積させることができ、ステップフローまたは層ごとの成長モードでの成長につながる。
d.次いで、NH3およびトリメチルガリウム(TMG)をリアクタに流し込み、ステップ(c)で形成された層上で主要GaNの成長を開始する。
ブロック100は、MOCVDチャンバに誤配向サファイア基板を入れるステップを表す。
ブロック102は、誤配向サファイア基板をアニーリングするステップを表す。
ブロック104は、薄いAlN表面層を形成して次のIII族窒化物層に対するN極性を設定するように、アニーリングした誤配向サファイア基板を窒素化するステップを表す[7、8]。参考文献7は、AlN層の形成を記載し、参考文献8は、AlN層が約0.5nmに対応する1つの二重層の厚さであるべきという結果を伴う、理論計算である。
ブロック106は、ステップフローまたは層ごとの成長モードで、AlN表面層上にIII族窒化物核形成層を堆積させるステップを表す。
ブロック108は、核形成層上で主要III族窒化物層を成長させるステップを表す。
炭素(C)極SiC上の成長に対して、本発明は、下記によって実現される。
a.MOCVDリアクタに誤配向の研磨された(例えば、化学機械的に研磨された)C極SiC基板を入れ、H2環境下にて約1090℃の表面温度でアニーリングする。
b.次いで、NH3およびトリメチルアルミニウム(TMA)をリアクタに流し込み、ステップフロー成長モードまたは層ごとの成長モードで、薄いAlN層の成長を開始する。Al種の表面移動度を増加させるために、界面活性剤、例えば、トリメチルインジウム(TMI)の形のインジウムを、加えてリアクタに流し込むことができる[5]。c.次いで、任意でトリメチルガリウム(TMG)をリアクタに流し込んで、組成傾斜または段階状AlxGa1−xN層の成長を開始し、その組成は、AlNからGaNへ組成傾斜されるか、または段階状になる。TMIの注入を続けて、層のステップフロー成長モードまたは層ごとの成長モードを確実にすることができる。
d.次いで、NH3およびトリメチルガリウムをリアクタに流し込み、主要GaNの成長を開始する。
ブロック200は、MOCVDチャンバに誤配向の化学機械的に研磨されたC極SiC基板を入れるステップを表す。
ブロック202は、誤配向SiC基板をアニーリングするステップを表す。
ブロック204は、ステップフローまたは層ごとの成長モードで、アニーリングした誤配向基板上に薄いAlN層を堆積させるステップを表す。
ブロック206は、Al組成が、ステップフローまたは層ごとの成長モードでAlNからGaNへ組成傾斜されるか、または段階状になる層を、AlN上に堆積させるように、MOCVDチャンバに付加的なGa前駆物質を導入するオプションのステップを表す。
ブロック208は、組成傾斜層上で主要III族窒化物層を成長させるステップを表す。
Si(111)上の成長に対して、本発明は、下記によって実現される。
次いで、NH3およびトリメチルガリウムをリアクタに流し込み、主要GaNの成長を開始する。
ブロック210は、MOCVDチャンバに誤配向の化学機械的に研磨された(111)Si基板を入れるステップを表す。
ブロック212は、誤配向のSi基板をアニーリングするステップを表す。
ブロック214は、誤配向Si基板を窒素化するステップを表す。
ブロック216は、ステップフローまたは層ごとの成長モードで、窒素化された誤配向基板上に薄いAlN層を堆積させるステップを表す。
ブロック218は、Al組成が、ステップフローまたは層ごとの成長モードでAlNからGaNへ組成傾斜されるか、または段階状になる層を、AlN上に堆積させるように、MOCVDチャンバに付加的なGa前駆物質を導入するオプションのステップを表す。
ブロック220は、組成傾斜層上で主要III族窒化物層を成長させるステップを表す。
半絶縁性III族窒化物を用いた層の成長に対して、図3および4の工程図にみられるように、層の成長または層成長の一部中に、おそらく前駆物質ビス−シクロペンタジエニル鉄(Cp)2Feを使用する、受容体性質を伴うドーパント、例えば、鉄が追加される。
ブロック300は、MOCVDチャンバに誤配向サファイア基板を入れるステップを表す。
ブロック302は、誤配向サファイア基板をアニーリングするステップを表す。
ブロック304は、薄い(AlN表面層)を形成して次のIII族窒化物層に対するN極性を設定するように、アニーリングした誤配向サファイア基板を窒素化するステップを表す。
ブロック306は、層全体または核形成層の一部のいずれかが鉄でドーピングされる、ステップフローまたは層ごとの成長モードで、AlN表面層上にIII族窒化物核形成層を堆積させるステップを表す。
ブロック308は、層全体または層の一部のいずれかが鉄でドーピングされる、AlN表面層上で主要III族窒化物層(N面を有する第2のIII族窒化物層)を成長させるステップを表す。
ブロック400は、MOCVDチャンバに誤配向の化学機械的に研磨されたC極SiC基板を入れるステップを表す。
ブロック402は、誤配向SiC基板をアニーリングするステップを表す。
ブロック404は、層全体または層の一部のいずれかが鉄でドーピングされる、ステップフローまたは層ごとの成長モードで、アニーリングした基板上に薄いAlN層を堆積させるステップを表す。
ブロック406は、層全体または層の一部のいずれかが鉄でドーピングされる、ステップフローまたは層ごとの成長モードで、Al組成がAlNからGaNへ組成傾斜されるか、または段階状になる層を、AlN上に堆積させるように、MOCVDチャンバに付加的なGa前駆物質を導入するオプションのステップを表す。
ブロック408は、層全体または層の一部のいずれかが鉄でドーピングされる、組成傾斜層上で主要III族窒化物層(N面を有するIII族窒化物層)を成長させるステップを表す。
ブロック410は、MOCVDチャンバに誤配向の化学機械的に研磨されたSi基板を入れるステップを表す。
ブロック412は、誤配向Si基板をアニーリングするステップを表す。
ブロック414は、誤配向Si基板を窒素化するステップを表す。
ブロック416は、層全体または層の一部のいずれかが鉄でドーピングされる、ステップフローまたは層ごとの成長モードで、アニーリングした基板上に薄いAlN層を堆積させるステップを表す。
ブロック418は、層全体または層の一部のいずれかが鉄でドーピングされる、ステップフローまたは層ごとの成長モードで、Al組成がAlNからGaNへ組成傾斜されるか、または段階状になる層を、AlN上に堆積させるように、MOCVDチャンバに付加的なGa前駆物質を導入するオプションのステップを表す。
ブロック420は、層全体または層の一部のいずれかが鉄でドーピングされる、組成傾斜層上で主要III族窒化物層(N面を有する第1のF III族窒化物層)を成長させるステップを表す。
Ga極III族窒化物と同様に、前駆物質としてビス−シクロペンタジエニルマグネシウムまたはその誘導体のうちの1つを使用して、p型ドーピングを実行することができる。しかしながら、N極窒化物膜では、結晶品質および表面形態の劣化なしで、より高いMgドーピングレベルを実現することができる。また、より急なMgドーピングプロファイルを実現し、p−n型接合デバイスの優れた利点を実現することができる。
任意のN極III族窒化物膜の表面を安定させるために、おそらく原位置で、薄い絶縁層、例えば、窒化ケイ素または酸化ケイ素を窒化物膜の上部に堆積させることができる。表面はまた、例えば前駆物質ビス−シクロペンタジエニルマグネシウムを使用する、Mgによるドーピングを通して製造することができる、薄いp型N極窒化物膜の堆積を通して、安定化することもできる。
誤配向基板の使用は、(000−1)表面以外の、高分画のN原子から成る表面を伴うIII族窒化物膜、例えば、半極性N面膜の成長にとっても有益である。
III族窒化物において、結晶成長配向は、材料の化学および物理的特性に大きな影響を及ぼす。これらの特性の中で、Ga面(0001)GaNについて研究されているが、N面(000−1)GaNに対しては幅広く調査されていない、不純物混入がある。おそらく、2つの極性間の理解の相違は、MOCVDによって成長させられた時のN面GaNの歴史的に粗雑な六方晶表面形態に起因する。しかしながら、本発明は、微斜面のサファイア基板の使用を通して、MOCVDによって平滑なN面GaNをヘテロエピタキシャル成長させることができると示している。そのようなものとして、本発明で示されるような、誤配向基板上の表面粗度および貫通転位は、Ga面GaN膜に匹敵する。
現在、GaNを用いたデバイスの大規模製造のための最も一般的に使用されている成長方法である、MOCVDによって成長させられる、ほとんどのN極GaN膜は、材料をデバイス応用に対して容認不可能にする、大型(μmサイズの)六方晶特徴によって特徴付けられる。本発明は、N面デバイスの開発を可能にする、平滑な高品質膜の成長を可能にする。
図12aは、a平面に向かって0.5度の誤配向での成長を示し、図12bは、m平面に向かって0.5度の誤配向での成長を示す。
図12cは、a平面に向かって1度の誤配向での成長を示し、図12dは、m平面に向かって1度の誤配向での成長を示す。
図12eは、a平面に向かって2度の誤配向での成長を示し、図12fは、m平面に向かって2度の誤配向での成長を示す。
図12aおよび12bの挿入部分は、主要図の部分から3倍に拡大されている。
以下の参考文献は、本明細書において参照により援用される。
[2]Homo−epitaxial GaN growth on the N−face of GaN single crystals:the influence
of the misorientation on the surface morphology:A.R.A.Zauner,A.Aret,W.J.P.van Enckevort,J.L.Weyher,S.Porowski,J.J.Schermer,J.Cryst.Growth 240(2002)14−21.
[3]A.P.Grzegorczykほか、Influence of sapphire annealing in trimethylgallium atmosphere on GaN epitaxy by MOCVD:J.Cryst.Growth 283(2005)72−80.
[4]N−polarity GaN on sapphire substrates grown by MOCVD:T.Matsuoka,Y.Kobayashi,H.Takahata,T.Mitate,S Mizuno,A.Sasaki,M.Yoshimoto,T.OhnishiおよびM.Sumiya,Phys.Stat.Sol.(b) 243(2006)1446−1450.
[5]Indium−surfactant−assisted growth of
high−mobility AlN/GaN multilayer structures by MOCVD,S.Keller,S.Heikman,I.Ben−Yaakov,L.Shen,S.P.DenBaarsおよびU.K.Mishra,Appl.Phys.Lett.79(2001)3449.
[6]The effect of substrate polarity on the growth of InN by RF−MBE:Naoiほか,J.Cryst.Growth 269(2004)155−161.
[7]Nitridation of sapphire. Effect on the optical properties of GaN epitaxial overlayers:N.Grandjean,J.MassiesおよびM.Leroux, Appl.Phys.Lett.69(1996)2071.
[8] Energetics of AlN thin films on the
Al2O3(0001) surface:R.Di FeliceおよびJ.Northrup, Appl.Phys.Lett. 73(1998)936.
(結論)
これは、本発明の好適な実施形態の説明を結論付ける。本発明の1つ以上の実施形態の前述の説明は、例証および説明の目的で提示されている。これは、包括的となること、または本発明を開示される正確な形態に限定することを目的としない。上記の教示を踏まえて、多くの修正および変化が可能である。本発明の範囲は、本発明を実施するための形態によってではなく、むしろ本明細書に添付の請求項および本明細書に添付の請求項の同等物の全範囲によって限定されることが意図される。
Claims (20)
- N面III族窒化物膜を成長させるための方法であって、
前記方法は、
(a)ミラー指数結晶面に対して誤配向角を伴う成長表面を有する基板を提供することと、
(b)前記成長表面上または前記成長表面の上方で層を形成することであって、前記層は、前記層上で形成される1つ以上の後続の層に対するN極性配向を設定する、ことと、
(c)前記層上でN面III族窒化物膜を成長させることであって、前記N面III族窒化物膜は、前記層によって設定されるN極性配向を有する、ことと
を含む、方法。 - 前記成長させることは、有機金属化学気相成長法による、請求項1に記載の方法。
- 前記基板は、サファイア、シリコンおよび炭化ケイ素からなる群より選択される、請求項1に記載の方法。
- 前記N面III族窒化物膜は、少なくとも10マイクロメートル×10マイクロメートルの面積にわたり0.9ナノメートル以下の表面粗度を有する、請求項1に記載の方法。
- 前記基板は、窒素化された誤配向基板である、請求項1に記載の方法。
- 前記層は、AlN層である、請求項1に記載の方法。
- 前記AlN層上でIII族窒化物核形成層を堆積することをさらに含む、請求項6に記載の方法。
- 前記III族窒化物核形成層は、ステップフロー成長モードを使用して堆積される、請求項7に記載の方法。
- 前記III族窒化物核形成層は、少なくとも部分的にドーピングされる、請求項7に記載の方法。
- 前記N面III族窒化物膜を成長させることは、
(a)第1のN面III族窒化物層をドーピングし、成長させることと、
(b)前記第1のN面III族層上で第2のN面III族窒化物層を成長させることと
を含む、請求項1に記載の方法。 - 前記第2のN面III族窒化物層の少なくとも一部分は、ドーピングされる、請求項10に記載の方法。
- デバイスであって、
前記デバイスは、
(a)ミラー指数結晶面に対して誤配向角を伴う成長表面を有する基板と、
(b)前記成長表面上または前記成長表面の上方の層であって、前記層は、前記層上で形成される1つ以上の後続の層に対するN極性配向を設定する、層と、
(c)前記層上のN面III族窒化物膜であって、前記III族窒化物膜は、前記層によって設定されるN極性配向を有する、N面III族窒化物膜と
を備える、デバイス。 - 前記基板は、サファイア、シリコンおよび炭化ケイ素からなる群より選択される、請求項12に記載のデバイス。
- 前記N面III族窒化物膜は、少なくとも10マイクロメートル×10マイクロメートルの面積にわたり0.9ナノメートル以下の表面粗度を有する、請求項12に記載のデバイス。
- 前記層は、AlN層である、請求項12に記載のデバイス。
- 前記AlN層上のIII族窒化物核形成層をさらに備える、請求項15に記載のデバイス。
- 前記III族窒化物核形成層は、少なくとも部分的にドーピングされている、請求項16に記載のデバイス。
- 前記基板は、窒素化された誤配向基板である、請求項12に記載のデバイス。
- 前記N面III族窒化物膜は、
(a)第1のN面III族窒化物層であって、前記第1のN面III族窒化物層はドーピングされている、第1のN面III族窒化物層と、
(b)前記第1のN面III族層上の第2のN面III族窒化物層と
を備える、請求項12に記載のデバイス。 - 前記第2のN面III族窒化物層の少なくとも一部分は、ドーピングされている、請求項19に記載のデバイス。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US86603506P | 2006-11-15 | 2006-11-15 | |
US60/866,035 | 2006-11-15 | ||
US11/855,591 | 2007-09-14 | ||
US11/855,591 US7566580B2 (en) | 2006-11-15 | 2007-09-14 | Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AIN and their alloys by metal organic chemical vapor deposition |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009537139A Division JP2010509177A (ja) | 2006-11-15 | 2007-09-14 | 有機金属化学気相成長法による、高品質のN面GaN、InNおよびAlNならびにそれらの合金のヘテロエピタキシャル成長の方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014215011A Division JP2015063458A (ja) | 2006-11-15 | 2014-10-22 | 有機金属化学気相成長法による、高品質のN面GaN、InNおよびAlNならびにそれらの合金のヘテロエピタキシャル成長の方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013100227A true JP2013100227A (ja) | 2013-05-23 |
JP5792209B2 JP5792209B2 (ja) | 2015-10-07 |
Family
ID=39369697
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009537139A Withdrawn JP2010509177A (ja) | 2006-11-15 | 2007-09-14 | 有機金属化学気相成長法による、高品質のN面GaN、InNおよびAlNならびにそれらの合金のヘテロエピタキシャル成長の方法 |
JP2013004398A Active JP5792209B2 (ja) | 2006-11-15 | 2013-01-15 | 有機金属化学気相成長法による、高品質のN面GaN、InNおよびAlNならびにそれらの合金のヘテロエピタキシャル成長の方法 |
JP2014215011A Withdrawn JP2015063458A (ja) | 2006-11-15 | 2014-10-22 | 有機金属化学気相成長法による、高品質のN面GaN、InNおよびAlNならびにそれらの合金のヘテロエピタキシャル成長の方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009537139A Withdrawn JP2010509177A (ja) | 2006-11-15 | 2007-09-14 | 有機金属化学気相成長法による、高品質のN面GaN、InNおよびAlNならびにそれらの合金のヘテロエピタキシャル成長の方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014215011A Withdrawn JP2015063458A (ja) | 2006-11-15 | 2014-10-22 | 有機金属化学気相成長法による、高品質のN面GaN、InNおよびAlNならびにそれらの合金のヘテロエピタキシャル成長の方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US7566580B2 (ja) |
EP (1) | EP2087507A4 (ja) |
JP (3) | JP2010509177A (ja) |
CA (1) | CA2669228C (ja) |
TW (1) | TWI489668B (ja) |
WO (1) | WO2008060349A2 (ja) |
Families Citing this family (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7018909B2 (en) * | 2003-02-28 | 2006-03-28 | S.O.I.Tec Silicon On Insulator Technologies S.A. | Forming structures that include a relaxed or pseudo-relaxed layer on a substrate |
US7504274B2 (en) * | 2004-05-10 | 2009-03-17 | The Regents Of The University Of California | Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition |
US8157914B1 (en) | 2007-02-07 | 2012-04-17 | Chien-Min Sung | Substrate surface modifications for compositional gradation of crystalline materials and associated products |
US7799600B2 (en) * | 2007-05-31 | 2010-09-21 | Chien-Min Sung | Doped diamond LED devices and associated methods |
JP2008311579A (ja) * | 2007-06-18 | 2008-12-25 | Sharp Corp | 窒化物半導体発光素子の製造方法 |
KR101374090B1 (ko) * | 2007-07-26 | 2014-03-17 | 아리조나 보드 오브 리젠츠 퍼 앤 온 비하프 오브 아리조나 스테이트 유니버시티 | 에피택시 방법들과 그 방법들에 의하여 성장된 템플릿들 |
FR2931293B1 (fr) * | 2008-05-15 | 2010-09-03 | Soitec Silicon On Insulator | Procede de fabrication d'une heterostructure support d'epitaxie et heterostructure correspondante |
WO2009141724A1 (en) | 2008-05-23 | 2009-11-26 | S.O.I.Tec Silicon On Insulator Technologies | Formation of substantially pit free indium gallium nitride |
EP2151856A1 (en) * | 2008-08-06 | 2010-02-10 | S.O.I. TEC Silicon | Relaxation of strained layers |
EP2151861A1 (en) * | 2008-08-06 | 2010-02-10 | S.O.I. TEC Silicon | Passivation of etched semiconductor structures |
EP2151852B1 (en) | 2008-08-06 | 2020-01-15 | Soitec | Relaxation and transfer of strained layers |
TWI457984B (zh) | 2008-08-06 | 2014-10-21 | Soitec Silicon On Insulator | 應變層的鬆弛方法 |
EP2159836B1 (en) * | 2008-08-25 | 2017-05-31 | Soitec | Stiffening layers for the relaxation of strained layers |
US20100072484A1 (en) * | 2008-09-23 | 2010-03-25 | Triquint Semiconductor, Inc. | Heteroepitaxial gallium nitride-based device formed on an off-cut substrate |
JP5401145B2 (ja) * | 2009-03-26 | 2014-01-29 | 株式会社トクヤマ | Iii族窒化物積層体の製造方法 |
JP2010232297A (ja) * | 2009-03-26 | 2010-10-14 | Sumitomo Electric Device Innovations Inc | 半導体装置 |
US8344420B1 (en) | 2009-07-24 | 2013-01-01 | Triquint Semiconductor, Inc. | Enhancement-mode gallium nitride high electron mobility transistor |
US9525117B2 (en) | 2009-12-08 | 2016-12-20 | Lehigh University | Thermoelectric materials based on single crystal AlInN—GaN grown by metalorganic vapor phase epitaxy |
US8541252B2 (en) * | 2009-12-17 | 2013-09-24 | Lehigh University | Abbreviated epitaxial growth mode (AGM) method for reducing cost and improving quality of LEDs and lasers |
US9705028B2 (en) | 2010-02-26 | 2017-07-11 | Micron Technology, Inc. | Light emitting diodes with N-polarity and associated methods of manufacturing |
CN101831613B (zh) * | 2010-04-21 | 2011-10-19 | 中国科学院半导体研究所 | 利用非极性ZnO缓冲层生长非极性InN薄膜的方法 |
CN101831628B (zh) * | 2010-04-21 | 2011-10-05 | 中国科学院半导体研究所 | 一种生长高质量富In组分InGaN薄膜材料的方法 |
JP5668339B2 (ja) * | 2010-06-30 | 2015-02-12 | 住友電気工業株式会社 | 半導体装置の製造方法 |
US8742460B2 (en) | 2010-12-15 | 2014-06-03 | Transphorm Inc. | Transistors with isolation regions |
US8975165B2 (en) | 2011-02-17 | 2015-03-10 | Soitec | III-V semiconductor structures with diminished pit defects and methods for forming the same |
US20130026480A1 (en) | 2011-07-25 | 2013-01-31 | Bridgelux, Inc. | Nucleation of Aluminum Nitride on a Silicon Substrate Using an Ammonia Preflow |
US8901604B2 (en) | 2011-09-06 | 2014-12-02 | Transphorm Inc. | Semiconductor devices with guard rings |
US9257547B2 (en) | 2011-09-13 | 2016-02-09 | Transphorm Inc. | III-N device structures having a non-insulating substrate |
JP5987288B2 (ja) * | 2011-09-28 | 2016-09-07 | 富士通株式会社 | 半導体装置 |
US8598937B2 (en) | 2011-10-07 | 2013-12-03 | Transphorm Inc. | High power semiconductor electronic components with increased reliability |
US8603898B2 (en) | 2012-03-30 | 2013-12-10 | Applied Materials, Inc. | Method for forming group III/V conformal layers on silicon substrates |
JP5744784B2 (ja) * | 2012-03-30 | 2015-07-08 | 日立金属株式会社 | 窒化物半導体エピタキシャルウェハの製造方法 |
WO2013155108A1 (en) | 2012-04-09 | 2013-10-17 | Transphorm Inc. | N-polar iii-nitride transistors |
US8878249B2 (en) | 2012-04-12 | 2014-11-04 | The Regents Of The University Of California | Method for heteroepitaxial growth of high channel conductivity and high breakdown voltage nitrogen polar high electron mobility transistors |
US9312129B2 (en) | 2012-09-05 | 2016-04-12 | Saint-Gobain Cristaux Et Detecteurs | Group III-V substrate material with particular crystallographic features and methods of making |
JP2014072428A (ja) * | 2012-09-28 | 2014-04-21 | Fujitsu Ltd | 半導体結晶基板の製造方法、半導体装置の製造方法、半導体結晶基板及び半導体装置 |
US9978904B2 (en) * | 2012-10-16 | 2018-05-22 | Soraa, Inc. | Indium gallium nitride light emitting devices |
US9087718B2 (en) | 2013-03-13 | 2015-07-21 | Transphorm Inc. | Enhancement-mode III-nitride devices |
WO2014176283A1 (en) * | 2013-04-22 | 2014-10-30 | Ostendo Technologies, Inc. | Semi-polar iii-nitride films and materials and method for making the same |
US9443938B2 (en) | 2013-07-19 | 2016-09-13 | Transphorm Inc. | III-nitride transistor including a p-type depleting layer |
US9368582B2 (en) * | 2013-11-04 | 2016-06-14 | Avogy, Inc. | High power gallium nitride electronics using miscut substrates |
JP6986349B2 (ja) | 2014-05-27 | 2021-12-22 | シランナ・ユー・ブイ・テクノロジーズ・プライベート・リミテッドSilanna Uv Technologies Pte Ltd | n型超格子及びp型超格子を備える電子デバイス |
CN106537617B (zh) | 2014-05-27 | 2019-04-16 | 斯兰纳Uv科技有限公司 | 使用半导体结构和超晶格的高级电子装置结构 |
US11322643B2 (en) | 2014-05-27 | 2022-05-03 | Silanna UV Technologies Pte Ltd | Optoelectronic device |
JP6817072B2 (ja) | 2014-05-27 | 2021-01-20 | シランナ・ユー・ブイ・テクノロジーズ・プライベート・リミテッドSilanna Uv Technologies Pte Ltd | 光電子デバイス |
US9318593B2 (en) | 2014-07-21 | 2016-04-19 | Transphorm Inc. | Forming enhancement mode III-nitride devices |
JP6173493B2 (ja) * | 2014-10-03 | 2017-08-02 | 日本碍子株式会社 | 半導体素子用のエピタキシャル基板およびその製造方法 |
CN105719968B (zh) * | 2014-12-04 | 2018-12-11 | 北京北方华创微电子装备有限公司 | 硅衬底上外延氮化镓薄膜及制备hemt器件的方法 |
US9536966B2 (en) | 2014-12-16 | 2017-01-03 | Transphorm Inc. | Gate structures for III-N devices |
US9536967B2 (en) | 2014-12-16 | 2017-01-03 | Transphorm Inc. | Recessed ohmic contacts in a III-N device |
JP6822146B2 (ja) * | 2015-01-16 | 2021-01-27 | 住友電気工業株式会社 | 半導体基板の製造方法及び複合半導体基板の製造方法 |
JP6872724B2 (ja) * | 2015-02-18 | 2021-05-19 | 国立大学法人東北大学 | 窒化物半導体自立基板作製方法 |
US9941295B2 (en) | 2015-06-08 | 2018-04-10 | Sandisk Technologies Llc | Method of making a three-dimensional memory device having a heterostructure quantum well channel |
US9425299B1 (en) | 2015-06-08 | 2016-08-23 | Sandisk Technologies Llc | Three-dimensional memory device having a heterostructure quantum well channel |
US11322599B2 (en) | 2016-01-15 | 2022-05-03 | Transphorm Technology, Inc. | Enhancement mode III-nitride devices having an Al1-xSixO gate insulator |
US9721963B1 (en) | 2016-04-08 | 2017-08-01 | Sandisk Technologies Llc | Three-dimensional memory device having a transition metal dichalcogenide channel |
WO2017210323A1 (en) | 2016-05-31 | 2017-12-07 | Transphorm Inc. | Iii-nitride devices including a graded depleting layer |
US9818801B1 (en) | 2016-10-14 | 2017-11-14 | Sandisk Technologies Llc | Resistive three-dimensional memory device with heterostructure semiconductor local bit line and method of making thereof |
JP6824829B2 (ja) | 2017-06-15 | 2021-02-03 | 株式会社サイオクス | 窒化物半導体積層物の製造方法、窒化物半導体自立基板の製造方法および半導体装置の製造方法 |
JP6915591B2 (ja) * | 2018-06-13 | 2021-08-04 | 信越化学工業株式会社 | GaN積層基板の製造方法 |
JPWO2020017207A1 (ja) * | 2018-07-20 | 2021-08-02 | ソニーセミコンダクタソリューションズ株式会社 | 半導体発光素子 |
DE112019003987T5 (de) * | 2018-08-09 | 2021-04-22 | Shin-Etsu Chemical Co., Ltd. | VERFAHREN ZUR HERSTELLUNG EINES GaN-LAMINATSUBSTRATS |
CN109599329B (zh) * | 2018-12-05 | 2023-08-08 | 江西兆驰半导体有限公司 | 一种硅衬底上生长氮极性iii族氮化物半导体层的方法 |
DE102019111598A1 (de) | 2019-05-06 | 2020-11-12 | Aixtron Se | Verfahren zum Abscheiden eines Halbleiter-Schichtsystems, welches Gallium und Indium enthält |
JP7181321B2 (ja) * | 2021-01-13 | 2022-11-30 | 株式会社サイオクス | 窒化物半導体積層物 |
CN115863501B (zh) * | 2023-02-27 | 2023-05-09 | 江西兆驰半导体有限公司 | 一种发光二极管外延片及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000082676A (ja) * | 1998-06-26 | 2000-03-21 | Sharp Corp | 窒化物系化合物半導体の結晶成長方法、発光素子およびその製造方法 |
US6624452B2 (en) * | 2000-07-28 | 2003-09-23 | The Regents Of The University Of California | Gallium nitride-based HFET and a method for fabricating a gallium nitride-based HFET |
Family Cites Families (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US606078A (en) * | 1898-06-21 | Christian pattberg | ||
JPS62119196A (ja) | 1985-11-18 | 1987-05-30 | Univ Nagoya | 化合物半導体の成長方法 |
US5679152A (en) | 1994-01-27 | 1997-10-21 | Advanced Technology Materials, Inc. | Method of making a single crystals Ga*N article |
US6440823B1 (en) | 1994-01-27 | 2002-08-27 | Advanced Technology Materials, Inc. | Low defect density (Ga, Al, In)N and HVPE process for making same |
US6072197A (en) | 1996-02-23 | 2000-06-06 | Fujitsu Limited | Semiconductor light emitting device with an active layer made of semiconductor having uniaxial anisotropy |
US5923950A (en) | 1996-06-14 | 1999-07-13 | Matsushita Electric Industrial Co., Inc. | Method of manufacturing a semiconductor light-emitting device |
US6849866B2 (en) | 1996-10-16 | 2005-02-01 | The University Of Connecticut | High performance optoelectronic and electronic inversion channel quantum well devices suitable for monolithic integration |
JPH111399A (ja) | 1996-12-05 | 1999-01-06 | Lg Electron Inc | 窒化ガリウム半導体単結晶基板の製造方法並びにその基板を用いた窒化ガリウムダイオード |
US5741724A (en) | 1996-12-27 | 1998-04-21 | Motorola | Method of growing gallium nitride on a spinel substrate |
CN1159750C (zh) | 1997-04-11 | 2004-07-28 | 日亚化学工业株式会社 | 氮化物半导体的生长方法 |
US6069021A (en) | 1997-05-14 | 2000-05-30 | Showa Denko K.K. | Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer |
JPH10335637A (ja) | 1997-05-30 | 1998-12-18 | Sony Corp | ヘテロ接合電界効果トランジスタ |
JP3813740B2 (ja) | 1997-07-11 | 2006-08-23 | Tdk株式会社 | 電子デバイス用基板 |
US5926726A (en) | 1997-09-12 | 1999-07-20 | Sdl, Inc. | In-situ acceptor activation in group III-v nitride compound semiconductors |
JP3955367B2 (ja) | 1997-09-30 | 2007-08-08 | フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー | 光半導体素子およびその製造方法 |
US6849472B2 (en) | 1997-09-30 | 2005-02-01 | Lumileds Lighting U.S., Llc | Nitride semiconductor device with reduced polarization fields |
US6201262B1 (en) | 1997-10-07 | 2001-03-13 | Cree, Inc. | Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlay structure |
US6051849A (en) | 1998-02-27 | 2000-04-18 | North Carolina State University | Gallium nitride semiconductor structures including a lateral gallium nitride layer that extends from an underlying gallium nitride layer |
US6294440B1 (en) | 1998-04-10 | 2001-09-25 | Sharp Kabushiki Kaisha | Semiconductor substrate, light-emitting device, and method for producing the same |
US6180270B1 (en) | 1998-04-24 | 2001-01-30 | The United States Of America As Represented By The Secretary Of The Army | Low defect density gallium nitride epilayer and method of preparing the same |
US6064078A (en) | 1998-05-22 | 2000-05-16 | Xerox Corporation | Formation of group III-V nitride films on sapphire substrates with reduced dislocation densities |
TW417315B (en) | 1998-06-18 | 2001-01-01 | Sumitomo Electric Industries | GaN single crystal substrate and its manufacture method of the same |
WO1999066565A1 (en) | 1998-06-18 | 1999-12-23 | University Of Florida | Method and apparatus for producing group-iii nitrides |
JP3201475B2 (ja) * | 1998-09-14 | 2001-08-20 | 松下電器産業株式会社 | 半導体装置およびその製造方法 |
JP3592553B2 (ja) | 1998-10-15 | 2004-11-24 | 株式会社東芝 | 窒化ガリウム系半導体装置 |
US20010047751A1 (en) | 1998-11-24 | 2001-12-06 | Andrew Y. Kim | Method of producing device quality (a1) ingap alloys on lattice-mismatched substrates |
US6177057B1 (en) | 1999-02-09 | 2001-01-23 | The United States Of America As Represented By The Secretary Of The Navy | Process for preparing bulk cubic gallium nitride |
US20010042503A1 (en) | 1999-02-10 | 2001-11-22 | Lo Yu-Hwa | Method for design of epitaxial layer and substrate structures for high-quality epitaxial growth on lattice-mismatched substrates |
JP3587081B2 (ja) | 1999-05-10 | 2004-11-10 | 豊田合成株式会社 | Iii族窒化物半導体の製造方法及びiii族窒化物半導体発光素子 |
US6133593A (en) | 1999-07-23 | 2000-10-17 | The United States Of America As Represented By The Secretary Of The Navy | Channel design to reduce impact ionization in heterostructure field-effect transistors |
US6268621B1 (en) | 1999-08-03 | 2001-07-31 | International Business Machines Corporation | Vertical channel field effect transistor |
US6812053B1 (en) | 1999-10-14 | 2004-11-02 | Cree, Inc. | Single step pendeo- and lateral epitaxial overgrowth of Group III-nitride epitaxial layers with Group III-nitride buffer layer and resulting structures |
CA2287760C (en) | 1999-10-29 | 2004-08-10 | Leader Industries Inc. | Sport eyeglasses having removable lenses |
JP3393602B2 (ja) | 2000-01-13 | 2003-04-07 | 松下電器産業株式会社 | 半導体装置 |
JP3929008B2 (ja) * | 2000-01-14 | 2007-06-13 | シャープ株式会社 | 窒化物系化合物半導体発光素子およびその製造方法 |
US20010015437A1 (en) | 2000-01-25 | 2001-08-23 | Hirotatsu Ishii | GaN field-effect transistor, inverter device, and production processes therefor |
US6566231B2 (en) | 2000-02-24 | 2003-05-20 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing high performance semiconductor device with reduced lattice defects in the active region |
JP3557441B2 (ja) | 2000-03-13 | 2004-08-25 | 日本電信電話株式会社 | 窒化物半導体基板およびその製造方法 |
JP3946427B2 (ja) | 2000-03-29 | 2007-07-18 | 株式会社東芝 | エピタキシャル成長用基板の製造方法及びこのエピタキシャル成長用基板を用いた半導体装置の製造方法 |
TW472400B (en) | 2000-06-23 | 2002-01-11 | United Epitaxy Co Ltd | Method for roughing semiconductor device surface to increase the external quantum efficiency |
JP3968968B2 (ja) | 2000-07-10 | 2007-08-29 | 住友電気工業株式会社 | 単結晶GaN基板の製造方法 |
JP4556300B2 (ja) | 2000-07-18 | 2010-10-06 | ソニー株式会社 | 結晶成長方法 |
WO2002013245A1 (en) * | 2000-08-04 | 2002-02-14 | The Regents Of The University Of California | Method of controlling stress in gallium nitride films deposited on substrates |
JP2002076521A (ja) | 2000-08-30 | 2002-03-15 | Nippon Telegr & Teleph Corp <Ntt> | 窒化物半導体発光素子 |
JP4154558B2 (ja) | 2000-09-01 | 2008-09-24 | 日本電気株式会社 | 半導体装置 |
US6690042B2 (en) | 2000-09-27 | 2004-02-10 | Sensor Electronic Technology, Inc. | Metal oxide semiconductor heterostructure field effect transistor |
US6391748B1 (en) * | 2000-10-03 | 2002-05-21 | Texas Tech University | Method of epitaxial growth of high quality nitride layers on silicon substrates |
US6649287B2 (en) | 2000-12-14 | 2003-11-18 | Nitronex Corporation | Gallium nitride materials and methods |
US6635901B2 (en) | 2000-12-15 | 2003-10-21 | Nobuhiko Sawaki | Semiconductor device including an InGaAIN layer |
US6599362B2 (en) | 2001-01-03 | 2003-07-29 | Sandia Corporation | Cantilever epitaxial process |
US6849882B2 (en) | 2001-05-11 | 2005-02-01 | Cree Inc. | Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer |
US7501023B2 (en) | 2001-07-06 | 2009-03-10 | Technologies And Devices, International, Inc. | Method and apparatus for fabricating crack-free Group III nitride semiconductor materials |
US7105865B2 (en) | 2001-09-19 | 2006-09-12 | Sumitomo Electric Industries, Ltd. | AlxInyGa1−x−yN mixture crystal substrate |
UA82180C2 (uk) | 2001-10-26 | 2008-03-25 | АММОНО Сп. с о. о | Об'ємний монокристал нітриду галію (варіанти) і основа для епітаксії |
WO2003043150A1 (fr) | 2001-10-26 | 2003-05-22 | Ammono Sp.Zo.O. | Structure d'element electoluminescent a couche monocristalline non epitaxiee de nitrure |
US6617261B2 (en) | 2001-12-18 | 2003-09-09 | Xerox Corporation | Structure and method for fabricating GaN substrates from trench patterned GaN layers on sapphire substrates |
US6878975B2 (en) | 2002-02-08 | 2005-04-12 | Agilent Technologies, Inc. | Polarization field enhanced tunnel structures |
US6791120B2 (en) | 2002-03-26 | 2004-09-14 | Sanyo Electric Co., Ltd. | Nitride-based semiconductor device and method of fabricating the same |
KR101363377B1 (ko) | 2002-04-15 | 2014-02-14 | 더 리전츠 오브 더 유니버시티 오브 캘리포니아 | 무극성 질화 갈륨 박막의 전위 감소 |
US7208393B2 (en) * | 2002-04-15 | 2007-04-24 | The Regents Of The University Of California | Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy |
US8809867B2 (en) * | 2002-04-15 | 2014-08-19 | The Regents Of The University Of California | Dislocation reduction in non-polar III-nitride thin films |
US20060138431A1 (en) | 2002-05-17 | 2006-06-29 | Robert Dwilinski | Light emitting device structure having nitride bulk single crystal layer |
JP4201541B2 (ja) | 2002-07-19 | 2008-12-24 | 豊田合成株式会社 | 半導体結晶の製造方法及びiii族窒化物系化合物半導体発光素子の製造方法 |
US6876009B2 (en) | 2002-12-09 | 2005-04-05 | Nichia Corporation | Nitride semiconductor device and a process of manufacturing the same |
US7427555B2 (en) | 2002-12-16 | 2008-09-23 | The Regents Of The University Of California | Growth of planar, non-polar gallium nitride by hydride vapor phase epitaxy |
US7186302B2 (en) | 2002-12-16 | 2007-03-06 | The Regents Of The University Of California | Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition |
AU2003256522A1 (en) | 2002-12-16 | 2004-07-29 | The Regents Of University Of California | Growth of planar, non-polar a-plane gallium nitride by hydride vapor phase epitaxy |
AU2003293497A1 (en) | 2003-04-15 | 2005-07-21 | Japan Science And Technology Agency | Non-polar (a1,b,in,ga)n quantum wells |
US6847057B1 (en) | 2003-08-01 | 2005-01-25 | Lumileds Lighting U.S., Llc | Semiconductor light emitting devices |
US6958494B2 (en) | 2003-08-14 | 2005-10-25 | Dicon Fiberoptics, Inc. | Light emitting diodes with current spreading layer |
US7009215B2 (en) | 2003-10-24 | 2006-03-07 | General Electric Company | Group III-nitride based resonant cavity light emitting devices fabricated on single crystal gallium nitride substrates |
US7612390B2 (en) | 2004-02-05 | 2009-11-03 | Cree, Inc. | Heterojunction transistors including energy barriers |
US7808011B2 (en) | 2004-03-19 | 2010-10-05 | Koninklijke Philips Electronics N.V. | Semiconductor light emitting devices including in-plane light emitting layers |
US20050253222A1 (en) * | 2004-05-17 | 2005-11-17 | Caneau Catherine G | Semiconductor devices on misoriented substrates |
US7432142B2 (en) | 2004-05-20 | 2008-10-07 | Cree, Inc. | Methods of fabricating nitride-based transistors having regrown ohmic contact regions |
TWI308397B (en) | 2004-06-28 | 2009-04-01 | Epistar Corp | Flip-chip light emitting diode and fabricating method thereof |
US7547928B2 (en) | 2004-06-30 | 2009-06-16 | Interuniversitair Microelektronica Centrum (Imec) | AlGaN/GaN high electron mobility transistor devices |
US20060073621A1 (en) | 2004-10-01 | 2006-04-06 | Palo Alto Research Center Incorporated | Group III-nitride based HEMT device with insulating GaN/AlGaN buffer layer |
KR101145755B1 (ko) | 2005-03-10 | 2012-05-16 | 재팬 사이언스 앤드 테크놀로지 에이젼시 | 평면의 반극성 갈륨 질화물의 성장을 위한 기술 |
US7804100B2 (en) | 2005-03-14 | 2010-09-28 | Philips Lumileds Lighting Company, Llc | Polarization-reversed III-nitride light emitting device |
US7341878B2 (en) | 2005-03-14 | 2008-03-11 | Philips Lumileds Lighting Company, Llc | Wavelength-converted semiconductor light emitting device |
JP2006269534A (ja) | 2005-03-22 | 2006-10-05 | Eudyna Devices Inc | 半導体装置及びその製造方法、その半導体装置製造用基板及びその製造方法並びにその半導体成長用基板 |
TW200703463A (en) | 2005-05-31 | 2007-01-16 | Univ California | Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO) |
TWI455181B (zh) | 2005-06-01 | 2014-10-01 | Univ California | 半極性(Ga,Al,In,B)N薄膜、異質結構及裝置之生長及製造技術 |
JP5043835B2 (ja) | 2005-06-17 | 2012-10-10 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 光電子応用のための(Al,Ga,In)NとZnOの直接ウェーハ・ボンディング構造とその作製方法 |
KR20080040709A (ko) | 2005-07-13 | 2008-05-08 | 더 리전츠 오브 더 유니버시티 오브 캘리포니아 | 반극성 질화물 박막들의 결함 감소를 위한 측방향 성장방법 |
JP4696886B2 (ja) * | 2005-12-08 | 2011-06-08 | 日立電線株式会社 | 自立した窒化ガリウム単結晶基板の製造方法、および窒化物半導体素子の製造方法 |
WO2007084782A2 (en) * | 2006-01-20 | 2007-07-26 | The Regents Of The University Of California | Method for improved growth of semipolar (al,in,ga,b)n |
KR101416838B1 (ko) * | 2006-02-10 | 2014-07-08 | 더 리전츠 오브 더 유니버시티 오브 캘리포니아 | (Al,In,Ga,B)N의 전도도 제어 방법 |
EP2041794A4 (en) * | 2006-06-21 | 2010-07-21 | Univ California | OPTOELECTRONIC AND ELECTRONIC DEVICES USING N-FACIAL OR M-PLANNED GAN SUBSTRATES PREPARED BY AMMONIOTHERMIC GROWTH |
-
2007
- 2007-09-14 CA CA2669228A patent/CA2669228C/en active Active
- 2007-09-14 EP EP07838270A patent/EP2087507A4/en not_active Withdrawn
- 2007-09-14 WO PCT/US2007/020037 patent/WO2008060349A2/en active Application Filing
- 2007-09-14 JP JP2009537139A patent/JP2010509177A/ja not_active Withdrawn
- 2007-09-14 US US11/855,591 patent/US7566580B2/en active Active
- 2007-09-17 TW TW096134767A patent/TWI489668B/zh active
-
2013
- 2013-01-15 JP JP2013004398A patent/JP5792209B2/ja active Active
-
2014
- 2014-10-22 JP JP2014215011A patent/JP2015063458A/ja not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000082676A (ja) * | 1998-06-26 | 2000-03-21 | Sharp Corp | 窒化物系化合物半導体の結晶成長方法、発光素子およびその製造方法 |
US6624452B2 (en) * | 2000-07-28 | 2003-09-23 | The Regents Of The University Of California | Gallium nitride-based HFET and a method for fabricating a gallium nitride-based HFET |
Also Published As
Publication number | Publication date |
---|---|
CA2669228C (en) | 2014-12-16 |
EP2087507A4 (en) | 2010-07-07 |
WO2008060349A2 (en) | 2008-05-22 |
US7566580B2 (en) | 2009-07-28 |
TWI489668B (zh) | 2015-06-21 |
WO2008060349A3 (en) | 2008-12-04 |
EP2087507A2 (en) | 2009-08-12 |
JP2010509177A (ja) | 2010-03-25 |
US20080113496A1 (en) | 2008-05-15 |
JP5792209B2 (ja) | 2015-10-07 |
CA2669228A1 (en) | 2008-05-22 |
TW200822409A (en) | 2008-05-16 |
JP2015063458A (ja) | 2015-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5792209B2 (ja) | 有機金属化学気相成長法による、高品質のN面GaN、InNおよびAlNならびにそれらの合金のヘテロエピタキシャル成長の方法 | |
US8455885B2 (en) | Method for heteroepitaxial growth of high-quality N-face gallium nitride, indium nitride, and aluminum nitride and their alloys by metal organic chemical vapor deposition | |
JP5838523B2 (ja) | 半極性(Al,In,Ga,B)NまたはIII族窒化物の結晶 | |
KR101416838B1 (ko) | (Al,In,Ga,B)N의 전도도 제어 방법 | |
JP5099763B2 (ja) | 基板製造方法およびiii族窒化物半導体結晶 | |
US20080111144A1 (en) | LIGHT EMITTING DIODE AND LASER DIODE USING N-FACE GaN, InN, AND AlN AND THEIR ALLOYS | |
US7687293B2 (en) | Method for enhancing growth of semipolar (Al,In,Ga,B)N via metalorganic chemical vapor deposition | |
US10192737B2 (en) | Method for heteroepitaxial growth of III metal-face polarity III-nitrides on substrates with diamond crystal structure and III-nitride semiconductors | |
JP2012209586A (ja) | 半極性窒化物を備え、窒化物核生成層又はバッファ層に特徴を有するデバイス構造 | |
US6648966B2 (en) | Wafer produced thereby, and associated methods and devices using the wafer | |
WO2008060531A9 (en) | Light emitting diode and laser diode using n-face gan, inn, and ain and their alloys | |
US20140353685A1 (en) | Semi-Polar III-Nitride Films and Materials and Method for Making the Same | |
KR20130035995A (ko) | 구조체, 및 반도체 기판의 제조 방법 | |
RU2750295C1 (ru) | Способ изготовления гетероэпитаксиальных слоев III-N соединений на монокристаллическом кремнии со слоем 3C-SiC | |
KR100590444B1 (ko) | 고온 완충층을 이용한 질화물 반도체 에피층 성장 방법 | |
KR100839224B1 (ko) | GaN 후막의 제조방법 | |
Zhang | MOCVD growth of GaN on 200mm Si and addressing foundry compatibility issues | |
LI | MOCVD GROWTH OF GAN ON 200MM SI AND ADDRESSING FOUNDRY COMPATIBILITY ISSUES | |
JPH08264836A (ja) | 化合物半導体発光素子およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140423 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140502 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20140703 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20140708 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150413 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150710 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150730 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150805 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5792209 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |